]> git.saurik.com Git - apt-legacy.git/blame - apt-pkg/lookup3.cc
Ported to APT 0.7.25.3.
[apt-legacy.git] / apt-pkg / lookup3.cc
CommitLineData
05d8d514
JF
1/*
2-------------------------------------------------------------------------------
3lookup3.c, by Bob Jenkins, May 2006, Public Domain.
4
5These are functions for producing 32-bit hashes for hash table lookup.
6hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
7are externally useful functions. Routines to test the hash are included
8if SELF_TEST is defined. You can use this free for any purpose. It's in
9the public domain. It has no warranty.
10
11You probably want to use hashlittle(). hashlittle() and hashbig()
12hash byte arrays. hashlittle() is is faster than hashbig() on
13little-endian machines. Intel and AMD are little-endian machines.
14On second thought, you probably want hashlittle2(), which is identical to
15hashlittle() except it returns two 32-bit hashes for the price of one.
16You could implement hashbig2() if you wanted but I haven't bothered here.
17
18If you want to find a hash of, say, exactly 7 integers, do
19 a = i1; b = i2; c = i3;
20 mix(a,b,c);
21 a += i4; b += i5; c += i6;
22 mix(a,b,c);
23 a += i7;
24 final(a,b,c);
25then use c as the hash value. If you have a variable length array of
264-byte integers to hash, use hashword(). If you have a byte array (like
27a character string), use hashlittle(). If you have several byte arrays, or
28a mix of things, see the comments above hashlittle().
29
30Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
31then mix those integers. This is fast (you can do a lot more thorough
32mixing with 12*3 instructions on 3 integers than you can with 3 instructions
33on 1 byte), but shoehorning those bytes into integers efficiently is messy.
34-------------------------------------------------------------------------------
35*/
36#undef SELF_TEST
37
38#include <stdio.h> /* defines printf for tests */
39#include <time.h> /* defines time_t for timings in the test */
40#include <stdint.h> /* defines uint32_t etc */
41#include <sys/param.h> /* attempt to define endianness */
42#ifdef linux
43# include <endian.h> /* attempt to define endianness */
44#endif
45
46/*
47 * My best guess at if you are big-endian or little-endian. This may
48 * need adjustment.
49 */
50#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \
51 __BYTE_ORDER == __LITTLE_ENDIAN) || \
52 (defined(i386) || defined(__i386__) || defined(__i486__) || \
53 defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL))
54# define HASH_LITTLE_ENDIAN 1
55# define HASH_BIG_ENDIAN 0
56#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \
57 __BYTE_ORDER == __BIG_ENDIAN) || \
58 (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
59# define HASH_LITTLE_ENDIAN 0
60# define HASH_BIG_ENDIAN 1
61#else
62# define HASH_LITTLE_ENDIAN 0
63# define HASH_BIG_ENDIAN 0
64#endif
65
66#define hashsize(n) ((uint32_t)1<<(n))
67#define hashmask(n) (hashsize(n)-1)
68#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
69
70/*
71-------------------------------------------------------------------------------
72mix -- mix 3 32-bit values reversibly.
73
74This is reversible, so any information in (a,b,c) before mix() is
75still in (a,b,c) after mix().
76
77If four pairs of (a,b,c) inputs are run through mix(), or through
78mix() in reverse, there are at least 32 bits of the output that
79are sometimes the same for one pair and different for another pair.
80This was tested for:
81* pairs that differed by one bit, by two bits, in any combination
82 of top bits of (a,b,c), or in any combination of bottom bits of
83 (a,b,c).
84* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
85 the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
86 is commonly produced by subtraction) look like a single 1-bit
87 difference.
88* the base values were pseudorandom, all zero but one bit set, or
89 all zero plus a counter that starts at zero.
90
91Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
92satisfy this are
93 4 6 8 16 19 4
94 9 15 3 18 27 15
95 14 9 3 7 17 3
96Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
97for "differ" defined as + with a one-bit base and a two-bit delta. I
98used http://burtleburtle.net/bob/hash/avalanche.html to choose
99the operations, constants, and arrangements of the variables.
100
101This does not achieve avalanche. There are input bits of (a,b,c)
102that fail to affect some output bits of (a,b,c), especially of a. The
103most thoroughly mixed value is c, but it doesn't really even achieve
104avalanche in c.
