]>
Commit | Line | Data |
---|---|---|
1 | /* Generate the nondeterministic finite state machine for bison, | |
2 | Copyright (C) 1984, 1986, 1989 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of Bison, the GNU Compiler Compiler. | |
5 | ||
6 | Bison is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
10 | ||
11 | Bison is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with Bison; see the file COPYING. If not, write to | |
18 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
19 | ||
20 | ||
21 | /* See comments in state.h for the data structures that represent it. | |
22 | The entry point is generate_states. */ | |
23 | ||
24 | #include <stdio.h> | |
25 | #include "system.h" | |
26 | #include "machine.h" | |
27 | #include "alloc.h" | |
28 | #include "gram.h" | |
29 | #include "state.h" | |
30 | ||
31 | ||
32 | extern char *nullable; | |
33 | extern short *itemset; | |
34 | extern short *itemsetend; | |
35 | ||
36 | ||
37 | int nstates; | |
38 | int final_state; | |
39 | core *first_state; | |
40 | shifts *first_shift; | |
41 | reductions *first_reduction; | |
42 | ||
43 | int get_state(); | |
44 | core *new_state(); | |
45 | ||
46 | void new_itemsets(); | |
47 | void append_states(); | |
48 | void initialize_states(); | |
49 | void save_shifts(); | |
50 | void save_reductions(); | |
51 | void augment_automaton(); | |
52 | void insert_start_shift(); | |
53 | extern void initialize_closure(); | |
54 | extern void closure(); | |
55 | extern void finalize_closure(); | |
56 | extern void toomany(); | |
57 | ||
58 | static core *this_state; | |
59 | static core *last_state; | |
60 | static shifts *last_shift; | |
61 | static reductions *last_reduction; | |
62 | ||
63 | static int nshifts; | |
64 | static short *shift_symbol; | |
65 | ||
66 | static short *redset; | |
67 | static short *shiftset; | |
68 | ||
69 | static short **kernel_base; | |
70 | static short **kernel_end; | |
71 | static short *kernel_items; | |
72 | ||
73 | /* hash table for states, to recognize equivalent ones. */ | |
74 | ||
75 | #define STATE_TABLE_SIZE 1009 | |
76 | static core **state_table; | |
77 | ||
78 | ||
79 | ||
80 | void | |
81 | allocate_itemsets() | |
82 | { | |
83 | register short *itemp; | |
84 | register int symbol; | |
85 | register int i; | |
86 | register int count; | |
87 | register short *symbol_count; | |
88 | ||
89 | count = 0; | |
90 | symbol_count = NEW2(nsyms, short); | |
91 | ||
92 | itemp = ritem; | |
93 | symbol = *itemp++; | |
94 | while (symbol) | |
95 | { | |
96 | if (symbol > 0) | |
97 | { | |
98 | count++; | |
99 | symbol_count[symbol]++; | |
100 | } | |
101 | symbol = *itemp++; | |
102 | } | |
103 | ||
104 | /* see comments before new_itemsets. All the vectors of items | |
105 | live inside kernel_items. The number of active items after | |
106 | some symbol cannot be more than the number of times that symbol | |
107 | appears as an item, which is symbol_count[symbol]. | |
108 | We allocate that much space for each symbol. */ | |
109 | ||
110 | kernel_base = NEW2(nsyms, short *); | |
111 | kernel_items = NEW2(count, short); | |
112 | ||
113 | count = 0; | |
114 | for (i = 0; i < nsyms; i++) | |
115 | { | |
116 | kernel_base[i] = kernel_items + count; | |
117 | count += symbol_count[i]; | |
118 | } | |
119 | ||
120 | shift_symbol = symbol_count; | |
121 | kernel_end = NEW2(nsyms, short *); | |
