/*
- * Copyright (c) 2004-2009 Apple Inc. All rights reserved.
+ * Copyright (c) 2004-2011 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
*
* Implements the "wrappers" to the KEXT.
*/
-#include <kern/machine.h>
-#include <i386/machine_routines.h>
-#include <i386/machine_cpu.h>
-#include <i386/misc_protos.h>
-#include <i386/pmap.h>
#include <i386/asm.h>
+#include <i386/machine_cpu.h>
#include <i386/mp.h>
+#include <i386/machine_routines.h>
#include <i386/proc_reg.h>
+#include <i386/pmap.h>
+#include <i386/misc_protos.h>
+#include <kern/machine.h>
#include <kern/pms.h>
#include <kern/processor.h>
+#include <kern/timer_queue.h>
#include <i386/cpu_threads.h>
#include <i386/pmCPU.h>
#include <i386/cpuid.h>
-#include <i386/rtclock.h>
+#include <i386/rtclock_protos.h>
#include <kern/sched_prim.h>
-
-/*
- * Kernel parameter determining whether threads are halted unconditionally
- * in the idle state. This is the default behavior.
- * See machine_idle() for use.
- */
-int idlehalt = 1;
+#include <i386/lapic.h>
+#include <i386/pal_routines.h>
+#include <sys/kdebug.h>
+#include <i386/tsc.h>
extern int disableConsoleOutput;
-decl_simple_lock_data(,pm_init_lock);
+#define DELAY_UNSET 0xFFFFFFFFFFFFFFFFULL
+
+uint64_t cpu_itime_bins[CPU_ITIME_BINS] = {16* NSEC_PER_USEC, 32* NSEC_PER_USEC, 64* NSEC_PER_USEC, 128* NSEC_PER_USEC, 256* NSEC_PER_USEC, 512* NSEC_PER_USEC, 1024* NSEC_PER_USEC, 2048* NSEC_PER_USEC, 4096* NSEC_PER_USEC, 8192* NSEC_PER_USEC, 16384* NSEC_PER_USEC, 32768* NSEC_PER_USEC};
+uint64_t *cpu_rtime_bins = &cpu_itime_bins[0];
/*
* The following is set when the KEXT loads and initializes.
*/
pmDispatch_t *pmDispatch = NULL;
-static uint32_t pmInitDone = 0;
-
+uint32_t pmInitDone = 0;
+static boolean_t earlyTopology = FALSE;
+static uint64_t earlyMaxBusDelay = DELAY_UNSET;
+static uint64_t earlyMaxIntDelay = DELAY_UNSET;
/*
* Initialize the Cstate change code.
void
power_management_init(void)
{
- static boolean_t initialized = FALSE;
-
- /*
- * Initialize the lock for the KEXT initialization.
- */
- if (!initialized) {
- simple_lock_init(&pm_init_lock, 0);
- initialized = TRUE;
- }
-
if (pmDispatch != NULL && pmDispatch->cstateInit != NULL)
(*pmDispatch->cstateInit)();
}
+static inline void machine_classify_interval(uint64_t interval, uint64_t *bins, uint64_t *binvals, uint32_t nbins) {
+ uint32_t i;
+ for (i = 0; i < nbins; i++) {
+ if (interval < binvals[i]) {
+ bins[i]++;
+ break;
+ }
+ }
+}
+
+uint64_t idle_pending_timers_processed;
+uint32_t idle_entry_timer_processing_hdeadline_threshold = 5000000;
+
/*
* Called when the CPU is idle. It calls into the power management kext
* to determine the best way to idle the CPU.
void
machine_idle(void)
{
- cpu_data_t *my_cpu = current_cpu_datap();
-
- if (my_cpu == NULL)
- goto out;
-
- /*
- * If idlehalt isn't set, then don't do any power management related
- * idle handling.
