/*
- * Copyright (c) 1999-2009 Apple Inc. All rights reserved.
+ * Copyright (c) 1999-2012 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <sys/utfconv.h>
#include <sys/kdebug.h>
#include <sys/fslog.h>
+#include <sys/ubc.h>
#include <kern/locks.h>
#include "hfs_endian.h"
#include "hfs_hotfiles.h"
#include "hfs_quota.h"
+#include "hfs_btreeio.h"
#include "hfscommon/headers/FileMgrInternal.h"
#include "hfscommon/headers/BTreesInternal.h"
+#if CONFIG_PROTECT
+#include <sys/cprotect.h>
+#endif
+
+#if CONFIG_HFS_ALLOC_RBTREE
+#include "hfscommon/headers/HybridAllocator.h"
+#endif
+
+#define HFS_MOUNT_DEBUG 1
+
#if HFS_DIAGNOSTIC
int hfs_dbg_all = 0;
int hfs_dbg_err = 0;
#endif
+/* Enable/disable debugging code for live volume resizing */
+int hfs_resize_debug = 0;
lck_grp_attr_t * hfs_group_attr;
lck_attr_t * hfs_lock_attr;
lck_grp_t * hfs_mutex_group;
lck_grp_t * hfs_rwlock_group;
+lck_grp_t * hfs_spinlock_group;
extern struct vnodeopv_desc hfs_vnodeop_opv_desc;
extern struct vnodeopv_desc hfs_std_vnodeop_opv_desc;
static int hfs_flushMDB(struct hfsmount *hfsmp, int waitfor, int altflush);
static int hfs_getmountpoint(struct vnode *vp, struct hfsmount **hfsmpp);
static int hfs_init(struct vfsconf *vfsp);
-static int hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t context);
-static int hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, int journal_replay_only, vfs_context_t context);
-static int hfs_reload(struct mount *mp);
static int hfs_vfs_root(struct mount *mp, struct vnode **vpp, vfs_context_t context);
static int hfs_quotactl(struct mount *, int, uid_t, caddr_t, vfs_context_t context);
static int hfs_start(struct mount *mp, int flags, vfs_context_t context);
-static int hfs_statfs(struct mount *mp, register struct vfsstatfs *sbp, vfs_context_t context);
-static int hfs_sync(struct mount *mp, int waitfor, vfs_context_t context);
-static int hfs_sysctl(int *name, u_int namelen, user_addr_t oldp, size_t *oldlenp,
- user_addr_t newp, size_t newlen, vfs_context_t context);
-static int hfs_unmount(struct mount *mp, int mntflags, vfs_context_t context);
static int hfs_vptofh(struct vnode *vp, int *fhlenp, unsigned char *fhp, vfs_context_t context);
-
-static int hfs_reclaimspace(struct hfsmount *hfsmp, u_int32_t startblk, u_int32_t reclaimblks, vfs_context_t context);
-static int hfs_overlapped_overflow_extents(struct hfsmount *hfsmp, u_int32_t startblk,
- u_int32_t catblks, u_int32_t fileID, int rsrcfork);
+static int hfs_file_extent_overlaps(struct hfsmount *hfsmp, u_int32_t allocLimit, struct HFSPlusCatalogFile *filerec);
static int hfs_journal_replay(vnode_t devvp, vfs_context_t context);
+static int hfs_reclaimspace(struct hfsmount *hfsmp, u_int32_t allocLimit, u_int32_t reclaimblks, vfs_context_t context);
+void hfs_initialize_allocator (struct hfsmount *hfsmp);
+int hfs_teardown_allocator (struct hfsmount *hfsmp);
+
+int hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t context);
+int hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, int journal_replay_only, vfs_context_t context);
+int hfs_reload(struct mount *mp);
+int hfs_statfs(struct mount *mp, register struct vfsstatfs *sbp, vfs_context_t context);
+int hfs_sync(struct mount *mp, int waitfor, vfs_context_t context);
+int hfs_sysctl(int *name, u_int namelen, user_addr_t oldp, size_t *oldlenp,
+ user_addr_t newp, size_t newlen, vfs_context_t context);
+int hfs_unmount(struct mount *mp, int mntflags, vfs_context_t context);
/*
* Called by vfs_mountroot when mounting HFS Plus as root.
*/
-__private_extern__
int
hfs_mountroot(mount_t mp, vnode_t rvp, vfs_context_t context)
{
struct vfsstatfs *vfsp;
int error;
- if ((error = hfs_mountfs(rvp, mp, NULL, 0, context)))
+ if ((error = hfs_mountfs(rvp, mp, NULL, 0, context))) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountroot: hfs_mountfs returned %d, rvp (%p) name (%s) \n",
+ error, rvp, (rvp->v_name ? rvp->v_name : "unknown device"));
+ }
return (error);
+ }
/* Init hfsmp */
hfsmp = VFSTOHFS(mp);
* mount system call
*/
-static int
+int
hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t context)
{
struct proc *p = vfs_context_proc(context);
u_int32_t cmdflags;
if ((retval = copyin(data, (caddr_t)&args, sizeof(args)))) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: copyin returned %d for fs\n", retval);
+ }
return (retval);
}
cmdflags = (u_int32_t)vfs_flags(mp) & MNT_CMDFLAGS;
/* Reload incore data after an fsck. */
if (cmdflags & MNT_RELOAD) {
- if (vfs_isrdonly(mp))
- return hfs_reload(mp);
- else
+ if (vfs_isrdonly(mp)) {
+ int error = hfs_reload(mp);
+ if (error && HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: hfs_reload returned %d on %s \n", error, hfsmp->vcbVN);
+ }
+ return error;
+ }
+ else {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: MNT_RELOAD not supported on rdwr filesystem %s\n", hfsmp->vcbVN);
+ }
return (EINVAL);
+ }
}
/* Change to a read-only file system. */
* is in progress and therefore block any further
* modifications to the file system.
*/
- hfs_global_exclusive_lock_acquire(hfsmp);
+ hfs_lock_global (hfsmp, HFS_EXCLUSIVE_LOCK);
hfsmp->hfs_flags |= HFS_RDONLY_DOWNGRADE;
hfsmp->hfs_downgrading_proc = current_thread();
- hfs_global_exclusive_lock_release(hfsmp);
+ hfs_unlock_global (hfsmp);
/* use VFS_SYNC to push out System (btree) files */
retval = VFS_SYNC(mp, MNT_WAIT, context);
if (retval && ((cmdflags & MNT_FORCE) == 0)) {
hfsmp->hfs_flags &= ~HFS_RDONLY_DOWNGRADE;
hfsmp->hfs_downgrading_proc = NULL;
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: VFS_SYNC returned %d during b-tree sync of %s \n", retval, hfsmp->vcbVN);
+ }
goto out;
}
if ((retval = hfs_flushfiles(mp, flags, p))) {
hfsmp->hfs_flags &= ~HFS_RDONLY_DOWNGRADE;
hfsmp->hfs_downgrading_proc = NULL;
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: hfs_flushfiles returned %d on %s \n", retval, hfsmp->vcbVN);
+ }
goto out;
}
}
}
if (retval) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: FSYNC on devvp returned %d for fs %s\n", retval, hfsmp->vcbVN);
+ }
hfsmp->hfs_flags &= ~HFS_RDONLY_DOWNGRADE;
hfsmp->hfs_downgrading_proc = NULL;
hfsmp->hfs_flags &= ~HFS_READ_ONLY;
goto out;
}
if (hfsmp->jnl) {
- hfs_global_exclusive_lock_acquire(hfsmp);
+ hfs_lock_global (hfsmp, HFS_EXCLUSIVE_LOCK);
journal_close(hfsmp->jnl);
hfsmp->jnl = NULL;
// access to the jvp because we may need
// it later if we go back to being read-write.
- hfs_global_exclusive_lock_release(hfsmp);
+ hfs_unlock_global (hfsmp);
}
+#if CONFIG_HFS_ALLOC_RBTREE
+ (void) hfs_teardown_allocator(hfsmp);
+#endif
hfsmp->hfs_downgrading_proc = NULL;
}
/* Change to a writable file system. */
if (vfs_iswriteupgrade(mp)) {
+#if CONFIG_HFS_ALLOC_RBTREE
+ thread_t allocator_thread;
+#endif
/*
* On inconsistent disks, do not allow read-write mount
*/
if (!(vfs_flags(mp) & MNT_ROOTFS) &&
(hfsmp->vcbAtrb & kHFSVolumeInconsistentMask)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: attempting to mount inconsistent non-root volume %s\n", (hfsmp->vcbVN));
+ }
retval = EINVAL;
goto out;
}
if (hfsmp->hfs_flags & HFS_NEED_JNL_RESET) {
jflags = JOURNAL_RESET;
- } else {
+ } else {
jflags = 0;
- }
-
- hfs_global_exclusive_lock_acquire(hfsmp);
-
- hfsmp->jnl = journal_open(hfsmp->jvp,
- (hfsmp->jnl_start * HFSTOVCB(hfsmp)->blockSize) + (off_t)HFSTOVCB(hfsmp)->hfsPlusIOPosOffset,
- hfsmp->jnl_size,
- hfsmp->hfs_devvp,
- hfsmp->hfs_logical_block_size,
- jflags,
- 0,
- hfs_sync_metadata, hfsmp->hfs_mp);
-
- hfs_global_exclusive_lock_release(hfsmp);
-
- if (hfsmp->jnl == NULL) {
- retval = EINVAL;
- goto out;
- } else {
- hfsmp->hfs_flags &= ~HFS_NEED_JNL_RESET;
- }
+ }
+
+ hfs_lock_global (hfsmp, HFS_EXCLUSIVE_LOCK);
+
+ hfsmp->jnl = journal_open(hfsmp->jvp,
+ (hfsmp->jnl_start * HFSTOVCB(hfsmp)->blockSize) + (off_t)HFSTOVCB(hfsmp)->hfsPlusIOPosOffset,
+ hfsmp->jnl_size,
+ hfsmp->hfs_devvp,
+ hfsmp->hfs_logical_block_size,
+ jflags,
+ 0,
+ hfs_sync_metadata, hfsmp->hfs_mp);
+
+ /*
+ * Set up the trim callback function so that we can add
+ * recently freed extents to the free extent cache once
+ * the transaction that freed them is written to the
+ * journal on disk.
+ */
+ if (hfsmp->jnl)
+ journal_trim_set_callback(hfsmp->jnl, hfs_trim_callback, hfsmp);
+
+ hfs_unlock_global (hfsmp);
+
+ if (hfsmp->jnl == NULL) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: journal_open == NULL; couldn't be opened on %s \n", (hfsmp->vcbVN));
+ }
+ retval = EINVAL;
+ goto out;
+ } else {
+ hfsmp->hfs_flags &= ~HFS_NEED_JNL_RESET;
+ }
}
/* See if we need to erase unused Catalog nodes due to <rdar://problem/6947811>. */
retval = hfs_erase_unused_nodes(hfsmp);
- if (retval != E_NONE)
+ if (retval != E_NONE) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: hfs_erase_unused_nodes returned %d for fs %s\n", retval, hfsmp->vcbVN);
+ }
goto out;
-
- /* Only clear HFS_READ_ONLY after a successful write */
- hfsmp->hfs_flags &= ~HFS_READ_ONLY;
+ }
/* If this mount point was downgraded from read-write
* to read-only, clear that information as we are now
hfsmp->vcbAtrb &= ~kHFSVolumeUnmountedMask;
retval = hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0);
- if (retval != E_NONE)
+ if (retval != E_NONE) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: hfs_flushvolumeheader returned %d for fs %s\n", retval, hfsmp->vcbVN);
+ }
goto out;
+ }
+
+ /* Only clear HFS_READ_ONLY after a successful write */
+ hfsmp->hfs_flags &= ~HFS_READ_ONLY;
+
if (!(hfsmp->hfs_flags & (HFS_READ_ONLY | HFS_STANDARD))) {
/* Setup private/hidden directories for hardlinks. */
/*
* Allow hot file clustering if conditions allow.
*/
- if (hfsmp->hfs_flags & HFS_METADATA_ZONE) {
+ if ((hfsmp->hfs_flags & HFS_METADATA_ZONE) &&
+ ((hfsmp->hfs_flags & HFS_SSD) == 0)) {
(void) hfs_recording_init(hfsmp);
}
/* Force ACLs on HFS+ file systems. */
vfs_setextendedsecurity(HFSTOVFS(hfsmp));
}
}
+
+#if CONFIG_HFS_ALLOC_RBTREE
+ /*
+ * Like the normal mount case, we need to handle creation of the allocation red-black tree
+ * if we're upgrading from read-only to read-write.
+ *
+ * We spawn a thread to create the pair of red-black trees for this volume.
+ * However, in so doing, we must be careful to ensure that if this thread is still
+ * running after mount has finished, it doesn't interfere with an unmount. Specifically,
+ * we'll need to set a bit that indicates we're in progress building the trees here.
+ * Unmount will check for this bit, and then if it's set, mark a corresponding bit that
+ * notifies the tree generation code that an unmount is waiting. Also, mark the extent
+ * tree flags that the allocator is enabled for use before we spawn the thread that will start
+ * scanning the RB tree.
+ *
+ * Only do this if we're operating on a read-write mount (we wouldn't care for read-only),
+ * which has not previously encountered a bad error on the red-black tree code. Also, don't
+ * try to re-build a tree that already exists.
+ */
+
+ if (hfsmp->extent_tree_flags == 0) {
+ hfsmp->extent_tree_flags |= (HFS_ALLOC_TREEBUILD_INFLIGHT | HFS_ALLOC_RB_ENABLED);
+ /* Initialize EOF counter so that the thread can assume it started at initial values */
+ hfsmp->offset_block_end = 0;
+
+ InitTree(hfsmp);
+
+ kernel_thread_start ((thread_continue_t) hfs_initialize_allocator , hfsmp, &allocator_thread);
+ thread_deallocate(allocator_thread);
+ }
+
+#endif
}
/* Update file system parameters. */
retval = hfs_changefs(mp, &args);
+ if (retval && HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: hfs_changefs returned %d for %s\n", retval, hfsmp->vcbVN);
+ }
} else /* not an update request */ {
vfs_setflags(mp, (u_int64_t)((unsigned int)MNT_DOVOLFS));
retval = hfs_mountfs(devvp, mp, &args, 0, context);
+ if (retval && HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: hfs_mountfs returned %d\n", retval);
+ }
+#if CONFIG_PROTECT
+ /*
+ * If above mount call was successful, and this mount is content protection
+ * enabled, then verify the on-disk EA on the root to ensure that the filesystem
+ * is of a suitable vintage to allow the mount to proceed.
+ */
+ if ((retval == 0) && (cp_fs_protected (mp))) {
+ int err = 0;
+ struct cp_root_xattr xattr;
+ bzero (&xattr, sizeof(struct cp_root_xattr));
+ hfsmp = vfs_fsprivate(mp);
+
+ /* go get the EA to get the version information */
+ err = cp_getrootxattr (hfsmp, &xattr);
+ /* If there was no EA there, then write one out. */
+ if (err == ENOATTR) {
+ bzero(&xattr, sizeof(struct cp_root_xattr));
+ xattr.major_version = CP_CURRENT_MAJOR_VERS;
+ xattr.minor_version = CP_CURRENT_MINOR_VERS;
+ xattr.flags = 0;
+
+ err = cp_setrootxattr (hfsmp, &xattr);
+ }
+ /*
+ * For any other error, including having an out of date CP version in the
+ * EA, or for an error out of cp_setrootxattr, deny the mount
+ * and do not proceed further.
+ */
+ if (err || xattr.major_version != CP_CURRENT_MAJOR_VERS) {
+ /* Deny the mount and tear down. */
+ retval = EPERM;
+ (void) hfs_unmount (mp, MNT_FORCE, context);
+ }
+ }
+#endif
}
out:
if (retval == 0) {
/*
* Re-read cnode data for all active vnodes (non-metadata files).
*/
- if (!vnode_issystem(vp) && !VNODE_IS_RSRC(vp)) {
+ if (!vnode_issystem(vp) && !VNODE_IS_RSRC(vp) && (cp->c_fileid >= kHFSFirstUserCatalogNodeID)) {
struct cat_fork *datafork;
struct cat_desc desc;
* re-load B-tree header data.
* re-read cnode data for all active vnodes.
*/
-static int
+int
hfs_reload(struct mount *mountp)
{
register struct vnode *devvp;
//
if (hfsmp->hfs_mp->mnt_pending_write_size > hfsmp->hfs_max_pending_io) {
int counter=0;
- uint64_t pending_io, start, rate;
+ uint64_t pending_io, start, rate = 0;
no_max = 0;
}
if (hfsmp->jnl) {
- journal_flush(hfsmp->jnl);
+ journal_flush(hfsmp->jnl, FALSE);
} else {
hfs_sync(hfsmp->hfs_mp, MNT_WAIT, vfs_context_kernel());
}
clock_get_calendar_microtime(&secs, &usecs);
now = ((uint64_t)secs * 1000000ULL) + (uint64_t)usecs;
hfsmp->hfs_last_sync_time = now;
- rate = ((pending_io * 1000000ULL) / (now - start)); // yields bytes per second
+ if (now != start) {
+ rate = ((pending_io * 1000000ULL) / (now - start)); // yields bytes per second
+ }
hfs_end_transaction(hfsmp);
// than 2 seconds, adjust hfs_max_pending_io so that we
// will allow about 1.5 seconds of i/o to queue up.
//
- if ((now - start) >= 300000) {
+ if (((now - start) >= 300000) && (rate != 0)) {
uint64_t scale = (pending_io * 100) / rate;
if (scale < 100 || scale > 200) {
// now. Else we defer the sync and reschedule it.
//
if (hfsmp->jnl) {
- lck_rw_lock_shared(&hfsmp->hfs_global_lock);
+ hfs_lock_global (hfsmp, HFS_SHARED_LOCK);
- journal_flush(hfsmp->jnl);
+ journal_flush(hfsmp->jnl, FALSE);
- lck_rw_unlock_shared(&hfsmp->hfs_global_lock);
+ hfs_unlock_global (hfsmp);
} else {
hfs_sync(hfsmp->hfs_mp, MNT_WAIT, vfs_context_kernel());
}
extern int IOBSDIsMediaEjectable( const char *cdev_name );
+/*
+ * Initialization code for Red-Black Tree Allocator
+ *
+ * This function will build the two red-black trees necessary for allocating space
+ * from the metadata zone as well as normal allocations. Currently, we use
+ * an advisory read to get most of the data into the buffer cache.
+ * This function is intended to be run in a separate thread so as not to slow down mount.
+ *
+ */
+
+void
+hfs_initialize_allocator (struct hfsmount *hfsmp) {
+
+#if CONFIG_HFS_ALLOC_RBTREE
+ u_int32_t err;
+
+ /*
+ * Take the allocation file lock. Journal transactions will block until
+ * we're done here.
+ */
+ int flags = hfs_systemfile_lock(hfsmp, SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+
+ /*
+ * GenerateTree assumes that the bitmap lock is held when you call the function.
+ * It will drop and re-acquire the lock periodically as needed to let other allocations
+ * through. It returns with the bitmap lock held. Since we only maintain one tree,
+ * we don't need to specify a start block (always starts at 0).
+ */
+ err = GenerateTree(hfsmp, hfsmp->totalBlocks, &flags, 1);
+ if (err) {
+ goto bailout;
+ }
+ /* Mark offset tree as built */
+ hfsmp->extent_tree_flags |= HFS_ALLOC_RB_ACTIVE;
+
+bailout:
+ /*
+ * GenerateTree may drop the bitmap lock during operation in order to give other
+ * threads a chance to allocate blocks, but it will always return with the lock held, so
+ * we don't need to re-grab the lock in order to update the TREEBUILD_INFLIGHT bit.
+ */
+ hfsmp->extent_tree_flags &= ~HFS_ALLOC_TREEBUILD_INFLIGHT;
+ if (err != 0) {
+ /* Wakeup any waiters on the allocation bitmap lock */
+ wakeup((caddr_t)&hfsmp->extent_tree_flags);
+ }
+
+ hfs_systemfile_unlock(hfsmp, flags);
+#else
+#pragma unused (hfsmp)
+#endif
+}
+
+
+/*
+ * Teardown code for the Red-Black Tree allocator.
+ * This function consolidates the code which serializes with respect
+ * to a thread that may be potentially still building the tree when we need to begin
+ * tearing it down. Since the red-black tree may not be live when we enter this function
+ * we return:
+ * 1 -> Tree was live.
+ * 0 -> Tree was not active at time of call.
+ */
+
+int
+hfs_teardown_allocator (struct hfsmount *hfsmp) {
+ int rb_used = 0;
+
+#if CONFIG_HFS_ALLOC_RBTREE
+
+ int flags = 0;
+
+ /*
+ * Check to see if the tree-generation is still on-going.
+ * If it is, then block until it's done.
