]> git.saurik.com Git - apt.git/blob - apt-pkg/contrib/sha2_internal.cc
10b82dec4cae0ee0b52233ed8b9bcb614dc77b38
[apt.git] / apt-pkg / contrib / sha2_internal.cc
1 /*
2 * FILE: sha2.c
3 * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/
4 *
5 * Copyright (c) 2000-2001, Aaron D. Gifford
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the copyright holder nor the names of contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
33 */
34
35 #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
36 #include <assert.h> /* assert() */
37 #include "sha2_internal.h"
38
39 /*
40 * ASSERT NOTE:
41 * Some sanity checking code is included using assert(). On my FreeBSD
42 * system, this additional code can be removed by compiling with NDEBUG
43 * defined. Check your own systems manpage on assert() to see how to
44 * compile WITHOUT the sanity checking code on your system.
45 *
46 * UNROLLED TRANSFORM LOOP NOTE:
47 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
48 * loop version for the hash transform rounds (defined using macros
49 * later in this file). Either define on the command line, for example:
50 *
51 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
52 *
53 * or define below:
54 *
55 * #define SHA2_UNROLL_TRANSFORM
56 *
57 */
58
59
60 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
61 /*
62 * BYTE_ORDER NOTE:
63 *
64 * Please make sure that your system defines BYTE_ORDER. If your
65 * architecture is little-endian, make sure it also defines
66 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
67 * equivilent.
68 *
69 * If your system does not define the above, then you can do so by
70 * hand like this:
71 *
72 * #define LITTLE_ENDIAN 1234
73 * #define BIG_ENDIAN 4321
74 *
75 * And for little-endian machines, add:
76 *
77 * #define BYTE_ORDER LITTLE_ENDIAN
78 *
79 * Or for big-endian machines:
80 *
81 * #define BYTE_ORDER BIG_ENDIAN
82 *
83 * The FreeBSD machine this was written on defines BYTE_ORDER
84 * appropriately by including <sys/types.h> (which in turn includes
85 * <machine/endian.h> where the appropriate definitions are actually
86 * made).
87 */
88 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
89 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
90 #endif
91
92 /*
93 * Define the followingsha2_* types to types of the correct length on
94 * the native archtecture. Most BSD systems and Linux define u_intXX_t
95 * types. Machines with very recent ANSI C headers, can use the
96 * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
97 * during compile or in the sha.h header file.
98 *
99 * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
100 * will need to define these three typedefs below (and the appropriate
101 * ones in sha.h too) by hand according to their system architecture.
102 *
103 * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
104 * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
105 */
106 #ifdef SHA2_USE_INTTYPES_H
107
108 typedef uint8_t sha2_byte; /* Exactly 1 byte */
109 typedef uint32_t sha2_word32; /* Exactly 4 bytes */
110 typedef uint64_t sha2_word64; /* Exactly 8 bytes */
111
112 #else /* SHA2_USE_INTTYPES_H */
113
114 typedef u_int8_t sha2_byte; /* Exactly 1 byte */
115 typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
116 typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
117
118 #endif /* SHA2_USE_INTTYPES_H */
119
120
121 /*** SHA-256/384/512 Various Length Definitions ***********************/
122 /* NOTE: Most of these are in sha2.h */
123 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
124 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
125 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
126
127
128 /*** ENDIAN REVERSAL MACROS *******************************************/
129 #if BYTE_ORDER == LITTLE_ENDIAN
130 #define REVERSE32(w,x) { \
131 sha2_word32 tmp = (w); \
132 tmp = (tmp >> 16) | (tmp << 16); \
133 (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
134 }
135 #define REVERSE64(w,x) { \
136 sha2_word64 tmp = (w); \
137 tmp = (tmp >> 32) | (tmp << 32); \
138 tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
139 ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
140 (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
141 ((tmp & 0x0000ffff0000ffffULL) << 16); \
142 }
143 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
144
145 /*
146 * Macro for incrementally adding the unsigned 64-bit integer n to the
147 * unsigned 128-bit integer (represented using a two-element array of
148 * 64-bit words):
149 */
150 #define ADDINC128(w,n) { \
151 (w)[0] += (sha2_word64)(n); \
152 if ((w)[0] < (n)) { \
153 (w)[1]++; \
154 } \
155 }
156
157 /*
158 * Macros for copying blocks of memory and for zeroing out ranges
159 * of memory. Using these macros makes it easy to switch from
160 * using memset()/memcpy() and using bzero()/bcopy().