105
106This allows some parallelism. Read-after-writes are good at doubling
107the number of bits affected, so the goal of mixing pulls in the opposite
108direction as the goal of parallelism. I did what I could. Rotates
109seem to cost as much as shifts on every machine I could lay my hands
110on, and rotates are much kinder to the top and bottom bits, so I used
111rotates.
112-------------------------------------------------------------------------------
113*/
114#define mix(a,b,c) \
115{ \
116 a -= c; a ^= rot(c, 4); c += b; \
117 b -= a; b ^= rot(a, 6); a += c; \
118 c -= b; c ^= rot(b, 8); b += a; \
119 a -= c; a ^= rot(c,16); c += b; \
120 b -= a; b ^= rot(a,19); a += c; \
121 c -= b; c ^= rot(b, 4); b += a; \
122}
123
124/*
125-------------------------------------------------------------------------------
126final -- final mixing of 3 32-bit values (a,b,c) into c
127
128Pairs of (a,b,c) values differing in only a few bits will usually
129produce values of c that look totally different. This was tested for
130* pairs that differed by one bit, by two bits, in any combination
131 of top bits of (a,b,c), or in any combination of bottom bits of
132 (a,b,c).
133* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
134 the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
135 is commonly produced by subtraction) look like a single 1-bit
136 difference.
137* the base values were pseudorandom, all zero but one bit set, or
138 all zero plus a counter that starts at zero.
139
140These constants passed:
141 14 11 25 16 4 14 24
142 12 14 25 16 4 14 24
143and these came close:
144 4 8 15 26 3 22 24
145 10 8 15 26 3 22 24
146 11 8 15 26 3 22 24
147-------------------------------------------------------------------------------
148*/
149#define final(a,b,c) \
150{ \
151 c ^= b; c -= rot(b,14); \
152 a ^= c; a -= rot(c,11); \
153 b ^= a; b -= rot(a,25); \
154 c ^= b; c -= rot(b,16); \
155 a ^= c; a -= rot(c,4); \
156 b ^= a; b -= rot(a,14); \
157 c ^= b; c -= rot(b,24); \
158}
159
160/*
161--------------------------------------------------------------------
162 This works on all machines. To be useful, it requires
163 -- that the key be an array of uint32_t's, and
164 -- that the length be the number of uint32_t's in the key
165
166 The function hashword() is identical to hashlittle() on little-endian
167 machines, and identical to hashbig() on big-endian machines,
168 except that the length has to be measured in uint32_ts rather than in
169 bytes. hashlittle() is more complicated than hashword() only because
170 hashlittle() has to dance around fitting the key bytes into registers.
171--------------------------------------------------------------------
172*/
173uint32_t hashword(
174const uint32_t *k, /* the key, an array of uint32_t values */
175size_t length, /* the length of the key, in uint32_ts */
176uint32_t initval) /* the previous hash, or an arbitrary value */
177{
178 uint32_t a,b,c;
179
180 /* Set up the internal state */
181 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval;
182
183 /*------------------------------------------------- handle most of the key */
184 while (length > 3)
185 {
186 a += k[0];
187 b += k[1];
188 c += k[2];
189 mix(a,b,c);
190 length -= 3;
191 k += 3;
192 }
193
194 /*------------------------------------------- handle the last 3 uint32_t's */
195 switch(length) /* all the case statements fall through */
196 {
197 case 3 : c+=k[2];
198 case 2 : b+=k[1];
199 case 1 : a+=k[0];
200 final(a,b,c);
201 case 0: /* case 0: nothing left to add */
202 break;
203 }
204 /*------------------------------------------------------ report the result */
205 return c;
206}
207
208
209/*
210--------------------------------------------------------------------
211hashword2() -- same as hashword(), but take two seeds and return two
21232-bit values. pc and pb must both be nonnull, and *pc and *pb must
213both be initialized with seeds. If you pass in (*pb)==0, the output
214(*pc) will be the same as the return value from hashword().