+ */
+
+ flags = hfs_systemfile_lock(hfsmp, SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+
+
+ while (hfsmp->extent_tree_flags & HFS_ALLOC_TREEBUILD_INFLIGHT) {
+ hfsmp->extent_tree_flags |= HFS_ALLOC_TEARDOWN_INFLIGHT;
+
+ lck_rw_sleep(&(VTOC(hfsmp->hfs_allocation_vp))->c_rwlock, LCK_SLEEP_EXCLUSIVE,
+ &hfsmp->extent_tree_flags, THREAD_UNINT);
+ }
+
+ if (hfs_isrbtree_active (hfsmp)) {
+ rb_used = 1;
+
+ /* Tear down the RB Trees while we have the bitmap locked */
+ DestroyTrees(hfsmp);
+
+ }
+
+ hfs_systemfile_unlock(hfsmp, flags);
+#else
+ #pragma unused (hfsmp)
+#endif
+ return rb_used;
+
+}
+
+
+static int hfs_root_unmounted_cleanly = 0;
+
+SYSCTL_DECL(_vfs_generic);
+SYSCTL_INT(_vfs_generic, OID_AUTO, root_unmounted_cleanly, CTLFLAG_RD, &hfs_root_unmounted_cleanly, 0, "Root filesystem was unmounted cleanly");
+
/*
* Common code for mount and mountroot
*/
-static int
+int
hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args,
int journal_replay_only, vfs_context_t context)
{
daddr64_t mdb_offset;
int isvirtual = 0;
int isroot = 0;
-
+ int isssd;
+#if CONFIG_HFS_ALLOC_RBTREE
+ thread_t allocator_thread;
+#endif
+
if (args == NULL) {
/* only hfs_mountroot passes us NULL as the 'args' argument */
isroot = 1;
/* Get the logical block size (treated as physical block size everywhere) */
if (VNOP_IOCTL(devvp, DKIOCGETBLOCKSIZE, (caddr_t)&log_blksize, 0, context)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: DKIOCGETBLOCKSIZE failed\n");
+ }
retval = ENXIO;
goto error_exit;
}
retval = VNOP_IOCTL(devvp, DKIOCGETPHYSICALBLOCKSIZE, (caddr_t)&phys_blksize, 0, context);
if (retval) {
if ((retval != ENOTSUP) && (retval != ENOTTY)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: DKIOCGETPHYSICALBLOCKSIZE failed\n");
+ }
retval = ENXIO;
goto error_exit;
}
u_int32_t size512 = 512;
if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&size512, FWRITE, context)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: DKIOCSETBLOCKSIZE failed \n");
+ }
retval = ENXIO;
goto error_exit;
}
if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&log_blkcnt, 0, context)) {
/* resetting block size may fail if getting block count did */
(void)VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&log_blksize, FWRITE, context);
-
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: DKIOCGETBLOCKCOUNT failed\n");
+ }
retval = ENXIO;
goto error_exit;
}
/* Now switch to our preferred physical block size. */
if (log_blksize > 512) {
if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&log_blksize, FWRITE, context)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: DKIOCSETBLOCKSIZE (2) failed\n");
+ }
retval = ENXIO;
goto error_exit;
}
/* Get the count of physical blocks. */
if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&log_blkcnt, 0, context)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: DKIOCGETBLOCKCOUNT (2) failed\n");
+ }
retval = ENXIO;
goto error_exit;
}
if ((retval = (int)buf_meta_bread(devvp,
HFS_PHYSBLK_ROUNDDOWN(mdb_offset, (phys_blksize/log_blksize)),
phys_blksize, cred, &bp))) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: buf_meta_bread failed with %d\n", retval);
+ }
goto error_exit;
}
MALLOC(mdbp, HFSMasterDirectoryBlock *, kMDBSize, M_TEMP, M_WAITOK);
if (mdbp == NULL) {
retval = ENOMEM;
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: MALLOC failed\n");
+ }
goto error_exit;
}
bcopy((char *)buf_dataptr(bp) + HFS_PRI_OFFSET(phys_blksize), mdbp, kMDBSize);
MALLOC(hfsmp, struct hfsmount *, sizeof(struct hfsmount), M_HFSMNT, M_WAITOK);
if (hfsmp == NULL) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: MALLOC (2) failed\n");
+ }
retval = ENOMEM;
goto error_exit;
}
hfs_chashinit_finish(hfsmp);
+ /*
+ * See if the disk is a solid state device. We need this to decide what to do about
+ * hotfiles.
+ */
+ if (VNOP_IOCTL(devvp, DKIOCISSOLIDSTATE, (caddr_t)&isssd, 0, context) == 0) {
+ if (isssd) {
+ hfsmp->hfs_flags |= HFS_SSD;
+ }
+ }
+
+
/*
* Init the volume information structure
*/
lck_mtx_init(&hfsmp->hfc_mutex, hfs_mutex_group, hfs_lock_attr);
lck_rw_init(&hfsmp->hfs_global_lock, hfs_rwlock_group, hfs_lock_attr);
lck_rw_init(&hfsmp->hfs_insync, hfs_rwlock_group, hfs_lock_attr);
-
+ lck_spin_init(&hfsmp->vcbFreeExtLock, hfs_spinlock_group, hfs_lock_attr);
+
vfs_setfsprivate(mp, hfsmp);
hfsmp->hfs_mp = mp; /* Make VFSTOHFS work */
hfsmp->hfs_raw_dev = vnode_specrdev(devvp);
retval = EROFS;
goto error_exit;
}
+
+ printf("hfs_mountfs: Mounting HFS Standard volumes was deprecated in Mac OS 10.7 \n");
+
/* Treat it as if it's read-only and not writeable */
hfsmp->hfs_flags |= HFS_READ_ONLY;
hfsmp->hfs_flags &= ~HFS_WRITEABLE_MEDIA;
log_blksize = 512;
if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE,
(caddr_t)&log_blksize, FWRITE, context)) {
+
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: DKIOCSETBLOCKSIZE (3) failed\n");
+ }
retval = ENXIO;
goto error_exit;
}
if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT,
(caddr_t)&log_blkcnt, 0, context)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: DKIOCGETBLOCKCOUNT (3) failed\n");
+ }
retval = ENXIO;
goto error_exit;
}
mdb_offset = (daddr64_t)((embeddedOffset / log_blksize) + HFS_PRI_SECTOR(log_blksize));
retval = (int)buf_meta_bread(devvp, HFS_PHYSBLK_ROUNDDOWN(mdb_offset, hfsmp->hfs_log_per_phys),
phys_blksize, cred, &bp);
- if (retval)
+ if (retval) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: buf_meta_bread (2) failed with %d\n", retval);
+ }
goto error_exit;
+ }
bcopy((char *)buf_dataptr(bp) + HFS_PRI_OFFSET(phys_blksize), mdbp, 512);
buf_brelse(bp);
bp = NULL;
vhp = (HFSPlusVolumeHeader*) mdbp;
}
+ if (isroot) {
+ hfs_root_unmounted_cleanly = (SWAP_BE32(vhp->attributes) & kHFSVolumeUnmountedMask) != 0;
+ }
+
/*
* On inconsistent disks, do not allow read-write mount
* unless it is the boot volume being mounted. We also
&& (SWAP_BE32(vhp->attributes) & kHFSVolumeInconsistentMask)
&& !journal_replay_only
&& !(hfsmp->hfs_flags & HFS_READ_ONLY)) {
+
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: failed to mount non-root inconsistent disk\n");
+ }
retval = EINVAL;
goto error_exit;
}
// EROFS is a special error code that means the volume has an external
// journal which we couldn't find. in that case we do not want to
// rewrite the volume header - we'll just refuse to mount the volume.
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: hfs_early_journal_init indicated external jnl \n");
+ }
retval = EINVAL;
goto error_exit;
}
// to be "FSK!" which fsck_hfs will see and force the fsck instead
// of just bailing out because the volume is journaled.
if (!ronly) {
- HFSPlusVolumeHeader *jvhp;
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: hfs_early_journal_init failed, setting to FSK \n");
+ }
+
+ HFSPlusVolumeHeader *jvhp;
hfsmp->hfs_flags |= HFS_NEED_JNL_RESET;
// in the hopes that fsck_hfs will be able to
// fix any damage that exists on the volume.
if ( !(vfs_flags(mp) & MNT_ROOTFS)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: hfs_early_journal_init failed, erroring out \n");
+ }
retval = EINVAL;
goto error_exit;
}
"(%d) switching to 512\n", log_blksize);
log_blksize = 512;
if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&log_blksize, FWRITE, context)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: DKIOCSETBLOCKSIZE (4) failed \n");
+ }
retval = ENXIO;
goto error_exit;
}
if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&log_blkcnt, 0, context)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: DKIOCGETBLOCKCOUNT (4) failed \n");
+ }
retval = ENXIO;
goto error_exit;
}
// to be "FSK!" which fsck_hfs will see and force the fsck instead
// of just bailing out because the volume is journaled.
if (!ronly) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: hfs_early_journal_init (2) resetting.. \n");
+ }
HFSPlusVolumeHeader *jvhp;
hfsmp->hfs_flags |= HFS_NEED_JNL_RESET;
// in the hopes that fsck_hfs will be able to
// fix any damage that exists on the volume.
if ( !(vfs_flags(mp) & MNT_ROOTFS)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: hfs_early_journal_init (2) failed \n");
+ }
retval = EINVAL;
goto error_exit;
}
/* Try again with a smaller block size... */
retval = hfs_MountHFSPlusVolume(hfsmp, vhp, embeddedOffset, disksize, p, args, cred);
+ if (retval && HFS_MOUNT_DEBUG) {
+ printf("hfs_MountHFSPlusVolume (late) returned %d\n",retval);
+ }
}
if (retval)
(void) hfs_relconverter(0);
hfsmp->hfs_last_mounted_mtime = hfsmp->hfs_mtime;
if ( retval ) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: encountered failure %d \n", retval);
+ }
goto error_exit;
}
mp->mnt_vtable->vfc_vfsflags |= VFC_VFSDIRLINKS;
} else {
/* HFS standard doesn't support extended readdir! */
- mp->mnt_vtable->vfc_vfsflags &= ~VFC_VFSREADDIR_EXTENDED;
+ mount_set_noreaddirext (mp);
}
if (args) {
/*
* Set the free space warning levels for the root volume:
*
- * Set the "danger" limit to 5% of the volume size or 125MB, whichever
- * is less. Set the "warning" limit to 10% of the volume size or 250MB,
+ * Set the "danger" limit to 5% of the volume size or 512MB, whichever
+ * is less. Set the "warning" limit to 10% of the volume size or 1GB,
* whichever is less. And last, set the "desired" freespace level to
- * to 11% of the volume size or 375MB, whichever is less.
+ * to 11% of the volume size or 1.25GB, whichever is less.
*/
hfsmp->hfs_freespace_notify_dangerlimit =
MIN(HFS_ROOTVERYLOWDISKTRIGGERLEVEL / HFSTOVCB(hfsmp)->blockSize,
}
}
}
+
+#if CONFIG_HFS_ALLOC_RBTREE
+ /*
+ * We spawn a thread to create the pair of red-black trees for this volume.
+ * However, in so doing, we must be careful to ensure that if this thread is still
+ * running after mount has finished, it doesn't interfere with an unmount. Specifically,
+ * we'll need to set a bit that indicates we're in progress building the trees here.
+ * Unmount will check for this bit, and then if it's set, mark a corresponding bit that
+ * notifies the tree generation code that an unmount is waiting. Also mark the bit that
+ * indicates the tree is live and operating.
+ *
+ * Only do this if we're operating on a read-write mount (we wouldn't care for read-only).
+ */
+
+ if ((hfsmp->hfs_flags & HFS_READ_ONLY) == 0) {
+ hfsmp->extent_tree_flags |= (HFS_ALLOC_TREEBUILD_INFLIGHT | HFS_ALLOC_RB_ENABLED);
+
+ /* Initialize EOF counter so that the thread can assume it started at initial values */
+ hfsmp->offset_block_end = 0;
+ InitTree(hfsmp);
+
+ kernel_thread_start ((thread_continue_t) hfs_initialize_allocator , hfsmp, &allocator_thread);
+ thread_deallocate(allocator_thread);
+ }
+
+#endif
/*
* Start looking for free space to drop below this level and generate a
/*
* unmount system call
*/
-static int
+int
hfs_unmount(struct mount *mp, int mntflags, vfs_context_t context)
{
struct proc *p = vfs_context_proc(context);
int flags;
int force;
int started_tr = 0;
+ int rb_used = 0;
flags = 0;
force = 0;
panic("hfs_unmount: pm_sync_incomplete underflow!\n");
}
+#if CONFIG_HFS_ALLOC_RBTREE
+ rb_used = hfs_teardown_allocator(hfsmp);
+#endif
+
/*
* Flush out the b-trees, volume bitmap and Volume Header
*/
HFSTOVCB(hfsmp)->vcbAtrb |= kHFSVolumeUnmountedMask;
}
- if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) {
- int i;
- u_int32_t min_start = hfsmp->totalBlocks;
-
- // set the nextAllocation pointer to the smallest free block number
- // we've seen so on the next mount we won't rescan unnecessarily
- for(i=0; i < (int)hfsmp->vcbFreeExtCnt; i++) {
- if (hfsmp->vcbFreeExt[i].startBlock < min_start) {
- min_start = hfsmp->vcbFreeExt[i].startBlock;
+
+ if (rb_used) {
+ /* If the rb-tree was live, just set min_start to 0 */
+ hfsmp->nextAllocation = 0;
+ }
+ else {
+ if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) {
+ int i;
+ u_int32_t min_start = hfsmp->totalBlocks;
+
+ // set the nextAllocation pointer to the smallest free block number
+ // we've seen so on the next mount we won't rescan unnecessarily
+ lck_spin_lock(&hfsmp->vcbFreeExtLock);
+ for(i=0; i < (int)hfsmp->vcbFreeExtCnt; i++) {
+ if (hfsmp->vcbFreeExt[i].startBlock < min_start) {
+ min_start = hfsmp->vcbFreeExt[i].startBlock;
+ }
+ }
+ lck_spin_unlock(&hfsmp->vcbFreeExtLock);
+ if (min_start < hfsmp->nextAllocation) {
+ hfsmp->nextAllocation = min_start;
}
- }
- if (min_start < hfsmp->nextAllocation) {
- hfsmp->nextAllocation = min_start;
}
}
-
+
retval = hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0);
if (retval) {
}
if (hfsmp->jnl) {
- hfs_journal_flush(hfsmp);
+ hfs_journal_flush(hfsmp, FALSE);
}
/*
*/
(void) hfsUnmount(hfsmp, p);
- /*
- * Last chance to dump unreferenced system files.
- */
- (void) vflush(mp, NULLVP, FORCECLOSE);
-
if (HFSTOVCB(hfsmp)->vcbSigWord == kHFSSigWord)
(void) hfs_relconverter(hfsmp->hfs_encoding);
}
// XXXdbg
-#ifdef HFS_SPARSE_DEV
+ /*
+ * Last chance to dump unreferenced system files.
+ */
+ (void) vflush(mp, NULLVP, FORCECLOSE);
+
+#if HFS_SPARSE_DEV
/* Drop our reference on the backing fs (if any). */
if ((hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) && hfsmp->hfs_backingfs_rootvp) {
struct vnode * tmpvp;
}
#endif /* HFS_SPARSE_DEV */
lck_mtx_destroy(&hfsmp->hfc_mutex, hfs_mutex_group);
+ lck_spin_destroy(&hfsmp->vcbFreeExtLock, hfs_spinlock_group);
vnode_rele(hfsmp->hfs_devvp);
hfs_delete_chash(hfsmp);
static int
hfs_vfs_root(struct mount *mp, struct vnode **vpp, __unused vfs_context_t context)
{
- return hfs_vget(VFSTOHFS(mp), (cnid_t)kHFSRootFolderID, vpp, 1);
+ return hfs_vget(VFSTOHFS(mp), (cnid_t)kHFSRootFolderID, vpp, 1, 0);
}
int cmd, type, error;
if (uid == ~0U)
- uid = vfs_context_ucred(context)->cr_ruid;
+ uid = kauth_cred_getuid(vfs_context_ucred(context));
cmd = cmds >> SUBCMDSHIFT;
switch (cmd) {
case Q_QUOTASTAT:
break;
case Q_GETQUOTA:
- if (uid == vfs_context_ucred(context)->cr_ruid)
+ if (uid == kauth_cred_getuid(vfs_context_ucred(context)))
break;
/* fall through */
default:
/*
* Get file system statistics.
*/
-static int
+int
hfs_statfs(struct mount *mp, register struct vfsstatfs *sbp, __unused vfs_context_t context)
{
ExtendedVCB *vcb = VFSTOVCB(mp);
*
* Note: we are always called with the filesystem marked `MPBUSY'.
*/
-static int
+int
hfs_sync(struct mount *mp, int waitfor, vfs_context_t context)
{
struct proc *p = vfs_context_proc(context);
}
if (hfsmp->jnl) {
- hfs_journal_flush(hfsmp);
+ hfs_journal_flush(hfsmp, FALSE);
}
{
if (fhlen < (int)sizeof(struct hfsfid))
return (EINVAL);
- result = hfs_vget(VFSTOHFS(mp), ntohl(hfsfhp->hfsfid_cnid), &nvp, 0);
+ result = hfs_vget(VFSTOHFS(mp), ntohl(hfsfhp->hfsfid_cnid), &nvp, 0, 0);
if (result) {
if (result == ENOENT)
result = ESTALE;
hfs_group_attr = lck_grp_attr_alloc_init();
hfs_mutex_group = lck_grp_alloc_init("hfs-mutex", hfs_group_attr);
hfs_rwlock_group = lck_grp_alloc_init("hfs-rwlock", hfs_group_attr);
+ hfs_spinlock_group = lck_grp_alloc_init("hfs-spinlock", hfs_group_attr);
#if HFS_COMPRESSION
decmpfs_init();
/*
* HFS filesystem related variables.
*/
-static int
+int
hfs_sysctl(int *name, __unused u_int namelen, user_addr_t oldp, size_t *oldlenp,
user_addr_t newp, size_t newlen, vfs_context_t context)
{
0,
hfs_sync_metadata, hfsmp->hfs_mp);
+ /*
+ * Set up the trim callback function so that we can add
+ * recently freed extents to the free extent cache once
+ * the transaction that freed them is written to the
+ * journal on disk.
+ */
+ if (jnl)
+ journal_trim_set_callback(jnl, hfs_trim_callback, hfsmp);
+
if (jnl == NULL) {
printf("hfs: FAILED to create the journal!\n");
if (jvp && jvp != hfsmp->hfs_devvp) {
return EINVAL;
}
- hfs_global_exclusive_lock_acquire(hfsmp);
-
+ hfs_lock_global (hfsmp, HFS_EXCLUSIVE_LOCK);
+
/*
* Flush all dirty metadata buffers.
*/
- buf_flushdirtyblks(hfsmp->hfs_devvp, MNT_WAIT, 0, "hfs_sysctl");
- buf_flushdirtyblks(hfsmp->hfs_extents_vp, MNT_WAIT, 0, "hfs_sysctl");
- buf_flushdirtyblks(hfsmp->hfs_catalog_vp, MNT_WAIT, 0, "hfs_sysctl");
- buf_flushdirtyblks(hfsmp->hfs_allocation_vp, MNT_WAIT, 0, "hfs_sysctl");
+ buf_flushdirtyblks(hfsmp->hfs_devvp, TRUE, 0, "hfs_sysctl");
+ buf_flushdirtyblks(hfsmp->hfs_extents_vp, TRUE, 0, "hfs_sysctl");
+ buf_flushdirtyblks(hfsmp->hfs_catalog_vp, TRUE, 0, "hfs_sysctl");
+ buf_flushdirtyblks(hfsmp->hfs_allocation_vp, TRUE, 0, "hfs_sysctl");
if (hfsmp->hfs_attribute_vp)
- buf_flushdirtyblks(hfsmp->hfs_attribute_vp, MNT_WAIT, 0, "hfs_sysctl");
+ buf_flushdirtyblks(hfsmp->hfs_attribute_vp, TRUE, 0, "hfs_sysctl");
HFSTOVCB(hfsmp)->vcbJinfoBlock = name[1];
HFSTOVCB(hfsmp)->vcbAtrb |= kHFSVolumeJournaledMask;
vfs_setflags(hfsmp->hfs_mp, (u_int64_t)((unsigned int)MNT_JOURNALED));
- hfs_global_exclusive_lock_release(hfsmp);
+ hfs_unlock_global (hfsmp);
hfs_flushvolumeheader(hfsmp, MNT_WAIT, 1);
{
printf("hfs: disabling journaling for mount @ %p\n", vnode_mount(vp));
- hfs_global_exclusive_lock_acquire(hfsmp);
+ hfs_lock_global (hfsmp, HFS_EXCLUSIVE_LOCK);
// Lights out for you buddy!
journal_close(hfsmp->jnl);
HFSTOVCB(hfsmp)->vcbAtrb &= ~kHFSVolumeJournaledMask;
- hfs_global_exclusive_lock_release(hfsmp);
+ hfs_unlock_global (hfsmp);
+
hfs_flushvolumeheader(hfsmp, MNT_WAIT, 1);
{
file_drop(device_fd);
vnode_put(devvp);
return error;
+ } else if (name[0] == HFS_ENABLE_RESIZE_DEBUG) {
+ hfs_resize_debug = 1;
+ printf ("hfs_sysctl: Enabled volume resize debugging.\n");
+ return 0;
}
return (ENOTSUP);
hfsmp = VFSTOHFS(mp);
- error = hfs_vget(hfsmp, (cnid_t)ino, vpp, 1);
+ error = hfs_vget(hfsmp, (cnid_t)ino, vpp, 1, 0);
if (error)
return (error);
*
* If the object is a file then it will represent the data fork.