161 *
162 * Please define either SHA2_USE_MEMSET_MEMCPY or define
163 * SHA2_USE_BZERO_BCOPY depending on which function set you
164 * choose to use:
165 */
166 #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
167 /* Default to memset()/memcpy() if no option is specified */
168 #define SHA2_USE_MEMSET_MEMCPY 1
169 #endif
170 #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
171 /* Abort with an error if BOTH options are defined */
172 #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
173 #endif
174
175 #ifdef SHA2_USE_MEMSET_MEMCPY
176 #define MEMSET_BZERO(p,l) memset((p), 0, (l))
177 #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
178 #endif
179 #ifdef SHA2_USE_BZERO_BCOPY
180 #define MEMSET_BZERO(p,l) bzero((p), (l))
181 #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
182 #endif
183
184
185 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
186 /*
187 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
188 *
189 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
190 * S is a ROTATION) because the SHA-256/384/512 description document
191 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
192 * same "backwards" definition.
193 */
194 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
195 #define R(b,x) ((x) >> (b))
196 /* 32-bit Rotate-right (used in SHA-256): */
197 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
198 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
199 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
200
201 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
202 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
203 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
204
205 /* Four of six logical functions used in SHA-256: */
206 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
207 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
208 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
209 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
210
211 /* Four of six logical functions used in SHA-384 and SHA-512: */
212 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
213 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
214 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
215 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
216
217 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
218 /* NOTE: These should not be accessed directly from outside this
219 * library -- they are intended for private internal visibility/use
220 * only.
221 */
222 void SHA512_Last(SHA512_CTX*);
223 void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
224 void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
225
226
227 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
228 /* Hash constant words K for SHA-256: */
229 const static sha2_word32 K256[64] = {
230 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
231 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
232 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
233 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
234 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
235 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
236 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
237 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
238 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
239 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
240 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
241 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
242 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
243 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
244 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
245 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
246 };
247
248 /* Initial hash value H for SHA-256: */
249 const static sha2_word32 sha256_initial_hash_value[8] = {
250 0x6a09e667UL,
251 0xbb67ae85UL,
252 0x3c6ef372UL,
253 0xa54ff53aUL,
254 0x510e527fUL,
255 0x9b05688cUL,
256 0x1f83d9abUL,
257 0x5be0cd19UL
258 };
259
260 /* Hash constant words K for SHA-384 and SHA-512: */
261 const static sha2_word64 K512[80] = {
262 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
263 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
264 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
265 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
266 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
267 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
268 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
269 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
270 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
271 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
272 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