215--------------------------------------------------------------------
216*/
217void hashword2 (
218const uint32_t *k, /* the key, an array of uint32_t values */
219size_t length, /* the length of the key, in uint32_ts */
220uint32_t *pc, /* IN: seed OUT: primary hash value */
221uint32_t *pb) /* IN: more seed OUT: secondary hash value */
222{
223 uint32_t a,b,c;
224
225 /* Set up the internal state */
226 a = b = c = 0xdeadbeef + ((uint32_t)(length<<2)) + *pc;
227 c += *pb;
228
229 /*------------------------------------------------- handle most of the key */
230 while (length > 3)
231 {
232 a += k[0];
233 b += k[1];
234 c += k[2];
235 mix(a,b,c);
236 length -= 3;
237 k += 3;
238 }
239
240 /*------------------------------------------- handle the last 3 uint32_t's */
241 switch(length) /* all the case statements fall through */
242 {
243 case 3 : c+=k[2];
244 case 2 : b+=k[1];
245 case 1 : a+=k[0];
246 final(a,b,c);
247 case 0: /* case 0: nothing left to add */
248 break;
249 }
250 /*------------------------------------------------------ report the result */
251 *pc=c; *pb=b;
252}
253
254
255/*
256-------------------------------------------------------------------------------
257hashlittle() -- hash a variable-length key into a 32-bit value
258 k : the key (the unaligned variable-length array of bytes)
259 length : the length of the key, counting by bytes
260 initval : can be any 4-byte value
261Returns a 32-bit value. Every bit of the key affects every bit of
262the return value. Two keys differing by one or two bits will have
263totally different hash values.
264
265The best hash table sizes are powers of 2. There is no need to do
266mod a prime (mod is sooo slow!). If you need less than 32 bits,
267use a bitmask. For example, if you need only 10 bits, do
268 h = (h & hashmask(10));
269In which case, the hash table should have hashsize(10) elements.
270
271If you are hashing n strings (uint8_t **)k, do it like this:
272 for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
273
274By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
275code any way you wish, private, educational, or commercial. It's free.
276
277Use for hash table lookup, or anything where one collision in 2^^32 is
278acceptable. Do NOT use for cryptographic purposes.
279-------------------------------------------------------------------------------
280*/
281
282uint32_t hashlittle( const void *key, size_t length, uint32_t initval)
283{
284 uint32_t a,b,c; /* internal state */
285 union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
286
287 /* Set up the internal state */
288 a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
289
290 u.ptr = key;
291 if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
292 const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
293#ifdef VALGRIND
294 const uint8_t *k8;
295#endif
296
297 /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
298 while (length > 12)
299 {
300 a += k[0];
301 b += k[1];
302 c += k[2];
303 mix(a,b,c);
304 length -= 12;
305 k += 3;
306 }
307
308 /*----------------------------- handle the last (probably partial) block */
309 /*
310 * "k[2]&0xffffff" actually reads beyond the end of the string, but
311 * then masks off the part it's not allowed to read. Because the
312 * string is aligned, the masked-off tail is in the same word as the
313 * rest of the string. Every machine with memory protection I've seen
314 * does it on word boundaries, so is OK with this. But VALGRIND will
315 * still catch it and complain. The masking trick does make the hash
316 * noticably faster for short strings (like English words).
317 */
318#ifndef VALGRIND
319
320 switch(length)
321 {
322 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
323 case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
324 case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
325 case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
326 case 8 : b+=k[1]; a+=k[0]; break;
327 case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
328 case 6 : b+=k[1]&0xffff; a+=k[0]; break;
329 case 5 : b+=k[1]&0xff; a+=k[0]; break;
330 case 4 : a+=k[0]; break;
331 case 3 : a+=k[0]&0xffffff; break;
332 case 2 : a+=k[0]&0xffff; break;
333 case 1 : a+=k[0]&0xff; break;
334 case 0 : return c; /* zero length strings require no mixing */
335 }
336
337#else /* make valgrind happy */
338
339 k8 = (const uint8_t *)k;
340 switch(length)
341 {
342 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
343 case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
344 case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
345 case 9 : c+=k8[8]; /* fall through */
346 case 8 : b+=k[1]; a+=k[0]; break;
347 case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
348 case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
349 case 5 : b+=k8[4]; /* fall through */
