]> git.saurik.com Git - bison.git/blame_incremental - src/reduce.c
* tests/regression.at (AT_TEST_CPP_GUARD_H): New.
[bison.git] / src / reduce.c
... / ...
CommitLineData
1/* Grammar reduction for Bison.
2 Copyright 1988, 1989, 2000 Free Software Foundation, Inc.
3
4 This file is part of Bison, the GNU Compiler Compiler.
5
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22/* Reduce the grammar: Find and eliminate unreachable terminals,
23 nonterminals, and productions. David S. Bakin. */
24
25/* Don't eliminate unreachable terminals: They may be used by the
26 user's parser. */
27
28#include "system.h"
29#include "getargs.h"
30#include "files.h"
31#include "gram.h"
32#include "complain.h"
33#include "reduce.h"
34#include "reader.h"
35#include "getargs.h"
36
37typedef unsigned *BSet;
38typedef short *rule;
39
40
41/* N is set of all nonterminals which are not useless. P is set of
42 all rules which have no useless nonterminals in their RHS. V is
43 the set of all accessible symbols. */
44
45static BSet N, P, V, V1;
46
47static int nuseful_productions;
48static int nuseless_productions;
49static int nuseful_nonterminals;
50static int nuseless_nonterminals;
51\f
52static bool
53bits_equal (BSet L, BSet R, int n)
54{
55 int i;
56
57 for (i = n - 1; i >= 0; i--)
58 if (L[i] != R[i])
59 return FALSE;
60 return TRUE;
61}
62
63
64static int
65nbits (unsigned i)
66{
67 int count = 0;
68
69 while (i != 0)
70 {
71 i ^= (i & ((unsigned) (-(int) i)));
72 ++count;
73 }
74 return count;
75}
76
77
78static int
79bits_size (BSet S, int n)
80{
81 int i, count = 0;
82
83 for (i = n - 1; i >= 0; i--)
84 count += nbits (S[i]);
85 return count;
86}
87\f
88/*-------------------------------------------------------------------.
89| Another way to do this would be with a set for each production and |
90| then do subset tests against N0, but even for the C grammar the |
91| whole reducing process takes only 2 seconds on my 8Mhz AT. |
92`-------------------------------------------------------------------*/
93
94static bool
95useful_production (int i, BSet N0)
96{
97 rule r;
98 short n;
99
100 /* A production is useful if all of the nonterminals in its appear
101 in the set of useful nonterminals. */
102
103 for (r = &ritem[rrhs[i]]; *r > 0; r++)
104 if (ISVAR (n = *r))
105 if (!BITISSET (N0, n - ntokens))
106 return FALSE;
107 return TRUE;
108}
109
110
111/*---------------------------------------------------------.
112| Remember that rules are 1-origin, symbols are 0-origin. |
113`---------------------------------------------------------*/
114
115static void
116useless_nonterminals (void)
117{
118 BSet Np, Ns;
119 int i;
120
121 /* N is set as built. Np is set being built this iteration. P is
122 set of all productions which have a RHS all in N. */
123
124 Np = XCALLOC (unsigned, WORDSIZE (nvars));
125
126 /* The set being computed is a set of nonterminals which can derive
127 the empty string or strings consisting of all terminals. At each
128 iteration a nonterminal is added to the set if there is a
129 production with that nonterminal as its LHS for which all the
130 nonterminals in its RHS are already in the set. Iterate until
131 the set being computed remains unchanged. Any nonterminals not
132 in the set at that point are useless in that they will never be
133 used in deriving a sentence of the language.
134
135 This iteration doesn't use any special traversal over the
136 productions. A set is kept of all productions for which all the
137 nonterminals in the RHS are in useful. Only productions not in
138 this set are scanned on each iteration. At the end, this set is
139 saved to be used when finding useful productions: only
140 productions in this set will appear in the final grammar. */
141
142 while (1)
143 {
144 for (i = WORDSIZE (nvars) - 1; i >= 0; i--)
145 Np[i] = N[i];
146 for (i = 1; i <= nrules; i++)
147 {
148 if (!BITISSET (P, i))
149 {
150 if (useful_production (i, N))
151 {
152 SETBIT (Np, rlhs[i] - ntokens);
153 SETBIT (P, i);
154 }
155 }
156 }
157 if (bits_equal (N, Np, WORDSIZE (nvars)))
158 break;
159 Ns = Np;
160 Np = N;
161 N = Ns;
162 }
163 XFREE (N);
164 N = Np;
165}
166
167
168static void
169inaccessable_symbols (void)
170{
171 BSet Vp, Vs, Pp;
172 int i;
173 short t;
174 rule r;
175
176 /* Find out which productions are reachable and which symbols are
177 used. Starting with an empty set of productions and a set of
178 symbols which only has the start symbol in it, iterate over all
179 productions until the set of productions remains unchanged for an
180 iteration. For each production which has a LHS in the set of
181 reachable symbols, add the production to the set of reachable
182 productions, and add all of the nonterminals in the RHS of the
183 production to the set of reachable symbols.
