X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/b0d623f7f2ae71ed96e60569f61f9a9a27016e80..13f56ec4e58bf8687e2a68032c093c0213dd519b:/bsd/hfs/hfs_vfsops.c diff --git a/bsd/hfs/hfs_vfsops.c b/bsd/hfs/hfs_vfsops.c index 8148697b2..4e5b76b14 100644 --- a/bsd/hfs/hfs_vfsops.c +++ b/bsd/hfs/hfs_vfsops.c @@ -1,5 +1,5 @@ /* - * Copyright (c) 1999-2009 Apple Inc. All rights reserved. + * Copyright (c) 1999-2012 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * @@ -87,6 +87,7 @@ #include #include #include +#include #include @@ -105,20 +106,34 @@ #include "hfs_endian.h" #include "hfs_hotfiles.h" #include "hfs_quota.h" +#include "hfs_btreeio.h" #include "hfscommon/headers/FileMgrInternal.h" #include "hfscommon/headers/BTreesInternal.h" +#if CONFIG_PROTECT +#include +#endif + +#if CONFIG_HFS_ALLOC_RBTREE +#include "hfscommon/headers/HybridAllocator.h" +#endif + +#define HFS_MOUNT_DEBUG 1 + #if HFS_DIAGNOSTIC int hfs_dbg_all = 0; int hfs_dbg_err = 0; #endif +/* Enable/disable debugging code for live volume resizing */ +int hfs_resize_debug = 0; lck_grp_attr_t * hfs_group_attr; lck_attr_t * hfs_lock_attr; lck_grp_t * hfs_mutex_group; lck_grp_t * hfs_rwlock_group; +lck_grp_t * hfs_spinlock_group; extern struct vnodeopv_desc hfs_vnodeop_opv_desc; extern struct vnodeopv_desc hfs_std_vnodeop_opv_desc; @@ -132,30 +147,30 @@ static int hfs_flushfiles(struct mount *, int, struct proc *); static int hfs_flushMDB(struct hfsmount *hfsmp, int waitfor, int altflush); static int hfs_getmountpoint(struct vnode *vp, struct hfsmount **hfsmpp); static int hfs_init(struct vfsconf *vfsp); -static int hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t context); -static int hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, int journal_replay_only, vfs_context_t context); -static int hfs_reload(struct mount *mp); static int hfs_vfs_root(struct mount *mp, struct vnode **vpp, vfs_context_t context); static int hfs_quotactl(struct mount *, int, uid_t, caddr_t, vfs_context_t context); static int hfs_start(struct mount *mp, int flags, vfs_context_t context); -static int hfs_statfs(struct mount *mp, register struct vfsstatfs *sbp, vfs_context_t context); -static int hfs_sync(struct mount *mp, int waitfor, vfs_context_t context); -static int hfs_sysctl(int *name, u_int namelen, user_addr_t oldp, size_t *oldlenp, - user_addr_t newp, size_t newlen, vfs_context_t context); -static int hfs_unmount(struct mount *mp, int mntflags, vfs_context_t context); static int hfs_vptofh(struct vnode *vp, int *fhlenp, unsigned char *fhp, vfs_context_t context); - -static int hfs_reclaimspace(struct hfsmount *hfsmp, u_int32_t startblk, u_int32_t reclaimblks, vfs_context_t context); -static int hfs_overlapped_overflow_extents(struct hfsmount *hfsmp, u_int32_t startblk, - u_int32_t catblks, u_int32_t fileID, int rsrcfork); +static int hfs_file_extent_overlaps(struct hfsmount *hfsmp, u_int32_t allocLimit, struct HFSPlusCatalogFile *filerec); static int hfs_journal_replay(vnode_t devvp, vfs_context_t context); +static int hfs_reclaimspace(struct hfsmount *hfsmp, u_int32_t allocLimit, u_int32_t reclaimblks, vfs_context_t context); +void hfs_initialize_allocator (struct hfsmount *hfsmp); +int hfs_teardown_allocator (struct hfsmount *hfsmp); + +int hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t context); +int hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, int journal_replay_only, vfs_context_t context); +int hfs_reload(struct mount *mp); +int hfs_statfs(struct mount *mp, register struct vfsstatfs *sbp, vfs_context_t context); +int hfs_sync(struct mount *mp, int waitfor, vfs_context_t context); +int hfs_sysctl(int *name, u_int namelen, user_addr_t oldp, size_t *oldlenp, + user_addr_t newp, size_t newlen, vfs_context_t context); +int hfs_unmount(struct mount *mp, int mntflags, vfs_context_t context); /* * Called