]>
Commit | Line | Data |
---|---|---|
40675e7c | 1 | /* Generate the nondeterministic finite state machine for bison, |
aa7815f5 | 2 | Copyright 1984, 1986, 1989, 2000 Free Software Foundation, Inc. |
40675e7c | 3 | |
2fa6973e | 4 | This file is part of Bison, the GNU Compiler Compiler. |
40675e7c | 5 | |
2fa6973e AD |
6 | Bison is free software; you can redistribute it and/or modify |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
40675e7c | 10 | |
2fa6973e AD |
11 | Bison is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
40675e7c | 15 | |
2fa6973e AD |
16 | You should have received a copy of the GNU General Public License |
17 | along with Bison; see the file COPYING. If not, write to | |
18 | the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
19 | Boston, MA 02111-1307, USA. */ | |
40675e7c DM |
20 | |
21 | ||
22 | /* See comments in state.h for the data structures that represent it. | |
23 | The entry point is generate_states. */ | |
24 | ||
40675e7c | 25 | #include "system.h" |
40675e7c DM |
26 | #include "gram.h" |
27 | #include "state.h" | |
a0f6b076 | 28 | #include "complain.h" |
2fa6973e | 29 | #include "closure.h" |
403b315b | 30 | #include "LR0.h" |
40675e7c | 31 | |
40675e7c | 32 | |
40675e7c DM |
33 | int nstates; |
34 | int final_state; | |
342b8b6e AD |
35 | core *first_state = NULL; |
36 | shifts *first_shift = NULL; | |
37 | reductions *first_reduction = NULL; | |
40675e7c | 38 | |
342b8b6e AD |
39 | static core *this_state = NULL; |
40 | static core *last_state = NULL; | |
41 | static shifts *last_shift = NULL; | |
42 | static reductions *last_reduction = NULL; | |
40675e7c DM |
43 | |
44 | static int nshifts; | |
342b8b6e | 45 | static short *shift_symbol = NULL; |
40675e7c | 46 | |
342b8b6e AD |
47 | static short *redset = NULL; |
48 | static short *shiftset = NULL; | |
40675e7c | 49 | |
342b8b6e AD |
50 | static short **kernel_base = NULL; |
51 | static short **kernel_end = NULL; | |
52 | static short *kernel_items = NULL; | |
40675e7c DM |
53 | |
54 | /* hash table for states, to recognize equivalent ones. */ | |
55 | ||
56 | #define STATE_TABLE_SIZE 1009 | |
342b8b6e | 57 | static core **state_table = NULL; |
40675e7c | 58 | |
2fa6973e | 59 | \f |
4a120d45 | 60 | static void |
d2729d44 | 61 | allocate_itemsets (void) |
40675e7c | 62 | { |
342b8b6e | 63 | short *itemp = NULL; |
2fa6973e AD |
64 | int symbol; |
65 | int i; | |
66 | int count; | |
342b8b6e | 67 | short *symbol_count = NULL; |
40675e7c DM |
68 | |
69 | count = 0; | |
d7913476 | 70 | symbol_count = XCALLOC (short, nsyms); |
40675e7c DM |
71 | |
72 | itemp = ritem; | |
73 | symbol = *itemp++; | |
74 | while (symbol) | |
75 | { | |
76 | if (symbol > 0) | |
77 | { | |
78 | count++; | |
79 | symbol_count[symbol]++; | |
80 | } | |
81 | symbol = *itemp++; | |
82 | } | |
83 | ||
2fa6973e AD |
84 | /* See comments before new_itemsets. All the vectors of items |
85 | live inside KERNEL_ITEMS. The number of active items after | |
40675e7c DM |
86 | some symbol cannot be more than the number of times that symbol |
87 | appears as an item, which is symbol_count[symbol]. | |
88 | We allocate that much space for each symbol. */ | |
89 | ||
d7913476 | 90 | kernel_base = XCALLOC (short *, nsyms); |
342b8b6e AD |
91 | if (count) |
92 | kernel_items = XCALLOC (short, count); | |