184
185 Consider only the (partially) reduced grammar which has only
186 nonterminals in N and productions in P.
187
188 The result is the set P of productions in the reduced grammar,
189 and the set V of symbols in the reduced grammar.
190
191 Although this algorithm also computes the set of terminals which
192 are reachable, no terminal will be deleted from the grammar. Some
193 terminals might not be in the grammar but might be generated by
194 semantic routines, and so the user might want them available with
195 specified numbers. (Is this true?) However, the nonreachable
196 terminals are printed (if running in verbose mode) so that the
197 user can know. */
198
199 Vp = XCALLOC (unsigned, WORDSIZE (nsyms));
200 Pp = XCALLOC (unsigned, WORDSIZE (nrules + 1));
201
202 /* If the start symbol isn't useful, then nothing will be useful. */
203 if (!BITISSET (N, start_symbol - ntokens))
204 goto end_iteration;
205
206 SETBIT (V, start_symbol);
207
208 while (1)
209 {
210 for (i = WORDSIZE (nsyms) - 1; i >= 0; i--)
211 Vp[i] = V[i];
212 for (i = 1; i <= nrules; i++)
213 {
214 if (!BITISSET (Pp, i) && BITISSET (P, i) && BITISSET (V, rlhs[i]))
215 {
216 for (r = &ritem[rrhs[i]]; *r >= 0; r++)
217 {
218 if (ISTOKEN (t = *r) || BITISSET (N, t - ntokens))
219 {
220 SETBIT (Vp, t);
221 }
222 }
223 SETBIT (Pp, i);
224 }
225 }
226 if (bits_equal (V, Vp, WORDSIZE (nsyms)))
227 {
228 break;
229 }
230 Vs = Vp;
231 Vp = V;
232 V = Vs;
233 }
234end_iteration:
235
236 XFREE (V);
237 V = Vp;
238
239 /* Tokens 0, 1, and 2 are internal to Bison. Consider them useful. */
240 SETBIT (V, 0); /* end-of-input token */
241 SETBIT (V, 1); /* error token */
242 SETBIT (V, 2); /* some undefined token */
243
244 XFREE (P);
245 P = Pp;
246
247 nuseful_productions = bits_size (P, WORDSIZE (nrules + 1));
248 nuseless_productions = nrules - nuseful_productions;
249
250 nuseful_nonterminals = 0;
251 for (i = ntokens; i < nsyms; i++)
252 if (BITISSET (V, i))
253 nuseful_nonterminals++;
254 nuseless_nonterminals = nvars - nuseful_nonterminals;
255
256 /* A token that was used in %prec should not be warned about. */
257 for (i = 1; i < nrules; i++)
258 if (rprecsym[i] != 0)
259 SETBIT (V1, rprecsym[i]);
260}
261
262static void
263reduce_grammar_tables (void)
264{
265/* This is turned off because we would need to change the numbers
266 in the case statements in the actions file. */
267#if 0
268 /* remove useless productions */
269 if (nuseless_productions > 0)
270 {
271 short np, pn, ni, pi;
272
273 np = 0;
274 ni = 0;
275 for (pn = 1; pn <= nrules; pn++)
276 {
277 if (BITISSET (P, pn))
278 {
279 np++;
280 if (pn != np)
281 {
282 rlhs[np] = rlhs[pn];
283 rline[np] = rline[pn];
284 rprec[np] = rprec[pn];
285 rassoc[np] = rassoc[pn];
286 rrhs[np] = rrhs[pn];
287 if (rrhs[np] != ni)
288 {
289 pi = rrhs[np];
290 rrhs[np] = ni;
291 while (ritem[pi] >= 0)
292 ritem[ni++] = ritem[pi++];
293 ritem[ni++] = -np;
294 }
295 }
296 else
297 {
298 while (ritem[ni++] >= 0);
299 }
300 }
301 }
302 ritem[ni] = 0;
303 nrules -= nuseless_productions;
304 nitems = ni;
305
306 /* Is it worth it to reduce the amount of memory for the
307 grammar? Probably not. */
308
309 }
310#endif /* 0 */
311 /* Disable useless productions,
312 since they may contain useless nonterms