273 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
274 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
275 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
276 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
277 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
278 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
279 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
280 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
281 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
282 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
283 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
284 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
285 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
286 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
287 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
288 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
289 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
290 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
291 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
292 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
293 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
294 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
295 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
296 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
297 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
298 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
299 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
300 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
301 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
302 };
303
304 /* Initial hash value H for SHA-384 */
305 const static sha2_word64 sha384_initial_hash_value[8] = {
306 0xcbbb9d5dc1059ed8ULL,
307 0x629a292a367cd507ULL,
308 0x9159015a3070dd17ULL,
309 0x152fecd8f70e5939ULL,
310 0x67332667ffc00b31ULL,
311 0x8eb44a8768581511ULL,
312 0xdb0c2e0d64f98fa7ULL,
313 0x47b5481dbefa4fa4ULL
314 };
315
316 /* Initial hash value H for SHA-512 */
317 const static sha2_word64 sha512_initial_hash_value[8] = {
318 0x6a09e667f3bcc908ULL,
319 0xbb67ae8584caa73bULL,
320 0x3c6ef372fe94f82bULL,
321 0xa54ff53a5f1d36f1ULL,
322 0x510e527fade682d1ULL,
323 0x9b05688c2b3e6c1fULL,
324 0x1f83d9abfb41bd6bULL,
325 0x5be0cd19137e2179ULL
326 };
327
328 /*
329 * Constant used by SHA256/384/512_End() functions for converting the
330 * digest to a readable hexadecimal character string:
331 */
332 static const char *sha2_hex_digits = "0123456789abcdef";
333
334
335 /*** SHA-256: *********************************************************/
336 void SHA256_Init(SHA256_CTX* context) {
337 if (context == (SHA256_CTX*)0) {
338 return;
339 }
340 MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
341 MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
342 context->bitcount = 0;
343 }
344
345 #ifdef SHA2_UNROLL_TRANSFORM
346
347 /* Unrolled SHA-256 round macros: */
348
349 #if BYTE_ORDER == LITTLE_ENDIAN
350
351 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
352 REVERSE32(*data++, W256[j]); \
353 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
354 K256[j] + W256[j]; \
355 (d) += T1; \
356 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
357 j++
358
359
360 #else /* BYTE_ORDER == LITTLE_ENDIAN */
361
362 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
363 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
364 K256[j] + (W256[j] = *data++); \
365 (d) += T1; \
366 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
367 j++
368
369 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
370
371 #define ROUND256(a,b,c,d,e,f,g,h) \
372 s0 = W256[(j+1)&0x0f]; \
373 s0 = sigma0_256(s0); \
374 s1 = W256[(j+14)&0x0f]; \
375 s1 = sigma1_256(s1); \
376 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
377 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
378 (d) += T1; \
379 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
380 j++
381
382 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
383 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
384 sha2_word32 T1, *W256;
385 int j;
386
387 W256 = (sha2_word32*)context->buffer;
388
389 /* Initialize registers with the prev. intermediate value */
390 a = context->state[0];
391 b = context->state[1];
392 c = context->state[2];
393 d = context->state[3];
394 e = context->state[4];
395 f = context->state[5];
396 g = context->state[6];
397 h = context->state[7];
398
399 j = 0;
400 do {
401 /* Rounds 0 to 15 (unrolled): */
402 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
403 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
404 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
405 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