*/
-__private_extern__
int
-hfs_vget(struct hfsmount *hfsmp, cnid_t cnid, struct vnode **vpp, int skiplock)
+hfs_vget(struct hfsmount *hfsmp, cnid_t cnid, struct vnode **vpp, int skiplock, int allow_deleted)
{
struct vnode *vp = NULLVP;
struct cat_desc cndesc;
/*
* Check the hash first
*/
- vp = hfs_chash_getvnode(hfsmp, cnid, 0, skiplock);
+ vp = hfs_chash_getvnode(hfsmp, cnid, 0, skiplock, allow_deleted);
if (vp) {
*vpp = vp;
return(0);
* Pick up the first link in the chain and get a descriptor for it.
* This allows blind volfs paths to work for hardlinks.
*/
- if ((hfs_lookuplink(hfsmp, linkref, &prevlinkid, &nextlinkid) == 0) &&
+ if ((hfs_lookup_siblinglinks(hfsmp, linkref, &prevlinkid, &nextlinkid) == 0) &&
(nextlinkid != 0)) {
lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
error = cat_findname(hfsmp, nextlinkid, &linkdesc);
}
if (linkref) {
- error = hfs_getnewvnode(hfsmp, NULL, NULL, &cndesc, 0, &cnattr, &cnfork, &vp);
+ int newvnode_flags = 0;
+
+ error = hfs_getnewvnode(hfsmp, NULL, NULL, &cndesc, 0, &cnattr,
+ &cnfork, &vp, &newvnode_flags);
if (error == 0) {
VTOC(vp)->c_flag |= C_HARDLINK;
vnode_setmultipath(vp);
}
} else {
struct componentname cn;
+ int newvnode_flags = 0;
/* Supply hfs_getnewvnode with a component name. */
MALLOC_ZONE(cn.cn_pnbuf, caddr_t, MAXPATHLEN, M_NAMEI, M_WAITOK);
cn.cn_consume = 0;
bcopy(cndesc.cd_nameptr, cn.cn_nameptr, cndesc.cd_namelen + 1);
- error = hfs_getnewvnode(hfsmp, NULLVP, &cn, &cndesc, 0, &cnattr, &cnfork, &vp);
+ error = hfs_getnewvnode(hfsmp, NULLVP, &cn, &cndesc, 0, &cnattr,
+ &cnfork, &vp, &newvnode_flags);
if (error == 0 && (VTOC(vp)->c_flag & C_HARDLINK)) {
hfs_savelinkorigin(VTOC(vp), cndesc.cd_parentcnid);
}
/* Obtain the root vnode so we can skip over it. */
- skipvp = hfs_chash_getvnode(hfsmp, kHFSRootFolderID, 0, 0);
+ skipvp = hfs_chash_getvnode(hfsmp, kHFSRootFolderID, 0, 0, 0);
}
#endif /* QUOTA */
*
* On journal volumes this will cause a volume header flush
*/
-__private_extern__
int
hfs_volupdate(struct hfsmount *hfsmp, enum volop op, int inroot)
{
mdb = (HFSMasterDirectoryBlock *)(buf_dataptr(bp) + HFS_PRI_OFFSET(sectorsize));
- mdb->drCrDate = SWAP_BE32 (UTCToLocal(to_hfs_time(vcb->vcbCrDate)));
+ mdb->drCrDate = SWAP_BE32 (UTCToLocal(to_hfs_time(vcb->hfs_itime)));
mdb->drLsMod = SWAP_BE32 (UTCToLocal(to_hfs_time(vcb->vcbLsMod)));
mdb->drAtrb = SWAP_BE16 (vcb->vcbAtrb);
mdb->drNmFls = SWAP_BE16 (vcb->vcbNmFls);
* not flushed since the on-disk "H+" and "HX" signatures
* are always stored in-memory as "H+".
*/
-__private_extern__
int
hfs_flushvolumeheader(struct hfsmount *hfsmp, int waitfor, int altflush)
{
/*
* Extend a file system.
*/
-__private_extern__
int
hfs_extendfs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context)
{
u_int32_t phys_sectorsize;
daddr64_t prev_alt_sector;
daddr_t bitmapblks;
- int lockflags;
+ int lockflags = 0;
int error;
int64_t oldBitmapSize;
Boolean usedExtendFileC = false;
+ int transaction_begun = 0;
devvp = hfsmp->hfs_devvp;
vcb = HFSTOVCB(hfsmp);
* ownership and check permissions.
*/
if (suser(cred, NULL)) {
- error = hfs_vget(hfsmp, kHFSRootFolderID, &vp, 0);
+ error = hfs_vget(hfsmp, kHFSRootFolderID, &vp, 0, 0);
if (error)
return (error);
addblks = newblkcnt - vcb->totalBlocks;
- printf("hfs_extendfs: growing %s by %d blocks\n", vcb->vcbVN, addblks);
+ if (hfs_resize_debug) {
+ printf ("hfs_extendfs: old: size=%qu, blkcnt=%u\n", oldsize, hfsmp->totalBlocks);
+ printf ("hfs_extendfs: new: size=%qu, blkcnt=%u, addblks=%u\n", newsize, (u_int32_t)newblkcnt, addblks);
+ }
+ printf("hfs_extendfs: will extend \"%s\" by %d blocks\n", vcb->vcbVN, addblks);
+
+ HFS_MOUNT_LOCK(hfsmp, TRUE);
+ if (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) {
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+ error = EALREADY;
+ goto out;
+ }
+ hfsmp->hfs_flags |= HFS_RESIZE_IN_PROGRESS;
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+
+ /* Start with a clean journal. */
+ hfs_journal_flush(hfsmp, TRUE);
+
/*
* Enclose changes inside a transaction.
*/
if (hfs_start_transaction(hfsmp) != 0) {
- return (EINVAL);
+ error = EINVAL;
+ goto out;
}
+ transaction_begun = 1;
/*
* Note: we take the attributes lock in case we have an attribute data vnode
else
bitmapblks = 0;
+ /*
+ * The allocation bitmap can contain unused bits that are beyond end of
+ * current volume's allocation blocks. Usually they are supposed to be
+ * zero'ed out but there can be cases where they might be marked as used.
+ * After extending the file system, those bits can represent valid
+ * allocation blocks, so we mark all the bits from the end of current
+ * volume to end of allocation bitmap as "free".
+ */
+ BlockMarkFreeUnused(vcb, vcb->totalBlocks,
+ (fp->ff_blocks * vcb->blockSize * 8) - vcb->totalBlocks);
+
if (bitmapblks > 0) {
daddr64_t blkno;
daddr_t blkcnt;
* zone.
*/
error = ExtendFileC(vcb, fp, bitmapblks * vcb->blockSize, 0,
- kEFAllMask | kEFNoClumpMask | kEFReserveMask | kEFMetadataMask,
- &bytesAdded);
+ kEFAllMask | kEFNoClumpMask | kEFReserveMask
+ | kEFMetadataMask | kEFContigMask, &bytesAdded);
if (error == 0) {
usedExtendFileC = true;
* Restore to old state.
*/
if (usedExtendFileC) {
- (void) TruncateFileC(vcb, fp, oldBitmapSize, false);
+ (void) TruncateFileC(vcb, fp, oldBitmapSize, 0, FORK_IS_RSRC(fp),
+ FTOC(fp)->c_fileid, false);
} else {
fp->ff_blocks -= bitmapblks;
fp->ff_size -= (u_int64_t)bitmapblks * (u_int64_t)vcb->blockSize;
hfsmp->hfs_logical_block_count = prev_phys_block_count;
hfsmp->hfs_alt_id_sector = prev_alt_sector;
MarkVCBDirty(vcb);
- if (vcb->blockSize == 512)
- (void) BlockMarkAllocated(vcb, vcb->totalBlocks - 2, 2);
- else
- (void) BlockMarkAllocated(vcb, vcb->totalBlocks - 1, 1);
+ if (vcb->blockSize == 512) {
+ if (BlockMarkAllocated(vcb, vcb->totalBlocks - 2, 2)) {
+ hfs_mark_volume_inconsistent(hfsmp);
+ }
+ } else {
+ if (BlockMarkAllocated(vcb, vcb->totalBlocks - 1, 1)) {
+ hfs_mark_volume_inconsistent(hfsmp);
+ }
+ }
goto out;
}
/*
}
}
- /*
- * TODO: Adjust the size of the metadata zone based on new volume size?
+ /*
+ * Update the metadata zone size based on current volume size
*/
+ hfs_metadatazone_init(hfsmp, false);
/*
* Adjust the size of hfsmp->hfs_attrdata_vp
}
}
+ /*
+ * Update the R/B Tree if necessary. Since we don't have to drop the systemfile
+ * locks in the middle of these operations like we do in the truncate case
+ * where we have to relocate files, we can only update the red-black tree
+ * if there were actual changes made to the bitmap. Also, we can't really scan the
+ * new portion of the bitmap before it has been allocated. The BlockMarkAllocated
+ * routines are smart enough to avoid the r/b tree if the portion they are manipulating is
+ * not currently controlled by the tree.
+ *
+ * We only update hfsmp->allocLimit if totalBlocks actually increased.
+ */
+
+ if (error == 0) {
+ UpdateAllocLimit(hfsmp, hfsmp->totalBlocks);
+ }
+
+ /* Log successful extending */
+ printf("hfs_extendfs: extended \"%s\" to %d blocks (was %d blocks)\n",
+ hfsmp->vcbVN, hfsmp->totalBlocks, (u_int32_t)(oldsize/hfsmp->blockSize));
+
out:
if (error && fp) {
/* Restore allocation fork. */
bcopy(&forkdata, &fp->ff_data, sizeof(forkdata));
VTOC(vp)->c_blocks = fp->ff_blocks;
-
+
}
- /*
- Regardless of whether or not the totalblocks actually increased,
- we should reset the allocLimit field. If it changed, it will
- get updated; if not, it will remain the same.
- */
- hfsmp->allocLimit = vcb->totalBlocks;
- hfs_systemfile_unlock(hfsmp, lockflags);
- hfs_end_transaction(hfsmp);
-
- return (error);
+
+ HFS_MOUNT_LOCK(hfsmp, TRUE);
+ hfsmp->hfs_flags &= ~HFS_RESIZE_IN_PROGRESS;
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+ if (lockflags) {
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ }
+ if (transaction_begun) {
+ hfs_end_transaction(hfsmp);
+ hfs_journal_flush(hfsmp, FALSE);
+ /* Just to be sure, sync all data to the disk */
+ (void) VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, context);
+ }
+
+ return MacToVFSError(error);
}
#define HFS_MIN_SIZE (32LL * 1024LL * 1024LL)
/*
* Truncate a file system (while still mounted).
*/
-__private_extern__
int
hfs_truncatefs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context)
{
u_int32_t reclaimblks = 0;
int lockflags = 0;
int transaction_begun = 0;
- int error;
+ Boolean updateFreeBlocks = false;
+ Boolean disable_sparse = false;
+ int error = 0;
lck_mtx_lock(&hfsmp->hfs_mutex);
if (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) {
return (EALREADY);
}
hfsmp->hfs_flags |= HFS_RESIZE_IN_PROGRESS;
- hfsmp->hfs_resize_filesmoved = 0;
- hfsmp->hfs_resize_totalfiles = 0;
+ hfsmp->hfs_resize_blocksmoved = 0;
+ hfsmp->hfs_resize_totalblocks = 0;
+ hfsmp->hfs_resize_progress = 0;
lck_mtx_unlock(&hfsmp->hfs_mutex);
/*
newblkcnt = newsize / hfsmp->blockSize;
reclaimblks = hfsmp->totalBlocks - newblkcnt;
+ if (hfs_resize_debug) {
+ printf ("hfs_truncatefs: old: size=%qu, blkcnt=%u, freeblks=%u\n", oldsize, hfsmp->totalBlocks, hfs_freeblks(hfsmp, 1));
+ printf ("hfs_truncatefs: new: size=%qu, blkcnt=%u, reclaimblks=%u\n", newsize, newblkcnt, reclaimblks);
+ }
+
/* Make sure new size is valid. */
if ((newsize < HFS_MIN_SIZE) ||
(newsize >= oldsize) ||
(newsize % hfsmp->hfs_logical_block_size) ||
(newsize % hfsmp->hfs_physical_block_size)) {
- printf ("hfs_truncatefs: invalid size\n");
+ printf ("hfs_truncatefs: invalid size (newsize=%qu, oldsize=%qu)\n", newsize, oldsize);
error = EINVAL;
goto out;
}
- /* Make sure there's enough space to work with. */
+
+ /*
+ * Make sure that the file system has enough free blocks reclaim.
+ *
+ * Before resize, the disk is divided into four zones -
+ * A. Allocated_Stationary - These are allocated blocks that exist
+ * before the new end of disk. These blocks will not be
+ * relocated or modified during resize.
+ * B. Free_Stationary - These are free blocks that exist before the
+ * new end of disk. These blocks can be used for any new
+ * allocations during resize, including allocation for relocating
+ * data from the area of disk being reclaimed.
+ * C. Allocated_To-Reclaim - These are allocated blocks that exist
+ * beyond the new end of disk. These blocks need to be reclaimed
+ * during resize by allocating equal number of blocks in Free
+ * Stationary zone and copying the data.
+ * D. Free_To-Reclaim - These are free blocks that exist beyond the
+ * new end of disk. Nothing special needs to be done to reclaim
+ * them.
+ *
+ * Total number of blocks on the disk before resize:
+ * ------------------------------------------------
+ * Total Blocks = Allocated_Stationary + Free_Stationary +
+ * Allocated_To-Reclaim + Free_To-Reclaim
+ *
+ * Total number of blocks that need to be reclaimed:
+ * ------------------------------------------------
+ * Blocks to Reclaim = Allocated_To-Reclaim + Free_To-Reclaim
+ *
+ * Note that the check below also makes sure that we have enough space
+ * to relocate data from Allocated_To-Reclaim to Free_Stationary.
+ * Therefore we do not need to check total number of blocks to relocate
+ * later in the code.
+ *
+ * The condition below gets converted to:
+ *
+ * Allocated To-Reclaim + Free To-Reclaim >= Free Stationary + Free To-Reclaim
+ *
+ * which is equivalent to:
+ *
+ * Allocated To-Reclaim >= Free Stationary
+ */
if (reclaimblks >= hfs_freeblks(hfsmp, 1)) {
- printf("hfs_truncatefs: insufficient space (need %u blocks; have %u blocks)\n", reclaimblks, hfs_freeblks(hfsmp, 1));
+ printf("hfs_truncatefs: insufficient space (need %u blocks; have %u free blocks)\n", reclaimblks, hfs_freeblks(hfsmp, 1));
error = ENOSPC;
goto out;
}
/* Start with a clean journal. */
- hfs_journal_flush(hfsmp);
+ hfs_journal_flush(hfsmp, TRUE);
if (hfs_start_transaction(hfsmp) != 0) {
error = EINVAL;
goto out;
}
transaction_begun = 1;
-
+
+ /* Take the bitmap lock to update the alloc limit field */
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+
/*
* Prevent new allocations from using the part we're trying to truncate.
*
* interfere with allocating the new alternate volume header, and no files
* in the allocation blocks beyond (i.e. the blocks we're trying to
* truncate away.
+ *
+ * Also shrink the red-black tree if needed.
+ */
+ if (hfsmp->blockSize == 512) {
+ error = UpdateAllocLimit (hfsmp, newblkcnt - 2);
+ }
+ else {
+ error = UpdateAllocLimit (hfsmp, newblkcnt - 1);
+ }
+
+ /* Sparse devices use first fit allocation which is not ideal
+ * for volume resize which requires best fit allocation. If a
+ * sparse device is being truncated, disable the sparse device
+ * property temporarily for the duration of resize. Also reset
+ * the free extent cache so that it is rebuilt as sorted by
+ * totalBlocks instead of startBlock.
+ *
+ * Note that this will affect all allocations on the volume and
+ * ideal fix would be just to modify resize-related allocations,
+ * but it will result in complexity like handling of two free
+ * extent caches sorted differently, etc. So we stick to this
+ * solution for now.
+ */
+ HFS_MOUNT_LOCK(hfsmp, TRUE);
+ if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) {
+ hfsmp->hfs_flags &= ~HFS_HAS_SPARSE_DEVICE;
+ ResetVCBFreeExtCache(hfsmp);
+ disable_sparse = true;
+ }
+
+ /*
+ * Update the volume free block count to reflect the total number
+ * of free blocks that will exist after a successful resize.
+ * Relocation of extents will result in no net change in the total
+ * free space on the disk. Therefore the code that allocates
+ * space for new extent and deallocates the old extent explicitly
+ * prevents updating the volume free block count. It will also
+ * prevent false disk full error when the number of blocks in
+ * an extent being relocated is more than the free blocks that
+ * will exist after the volume is resized.
*/
- lck_mtx_lock(&hfsmp->hfs_mutex);
- if (hfsmp->blockSize == 512)
- hfsmp->allocLimit = newblkcnt - 2;
- else
- hfsmp->allocLimit = newblkcnt - 1;
hfsmp->freeBlocks -= reclaimblks;
- lck_mtx_unlock(&hfsmp->hfs_mutex);
+ updateFreeBlocks = true;
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+
+ if (lockflags) {
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ lockflags = 0;
+ }
/*
- * Look for files that have blocks at or beyond the location of the
- * new alternate volume header.
+ * Update the metadata zone size to match the new volume size,
+ * and if it too less, metadata zone might be disabled.
+ */
+ hfs_metadatazone_init(hfsmp, false);
+
+ /*
+ * If some files have blocks at or beyond the location of the
+ * new alternate volume header, recalculate free blocks and
+ * reclaim blocks. Otherwise just update free blocks count.
+ *
+ * The current allocLimit is set to the location of new alternate
+ * volume header, and reclaimblks are the total number of blocks
+ * that need to be reclaimed. So the check below is really
+ * ignoring the blocks allocated for old alternate volume header.
*/
if (hfs_isallocated(hfsmp, hfsmp->allocLimit, reclaimblks)) {
/*
transaction_begun = 0;
/* Attempt to reclaim some space. */
- if (hfs_reclaimspace(hfsmp, hfsmp->allocLimit, reclaimblks, context) != 0) {
- printf("hfs_truncatefs: couldn't reclaim space on %s\n", hfsmp->vcbVN);
+ error = hfs_reclaimspace(hfsmp, hfsmp->allocLimit, reclaimblks, context);
+ if (error != 0) {
+ printf("hfs_truncatefs: couldn't reclaim space on %s (error=%d)\n", hfsmp->vcbVN, error);
error = ENOSPC;
goto out;
}
transaction_begun = 1;
/* Check if we're clear now. */
- if (hfs_isallocated(hfsmp, hfsmp->allocLimit, reclaimblks)) {
- printf("hfs_truncatefs: didn't reclaim enough space on %s\n", hfsmp->vcbVN);
+ error = hfs_isallocated(hfsmp, hfsmp->allocLimit, reclaimblks);
+ if (error != 0) {
+ printf("hfs_truncatefs: didn't reclaim enough space on %s (error=%d)\n", hfsmp->vcbVN, error);
error = EAGAIN; /* tell client to try again */
goto out;
}
- }
-
+ }
+
/*
* Note: we take the attributes lock in case we have an attribute data vnode
* which needs to change size.
*/
lockflags = hfs_systemfile_lock(hfsmp, SFL_ATTRIBUTE | SFL_EXTENTS | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
- /*
- * Mark the old alternate volume header as free.
- * We don't bother shrinking allocation bitmap file.
- */
- if (hfsmp->blockSize == 512)
- (void) BlockMarkFree(hfsmp, hfsmp->totalBlocks - 2, 2);
- else
- (void) BlockMarkFree(hfsmp, hfsmp->totalBlocks - 1, 1);
-
/*
* Allocate last 1KB for alternate volume header.
*/
goto out;
}
+ /*
+ * Mark the old alternate volume header as free.
+ * We don't bother shrinking allocation bitmap file.
+ */
+ if (hfsmp->blockSize == 512)
+ (void) BlockMarkFree(hfsmp, hfsmp->totalBlocks - 2, 2);
+ else
+ (void) BlockMarkFree(hfsmp, hfsmp->totalBlocks - 1, 1);
+
/*
* Invalidate the existing alternate volume header.
*
* since this block will be outside of the truncated file system!
*/
if (hfsmp->hfs_alt_id_sector) {
- if (buf_meta_bread(hfsmp->hfs_devvp,
+ error = buf_meta_bread(hfsmp->hfs_devvp,
HFS_PHYSBLK_ROUNDDOWN(hfsmp->hfs_alt_id_sector, hfsmp->hfs_log_per_phys),
- hfsmp->hfs_physical_block_size, NOCRED, &bp) == 0) {
-
+ hfsmp->hfs_physical_block_size, NOCRED, &bp);
+ if (error == 0) {
bzero((void*)((char *)buf_dataptr(bp) + HFS_ALT_OFFSET(hfsmp->hfs_physical_block_size)), kMDBSize);
(void) VNOP_BWRITE(bp);
- } else if (bp) {
- buf_brelse(bp);
+ } else {
+ if (bp) {
+ buf_brelse(bp);
+ }
}
bp = NULL;
}
error = hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH);
if (error)
panic("hfs_truncatefs: unexpected error flushing volume header (%d)\n", error);
-
- /*
- * TODO: Adjust the size of the metadata zone based on new volume size?