by vfs_mountroot when mounting HFS Plus as root. */ -__private_extern__ int hfs_mountroot(mount_t mp, vnode_t rvp, vfs_context_t context) { @@ -164,8 +179,13 @@ hfs_mountroot(mount_t mp, vnode_t rvp, vfs_context_t context) struct vfsstatfs *vfsp; int error; - if ((error = hfs_mountfs(rvp, mp, NULL, 0, context))) + if ((error = hfs_mountfs(rvp, mp, NULL, 0, context))) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountroot: hfs_mountfs returned %d, rvp (%p) name (%s) \n", + error, rvp, (rvp->v_name ? rvp->v_name : "unknown device")); + } return (error); + } /* Init hfsmp */ hfsmp = VFSTOHFS(mp); @@ -193,7 +213,7 @@ hfs_mountroot(mount_t mp, vnode_t rvp, vfs_context_t context) * mount system call */ -static int +int hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t context) { struct proc *p = vfs_context_proc(context); @@ -203,6 +223,9 @@ hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t conte u_int32_t cmdflags; if ((retval = copyin(data, (caddr_t)&args, sizeof(args)))) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mount: copyin returned %d for fs\n", retval); + } return (retval); } cmdflags = (u_int32_t)vfs_flags(mp) & MNT_CMDFLAGS; @@ -211,10 +234,19 @@ hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t conte /* Reload incore data after an fsck. */ if (cmdflags & MNT_RELOAD) { - if (vfs_isrdonly(mp)) - return hfs_reload(mp); - else + if (vfs_isrdonly(mp)) { + int error = hfs_reload(mp); + if (error && HFS_MOUNT_DEBUG) { + printf("hfs_mount: hfs_reload returned %d on %s \n", error, hfsmp->vcbVN); + } + return error; + } + else { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mount: MNT_RELOAD not supported on rdwr filesystem %s\n", hfsmp->vcbVN); + } return (EINVAL); + } } /* Change to a read-only file system. */ @@ -226,16 +258,19 @@ hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t conte * is in progress and therefore block any further * modifications to the file system. */ - hfs_global_exclusive_lock_acquire(hfsmp); + hfs_lock_global (hfsmp, HFS_EXCLUSIVE_LOCK); hfsmp->hfs_flags |= HFS_RDONLY_DOWNGRADE; hfsmp->hfs_downgrading_proc = current_thread(); - hfs_global_exclusive_lock_release(hfsmp); + hfs_unlock_global (hfsmp); /* use VFS_SYNC to push out System (btree) files */ retval = VFS_SYNC(mp, MNT_WAIT, context); if (retval && ((cmdflags & MNT_FORCE) == 0)) { hfsmp->hfs_flags &= ~HFS_RDONLY_DOWNGRADE; hfsmp->hfs_downgrading_proc = NULL; + if (HFS_MOUNT_DEBUG) { + printf("hfs_mount: VFS_SYNC returned %d during b-tree sync of %s \n", retval, hfsmp->vcbVN); + } goto out; } @@ -246,6 +281,9 @@ hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t conte if ((retval = hfs_flushfiles(mp, flags, p))) { hfsmp->hfs_flags &= ~HFS_RDONLY_DOWNGRADE; hfsmp->hfs_downgrading_proc = NULL; + if (HFS_MOUNT_DEBUG) { + printf("hfs_mount: hfs_flushfiles returned %d on %s \n", retval, hfsmp->vcbVN); + } goto out; } @@ -265,13 +303,16 @@ hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t conte } } if (retval) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mount: FSYNC on devvp returned %d for fs %s\n", retval, hfsmp->vcbVN); + } hfsmp->hfs_flags &= ~HFS_RDONLY_DOWNGRADE; hfsmp->hfs_downgrading_proc = NULL; hfsmp->hfs_flags &= ~HFS_READ_ONLY; goto out; } if (hfsmp->jnl) { - hfs_global_exclusive_lock_acquire(hfsmp); + hfs_lock_global (hfsmp, HFS_EXCLUSIVE_LOCK); journal_close(hfsmp->jnl); hfsmp->jnl = NULL; @@ -280,14 +321,20 @@ hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t conte // access to the jvp because we may need // it later if we go back to being read-write. - hfs_global_exclusive_lock_release(hfsmp); + hfs_unlock_global (hfsmp); } +#if CONFIG_HFS_ALLOC_RBTREE + (void) hfs_teardown_allocator(hfsmp); +#endif hfsmp->hfs_downgrading_proc = NULL; } /* Change to a writable file system. */ if (vfs_iswriteupgrade(mp)) { +#if CONFIG_HFS_ALLOC_RBTREE + thread_t allocator_thread; +#endif /* * On inconsistent disks, do not allow read-write mount @@ -295,6 +342,9 @@ hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t conte */ if (!