]>
Commit | Line | Data |
---|---|---|
1 | /* Grammar reduction for Bison. | |
2 | Copyright 1988, 1989, 2000, 2001 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of Bison, the GNU Compiler Compiler. | |
5 | ||
6 | Bison is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
10 | ||
11 | Bison is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with Bison; see the file COPYING. If not, write to | |
18 | the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
19 | Boston, MA 02111-1307, USA. */ | |
20 | ||
21 | ||
22 | /* Reduce the grammar: Find and eliminate unreachable terminals, | |
23 | nonterminals, and productions. David S. Bakin. */ | |
24 | ||
25 | /* Don't eliminate unreachable terminals: They may be used by the | |
26 | user's parser. */ | |
27 | ||
28 | #include "system.h" | |
29 | #include "getargs.h" | |
30 | #include "files.h" | |
31 | #include "gram.h" | |
32 | #include "complain.h" | |
33 | #include "reduce.h" | |
34 | #include "reader.h" | |
35 | #include "getargs.h" | |
36 | ||
37 | typedef unsigned *BSet; | |
38 | typedef short *rule; | |
39 | ||
40 | ||
41 | /* N is set of all nonterminals which are not useless. P is set of | |
42 | all rules which have no useless nonterminals in their RHS. V is | |
43 | the set of all accessible symbols. */ | |
44 | ||
45 | static BSet N, P, V, V1; | |
46 | ||
47 | static int nuseful_productions; | |
48 | static int nuseless_productions; | |
49 | static int nuseful_nonterminals; | |
50 | static int nuseless_nonterminals; | |
51 | \f | |
52 | static bool | |
53 | bits_equal (BSet L, BSet R, int n) | |
54 | { | |
55 | int i; | |
56 | ||
57 | for (i = n - 1; i >= 0; i--) | |
58 | if (L[i] != R[i]) | |
59 | return FALSE; | |
60 | return TRUE; | |
61 | } | |
62 | ||
63 | ||
64 | static int | |
65 | nbits (unsigned i) | |
66 | { | |
67 | int count = 0; | |
68 | ||
69 | while (i != 0) | |
70 | { | |
71 | i ^= (i & ((unsigned) (-(int) i))); | |
72 | ++count; | |
73 | } | |
74 | return count; | |
75 | } | |
76 | ||
77 | ||
78 | static int | |
79 | bits_size (BSet S, int n) | |
80 | { | |
81 | int i, count = 0; | |
82 | ||
83 | for (i = n - 1; i >= 0; i--) | |
84 | count += nbits (S[i]); | |
85 | return count; | |
86 | } | |
87 | \f | |
88 | /*-------------------------------------------------------------------. | |
89 | | Another way to do this would be with a set for each production and | | |
90 | | then do subset tests against N0, but even for the C grammar the | | |
91 | | whole reducing process takes only 2 seconds on my 8Mhz AT. | | |
92 | `-------------------------------------------------------------------*/ | |
93 | ||
94 | static bool | |
95 | useful_production (int i, BSet N0) | |
96 | { | |
97 | rule r; | |
98 | short n; | |
99 | ||
100 | /* A production is useful if all of the nonterminals in its appear | |
101 | in the set of useful nonterminals. */ | |
102 | ||
103 | for (r = &ritem[rule_table[i].rhs]; *r > 0; r++) | |
104 | if (ISVAR (n = *r)) | |
105 | if (!BITISSET (N0, n - ntokens)) | |
106 | return FALSE; | |
107 | return TRUE; | |
108 | } | |
109 | ||
110 | ||
111 | /*---------------------------------------------------------. | |
112 | | Remember that rules are 1-origin, symbols are 0-origin. | | |
113 | `---------------------------------------------------------*/ | |
114 | ||
115 | static void | |
116 | useless_nonterminals (void) | |
117 | { | |
118 | BSet Np, Ns; | |
119 | int i; | |
120 | ||
121 | /* N is set as built. Np is set being built this iteration. P is | |
122 | set of all productions which have a RHS all in N. */ | |
123 | ||
124 | Np = XCALLOC (unsigned, WORDSIZE (nvars)); | |
125 | ||