40675e7c DM |
93 | |
94 | count = 0; | |
95 | for (i = 0; i < nsyms; i++) | |
96 | { | |
97 | kernel_base[i] = kernel_items + count; | |
98 | count += symbol_count[i]; | |
99 | } | |
100 | ||
101 | shift_symbol = symbol_count; | |
d7913476 | 102 | kernel_end = XCALLOC (short *, nsyms); |
40675e7c DM |
103 | } |
104 | ||
105 | ||
4a120d45 | 106 | static void |
d2729d44 | 107 | allocate_storage (void) |
40675e7c | 108 | { |
2fa6973e | 109 | allocate_itemsets (); |
40675e7c | 110 | |
d7913476 AD |
111 | shiftset = XCALLOC (short, nsyms); |
112 | redset = XCALLOC (short, nrules + 1); | |
113 | state_table = XCALLOC (core *, STATE_TABLE_SIZE); | |
40675e7c DM |
114 | } |
115 | ||
116 | ||
4a120d45 | 117 | static void |
d2729d44 | 118 | free_storage (void) |
40675e7c | 119 | { |
d7913476 AD |
120 | XFREE (shift_symbol); |
121 | XFREE (redset); | |
122 | XFREE (shiftset); | |
123 | XFREE (kernel_base); | |
124 | XFREE (kernel_end); | |
125 | XFREE (kernel_items); | |
126 | XFREE (state_table); | |
40675e7c DM |
127 | } |
128 | ||
129 | ||
130 | ||
40675e7c | 131 | |
2fa6973e AD |
132 | /*----------------------------------------------------------------. |
133 | | Find which symbols can be shifted in the current state, and for | | |
134 | | each one record which items would be active after that shift. | | |
135 | | Uses the contents of itemset. | | |
136 | | | | |
137 | | shift_symbol is set to a vector of the symbols that can be | | |
138 | | shifted. For each symbol in the grammar, kernel_base[symbol] | | |
139 | | points to a vector of item numbers activated if that symbol is | | |
140 | | shifted, and kernel_end[symbol] points after the end of that | | |
141 | | vector. | | |
142 | `----------------------------------------------------------------*/ | |
40675e7c | 143 | |
4a120d45 | 144 | static void |
d2729d44 | 145 | new_itemsets (void) |
40675e7c | 146 | { |
2fa6973e AD |
147 | int i; |
148 | int shiftcount; | |
149 | short *isp; | |
150 | short *ksp; | |
151 | int symbol; | |
152 | ||
153 | #if TRACE | |
154 | fprintf (stderr, "Entering new_itemsets\n"); | |
40675e7c DM |
155 | #endif |
156 | ||
157 | for (i = 0; i < nsyms; i++) | |
158 | kernel_end[i] = NULL; | |
159 | ||
160 | shiftcount = 0; | |
161 | ||
162 | isp = itemset; | |
163 | ||
164 | while (isp < itemsetend) | |
165 | { | |
166 | i = *isp++; | |
167 | symbol = ritem[i]; | |
168 | if (symbol > 0) | |
169 | { | |
2fa6973e | 170 | ksp = kernel_end[symbol]; |
40675e7c | 171 | |
2fa6973e | 172 | if (!ksp) |
40675e7c DM |
173 | { |
174 | shift_symbol[shiftcount++] = symbol; | |
175 | ksp = kernel_base[symbol]; | |
176 | } | |
177 | ||
2fa6973e AD |
178 | *ksp++ = i + 1; |
179 | kernel_end[symbol] = ksp; | |
40675e7c DM |
180 | } |
181 | } | |
182 | ||
183 | nshifts = shiftcount; | |
184 | } | |
185 | ||
186 | ||
187 | ||
2fa6973e AD |
188 | /*-----------------------------------------------------------------. |
189 | | Subroutine of get_state. Create a new state for those items, if | | |
190 | | necessary. | | |
191 | `-----------------------------------------------------------------*/ | |
40675e7c | 192 | |
2fa6973e AD |
193 | static core * |
194 | new_state (int symbol) | |
40675e7c | 195 | { |
2fa6973e AD |
196 | int n; |
197 | core *p; | |
198 | short *isp1; | |
199 | short *isp2; | |
200 | short *iend; | |