406 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
407 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
408 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
409 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
410 } while (j < 16);
411
412 /* Now for the remaining rounds to 64: */
413 do {
414 ROUND256(a,b,c,d,e,f,g,h);
415 ROUND256(h,a,b,c,d,e,f,g);
416 ROUND256(g,h,a,b,c,d,e,f);
417 ROUND256(f,g,h,a,b,c,d,e);
418 ROUND256(e,f,g,h,a,b,c,d);
419 ROUND256(d,e,f,g,h,a,b,c);
420 ROUND256(c,d,e,f,g,h,a,b);
421 ROUND256(b,c,d,e,f,g,h,a);
422 } while (j < 64);
423
424 /* Compute the current intermediate hash value */
425 context->state[0] += a;
426 context->state[1] += b;
427 context->state[2] += c;
428 context->state[3] += d;
429 context->state[4] += e;
430 context->state[5] += f;
431 context->state[6] += g;
432 context->state[7] += h;
433
434 /* Clean up */
435 a = b = c = d = e = f = g = h = T1 = 0;
436 }
437
438 #else /* SHA2_UNROLL_TRANSFORM */
439
440 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
441 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
442 sha2_word32 T1, T2, *W256;
443 int j;
444
445 W256 = (sha2_word32*)context->buffer;
446
447 /* Initialize registers with the prev. intermediate value */
448 a = context->state[0];
449 b = context->state[1];
450 c = context->state[2];
451 d = context->state[3];
452 e = context->state[4];
453 f = context->state[5];
454 g = context->state[6];
455 h = context->state[7];
456
457 j = 0;
458 do {
459 #if BYTE_ORDER == LITTLE_ENDIAN
460 /* Copy data while converting to host byte order */
461 REVERSE32(*data++,W256[j]);
462 /* Apply the SHA-256 compression function to update a..h */
463 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
464 #else /* BYTE_ORDER == LITTLE_ENDIAN */
465 /* Apply the SHA-256 compression function to update a..h with copy */
466 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
467 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
468 T2 = Sigma0_256(a) + Maj(a, b, c);
469 h = g;
470 g = f;
471 f = e;
472 e = d + T1;
473 d = c;
474 c = b;
475 b = a;
476 a = T1 + T2;
477
478 j++;
479 } while (j < 16);
480
481 do {
482 /* Part of the message block expansion: */
483 s0 = W256[(j+1)&0x0f];
484 s0 = sigma0_256(s0);
485 s1 = W256[(j+14)&0x0f];
486 s1 = sigma1_256(s1);
487
488 /* Apply the SHA-256 compression function to update a..h */
489 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
490 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
491 T2 = Sigma0_256(a) + Maj(a, b, c);
492 h = g;
493 g = f;
494 f = e;
495 e = d + T1;
496 d = c;
497 c = b;
498 b = a;
499 a = T1 + T2;
500
501 j++;
502 } while (j < 64);
503
504 /* Compute the current intermediate hash value */
505 context->state[0] += a;
506 context->state[1] += b;
507 context->state[2] += c;
508 context->state[3] += d;
509 context->state[4] += e;
510 context->state[5] += f;
511 context->state[6] += g;
512 context->state[7] += h;
513
514 /* Clean up */
515 a = b = c = d = e = f = g = h = T1 = T2 = 0;
516 }
517
518 #endif /* SHA2_UNROLL_TRANSFORM */
519
520 void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
521 unsigned int freespace, usedspace;
522
523 if (len == 0) {
524 /* Calling with no data is valid - we do nothing */
525 return;
526 }
527
528 /* Sanity check: */
529 assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
530
531 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
532 if (usedspace > 0) {
533 /* Calculate how much free space is available in the buffer */
534 freespace = SHA256_BLOCK_LENGTH - usedspace;
535
536 if (len >= freespace) {
537 /* Fill the buffer completely and process it */
538 MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
539 context->bitcount += freespace << 3;
540 len -= freespace;
541 data += freespace;
542 SHA256_Transform(context, (sha2_word32*)context->buffer);
543 } else {
544 /* The buffer is not yet full */
545 MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
546 context->bitcount += len << 3;
547 /* Clean up: */
548 usedspace = freespace = 0;
549 return;
550 }
551 }
552 while (len >= SHA256_BLOCK_LENGTH) {
553 /* Process as many complete blocks as we can */
554 SHA256_Transform(context, (sha2_word32*)data);
555 context->bitcount += SHA256_BLOCK_LENGTH << 3;
556 len -= SHA256_BLOCK_LENGTH;
557 data += SHA256_BLOCK_LENGTH;
558 }
559 if (len > 0) {
560 /* There's left-overs, so save 'em */
561 MEMCPY_BCOPY(context->buffer, data, len);
562 context->bitcount += len << 3;
563 }
564 /* Clean up: */
565 usedspace = freespace = 0;
566 }
567
568 void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
569 sha2_word32 *d = (sha2_word32*)digest;
570 unsigned int usedspace;
571
572 /* Sanity check: */
573 assert(context != (SHA256_CTX*)0);
574
575 /* If no digest buffer is passed, we don't bother doing this: */