126 | /* The set being computed is a set of nonterminals which can derive | |
127 | the empty string or strings consisting of all terminals. At each | |
128 | iteration a nonterminal is added to the set if there is a | |
129 | production with that nonterminal as its LHS for which all the | |
130 | nonterminals in its RHS are already in the set. Iterate until | |
131 | the set being computed remains unchanged. Any nonterminals not | |
132 | in the set at that point are useless in that they will never be | |
133 | used in deriving a sentence of the language. | |
134 | ||
135 | This iteration doesn't use any special traversal over the | |
136 | productions. A set is kept of all productions for which all the | |
137 | nonterminals in the RHS are in useful. Only productions not in | |
138 | this set are scanned on each iteration. At the end, this set is | |
139 | saved to be used when finding useful productions: only | |
140 | productions in this set will appear in the final grammar. */ | |
141 | ||
142 | while (1) | |
143 | { | |
144 | for (i = WORDSIZE (nvars) - 1; i >= 0; i--) | |
145 | Np[i] = N[i]; | |
146 | for (i = 1; i <= nrules; i++) | |
147 | { | |
148 | if (!BITISSET (P, i)) | |
149 | { | |
150 | if (useful_production (i, N)) | |
151 | { | |
152 | SETBIT (Np, rule_table[i].lhs - ntokens); | |
153 | SETBIT (P, i); | |
154 | } | |
155 | } | |
156 | } | |
157 | if (bits_equal (N, Np, WORDSIZE (nvars))) | |
158 | break; | |
159 | Ns = Np; | |
160 | Np = N; | |
161 | N = Ns; | |
162 | } | |
163 | XFREE (N); | |
164 | N = Np; | |
165 | } | |
166 | ||
167 | ||
168 | static void | |
169 | inaccessable_symbols (void) | |
170 | { | |
171 | BSet Vp, Vs, Pp; | |
172 | int i; | |
173 | short t; | |
174 | rule r; | |
175 | ||
176 | /* Find out which productions are reachable and which symbols are | |
177 | used. Starting with an empty set of productions and a set of | |
178 | symbols which only has the start symbol in it, iterate over all | |
179 | productions until the set of productions remains unchanged for an | |
180 | iteration. For each production which has a LHS in the set of | |
181 | reachable symbols, add the production to the set of reachable | |
182 | productions, and add all of the nonterminals in the RHS of the | |
183 | production to the set of reachable symbols. | |
184 | ||
185 | Consider only the (partially) reduced grammar which has only | |
186 | nonterminals in N and productions in P. | |
187 | ||
188 | The result is the set P of productions in the reduced grammar, | |
189 | and the set V of symbols in the reduced grammar. | |
190 | ||
191 | Although this algorithm also computes the set of terminals which | |
192 | are reachable, no terminal will be deleted from the grammar. Some | |
193 | terminals might not be in the grammar but might be generated by | |
194 | semantic routines, and so the user might want them available with | |
195 | specified numbers. (Is this true?) However, the nonreachable | |
196 | terminals are printed (if running in verbose mode) so that the | |
197 | user can know. */ | |
198 | ||
199 | Vp = XCALLOC (unsigned, WORDSIZE (nsyms)); | |
200 | Pp = XCALLOC (unsigned, WORDSIZE (nrules + 1)); | |
201 | ||
202 | /* If the start symbol isn't useful, then nothing will be useful. */ | |
203 | if (!BITISSET (N, start_symbol - ntokens)) | |
204 | goto end_iteration; | |
205 | ||
206 | SETBIT (V, start_symbol); | |
207 | ||
208 | while (1) | |
209 | { | |
210 | for (i = WORDSIZE (nsyms) - 1; i >= 0; i--) | |
211 | Vp[i] = V[i]; | |
212 | for (i = 1; i <= nrules; i++) | |
213 | { | |
214 | if (!BITISSET (Pp, i) && BITISSET (P, i) && BITISSET (V, rule_table[i].lhs)) | |