- */
-
+
/*
* Adjust the size of hfsmp->hfs_attrdata_vp
*/
}
out:
- if (error)
+ /*
+ * Update the allocLimit to acknowledge the last one or two blocks now.
+ * Add it to the tree as well if necessary.
+ */
+ UpdateAllocLimit (hfsmp, hfsmp->totalBlocks);
+
+ HFS_MOUNT_LOCK(hfsmp, TRUE);
+ if (disable_sparse == true) {
+ /* Now that resize is completed, set the volume to be sparse
+ * device again so that all further allocations will be first
+ * fit instead of best fit. Reset free extent cache so that
+ * it is rebuilt.
+ */
+ hfsmp->hfs_flags |= HFS_HAS_SPARSE_DEVICE;
+ ResetVCBFreeExtCache(hfsmp);
+ }
+
+ if (error && (updateFreeBlocks == true)) {
hfsmp->freeBlocks += reclaimblks;
+ }
- lck_mtx_lock(&hfsmp->hfs_mutex);
- hfsmp->allocLimit = hfsmp->totalBlocks;
- if (hfsmp->nextAllocation >= hfsmp->allocLimit)
+ if (hfsmp->nextAllocation >= hfsmp->allocLimit) {
hfsmp->nextAllocation = hfsmp->hfs_metazone_end + 1;
+ }
hfsmp->hfs_flags &= ~HFS_RESIZE_IN_PROGRESS;
- lck_mtx_unlock(&hfsmp->hfs_mutex);
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+
+ /* On error, reset the metadata zone for original volume size */
+ if (error && (updateFreeBlocks == true)) {
+ hfs_metadatazone_init(hfsmp, false);
+ }
if (lockflags) {
hfs_systemfile_unlock(hfsmp, lockflags);
}
if (transaction_begun) {
hfs_end_transaction(hfsmp);
- hfs_journal_flush(hfsmp);
+ hfs_journal_flush(hfsmp, FALSE);
+ /* Just to be sure, sync all data to the disk */
+ (void) VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, context);
}
- return (error);
+ return MacToVFSError(error);
}
u_int32_t ioSizeSectors; /* Device sectors in this I/O */
daddr64_t srcSector, destSector;
u_int32_t sectorsPerBlock = hfsmp->blockSize / hfsmp->hfs_logical_block_size;
+#if CONFIG_PROTECT
+ int cpenabled = 0;
+#endif
/*
* Sanity check that we have locked the vnode of the file we're copying.
if (cp != hfsmp->hfs_allocation_cp && cp->c_lockowner != current_thread())
panic("hfs_copy_extent: vp=%p (cp=%p) not owned?\n", vp, cp);
- /*
- * Wait for any in-progress writes to this vnode to complete, so that we'll
- * be copying consistent bits. (Otherwise, it's possible that an async
- * write will complete to the old extent after we read from it. That
- * could lead to corruption.)
- */
- err = vnode_waitforwrites(vp, 0, 0, 0, "hfs_copy_extent");
- if (err) {
- printf("hfs_copy_extent: Error %d from vnode_waitforwrites\n", err);
- return err;
+#if CONFIG_PROTECT
+ /* Prepare the CP blob and get it ready for use */
+ if (!vnode_issystem (vp) && vnode_isreg(vp) &&
+ cp_fs_protected (hfsmp->hfs_mp)) {
+ int cp_err = 0;
+ cp_err = cp_handle_relocate (cp);
+ if (cp_err) {
+ /*
+ * can't copy the file because we couldn't set up keys.
+ * bail out
+ */
+ return cp_err;
+ }
+ else {
+ cpenabled = 1;
+ }
}
-
+#endif
+
/*
* Determine the I/O size to use
*
buf_setcount(bp, ioSize);
buf_setblkno(bp, srcSector);
buf_setlblkno(bp, srcSector);
-
+
+ /* Attach the CP to the buffer */
+#if CONFIG_PROTECT
+ if (cpenabled) {
+ buf_setcpaddr (bp, cp->c_cpentry);
+ }
+#endif
+
/* Do the read */
err = VNOP_STRATEGY(bp);
if (!err)
buf_setcount(bp, ioSize);
buf_setblkno(bp, destSector);
buf_setlblkno(bp, destSector);
- if (journal_uses_fua(hfsmp->jnl))
+ if (vnode_issystem(vp) && journal_uses_fua(hfsmp->jnl))
buf_markfua(bp);
+
+#if CONFIG_PROTECT
+ /* Attach the CP to the buffer */
+ if (cpenabled) {
+ buf_setcpaddr (bp, cp->c_cpentry);
+ }
+#endif
/* Do the write */
vnode_startwrite(hfsmp->hfs_devvp);
kmem_free(kernel_map, (vm_offset_t)buffer, bufferSize);
/* Make sure all writes have been flushed to disk. */
- if (!journal_uses_fua(hfsmp->jnl)) {
+ if (vnode_issystem(vp) && !journal_uses_fua(hfsmp->jnl)) {
err = VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, context);
if (err) {
printf("hfs_copy_extent: DKIOCSYNCHRONIZECACHE failed (%d)\n", err);
}
-/*
- * Reclaim space at the end of a volume, used by a given system file.
+/* Structure to store state of reclaiming extents from a
+ * given file. hfs_reclaim_file()/hfs_reclaim_xattr()
+ * initializes the values in this structure which are then
+ * used by code that reclaims and splits the extents.
+ */
+struct hfs_reclaim_extent_info {
+ struct vnode *vp;
+ u_int32_t fileID;
+ u_int8_t forkType;
+ u_int8_t is_dirlink; /* Extent belongs to directory hard link */
+ u_int8_t is_sysfile; /* Extent belongs to system file */
+ u_int8_t is_xattr; /* Extent belongs to extent-based xattr */
+ u_int8_t extent_index;
+ int lockflags; /* Locks that reclaim and split code should grab before modifying the extent record */
+ u_int32_t blocks_relocated; /* Total blocks relocated for this file till now */
+ u_int32_t recStartBlock; /* File allocation block number (FABN) for current extent record */
+ u_int32_t cur_blockCount; /* Number of allocation blocks that have been checked for reclaim */
+ struct filefork *catalog_fp; /* If non-NULL, extent is from catalog record */
+ union record {
+ HFSPlusExtentRecord overflow;/* Extent record from overflow extents btree */
+ HFSPlusAttrRecord xattr; /* Attribute record for large EAs */
+ } record;
+ HFSPlusExtentDescriptor *extents; /* Pointer to current extent record being processed.
+ * For catalog extent record, points to the correct
+ * extent information in filefork. For overflow extent
+ * record, or xattr record, points to extent record
+ * in the structure above
+ */
+ struct cat_desc *dirlink_desc;
+ struct cat_attr *dirlink_attr;
+ struct filefork *dirlink_fork; /* For directory hard links, fp points actually to this */
+ struct BTreeIterator *iterator; /* Shared read/write iterator, hfs_reclaim_file/xattr()
+ * use it for reading and hfs_reclaim_extent()/hfs_split_extent()
+ * use it for writing updated extent record
+ */
+ struct FSBufferDescriptor btdata; /* Shared btdata for reading/writing extent record, same as iterator above */
+ u_int16_t recordlen;
+ int overflow_count; /* For debugging, counter for overflow extent record */
+ FCB *fcb; /* Pointer to the current btree being traversed */
+};
+
+/*
+ * Split the current extent into two extents, with first extent
+ * to contain given number of allocation blocks. Splitting of
+ * extent creates one new extent entry which can result in
+ * shifting of many entries through all the extent records of a
+ * file, and/or creating a new extent record in the overflow
+ * extent btree.
*
- * This routine attempts to move any extent which contains allocation blocks
- * at or after "startblk." A separate transaction is used to do the move.
- * The contents of any moved extents are read and written via the volume's
- * device vnode -- NOT via "vp." During the move, moved blocks which are part
- * of a transaction have their physical block numbers invalidated so they will
- * eventually be written to their new locations.
+ * Example:
+ * The diagram below represents two consecutive extent records,
+ * for simplicity, lets call them record X and X+1 respectively.
+ * Interesting extent entries have been denoted by letters.
+ * If the letter is unchanged before and after split, it means
+ * that the extent entry was not modified during the split.
+ * A '.' means that the entry remains unchanged after the split
+ * and is not relevant for our example. A '0' means that the
+ * extent entry is empty.
*
- * This routine can be used to move overflow extents for the allocation file.
+ * If there isn't sufficient contiguous free space to relocate
+ * an extent (extent "C" below), we will have to break the one
+ * extent into multiple smaller extents, and relocate each of
+ * the smaller extents individually. The way we do this is by
+ * finding the largest contiguous free space that is currently
+ * available (N allocation blocks), and then convert extent "C"
+ * into two extents, C1 and C2, that occupy exactly the same
+ * allocation blocks as extent C. Extent C1 is the first
+ * N allocation blocks of extent C, and extent C2 is the remainder
+ * of extent C. Then we can relocate extent C1 since we know
+ * we have enough contiguous free space to relocate it in its
+ * entirety. We then repeat the process starting with extent C2.
*
- * Inputs:
- * hfsmp The volume being resized.
- * startblk Blocks >= this allocation block need to be moved.
- * locks Which locks need to be taken for the given system file.
- * vp The vnode for the system file.
+ * In record X, only the entries following entry C are shifted, and
+ * the original entry C is replaced with two entries C1 and C2 which
+ * are actually two extent entries for contiguous allocation blocks.
+ *
+ * Note that the entry E from record X is shifted into record X+1 as
+ * the new first entry. Since the first entry of record X+1 is updated,
+ * the FABN will also get updated with the blockCount of entry E.
+ * This also results in shifting of all extent entries in record X+1.
+ * Note that the number of empty entries after the split has been
+ * changed from 3 to 2.
*
- * Outputs:
- * moved Set to true if any extents were moved.
+ * Before:
+ * record X record X+1
+ * ---------------------===--------- ---------------------------------
+ * | A | . | . | . | B | C | D | E | | F | . | . | . | G | 0 | 0 | 0 |
+ * ---------------------===--------- ---------------------------------
+ *
+ * After:
+ * ---------------------=======----- ---------------------------------
+ * | A | . | . | . | B | C1| C2| D | | E | F | . | . | . | G | 0 | 0 |
+ * ---------------------=======----- ---------------------------------
+ *
+ * C1.startBlock = C.startBlock
+ * C1.blockCount = N
+ *
+ * C2.startBlock = C.startBlock + N
+ * C2.blockCount = C.blockCount - N
+ *
+ * FABN = old FABN - E.blockCount
+ *
+ * Inputs:
+ * extent_info - This is the structure that contains state about
+ * the current file, extent, and extent record that
+ * is being relocated. This structure is shared
+ * among code that traverses through all the extents
+ * of the file, code that relocates extents, and
+ * code that splits the extent.
+ * Output:
+ * Zero on success, non-zero on failure.
*/
-static int
-hfs_relocate_callback(__unused HFSPlusExtentKey *key, HFSPlusExtentRecord *record, HFSPlusExtentRecord *state)
-{
- bcopy(state, record, sizeof(HFSPlusExtentRecord));
- return 0;
-}
-static int
-hfs_reclaim_sys_file(struct hfsmount *hfsmp, struct vnode *vp, u_long startblk, int locks, Boolean *moved, vfs_context_t context)
+static int
+hfs_split_extent(struct hfs_reclaim_extent_info *extent_info, uint32_t newBlockCount)
{
- int error;
- int lockflags;
+ int error = 0;
+ int index = extent_info->extent_index;
int i;
- u_long datablks;
- u_long block;
- u_int32_t oldStartBlock;
- u_int32_t newStartBlock;
- u_int32_t blockCount;
- struct filefork *fp;
+ HFSPlusExtentDescriptor shift_extent; /* Extent entry that should be shifted into next extent record */
+ HFSPlusExtentDescriptor last_extent;
+ HFSPlusExtentDescriptor *extents; /* Pointer to current extent record being manipulated */
+ HFSPlusExtentRecord *extents_rec = NULL;
+ HFSPlusExtentKey *extents_key = NULL;
+ HFSPlusAttrRecord *xattr_rec = NULL;
+ HFSPlusAttrKey *xattr_key = NULL;
+ struct BTreeIterator iterator;
+ struct FSBufferDescriptor btdata;
+ uint16_t reclen;
+ uint32_t read_recStartBlock; /* Starting allocation block number to read old extent record */
+ uint32_t write_recStartBlock; /* Starting allocation block number to insert newly updated extent record */
+ Boolean create_record = false;
+ Boolean is_xattr;
+ struct cnode *cp;
+
+ is_xattr = extent_info->is_xattr;
+ extents = extent_info->extents;
+ cp = VTOC(extent_info->vp);
- /* If there is no vnode for this file, then there's nothing to do. */
- if (vp == NULL)
- return 0;
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: Split record:%u recStartBlock=%u %u:(%u,%u) for %u blocks\n", extent_info->overflow_count, extent_info->recStartBlock, index, extents[index].startBlock, extents[index].blockCount, newBlockCount);
+ }
- /* printf("hfs_reclaim_sys_file: %.*s\n", VTOC(vp)->c_desc.cd_namelen, VTOC(vp)->c_desc.cd_nameptr); */
-
- /* We always need the allocation bitmap and extents B-tree */
- locks |= SFL_BITMAP | SFL_EXTENTS;
-
- error = hfs_start_transaction(hfsmp);
- if (error) {
- printf("hfs_reclaim_sys_file: hfs_start_transaction returned %d\n", error);
- return error;
+ /* Extents overflow btree can not have more than 8 extents.
+ * No split allowed if the 8th extent is already used.
+ */
+ if ((extent_info->fileID == kHFSExtentsFileID) && (extents[kHFSPlusExtentDensity - 1].blockCount != 0)) {
+ printf ("hfs_split_extent: Maximum 8 extents allowed for extents overflow btree, cannot split further.\n");
+ error = ENOSPC;
+ goto out;
}
- lockflags = hfs_systemfile_lock(hfsmp, locks, HFS_EXCLUSIVE_LOCK);
- fp = VTOF(vp);
- datablks = 0;
- /* Relocate non-overflow extents */
- for (i = 0; i < kHFSPlusExtentDensity; ++i) {
- if (fp->ff_extents[i].blockCount == 0)
+ /* Determine the starting allocation block number for the following
+ * overflow extent record, if any, before the current record
+ * gets modified.
+ */
+ read_recStartBlock = extent_info->recStartBlock;
+ for (i = 0; i < kHFSPlusExtentDensity; i++) {
+ if (extents[i].blockCount == 0) {
break;
- oldStartBlock = fp->ff_extents[i].startBlock;
- blockCount = fp->ff_extents[i].blockCount;
- datablks += blockCount;
- block = oldStartBlock + blockCount;
- if (block > startblk) {
- error = BlockAllocate(hfsmp, 1, blockCount, blockCount, true, true, &newStartBlock, &blockCount);
- if (error) {
- printf("hfs_reclaim_sys_file: BlockAllocate returned %d\n", error);
- goto fail;
- }
- if (blockCount != fp->ff_extents[i].blockCount) {
- printf("hfs_reclaim_sys_file: new blockCount=%u, original blockCount=%u", blockCount, fp->ff_extents[i].blockCount);
- goto free_fail;
- }
- error = hfs_copy_extent(hfsmp, vp, oldStartBlock, newStartBlock, blockCount, context);
- if (error) {
- printf("hfs_reclaim_sys_file: hfs_copy_extent returned %d\n", error);
- goto free_fail;
- }
- fp->ff_extents[i].startBlock = newStartBlock;
- VTOC(vp)->c_flag |= C_MODIFIED;
- *moved = true;
- error = BlockDeallocate(hfsmp, oldStartBlock, blockCount);
- if (error) {
- /* TODO: Mark volume inconsistent? */
- printf("hfs_reclaim_sys_file: BlockDeallocate returned %d\n", error);
- goto fail;
- }
- error = hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH);
- if (error) {
- /* TODO: Mark volume inconsistent? */
- printf("hfs_reclaim_sys_file: hfs_flushvolumeheader returned %d\n", error);
- goto fail;
+ }
+ read_recStartBlock += extents[i].blockCount;
+ }
+
+ /* Shift and split */
+ if (index == kHFSPlusExtentDensity-1) {
+ /* The new extent created after split will go into following overflow extent record */
+ shift_extent.startBlock = extents[index].startBlock + newBlockCount;
+ shift_extent.blockCount = extents[index].blockCount - newBlockCount;
+
+ /* Last extent in the record will be split, so nothing to shift */
+ } else {
+ /* Splitting of extents can result in at most of one
+ * extent entry to be shifted into following overflow extent
+ * record. So, store the last extent entry for later.
+ */
+ shift_extent = extents[kHFSPlusExtentDensity-1];
+ if ((hfs_resize_debug) && (shift_extent.blockCount != 0)) {
+ printf ("hfs_split_extent: Save 7:(%u,%u) to shift into overflow record\n", shift_extent.startBlock, shift_extent.blockCount);
+ }
+
+ /* Start shifting extent information from the end of the extent
+ * record to the index where we want to insert the new extent.
+ * Note that kHFSPlusExtentDensity-1 is already saved above, and
+ * does not need to be shifted. The extent entry that is being
+ * split does not get shifted.
+ */
+ for (i = kHFSPlusExtentDensity-2; i > index; i--) {
+ if (hfs_resize_debug) {
+ if (extents[i].blockCount) {
+ printf ("hfs_split_extent: Shift %u:(%u,%u) to %u:(%u,%u)\n", i, extents[i].startBlock, extents[i].blockCount, i+1, extents[i].startBlock, extents[i].blockCount);
+ }
}
+ extents[i+1] = extents[i];
}
}
- /* Relocate overflow extents (if any) */
- if (i == kHFSPlusExtentDensity && fp->ff_blocks > datablks) {
- struct BTreeIterator *iterator = NULL;
- struct FSBufferDescriptor btdata;
- HFSPlusExtentRecord record;
- HFSPlusExtentKey *key;
- FCB *fcb;
- u_int32_t fileID;
- u_int8_t forktype;
+ if (index == kHFSPlusExtentDensity-1) {
+ /* The second half of the extent being split will be the overflow
+ * entry that will go into following overflow extent record. The
+ * value has been stored in 'shift_extent' above, so there is
+ * nothing to be done here.
+ */
+ } else {
+ /* Update the values in the second half of the extent being split
+ * before updating the first half of the split. Note that the
+ * extent to split or first half of the split is at index 'index'
+ * and a new extent or second half of the split will be inserted at
+ * 'index+1' or into following overflow extent record.
+ */
+ extents[index+1].startBlock = extents[index].startBlock + newBlockCount;
+ extents[index+1].blockCount = extents[index].blockCount - newBlockCount;
+ }
+ /* Update the extent being split, only the block count will change */
+ extents[index].blockCount = newBlockCount;
+
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: Split %u:(%u,%u) and ", index, extents[index].startBlock, extents[index].blockCount);
+ if (index != kHFSPlusExtentDensity-1) {
+ printf ("%u:(%u,%u)\n", index+1, extents[index+1].startBlock, extents[index+1].blockCount);
+ } else {
+ printf ("overflow:(%u,%u)\n", shift_extent.startBlock, shift_extent.blockCount);
+ }
+ }
- forktype = VNODE_IS_RSRC(vp) ? 0xFF : 0;
- fileID = VTOC(vp)->c_cnid;
- if (kmem_alloc(kernel_map, (vm_offset_t*) &iterator, sizeof(*iterator))) {
- printf("hfs_reclaim_sys_file: kmem_alloc failed!\n");
- error = ENOMEM;
- goto fail;
+ /* Write out information about the newly split extent to the disk */
+ if (extent_info->catalog_fp) {
+ /* (extent_info->catalog_fp != NULL) means the newly split
+ * extent exists in the catalog record. This means that
+ * the cnode was updated. Therefore, to write out the changes,
+ * mark the cnode as modified. We cannot call hfs_update()
+ * in this function because the caller hfs_reclaim_extent()
+ * is holding the catalog lock currently.
+ */
+ cp->c_flag |= C_MODIFIED;
+ } else {
+ /* The newly split extent is for large EAs or is in overflow
+ * extent record, so update it directly in the btree using the
+ * iterator information from the shared extent_info structure
+ */
+ error = BTReplaceRecord(extent_info->fcb, extent_info->iterator,
+ &(extent_info->btdata), extent_info->recordlen);
+ if (error) {
+ printf ("hfs_split_extent: fileID=%u BTReplaceRecord returned error=%d\n", extent_info->fileID, error);
+ goto out;
+ }
+ }
+
+ /* No extent entry to be shifted into another extent overflow record */
+ if (shift_extent.blockCount == 0) {
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: No extent entry to be shifted into overflow records\n");
}
+ error = 0;
+ goto out;
+ }
- bzero(iterator, sizeof(*iterator));
- key = (HFSPlusExtentKey *) &iterator->key;
- key->keyLength = kHFSPlusExtentKeyMaximumLength;
- key->forkType = forktype;
- key->fileID = fileID;
- key->startBlock = datablks;
+ /* The overflow extent entry has to be shifted into an extent
+ * overflow record. This means that we might have to shift
+ * extent entries from all subsequent overflow records by one.
+ * We start iteration from the first record to the last record,
+ * and shift the extent entry from one record to another.