576 if (digest != (sha2_byte*)0) {
577 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
578 #if BYTE_ORDER == LITTLE_ENDIAN
579 /* Convert FROM host byte order */
580 REVERSE64(context->bitcount,context->bitcount);
581 #endif
582 if (usedspace > 0) {
583 /* Begin padding with a 1 bit: */
584 context->buffer[usedspace++] = 0x80;
585
586 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
587 /* Set-up for the last transform: */
588 MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
589 } else {
590 if (usedspace < SHA256_BLOCK_LENGTH) {
591 MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
592 }
593 /* Do second-to-last transform: */
594 SHA256_Transform(context, (sha2_word32*)context->buffer);
595
596 /* And set-up for the last transform: */
597 MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
598 }
599 } else {
600 /* Set-up for the last transform: */
601 MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
602
603 /* Begin padding with a 1 bit: */
604 *context->buffer = 0x80;
605 }
606 /* Set the bit count: */
607 *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
608
609 /* Final transform: */
610 SHA256_Transform(context, (sha2_word32*)context->buffer);
611
612 #if BYTE_ORDER == LITTLE_ENDIAN
613 {
614 /* Convert TO host byte order */
615 int j;
616 for (j = 0; j < 8; j++) {
617 REVERSE32(context->state[j],context->state[j]);
618 *d++ = context->state[j];
619 }
620 }
621 #else
622 MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
623 #endif
624 }
625
626 /* Clean up state data: */
627 MEMSET_BZERO(context, sizeof(context));
628 usedspace = 0;
629 }
630
631 char *SHA256_End(SHA256_CTX* context, char buffer[]) {
632 sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
633 int i;
634
635 /* Sanity check: */
636 assert(context != (SHA256_CTX*)0);
637
638 if (buffer != (char*)0) {
639 SHA256_Final(digest, context);
640
641 for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
642 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
643 *buffer++ = sha2_hex_digits[*d & 0x0f];
644 d++;
645 }
646 *buffer = (char)0;
647 } else {
648 MEMSET_BZERO(context, sizeof(context));
649 }
650 MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
651 return buffer;
652 }
653
654 char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
655 SHA256_CTX context;
656
657 SHA256_Init(&context);
658 SHA256_Update(&context, data, len);
659 return SHA256_End(&context, digest);
660 }
661
662
663 /*** SHA-512: *********************************************************/
664 void SHA512_Init(SHA512_CTX* context) {
665 if (context == (SHA512_CTX*)0) {
666 return;
667 }
668 MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
669 MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
670 context->bitcount[0] = context->bitcount[1] = 0;
671 }
672
673 #ifdef SHA2_UNROLL_TRANSFORM
674
675 /* Unrolled SHA-512 round macros: */
676 #if BYTE_ORDER == LITTLE_ENDIAN
677
678 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
679 REVERSE64(*data++, W512[j]); \
680 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
681 K512[j] + W512[j]; \
682 (d) += T1, \
683 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
684 j++
685
686
687 #else /* BYTE_ORDER == LITTLE_ENDIAN */
688
689 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
690 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
691 K512[j] + (W512[j] = *data++); \
692 (d) += T1; \
693 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
694 j++
695
696 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
697
698 #define ROUND512(a,b,c,d,e,f,g,h) \
699 s0 = W512[(j+1)&0x0f]; \
700 s0 = sigma0_512(s0); \
701 s1 = W512[(j+14)&0x0f]; \
702 s1 = sigma1_512(s1); \
703 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
704 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
705 (d) += T1; \
706 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
707 j++
708
709 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
710 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
711 sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
712 int j;
713
714 /* Initialize registers with the prev. intermediate value */
715 a = context->state[0];
716 b = context->state[1];
717 c = context->state[2];
718 d = context->state[3];
719 e = context->state[4];
720 f = context->state[5];
721 g = context->state[6];
722 h = context->state[7];
723
724 j = 0;
725 do {
726 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
727 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
728 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
729 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
730 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
731 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