215 | { | |
216 | for (r = &ritem[rule_table[i].rhs]; *r >= 0; r++) | |
217 | { | |
218 | if (ISTOKEN (t = *r) || BITISSET (N, t - ntokens)) | |
219 | { | |
220 | SETBIT (Vp, t); | |
221 | } | |
222 | } | |
223 | SETBIT (Pp, i); | |
224 | } | |
225 | } | |
226 | if (bits_equal (V, Vp, WORDSIZE (nsyms))) | |
227 | { | |
228 | break; | |
229 | } | |
230 | Vs = Vp; | |
231 | Vp = V; | |
232 | V = Vs; | |
233 | } | |
234 | end_iteration: | |
235 | ||
236 | XFREE (V); | |
237 | V = Vp; | |
238 | ||
239 | /* Tokens 0, 1, and 2 are internal to Bison. Consider them useful. */ | |
240 | SETBIT (V, 0); /* end-of-input token */ | |
241 | SETBIT (V, 1); /* error token */ | |
242 | SETBIT (V, 2); /* some undefined token */ | |
243 | ||
244 | XFREE (P); | |
245 | P = Pp; | |
246 | ||
247 | nuseful_productions = bits_size (P, WORDSIZE (nrules + 1)); | |
248 | nuseless_productions = nrules - nuseful_productions; | |
249 | ||
250 | nuseful_nonterminals = 0; | |
251 | for (i = ntokens; i < nsyms; i++) | |
252 | if (BITISSET (V, i)) | |
253 | nuseful_nonterminals++; | |
254 | nuseless_nonterminals = nvars - nuseful_nonterminals; | |
255 | ||
256 | /* A token that was used in %prec should not be warned about. */ | |
257 | for (i = 1; i < nrules; i++) | |
258 | if (rule_table[i].precsym != 0) | |
259 | SETBIT (V1, rule_table[i].precsym); | |
260 | } | |
261 | ||
262 | static void | |
263 | reduce_grammar_tables (void) | |
264 | { | |
265 | /* This is turned off because we would need to change the numbers | |
266 | in the case statements in the actions file. */ | |
267 | #if 0 | |
268 | /* remove useless productions */ | |
269 | if (nuseless_productions > 0) | |
270 | { | |
271 | short np, pn, ni, pi; | |
272 | ||
273 | np = 0; | |
274 | ni = 0; | |
275 | for (pn = 1; pn <= nrules; pn++) | |
276 | { | |
277 | if (BITISSET (P, pn)) | |
278 | { | |
279 | np++; | |
280 | if (pn != np) | |
281 | { | |
282 | rule_table[np].lhs = rule_table[pn].lhs; | |
283 | rline[np] = rline[pn]; | |
284 | rule_table[np].prec = rule_table[pn].prec; | |
285 | rule_table[np].assoc = rule_table[pn].assoc; | |
286 | rule_table[np].rhs = rule_table[pn].rhs; | |
287 | if (rule_table[np].rhs != ni) | |
288 | { | |
289 | pi = rule_table[np].rhs; | |
290 | rule_table[np].rhs = ni; | |
291 | while (ritem[pi] >= 0) | |
292 | ritem[ni++] = ritem[pi++]; | |
293 | ritem[ni++] = -np; | |
294 | } | |
295 | } | |
296 | else | |
297 | { | |
298 | while (ritem[ni++] >= 0); | |
299 | } | |
300 | } | |
301 | } | |
302 | ritem[ni] = 0; | |
303 | nrules -= nuseless_productions; | |
304 | nitems = ni; | |
305 | ||
306 | /* Is it worth it to reduce the amount of memory for the | |
307 | grammar? Probably not. */ | |
308 | ||
309 | } | |
310 | #endif /* 0 */ | |
311 | /* Disable useless productions, | |
312 | since they may contain useless nonterms | |
313 | that would get mapped below to -1 and confuse everyone. */ | |
314 | if (nuseless_productions > 0) | |
315 | { | |
316 | int pn; | |
317 | ||
318 | for (pn = 1; pn <= nrules; pn++) | |
319 | { | |
320 | if (!BITISSET (P, pn)) | |
321 | { | |
322 | rule_table[pn].lhs = -1; | |
323 | } | |
324 | } | |
325 | } | |
326 | ||
327 | /* remove useless symbols */ | |
328 | if (nuseless_nonterminals > 0) | |
329 | { | |
330 | ||
331 | int i, n; | |
332 | /* short j; JF unused */ | |
333 | short *nontermmap; | |
334 | rule r; | |
335 | ||
336 | /* Create a map of nonterminal number to new nonterminal | |
337 | number. -1 in the map means it was useless and is being | |
338 | eliminated. */ | |
339 | ||
340 | nontermmap = XCALLOC (short, nvars) - ntokens; | |
341 | for (i = ntokens; i < nsyms; i++) | |