350 case 4 : a+=k[0]; break;
351 case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
352 case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
353 case 1 : a+=k8[0]; break;
354 case 0 : return c;
355 }
356
357#endif /* !valgrind */
358
359 } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
360 const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
361 const uint8_t *k8;
362
363 /*--------------- all but last block: aligned reads and different mixing */
364 while (length > 12)
365 {
366 a += k[0] + (((uint32_t)k[1])<<16);
367 b += k[2] + (((uint32_t)k[3])<<16);
368 c += k[4] + (((uint32_t)k[5])<<16);
369 mix(a,b,c);
370 length -= 12;
371 k += 6;
372 }
373
374 /*----------------------------- handle the last (probably partial) block */
375 k8 = (const uint8_t *)k;
376 switch(length)
377 {
378 case 12: c+=k[4]+(((uint32_t)k[5])<<16);
379 b+=k[2]+(((uint32_t)k[3])<<16);
380 a+=k[0]+(((uint32_t)k[1])<<16);
381 break;
382 case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
383 case 10: c+=k[4];
384 b+=k[2]+(((uint32_t)k[3])<<16);
385 a+=k[0]+(((uint32_t)k[1])<<16);
386 break;
387 case 9 : c+=k8[8]; /* fall through */
388 case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
389 a+=k[0]+(((uint32_t)k[1])<<16);
390 break;
391 case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
392 case 6 : b+=k[2];
393 a+=k[0]+(((uint32_t)k[1])<<16);
394 break;
395 case 5 : b+=k8[4]; /* fall through */
396 case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
397 break;
398 case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
399 case 2 : a+=k[0];
400 break;
401 case 1 : a+=k8[0];
402 break;
403 case 0 : return c; /* zero length requires no mixing */
404 }
405
406 } else { /* need to read the key one byte at a time */
407 const uint8_t *k = (const uint8_t *)key;
408
409 /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
410 while (length > 12)
411 {
412 a += k[0];
413 a += ((uint32_t)k[1])<<8;
414 a += ((uint32_t)k[2])<<16;
415 a += ((uint32_t)k[3])<<24;
416 b += k[4];
417 b += ((uint32_t)k[5])<<8;
418 b += ((uint32_t)k[6])<<16;
419 b += ((uint32_t)k[7])<<24;
420 c += k[8];
421 c += ((uint32_t)k[9])<<8;
422 c += ((uint32_t)k[10])<<16;
423 c += ((uint32_t)k[11])<<24;
424 mix(a,b,c);
425 length -= 12;
426 k += 12;
427 }
428
429 /*-------------------------------- last block: affect all 32 bits of (c) */
430 switch(length) /* all the case statements fall through */
431 {
432 case 12: c+=((uint32_t)k[11])<<24;
433 case 11: c+=((uint32_t)k[10])<<16;
434 case 10: c+=((uint32_t)k[9])<<8;
435 case 9 : c+=k[8];
436 case 8 : b+=((uint32_t)k[7])<<24;
437 case 7 : b+=((uint32_t)k[6])<<16;
438 case 6 : b+=((uint32_t)k[5])<<8;
439 case 5 : b+=k[4];
440 case 4 : a+=((uint32_t)k[3])<<24;
441 case 3 : a+=((uint32_t)k[2])<<16;
442 case 2 : a+=((uint32_t)k[1])<<8;
443 case 1 : a+=k[0];
444 break;
445 case 0 : return c;
446 }
447 }
448
449 final(a,b,c);
450 return c;
451}
452
453
454/*
455 * hashlittle2: return 2 32-bit hash values
456 *
457 * This is identical to hashlittle(), except it returns two 32-bit hash
458 * values instead of just one. This is good enough for hash table
459 * lookup with 2^^64 buckets, or if you want a second hash if you're not
460 * happy with the first, or if you want a probably-unique 64-bit ID for
461 * the key. *pc is better mixed than *pb, so use *pc first. If you want
462 * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
463 */
464void hashlittle2(
465 const void *key, /* the key to hash */
466 size_t length, /* length of the key */
467 uint32_t *pc, /* IN: primary initval, OUT: primary hash */
468 uint32_t *pb) /* IN: secondary initval, OUT: secondary hash */
469{
470 uint32_t a,b,c; /* internal state */
471 union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
472
473 /* Set up the internal state */
474 a = b = c = 0xdeadbeef + ((uint32_t)length) + *pc;
475 c += *pb;
476
477 u.ptr = key;
478 if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
479 const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
480#ifdef VALGRIND
481 const uint8_t *k8;
482#endif
483
484 /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
485 while (length > 12)
486 {
487 a += k[0];
488 b += k[1];
489 c += k[2];
490 mix(a,b,c);
491 length -= 12;
492 k += 3;
493 }
494
495 /*----------------------------- handle the last (probably partial) block */
496 /*
497 * "k[2]&0xffffff" actually reads beyond the end of the string, but
498 * then masks off the part it's not allowed to read. Because the
499 * string is aligned, the masked-off tail is in the same word as the
500 * rest of the string. Every machine with memory protection I've seen
501 * does it on word boundaries, so is OK with this. But VALGRIND will
502 * still catch it and complain. The masking trick does make the hash
503 * noticably faster for short strings (like English words).