- */
- if (!idlehalt)
- goto out;
+ cpu_data_t *my_cpu = current_cpu_datap();
+ __unused uint32_t cnum = my_cpu->cpu_number;
+ uint64_t ctime, rtime, itime;
+#if CST_DEMOTION_DEBUG
+ processor_t cproc = my_cpu->cpu_processor;
+ uint64_t cwakeups = PROCESSOR_DATA(cproc, wakeups_issued_total);
+#endif /* CST_DEMOTION_DEBUG */
+ uint64_t esdeadline, ehdeadline;
+ boolean_t do_process_pending_timers = FALSE;
+
+ ctime = mach_absolute_time();
+ esdeadline = my_cpu->rtclock_timer.queue.earliest_soft_deadline;
+ ehdeadline = my_cpu->rtclock_timer.deadline;
+/* Determine if pending timers exist */
+ if ((ctime >= esdeadline) && (ctime < ehdeadline) &&
+ ((ehdeadline - ctime) < idle_entry_timer_processing_hdeadline_threshold)) {
+ idle_pending_timers_processed++;
+ do_process_pending_timers = TRUE;
+ goto machine_idle_exit;
+ } else {
+ TCOAL_DEBUG(0xCCCC0000, ctime, my_cpu->rtclock_timer.queue.earliest_soft_deadline, my_cpu->rtclock_timer.deadline, idle_pending_timers_processed, 0);
+ }
+
+ my_cpu->lcpu.state = LCPU_IDLE;
+ DBGLOG(cpu_handle, cpu_number(), MP_IDLE);
+ MARK_CPU_IDLE(cnum);
+
+ rtime = ctime - my_cpu->cpu_ixtime;
+
+ my_cpu->cpu_rtime_total += rtime;
+ machine_classify_interval(rtime, &my_cpu->cpu_rtimes[0], &cpu_rtime_bins[0], CPU_RTIME_BINS);
+#if CST_DEMOTION_DEBUG
+ uint32_t cl = 0, ch = 0;
+ uint64_t c3res, c6res, c7res;
+ rdmsr_carefully(MSR_IA32_CORE_C3_RESIDENCY, &cl, &ch);
+ c3res = ((uint64_t)ch << 32) | cl;
+ rdmsr_carefully(MSR_IA32_CORE_C6_RESIDENCY, &cl, &ch);
+ c6res = ((uint64_t)ch << 32) | cl;
+ rdmsr_carefully(MSR_IA32_CORE_C7_RESIDENCY, &cl, &ch);
+ c7res = ((uint64_t)ch << 32) | cl;
+#endif
+
+ if (pmInitDone) {
+ /*
+ * Handle case where ml_set_maxbusdelay() or ml_set_maxintdelay()
+ * were called prior to the CPU PM kext being registered. We do
+ * this here since we know at this point the values will be first
+ * used since idle is where the decisions using these values is made.
+ */
+ if (earlyMaxBusDelay != DELAY_UNSET)
+ ml_set_maxbusdelay((uint32_t)(earlyMaxBusDelay & 0xFFFFFFFF));
+ if (earlyMaxIntDelay != DELAY_UNSET)
+ ml_set_maxintdelay(earlyMaxIntDelay);
+ }
- my_cpu->lcpu.state = LCPU_IDLE;
- my_cpu->lcpu.flags |= X86CORE_FL_IDLE;
- DBGLOG(cpu_handle, cpu_number(), MP_IDLE);
- MARK_CPU_IDLE(cpu_number());
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->MachineIdle != NULL)
+ (*pmDispatch->MachineIdle)(0x7FFFFFFFFFFFFFFFULL);
+ else {
+ /*
+ * If no power management, re-enable interrupts and halt.
+ * This will keep the CPU from spinning through the scheduler
+ * and will allow at least some minimal power savings (but it
+ * cause problems in some MP configurations w.r.t. the APIC
+ * stopping during a GV3 transition).
+ */
+ pal_hlt();
+ /* Once woken, re-disable interrupts. */
+ pal_cli();
+ }
- if (pmInitDone
- && pmDispatch != NULL
- && pmDispatch->cstateMachineIdle != NULL)
- (*pmDispatch->cstateMachineIdle)(0x7FFFFFFFFFFFFFFFULL);
- else {
/*
- * If no power management, re-enable interrupts and halt.
- * This will keep the CPU from spinning through the scheduler
- * and will allow at least some minimal power savings (but it
- * cause problems in some MP configurations w.r.t. the APIC
- * stopping during a GV3 transition).
+ * Mark the CPU as running again.