122 | } | |
123 | ||
124 | ||
125 | void | |
126 | allocate_storage() | |
127 | { | |
128 | allocate_itemsets(); | |
129 | ||
130 | shiftset = NEW2(nsyms, short); | |
131 | redset = NEW2(nrules + 1, short); | |
132 | state_table = NEW2(STATE_TABLE_SIZE, core *); | |
133 | } | |
134 | ||
135 | ||
136 | void | |
137 | free_storage() | |
138 | { | |
139 | FREE(shift_symbol); | |
140 | FREE(redset); | |
141 | FREE(shiftset); | |
142 | FREE(kernel_base); | |
143 | FREE(kernel_end); | |
144 | FREE(kernel_items); | |
145 | FREE(state_table); | |
146 | } | |
147 | ||
148 | ||
149 | ||
150 | /* compute the nondeterministic finite state machine (see state.h for details) | |
151 | from the grammar. */ | |
152 | void | |
153 | generate_states() | |
154 | { | |
155 | allocate_storage(); | |
156 | initialize_closure(nitems); | |
157 | initialize_states(); | |
158 | ||
159 | while (this_state) | |
160 | { | |
161 | /* Set up ruleset and itemset for the transitions out of this state. | |
162 | ruleset gets a 1 bit for each rule that could reduce now. | |
163 | itemset gets a vector of all the items that could be accepted next. */ | |
164 | closure(this_state->items, this_state->nitems); | |
165 | /* record the reductions allowed out of this state */ | |
166 | save_reductions(); | |
167 | /* find the itemsets of the states that shifts can reach */ | |
168 | new_itemsets(); | |
169 | /* find or create the core structures for those states */ | |
170 | append_states(); | |
171 | ||
172 | /* create the shifts structures for the shifts to those states, | |
173 | now that the state numbers transitioning to are known */ | |
174 | if (nshifts > 0) | |
175 | save_shifts(); | |
176 | ||
177 | /* states are queued when they are created; process them all */ | |
178 | this_state = this_state->next; | |
179 | } | |
180 | ||
181 | /* discard various storage */ | |
182 | finalize_closure(); | |
183 | free_storage(); | |
184 | ||
185 | /* set up initial and final states as parser wants them */ | |
186 | augment_automaton(); | |
187 | } | |
188 | ||
189 | ||
190 | ||
191 | /* Find which symbols can be shifted in the current state, | |
192 | and for each one record which items would be active after that shift. | |
193 | Uses the contents of itemset. | |
194 | shift_symbol is set to a vector of the symbols that can be shifted. | |
195 | For each symbol in the grammar, kernel_base[symbol] points to | |
196 | a vector of item numbers activated if that symbol is shifted, | |
197 | and kernel_end[symbol] points after the end of that vector. */ | |
198 | void | |
199 | new_itemsets() | |
200 | { | |
201 | register int i; | |
202 | register int shiftcount; | |
203 | register short *isp; | |
204 | register short *ksp; | |
205 | register int symbol; | |
206 | ||
207 | #ifdef TRACE | |
208 | fprintf(stderr, "Entering new_itemsets\n"); | |
209 | #endif | |
210 | ||
211 | for (i = 0; i < nsyms; i++) | |
212 | kernel_end[i] = NULL; | |
213 | ||
214 | shiftcount = 0; | |
215 | ||
216 | isp = itemset; | |
217 | ||
218 | while (isp < itemsetend) | |
219 | { | |
220 | i = *isp++; | |
221 | symbol = ritem[i]; | |
222 | if (symbol > 0) | |
223 | { | |
224 | ksp = kernel_end[symbol]; | |
225 | ||
226 | if (!ksp) | |
227 | { | |
228 | shift_symbol[shiftcount++] = symbol; | |
229 | ksp = kernel_base[symbol]; | |
230 | } | |
231 | ||
