]> git.saurik.com Git - bison.git/blame - lib/hash.c
* src/reader.c (readgram): Make sure rules for mid-rule actions
[bison.git] / lib / hash.c
CommitLineData
68bd3b6b
RA
1/* hash.c -- hash table maintenance
2 Copyright (C) 1995 Free Software Foundation, Inc.
3 Written by Greg McGary <gkm@gnu.ai.mit.edu>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2, or (at your option)
8 any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18*/
19
20#include <config.h>
21#include <stdio.h>
22#include "hash.h"
23#include "error.h"
24#include "system.h"
25#include "xalloc.h"
26
27static void hash_rehash __P((struct hash_table* ht));
28static unsigned long round_up_2 __P((unsigned long rough));
29
30/* Implement double hashing with open addressing. The table size is
31 always a power of two. The secondary (`increment') hash function
32 is forced to return an odd-value, in order to be relatively prime
33 to the table size. This guarantees that the increment can
34 potentially hit every slot in the table during collision
35 resolution. */
36
37void *hash_deleted_item = &hash_deleted_item;
38
39/* Force the table size to be a power of two, possibly rounding up the
40 given size. */
41
42void
43hash_init (struct hash_table* ht, unsigned long size,
44 hash_func_t hash_1, hash_func_t hash_2, hash_cmp_func_t hash_cmp)
45{
46 ht->ht_size = round_up_2 (size);
47 if (ht->ht_size > (128 * 1024)) /* prevent size from getting out of hand */
48 ht->ht_size /= 2;
49 ht->ht_vec = (void**) XCALLOC (struct token *, ht->ht_size);
50 if (ht->ht_vec == 0)
51 error (1, 0, _("can't allocate %ld bytes for hash table: memory exhausted"),
52 ht->ht_size * sizeof(struct token *));
53 ht->ht_capacity = ht->ht_size * 15 / 16; /* 93.75% loading factor */
54 ht->ht_fill = 0;
55 ht->ht_collisions = 0;
56 ht->ht_lookups = 0;
57 ht->ht_rehashes = 0;
58 ht->ht_hash_1 = hash_1;
59 ht->ht_hash_2 = hash_2;
60 ht->ht_compare = hash_cmp;
61}
62
63/* Load an array of items into `ht'. */
64
65void
66hash_load (struct hash_table* ht, void *item_table, unsigned long cardinality, unsigned long size)
67{
68 char *items = (char *) item_table;
69 while (cardinality--)
70 {
71 hash_insert (ht, items);
72 items += size;
73 }
74}
75
76/* Returns the address of the table slot matching `key'. If `key' is
77 not found, return the address of an empty slot suitable for
78 inserting `key'. The caller is responsible for incrementing
79 ht_fill on insertion. */
80
81void **
82hash_find_slot (struct hash_table* ht, void const *key)
83{
84 void **slot;
85 void **deleted_slot = 0;
86 unsigned int hash_2 = 0;
87 unsigned int hash_1 = (*ht->ht_hash_1) (key);
88
89 ht->ht_lookups++;
90 for (;;)
91 {
92 hash_1 %= ht->ht_size;
93 slot = &ht->ht_vec[hash_1];
94
95 if (*slot == 0)
96 return slot;
97 if (*slot == hash_deleted_item)
98 {
99 if (deleted_slot == 0)
100 deleted_slot = slot;
101 }
102 else
103 {
104 if (key == *slot)
105 return slot;
106 if ((*ht->ht_compare) (key, *slot) == 0)
107 return slot;
108 ht->ht_collisions++;
109 }
110 if (!hash_2)
111 hash_2 = (*ht->ht_hash_2) (key) | 1;
112 hash_1 += hash_2;
113 }
114}
115
116void *
117hash_find_item (struct hash_table* ht, void const *key)
118{
119 void **slot = hash_find_slot (ht, key);
120 return ((HASH_VACANT (*slot)) ? 0 : *slot);
121}
122
123void *
124hash_insert (struct hash_table* ht, void *item)
125{
126 void **slot = hash_find_slot (ht, item);
127 return hash_insert_at (ht, item, slot);
128}
129
130void *
131hash_insert_at (struct hash_table* ht, void *item, void const *slot)
132{
133 void *old_item = *(void **) slot;