40675e7c | 201 | |
2fa6973e AD |
202 | #if TRACE |
203 | fprintf (stderr, "Entering new_state, symbol = %d\n", symbol); | |
40675e7c DM |
204 | #endif |
205 | ||
2fa6973e AD |
206 | if (nstates >= MAXSHORT) |
207 | fatal (_("too many states (max %d)"), MAXSHORT); | |
40675e7c | 208 | |
2fa6973e AD |
209 | isp1 = kernel_base[symbol]; |
210 | iend = kernel_end[symbol]; | |
211 | n = iend - isp1; | |
40675e7c | 212 | |
2fa6973e | 213 | p = |
d7913476 | 214 | (core *) xcalloc ((unsigned) (sizeof (core) + (n - 1) * sizeof (short)), 1); |
2fa6973e AD |
215 | p->accessing_symbol = symbol; |
216 | p->number = nstates; | |
217 | p->nitems = n; | |
218 | ||
219 | isp2 = p->items; | |
220 | while (isp1 < iend) | |
221 | *isp2++ = *isp1++; | |
222 | ||
223 | last_state->next = p; | |
224 | last_state = p; | |
40675e7c | 225 | |
2fa6973e | 226 | nstates++; |
40675e7c | 227 | |
2fa6973e AD |
228 | return p; |
229 | } | |
40675e7c | 230 | |
2fa6973e AD |
231 | |
232 | /*--------------------------------------------------------------. | |
233 | | Find the state number for the state we would get to (from the | | |
234 | | current state) by shifting symbol. Create a new state if no | | |
235 | | equivalent one exists already. Used by append_states. | | |
236 | `--------------------------------------------------------------*/ | |
40675e7c | 237 | |
4a120d45 | 238 | static int |
d2729d44 | 239 | get_state (int symbol) |
40675e7c | 240 | { |
2fa6973e AD |
241 | int key; |
242 | short *isp1; | |
243 | short *isp2; | |
244 | short *iend; | |
245 | core *sp; | |
246 | int found; | |
40675e7c DM |
247 | |
248 | int n; | |
249 | ||
2fa6973e AD |
250 | #if TRACE |
251 | fprintf (stderr, "Entering get_state, symbol = %d\n", symbol); | |
40675e7c DM |
252 | #endif |
253 | ||
254 | isp1 = kernel_base[symbol]; | |
255 | iend = kernel_end[symbol]; | |
256 | n = iend - isp1; | |
257 | ||
258 | /* add up the target state's active item numbers to get a hash key */ | |
259 | key = 0; | |
260 | while (isp1 < iend) | |
261 | key += *isp1++; | |
262 | ||
263 | key = key % STATE_TABLE_SIZE; | |
264 | ||
265 | sp = state_table[key]; | |
266 | ||
267 | if (sp) | |
268 | { | |
269 | found = 0; | |
270 | while (!found) | |
271 | { | |
272 | if (sp->nitems == n) | |
273 | { | |
274 | found = 1; | |
275 | isp1 = kernel_base[symbol]; | |
276 | isp2 = sp->items; | |
277 | ||
278 | while (found && isp1 < iend) | |
279 | { | |
280 | if (*isp1++ != *isp2++) | |
281 | found = 0; | |
282 | } | |
283 | } | |
284 | ||
285 | if (!found) | |
286 | { | |
287 | if (sp->link) | |
288 | { | |
289 | sp = sp->link; | |
290 | } | |
2fa6973e | 291 | else /* bucket exhausted and no match */ |
40675e7c | 292 | { |
2fa6973e | 293 | sp = sp->link = new_state (symbol); |
40675e7c DM |
294 | found = 1; |
295 | } | |
296 | } | |
297 | } | |
298 | } | |
2fa6973e | 299 | else /* bucket is empty */ |
40675e7c | 300 | { |
2fa6973e | 301 | state_table[key] = sp = new_state (symbol); |
40675e7c DM |
302 | } |
303 | ||
36281465 | 304 | return sp->number; |
40675e7c DM |
305 | } |
306 | ||
2fa6973e AD |
307 | /*------------------------------------------------------------------. |
308 | | Use the information computed by new_itemsets to find the state | | |
309 | | numbers reached by each shift transition from the current state. | | |
310 | | | | |