232 | *ksp++ = i + 1; | |
233 | kernel_end[symbol] = ksp; | |
234 | } | |
235 | } | |
236 | ||
237 | nshifts = shiftcount; | |
238 | } | |
239 | ||
240 | ||
241 | ||
242 | /* Use the information computed by new_itemsets to find the state numbers | |
243 | reached by each shift transition from the current state. | |
244 | ||
245 | shiftset is set up as a vector of state numbers of those states. */ | |
246 | void | |
247 | append_states() | |
248 | { | |
249 | register int i; | |
250 | register int j; | |
251 | register int symbol; | |
252 | ||
253 | #ifdef TRACE | |
254 | fprintf(stderr, "Entering append_states\n"); | |
255 | #endif | |
256 | ||
257 | /* first sort shift_symbol into increasing order */ | |
258 | ||
259 | for (i = 1; i < nshifts; i++) | |
260 | { | |
261 | symbol = shift_symbol[i]; | |
262 | j = i; | |
263 | while (j > 0 && shift_symbol[j - 1] > symbol) | |
264 | { | |
265 | shift_symbol[j] = shift_symbol[j - 1]; | |
266 | j--; | |
267 | } | |
268 | shift_symbol[j] = symbol; | |
269 | } | |
270 | ||
271 | for (i = 0; i < nshifts; i++) | |
272 | { | |
273 | symbol = shift_symbol[i]; | |
274 | shiftset[i] = get_state(symbol); | |
275 | } | |
276 | } | |
277 | ||
278 | ||
279 | ||
280 | /* find the state number for the state we would get to | |
281 | (from the current state) by shifting symbol. | |
282 | Create a new state if no equivalent one exists already. | |
283 | Used by append_states */ | |
284 | ||
285 | int | |
286 | get_state(symbol) | |
287 | int symbol; | |
288 | { | |
289 | register int key; | |
290 | register short *isp1; | |
291 | register short *isp2; | |
292 | register short *iend; | |
293 | register core *sp; | |
294 | register int found; | |
295 | ||
296 | int n; | |
297 | ||
298 | #ifdef TRACE | |
299 | fprintf(stderr, "Entering get_state, symbol = %d\n", symbol); | |
300 | #endif | |
301 | ||
302 | isp1 = kernel_base[symbol]; | |
303 | iend = kernel_end[symbol]; | |
304 | n = iend - isp1; | |
305 | ||
306 | /* add up the target state's active item numbers to get a hash key */ | |
307 | key = 0; | |
308 | while (isp1 < iend) | |
309 | key += *isp1++; | |
310 | ||
311 | key = key % STATE_TABLE_SIZE; | |
312 | ||
313 | sp = state_table[key]; | |
314 | ||
315 | if (sp) | |
316 | { | |
317 | found = 0; | |
318 | while (!found) | |
319 | { | |
320 | if (sp->nitems == n) | |
321 | { | |
322 | found = 1; | |
323 | isp1 = kernel_base[symbol]; | |
324 | isp2 = sp->items; | |
325 | ||
326 | while (found && isp1 < iend) | |
327 | { | |
328 | if (*isp1++ != *isp2++) | |
329 | found = 0; | |
330 | } | |
331 | } | |
332 | ||
333 | if (!found) | |
334 | { | |
335 | if (sp->link) | |
336 | { | |
337 | sp = sp->link; | |
338 | } | |
339 | else /* bucket exhausted and no match */ | |
340 | { | |
341 | sp = sp->link = new_state(symbol); | |
342 | found = 1; | |
343 | } | |
344 | } | |
345 | } | |
346 | } | |
347 | else /* bucket is empty */ | |
348 | { | |
349 | state_table[key] = sp = new_state(symbol); | |
350 | } | |
351 | ||
352 | return (sp->number); | |
353 | } | |
354 | ||
355 | ||
356 | ||
357 | /* subroutine of get_state. create a new state for those items, if necessary. */ | |
358 | ||
359 | core * | |
360 | new_state(symbol) | |
361 | int symbol; | |
362 | { | |
363 | register int n; | |
364 | register core *p; | |
365 | register short *isp1; | |
366 | register short *isp2; | |