504 */
505#ifndef VALGRIND
506
507 switch(length)
508 {
509 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
510 case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
511 case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
512 case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
513 case 8 : b+=k[1]; a+=k[0]; break;
514 case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
515 case 6 : b+=k[1]&0xffff; a+=k[0]; break;
516 case 5 : b+=k[1]&0xff; a+=k[0]; break;
517 case 4 : a+=k[0]; break;
518 case 3 : a+=k[0]&0xffffff; break;
519 case 2 : a+=k[0]&0xffff; break;
520 case 1 : a+=k[0]&0xff; break;
521 case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
522 }
523
524#else /* make valgrind happy */
525
526 k8 = (const uint8_t *)k;
527 switch(length)
528 {
529 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
530 case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
531 case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
532 case 9 : c+=k8[8]; /* fall through */
533 case 8 : b+=k[1]; a+=k[0]; break;
534 case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
535 case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
536 case 5 : b+=k8[4]; /* fall through */
537 case 4 : a+=k[0]; break;
538 case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
539 case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
540 case 1 : a+=k8[0]; break;
541 case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
542 }
543
544#endif /* !valgrind */
545
546 } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
547 const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
548 const uint8_t *k8;
549
550 /*--------------- all but last block: aligned reads and different mixing */
551 while (length > 12)
552 {
553 a += k[0] + (((uint32_t)k[1])<<16);
554 b += k[2] + (((uint32_t)k[3])<<16);
555 c += k[4] + (((uint32_t)k[5])<<16);
556 mix(a,b,c);
557 length -= 12;
558 k += 6;
559 }
560
561 /*----------------------------- handle the last (probably partial) block */
562 k8 = (const uint8_t *)k;
563 switch(length)
564 {
565 case 12: c+=k[4]+(((uint32_t)k[5])<<16);
566 b+=k[2]+(((uint32_t)k[3])<<16);
567 a+=k[0]+(((uint32_t)k[1])<<16);
568 break;
569 case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
570 case 10: c+=k[4];
571 b+=k[2]+(((uint32_t)k[3])<<16);
572 a+=k[0]+(((uint32_t)k[1])<<16);
573 break;
574 case 9 : c+=k8[8]; /* fall through */
575 case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
576 a+=k[0]+(((uint32_t)k[1])<<16);
577 break;
578 case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
579 case 6 : b+=k[2];
580 a+=k[0]+(((uint32_t)k[1])<<16);
581 break;
582 case 5 : b+=k8[4]; /* fall through */
583 case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
584 break;
585 case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
586 case 2 : a+=k[0];
587 break;
588 case 1 : a+=k8[0];
589 break;
590 case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
591 }
592
593 } else { /* need to read the key one byte at a time */
594 const uint8_t *k = (const uint8_t *)key;
595
596 /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
597 while (length > 12)
598 {
599 a += k[0];
600 a += ((uint32_t)k[1])<<8;
601 a += ((uint32_t)k[2])<<16;
602 a += ((uint32_t)k[3])<<24;
603 b += k[4];
604 b += ((uint32_t)k[5])<<8;
605 b += ((uint32_t)k[6])<<16;
606 b += ((uint32_t)k[7])<<24;
607 c += k[8];
608 c += ((uint32_t)k[9])<<8;
609 c += ((uint32_t)k[10])<<16;
610 c += ((uint32_t)k[11])<<24;
611 mix(a,b,c);
612 length -= 12;
613 k += 12;
614 }
615
616 /*-------------------------------- last block: affect all 32 bits of (c) */
617 switch(length) /* all the case statements fall through */
618 {
619 case 12: c+=((uint32_t)k[11])<<24;
620 case 11: c+=((uint32_t)k[10])<<16;
621 case 10: c+=((uint32_t)k[9])<<8;
622 case 9 : c+=k[8];
623 case 8 : b+=((uint32_t)k[7])<<24;
624 case 7 : b+=((uint32_t)k[6])<<16;
625 case 6 : b+=((uint32_t)k[5])<<8;
626 case 5 : b+=k[4];
627 case 4 : a+=((uint32_t)k[3])<<24;
628 case 3 : a+=((uint32_t)k[2])<<16;
629 case 2 : a+=((uint32_t)k[1])<<8;
630 case 1 : a+=k[0];
631 break;
632 case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
633 }
634 }
635
636 final(a,b,c);
637 *pc=c; *pb=b;
638}
639
640
641
642/*
643 * hashbig():
644 * This is the same as hashword() on big-endian machines. It is different
645 * from hashlittle() on all machines. hashbig() takes advantage of
646 * big-endian byte ordering.