311 | | shiftset is set up as a vector of state numbers of those states. | | |
312 | `------------------------------------------------------------------*/ | |
40675e7c | 313 | |
2fa6973e AD |
314 | static void |
315 | append_states (void) | |
40675e7c | 316 | { |
2fa6973e AD |
317 | int i; |
318 | int j; | |
319 | int symbol; | |
40675e7c | 320 | |
2fa6973e AD |
321 | #if TRACE |
322 | fprintf (stderr, "Entering append_states\n"); | |
323 | #endif | |
40675e7c | 324 | |
2fa6973e | 325 | /* first sort shift_symbol into increasing order */ |
40675e7c | 326 | |
2fa6973e AD |
327 | for (i = 1; i < nshifts; i++) |
328 | { | |
329 | symbol = shift_symbol[i]; | |
330 | j = i; | |
331 | while (j > 0 && shift_symbol[j - 1] > symbol) | |
332 | { | |
333 | shift_symbol[j] = shift_symbol[j - 1]; | |
334 | j--; | |
335 | } | |
336 | shift_symbol[j] = symbol; | |
337 | } | |
40675e7c | 338 | |
2fa6973e AD |
339 | for (i = 0; i < nshifts; i++) |
340 | { | |
341 | symbol = shift_symbol[i]; | |
342 | shiftset[i] = get_state (symbol); | |
343 | } | |
40675e7c DM |
344 | } |
345 | ||
346 | ||
4a120d45 | 347 | static void |
2fa6973e | 348 | new_states (void) |
40675e7c | 349 | { |
2fa6973e | 350 | core *p; |
40675e7c | 351 | |
d7913476 | 352 | p = (core *) xcalloc ((unsigned) (sizeof (core) - sizeof (short)), 1); |
40675e7c DM |
353 | first_state = last_state = this_state = p; |
354 | nstates = 1; | |
355 | } | |
356 | ||
357 | ||
4a120d45 | 358 | static void |
d2729d44 | 359 | save_shifts (void) |
40675e7c | 360 | { |
2fa6973e AD |
361 | shifts *p; |
362 | short *sp1; | |
363 | short *sp2; | |
364 | short *send; | |
40675e7c | 365 | |
d7913476 AD |
366 | p = (shifts *) xcalloc ((unsigned) (sizeof (shifts) + |
367 | (nshifts - 1) * sizeof (short)), 1); | |
40675e7c DM |
368 | |
369 | p->number = this_state->number; | |
370 | p->nshifts = nshifts; | |
371 | ||
372 | sp1 = shiftset; | |
373 | sp2 = p->shifts; | |
374 | send = shiftset + nshifts; | |
375 | ||
376 | while (sp1 < send) | |
377 | *sp2++ = *sp1++; | |
378 | ||
379 | if (last_shift) | |
380 | { | |
381 | last_shift->next = p; | |
382 | last_shift = p; | |
383 | } | |
384 | else | |
385 | { | |
386 | first_shift = p; | |
387 | last_shift = p; | |
388 | } | |
389 | } | |
390 | ||
391 | ||
2fa6973e AD |
392 | /*------------------------------------------------------------------. |
393 | | Subroutine of augment_automaton. Create the next-to-final state, | | |
394 | | to which a shift has already been made in the initial state. | | |
395 | `------------------------------------------------------------------*/ | |
40675e7c | 396 | |
4a120d45 | 397 | static void |
2fa6973e | 398 | insert_start_shift (void) |
40675e7c | 399 | { |
2fa6973e AD |
400 | core *statep; |
401 | shifts *sp; | |
40675e7c | 402 | |
d7913476 | 403 | statep = (core *) xcalloc ((unsigned) (sizeof (core) - sizeof (short)), 1); |
2fa6973e AD |
404 | statep->number = nstates; |
405 | statep->accessing_symbol = start_symbol; | |
40675e7c | 406 | |
2fa6973e AD |
407 | last_state->next = statep; |
408 | last_state = statep; | |
40675e7c | 409 | |
2fa6973e | 410 | /* Make a shift from this state to (what will be) the final state. */ |
d7913476 | 411 | sp = XCALLOC (shifts, 1); |
2fa6973e AD |
412 | sp->number = nstates++; |
413 | sp->nshifts = 1; | |
414 | sp->shifts[0] = nstates; | |