367 | register short *iend; | |
368 | ||
369 | #ifdef TRACE | |
370 | fprintf(stderr, "Entering new_state, symbol = %d\n", symbol); | |
371 | #endif | |
372 | ||
373 | if (nstates >= MAXSHORT) | |
374 | toomany("states"); | |
375 | ||
376 | isp1 = kernel_base[symbol]; | |
377 | iend = kernel_end[symbol]; | |
378 | n = iend - isp1; | |
379 | ||
380 | p = (core *) xmalloc((unsigned) (sizeof(core) + (n - 1) * sizeof(short))); | |
381 | p->accessing_symbol = symbol; | |
382 | p->number = nstates; | |
383 | p->nitems = n; | |
384 | ||
385 | isp2 = p->items; | |
386 | while (isp1 < iend) | |
387 | *isp2++ = *isp1++; | |
388 | ||
389 | last_state->next = p; | |
390 | last_state = p; | |
391 | ||
392 | nstates++; | |
393 | ||
394 | return (p); | |
395 | } | |
396 | ||
397 | ||
398 | void | |
399 | initialize_states() | |
400 | { | |
401 | register core *p; | |
402 | /* register unsigned *rp1; JF unused */ | |
403 | /* register unsigned *rp2; JF unused */ | |
404 | /* register unsigned *rend; JF unused */ | |
405 | ||
406 | p = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short))); | |
407 | first_state = last_state = this_state = p; | |
408 | nstates = 1; | |
409 | } | |
410 | ||
411 | ||
412 | void | |
413 | save_shifts() | |
414 | { | |
415 | register shifts *p; | |
416 | register short *sp1; | |
417 | register short *sp2; | |
418 | register short *send; | |
419 | ||
420 | p = (shifts *) xmalloc((unsigned) (sizeof(shifts) + | |
421 | (nshifts - 1) * sizeof(short))); | |
422 | ||
423 | p->number = this_state->number; | |
424 | p->nshifts = nshifts; | |
425 | ||
426 | sp1 = shiftset; | |
427 | sp2 = p->shifts; | |
428 | send = shiftset + nshifts; | |
429 | ||
430 | while (sp1 < send) | |
431 | *sp2++ = *sp1++; | |
432 | ||
433 | if (last_shift) | |
434 | { | |
435 | last_shift->next = p; | |
436 | last_shift = p; | |
437 | } | |
438 | else | |
439 | { | |
440 | first_shift = p; | |
441 | last_shift = p; | |
442 | } | |
443 | } | |
444 | ||
445 | ||
446 | ||
447 | /* find which rules can be used for reduction transitions from the current state | |
448 | and make a reductions structure for the state to record their rule numbers. */ | |
449 | void | |
450 | save_reductions() | |
451 | { | |
452 | register short *isp; | |
453 | register short *rp1; | |
454 | register short *rp2; | |
455 | register int item; | |
456 | register int count; | |
457 | register reductions *p; | |
458 | ||
459 | short *rend; | |
460 | ||
461 | /* find and count the active items that represent ends of rules */ | |
462 | ||
463 | count = 0; | |
464 | for (isp = itemset; isp < itemsetend; isp++) | |
465 | { | |
466 | item = ritem[*isp]; | |
467 | if (item < 0) | |
468 | { | |
469 | redset[count++] = -item; | |
470 | } | |
471 | } | |
472 | ||
473 | /* make a reductions structure and copy the data into it. */ | |
474 | ||
475 | if (count) | |
476 | { | |
477 | p = (reductions *) xmalloc((unsigned) (sizeof(reductions) + | |
478 | (count - 1) * sizeof(short))); | |
479 | ||
480 | p->number = this_state->number; | |
481 | p->nreds = count; | |
482 | ||
483 | rp1 = redset; | |
484 | rp2 = p->rules; | |
485 | rend = rp1 + count; | |
486 | ||
487 | while (rp1 < rend) | |
488 | *rp2++ = *rp1++; | |
489 | ||
490 | if (last_reduction) | |
491 | { | |
492 | last_reduction->next = p; | |
493 | last_reduction = p; | |
494 | } | |