(vfs_flags(mp) & MNT_ROOTFS) && (hfsmp->vcbAtrb & kHFSVolumeInconsistentMask)) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mount: attempting to mount inconsistent non-root volume %s\n", (hfsmp->vcbVN)); + } retval = EINVAL; goto out; } @@ -309,39 +359,52 @@ hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t conte if (hfsmp->hfs_flags & HFS_NEED_JNL_RESET) { jflags = JOURNAL_RESET; - } else { + } else { jflags = 0; - } - - hfs_global_exclusive_lock_acquire(hfsmp); - - hfsmp->jnl = journal_open(hfsmp->jvp, - (hfsmp->jnl_start * HFSTOVCB(hfsmp)->blockSize) + (off_t)HFSTOVCB(hfsmp)->hfsPlusIOPosOffset, - hfsmp->jnl_size, - hfsmp->hfs_devvp, - hfsmp->hfs_logical_block_size, - jflags, - 0, - hfs_sync_metadata, hfsmp->hfs_mp); - - hfs_global_exclusive_lock_release(hfsmp); - - if (hfsmp->jnl == NULL) { - retval = EINVAL; - goto out; - } else { - hfsmp->hfs_flags &= ~HFS_NEED_JNL_RESET; - } + } + + hfs_lock_global (hfsmp, HFS_EXCLUSIVE_LOCK); + + hfsmp->jnl = journal_open(hfsmp->jvp, + (hfsmp->jnl_start * HFSTOVCB(hfsmp)->blockSize) + (off_t)HFSTOVCB(hfsmp)->hfsPlusIOPosOffset, + hfsmp->jnl_size, + hfsmp->hfs_devvp, + hfsmp->hfs_logical_block_size, + jflags, + 0, + hfs_sync_metadata, hfsmp->hfs_mp); + + /* + * Set up the trim callback function so that we can add + * recently freed extents to the free extent cache once + * the transaction that freed them is written to the + * journal on disk. + */ + if (hfsmp->jnl) + journal_trim_set_callback(hfsmp->jnl, hfs_trim_callback, hfsmp); + + hfs_unlock_global (hfsmp); + + if (hfsmp->jnl == NULL) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mount: journal_open == NULL; couldn't be opened on %s \n", (hfsmp->vcbVN)); + } + retval = EINVAL; + goto out; + } else { + hfsmp->hfs_flags &= ~HFS_NEED_JNL_RESET; + } } /* See if we need to erase unused Catalog nodes due to . */ retval = hfs_erase_unused_nodes(hfsmp); - if (retval != E_NONE) + if (retval != E_NONE) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mount: hfs_erase_unused_nodes returned %d for fs %s\n", retval, hfsmp->vcbVN); + } goto out; - - /* Only clear HFS_READ_ONLY after a successful write */ - hfsmp->hfs_flags &= ~HFS_READ_ONLY; + } /* If this mount point was downgraded from read-write * to read-only, clear that information as we are now @@ -354,8 +417,16 @@ hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t conte hfsmp->vcbAtrb &= ~kHFSVolumeUnmountedMask; retval = hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0); - if (retval != E_NONE) + if (retval != E_NONE) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mount: hfs_flushvolumeheader returned %d for fs %s\n", retval, hfsmp->vcbVN); + } goto out; + } + + /* Only clear HFS_READ_ONLY after a successful write */ + hfsmp->hfs_flags &= ~HFS_READ_ONLY; + if (!(hfsmp->hfs_flags & (HFS_READ_ONLY | HFS_STANDARD))) { /* Setup private/hidden directories for hardlinks. */ @@ -367,7 +438,8 @@ hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t conte /* * Allow hot file clustering if conditions allow. */ - if (hfsmp->hfs_flags & HFS_METADATA_ZONE) { + if ((hfsmp->hfs_flags & HFS_METADATA_ZONE) && + ((hfsmp->hfs_flags & HFS_SSD) == 0)) { (void) hfs_recording_init(hfsmp); } /* Force ACLs on HFS+ file systems. */ @@ -375,10 +447,45 @@ hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t conte vfs_setextendedsecurity(HFSTOVFS(hfsmp)); } } + +#if CONFIG_HFS_ALLOC_RBTREE + /* + * Like the normal mount case, we need to handle creation of the allocation red-black tree + * if we're upgrading from read-only to read-write. + * + * We spawn a thread to create the pair of red-black trees for this volume. + * However, in so doing, we