647 */
648uint32_t hashbig( const void *key, size_t length, uint32_t initval)
649{
650 uint32_t a,b,c;
651 union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
652
653 /* Set up the internal state */
654 a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
655
656 u.ptr = key;
657 if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
658 const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
659#ifdef VALGRIND
660 const uint8_t *k8;
661#endif
662
663 /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
664 while (length > 12)
665 {
666 a += k[0];
667 b += k[1];
668 c += k[2];
669 mix(a,b,c);
670 length -= 12;
671 k += 3;
672 }
673
674 /*----------------------------- handle the last (probably partial) block */
675 /*
676 * "k[2]<<8" actually reads beyond the end of the string, but
677 * then shifts out the part it's not allowed to read. Because the
678 * string is aligned, the illegal read is in the same word as the
679 * rest of the string. Every machine with memory protection I've seen
680 * does it on word boundaries, so is OK with this. But VALGRIND will
681 * still catch it and complain. The masking trick does make the hash
682 * noticably faster for short strings (like English words).
683 */
684#ifndef VALGRIND
685
686 switch(length)
687 {
688 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
689 case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
690 case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
691 case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
692 case 8 : b+=k[1]; a+=k[0]; break;
693 case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
694 case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
695 case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
696 case 4 : a+=k[0]; break;
697 case 3 : a+=k[0]&0xffffff00; break;
698 case 2 : a+=k[0]&0xffff0000; break;
699 case 1 : a+=k[0]&0xff000000; break;
700 case 0 : return c; /* zero length strings require no mixing */
701 }
702
703#else /* make valgrind happy */
704
705 k8 = (const uint8_t *)k;
706 switch(length) /* all the case statements fall through */
707 {
708 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
709 case 11: c+=((uint32_t)k8[10])<<8; /* fall through */
710 case 10: c+=((uint32_t)k8[9])<<16; /* fall through */
711 case 9 : c+=((uint32_t)k8[8])<<24; /* fall through */
712 case 8 : b+=k[1]; a+=k[0]; break;
713 case 7 : b+=((uint32_t)k8[6])<<8; /* fall through */
714 case 6 : b+=((uint32_t)k8[5])<<16; /* fall through */
715 case 5 : b+=((uint32_t)k8[4])<<24; /* fall through */
716 case 4 : a+=k[0]; break;
717 case 3 : a+=((uint32_t)k8[2])<<8; /* fall through */
718 case 2 : a+=((uint32_t)k8[1])<<16; /* fall through */
719 case 1 : a+=((uint32_t)k8[0])<<24; break;
720 case 0 : return c;
721 }
722
723#endif /* !VALGRIND */
724
725 } else { /* need to read the key one byte at a time */
726 const uint8_t *k = (const uint8_t *)key;
727
728 /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
729 while (length > 12)
730 {
731 a += ((uint32_t)k[0])<<24;
732 a += ((uint32_t)k[1])<<16;
733 a += ((uint32_t)k[2])<<8;
734 a += ((uint32_t)k[3]);
735 b += ((uint32_t)k[4])<<24;
736 b += ((uint32_t)k[5])<<16;
737 b += ((uint32_t)k[6])<<8;
738 b += ((uint32_t)k[7]);
739 c += ((uint32_t)k[8])<<24;
740 c += ((uint32_t)k[9])<<16;
741 c += ((uint32_t)k[10])<<8;
742 c += ((uint32_t)k[11]);
743 mix(a,b,c);
744 length -= 12;
745 k += 12;
746 }
747
748 /*-------------------------------- last block: affect all 32 bits of (c) */
749 switch(length) /* all the case statements fall through */
750 {
751 case 12: c+=k[11];
752 case 11: c+=((uint32_t)k[10])<<8;
753 case 10: c+=((uint32_t)k[9])<<16;
754 case 9 : c+=((uint32_t)k[8])<<24;
755 case 8 : b+=k[7];
756 case 7 : b+=((uint32_t)k[6])<<8;
757 case 6 : b+=((uint32_t)k[5])<<16;
758 case 5 : b+=((uint32_t)k[4])<<24;
759 case 4 : a+=k[3];
760 case 3 : a+=((uint32_t)k[2])<<8;
761 case 2 : a+=((uint32_t)k[1])<<16;
762 case 1 : a+=((uint32_t)k[0])<<24;
763 break;
764 case 0 : return c;