495 | else | |
496 | { | |
497 | first_reduction = p; | |
498 | last_reduction = p; | |
499 | } | |
500 | } | |
501 | } | |
502 | ||
503 | ||
504 | ||
505 | /* Make sure that the initial state has a shift that accepts the | |
506 | grammar's start symbol and goes to the next-to-final state, | |
507 | which has a shift going to the final state, which has a shift | |
508 | to the termination state. | |
509 | Create such states and shifts if they don't happen to exist already. */ | |
510 | void | |
511 | augment_automaton() | |
512 | { | |
513 | register int i; | |
514 | register int k; | |
515 | /* register int found; JF unused */ | |
516 | register core *statep; | |
517 | register shifts *sp; | |
518 | register shifts *sp2; | |
519 | register shifts *sp1; | |
520 | ||
521 | sp = first_shift; | |
522 | ||
523 | if (sp) | |
524 | { | |
525 | if (sp->number == 0) | |
526 | { | |
527 | k = sp->nshifts; | |
528 | statep = first_state->next; | |
529 | ||
530 | /* The states reached by shifts from first_state are numbered 1...K. | |
531 | Look for one reached by start_symbol. */ | |
532 | while (statep->accessing_symbol < start_symbol | |
533 | && statep->number < k) | |
534 | statep = statep->next; | |
535 | ||
536 | if (statep->accessing_symbol == start_symbol) | |
537 | { | |
538 | /* We already have a next-to-final state. | |
539 | Make sure it has a shift to what will be the final state. */ | |
540 | k = statep->number; | |
541 | ||
542 | while (sp && sp->number < k) | |
543 | { | |
544 | sp1 = sp; | |
545 | sp = sp->next; | |
546 | } | |
547 | ||
548 | if (sp && sp->number == k) | |
549 | { | |
550 | sp2 = (shifts *) xmalloc((unsigned) (sizeof(shifts) | |
551 | + sp->nshifts * sizeof(short))); | |
552 | sp2->number = k; | |
553 | sp2->nshifts = sp->nshifts + 1; | |
554 | sp2->shifts[0] = nstates; | |
555 | for (i = sp->nshifts; i > 0; i--) | |
556 | sp2->shifts[i] = sp->shifts[i - 1]; | |
557 | ||
558 | /* Patch sp2 into the chain of shifts in place of sp, | |
559 | following sp1. */ | |
560 | sp2->next = sp->next; | |
561 | sp1->next = sp2; | |
562 | if (sp == last_shift) | |
563 | last_shift = sp2; | |
564 | FREE(sp); | |
565 | } | |
566 | else | |
567 | { | |
568 | sp2 = NEW(shifts); | |
569 | sp2->number = k; | |
570 | sp2->nshifts = 1; | |
571 | sp2->shifts[0] = nstates; | |
572 | ||
573 | /* Patch sp2 into the chain of shifts between sp1 and sp. */ | |
574 | sp2->next = sp; | |
575 | sp1->next = sp2; | |
576 | if (sp == 0) | |
577 | last_shift = sp2; | |
578 | } | |
579 | } | |
580 | else | |
581 | { | |
582 | /* There is no next-to-final state as yet. */ | |
583 | /* Add one more shift in first_shift, | |
584 | going to the next-to-final state (yet to be made). */ | |
585 | sp = first_shift; | |
586 | ||
587 | sp2 = (shifts *) xmalloc(sizeof(shifts) | |
588 | + sp->nshifts * sizeof(short)); | |
589 | sp2->nshifts = sp->nshifts + 1; | |
590 | ||
591 | /* Stick this shift into the vector at the proper place. */ | |
592 | statep = first_state->next; | |
593 | for (k = 0, i = 0; i < sp->nshifts; k++, i++) | |
594 | { | |
595 | if (statep->accessing_symbol > start_symbol && i == k) | |
596 | sp2->shifts[k++] = nstates; | |
597 | sp2->shifts[k] = sp->shifts[i]; | |
598 | statep = statep->next; | |
599 | } | |
600 | if (i == k) | |
601 | sp2->shifts[k++] = nstates; | |
602 | ||