+ * We might have to create a new extent record for the last
+ * extent entry for the file.
+ */
- btdata.bufferAddress = &record;
- btdata.itemSize = sizeof(record);
+ /* Initialize iterator to search the next record */
+ bzero(&iterator, sizeof(iterator));
+ if (is_xattr) {
+ /* Copy the key from the iterator that was used to update the modified attribute record. */
+ xattr_key = (HFSPlusAttrKey *)&(iterator.key);
+ bcopy((HFSPlusAttrKey *)&(extent_info->iterator->key), xattr_key, sizeof(HFSPlusAttrKey));
+ /* Note: xattr_key->startBlock will be initialized later in the iteration loop */
+
+ MALLOC(xattr_rec, HFSPlusAttrRecord *,
+ sizeof(HFSPlusAttrRecord), M_TEMP, M_WAITOK);
+ if (xattr_rec == NULL) {
+ error = ENOMEM;
+ goto out;
+ }
+ btdata.bufferAddress = xattr_rec;
+ btdata.itemSize = sizeof(HFSPlusAttrRecord);
btdata.itemCount = 1;
-
- fcb = VTOF(hfsmp->hfs_extents_vp);
+ extents = xattr_rec->overflowExtents.extents;
+ } else {
+ /* Initialize the extent key for the current file */
+ extents_key = (HFSPlusExtentKey *) &(iterator.key);
+ extents_key->keyLength = kHFSPlusExtentKeyMaximumLength;
+ extents_key->forkType = extent_info->forkType;
+ extents_key->fileID = extent_info->fileID;
+ /* Note: extents_key->startBlock will be initialized later in the iteration loop */
+
+ MALLOC(extents_rec, HFSPlusExtentRecord *,
+ sizeof(HFSPlusExtentRecord), M_TEMP, M_WAITOK);
+ if (extents_rec == NULL) {
+ error = ENOMEM;
+ goto out;
+ }
+ btdata.bufferAddress = extents_rec;
+ btdata.itemSize = sizeof(HFSPlusExtentRecord);
+ btdata.itemCount = 1;
+ extents = extents_rec[0];
+ }
- error = BTSearchRecord(fcb, iterator, &btdata, NULL, iterator);
- while (error == 0) {
- /* Stop when we encounter a different file or fork. */
- if ((key->fileID != fileID) ||
- (key->forkType != forktype)) {
- break;
+ /* The overflow extent entry has to be shifted into an extent
+ * overflow record. This means that we might have to shift
+ * extent entries from all subsequent overflow records by one.
+ * We start iteration from the first record to the last record,
+ * examine one extent record in each iteration and shift one
+ * extent entry from one record to another. We might have to
+ * create a new extent record for the last extent entry for the
+ * file.
+ *
+ * If shift_extent.blockCount is non-zero, it means that there is
+ * an extent entry that needs to be shifted into the next
+ * overflow extent record. We keep on going till there are no such
+ * entries left to be shifted. This will also change the starting
+ * allocation block number of the extent record which is part of
+ * the key for the extent record in each iteration. Note that
+ * because the extent record key is changing while we are searching,
+ * the record can not be updated directly, instead it has to be
+ * deleted and inserted again.
+ */
+ while (shift_extent.blockCount) {
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: Will shift (%u,%u) into overflow record with startBlock=%u\n", shift_extent.startBlock, shift_extent.blockCount, read_recStartBlock);
+ }
+
+ /* Search if there is any existing overflow extent record
+ * that matches the current file and the logical start block
+ * number.
+ *
+ * For this, the logical start block number in the key is
+ * the value calculated based on the logical start block
+ * number of the current extent record and the total number
+ * of blocks existing in the current extent record.
+ */
+ if (is_xattr) {
+ xattr_key->startBlock = read_recStartBlock;
+ } else {
+ extents_key->startBlock = read_recStartBlock;
+ }
+ error = BTSearchRecord(extent_info->fcb, &iterator, &btdata, &reclen, &iterator);
+ if (error) {
+ if (error != btNotFound) {
+ printf ("hfs_split_extent: fileID=%u startBlock=%u BTSearchRecord error=%d\n", extent_info->fileID, read_recStartBlock, error);
+ goto out;
}
- /*
- * Check if the file overlaps target space.
+ /* No matching record was found, so create a new extent record.
+ * Note: Since no record was found, we can't rely on the
+ * btree key in the iterator any longer. This will be initialized
+ * later before we insert the record.
*/
- for (i = 0; i < kHFSPlusExtentDensity; ++i) {
- if (record[i].blockCount == 0) {
- goto overflow_done;
- }
- oldStartBlock = record[i].startBlock;
- blockCount = record[i].blockCount;
- block = oldStartBlock + blockCount;
- if (block > startblk) {
- error = BlockAllocate(hfsmp, 1, blockCount, blockCount, true, true, &newStartBlock, &blockCount);
- if (error) {
- printf("hfs_reclaim_sys_file: BlockAllocate returned %d\n", error);
- goto overflow_done;
- }
- if (blockCount != record[i].blockCount) {
- printf("hfs_reclaim_sys_file: new blockCount=%u, original blockCount=%u", blockCount, fp->ff_extents[i].blockCount);
- kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator));
- goto free_fail;
- }
- error = hfs_copy_extent(hfsmp, vp, oldStartBlock, newStartBlock, blockCount, context);
- if (error) {
- printf("hfs_reclaim_sys_file: hfs_copy_extent returned %d\n", error);
- kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator));
- goto free_fail;
- }
- record[i].startBlock = newStartBlock;
- VTOC(vp)->c_flag |= C_MODIFIED;
- *moved = true;
- /*
- * NOTE: To support relocating overflow extents of the
- * allocation file, we must update the BTree record BEFORE
- * deallocating the old extent so that BlockDeallocate will
- * use the extent's new location to calculate physical block
- * numbers. (This is for the case where the old extent's
- * bitmap bits actually reside in the extent being moved.)
- */
- error = BTUpdateRecord(fcb, iterator, (IterateCallBackProcPtr) hfs_relocate_callback, &record);
- if (error) {
- /* TODO: Mark volume inconsistent? */
- printf("hfs_reclaim_sys_file: BTUpdateRecord returned %d\n", error);
- goto overflow_done;
- }
- error = BlockDeallocate(hfsmp, oldStartBlock, blockCount);
- if (error) {
- /* TODO: Mark volume inconsistent? */
- printf("hfs_reclaim_sys_file: BlockDeallocate returned %d\n", error);
- goto overflow_done;
- }
- }
+ create_record = true;
+ }
+
+ /* The extra extent entry from the previous record is being inserted
+ * as the first entry in the current extent record. This will change
+ * the file allocation block number (FABN) of the current extent
+ * record, which is the startBlock value from the extent record key.
+ * Since one extra entry is being inserted in the record, the new
+ * FABN for the record will less than old FABN by the number of blocks
+ * in the new extent entry being inserted at the start. We have to
+ * do this before we update read_recStartBlock to point at the
+ * startBlock of the following record.
+ */
+ write_recStartBlock = read_recStartBlock - shift_extent.blockCount;
+ if (hfs_resize_debug) {
+ if (create_record) {
+ printf ("hfs_split_extent: No records found for startBlock=%u, will create new with startBlock=%u\n", read_recStartBlock, write_recStartBlock);
}
- /* Look for more records. */
- error = BTIterateRecord(fcb, kBTreeNextRecord, iterator, &btdata, NULL);
- if (error == btNotFound) {
- error = 0;
+ }
+
+ /* Now update the read_recStartBlock to account for total number
+ * of blocks in this extent record. It will now point to the
+ * starting allocation block number for the next extent record.
+ */
+ for (i = 0; i < kHFSPlusExtentDensity; i++) {
+ if (extents[i].blockCount == 0) {
break;
}
+ read_recStartBlock += extents[i].blockCount;
}
-overflow_done:
- kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator));
- if (error) {
- goto fail;
- }
- }
-
- hfs_systemfile_unlock(hfsmp, lockflags);
- error = hfs_end_transaction(hfsmp);
- if (error) {
- printf("hfs_reclaim_sys_file: hfs_end_transaction returned %d\n", error);
- }
- return error;
+ if (create_record == true) {
+ /* Initialize new record content with only one extent entry */
+ bzero(extents, sizeof(HFSPlusExtentRecord));
+ /* The new record will contain only one extent entry */
+ extents[0] = shift_extent;
+ /* There are no more overflow extents to be shifted */
+ shift_extent.startBlock = shift_extent.blockCount = 0;
+
+ if (is_xattr) {
+ /* BTSearchRecord above returned btNotFound,
+ * but since the attribute btree is never empty
+ * if we are trying to insert new overflow
+ * record for the xattrs, the extents_key will
+ * contain correct data. So we don't need to
+ * re-initialize it again like below.
+ */
+
+ /* Initialize the new xattr record */
+ xattr_rec->recordType = kHFSPlusAttrExtents;
+ xattr_rec->overflowExtents.reserved = 0;
+ reclen = sizeof(HFSPlusAttrExtents);
+ } else {
+ /* BTSearchRecord above returned btNotFound,
+ * which means that extents_key content might
+ * not correspond to the record that we are
+ * trying to create, especially when the extents
+ * overflow btree is empty. So we reinitialize
+ * the extents_key again always.
+ */
+ extents_key->keyLength = kHFSPlusExtentKeyMaximumLength;
+ extents_key->forkType = extent_info->forkType;
+ extents_key->fileID = extent_info->fileID;
+
+ /* Initialize the new extent record */
+ reclen = sizeof(HFSPlusExtentRecord);
+ }
+ } else {
+ /* The overflow extent entry from previous record will be
+ * the first entry in this extent record. If the last
+ * extent entry in this record is valid, it will be shifted
+ * into the following extent record as its first entry. So
+ * save the last entry before shifting entries in current
+ * record.
+ */
+ last_extent = extents[kHFSPlusExtentDensity-1];
+
+ /* Shift all entries by one index towards the end */
+ for (i = kHFSPlusExtentDensity-2; i >= 0; i--) {
+ extents[i+1] = extents[i];
+ }
+
+ /* Overflow extent entry saved from previous record
+ * is now the first entry in the current record.
+ */
+ extents[0] = shift_extent;
+
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: Shift overflow=(%u,%u) to record with updated startBlock=%u\n", shift_extent.startBlock, shift_extent.blockCount, write_recStartBlock);
+ }
+
+ /* The last entry from current record will be the
+ * overflow entry which will be the first entry for
+ * the following extent record.
+ */
+ shift_extent = last_extent;
+
+ /* Since the key->startBlock is being changed for this record,
+ * it should be deleted and inserted with the new key.
+ */
+ error = BTDeleteRecord(extent_info->fcb, &iterator);
+ if (error) {
+ printf ("hfs_split_extent: fileID=%u startBlock=%u BTDeleteRecord error=%d\n", extent_info->fileID, read_recStartBlock, error);
+ goto out;
+ }
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: Deleted record with startBlock=%u\n", (is_xattr ? xattr_key->startBlock : extents_key->startBlock));
+ }
+ }
+
+ /* Insert the newly created or modified extent record */
+ bzero(&iterator.hint, sizeof(iterator.hint));
+ if (is_xattr) {
+ xattr_key->startBlock = write_recStartBlock;
+ } else {
+ extents_key->startBlock = write_recStartBlock;
+ }
+ error = BTInsertRecord(extent_info->fcb, &iterator, &btdata, reclen);
+ if (error) {
+ printf ("hfs_split_extent: fileID=%u, startBlock=%u BTInsertRecord error=%d\n", extent_info->fileID, write_recStartBlock, error);
+ goto out;
+ }
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: Inserted extent record with startBlock=%u\n", write_recStartBlock);
+ }
+ }
+ BTFlushPath(extent_info->fcb);
+out:
+ if (extents_rec) {
+ FREE (extents_rec, M_TEMP);
+ }
+ if (xattr_rec) {
+ FREE (xattr_rec, M_TEMP);
+ }
+ return error;
+}
+
+
+/*
+ * Relocate an extent if it lies beyond the expected end of volume.
+ *
+ * This function is called for every extent of the file being relocated.
+ * It allocates space for relocation, copies the data, deallocates
+ * the old extent, and update corresponding on-disk extent. If the function
+ * does not find contiguous space to relocate an extent, it splits the
+ * extent in smaller size to be able to relocate it out of the area of
+ * disk being reclaimed. As an optimization, if an extent lies partially
+ * in the area of the disk being reclaimed, it is split so that we only
+ * have to relocate the area that was overlapping with the area of disk
+ * being reclaimed.
+ *
+ * Note that every extent is relocated in its own transaction so that
+ * they do not overwhelm the journal. This function handles the extent
+ * record that exists in the catalog record, extent record from overflow
+ * extents btree, and extents for large EAs.
+ *
+ * Inputs:
+ * extent_info - This is the structure that contains state about
+ * the current file, extent, and extent record that
+ * is being relocated. This structure is shared
+ * among code that traverses through all the extents
+ * of the file, code that relocates extents, and
+ * code that splits the extent.
+ */
+static int
+hfs_reclaim_extent(struct hfsmount *hfsmp, const u_long allocLimit, struct hfs_reclaim_extent_info *extent_info, vfs_context_t context)
+{
+ int error = 0;
+ int index;
+ struct cnode *cp;
+ u_int32_t oldStartBlock;
+ u_int32_t oldBlockCount;
+ u_int32_t newStartBlock;
+ u_int32_t newBlockCount;
+ u_int32_t roundedBlockCount;
+ uint16_t node_size;
+ uint32_t remainder_blocks;
+ u_int32_t alloc_flags;
+ int blocks_allocated = false;
+
+ index = extent_info->extent_index;
+ cp = VTOC(extent_info->vp);
+
+ oldStartBlock = extent_info->extents[index].startBlock;
+ oldBlockCount = extent_info->extents[index].blockCount;
+
+ if (0 && hfs_resize_debug) {
+ printf ("hfs_reclaim_extent: Examine record:%u recStartBlock=%u, %u:(%u,%u)\n", extent_info->overflow_count, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount);
+ }
+
+ /* If the current extent lies completely within allocLimit,
+ * it does not require any relocation.
+ */
+ if ((oldStartBlock + oldBlockCount) <= allocLimit) {
+ extent_info->cur_blockCount += oldBlockCount;
+ return error;
+ }
+
+ /* Every extent should be relocated in its own transaction
+ * to make sure that we don't overflow the journal buffer.
+ */
+ error = hfs_start_transaction(hfsmp);
+ if (error) {
+ return error;
+ }
+ extent_info->lockflags = hfs_systemfile_lock(hfsmp, extent_info->lockflags, HFS_EXCLUSIVE_LOCK);
+
+ /* Check if the extent lies partially in the area to reclaim,
+ * i.e. it starts before allocLimit and ends beyond allocLimit.
+ * We have already skipped extents that lie completely within
+ * allocLimit in the check above, so we only check for the
+ * startBlock. If it lies partially, split it so that we
+ * only relocate part of the extent.
+ */
+ if (oldStartBlock < allocLimit) {
+ newBlockCount = allocLimit - oldStartBlock;
+
+ /* If the extent belongs to a btree, check and trim
+ * it to be multiple of the node size.
+ */
+ if (extent_info->is_sysfile) {
+ node_size = get_btree_nodesize(extent_info->vp);
+ /* If the btree node size is less than the block size,
+ * splitting this extent will not split a node across
+ * different extents. So we only check and trim if
+ * node size is more than the allocation block size.
+ */
+ if (node_size > hfsmp->blockSize) {
+ remainder_blocks = newBlockCount % (node_size / hfsmp->blockSize);
+ if (remainder_blocks) {
+ newBlockCount -= remainder_blocks;
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_extent: Fixing extent block count, node_blks=%u, old=%u, new=%u\n", node_size/hfsmp->blockSize, newBlockCount + remainder_blocks, newBlockCount);
+ }
+ }
+ }
+ }
+
+ if (hfs_resize_debug) {
+ int idx = extent_info->extent_index;
+ printf ("hfs_reclaim_extent: Split straddling extent %u:(%u,%u) for %u blocks\n", idx, extent_info->extents[idx].startBlock, extent_info->extents[idx].blockCount, newBlockCount);
+ }
+
+ /* Split the extents into two parts --- the first extent lies
+ * completely within allocLimit and therefore does not require
+ * relocation. The second extent will require relocation which
+ * will be handled when the caller calls this function again
+ * for the next extent.
+ */
+ error = hfs_split_extent(extent_info, newBlockCount);
+ if (error == 0) {
+ /* Split success, no relocation required */
+ goto out;
+ }
+ /* Split failed, so try to relocate entire extent */
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_extent: Split straddling extent failed, reclocate full extent\n");
+ }
+ }
+
+ /* At this point, the current extent requires relocation.
+ * We will try to allocate space equal to the size of the extent
+ * being relocated first to try to relocate it without splitting.
+ * If the allocation fails, we will try to allocate contiguous
+ * blocks out of metadata zone. If that allocation also fails,
+ * then we will take a whatever contiguous block run is returned
+ * by the allocation, split the extent into two parts, and then
+ * relocate the first splitted extent.
+ */
+ alloc_flags = HFS_ALLOC_FORCECONTIG | HFS_ALLOC_SKIPFREEBLKS;
+ if (extent_info->is_sysfile) {
+ alloc_flags |= HFS_ALLOC_METAZONE;
+ }
+
+ error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount, alloc_flags,
+ &newStartBlock, &newBlockCount);
+ if ((extent_info->is_sysfile == false) &&
+ ((error == dskFulErr) || (error == ENOSPC))) {
+ /* For non-system files, try reallocating space in metadata zone */
+ alloc_flags |= HFS_ALLOC_METAZONE;
+ error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount,
+ alloc_flags, &newStartBlock, &newBlockCount);
+ }
+ if ((error == dskFulErr) || (error == ENOSPC)) {
+ /* We did not find desired contiguous space for this extent.
+ * So try to allocate the maximum contiguous space available.
+ */
+ alloc_flags &= ~HFS_ALLOC_FORCECONTIG;
+
+ error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount,
+ alloc_flags, &newStartBlock, &newBlockCount);
+ if (error) {
+ printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u) BlockAllocate error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, error);
+ goto out;
+ }
+ blocks_allocated = true;
+
+ /* The number of blocks allocated is less than the requested
+ * number of blocks. For btree extents, check and trim the
+ * extent to be multiple of the node size.
+ */
+ if (extent_info->is_sysfile) {
+ node_size = get_btree_nodesize(extent_info->vp);
+ if (node_size > hfsmp->blockSize) {
+ remainder_blocks = newBlockCount % (node_size / hfsmp->blockSize);
+ if (remainder_blocks) {
+ roundedBlockCount = newBlockCount - remainder_blocks;
+ /* Free tail-end blocks of the newly allocated extent */
+ BlockDeallocate(hfsmp, newStartBlock + roundedBlockCount,
+ newBlockCount - roundedBlockCount,
+ HFS_ALLOC_SKIPFREEBLKS);
+ newBlockCount = roundedBlockCount;
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_extent: Fixing extent block count, node_blks=%u, old=%u, new=%u\n", node_size/hfsmp->blockSize, newBlockCount + remainder_blocks, newBlockCount);
+ }
+ if (newBlockCount == 0) {
+ printf ("hfs_reclaim_extent: Not enough contiguous blocks available to relocate fileID=%d\n", extent_info->fileID);
+ error = ENOSPC;
+ goto out;
+ }
+ }
+ }
+ }
+
+ /* The number of blocks allocated is less than the number of
+ * blocks requested, so split this extent --- the first extent
+ * will be relocated as part of this function call and the caller
+ * will handle relocating the second extent by calling this
+ * function again for the second extent.
+ */
+ error = hfs_split_extent(extent_info, newBlockCount);
+ if (error) {
+ printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u) split error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, error);
+ goto out;
+ }
+ oldBlockCount = newBlockCount;
+ }
+ if (error) {
+ printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u) contig BlockAllocate error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, error);
+ goto out;
+ }
+ blocks_allocated = true;
+
+ /* Copy data from old location to new location */
+ error = hfs_copy_extent(hfsmp, extent_info->vp, oldStartBlock,
+ newStartBlock, newBlockCount, context);
+ if (error) {
+ printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u)=>(%u,%u) hfs_copy_extent error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, newStartBlock, newBlockCount, error);
+ goto out;
+ }
+
+ /* Update the extent record with the new start block information */
+ extent_info->extents[index].startBlock = newStartBlock;
+
+ /* Sync the content back to the disk */
+ if (extent_info->catalog_fp) {
+ /* Update the extents in catalog record */
+ if (extent_info->is_dirlink) {
+ error = cat_update_dirlink(hfsmp, extent_info->forkType,
+ extent_info->dirlink_desc, extent_info->dirlink_attr,
+ &(extent_info->dirlink_fork->ff_data));
+ } else {
+ cp->c_flag |= C_MODIFIED;
+ /* If this is a system file, sync volume headers on disk */
+ if (extent_info->is_sysfile) {
+ error = hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH);
+ }
+ }
+ } else {
+ /* Replace record for extents overflow or extents-based xattrs */
+ error = BTReplaceRecord(extent_info->fcb, extent_info->iterator,
+ &(extent_info->btdata), extent_info->recordlen);
+ }
+ if (error) {
+ printf ("hfs_reclaim_extent: fileID=%u, update record error=%u\n", extent_info->fileID, error);
+ goto out;
+ }
+
+ /* Deallocate the old extent */
+ error = BlockDeallocate(hfsmp, oldStartBlock, oldBlockCount, HFS_ALLOC_SKIPFREEBLKS);
+ if (error) {
+ printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u) BlockDeallocate error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, error);
+ goto out;
+ }
+ extent_info->blocks_relocated += newBlockCount;
+
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_extent: Relocated record:%u %u:(%u,%u) to (%u,%u)\n", extent_info->overflow_count, index, oldStartBlock, oldBlockCount, newStartBlock, newBlockCount);
+ }
+
+out:
+ if (error != 0) {
+ if (blocks_allocated == true) {
+ BlockDeallocate(hfsmp, newStartBlock, newBlockCount, HFS_ALLOC_SKIPFREEBLKS);
+ }
+ } else {
+ /* On success, increment the total allocation blocks processed */
+ extent_info->cur_blockCount += newBlockCount;
+ }
+
+ hfs_systemfile_unlock(hfsmp, extent_info->lockflags);
+
+ /* For a non-system file, if an extent entry from catalog record
+ * was modified, sync the in-memory changes to the catalog record
+ * on disk before ending the transaction.