342 | nontermmap[i] = -1; | |
343 | ||
344 | n = ntokens; | |
345 | for (i = ntokens; i < nsyms; i++) | |
346 | if (BITISSET (V, i)) | |
347 | nontermmap[i] = n++; | |
348 | ||
349 | /* Shuffle elements of tables indexed by symbol number. */ | |
350 | ||
351 | for (i = ntokens; i < nsyms; i++) | |
352 | { | |
353 | n = nontermmap[i]; | |
354 | if (n >= 0) | |
355 | { | |
356 | sassoc[n] = sassoc[i]; | |
357 | sprec[n] = sprec[i]; | |
358 | tags[n] = tags[i]; | |
359 | } | |
360 | else | |
361 | { | |
362 | free (tags[i]); | |
363 | } | |
364 | } | |
365 | ||
366 | /* Replace all symbol numbers in valid data structures. */ | |
367 | ||
368 | for (i = 1; i <= nrules; i++) | |
369 | { | |
370 | /* Ignore the rules disabled above. */ | |
371 | if (rule_table[i].lhs >= 0) | |
372 | rule_table[i].lhs = nontermmap[rule_table[i].lhs]; | |
373 | if (ISVAR (rule_table[i].precsym)) | |
374 | /* Can this happen? */ | |
375 | rule_table[i].precsym = nontermmap[rule_table[i].precsym]; | |
376 | } | |
377 | ||
378 | for (r = ritem; *r; r++) | |
379 | if (ISVAR (*r)) | |
380 | *r = nontermmap[*r]; | |
381 | ||
382 | start_symbol = nontermmap[start_symbol]; | |
383 | ||
384 | nsyms -= nuseless_nonterminals; | |
385 | nvars -= nuseless_nonterminals; | |
386 | ||
387 | free (&nontermmap[ntokens]); | |
388 | } | |
389 | } | |
390 | ||
391 | ||
392 | /*-----------------------------------------------------------------. | |
393 | | Ouput the detailed results of the reductions. For FILE.output. | | |
394 | `-----------------------------------------------------------------*/ | |
395 | ||
396 | void | |
397 | reduce_output (FILE *out) | |
398 | { | |
399 | int i; | |
400 | rule r; | |
401 | bool b; | |
402 | ||
403 | if (nuseless_nonterminals > 0) | |
404 | { | |
405 | fprintf (out, _("Useless nonterminals:")); | |
406 | fprintf (out, "\n\n"); | |
407 | for (i = ntokens; i < nsyms; i++) | |
408 | if (!BITISSET (V, i)) | |
409 | fprintf (out, " %s\n", tags[i]); | |
410 | } | |
411 | b = FALSE; | |
412 | for (i = 0; i < ntokens; i++) | |
413 | { | |
414 | if (!BITISSET (V, i) && !BITISSET (V1, i)) | |
415 | { | |
416 | if (!b) | |
417 | { | |
418 | fprintf (out, "\n\n"); | |
419 | fprintf (out, _("Terminals which are not used:")); | |
420 | fprintf (out, "\n\n"); | |
421 | b = TRUE; | |
422 | } | |
423 | fprintf (out, " %s\n", tags[i]); | |
424 | } | |
425 | } | |
426 | ||
427 | if (nuseless_productions > 0) | |
428 | { | |
429 | fprintf (out, "\n\n"); | |
430 | fprintf (out, _("Useless rules:")); | |
431 | fprintf (out, "\n\n"); | |
432 | for (i = 1; i <= nrules; i++) | |
433 | { | |
434 | if (!BITISSET (P, i)) | |
435 | { | |
436 | fprintf (out, "#%-4d ", i); | |
437 | fprintf (out, "%s :\t", tags[rule_table[i].lhs]); | |
438 | for (r = &ritem[rule_table[i].rhs]; *r >= 0; r++) | |
439 | fprintf (out, " %s", tags[*r]); | |
440 | fprintf (out, ";\n"); | |
441 | } | |
442 | } | |
443 | } | |
444 | if (nuseless_nonterminals > 0 || nuseless_productions > 0 || b) | |
445 | fprintf (out, "\n\n"); | |
446 | } | |
447 | \f | |
448 | #if 0 /* XXX currently unused. */ | |
449 | static void | |
450 | dump_grammar (FILE *out) | |
451 | { | |
452 | int i; | |
453 | rule r; | |
454 | ||
455 | fprintf (out, | |
456 | "ntokens = %d, nvars = %d, nsyms = %d, nrules = %d, nitems = %d\n\n", | |
457 | ntokens, nvars, nsyms, nrules, nitems); | |
458 | fprintf (out, _("Variables\n---------\n\n")); | |
459 | fprintf (out, _("Value Sprec Sassoc Tag\n")); | |
460 | for (i = ntokens; i < nsyms; i++) | |
461 | fprintf (out, "%5d %5d %5d %s\n", i, sprec[i], sassoc[i], tags[i]); | |
462 | fprintf (out, "\n\n"); | |