40675e7c | 415 | |
2fa6973e AD |
416 | last_shift->next = sp; |
417 | last_shift = sp; | |
40675e7c DM |
418 | } |
419 | ||
420 | ||
2fa6973e AD |
421 | /*------------------------------------------------------------------. |
422 | | Make sure that the initial state has a shift that accepts the | | |
423 | | grammar's start symbol and goes to the next-to-final state, which | | |
424 | | has a shift going to the final state, which has a shift to the | | |
425 | | termination state. Create such states and shifts if they don't | | |
426 | | happen to exist already. | | |
427 | `------------------------------------------------------------------*/ | |
40675e7c | 428 | |
4a120d45 | 429 | static void |
d2729d44 | 430 | augment_automaton (void) |
40675e7c | 431 | { |
2fa6973e AD |
432 | int i; |
433 | int k; | |
434 | core *statep; | |
435 | shifts *sp; | |
436 | shifts *sp2; | |
437 | shifts *sp1 = NULL; | |
40675e7c DM |
438 | |
439 | sp = first_shift; | |
440 | ||
441 | if (sp) | |
442 | { | |
443 | if (sp->number == 0) | |
444 | { | |
445 | k = sp->nshifts; | |
446 | statep = first_state->next; | |
447 | ||
448 | /* The states reached by shifts from first_state are numbered 1...K. | |
449 | Look for one reached by start_symbol. */ | |
450 | while (statep->accessing_symbol < start_symbol | |
2fa6973e | 451 | && statep->number < k) |
40675e7c DM |
452 | statep = statep->next; |
453 | ||
454 | if (statep->accessing_symbol == start_symbol) | |
455 | { | |
456 | /* We already have a next-to-final state. | |
2fa6973e | 457 | Make sure it has a shift to what will be the final state. */ |
40675e7c DM |
458 | k = statep->number; |
459 | ||
460 | while (sp && sp->number < k) | |
461 | { | |
462 | sp1 = sp; | |
463 | sp = sp->next; | |
464 | } | |
465 | ||
466 | if (sp && sp->number == k) | |
467 | { | |
d7913476 | 468 | sp2 = (shifts *) xcalloc ((unsigned) (sizeof (shifts) |
2fa6973e AD |
469 | + |
470 | sp->nshifts * | |
d7913476 | 471 | sizeof (short)), 1); |
40675e7c DM |
472 | sp2->number = k; |
473 | sp2->nshifts = sp->nshifts + 1; | |
474 | sp2->shifts[0] = nstates; | |
475 | for (i = sp->nshifts; i > 0; i--) | |
476 | sp2->shifts[i] = sp->shifts[i - 1]; | |
477 | ||
478 | /* Patch sp2 into the chain of shifts in place of sp, | |
479 | following sp1. */ | |
480 | sp2->next = sp->next; | |
481 | sp1->next = sp2; | |
482 | if (sp == last_shift) | |
483 | last_shift = sp2; | |
d7913476 | 484 | XFREE (sp); |
40675e7c DM |
485 | } |
486 | else | |
487 | { | |
d7913476 | 488 | sp2 = XCALLOC (shifts, 1); |
40675e7c DM |
489 | sp2->number = k; |
490 | sp2->nshifts = 1; | |
491 | sp2->shifts[0] = nstates; | |
492 | ||
493 | /* Patch sp2 into the chain of shifts between sp1 and sp. */ | |
494 | sp2->next = sp; | |
495 | sp1->next = sp2; | |
496 | if (sp == 0) | |
497 | last_shift = sp2; | |
498 | } | |
499 | } | |
500 | else | |
501 | { | |
502 | /* There is no next-to-final state as yet. */ | |
503 | /* Add one more shift in first_shift, | |
2fa6973e | 504 | going to the next-to-final state (yet to be made). */ |
40675e7c DM |
505 | sp = first_shift; |
506 | ||
d7913476 AD |
507 | sp2 = (shifts *) xcalloc (sizeof (shifts) |
508 | + sp->nshifts * sizeof (short), 1); | |
40675e7c DM |
509 | sp2->nshifts = sp->nshifts + 1; |
510 | ||
511 | /* Stick this shift into the vector at the proper place. */ | |