+ */
+ if ((extent_info->catalog_fp) &&
+ (extent_info->is_sysfile == false)) {
+ (void) hfs_update(extent_info->vp, MNT_WAIT);
+ }
+
+ hfs_end_transaction(hfsmp);
+
+ return error;
+}
+
+/* Report intermediate progress during volume resize */
+static void
+hfs_truncatefs_progress(struct hfsmount *hfsmp)
+{
+ u_int32_t cur_progress;
+
+ hfs_resize_progress(hfsmp, &cur_progress);
+ if (cur_progress > (hfsmp->hfs_resize_progress + 9)) {
+ printf("hfs_truncatefs: %d%% done...\n", cur_progress);
+ hfsmp->hfs_resize_progress = cur_progress;
+ }
+ return;
+}
+
+/*
+ * Reclaim space at the end of a volume for given file and forktype.
+ *
+ * This routine attempts to move any extent which contains allocation blocks
+ * at or after "allocLimit." A separate transaction is used for every extent
+ * that needs to be moved. If there is not contiguous space available for
+ * moving an extent, it can be split into smaller extents. The contents of
+ * any moved extents are read and written via the volume's device vnode --
+ * NOT via "vp." During the move, moved blocks which are part of a transaction
+ * have their physical block numbers invalidated so they will eventually be
+ * written to their new locations.
+ *
+ * This function is also called for directory hard links. Directory hard links
+ * are regular files with no data fork and resource fork that contains alias
+ * information for backward compatibility with pre-Leopard systems. However
+ * non-Mac OS X implementation can add/modify data fork or resource fork
+ * information to directory hard links, so we check, and if required, relocate
+ * both data fork and resource fork.
+ *
+ * Inputs:
+ * hfsmp The volume being resized.
+ * vp The vnode for the system file.
+ * fileID ID of the catalog record that needs to be relocated
+ * forktype The type of fork that needs relocated,
+ * kHFSResourceForkType for resource fork,
+ * kHFSDataForkType for data fork
+ * allocLimit Allocation limit for the new volume size,
+ * do not use this block or beyond. All extents
+ * that use this block or any blocks beyond this limit
+ * will be relocated.
+ *
+ * Side Effects:
+ * hfsmp->hfs_resize_blocksmoved is incremented by the number of allocation
+ * blocks that were relocated.
+ */
+static int
+hfs_reclaim_file(struct hfsmount *hfsmp, struct vnode *vp, u_int32_t fileID,
+ u_int8_t forktype, u_long allocLimit, vfs_context_t context)
+{
+ int error = 0;
+ struct hfs_reclaim_extent_info *extent_info;
+ int i;
+ int lockflags = 0;
+ struct cnode *cp;
+ struct filefork *fp;
+ int took_truncate_lock = false;
+ int release_desc = false;
+ HFSPlusExtentKey *key;
+
+ /* If there is no vnode for this file, then there's nothing to do. */
+ if (vp == NULL) {
+ return 0;
+ }
+
+ cp = VTOC(vp);
+
+ MALLOC(extent_info, struct hfs_reclaim_extent_info *,
+ sizeof(struct hfs_reclaim_extent_info), M_TEMP, M_WAITOK);
+ if (extent_info == NULL) {
+ return ENOMEM;
+ }
+ bzero(extent_info, sizeof(struct hfs_reclaim_extent_info));
+ extent_info->vp = vp;
+ extent_info->fileID = fileID;
+ extent_info->forkType = forktype;
+ extent_info->is_sysfile = vnode_issystem(vp);
+ if (vnode_isdir(vp) && (cp->c_flag & C_HARDLINK)) {
+ extent_info->is_dirlink = true;
+ }
+ /* We always need allocation bitmap and extent btree lock */
+ lockflags = SFL_BITMAP | SFL_EXTENTS;
+ if ((fileID == kHFSCatalogFileID) || (extent_info->is_dirlink == true)) {
+ lockflags |= SFL_CATALOG;
+ } else if (fileID == kHFSAttributesFileID) {
+ lockflags |= SFL_ATTRIBUTE;
+ } else if (fileID == kHFSStartupFileID) {
+ lockflags |= SFL_STARTUP;
+ }
+ extent_info->lockflags = lockflags;
+ extent_info->fcb = VTOF(hfsmp->hfs_extents_vp);
+
+ /* Flush data associated with current file on disk.
+ *
+ * If the current vnode is directory hard link, no flushing of
+ * journal or vnode is required. The current kernel does not
+ * modify data/resource fork of directory hard links, so nothing
+ * will be in the cache. If a directory hard link is newly created,
+ * the resource fork data is written directly using devvp and
+ * the code that actually relocates data (hfs_copy_extent()) also
+ * uses devvp for its I/O --- so they will see a consistent copy.
+ */
+ if (extent_info->is_sysfile) {
+ /* If the current vnode is system vnode, flush journal
+ * to make sure that all data is written to the disk.
+ */
+ error = hfs_journal_flush(hfsmp, TRUE);
+ if (error) {
+ printf ("hfs_reclaim_file: journal_flush returned %d\n", error);
+ goto out;
+ }
+ } else if (extent_info->is_dirlink == false) {
+ /* Flush all blocks associated with this regular file vnode.
+ * Normally there should not be buffer cache blocks for regular
+ * files, but for objects like symlinks, we can have buffer cache
+ * blocks associated with the vnode. Therefore we call
+ * buf_flushdirtyblks() also.
+ */
+ buf_flushdirtyblks(vp, 0, BUF_SKIP_LOCKED, "hfs_reclaim_file");
+
+ hfs_unlock(cp);
+ hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK);
+ took_truncate_lock = true;
+ (void) cluster_push(vp, 0);
+ error = hfs_lock(cp, HFS_FORCE_LOCK);
+ if (error) {
+ goto out;
+ }
+
+ /* If the file no longer exists, nothing left to do */
+ if (cp->c_flag & C_NOEXISTS) {
+ error = 0;
+ goto out;
+ }
+
+ /* Wait for any in-progress writes to this vnode to complete, so that we'll
+ * be copying consistent bits. (Otherwise, it's possible that an async
+ * write will complete to the old extent after we read from it. That
+ * could lead to corruption.)
+ */
+ error = vnode_waitforwrites(vp, 0, 0, 0, "hfs_reclaim_file");
+ if (error) {
+ goto out;
+ }
+ }
+
+ if (hfs_resize_debug) {
+ printf("hfs_reclaim_file: === Start reclaiming %sfork for %sid=%u ===\n", (forktype ? "rsrc" : "data"), (extent_info->is_dirlink ? "dirlink" : "file"), fileID);
+ }
+
+ if (extent_info->is_dirlink) {
+ MALLOC(extent_info->dirlink_desc, struct cat_desc *,
+ sizeof(struct cat_desc), M_TEMP, M_WAITOK);
+ MALLOC(extent_info->dirlink_attr, struct cat_attr *,
+ sizeof(struct cat_attr), M_TEMP, M_WAITOK);
+ MALLOC(extent_info->dirlink_fork, struct filefork *,
+ sizeof(struct filefork), M_TEMP, M_WAITOK);
+ if ((extent_info->dirlink_desc == NULL) ||
+ (extent_info->dirlink_attr == NULL) ||
+ (extent_info->dirlink_fork == NULL)) {
+ error = ENOMEM;
+ goto out;
+ }
+
+ /* Lookup catalog record for directory hard link and
+ * create a fake filefork for the value looked up from
+ * the disk.
+ */
+ fp = extent_info->dirlink_fork;
+ bzero(extent_info->dirlink_fork, sizeof(struct filefork));
+ extent_info->dirlink_fork->ff_cp = cp;
+ lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK);
+ error = cat_lookup_dirlink(hfsmp, fileID, forktype,
+ extent_info->dirlink_desc, extent_info->dirlink_attr,
+ &(extent_info->dirlink_fork->ff_data));
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ if (error) {
+ printf ("hfs_reclaim_file: cat_lookup_dirlink for fileID=%u returned error=%u\n", fileID, error);
+ goto out;
+ }
+ release_desc = true;
+ } else {
+ fp = VTOF(vp);
+ }
+
+ extent_info->catalog_fp = fp;
+ extent_info->recStartBlock = 0;
+ extent_info->extents = extent_info->catalog_fp->ff_extents;
+ /* Relocate extents from the catalog record */
+ for (i = 0; i < kHFSPlusExtentDensity; ++i) {
+ if (fp->ff_extents[i].blockCount == 0) {
+ break;
+ }
+ extent_info->extent_index = i;
+ error = hfs_reclaim_extent(hfsmp, allocLimit, extent_info, context);
+ if (error) {
+ printf ("hfs_reclaim_file: fileID=%u #%d %u:(%u,%u) hfs_reclaim_extent error=%d\n", fileID, extent_info->overflow_count, i, fp->ff_extents[i].startBlock, fp->ff_extents[i].blockCount, error);
+ goto out;
+ }
+ }
+
+ /* If the number of allocation blocks processed for reclaiming
+ * are less than total number of blocks for the file, continuing
+ * working on overflow extents record.
+ */
+ if (fp->ff_blocks <= extent_info->cur_blockCount) {
+ if (0 && hfs_resize_debug) {
+ printf ("hfs_reclaim_file: Nothing more to relocate, offset=%d, ff_blocks=%u, cur_blockCount=%u\n", i, fp->ff_blocks, extent_info->cur_blockCount);
+ }
+ goto out;
+ }
+
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_file: Will check overflow records, offset=%d, ff_blocks=%u, cur_blockCount=%u\n", i, fp->ff_blocks, extent_info->cur_blockCount);
+ }
+
+ MALLOC(extent_info->iterator, struct BTreeIterator *, sizeof(struct BTreeIterator), M_TEMP, M_WAITOK);
+ if (extent_info->iterator == NULL) {
+ error = ENOMEM;
+ goto out;
+ }
+ bzero(extent_info->iterator, sizeof(struct BTreeIterator));
+ key = (HFSPlusExtentKey *) &(extent_info->iterator->key);
+ key->keyLength = kHFSPlusExtentKeyMaximumLength;
+ key->forkType = forktype;
+ key->fileID = fileID;
+ key->startBlock = extent_info->cur_blockCount;
+
+ extent_info->btdata.bufferAddress = extent_info->record.overflow;
+ extent_info->btdata.itemSize = sizeof(HFSPlusExtentRecord);
+ extent_info->btdata.itemCount = 1;
+
+ extent_info->catalog_fp = NULL;
+
+ /* Search the first overflow extent with expected startBlock as 'cur_blockCount' */
+ lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK);
+ error = BTSearchRecord(extent_info->fcb, extent_info->iterator,
+ &(extent_info->btdata), &(extent_info->recordlen),
+ extent_info->iterator);
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ while (error == 0) {
+ extent_info->overflow_count++;
+ extent_info->recStartBlock = key->startBlock;
+ extent_info->extents = extent_info->record.overflow;
+ for (i = 0; i < kHFSPlusExtentDensity; i++) {
+ if (extent_info->record.overflow[i].blockCount == 0) {
+ goto out;
+ }
+ extent_info->extent_index = i;
+ error = hfs_reclaim_extent(hfsmp, allocLimit, extent_info, context);
+ if (error) {
+ printf ("hfs_reclaim_file: fileID=%u #%d %u:(%u,%u) hfs_reclaim_extent error=%d\n", fileID, extent_info->overflow_count, i, extent_info->record.overflow[i].startBlock, extent_info->record.overflow[i].blockCount, error);
+ goto out;
+ }
+ }
+
+ /* Look for more overflow records */
+ lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK);
+ error = BTIterateRecord(extent_info->fcb, kBTreeNextRecord,
+ extent_info->iterator, &(extent_info->btdata),
+ &(extent_info->recordlen));
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ if (error) {
+ break;
+ }
+ /* Stop when we encounter a different file or fork. */
+ if ((key->fileID != fileID) || (key->forkType != forktype)) {
+ break;
+ }
+ }
+ if (error == fsBTRecordNotFoundErr || error == fsBTEndOfIterationErr) {
+ error = 0;
+ }
+
+out:
+ /* If any blocks were relocated, account them and report progress */
+ if (extent_info->blocks_relocated) {
+ hfsmp->hfs_resize_blocksmoved += extent_info->blocks_relocated;
+ hfs_truncatefs_progress(hfsmp);
+ if (fileID < kHFSFirstUserCatalogNodeID) {
+ printf ("hfs_reclaim_file: Relocated %u blocks from fileID=%u on \"%s\"\n",
+ extent_info->blocks_relocated, fileID, hfsmp->vcbVN);
+ }
+ }
+ if (extent_info->iterator) {
+ FREE(extent_info->iterator, M_TEMP);
+ }
+ if (release_desc == true) {
+ cat_releasedesc(extent_info->dirlink_desc);
+ }
+ if (extent_info->dirlink_desc) {
+ FREE(extent_info->dirlink_desc, M_TEMP);
+ }
+ if (extent_info->dirlink_attr) {
+ FREE(extent_info->dirlink_attr, M_TEMP);
+ }
+ if (extent_info->dirlink_fork) {
+ FREE(extent_info->dirlink_fork, M_TEMP);
+ }
+ if ((extent_info->blocks_relocated != 0) && (extent_info->is_sysfile == false)) {
+ (void) hfs_update(vp, MNT_WAIT);
+ }
+ if (took_truncate_lock) {
+ hfs_unlock_truncate(cp, 0);
+ }
+ if (extent_info) {
+ FREE(extent_info, M_TEMP);
+ }
+ if (hfs_resize_debug) {
+ printf("hfs_reclaim_file: === Finished relocating %sfork for fileid=%u (error=%d) ===\n", (forktype ? "rsrc" : "data"), fileID, error);
+ }
-free_fail:
- (void) BlockDeallocate(hfsmp, newStartBlock, blockCount);
-fail:
- (void) hfs_systemfile_unlock(hfsmp, lockflags);
- (void) hfs_end_transaction(hfsmp);
return error;
}
hfsmp->blockSize, vfs_context_ucred(args->context), &bp);
if (error) {
printf("hfs_reclaim_journal_file: failed to read JIB (%d)\n", error);
+ if (bp) {
+ buf_brelse(bp);
+ }
return error;
}
jibp = (JournalInfoBlock*) buf_dataptr(bp);
static int
-hfs_reclaim_journal_file(struct hfsmount *hfsmp, vfs_context_t context)
+hfs_reclaim_journal_file(struct hfsmount *hfsmp, u_int32_t allocLimit, vfs_context_t context)
{
int error;
+ int journal_err;
int lockflags;
+ u_int32_t oldStartBlock;
u_int32_t newStartBlock;
u_int32_t oldBlockCount;
u_int32_t newBlockCount;
struct cat_fork journal_fork;
struct hfs_journal_relocate_args callback_args;
+ if (hfsmp->jnl_start + (hfsmp->jnl_size / hfsmp->blockSize) <= allocLimit) {
+ /* The journal does not require relocation */
+ return 0;
+ }
+
error = hfs_start_transaction(hfsmp);
if (error) {
printf("hfs_reclaim_journal_file: hfs_start_transaction returned %d\n", error);
oldBlockCount = hfsmp->jnl_size / hfsmp->blockSize;
/* TODO: Allow the journal to change size based on the new volume size. */
- error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount, true, true, &newStartBlock, &newBlockCount);
+ error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount,
+ HFS_ALLOC_METAZONE | HFS_ALLOC_FORCECONTIG | HFS_ALLOC_SKIPFREEBLKS,
+ &newStartBlock, &newBlockCount);
if (error) {
printf("hfs_reclaim_journal_file: BlockAllocate returned %d\n", error);
goto fail;
goto free_fail;
}
- error = BlockDeallocate(hfsmp, hfsmp->jnl_start, oldBlockCount);
+ error = BlockDeallocate(hfsmp, hfsmp->jnl_start, oldBlockCount, HFS_ALLOC_SKIPFREEBLKS);
if (error) {
printf("hfs_reclaim_journal_file: BlockDeallocate returned %d\n", error);
goto free_fail;
printf("hfs_reclaim_journal_file: cat_idlookup returned %d\n", error);
goto free_fail;
}
+ oldStartBlock = journal_fork.cf_extents[0].startBlock;
journal_fork.cf_size = newBlockCount * hfsmp->blockSize;
journal_fork.cf_extents[0].startBlock = newStartBlock;
journal_fork.cf_extents[0].blockCount = newBlockCount;
printf("hfs_reclaim_journal_file: hfs_end_transaction returned %d\n", error);
}
+ /* Account for the blocks relocated and print progress */
+ hfsmp->hfs_resize_blocksmoved += oldBlockCount;
+ hfs_truncatefs_progress(hfsmp);
+ if (!error) {
+ printf ("hfs_reclaim_journal_file: Relocated %u blocks from journal on \"%s\"\n",
+ oldBlockCount, hfsmp->vcbVN);
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_journal_file: Successfully relocated journal from (%u,%u) to (%u,%u)\n", oldStartBlock, oldBlockCount, newStartBlock, newBlockCount);
+ }
+ }
return error;
free_fail:
- (void) BlockDeallocate(hfsmp, newStartBlock, newBlockCount);
+ journal_err = BlockDeallocate(hfsmp, newStartBlock, newBlockCount, HFS_ALLOC_SKIPFREEBLKS);
+ if (journal_err) {
+ printf("hfs_reclaim_journal_file: BlockDeallocate returned %d\n", error);
+ hfs_mark_volume_inconsistent(hfsmp);
+ }
fail:
hfs_systemfile_unlock(hfsmp, lockflags);
(void) hfs_end_transaction(hfsmp);
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_journal_file: Error relocating journal file (error=%d)\n", error);
+ }
return error;
}
* the field in the volume header and the catalog record.
*/
static int
-hfs_reclaim_journal_info_block(struct hfsmount *hfsmp, vfs_context_t context)
+hfs_reclaim_journal_info_block(struct hfsmount *hfsmp, u_int32_t allocLimit, vfs_context_t context)
{
int error;
+ int journal_err;
int lockflags;
+ u_int32_t oldBlock;
u_int32_t newBlock;
u_int32_t blockCount;
struct cat_desc jib_desc;
struct cat_attr jib_attr;
struct cat_fork jib_fork;
buf_t old_bp, new_bp;
+
+ if (hfsmp->vcbJinfoBlock <= allocLimit) {
+ /* The journal info block does not require relocation */
+ return 0;
+ }
error = hfs_start_transaction(hfsmp);
if (error) {
}
lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
- error = BlockAllocate(hfsmp, 1, 1, 1, true, true, &newBlock, &blockCount);
+ error = BlockAllocate(hfsmp, 1, 1, 1,
+ HFS_ALLOC_METAZONE | HFS_ALLOC_FORCECONTIG | HFS_ALLOC_SKIPFREEBLKS,
+ &newBlock, &blockCount);
if (error) {
printf("hfs_reclaim_journal_info_block: BlockAllocate returned %d\n", error);
goto fail;
printf("hfs_reclaim_journal_info_block: blockCount != 1 (%u)\n", blockCount);
goto free_fail;
}
- error = BlockDeallocate(hfsmp, hfsmp->vcbJinfoBlock, 1);
+ error = BlockDeallocate(hfsmp, hfsmp->vcbJinfoBlock, 1, HFS_ALLOC_SKIPFREEBLKS);
if (error) {
printf("hfs_reclaim_journal_info_block: BlockDeallocate returned %d\n", error);
goto free_fail;
hfsmp->blockSize, vfs_context_ucred(context), &old_bp);
if (error) {
printf("hfs_reclaim_journal_info_block: failed to read JIB (%d)\n", error);
+ if (old_bp) {
+ buf_brelse(old_bp);
+ }
goto free_fail;
}
new_bp = buf_getblk(hfsmp->hfs_devvp,
printf("hfs_reclaim_journal_file: cat_idlookup returned %d\n", error);
goto fail;
}
+ oldBlock = jib_fork.cf_extents[0].startBlock;
jib_fork.cf_size = hfsmp->blockSize;
jib_fork.cf_extents[0].startBlock = newBlock;
jib_fork.cf_extents[0].blockCount = 1;
if (error) {
printf("hfs_reclaim_journal_info_block: hfs_end_transaction returned %d\n", error);
}
- error = hfs_journal_flush(hfsmp);
- if (error) {
- printf("hfs_reclaim_journal_info_block: journal_flush returned %d\n", error);
+ error = hfs_journal_flush(hfsmp, FALSE);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: journal_flush returned %d\n", error);
+ }
+
+ /* Account for the block relocated and print progress */
+ hfsmp->hfs_resize_blocksmoved += 1;
+ hfs_truncatefs_progress(hfsmp);
+ if (!error) {
+ printf ("hfs_reclaim_journal_info: Relocated 1 block from journal info on \"%s\"\n",
+ hfsmp->vcbVN);
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_journal_info_block: Successfully relocated journal info block from (%u,%u) to (%u,%u)\n", oldBlock, blockCount, newBlock, blockCount);
+ }
+ }
+ return error;
+
+free_fail:
+ journal_err = BlockDeallocate(hfsmp, newBlock, blockCount, HFS_ALLOC_SKIPFREEBLKS);
+ if (journal_err) {
+ printf("hfs_reclaim_journal_info_block: BlockDeallocate returned %d\n", error);
+ hfs_mark_volume_inconsistent(hfsmp);
+ }
+
+fail:
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ (void) hfs_end_transaction(hfsmp);
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_journal_info_block: Error relocating journal info block (error=%d)\n", error);
+ }
+ return error;
+}
+
+
+/*
+ * This function traverses through all extended attribute records for a given
+ * fileID, and calls function that reclaims data blocks that exist in the
+ * area of the disk being reclaimed which in turn is responsible for allocating
+ * new space, copying extent data, deallocating new space, and if required,
+ * splitting the extent.