*/
- __asm__ volatile ("sti; hlt");
- }
+ MARK_CPU_ACTIVE(cnum);
+ DBGLOG(cpu_handle, cnum, MP_UNIDLE);
+ my_cpu->lcpu.state = LCPU_RUN;
+ uint64_t ixtime = my_cpu->cpu_ixtime = mach_absolute_time();
+ itime = ixtime - ctime;
+ my_cpu->cpu_idle_exits++;
+ my_cpu->cpu_itime_total += itime;
+ machine_classify_interval(itime, &my_cpu->cpu_itimes[0], &cpu_itime_bins[0], CPU_ITIME_BINS);
+#if CST_DEMOTION_DEBUG
+ cl = ch = 0;
+ rdmsr_carefully(MSR_IA32_CORE_C3_RESIDENCY, &cl, &ch);
+ c3res = (((uint64_t)ch << 32) | cl) - c3res;
+ rdmsr_carefully(MSR_IA32_CORE_C6_RESIDENCY, &cl, &ch);
+ c6res = (((uint64_t)ch << 32) | cl) - c6res;
+ rdmsr_carefully(MSR_IA32_CORE_C7_RESIDENCY, &cl, &ch);
+ c7res = (((uint64_t)ch << 32) | cl) - c7res;
+
+ uint64_t ndelta = itime - tmrCvt(c3res + c6res + c7res, tscFCvtt2n);
+ KERNEL_DEBUG_CONSTANT(0xcead0000, ndelta, itime, c7res, c6res, c3res);
+ if ((itime > 1000000) && (ndelta > 250000))
+ KERNEL_DEBUG_CONSTANT(0xceae0000, ndelta, itime, c7res, c6res, c3res);
+#endif
+
+ machine_idle_exit:
+ /*
+ * Re-enable interrupts.
+ */
+
+ pal_sti();
- /*
- * Mark the CPU as running again.
- */
- MARK_CPU_ACTIVE(cpu_number());
- DBGLOG(cpu_handle, cpu_number(), MP_UNIDLE);
- my_cpu->lcpu.flags &= ~(X86CORE_FL_IDLE | X86CORE_FL_WAKEUP);
- my_cpu->lcpu.state = LCPU_RUN;
+ if (do_process_pending_timers) {
+ TCOAL_DEBUG(0xBBBB0000 | DBG_FUNC_START, ctime, esdeadline, ehdeadline, idle_pending_timers_processed, 0);
- /*
- * Re-enable interrupts.
- */
- out:
- __asm__ volatile("sti");
+ /* Adjust to reflect that this isn't truly a package idle exit */
+ __sync_fetch_and_sub(&my_cpu->lcpu.package->num_idle, 1);
+ lapic_timer_swi(); /* Trigger software timer interrupt */
+ __sync_fetch_and_add(&my_cpu->lcpu.package->num_idle, 1);
+
+ TCOAL_DEBUG(0xBBBB0000 | DBG_FUNC_END, ctime, esdeadline, idle_pending_timers_processed, 0, 0);
+ }
+#if CST_DEMOTION_DEBUG
+ uint64_t nwakeups = PROCESSOR_DATA(cproc, wakeups_issued_total);
+
+ if ((nwakeups == cwakeups) && (topoParms.nLThreadsPerPackage == my_cpu->lcpu.package->num_idle)) {
+ KERNEL_DEBUG_CONSTANT(0xceaa0000, cwakeups, 0, 0, 0, 0);
+ }
+#endif
}
/*
switch (reason) {
case PM_HALT_DEBUG:
cpup->lcpu.state = LCPU_PAUSE;
- __asm__ volatile ("wbinvd; hlt");
+ pal_stop_cpu(FALSE);
break;
case PM_HALT_PANIC:
cpup->lcpu.state = LCPU_PAUSE;
- __asm__ volatile ("cli; wbinvd; hlt");
+ pal_stop_cpu(TRUE);
break;
case PM_HALT_NORMAL:
+ case PM_HALT_SLEEP:
default:
- __asm__ volatile ("cli");
+ pal_cli();
if (pmInitDone
&& pmDispatch != NULL
(*pmDispatch->pmCPUHalt)();
/*
- * We've exited halt, so get the the CPU schedulable again.
+ * We've exited halt, so get the CPU schedulable again.
+ * - by calling the fast init routine for a slave, or
+ * - by returning if we're the master processor.