512 | statep = first_state->next; | |
513 | for (k = 0, i = 0; i < sp->nshifts; k++, i++) | |
514 | { | |
515 | if (statep->accessing_symbol > start_symbol && i == k) | |
516 | sp2->shifts[k++] = nstates; | |
517 | sp2->shifts[k] = sp->shifts[i]; | |
518 | statep = statep->next; | |
519 | } | |
520 | if (i == k) | |
521 | sp2->shifts[k++] = nstates; | |
522 | ||
523 | /* Patch sp2 into the chain of shifts | |
2fa6973e | 524 | in place of sp, at the beginning. */ |
40675e7c DM |
525 | sp2->next = sp->next; |
526 | first_shift = sp2; | |
527 | if (last_shift == sp) | |
528 | last_shift = sp2; | |
529 | ||
d7913476 | 530 | XFREE (sp); |
40675e7c DM |
531 | |
532 | /* Create the next-to-final state, with shift to | |
2fa6973e AD |
533 | what will be the final state. */ |
534 | insert_start_shift (); | |
40675e7c DM |
535 | } |
536 | } | |
537 | else | |
538 | { | |
539 | /* The initial state didn't even have any shifts. | |
540 | Give it one shift, to the next-to-final state. */ | |
d7913476 | 541 | sp = XCALLOC (shifts, 1); |
40675e7c DM |
542 | sp->nshifts = 1; |
543 | sp->shifts[0] = nstates; | |
544 | ||
545 | /* Patch sp into the chain of shifts at the beginning. */ | |
546 | sp->next = first_shift; | |
547 | first_shift = sp; | |
548 | ||
549 | /* Create the next-to-final state, with shift to | |
550 | what will be the final state. */ | |
2fa6973e | 551 | insert_start_shift (); |
40675e7c DM |
552 | } |
553 | } | |
554 | else | |
555 | { | |
556 | /* There are no shifts for any state. | |
2fa6973e | 557 | Make one shift, from the initial state to the next-to-final state. */ |
40675e7c | 558 | |
d7913476 | 559 | sp = XCALLOC (shifts, 1); |
40675e7c DM |
560 | sp->nshifts = 1; |
561 | sp->shifts[0] = nstates; | |
562 | ||
563 | /* Initialize the chain of shifts with sp. */ | |
564 | first_shift = sp; | |
565 | last_shift = sp; | |
566 | ||
567 | /* Create the next-to-final state, with shift to | |
2fa6973e AD |
568 | what will be the final state. */ |
569 | insert_start_shift (); | |
40675e7c DM |
570 | } |
571 | ||
572 | /* Make the final state--the one that follows a shift from the | |
573 | next-to-final state. | |
574 | The symbol for that shift is 0 (end-of-file). */ | |
d7913476 | 575 | statep = (core *) xcalloc ((unsigned) (sizeof (core) - sizeof (short)), 1); |
40675e7c DM |
576 | statep->number = nstates; |
577 | last_state->next = statep; | |
578 | last_state = statep; | |
579 | ||
580 | /* Make the shift from the final state to the termination state. */ | |
d7913476 | 581 | sp = XCALLOC (shifts, 1); |
40675e7c DM |
582 | sp->number = nstates++; |
583 | sp->nshifts = 1; | |
584 | sp->shifts[0] = nstates; | |
585 | last_shift->next = sp; | |
586 | last_shift = sp; | |
587 | ||
588 | /* Note that the variable `final_state' refers to what we sometimes call | |
589 | the termination state. */ | |
590 | final_state = nstates; | |
591 | ||
592 | /* Make the termination state. */ | |
d7913476 | 593 | statep = (core *) xcalloc ((unsigned) (sizeof (core) - sizeof (short)), 1); |
40675e7c DM |
594 | statep->number = nstates++; |
595 | last_state->next = statep; | |
596 | last_state = statep; | |
597 | } | |
598 | ||
599 | ||
2fa6973e AD |
600 | /*----------------------------------------------------------------. |