765 }
766 }
767
768 final(a,b,c);
769 return c;
770}
771
772
773#ifdef SELF_TEST
774
775/* used for timings */
776void driver1()
777{
778 uint8_t buf[256];
779 uint32_t i;
780 uint32_t h=0;
781 time_t a,z;
782
783 time(&a);
784 for (i=0; i<256; ++i) buf[i] = 'x';
785 for (i=0; i<1; ++i)
786 {
787 h = hashlittle(&buf[0],1,h);
788 }
789 time(&z);
790 if (z-a > 0) printf("time %d %.8x\n", z-a, h);
791}
792
793/* check that every input bit changes every output bit half the time */
794#define HASHSTATE 1
795#define HASHLEN 1
796#define MAXPAIR 60
797#define MAXLEN 70
798void driver2()
799{
800 uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1];
801 uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z;
802 uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE];
803 uint32_t x[HASHSTATE],y[HASHSTATE];
804 uint32_t hlen;
805
806 printf("No more than %d trials should ever be needed \n",MAXPAIR/2);
807 for (hlen=0; hlen < MAXLEN; ++hlen)
808 {
809 z=0;
810 for (i=0; i<hlen; ++i) /*----------------------- for each input byte, */
811 {
812 for (j=0; j<8; ++j) /*------------------------ for each input bit, */
813 {
814 for (m=1; m<8; ++m) /*------------ for serveral possible initvals, */
815 {
816 for (l=0; l<HASHSTATE; ++l)
817 e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((uint32_t)0);
818
819 /*---- check that every output bit is affected by that input bit */
820 for (k=0; k<MAXPAIR; k+=2)
821 {
822 uint32_t finished=1;
823 /* keys have one bit different */
824 for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (uint8_t)0;}
825 /* have a and b be two keys differing in only one bit */
826 a[i] ^= (k<<j);
827 a[i] ^= (k>>(8-j));
828 c[0] = hashlittle(a, hlen, m);
829 b[i] ^= ((k+1)<<j);
830 b[i] ^= ((k+1)>>(8-j));
831 d[0] = hashlittle(b, hlen, m);
832 /* check every bit is 1, 0, set, and not set at least once */
833 for (l=0; l<HASHSTATE; ++l)
834 {
835 e[l] &= (c[l]^d[l]);
836 f[l] &= ~(c[l]^d[l]);
837 g[l] &= c[l];
838 h[l] &= ~c[l];
839 x[l] &= d[l];
840 y[l] &= ~d[l];
841 if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0;
842 }
843 if (finished) break;
844 }
845 if (k>z) z=k;
846 if (k==MAXPAIR)
847 {
848 printf("Some bit didn't change: ");
849 printf("%.8x %.8x %.8x %.8x %.8x %.8x ",
850 e[0],f[0],g[0],h[0],x[0],y[0]);
851 printf("i %d j %d m %d len %d\n", i, j, m, hlen);
852 }
853 if (z==MAXPAIR) goto done;
854 }
855 }
856 }
857 done:
858 if (z < MAXPAIR)
859 {
860 printf("Mix success %2d bytes %2d initvals ",i,m);
861 printf("required %d trials\n", z/2);
862 }
863 }
864 printf("\n");
865}
866
867/* Check for reading beyond the end of the buffer and alignment problems */
868void driver3()
869{
870 uint8_t buf[MAXLEN+20], *b;
871 uint32_t len;
872 uint8_t q[] = "This is the time for all good men to come to the aid of their country...";
873 uint32_t h;
874 uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country...";
875 uint32_t i;
876 uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country...";
877 uint32_t j;
878 uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country...";
879 uint32_t ref,x,y;
880 uint8_t *p;
881
882 printf("Endianness. These lines should all be the same (for values filled in):\n");
883 printf("%.8x %.8x %.8x\n",
884 hashword((const uint32_t *)q, (sizeof(q)-1)/4, 13),
885 hashword((const uint32_t *)q, (sizeof(q)-5)/4, 13),
886 hashword((const uint32_t *)q, (sizeof(q)-9)/4, 13));
887 p = q;
888 printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
889 hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
890 hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
891 hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
892 hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
893 hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
894 hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
895 p = &qq[1];
896 printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
897 hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
898 hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