*/
- i386_init_slave_fast();
-
- panic("init_slave_fast returned");
- } else {
+ if (cpup->cpu_number != master_cpu) {
+ i386_init_slave_fast();
+ panic("init_slave_fast returned");
+ }
+ } else
+ {
/*
* If no power managment and a processor is taken off-line,
* then invalidate the cache and halt it (it will not be able
*/
__asm__ volatile ("wbinvd");
cpup->lcpu.state = LCPU_HALT;
- __asm__ volatile ( "wbinvd; hlt" );
+ pal_stop_cpu(FALSE);
panic("back from Halt");
}
+
break;
}
}
static void
pmInitComplete(void)
{
+ if (earlyTopology
+ && pmDispatch != NULL
+ && pmDispatch->pmCPUStateInit != NULL) {
+ (*pmDispatch->pmCPUStateInit)();
+ earlyTopology = FALSE;
+ }
pmInitDone = 1;
}
-static x86_lcpu_t *
+x86_lcpu_t *
pmGetLogicalCPU(int cpu)
{
return(cpu_to_lcpu(cpu));
}
-static x86_lcpu_t *
+x86_lcpu_t *
pmGetMyLogicalCPU(void)
{
cpu_data_t *cpup = current_cpu_datap();
/*
* Called to get the next deadline that has been set by the
* power management code.
+ * Note: a return of 0 from AICPM and this routine signifies
+ * that no deadline is set.
*/
uint64_t
pmCPUGetDeadline(cpu_data_t *cpu)
{
- uint64_t deadline = EndOfAllTime;
+ uint64_t deadline = 0;
if (pmInitDone
&& pmDispatch != NULL
* Called to determine if the supplied deadline or the power management
* deadline is sooner. Returns which ever one is first.
*/
+
uint64_t
pmCPUSetDeadline(cpu_data_t *cpu, uint64_t deadline)
{
- if (pmInitDone
+ if (pmInitDone
&& pmDispatch != NULL
&& pmDispatch->SetDeadline != NULL)
deadline = (*pmDispatch->SetDeadline)(&cpu->lcpu, deadline);
{
boolean_t do_ipi;
- cpu->lcpu.flags |= X86CORE_FL_WAKEUP;
if (pmInitDone
&& pmDispatch != NULL
&& pmDispatch->exitIdle != NULL)
else
do_ipi = TRUE;
- if (do_ipi)
- cpu->lcpu.flags &= ~X86CORE_FL_WAKEUP;
-
return(do_ipi);
}
kern_return_t
pmCPUExitHaltToOff(int cpu)
{
- kern_return_t rc = KERN_INVALID_ARGUMENT;
+ kern_return_t rc = KERN_SUCCESS;
if (pmInitDone
&& pmDispatch != NULL
{
if (pmDispatch != NULL && pmDispatch->pmCPUStateInit != NULL)
(*pmDispatch->pmCPUStateInit)();
+ else
+ earlyTopology = TRUE;
}
/*
{
uint64_t max_snoop = 0;
- if (pmDispatch != NULL
+ if (pmInitDone
+ && pmDispatch != NULL
&& pmDispatch->getMaxSnoop != NULL)
max_snoop = pmDispatch->getMaxSnoop();
{
uint64_t max_delay = 0;
- if (pmDispatch != NULL
+ if (pmInitDone
+ && pmDispatch != NULL
&& pmDispatch->getMaxBusDelay != NULL)
max_delay = pmDispatch->getMaxBusDelay();
}
/*
- * Set the maximum delay time allowed for snoop on the bus.
- *
- * Note that this value will be compared to the amount of time that it takes
- * to transition from a non-snooping power state (C4) to a snooping state (C2).
- * If maxBusDelay is less than C4C2SnoopDelay,
- * we will not enter the lowest power state.