+ *
+ * Note: The caller has already acquired the cnode lock on the file. Therefore
+ * we are assured that no other thread would be creating/deleting/modifying
+ * extended attributes for this file.
+ *
+ * Side Effects:
+ * hfsmp->hfs_resize_blocksmoved is incremented by the number of allocation
+ * blocks that were relocated.
+ *
+ * Returns:
+ * 0 on success, non-zero on failure.
+ */
+static int
+hfs_reclaim_xattr(struct hfsmount *hfsmp, struct vnode *vp, u_int32_t fileID, u_int32_t allocLimit, vfs_context_t context)
+{
+ int error = 0;
+ struct hfs_reclaim_extent_info *extent_info;
+ int i;
+ HFSPlusAttrKey *key;
+ int *lockflags;
+
+ if (hfs_resize_debug) {
+ printf("hfs_reclaim_xattr: === Start reclaiming xattr for id=%u ===\n", fileID);
+ }
+
+ MALLOC(extent_info, struct hfs_reclaim_extent_info *,
+ sizeof(struct hfs_reclaim_extent_info), M_TEMP, M_WAITOK);
+ if (extent_info == NULL) {
+ return ENOMEM;
+ }
+ bzero(extent_info, sizeof(struct hfs_reclaim_extent_info));
+ extent_info->vp = vp;
+ extent_info->fileID = fileID;
+ extent_info->is_xattr = true;
+ extent_info->is_sysfile = vnode_issystem(vp);
+ extent_info->fcb = VTOF(hfsmp->hfs_attribute_vp);
+ lockflags = &(extent_info->lockflags);
+ *lockflags = SFL_ATTRIBUTE | SFL_BITMAP;
+
+ /* Initialize iterator from the extent_info structure */
+ MALLOC(extent_info->iterator, struct BTreeIterator *,
+ sizeof(struct BTreeIterator), M_TEMP, M_WAITOK);
+ if (extent_info->iterator == NULL) {
+ error = ENOMEM;
+ goto out;
+ }
+ bzero(extent_info->iterator, sizeof(struct BTreeIterator));
+
+ /* Build attribute key */
+ key = (HFSPlusAttrKey *)&(extent_info->iterator->key);
+ error = hfs_buildattrkey(fileID, NULL, key);
+ if (error) {
+ goto out;
+ }
+
+ /* Initialize btdata from extent_info structure. Note that the
+ * buffer pointer actually points to the xattr record from the
+ * extent_info structure itself.
+ */
+ extent_info->btdata.bufferAddress = &(extent_info->record.xattr);
+ extent_info->btdata.itemSize = sizeof(HFSPlusAttrRecord);
+ extent_info->btdata.itemCount = 1;
+
+ /*
+ * Sync all extent-based attribute data to the disk.
+ *
+ * All extent-based attribute data I/O is performed via cluster
+ * I/O using a virtual file that spans across entire file system
+ * space.
+ */
+ hfs_lock_truncate(VTOC(hfsmp->hfs_attrdata_vp), HFS_EXCLUSIVE_LOCK);
+ (void)cluster_push(hfsmp->hfs_attrdata_vp, 0);
+ error = vnode_waitforwrites(hfsmp->hfs_attrdata_vp, 0, 0, 0, "hfs_reclaim_xattr");
+ hfs_unlock_truncate(VTOC(hfsmp->hfs_attrdata_vp), 0);
+ if (error) {
+ goto out;
+ }
+
+ /* Search for extended attribute for current file. This
+ * will place the iterator before the first matching record.
+ */
+ *lockflags = hfs_systemfile_lock(hfsmp, *lockflags, HFS_EXCLUSIVE_LOCK);
+ error = BTSearchRecord(extent_info->fcb, extent_info->iterator,
+ &(extent_info->btdata), &(extent_info->recordlen),
+ extent_info->iterator);
+ hfs_systemfile_unlock(hfsmp, *lockflags);
+ if (error) {
+ if (error != btNotFound) {
+ goto out;
+ }
+ /* btNotFound is expected here, so just mask it */
+ error = 0;
+ }
+
+ while (1) {
+ /* Iterate to the next record */
+ *lockflags = hfs_systemfile_lock(hfsmp, *lockflags, HFS_EXCLUSIVE_LOCK);
+ error = BTIterateRecord(extent_info->fcb, kBTreeNextRecord,
+ extent_info->iterator, &(extent_info->btdata),
+ &(extent_info->recordlen));
+ hfs_systemfile_unlock(hfsmp, *lockflags);
+
+ /* Stop the iteration if we encounter end of btree or xattr with different fileID */
+ if (error || key->fileID != fileID) {
+ if (error == fsBTRecordNotFoundErr || error == fsBTEndOfIterationErr) {
+ error = 0;
+ }
+ break;
+ }
+
+ /* We only care about extent-based EAs */
+ if ((extent_info->record.xattr.recordType != kHFSPlusAttrForkData) &&
+ (extent_info->record.xattr.recordType != kHFSPlusAttrExtents)) {
+ continue;
+ }
+
+ if (extent_info->record.xattr.recordType == kHFSPlusAttrForkData) {
+ extent_info->overflow_count = 0;
+ extent_info->extents = extent_info->record.xattr.forkData.theFork.extents;
+ } else if (extent_info->record.xattr.recordType == kHFSPlusAttrExtents) {
+ extent_info->overflow_count++;
+ extent_info->extents = extent_info->record.xattr.overflowExtents.extents;
+ }
+
+ extent_info->recStartBlock = key->startBlock;
+ for (i = 0; i < kHFSPlusExtentDensity; i++) {
+ if (extent_info->extents[i].blockCount == 0) {
+ break;
+ }
+ extent_info->extent_index = i;
+ error = hfs_reclaim_extent(hfsmp, allocLimit, extent_info, context);
+ if (error) {
+ printf ("hfs_reclaim_xattr: fileID=%u hfs_reclaim_extent error=%d\n", fileID, error);
+ goto out;
+ }
+ }
+ }
+
+out:
+ /* If any blocks were relocated, account them and report progress */
+ if (extent_info->blocks_relocated) {
+ hfsmp->hfs_resize_blocksmoved += extent_info->blocks_relocated;
+ hfs_truncatefs_progress(hfsmp);
+ }
+ if (extent_info->iterator) {
+ FREE(extent_info->iterator, M_TEMP);
+ }
+ if (extent_info) {
+ FREE(extent_info, M_TEMP);
+ }
+ if (hfs_resize_debug) {
+ printf("hfs_reclaim_xattr: === Finished relocating xattr for fileid=%u (error=%d) ===\n", fileID, error);
+ }
+ return error;
+}
+
+/*
+ * Reclaim any extent-based extended attributes allocation blocks from
+ * the area of the disk that is being truncated.
+ *
+ * The function traverses the attribute btree to find out the fileIDs
+ * of the extended attributes that need to be relocated. For every
+ * file whose large EA requires relocation, it looks up the cnode and
+ * calls hfs_reclaim_xattr() to do all the work for allocating
+ * new space, copying data, deallocating old space, and if required,
+ * splitting the extents.
+ *
+ * Inputs:
+ * allocLimit - starting block of the area being reclaimed
+ *
+ * Returns:
+ * returns 0 on success, non-zero on failure.
+ */
+static int
+hfs_reclaim_xattrspace(struct hfsmount *hfsmp, u_int32_t allocLimit, vfs_context_t context)
+{
+ int error = 0;
+ FCB *fcb;
+ struct BTreeIterator *iterator = NULL;
+ struct FSBufferDescriptor btdata;
+ HFSPlusAttrKey *key;
+ HFSPlusAttrRecord rec;
+ int lockflags = 0;
+ cnid_t prev_fileid = 0;
+ struct vnode *vp;
+ int need_relocate;
+ int btree_operation;
+ u_int32_t files_moved = 0;
+ u_int32_t prev_blocksmoved;
+ int i;
+
+ fcb = VTOF(hfsmp->hfs_attribute_vp);
+ /* Store the value to print total blocks moved by this function in end */
+ prev_blocksmoved = hfsmp->hfs_resize_blocksmoved;
+
+ if (kmem_alloc(kernel_map, (vm_offset_t *)&iterator, sizeof(*iterator))) {
+ return ENOMEM;
+ }
+ bzero(iterator, sizeof(*iterator));
+ key = (HFSPlusAttrKey *)&iterator->key;
+ btdata.bufferAddress = &rec;
+ btdata.itemSize = sizeof(rec);
+ btdata.itemCount = 1;
+
+ need_relocate = false;
+ btree_operation = kBTreeFirstRecord;
+ /* Traverse the attribute btree to find extent-based EAs to reclaim */
+ while (1) {
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_ATTRIBUTE, HFS_SHARED_LOCK);
+ error = BTIterateRecord(fcb, btree_operation, iterator, &btdata, NULL);
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ if (error) {
+ if (error == fsBTRecordNotFoundErr || error == fsBTEndOfIterationErr) {
+ error = 0;
+ }
+ break;
+ }
+ btree_operation = kBTreeNextRecord;
+
+ /* If the extents of current fileID were already relocated, skip it */
+ if (prev_fileid == key->fileID) {
+ continue;
+ }
+
+ /* Check if any of the extents in the current record need to be relocated */
+ need_relocate = false;
+ switch(rec.recordType) {
+ case kHFSPlusAttrForkData:
+ for (i = 0; i < kHFSPlusExtentDensity; i++) {
+ if (rec.forkData.theFork.extents[i].blockCount == 0) {
+ break;
+ }
+ if ((rec.forkData.theFork.extents[i].startBlock +
+ rec.forkData.theFork.extents[i].blockCount) > allocLimit) {
+ need_relocate = true;
+ break;
+ }
+ }
+ break;
+
+ case kHFSPlusAttrExtents:
+ for (i = 0; i < kHFSPlusExtentDensity; i++) {
+ if (rec.overflowExtents.extents[i].blockCount == 0) {
+ break;
+ }
+ if ((rec.overflowExtents.extents[i].startBlock +
+ rec.overflowExtents.extents[i].blockCount) > allocLimit) {
+ need_relocate = true;
+ break;
+ }
+ }
+ break;
+ };
+
+ /* Continue iterating to next attribute record */
+ if (need_relocate == false) {
+ continue;
+ }
+
+ /* Look up the vnode for corresponding file. The cnode
+ * will be locked which will ensure that no one modifies
+ * the xattrs when we are relocating them.
+ *
+ * We want to allow open-unlinked files to be moved,
+ * so provide allow_deleted == 1 for hfs_vget().
+ */
+ if (hfs_vget(hfsmp, key->fileID, &vp, 0, 1) != 0) {
+ continue;
+ }
+
+ error = hfs_reclaim_xattr(hfsmp, vp, key->fileID, allocLimit, context);
+ hfs_unlock(VTOC(vp));
+ vnode_put(vp);
+ if (error) {
+ printf ("hfs_reclaim_xattrspace: Error relocating xattrs for fileid=%u (error=%d)\n", key->fileID, error);
+ break;
+ }
+ prev_fileid = key->fileID;
+ files_moved++;
+ }
+
+ if (files_moved) {
+ printf("hfs_reclaim_xattrspace: Relocated %u xattr blocks from %u files on \"%s\"\n",
+ (hfsmp->hfs_resize_blocksmoved - prev_blocksmoved),
+ files_moved, hfsmp->vcbVN);
}
- return error;
-free_fail:
- (void) BlockDeallocate(hfsmp, newBlock, blockCount);
-fail:
- hfs_systemfile_unlock(hfsmp, lockflags);
- (void) hfs_end_transaction(hfsmp);
+ kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator));
return error;
}
-
-/*
- * Reclaim space at the end of a file system.
+/*
+ * Reclaim blocks from regular files.
+ *
+ * This function iterates over all the record in catalog btree looking
+ * for files with extents that overlap into the space we're trying to
+ * free up. If a file extent requires relocation, it looks up the vnode
+ * and calls function to relocate the data.
+ *
+ * Returns:
+ * Zero on success, non-zero on failure.
*/
-static int
-hfs_reclaimspace(struct hfsmount *hfsmp, u_int32_t startblk, u_int32_t reclaimblks, vfs_context_t context)
+static int
+hfs_reclaim_filespace(struct hfsmount *hfsmp, u_int32_t allocLimit, vfs_context_t context)
{
- struct vnode *vp = NULL;
+ int error;
FCB *fcb;
- struct BTreeIterator * iterator = NULL;
+ struct BTreeIterator *iterator = NULL;
struct FSBufferDescriptor btdata;
- struct HFSPlusCatalogFile filerec;
- u_int32_t saved_next_allocation;
- cnid_t * cnidbufp;
- size_t cnidbufsize;
- int filecnt = 0;
- int maxfilecnt;
- u_int32_t block;
- u_int32_t datablks;
- u_int32_t rsrcblks;
- u_int32_t blkstomove = 0;
+ int btree_operation;
int lockflags;
- int i;
- int error;
- int lastprogress = 0;
- Boolean system_file_moved = false;
+ struct HFSPlusCatalogFile filerec;
+ struct vnode *vp;
+ struct vnode *rvp;
+ struct filefork *datafork;
+ u_int32_t files_moved = 0;
+ u_int32_t prev_blocksmoved;
- /* Relocate extents of the Allocation file if they're in the way. */
- error = hfs_reclaim_sys_file(hfsmp, hfsmp->hfs_allocation_vp, startblk, SFL_BITMAP, &system_file_moved, context);
- if (error) {
- printf("hfs_reclaimspace: reclaim allocation file returned %d\n", error);
- return error;
- }
- /* Relocate extents of the Extents B-tree if they're in the way. */
- error = hfs_reclaim_sys_file(hfsmp, hfsmp->hfs_extents_vp, startblk, SFL_EXTENTS, &system_file_moved, context);
- if (error) {
- printf("hfs_reclaimspace: reclaim extents b-tree returned %d\n", error);
- return error;
- }
- /* Relocate extents of the Catalog B-tree if they're in the way. */
- error = hfs_reclaim_sys_file(hfsmp, hfsmp->hfs_catalog_vp, startblk, SFL_CATALOG, &system_file_moved, context);
- if (error) {
- printf("hfs_reclaimspace: reclaim catalog b-tree returned %d\n", error);
- return error;
- }
- /* Relocate extents of the Attributes B-tree if they're in the way. */
- error = hfs_reclaim_sys_file(hfsmp, hfsmp->hfs_attribute_vp, startblk, SFL_ATTRIBUTE, &system_file_moved, context);
- if (error) {
- printf("hfs_reclaimspace: reclaim attribute b-tree returned %d\n", error);
- return error;
- }
- /* Relocate extents of the Startup File if there is one and they're in the way. */
- error = hfs_reclaim_sys_file(hfsmp, hfsmp->hfs_startup_vp, startblk, SFL_STARTUP, &system_file_moved, context);
- if (error) {
- printf("hfs_reclaimspace: reclaim startup file returned %d\n", error);
- return error;
- }
-
- /*
- * We need to make sure the alternate volume header gets flushed if we moved
- * any extents in the volume header. But we need to do that before
- * shrinking the size of the volume, or else the journal code will panic
- * with an invalid (too large) block number.
- *
- * Note that system_file_moved will be set if ANY extent was moved, even
- * if it was just an overflow extent. In this case, the journal_flush isn't
- * strictly required, but shouldn't hurt.
- */
- if (system_file_moved)
- hfs_journal_flush(hfsmp);
+ fcb = VTOF(hfsmp->hfs_catalog_vp);
+ /* Store the value to print total blocks moved by this function at the end */
+ prev_blocksmoved = hfsmp->hfs_resize_blocksmoved;
- if (hfsmp->jnl_start + (hfsmp->jnl_size / hfsmp->blockSize) > startblk) {
- error = hfs_reclaim_journal_file(hfsmp, context);
- if (error) {
- printf("hfs_reclaimspace: hfs_reclaim_journal_file failed (%d)\n", error);
- return error;
- }
- }
-
- if (hfsmp->vcbJinfoBlock >= startblk) {
- error = hfs_reclaim_journal_info_block(hfsmp, context);
- if (error) {
- printf("hfs_reclaimspace: hfs_reclaim_journal_info_block failed (%d)\n", error);
- return error;
- }
- }
-
- /* For now move a maximum of 250,000 files. */
- maxfilecnt = MIN(hfsmp->hfs_filecount, 250000);
- maxfilecnt = MIN((u_int32_t)maxfilecnt, reclaimblks);
- cnidbufsize = maxfilecnt * sizeof(cnid_t);
- if (kmem_alloc(kernel_map, (vm_offset_t *)&cnidbufp, cnidbufsize)) {
- return (ENOMEM);
- }
if (kmem_alloc(kernel_map, (vm_offset_t *)&iterator, sizeof(*iterator))) {
- kmem_free(kernel_map, (vm_offset_t)cnidbufp, cnidbufsize);
- return (ENOMEM);
- }
-
- saved_next_allocation = hfsmp->nextAllocation;
- HFS_UPDATE_NEXT_ALLOCATION(hfsmp, hfsmp->hfs_metazone_start);
-
- fcb = VTOF(hfsmp->hfs_catalog_vp);
+ return ENOMEM;
+ }
bzero(iterator, sizeof(*iterator));
btdata.bufferAddress = &filerec;
btdata.itemSize = sizeof(filerec);
btdata.itemCount = 1;
- /* Keep the Catalog and extents files locked during iteration. */
- lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_EXTENTS, HFS_SHARED_LOCK);
-
- error = BTIterateRecord(fcb, kBTreeFirstRecord, iterator, NULL, NULL);
- if (error) {
- goto end_iteration;
- }
- /*
- * Iterate over all the catalog records looking for files
- * that overlap into the space we're trying to free up.
- */
- for (filecnt = 0; filecnt < maxfilecnt; ) {
- error = BTIterateRecord(fcb, kBTreeNextRecord, iterator, &btdata, NULL);
+ btree_operation = kBTreeFirstRecord;
+ while (1) {
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
+ error = BTIterateRecord(fcb, btree_operation, iterator, &btdata, NULL);
+ hfs_systemfile_unlock(hfsmp, lockflags);
if (error) {
if (error == fsBTRecordNotFoundErr || error == fsBTEndOfIterationErr) {
error = 0;
}
break;
}
+ btree_operation = kBTreeNextRecord;
+
if (filerec.recordType != kHFSPlusFileRecord) {
continue;
}
- datablks = rsrcblks = 0;
- /*
- * Check if either fork overlaps target space.
- */
- for (i = 0; i < kHFSPlusExtentDensity; ++i) {
- if (filerec.dataFork.extents[i].blockCount != 0) {
- datablks += filerec.dataFork.extents[i].blockCount;
- block = filerec.dataFork.extents[i].startBlock +
- filerec.dataFork.extents[i].blockCount;
- if (block >= startblk) {
- if ((filerec.fileID == hfsmp->hfs_jnlfileid) ||
- (filerec.fileID == hfsmp->hfs_jnlinfoblkid)) {
- printf("hfs_reclaimspace: cannot move active journal\n");
- error = EPERM;
- goto end_iteration;
- }
- cnidbufp[filecnt++] = filerec.fileID;
- blkstomove += filerec.dataFork.totalBlocks;
- break;
- }
+
+ /* Check if any of the extents require relocation */
+ if (hfs_file_extent_overlaps(hfsmp, allocLimit, &filerec) == false) {
+ continue;
+ }
+
+ /* We want to allow open-unlinked files to be moved, so allow_deleted == 1 */
+ if (hfs_vget(hfsmp, filerec.fileID, &vp, 0, 1) != 0) {
+ continue;
+ }
+
+ /* If data fork exists or item is a directory hard link, relocate blocks */
+ datafork = VTOF(vp);
+ if ((datafork && datafork->ff_blocks > 0) || vnode_isdir(vp)) {
+ error = hfs_reclaim_file(hfsmp, vp, filerec.fileID,
+ kHFSDataForkType, allocLimit, context);
+ if (error) {
+ printf ("hfs_reclaimspace: Error reclaiming datafork blocks of fileid=%u (error=%d)\n", filerec.fileID, error);
+ hfs_unlock(VTOC(vp));
+ vnode_put(vp);
+ break;
}
- if (filerec.resourceFork.extents[i].blockCount != 0) {
- rsrcblks += filerec.resourceFork.extents[i].blockCount;
- block = filerec.resourceFork.extents[i].startBlock +
- filerec.resourceFork.extents[i].blockCount;
- if (block >= startblk) {
- cnidbufp[filecnt++] = filerec.fileID;
- blkstomove += filerec.resourceFork.totalBlocks;
+ }
+
+ /* If resource fork exists or item is a directory hard link, relocate blocks */
+ if (((VTOC(vp)->c_blocks - (datafork ? datafork->ff_blocks : 0)) > 0) || vnode_isdir(vp)) {
+ if (vnode_isdir(vp)) {
+ /* Resource fork vnode lookup is invalid for directory hard link.