134 if (HASH_VACANT (old_item))
135 {
136 ht->ht_fill++;
137 old_item = item;
138 }
139 *(void const **) slot = item;
140 if (ht->ht_fill >= ht->ht_capacity)
141 hash_rehash (ht);
142 return old_item;
143}
144
145void *
146hash_delete (struct hash_table* ht, void const *item)
147{
148 void **slot = hash_find_slot (ht, item);
149 return hash_delete_at (ht, slot);
150}
151
152void *
153hash_delete_at (struct hash_table* ht, void const *slot)
154{
155 void *item = *(void **) slot;
156 if (!HASH_VACANT (item))
157 {
158 *(void const **) slot = hash_deleted_item;
159 ht->ht_fill--;
160 return item;
161 }
162 else
163 return 0;
164}
165
166void
167hash_free_items (struct hash_table* ht)
168{
169 void **vec = ht->ht_vec;
170 void **end = &vec[ht->ht_size];
171 for (; vec < end; vec++)
172 {
173 void *item = *vec;
174 if (!HASH_VACANT (item))
175 free (item);
176 *vec = 0;
177 }
178 ht->ht_fill = 0;
179}
180
181void
182hash_delete_items (struct hash_table* ht)
183{
184 void **vec = ht->ht_vec;
185 void **end = &vec[ht->ht_size];
186 for (; vec < end; vec++)
187 *vec = 0;
188 ht->ht_fill = 0;
189 ht->ht_collisions = 0;
190 ht->ht_lookups = 0;
191 ht->ht_rehashes = 0;
192}
193
194void
195hash_free (struct hash_table* ht, int free_items)
196{
197 if (free_items)
198 hash_free_items (ht);
199 free (ht->ht_vec);
200 ht->ht_vec = 0;
201 ht->ht_fill = 0;
202 ht->ht_capacity = 0;
203}
204
205void
206hash_map (struct hash_table *ht, hash_map_func_t map)
207{
208 void **slot;
209 void **end = &ht->ht_vec[ht->ht_size];
210
211 for (slot = ht->ht_vec; slot < end; slot++)
212 {
213 if (!HASH_VACANT (*slot))
214 (*map) (*slot);
215 }
216}
217
218/* Double the size of the hash table in the event of overflow... */
219
220static void
221hash_rehash (struct hash_table* ht)
222{
223 unsigned long old_ht_size = ht->ht_size;
224 void **old_vec = ht->ht_vec;
225 void **ovp;
226 void **slot;
227
228 ht->ht_size *= 2;
229 ht->ht_rehashes++;
230 ht->ht_capacity = ht->ht_size - (ht->ht_size >> 4);
231 ht->ht_vec = (void **) XCALLOC (struct token *, ht->ht_size);
232
233 for (ovp = old_vec; ovp < &old_vec[old_ht_size]; ovp++)
234 {
235 if (*ovp == 0)
236 continue;
237 slot = hash_find_slot (ht, *ovp);
238 *slot = *ovp;
239 }
240 free (old_vec);
241}
242
243void
244hash_print_stats (struct hash_table *ht, FILE *out_FILE)
245{
246 fprintf (out_FILE, _("Load=%ld/%ld=%.0f%%, "), ht->ht_fill, ht->ht_size,
247 100.0 * (double) ht->ht_fill / (double) ht->ht_size);
248 fprintf (out_FILE, _("Rehash=%d, "), ht->ht_rehashes);
249 fprintf (out_FILE, _("Collisions=%ld/%ld=%.0f%%"), ht->ht_collisions, ht->ht_lookups,
250 (ht->ht_lookups
251 ? (100.0 * (double) ht->ht_collisions / (double) ht->ht_lookups)
252 : 0));
253}
254
255/* Dump all items into a NULL-terminated vector. Use the
256 user-supplied vector, or malloc one. */
257
258void**
259hash_dump (struct hash_table *ht, void **vector_0, qsort_cmp_t compare)
260{
261 void **vector;
262 void **slot;
263 void **end = &ht->ht_vec[ht->ht_size];
264
265 if (vector_0 == 0)
266 vector_0 = XMALLOC (void *, ht->ht_fill + 1);
267 vector = vector_0;
268
269 for (slot = ht->ht_vec; slot < end; slot++)
270 if (!HASH_VACANT (*slot))
271 *vector++ = *slot;
272 *vector = 0;
273
274 if (compare)
275 qsort (vector_0, ht->ht_fill, sizeof (void *), compare);
276 return vector_0;
277}
278
279/* Round a given number up to the nearest power of 2. */
280
281static unsigned long
282round_up_2 (unsigned long rough)
283{
284 int round;
285
286 round = 1;
287 while (rough)
288 {
289 round <<= 1;
290 rough >>= 1;
291 }
292 return round;
293}