+ * Advertise a memory access latency tolerance of "mdelay" ns
*/
void
ml_set_maxbusdelay(uint32_t mdelay)
uint64_t maxdelay = mdelay;
if (pmDispatch != NULL
- && pmDispatch->setMaxBusDelay != NULL)
+ && pmDispatch->setMaxBusDelay != NULL) {
+ earlyMaxBusDelay = DELAY_UNSET;
pmDispatch->setMaxBusDelay(maxdelay);
+ } else
+ earlyMaxBusDelay = maxdelay;
}
uint64_t
ml_set_maxintdelay(uint64_t mdelay)
{
if (pmDispatch != NULL
- && pmDispatch->setMaxIntDelay != NULL)
+ && pmDispatch->setMaxIntDelay != NULL) {
+ earlyMaxIntDelay = DELAY_UNSET;
pmDispatch->setMaxIntDelay(mdelay);
+ } else
+ earlyMaxIntDelay = mdelay;
+}
+
+boolean_t
+ml_get_interrupt_prewake_applicable()
+{
+ boolean_t applicable = FALSE;
+
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->pmInterruptPrewakeApplicable != NULL)
+ applicable = pmDispatch->pmInterruptPrewakeApplicable();
+
+ return applicable;
}
/*
}
boolean_t
-machine_cpu_is_inactive(int cpu)
+machine_processor_is_inactive(processor_t processor)
{
+ int cpu = processor->cpu_id;
+
if (pmDispatch != NULL
&& pmDispatch->pmIsCPUUnAvailable != NULL)
return(pmDispatch->pmIsCPUUnAvailable(cpu_to_lcpu(cpu)));
return(FALSE);
}
+processor_t
+machine_choose_processor(processor_set_t pset,
+ processor_t preferred)
+{
+ int startCPU;
+ int endCPU;
+ int preferredCPU;
+ int chosenCPU;
+
+ if (!pmInitDone)
+ return(preferred);
+
+ if (pset == NULL) {
+ startCPU = -1;
+ endCPU = -1;
+ } else {
+ startCPU = pset->cpu_set_low;
+ endCPU = pset->cpu_set_hi;
+ }
+
+ if (preferred == NULL)
+ preferredCPU = -1;
+ else
+ preferredCPU = preferred->cpu_id;
+
+ if (pmDispatch != NULL
+ && pmDispatch->pmChooseCPU != NULL) {
+ chosenCPU = pmDispatch->pmChooseCPU(startCPU, endCPU, preferredCPU);
+
+ if (chosenCPU == -1)
+ return(NULL);
+ return(cpu_datap(chosenCPU)->cpu_processor);
+ }
+
+ return(preferred);
+}
+
+static int
+pmThreadGetUrgency(uint64_t *rt_period, uint64_t *rt_deadline)
+{
+ int urgency;
+ uint64_t arg1, arg2;
+
+ urgency = thread_get_urgency(current_processor()->next_thread, &arg1, &arg2);
+
+ if (urgency == THREAD_URGENCY_REAL_TIME) {
+ if (rt_period != NULL)
+ *rt_period = arg1;
+
+ if (rt_deadline != NULL)
+ *rt_deadline = arg2;
+ }
+
+ KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_GET_URGENCY), urgency, arg1, arg2, 0, 0);
+
+ return(urgency);
+}
+
+#if DEBUG
+uint32_t urgency_stats[64][THREAD_URGENCY_MAX];
+#endif
+
+#define URGENCY_NOTIFICATION_ASSERT_NS (5 * 1000 * 1000)
+uint64_t urgency_notification_assert_abstime_threshold, urgency_notification_max_recorded;
+
+void
+thread_tell_urgency(int urgency,
+ uint64_t rt_period,
+ uint64_t rt_deadline,
+ thread_t nthread)
+{
+ uint64_t urgency_notification_time_start, delta;
+ boolean_t urgency_assert = (urgency_notification_assert_abstime_threshold != 0);
+ assert(get_preemption_level() > 0 || ml_get_interrupts_enabled() == FALSE);
+#if DEBUG
+ urgency_stats[cpu_number() % 64][urgency]++;
+#endif
+ if (!pmInitDone
+ || pmDispatch == NULL
+ || pmDispatch->pmThreadTellUrgency == NULL)
+ return;
+
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED,MACH_URGENCY) | DBG_FUNC_START, urgency, rt_period, rt_deadline, 0, 0);
+
+ if (__improbable((urgency_assert == TRUE)))
+ urgency_notification_time_start = mach_absolute_time();
+
+ current_cpu_datap()->cpu_nthread = nthread;
+ pmDispatch->pmThreadTellUrgency(urgency, rt_period, rt_deadline);
+
+ if (__improbable((urgency_assert == TRUE))) {
+ delta = mach_absolute_time() - urgency_notification_time_start;
+
+ if (__improbable(delta > urgency_notification_max_recorded)) {
+ /* This is not synchronized, but it doesn't matter
+ * if we (rarely) miss an event, as it is statistically
+ * unlikely that it will never recur.