601 | | Find which rules can be used for reduction transitions from the | | |
602 | | current state and make a reductions structure for the state to | | |
603 | | record their rule numbers. | | |
604 | `----------------------------------------------------------------*/ | |
605 | ||
4a120d45 | 606 | static void |
2fa6973e | 607 | save_reductions (void) |
40675e7c | 608 | { |
2fa6973e AD |
609 | short *isp; |
610 | short *rp1; | |
611 | short *rp2; | |
612 | int item; | |
613 | int count; | |
614 | reductions *p; | |
40675e7c | 615 | |
2fa6973e | 616 | short *rend; |
40675e7c | 617 | |
2fa6973e | 618 | /* Find and count the active items that represent ends of rules. */ |
40675e7c | 619 | |
2fa6973e AD |
620 | count = 0; |
621 | for (isp = itemset; isp < itemsetend; isp++) | |
622 | { | |
623 | item = ritem[*isp]; | |
624 | if (item < 0) | |
625 | redset[count++] = -item; | |
626 | } | |
40675e7c | 627 | |
2fa6973e AD |
628 | /* Make a reductions structure and copy the data into it. */ |
629 | ||
630 | if (count) | |
631 | { | |
d7913476 AD |
632 | p = (reductions *) xcalloc ((unsigned) (sizeof (reductions) + |
633 | (count - 1) * sizeof (short)), 1); | |
2fa6973e AD |
634 | |
635 | p->number = this_state->number; | |
636 | p->nreds = count; | |
637 | ||
638 | rp1 = redset; | |
639 | rp2 = p->rules; | |
640 | rend = rp1 + count; | |
641 | ||
642 | for (/* nothing */; rp1 < rend; ++rp1, ++rp2) | |
643 | *rp2 = *rp1; | |
644 | ||
645 | if (last_reduction) | |
646 | { | |
647 | last_reduction->next = p; | |
648 | last_reduction = p; | |
649 | } | |
650 | else | |
651 | { | |
652 | first_reduction = p; | |
653 | last_reduction = p; | |
654 | } | |
655 | } | |
656 | } | |
657 | ||
658 | \f | |
659 | /*-------------------------------------------------------------------. | |
660 | | Compute the nondeterministic finite state machine (see state.h for | | |
661 | | details) from the grammar. | | |
662 | `-------------------------------------------------------------------*/ | |
663 | ||
664 | void | |
665 | generate_states (void) | |
666 | { | |
667 | allocate_storage (); | |
668 | new_closure (nitems); | |
669 | new_states (); | |
670 | ||
671 | while (this_state) | |
672 | { | |
673 | /* Set up ruleset and itemset for the transitions out of this | |
674 | state. ruleset gets a 1 bit for each rule that could reduce | |
675 | now. itemset gets a vector of all the items that could be | |
676 | accepted next. */ | |
677 | closure (this_state->items, this_state->nitems); | |
678 | /* record the reductions allowed out of this state */ | |
679 | save_reductions (); | |
680 | /* find the itemsets of the states that shifts can reach */ | |
681 | new_itemsets (); | |
682 | /* find or create the core structures for those states */ | |
683 | append_states (); | |
684 | ||
685 | /* create the shifts structures for the shifts to those states, | |
686 | now that the state numbers transitioning to are known */ | |
687 | if (nshifts > 0) | |
688 | save_shifts (); | |
689 | ||
690 | /* states are queued when they are created; process them all */ | |
691 | this_state = this_state->next; | |
692 | } | |
693 | ||
694 | /* discard various storage */ | |
695 | free_closure (); | |
696 | free_storage (); | |
697 | ||
698 | /* set up initial and final states as parser wants them */ | |
699 | augment_automaton (); | |
40675e7c | 700 | } |