463 | fprintf (out, _("Rules\n-----\n\n")); | |
464 | for (i = 1; i <= nrules; i++) | |
465 | { | |
466 | fprintf (out, "%-5d(%5d%5d)%5d : (@%-5d)", | |
467 | i, | |
468 | rule_table[i].prec, | |
469 | rule_table[i].assoc, | |
470 | rule_table[i].lhs, | |
471 | rule_table[i].rhs); | |
472 | for (r = &ritem[rule_table[i].rhs]; *r > 0; r++) | |
473 | fprintf (out, "%5d", *r); | |
474 | fprintf (out, " [%d]\n", -(*r)); | |
475 | } | |
476 | fprintf (out, "\n\n"); | |
477 | fprintf (out, _("Rules interpreted\n-----------------\n\n")); | |
478 | for (i = 1; i <= nrules; i++) | |
479 | { | |
480 | fprintf (out, "%-5d %s :", i, tags[rule_table[i].lhs]); | |
481 | for (r = &ritem[rule_table[i].rhs]; *r > 0; r++) | |
482 | fprintf (out, " %s", tags[*r]); | |
483 | fputc ('\n', out); | |
484 | } | |
485 | fprintf (out, "\n\n"); | |
486 | } | |
487 | #endif | |
488 | ||
489 | ||
490 | ||
491 | /*-------------------------------. | |
492 | | Report the results to STDERR. | | |
493 | `-------------------------------*/ | |
494 | ||
495 | static void | |
496 | reduce_print (void) | |
497 | { | |
498 | if (yacc_flag && nuseless_productions) | |
499 | fprintf (stderr, _("%d rules never reduced\n"), nuseless_productions); | |
500 | ||
501 | fprintf (stderr, _("%s contains "), infile); | |
502 | ||
503 | if (nuseless_nonterminals > 0) | |
504 | { | |
505 | fprintf (stderr, _("%d useless nonterminal%s"), | |
506 | nuseless_nonterminals, | |
507 | (nuseless_nonterminals == 1 ? "" : "s")); | |
508 | } | |
509 | if (nuseless_nonterminals > 0 && nuseless_productions > 0) | |
510 | fprintf (stderr, _(" and ")); | |
511 | ||
512 | if (nuseless_productions > 0) | |
513 | { | |
514 | fprintf (stderr, _("%d useless rule%s"), | |
515 | nuseless_productions, (nuseless_productions == 1 ? "" : "s")); | |
516 | } | |
517 | fprintf (stderr, "\n"); | |
518 | fflush (stderr); | |
519 | } | |
520 | \f | |
521 | void | |
522 | reduce_grammar (void) | |
523 | { | |
524 | bool reduced; | |
525 | ||
526 | /* Allocate the global sets used to compute the reduced grammar */ | |
527 | ||
528 | N = XCALLOC (unsigned, WORDSIZE (nvars)); | |
529 | P = XCALLOC (unsigned, WORDSIZE (nrules + 1)); | |
530 | V = XCALLOC (unsigned, WORDSIZE (nsyms)); | |
531 | V1 = XCALLOC (unsigned, WORDSIZE (nsyms)); | |
532 | ||
533 | useless_nonterminals (); | |
534 | inaccessable_symbols (); | |
535 | ||
536 | reduced = (bool) (nuseless_nonterminals + nuseless_productions > 0); | |
537 | ||
538 | if (!reduced) | |
539 | return; | |
540 | ||
541 | reduce_print (); | |
542 | ||
543 | if (!BITISSET (N, start_symbol - ntokens)) | |
544 | fatal (_("Start symbol %s does not derive any sentence"), | |
545 | tags[start_symbol]); | |
546 | ||
547 | reduce_grammar_tables (); | |
548 | #if 0 | |
549 | if (verbose_flag) | |
550 | { | |
551 | fprintf (out, "REDUCED GRAMMAR\n\n"); | |
552 | dump_grammar (); | |
553 | } | |
554 | #endif | |
555 | ||
556 | if (statistics_flag) | |
557 | fprintf (stderr, _("reduced %s defines %d terminal%s, %d nonterminal%s\ | |
558 | , and %d production%s.\n"), | |
559 | infile, | |
560 | ntokens, | |
561 | (ntokens == 1 ? "" : "s"), | |
562 | nvars, | |
563 | (nvars == 1 ? "" : "s"), | |
564 | nrules, | |
565 | (nrules == 1 ? "" : "s")); | |
566 | } | |
567 | ||
568 | ||
569 | /*-----------------------------------------------------------. | |
570 | | Free the global sets used to compute the reduced grammar. | | |
571 | `-----------------------------------------------------------*/ | |
572 | ||
573 | void | |
574 | reduce_free (void) | |
575 | { | |
576 | XFREE (N); | |
577 | XFREE (V); | |
578 | XFREE (V1); | |
579 | XFREE (P); | |
580 | } |