+ */
+ urgency_notification_max_recorded = delta;
+
+ if (__improbable((delta > urgency_notification_assert_abstime_threshold) && !machine_timeout_suspended()))
+ panic("Urgency notification callout %p exceeded threshold, 0x%llx abstime units", pmDispatch->pmThreadTellUrgency, delta);
+ }
+ }
+
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED,MACH_URGENCY) | DBG_FUNC_END, urgency, rt_period, rt_deadline, 0, 0);
+}
+
+void
+active_rt_threads(boolean_t active)
+{
+ if (!pmInitDone
+ || pmDispatch == NULL
+ || pmDispatch->pmActiveRTThreads == NULL)
+ return;
+
+ pmDispatch->pmActiveRTThreads(active);
+}
+
static uint32_t
pmGetSavedRunCount(void)
{
/*
* Returns the root of the package tree.
*/
-static x86_pkg_t *
+x86_pkg_t *
pmGetPkgRoot(void)
{
return(x86_pkgs);
return(cpu_datap(cpu)->cpu_hibernate);
}
-static processor_t
+processor_t
pmLCPUtoProcessor(int lcpu)
{
return(cpu_datap(lcpu)->cpu_processor);
static boolean_t registered = FALSE;
if (!registered) {
- PM_interrupt_register(&etimer_resync_deadlines);
+ PM_interrupt_register(&timer_resync_deadlines);
registered = TRUE;
}
if ((uint32_t)cpu == current_cpu_datap()->lcpu.cpu_num)
- etimer_resync_deadlines();
+ timer_resync_deadlines();
else
cpu_PM_interrupt(cpu);
}
+static void
+pmSendIPI(int cpu)
+{
+ lapic_send_ipi(cpu, LAPIC_PM_INTERRUPT);
+}
+
+static void
+pmGetNanotimeInfo(pm_rtc_nanotime_t *rtc_nanotime)
+{
+ /*
+ * Make sure that nanotime didn't change while we were reading it.
+ */
+ do {
+ rtc_nanotime->generation = pal_rtc_nanotime_info.generation; /* must be first */
+ rtc_nanotime->tsc_base = pal_rtc_nanotime_info.tsc_base;
+ rtc_nanotime->ns_base = pal_rtc_nanotime_info.ns_base;
+ rtc_nanotime->scale = pal_rtc_nanotime_info.scale;
+ rtc_nanotime->shift = pal_rtc_nanotime_info.shift;
+ } while(pal_rtc_nanotime_info.generation != 0
+ && rtc_nanotime->generation != pal_rtc_nanotime_info.generation);
+}
+
+uint32_t
+pmTimerQueueMigrate(int target_cpu)
+{
+ /* Call the etimer code to do this. */
+ return (target_cpu != cpu_number())
+ ? timer_queue_migrate_cpu(target_cpu)
+ : 0;
+}
+
+
/*
* Called by the power management kext to register itself and to get the
* callbacks it might need into other kernel functions. This interface
*/
void
pmKextRegister(uint32_t version, pmDispatch_t *cpuFuncs,
- pmCallBacks_t *callbacks)
-{
- if (callbacks != NULL && version == PM_DISPATCH_VERSION) {
- callbacks->setRTCPop = setPop;
- callbacks->resyncDeadlines = pmReSyncDeadlines;
- callbacks->initComplete = pmInitComplete;
- callbacks->GetLCPU = pmGetLogicalCPU;
- callbacks->GetCore = pmGetCore;
- callbacks->GetDie = pmGetDie;
- callbacks->GetPackage = pmGetPackage;
- callbacks->GetMyLCPU = pmGetMyLogicalCPU;
- callbacks->GetMyCore = pmGetMyCore;
- callbacks->GetMyDie = pmGetMyDie;
- callbacks->GetMyPackage = pmGetMyPackage;
- callbacks->GetPkgRoot = pmGetPkgRoot;
- callbacks->LockCPUTopology = pmLockCPUTopology;
- callbacks->GetHibernate = pmCPUGetHibernate;
- callbacks->LCPUtoProcessor = pmLCPUtoProcessor;
- callbacks->ThreadBind = thread_bind;
- callbacks->GetSavedRunCount = pmGetSavedRunCount;