+ * So we fake data fork vnode as resource fork vnode.
+ */
+ rvp = vp;
+ } else {
+ error = hfs_vgetrsrc(hfsmp, vp, &rvp, TRUE, FALSE);
+ if (error) {
+ printf ("hfs_reclaimspace: Error looking up rvp for fileid=%u (error=%d)\n", filerec.fileID, error);
+ hfs_unlock(VTOC(vp));
+ vnode_put(vp);
break;
}
+ VTOC(rvp)->c_flag |= C_NEED_RVNODE_PUT;
}
- }
- /*
- * Check for any overflow extents that overlap.
- */
- if (i == kHFSPlusExtentDensity) {
- if (filerec.dataFork.totalBlocks > datablks) {
- if (hfs_overlapped_overflow_extents(hfsmp, startblk, datablks, filerec.fileID, 0)) {
- cnidbufp[filecnt++] = filerec.fileID;
- blkstomove += filerec.dataFork.totalBlocks;
- }
- } else if (filerec.resourceFork.totalBlocks > rsrcblks) {
- if (hfs_overlapped_overflow_extents(hfsmp, startblk, rsrcblks, filerec.fileID, 1)) {
- cnidbufp[filecnt++] = filerec.fileID;
- blkstomove += filerec.resourceFork.totalBlocks;
- }
+
+ error = hfs_reclaim_file(hfsmp, rvp, filerec.fileID,
+ kHFSResourceForkType, allocLimit, context);
+ if (error) {
+ printf ("hfs_reclaimspace: Error reclaiming rsrcfork blocks of fileid=%u (error=%d)\n", filerec.fileID, error);
+ hfs_unlock(VTOC(vp));
+ vnode_put(vp);
+ break;
}
}
+
+ /* The file forks were relocated successfully, now drop the
+ * cnode lock and vnode reference, and continue iterating to
+ * next catalog record.
+ */
+ hfs_unlock(VTOC(vp));
+ vnode_put(vp);
+ files_moved++;
}
-end_iteration:
- if (filecnt == 0 && !system_file_moved) {
- printf("hfs_reclaimspace: no files moved\n");
- error = ENOSPC;
+ if (files_moved) {
+ printf("hfs_reclaim_filespace: Relocated %u blocks from %u files on \"%s\"\n",
+ (hfsmp->hfs_resize_blocksmoved - prev_blocksmoved),
+ files_moved, hfsmp->vcbVN);
}
- /* All done with catalog. */
- hfs_systemfile_unlock(hfsmp, lockflags);
- if (error || filecnt == 0)
- goto out;
- /*
- * Double check space requirements to make sure
- * there is enough space to relocate any files
- * that reside in the reclaim area.
- *
- * Blocks To Move --------------
- * | | |
- * V V V
- * ------------------------------------------------------------------------
- * | | / /// // |
- * | | / /// // |
- * | | / /// // |
- * ------------------------------------------------------------------------
- *
- * <------------------- New Total Blocks ------------------><-- Reclaim -->
- *
- * <------------------------ Original Total Blocks ----------------------->
+ kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator));
+ return error;
+}
+
+/*
+ * Reclaim space at the end of a file system.
+ *
+ * Inputs -
+ * allocLimit - start block of the space being reclaimed
+ * reclaimblks - number of allocation blocks to reclaim
+ */
+static int
+hfs_reclaimspace(struct hfsmount *hfsmp, u_int32_t allocLimit, u_int32_t reclaimblks, vfs_context_t context)
+{
+ int error = 0;
+
+ /*
+ * Preflight the bitmap to find out total number of blocks that need
+ * relocation.
*
+ * Note: Since allocLimit is set to the location of new alternate volume
+ * header, the check below does not account for blocks allocated for old
+ * alternate volume header.
*/
- if (blkstomove >= hfs_freeblks(hfsmp, 1)) {
- printf("hfs_truncatefs: insufficient space (need %u blocks; have %u blocks)\n", blkstomove, hfs_freeblks(hfsmp, 1));
- error = ENOSPC;
- goto out;
+ error = hfs_count_allocated(hfsmp, allocLimit, reclaimblks, &(hfsmp->hfs_resize_totalblocks));
+ if (error) {
+ printf ("hfs_reclaimspace: Unable to determine total blocks to reclaim error=%d\n", error);
+ return error;
+ }
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaimspace: Total number of blocks to reclaim = %u\n", hfsmp->hfs_resize_totalblocks);
}
- hfsmp->hfs_resize_filesmoved = 0;
- hfsmp->hfs_resize_totalfiles = filecnt;
-
- /* Now move any files that are in the way. */
- for (i = 0; i < filecnt; ++i) {
- struct vnode * rvp;
- struct cnode * cp;
- if (hfs_vget(hfsmp, cnidbufp[i], &vp, 0) != 0)
- continue;
+ /* Just to be safe, sync the content of the journal to the disk before we proceed */
+ hfs_journal_flush(hfsmp, TRUE);
- /* Relocating directory hard links is not supported, so we
- * punt (see radar 6217026). */
- cp = VTOC(vp);
- if ((cp->c_flag & C_HARDLINK) && vnode_isdir(vp)) {
- printf("hfs_reclaimspace: unable to relocate directory hard link %d\n", cp->c_cnid);
- error = EINVAL;
- goto out;
- }
+ /* First, relocate journal file blocks if they're in the way.
+ * Doing this first will make sure that journal relocate code
+ * gets access to contiguous blocks on disk first. The journal
+ * file has to be contiguous on the disk, otherwise resize will
+ * fail.
+ */
+ error = hfs_reclaim_journal_file(hfsmp, allocLimit, context);
+ if (error) {
+ printf("hfs_reclaimspace: hfs_reclaim_journal_file failed (%d)\n", error);
+ return error;
+ }
+
+ /* Relocate journal info block blocks if they're in the way. */
+ error = hfs_reclaim_journal_info_block(hfsmp, allocLimit, context);
+ if (error) {
+ printf("hfs_reclaimspace: hfs_reclaim_journal_info_block failed (%d)\n", error);
+ return error;
+ }
- /* Relocate any data fork blocks. */
- if (VTOF(vp) && VTOF(vp)->ff_blocks > 0) {
- error = hfs_relocate(vp, hfsmp->hfs_metazone_end + 1, kauth_cred_get(), current_proc());
- }
- if (error)
- break;
+ /* Relocate extents of the Extents B-tree if they're in the way.
+ * Relocating extents btree before other btrees is important as
+ * this will provide access to largest contiguous block range on
+ * the disk for relocating extents btree. Note that extents btree
+ * can only have maximum of 8 extents.
+ */
+ error = hfs_reclaim_file(hfsmp, hfsmp->hfs_extents_vp, kHFSExtentsFileID,
+ kHFSDataForkType, allocLimit, context);
+ if (error) {
+ printf("hfs_reclaimspace: reclaim extents b-tree returned %d\n", error);
+ return error;
+ }
- /* Relocate any resource fork blocks. */
- if ((cp->c_blocks - (VTOF(vp) ? VTOF((vp))->ff_blocks : 0)) > 0) {
- error = hfs_vgetrsrc(hfsmp, vp, &rvp, TRUE);
- if (error)
- break;
- error = hfs_relocate(rvp, hfsmp->hfs_metazone_end + 1, kauth_cred_get(), current_proc());
- VTOC(rvp)->c_flag |= C_NEED_RVNODE_PUT;
- if (error)
- break;
- }
- hfs_unlock(cp);
- vnode_put(vp);
- vp = NULL;
+ /* Relocate extents of the Allocation file if they're in the way. */
+ error = hfs_reclaim_file(hfsmp, hfsmp->hfs_allocation_vp, kHFSAllocationFileID,
+ kHFSDataForkType, allocLimit, context);
+ if (error) {
+ printf("hfs_reclaimspace: reclaim allocation file returned %d\n", error);
+ return error;
+ }
- ++hfsmp->hfs_resize_filesmoved;
+ /* Relocate extents of the Catalog B-tree if they're in the way. */
+ error = hfs_reclaim_file(hfsmp, hfsmp->hfs_catalog_vp, kHFSCatalogFileID,
+ kHFSDataForkType, allocLimit, context);
+ if (error) {
+ printf("hfs_reclaimspace: reclaim catalog b-tree returned %d\n", error);
+ return error;
+ }
- /* Report intermediate progress. */
- if (filecnt > 100) {
- int progress;
+ /* Relocate extents of the Attributes B-tree if they're in the way. */
+ error = hfs_reclaim_file(hfsmp, hfsmp->hfs_attribute_vp, kHFSAttributesFileID,
+ kHFSDataForkType, allocLimit, context);
+ if (error) {
+ printf("hfs_reclaimspace: reclaim attribute b-tree returned %d\n", error);
+ return error;
+ }
- progress = (i * 100) / filecnt;
- if (progress > (lastprogress + 9)) {
- printf("hfs_reclaimspace: %d%% done...\n", progress);
- lastprogress = progress;
- }
- }
+ /* Relocate extents of the Startup File if there is one and they're in the way. */
+ error = hfs_reclaim_file(hfsmp, hfsmp->hfs_startup_vp, kHFSStartupFileID,
+ kHFSDataForkType, allocLimit, context);
+ if (error) {
+ printf("hfs_reclaimspace: reclaim startup file returned %d\n", error);
+ return error;
}
- if (vp) {
- hfs_unlock(VTOC(vp));
- vnode_put(vp);
- vp = NULL;
+
+ /*
+ * We need to make sure the alternate volume header gets flushed if we moved
+ * any extents in the volume header. But we need to do that before
+ * shrinking the size of the volume, or else the journal code will panic
+ * with an invalid (too large) block number.
+ *
+ * Note that blks_moved will be set if ANY extent was moved, even
+ * if it was just an overflow extent. In this case, the journal_flush isn't
+ * strictly required, but shouldn't hurt.
+ */
+ if (hfsmp->hfs_resize_blocksmoved) {
+ hfs_journal_flush(hfsmp, TRUE);
}
- if (hfsmp->hfs_resize_filesmoved != 0) {
- printf("hfs_reclaimspace: relocated %d files on \"%s\"\n",
- (int)hfsmp->hfs_resize_filesmoved, hfsmp->vcbVN);
+
+ /* Reclaim extents from catalog file records */
+ error = hfs_reclaim_filespace(hfsmp, allocLimit, context);
+ if (error) {
+ printf ("hfs_reclaimspace: hfs_reclaim_filespace returned error=%d\n", error);
+ return error;
}
-out:
- kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator));
- kmem_free(kernel_map, (vm_offset_t)cnidbufp, cnidbufsize);
- /*
- * Restore the roving allocation pointer on errors.
- * (but only if we didn't move any files)
- */
- if (error && hfsmp->hfs_resize_filesmoved == 0) {
- HFS_UPDATE_NEXT_ALLOCATION(hfsmp, saved_next_allocation);
+ /* Reclaim extents from extent-based extended attributes, if any */
+ error = hfs_reclaim_xattrspace(hfsmp, allocLimit, context);
+ if (error) {
+ printf ("hfs_reclaimspace: hfs_reclaim_xattrspace returned error=%d\n", error);
+ return error;
}
- return (error);
+
+ return error;
}
/*
- * Check if there are any overflow extents that overlap.
+ * Check if there are any extents (including overflow extents) that overlap
+ * into the disk space that is being reclaimed.
+ *
+ * Output -
+ * true - One of the extents need to be relocated
+ * false - No overflow extents need to be relocated, or there was an error
*/
static int
-hfs_overlapped_overflow_extents(struct hfsmount *hfsmp, u_int32_t startblk, u_int32_t catblks, u_int32_t fileID, int rsrcfork)
+hfs_file_extent_overlaps(struct hfsmount *hfsmp, u_int32_t allocLimit, struct HFSPlusCatalogFile *filerec)
{
struct BTreeIterator * iterator = NULL;
struct FSBufferDescriptor btdata;
HFSPlusExtentRecord extrec;
HFSPlusExtentKey *extkeyptr;
FCB *fcb;
- u_int32_t block;
- u_int8_t forktype;
- int overlapped = 0;
- int i;
+ int overlapped = false;
+ int i, j;
int error;
+ int lockflags = 0;
+ u_int32_t endblock;
+
+ /* Check if data fork overlaps the target space */
+ for (i = 0; i < kHFSPlusExtentDensity; ++i) {
+ if (filerec->dataFork.extents[i].blockCount == 0) {
+ break;
+ }
+ endblock = filerec->dataFork.extents[i].startBlock +
+ filerec->dataFork.extents[i].blockCount;
+ if (endblock > allocLimit) {
+ overlapped = true;
+ goto out;
+ }
+ }
+
+ /* Check if resource fork overlaps the target space */
+ for (j = 0; j < kHFSPlusExtentDensity; ++j) {
+ if (filerec->resourceFork.extents[j].blockCount == 0) {
+ break;
+ }
+ endblock = filerec->resourceFork.extents[j].startBlock +
+ filerec->resourceFork.extents[j].blockCount;
+ if (endblock > allocLimit) {
+ overlapped = true;
+ goto out;
+ }
+ }
+
+ /* Return back if there are no overflow extents for this file */
+ if ((i < kHFSPlusExtentDensity) && (j < kHFSPlusExtentDensity)) {
+ goto out;
+ }
- forktype = rsrcfork ? 0xFF : 0;
if (kmem_alloc(kernel_map, (vm_offset_t *)&iterator, sizeof(*iterator))) {
- return (0);
+ return 0;
}
bzero(iterator, sizeof(*iterator));
extkeyptr = (HFSPlusExtentKey *)&iterator->key;
extkeyptr->keyLength = kHFSPlusExtentKeyMaximumLength;
- extkeyptr->forkType = forktype;
- extkeyptr->fileID = fileID;
- extkeyptr->startBlock = catblks;
+ extkeyptr->forkType = 0;
+ extkeyptr->fileID = filerec->fileID;
+ extkeyptr->startBlock = 0;
btdata.bufferAddress = &extrec;
btdata.itemSize = sizeof(extrec);
fcb = VTOF(hfsmp->hfs_extents_vp);
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_EXTENTS, HFS_SHARED_LOCK);
+
+ /* This will position the iterator just before the first overflow
+ * extent record for given fileID. It will always return btNotFound,
+ * so we special case the error code.
+ */
error = BTSearchRecord(fcb, iterator, &btdata, NULL, iterator);
+ if (error && (error != btNotFound)) {
+ goto out;
+ }
+
+ /* BTIterateRecord() might return error if the btree is empty, and
+ * therefore we return that the extent does not overflow to the caller
+ */
+ error = BTIterateRecord(fcb, kBTreeNextRecord, iterator, &btdata, NULL);
while (error == 0) {
/* Stop when we encounter a different file. */
- if ((extkeyptr->fileID != fileID) ||
- (extkeyptr->forkType != forktype)) {
+ if (extkeyptr->fileID != filerec->fileID) {
break;
}
- /*
- * Check if the file overlaps target space.
- */
+ /* Check if any of the forks exist in the target space. */
for (i = 0; i < kHFSPlusExtentDensity; ++i) {
if (extrec[i].blockCount == 0) {
break;
}
- block = extrec[i].startBlock + extrec[i].blockCount;
- if (block >= startblk) {
- overlapped = 1;
- break;
+ endblock = extrec[i].startBlock + extrec[i].blockCount;
+ if (endblock > allocLimit) {
+ overlapped = true;
+ goto out;
}
}
/* Look for more records. */
error = BTIterateRecord(fcb, kBTreeNextRecord, iterator, &btdata, NULL);
}
- kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator));
- return (overlapped);
+out:
+ if (lockflags) {
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ }
+ if (iterator) {
+ kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator));
+ }
+ return overlapped;
}
return (ENXIO);
}
- if (hfsmp->hfs_resize_totalfiles > 0)
- *progress = (hfsmp->hfs_resize_filesmoved * 100) / hfsmp->hfs_resize_totalfiles;
- else
+ if (hfsmp->hfs_resize_totalblocks > 0) {
+ *progress = (u_int32_t)((hfsmp->hfs_resize_blocksmoved * 100ULL) / hfsmp->hfs_resize_totalblocks);
+ } else {
*progress = 0;
+ }
return (0);
}
{
#define HFS_ATTR_CMN_VALIDMASK (ATTR_CMN_VALIDMASK & ~(ATTR_CMN_NAMEDATTRCOUNT | ATTR_CMN_NAMEDATTRLIST))
#define HFS_ATTR_FILE_VALIDMASK (ATTR_FILE_VALIDMASK & ~(ATTR_FILE_FILETYPE | ATTR_FILE_FORKCOUNT | ATTR_FILE_FORKLIST))
+#define HFS_ATTR_CMN_VOL_VALIDMASK (ATTR_CMN_VALIDMASK & ~(ATTR_CMN_NAMEDATTRCOUNT | ATTR_CMN_NAMEDATTRLIST | ATTR_CMN_ACCTIME))
ExtendedVCB *vcb = VFSTOVCB(mp);
struct hfsmount *hfsmp = VFSTOHFS(mp);
if (VFSATTR_IS_ACTIVE(fsap, f_attributes)) {
vol_attributes_attr_t *attrp = &fsap->f_attributes;
- attrp->validattr.commonattr = HFS_ATTR_CMN_VALIDMASK;
+ attrp->validattr.commonattr = HFS_ATTR_CMN_VOL_VALIDMASK;
attrp->validattr.volattr = ATTR_VOL_VALIDMASK & ~ATTR_VOL_INFO;
attrp->validattr.dirattr = ATTR_DIR_VALIDMASK;
attrp->validattr.fileattr = HFS_ATTR_FILE_VALIDMASK;
attrp->validattr.forkattr = 0;
- attrp->nativeattr.commonattr = HFS_ATTR_CMN_VALIDMASK;
+ attrp->nativeattr.commonattr = HFS_ATTR_CMN_VOL_VALIDMASK;
attrp->nativeattr.volattr = ATTR_VOL_VALIDMASK & ~ATTR_VOL_INFO;
attrp->nativeattr.dirattr = ATTR_DIR_VALIDMASK;
attrp->nativeattr.fileattr = HFS_ATTR_FILE_VALIDMASK;
attrp->nativeattr.forkattr = 0;
VFSATTR_SET_SUPPORTED(fsap, f_attributes);
}
- fsap->f_create_time.tv_sec = hfsmp->vcbCrDate;
+ fsap->f_create_time.tv_sec = hfsmp->hfs_itime;
fsap->f_create_time.tv_nsec = 0;
VFSATTR_SET_SUPPORTED(fsap, f_create_time);
fsap->f_modify_time.tv_sec = hfsmp->vcbLsMod;
cat_cookie_t cookie;
int lockflags;
int error = 0;
+ char converted_volname[256];
+ size_t volname_length = 0;
+ size_t conv_volname_length = 0;
+
/*
* Ignore attempts to rename a volume to a zero-length name.
*/
if (!error) {
strlcpy((char *)vcb->vcbVN, name, sizeof(vcb->vcbVN));
+ volname_length = strlen ((const char*)vcb->vcbVN);
+#define DKIOCCSSETLVNAME _IOW('d', 198, char[1024])
+ /* Send the volume name down to CoreStorage if necessary */
+ error = utf8_normalizestr(vcb->vcbVN, volname_length, (u_int8_t*)converted_volname, &conv_volname_length, 256, UTF_PRECOMPOSED);
+ if (error == 0) {
+ (void) VNOP_IOCTL (hfsmp->hfs_devvp, DKIOCCSSETLVNAME, converted_volname, 0, vfs_context_current());
+ }
+ error = 0;
}
-
+
hfs_systemfile_unlock(hfsmp, lockflags);
cat_postflight(hfsmp, &cookie, p);
struct hfs_mount_args *args = NULL;
/* Replay allowed only on raw devices */
- if (!vnode_ischr(devvp)) {
+ if (!vnode_ischr(devvp) && !vnode_isblk(devvp)) {
retval = EINVAL;
goto out;
}
bzero(args, sizeof(struct hfs_mount_args));
retval = hfs_mountfs(devvp, mp, args, 1, context);
- buf_flushdirtyblks(devvp, MNT_WAIT, 0, "hfs_journal_replay");
+ buf_flushdirtyblks(devvp, TRUE, 0, "hfs_journal_replay");
+
+ /* FSYNC the devnode to be sure all data has been flushed */
+ retval = VNOP_FSYNC(devvp, MNT_WAIT, context);
out:
if (mp) {