313 that would get mapped below to -1 and confuse everyone. */
314 if (nuseless_productions > 0)
315 {
316 int pn;
317
318 for (pn = 1; pn <= nrules; pn++)
319 {
320 if (!BITISSET (P, pn))
321 {
322 rlhs[pn] = -1;
323 }
324 }
325 }
326
327 /* remove useless symbols */
328 if (nuseless_nonterminals > 0)
329 {
330
331 int i, n;
332/* short j; JF unused */
333 short *nontermmap;
334 rule r;
335
336 /* Create a map of nonterminal number to new nonterminal
337 number. -1 in the map means it was useless and is being
338 eliminated. */
339
340 nontermmap = XCALLOC (short, nvars) - ntokens;
341 for (i = ntokens; i < nsyms; i++)
342 nontermmap[i] = -1;
343
344 n = ntokens;
345 for (i = ntokens; i < nsyms; i++)
346 if (BITISSET (V, i))
347 nontermmap[i] = n++;
348
349 /* Shuffle elements of tables indexed by symbol number. */
350
351 for (i = ntokens; i < nsyms; i++)
352 {
353 n = nontermmap[i];
354 if (n >= 0)
355 {
356 sassoc[n] = sassoc[i];
357 sprec[n] = sprec[i];
358 tags[n] = tags[i];
359 }
360 else
361 {
362 free (tags[i]);
363 }
364 }
365
366 /* Replace all symbol numbers in valid data structures. */
367
368 for (i = 1; i <= nrules; i++)
369 {
370 /* Ignore the rules disabled above. */
371 if (rlhs[i] >= 0)
372 rlhs[i] = nontermmap[rlhs[i]];
373 if (ISVAR (rprecsym[i]))
374 /* Can this happen? */
375 rprecsym[i] = nontermmap[rprecsym[i]];
376 }
377
378 for (r = ritem; *r; r++)
379 if (ISVAR (*r))
380 *r = nontermmap[*r];
381
382 start_symbol = nontermmap[start_symbol];
383
384 nsyms -= nuseless_nonterminals;
385 nvars -= nuseless_nonterminals;
386
387 free (&nontermmap[ntokens]);
388 }
389}
390
391static void
392print_results (void)
393{
394 int i;
395/* short j; JF unused */
396 rule r;
397 bool b;
398
399 if (nuseless_nonterminals > 0)
400 {
401 obstack_sgrow (&output_obstack, _("Useless nonterminals:"));
402 obstack_sgrow (&output_obstack, "\n\n");
403 for (i = ntokens; i < nsyms; i++)
404 if (!BITISSET (V, i))
405 obstack_fgrow1 (&output_obstack, " %s\n", tags[i]);
406 }
407 b = FALSE;
408 for (i = 0; i < ntokens; i++)
409 {
410 if (!BITISSET (V, i) && !BITISSET (V1, i))
411 {
412 if (!b)
413 {
414 obstack_sgrow (&output_obstack, "\n\n");
415 obstack_sgrow (&output_obstack,
416 _("Terminals which are not used:"));
417 obstack_sgrow (&output_obstack, "\n\n");
418 b = TRUE;
419 }
420 obstack_fgrow1 (&output_obstack, " %s\n", tags[i]);
421 }
422 }
423
424 if (nuseless_productions > 0)
425 {
426 obstack_sgrow (&output_obstack, "\n\n");
427 obstack_sgrow (&output_obstack, _("Useless rules:"));
428 obstack_sgrow (&output_obstack, "\n\n");
429 for (i = 1; i <= nrules; i++)
430 {
431 if (!BITISSET (P, i))
432 {
433 obstack_fgrow1 (&output_obstack, "#%-4d ", i);
434 obstack_fgrow1 (&output_obstack, "%s :\t", tags[rlhs[i]]);
435 for (r = &ritem[rrhs[i]]; *r >= 0; r++)
436 obstack_fgrow1 (&output_obstack, " %s", tags[*r]);
437 obstack_sgrow (&output_obstack, ";\n");
438 }
439 }
440 }
441 if (nuseless_nonterminals > 0 || nuseless_productions > 0 || b)
442 obstack_sgrow (&output_obstack, "\n\n");
443}
444\f
445#if 0 /* XXX currently unused. */
446static void
447dump_grammar (void)
448{
449 int i;
450 rule r;
451
452 obstack_fgrow5 (&output_obstack,
453 "ntokens = %d, nvars = %d, nsyms = %d, nrules = %d, nitems = %d\n\n",