732 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
733 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
734 } while (j < 16);
735
736 /* Now for the remaining rounds up to 79: */
737 do {
738 ROUND512(a,b,c,d,e,f,g,h);
739 ROUND512(h,a,b,c,d,e,f,g);
740 ROUND512(g,h,a,b,c,d,e,f);
741 ROUND512(f,g,h,a,b,c,d,e);
742 ROUND512(e,f,g,h,a,b,c,d);
743 ROUND512(d,e,f,g,h,a,b,c);
744 ROUND512(c,d,e,f,g,h,a,b);
745 ROUND512(b,c,d,e,f,g,h,a);
746 } while (j < 80);
747
748 /* Compute the current intermediate hash value */
749 context->state[0] += a;
750 context->state[1] += b;
751 context->state[2] += c;
752 context->state[3] += d;
753 context->state[4] += e;
754 context->state[5] += f;
755 context->state[6] += g;
756 context->state[7] += h;
757
758 /* Clean up */
759 a = b = c = d = e = f = g = h = T1 = 0;
760 }
761
762 #else /* SHA2_UNROLL_TRANSFORM */
763
764 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
765 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
766 sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer;
767 int j;
768
769 /* Initialize registers with the prev. intermediate value */
770 a = context->state[0];
771 b = context->state[1];
772 c = context->state[2];
773 d = context->state[3];
774 e = context->state[4];
775 f = context->state[5];
776 g = context->state[6];
777 h = context->state[7];
778
779 j = 0;
780 do {
781 #if BYTE_ORDER == LITTLE_ENDIAN
782 /* Convert TO host byte order */
783 REVERSE64(*data++, W512[j]);
784 /* Apply the SHA-512 compression function to update a..h */
785 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
786 #else /* BYTE_ORDER == LITTLE_ENDIAN */
787 /* Apply the SHA-512 compression function to update a..h with copy */
788 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
789 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
790 T2 = Sigma0_512(a) + Maj(a, b, c);
791 h = g;
792 g = f;
793 f = e;
794 e = d + T1;
795 d = c;
796 c = b;
797 b = a;
798 a = T1 + T2;
799
800 j++;
801 } while (j < 16);
802
803 do {
804 /* Part of the message block expansion: */
805 s0 = W512[(j+1)&0x0f];
806 s0 = sigma0_512(s0);
807 s1 = W512[(j+14)&0x0f];
808 s1 = sigma1_512(s1);
809
810 /* Apply the SHA-512 compression function to update a..h */
811 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
812 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
813 T2 = Sigma0_512(a) + Maj(a, b, c);
814 h = g;
815 g = f;
816 f = e;
817 e = d + T1;
818 d = c;
819 c = b;
820 b = a;
821 a = T1 + T2;
822
823 j++;
824 } while (j < 80);
825
826 /* Compute the current intermediate hash value */
827 context->state[0] += a;
828 context->state[1] += b;
829 context->state[2] += c;
830 context->state[3] += d;
831 context->state[4] += e;
832 context->state[5] += f;
833 context->state[6] += g;
834 context->state[7] += h;
835
836 /* Clean up */
837 a = b = c = d = e = f = g = h = T1 = T2 = 0;
838 }
839
840 #endif /* SHA2_UNROLL_TRANSFORM */
841
842 void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
843 unsigned int freespace, usedspace;
844
845 if (len == 0) {
846 /* Calling with no data is valid - we do nothing */
847 return;
848 }
849
850 /* Sanity check: */
851 assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
852
853 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
854 if (usedspace > 0) {
855 /* Calculate how much free space is available in the buffer */
856 freespace = SHA512_BLOCK_LENGTH - usedspace;
857
858 if (len >= freespace) {
859 /* Fill the buffer completely and process it */
860 MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
861 ADDINC128(context->bitcount, freespace << 3);
862 len -= freespace;
863 data += freespace;
864 SHA512_Transform(context, (sha2_word64*)context->buffer);
865 } else {
866 /* The buffer is not yet full */
867 MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
868 ADDINC128(context->bitcount, len << 3);
869 /* Clean up: */
870 usedspace = freespace = 0;
871 return;
872 }
873 }
874 while (len >= SHA512_BLOCK_LENGTH) {
875 /* Process as many complete blocks as we can */
876 SHA512_Transform(context, (sha2_word64*)data);
877 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
878 len -= SHA512_BLOCK_LENGTH;
879 data += SHA512_BLOCK_LENGTH;
880 }
881 if (len > 0) {
882 /* There's left-overs, so save 'em */
883 MEMCPY_BCOPY(context->buffer, data, len);
884 ADDINC128(context->bitcount, len << 3);
885 }
886 /* Clean up: */
887 usedspace = freespace = 0;
888 }
889
890 void SHA512_Last(SHA512_CTX* context) {
891 unsigned int usedspace;
892
893 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
894 #if BYTE_ORDER == LITTLE_ENDIAN
895 /* Convert FROM host byte order */
896 REVERSE64(context->bitcount[0],context->bitcount[0]);
897 REVERSE64(context->bitcount[1],context->bitcount[1]);