899 hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
900 hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
901 hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
902 hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
903 p = &qqq[2];
904 printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
905 hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
906 hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
907 hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
908 hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
909 hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
910 hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
911 p = &qqqq[3];
912 printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
913 hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
914 hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
915 hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
916 hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
917 hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
918 hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
919 printf("\n");
920
921 /* check that hashlittle2 and hashlittle produce the same results */
922 i=47; j=0;
923 hashlittle2(q, sizeof(q), &i, &j);
924 if (hashlittle(q, sizeof(q), 47) != i)
925 printf("hashlittle2 and hashlittle mismatch\n");
926
927 /* check that hashword2 and hashword produce the same results */
928 len = 0xdeadbeef;
929 i=47, j=0;
930 hashword2(&len, 1, &i, &j);
931 if (hashword(&len, 1, 47) != i)
932 printf("hashword2 and hashword mismatch %x %x\n",
933 i, hashword(&len, 1, 47));
934
935 /* check hashlittle doesn't read before or after the ends of the string */
936 for (h=0, b=buf+1; h<8; ++h, ++b)
937 {
938 for (i=0; i<MAXLEN; ++i)
939 {
940 len = i;
941 for (j=0; j<i; ++j) *(b+j)=0;
942
943 /* these should all be equal */
944 ref = hashlittle(b, len, (uint32_t)1);
945 *(b+i)=(uint8_t)~0;
946 *(b-1)=(uint8_t)~0;
947 x = hashlittle(b, len, (uint32_t)1);
948 y = hashlittle(b, len, (uint32_t)1);
949 if ((ref != x) || (ref != y))
950 {
951 printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y,
952 h, i);
953 }
954 }
955 }
956}
957
958/* check for problems with nulls */
959 void driver4()
960{
961 uint8_t buf[1];
962 uint32_t h,i,state[HASHSTATE];
963
964
965 buf[0] = ~0;
966 for (i=0; i<HASHSTATE; ++i) state[i] = 1;
967 printf("These should all be different\n");
968 for (i=0, h=0; i<8; ++i)
969 {
970 h = hashlittle(buf, 0, h);
971 printf("%2ld 0-byte strings, hash is %.8x\n", i, h);
972 }
973}
974
975void driver5()
976{
977 uint32_t b,c;
978 b=0, c=0, hashlittle2("", 0, &c, &b);
979 printf("hash is %.8lx %.8lx\n", c, b); /* deadbeef deadbeef */
980 b=0xdeadbeef, c=0, hashlittle2("", 0, &c, &b);
981 printf("hash is %.8lx %.8lx\n", c, b); /* bd5b7dde deadbeef */
982 b=0xdeadbeef, c=0xdeadbeef, hashlittle2("", 0, &c, &b);
983 printf("hash is %.8lx %.8lx\n", c, b); /* 9c093ccd bd5b7dde */
984 b=0, c=0, hashlittle2("Four score and seven years ago", 30, &c, &b);
985 printf("hash is %.8lx %.8lx\n", c, b); /* 17770551 ce7226e6 */
986 b=1, c=0, hashlittle2("Four score and seven years ago", 30, &c, &b);
987 printf("hash is %.8lx %.8lx\n", c, b); /* e3607cae bd371de4 */
988 b=0, c=1, hashlittle2("Four score and seven years ago", 30, &c, &b);
989 printf("hash is %.8lx %.8lx\n", c, b); /* cd628161 6cbea4b3 */
990 c = hashlittle("Four score and seven years ago", 30, 0);
991 printf("hash is %.8lx\n", c); /* 17770551 */
992 c = hashlittle("Four score and seven years ago", 30, 1);
993 printf("hash is %.8lx\n", c); /* cd628161 */
994}
995
996
997int main()
998{
999 driver1(); /* test that the key is hashed: used for timings */
1000 driver2(); /* test that whole key is hashed thoroughly */
1001 driver3(); /* test that nothing but the key is hashed */
1002 driver4(); /* test hashing multiple buffers (all buffers are null) */
1003 driver5(); /* test the hash against known vectors */
1004 return 1;
1005}
1006
1007#endif /* SELF_TEST */