- callbacks->topoParms = &topoParms;
- } else {
- panic("Version mis-match between Kernel and CPU PM");
- }
+ pmCallBacks_t *callbacks)
+{
+ if (callbacks != NULL && version == PM_DISPATCH_VERSION) {
+ callbacks->setRTCPop = setPop;
+ callbacks->resyncDeadlines = pmReSyncDeadlines;
+ callbacks->initComplete = pmInitComplete;
+ callbacks->GetLCPU = pmGetLogicalCPU;
+ callbacks->GetCore = pmGetCore;
+ callbacks->GetDie = pmGetDie;
+ callbacks->GetPackage = pmGetPackage;
+ callbacks->GetMyLCPU = pmGetMyLogicalCPU;
+ callbacks->GetMyCore = pmGetMyCore;
+ callbacks->GetMyDie = pmGetMyDie;
+ callbacks->GetMyPackage = pmGetMyPackage;
+ callbacks->GetPkgRoot = pmGetPkgRoot;
+ callbacks->LockCPUTopology = pmLockCPUTopology;
+ callbacks->GetHibernate = pmCPUGetHibernate;
+ callbacks->LCPUtoProcessor = pmLCPUtoProcessor;
+ callbacks->ThreadBind = thread_bind;
+ callbacks->GetSavedRunCount = pmGetSavedRunCount;
+ callbacks->GetNanotimeInfo = pmGetNanotimeInfo;
+ callbacks->ThreadGetUrgency = pmThreadGetUrgency;
+ callbacks->RTCClockAdjust = rtc_clock_adjust;
+ callbacks->timerQueueMigrate = pmTimerQueueMigrate;
+ callbacks->topoParms = &topoParms;
+ callbacks->pmSendIPI = pmSendIPI;
+ callbacks->InterruptPending = lapic_is_interrupt_pending;
+ callbacks->IsInterrupting = lapic_is_interrupting;
+ callbacks->InterruptStats = lapic_interrupt_counts;
+ callbacks->DisableApicTimer = lapic_disable_timer;
+ } else {
+ panic("Version mis-match between Kernel and CPU PM");
+ }
- if (cpuFuncs != NULL) {
- pmDispatch = cpuFuncs;
- }
+ if (cpuFuncs != NULL) {
+ if (pmDispatch) {
+ panic("Attempt to re-register power management interface--AICPM present in xcpm mode? %p->%p", pmDispatch, cpuFuncs);
+ }
+
+ pmDispatch = cpuFuncs;
+
+ if (earlyTopology
+ && pmDispatch->pmCPUStateInit != NULL) {
+ (*pmDispatch->pmCPUStateInit)();
+ earlyTopology = FALSE;
+ }
+
+ if (pmDispatch->pmIPIHandler != NULL) {
+ lapic_set_pm_func((i386_intr_func_t)pmDispatch->pmIPIHandler);
+ }
+ }
}
/*
}
}
-/******************************************************************************
- *
- * All of the following are deprecated interfaces and no longer used.
- *
- ******************************************************************************/
-kern_return_t
-pmsControl(__unused uint32_t request, __unused user_addr_t reqaddr,
- __unused uint32_t reqsize)
-{
- return(KERN_SUCCESS);
-}
+void machine_track_platform_idle(boolean_t entry) {
+ cpu_data_t *my_cpu = current_cpu_datap();
-void
-pmsInit(void)
-{
-}
-
-void
-pmsStart(void)
-{
-}
-
-void
-pmsPark(void)
-{
-}
-
-void
-pmsRun(__unused uint32_t nstep)
-{
-}
-
-kern_return_t
-pmsBuild(__unused pmsDef *pd, __unused uint32_t pdsize,
- __unused pmsSetFunc_t *functab,
- __unused uint32_t platformData, __unused pmsQueryFunc_t queryFunc)
-{
- return(KERN_SUCCESS);
+ if (entry) {
+ (void)__sync_fetch_and_add(&my_cpu->lcpu.package->num_idle, 1);
+ }
+ else {
+ uint32_t nidle = __sync_fetch_and_sub(&my_cpu->lcpu.package->num_idle, 1);
+ if (nidle == topoParms.nLThreadsPerPackage) {
+ my_cpu->lcpu.package->package_idle_exits++;
+ }
+ }
}