898 #endif
899 if (usedspace > 0) {
900 /* Begin padding with a 1 bit: */
901 context->buffer[usedspace++] = 0x80;
902
903 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
904 /* Set-up for the last transform: */
905 MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
906 } else {
907 if (usedspace < SHA512_BLOCK_LENGTH) {
908 MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
909 }
910 /* Do second-to-last transform: */
911 SHA512_Transform(context, (sha2_word64*)context->buffer);
912
913 /* And set-up for the last transform: */
914 MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
915 }
916 } else {
917 /* Prepare for final transform: */
918 MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
919
920 /* Begin padding with a 1 bit: */
921 *context->buffer = 0x80;
922 }
923 /* Store the length of input data (in bits): */
924 *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
925 *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
926
927 /* Final transform: */
928 SHA512_Transform(context, (sha2_word64*)context->buffer);
929 }
930
931 void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
932 sha2_word64 *d = (sha2_word64*)digest;
933
934 /* Sanity check: */
935 assert(context != (SHA512_CTX*)0);
936
937 /* If no digest buffer is passed, we don't bother doing this: */
938 if (digest != (sha2_byte*)0) {
939 SHA512_Last(context);
940
941 /* Save the hash data for output: */
942 #if BYTE_ORDER == LITTLE_ENDIAN
943 {
944 /* Convert TO host byte order */
945 int j;
946 for (j = 0; j < 8; j++) {
947 REVERSE64(context->state[j],context->state[j]);
948 *d++ = context->state[j];
949 }
950 }
951 #else
952 MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
953 #endif
954 }
955
956 /* Zero out state data */
957 MEMSET_BZERO(context, sizeof(context));
958 }
959
960 char *SHA512_End(SHA512_CTX* context, char buffer[]) {
961 sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
962 int i;
963
964 /* Sanity check: */
965 assert(context != (SHA512_CTX*)0);
966
967 if (buffer != (char*)0) {
968 SHA512_Final(digest, context);
969
970 for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
971 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
972 *buffer++ = sha2_hex_digits[*d & 0x0f];
973 d++;
974 }
975 *buffer = (char)0;
976 } else {
977 MEMSET_BZERO(context, sizeof(context));
978 }
979 MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
980 return buffer;
981 }
982
983 char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
984 SHA512_CTX context;
985
986 SHA512_Init(&context);
987 SHA512_Update(&context, data, len);
988 return SHA512_End(&context, digest);
989 }
990
991
992 /*** SHA-384: *********************************************************/
993 void SHA384_Init(SHA384_CTX* context) {
994 if (context == (SHA384_CTX*)0) {
995 return;
996 }
997 MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
998 MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
999 context->bitcount[0] = context->bitcount[1] = 0;
1000 }
1001
1002 void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
1003 SHA512_Update((SHA512_CTX*)context, data, len);
1004 }
1005
1006 void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
1007 sha2_word64 *d = (sha2_word64*)digest;
1008
1009 /* Sanity check: */
1010 assert(context != (SHA384_CTX*)0);
1011
1012 /* If no digest buffer is passed, we don't bother doing this: */
1013 if (digest != (sha2_byte*)0) {
1014 SHA512_Last((SHA512_CTX*)context);
1015
1016 /* Save the hash data for output: */
1017 #if BYTE_ORDER == LITTLE_ENDIAN
1018 {
1019 /* Convert TO host byte order */
1020 int j;
1021 for (j = 0; j < 6; j++) {
1022 REVERSE64(context->state[j],context->state[j]);
1023 *d++ = context->state[j];
1024 }
1025 }
1026 #else
1027 MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
1028 #endif
1029 }
1030
1031 /* Zero out state data */
1032 MEMSET_BZERO(context, sizeof(context));
1033 }
1034
1035 char *SHA384_End(SHA384_CTX* context, char buffer[]) {
1036 sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
1037 int i;
1038
1039 /* Sanity check: */
1040 assert(context != (SHA384_CTX*)0);
1041
1042 if (buffer != (char*)0) {
1043 SHA384_Final(digest, context);
1044
1045 for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
1046 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
1047 *buffer++ = sha2_hex_digits[*d & 0x0f];
1048 d++;
1049 }
1050 *buffer = (char)0;
1051 } else {
1052 MEMSET_BZERO(context, sizeof(context));
1053 }
1054 MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
1055 return buffer;
1056 }
1057
1058 char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
1059 SHA384_CTX context;
1060
1061 SHA384_Init(&context);
1062 SHA384_Update(&context, data, len);
1063 return SHA384_End(&context, digest);
1064 }
1065