454 ntokens, nvars, nsyms, nrules, nitems);
455 obstack_sgrow (&output_obstack,
456 _("Variables\n---------\n\n"));
457 obstack_sgrow (&output_obstack,
458 _("Value Sprec Sassoc Tag\n"));
459 for (i = ntokens; i < nsyms; i++)
460 obstack_fgrow4 (&output_obstack,
461 "%5d %5d %5d %s\n", i, sprec[i], sassoc[i], tags[i]);
462 obstack_sgrow (&output_obstack, "\n\n");
463 obstack_sgrow (&output_obstack, _("Rules\n-----\n\n"));
464 for (i = 1; i <= nrules; i++)
465 {
466 obstack_fgrow5 (&output_obstack, "%-5d(%5d%5d)%5d : (@%-5d)",
467 i, rprec[i], rassoc[i], rlhs[i], rrhs[i]);
468 for (r = &ritem[rrhs[i]]; *r > 0; r++)
469 obstack_fgrow1 (&output_obstack, "%5d", *r);
470 obstack_fgrow1 (&output_obstack, " [%d]\n", -(*r));
471 }
472 obstack_sgrow (&output_obstack, "\n\n");
473 obstack_sgrow (&output_obstack,
474 _("Rules interpreted\n-----------------\n\n"));
475 for (i = 1; i <= nrules; i++)
476 {
477 obstack_fgrow2 (&output_obstack, "%-5d %s :", i, tags[rlhs[i]]);
478 for (r = &ritem[rrhs[i]]; *r > 0; r++)
479 obstack_fgrow1 (&output_obstack, " %s", tags[*r]);
480 obstack_grow1 (&output_obstack, '\n');
481 }
482 obstack_sgrow (&output_obstack, "\n\n");
483}
484#endif
485
486
487static void
488print_notices (void)
489{
490 if (yacc_flag && nuseless_productions)
491 fprintf (stderr, _("%d rules never reduced\n"), nuseless_productions);
492
493 fprintf (stderr, _("%s contains "), infile);
494
495 if (nuseless_nonterminals > 0)
496 {
497 fprintf (stderr, _("%d useless nonterminal%s"),
498 nuseless_nonterminals,
499 (nuseless_nonterminals == 1 ? "" : "s"));
500 }
501 if (nuseless_nonterminals > 0 && nuseless_productions > 0)
502 fprintf (stderr, _(" and "));
503
504 if (nuseless_productions > 0)
505 {
506 fprintf (stderr, _("%d useless rule%s"),
507 nuseless_productions, (nuseless_productions == 1 ? "" : "s"));
508 }
509 fprintf (stderr, "\n");
510 fflush (stderr);
511}
512\f
513void
514reduce_grammar (void)
515{
516 bool reduced;
517
518 /* Allocate the global sets used to compute the reduced grammar */
519
520 N = XCALLOC (unsigned, WORDSIZE (nvars));
521 P = XCALLOC (unsigned, WORDSIZE (nrules + 1));
522 V = XCALLOC (unsigned, WORDSIZE (nsyms));
523 V1 = XCALLOC (unsigned, WORDSIZE (nsyms));
524
525 useless_nonterminals ();
526 inaccessable_symbols ();
527
528 reduced = (bool) (nuseless_nonterminals + nuseless_productions > 0);
529
530 if (verbose_flag)
531 print_results ();
532
533 if (reduced == FALSE)
534 goto done_reducing;
535
536 print_notices ();
537
538 if (!BITISSET (N, start_symbol - ntokens))
539 fatal (_("Start symbol %s does not derive any sentence"),
540 tags[start_symbol]);
541
542 reduce_grammar_tables ();
543#if 0
544 if (verbose_flag)
545 {
546 obstack_fgrow1 (&output_obstack, "REDUCED GRAMMAR\n\n");
547 dump_grammar ();
548 }
549#endif
550
551 if (statistics_flag)
552 fprintf (stderr, _("reduced %s defines %d terminal%s, %d nonterminal%s\
553, and %d production%s.\n"),
554 infile,
555 ntokens,
556 (ntokens == 1 ? "" : "s"),
557 nvars,
558 (nvars == 1 ? "" : "s"),
559 nrules,
560 (nrules == 1 ? "" : "s"));
561
562done_reducing:
563 /* Free the global sets used to compute the reduced grammar */
564
565 XFREE (N);
566 XFREE (V);
567 XFREE (P);
568}