603 | /* Patch sp2 into the chain of shifts | |
604 | in place of sp, at the beginning. */ | |
605 | sp2->next = sp->next; | |
606 | first_shift = sp2; | |
607 | if (last_shift == sp) | |
608 | last_shift = sp2; | |
609 | ||
610 | FREE(sp); | |
611 | ||
612 | /* Create the next-to-final state, with shift to | |
613 | what will be the final state. */ | |
614 | insert_start_shift(); | |
615 | } | |
616 | } | |
617 | else | |
618 | { | |
619 | /* The initial state didn't even have any shifts. | |
620 | Give it one shift, to the next-to-final state. */ | |
621 | sp = NEW(shifts); | |
622 | sp->nshifts = 1; | |
623 | sp->shifts[0] = nstates; | |
624 | ||
625 | /* Patch sp into the chain of shifts at the beginning. */ | |
626 | sp->next = first_shift; | |
627 | first_shift = sp; | |
628 | ||
629 | /* Create the next-to-final state, with shift to | |
630 | what will be the final state. */ | |
631 | insert_start_shift(); | |
632 | } | |
633 | } | |
634 | else | |
635 | { | |
636 | /* There are no shifts for any state. | |
637 | Make one shift, from the initial state to the next-to-final state. */ | |
638 | ||
639 | sp = NEW(shifts); | |
640 | sp->nshifts = 1; | |
641 | sp->shifts[0] = nstates; | |
642 | ||
643 | /* Initialize the chain of shifts with sp. */ | |
644 | first_shift = sp; | |
645 | last_shift = sp; | |
646 | ||
647 | /* Create the next-to-final state, with shift to | |
648 | what will be the final state. */ | |
649 | insert_start_shift(); | |
650 | } | |
651 | ||
652 | /* Make the final state--the one that follows a shift from the | |
653 | next-to-final state. | |
654 | The symbol for that shift is 0 (end-of-file). */ | |
655 | statep = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short))); | |
656 | statep->number = nstates; | |
657 | last_state->next = statep; | |
658 | last_state = statep; | |
659 | ||
660 | /* Make the shift from the final state to the termination state. */ | |
661 | sp = NEW(shifts); | |
662 | sp->number = nstates++; | |
663 | sp->nshifts = 1; | |
664 | sp->shifts[0] = nstates; | |
665 | last_shift->next = sp; | |
666 | last_shift = sp; | |
667 | ||
668 | /* Note that the variable `final_state' refers to what we sometimes call | |
669 | the termination state. */ | |
670 | final_state = nstates; | |
671 | ||
672 | /* Make the termination state. */ | |
673 | statep = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short))); | |
674 | statep->number = nstates++; | |
675 | last_state->next = statep; | |
676 | last_state = statep; | |
677 | } | |
678 | ||
679 | ||
680 | /* subroutine of augment_automaton. | |
681 | Create the next-to-final state, to which a shift has already been made in | |
682 | the initial state. */ | |
683 | void | |
684 | insert_start_shift() | |
685 | { | |
686 | register core *statep; | |
687 | register shifts *sp; | |
688 | ||
689 | statep = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short))); | |
690 | statep->number = nstates; | |
691 | statep->accessing_symbol = start_symbol; | |
692 | ||
693 | last_state->next = statep; | |
694 | last_state = statep; | |
695 | ||
696 | /* Make a shift from this state to (what will be) the final state. */ | |
697 | sp = NEW(shifts); | |
698 | sp->number = nstates++; | |
699 | sp->nshifts = 1; | |
700 | sp->shifts[0] = nstates; | |
701 | ||
702 | last_shift->next = sp; | |
703 | last_shift = sp; | |
704 | } |