must be careful to ensure that if this thread is still + * running after mount has finished, it doesn't interfere with an unmount. Specifically, + * we'll need to set a bit that indicates we're in progress building the trees here. + * Unmount will check for this bit, and then if it's set, mark a corresponding bit that + * notifies the tree generation code that an unmount is waiting. Also, mark the extent + * tree flags that the allocator is enabled for use before we spawn the thread that will start + * scanning the RB tree. + * + * Only do this if we're operating on a read-write mount (we wouldn't care for read-only), + * which has not previously encountered a bad error on the red-black tree code. Also, don't + * try to re-build a tree that already exists. + */ + + if (hfsmp->extent_tree_flags == 0) { + hfsmp->extent_tree_flags |= (HFS_ALLOC_TREEBUILD_INFLIGHT | HFS_ALLOC_RB_ENABLED); + /* Initialize EOF counter so that the thread can assume it started at initial values */ + hfsmp->offset_block_end = 0; + + InitTree(hfsmp); + + kernel_thread_start ((thread_continue_t) hfs_initialize_allocator , hfsmp, &allocator_thread); + thread_deallocate(allocator_thread); + } + +#endif } /* Update file system parameters. */ retval = hfs_changefs(mp, &args); + if (retval && HFS_MOUNT_DEBUG) { + printf("hfs_mount: hfs_changefs returned %d for %s\n", retval, hfsmp->vcbVN); + } } else /* not an update request */ { @@ -386,6 +493,44 @@ hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t conte vfs_setflags(mp, (u_int64_t)((unsigned int)MNT_DOVOLFS)); retval = hfs_mountfs(devvp, mp, &args, 0, context); + if (retval && HFS_MOUNT_DEBUG) { + printf("hfs_mount: hfs_mountfs returned %d\n", retval); + } +#if CONFIG_PROTECT + /* + * If above mount call was successful, and this mount is content protection + * enabled, then verify the on-disk EA on the root to ensure that the filesystem + * is of a suitable vintage to allow the mount to proceed. + */ + if ((retval == 0) && (cp_fs_protected (mp))) { + int err = 0; + struct cp_root_xattr xattr; + bzero (&xattr, sizeof(struct cp_root_xattr)); + hfsmp = vfs_fsprivate(mp); + + /* go get the EA to get the version information */ + err = cp_getrootxattr (hfsmp, &xattr); + /* If there was no EA there, then write one out. */ + if (err == ENOATTR) { + bzero(&xattr, sizeof(struct cp_root_xattr)); + xattr.major_version = CP_CURRENT_MAJOR_VERS; + xattr.minor_version = CP_CURRENT_MINOR_VERS; + xattr.flags = 0; + + err = cp_setrootxattr (hfsmp, &xattr); + } + /* + * For any other error, including having an out of date CP version in the + * EA, or for an error out of cp_setrootxattr, deny the mount + * and do not proceed further. + */ + if (err || xattr.major_version != CP_CURRENT_MAJOR_VERS) { + /* Deny the mount and tear down. */ + retval = EPERM; + (void) hfs_unmount (mp, MNT_FORCE, context); + } + } +#endif } out: if (retval == 0) { @@ -627,7 +772,7 @@ hfs_reload_callback(struct vnode *vp, void *cargs) /* * Re-read cnode data for all active vnodes (non-metadata files). */ - if (!vnode_issystem(vp) && !VNODE_IS_RSRC(vp)) { + if (!vnode_issystem(vp) && !VNODE_IS_RSRC(vp) && (cp->c_fileid >= kHFSFirstUserCatalogNodeID)) { struct cat_fork *datafork; struct cat_desc desc; @@ -661,7 +806,7 @@ hfs_reload_callback(struct vnode *vp, void *cargs) * re-load B-tree header data. * re-read cnode data for all active vnodes. */ -static int +int hfs_reload(struct mount *mountp) { register struct vnode *devvp; @@ -855,7 +1000,7 @@ hfs_syncer(void *arg0, void *unused) // if (hfsmp->hfs_mp->mnt_pending_write_size > hfsmp->hfs_max_pending_io) { int counter=0; - uint64_t pending_io, start, rate; + uint64_t pending_io, start, rate = 0; no_max = 0; @@ -875,7 +1020,7 @@ hfs_syncer(void *arg0, void *unused) } if (hfsmp->jnl) { - journal_flush(hfsmp->jnl); + journal_flush(hfsmp->jnl, FALSE); } else { hfs_sync(hfsmp->hfs_mp, MNT_WAIT, vfs_context_kernel()); } @@ -883,7 +1028,9 @@ hfs_syncer(void *arg0, void *unused) clock_get_calendar_microtime(&secs, &usecs); now = ((uint64_t)secs * 1000000ULL) + (uint64_t)usecs; hfsmp->hfs_last_sync_time = now; - rate = ((pending_io * 1000000ULL) / (now - start)); // yields bytes per second + if (now != start) { + rate = ((pending_io * 1000000ULL) / (now - start)); // yields bytes per second + } hfs_end_transaction(hfsmp); @@ -893,7 +1040,7 @@ hfs_syncer(void *arg0, void *unused) // than 2 seconds, adjust hfs_max_pending_io so that we // will allow about 1.5 seconds of i/o to queue up. // - if ((now - start) >= 300000) { + if (((now - start) >= 300000) && (rate != 0)) { uint64_t scale = (pending_io * 100) / rate; if (scale < 100 || scale > 200) { @@ -916,11 +1063,11 @@ hfs_syncer(void *arg0, void *unused) // now. Else we defer the sync and reschedule it. // if (hfsmp->jnl) { - lck_rw_lock_shared(&hfsmp->hfs_global_lock); + hfs_lock_global (hfsmp, HFS_SHARED_LOCK); - journal_flush(hfsmp->jnl); + journal_flush(hfsmp->jnl, FALSE); - lck_rw_unlock_shared(&hfsmp->hfs_global_lock); + hfs_unlock_global (hfsmp); } else { hfs_sync(hfsmp->hfs_mp, MNT_WAIT, vfs_context_kernel()); } @@ -955,10 +1102,119 @@ hfs_syncer(void *arg0, void *unused) extern int IOBSDIsMediaEjectable( const char *cdev_name ); +/* + * Initialization code for Red-Black Tree Allocator + * + * This function will build the two red-black trees necessary for allocating space + * from the metadata zone as well as normal allocations. Currently, we use + * an advisory read to get most of the data into the buffer cache. + * This function is intended to be run in a separate thread so as not to slow down mount. + * + */ + +void +hfs_initialize_allocator (struct hfsmount *hfsmp) { + +#if CONFIG_HFS_ALLOC_RBTREE + u_int32_t err; + + /* + * Take the allocation file lock. Journal transactions will block until + * we're done here. + */ + int flags = hfs_systemfile_lock(hfsmp, SFL_BITMAP, HFS_EXCLUSIVE_LOCK); + + /* + * GenerateTree assumes that the bitmap lock is held when you call the function. + * It will drop and re-acquire the lock periodically as needed to let other allocations + * through. It returns with the bitmap lock held. Since we only maintain one tree, + * we don't need to specify a start block (always starts at 0). + */ + err = GenerateTree(hfsmp, hfsmp->totalBlocks, &flags, 1); + if (err) { + goto bailout; + } + /* Mark offset tree as built */ + hfsmp->extent_tree_flags |= HFS_ALLOC_RB_ACTIVE; + +bailout: + /* + * GenerateTree may drop the bitmap lock during operation in order to give other + * threads a chance to allocate blocks, but it will always return with the lock held, so + * we don't need to re-grab the lock in order to update the TREEBUILD_INFLIGHT bit. + */ + hfsmp->extent_tree_flags &= ~HFS_ALLOC_TREEBUILD_INFLIGHT; + if (err != 0) { + /* Wakeup any waiters on the allocation bitmap lock */ + wakeup((caddr_t)&hfsmp->extent_tree_flags); + } + + hfs_systemfile_unlock(hfsmp, flags); +#else +#pragma unused (hfsmp) +#endif +} + + +/* + * Teardown code for the Red-Black Tree allocator. + * This function consolidates the code which serializes with respect + * to a thread that may be potentially still building the tree when we need to begin + * tearing it down. Since the red-black tree may not be live when we enter this function + * we return: + * 1 -> Tree was live. + * 0 -> Tree was not active at time of call. + */ + +int +hfs_teardown_allocator (struct hfsmount *hfsmp) { + int rb_used = 0; + +#if CONFIG_HFS_ALLOC_RBTREE + + int flags = 0; + + /* + * Check to see if the tree-generation is still on-going. + * If it is, then block until it's done. + */ + + flags = hfs_systemfile_lock(hfsmp, SFL_BITMAP, HFS_EXCLUSIVE_LOCK); + + + while (hfsmp->extent_tree_flags & HFS_ALLOC_TREEBUILD_INFLIGHT) { + hfsmp->extent_tree_flags |= HFS_ALLOC_TEARDOWN_INFLIGHT; + + lck_rw_sleep(&(VTOC(hfsmp->hfs_allocation_vp))->c_rwlock, LCK_SLEEP_EXCLUSIVE, + &hfsmp->extent_tree_flags, THREAD_UNINT); + } + + if (hfs_isrbtree_active (hfsmp)) { + rb_used = 1; + + /* Tear down the RB Trees while we have the bitmap locked */ + DestroyTrees(hfsmp); + + } + + hfs_systemfile_unlock(hfsmp, flags); +#else + #pragma unused (hfsmp) +#endif + return rb_used; + +} + + +static int hfs_root_unmounted_cleanly = 0; + +SYSCTL_DECL(_vfs_generic); +SYSCTL_INT(_vfs_generic, OID_AUTO, root_unmounted_cleanly, CTLFLAG_RD, &hfs_root_unmounted_cleanly, 0, "Root filesystem was unmounted cleanly"); + /* * Common code for mount and mountroot */ -static int +int hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, int journal_replay_only, vfs_context_t context) { @@ -983,7 +1239,11 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, daddr64_t mdb_offset; int isvirtual = 0; int isroot = 0; - + int isssd; +#if CONFIG_HFS_ALLOC_RBTREE + thread_t allocator_thread; +#endif + if (args == NULL) { /* only hfs_mountroot passes us NULL as the 'args' argument */ isroot = 1; @@ -1004,6 +1264,9 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, /* Get the logical block size (treated as physical block size everywhere) */ if (VNOP_IOCTL(devvp, DKIOCGETBLOCKSIZE, (caddr_t)&log_blksize, 0, context)) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountfs: DKIOCGETBLOCKSIZE failed\n"); + } retval = ENXIO; goto error_exit; } @@ -1017,6 +1280,9 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, retval = VNOP_IOCTL(devvp, DKIOCGETPHYSICALBLOCKSIZE, (caddr_t)&phys_blksize, 0, context); if (retval) { if ((retval != ENOTSUP) && (retval != ENOTTY)) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountfs: DKIOCGETPHYSICALBLOCKSIZE failed\n"); + } retval = ENXIO; goto error_exit; } @@ -1036,6 +1302,9 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, u_int32_t size512 = 512; if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&size512, FWRITE, context)) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountfs: DKIOCSETBLOCKSIZE failed \n"); + } retval = ENXIO; goto error_exit; } @@ -1044,7 +1313,9 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&log_blkcnt, 0, context)) { /* resetting block size may fail if getting block count did */ (void)VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&log_blksize, FWRITE, context); - + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountfs: DKIOCGETBLOCKCOUNT failed\n"); + } retval = ENXIO; goto error_exit; } @@ -1080,11 +1351,17 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, /* Now switch to our preferred physical block size. */ if (log_blksize > 512) { if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&log_blksize, FWRITE, context)) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountfs: DKIOCSETBLOCKSIZE (2) failed\n"); + } retval = ENXIO; goto error_exit; } /* Get the count of physical blocks. */ if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&log_blkcnt, 0, context)) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountfs: DKIOCGETBLOCKCOUNT (2) failed\n"); + } retval = ENXIO; goto error_exit; } @@ -1100,11 +1377,17 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, if ((retval = (int)buf_meta_bread(devvp, HFS_PHYSBLK_ROUNDDOWN(mdb_offset, (phys_blksize/log_blksize)), phys_blksize, cred, &bp))) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountfs: buf_meta_bread failed with %d\n", retval); + } goto error_exit; } MALLOC(mdbp, HFSMasterDirectoryBlock *, kMDBSize, M_TEMP, M_WAITOK); if (mdbp == NULL) { retval = ENOMEM; + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountfs: MALLOC failed\n"); + } goto error_exit; } bcopy((char *)buf_dataptr(bp) + HFS_PRI_OFFSET(phys_blksize), mdbp, kMDBSize); @@ -1113,6 +1396,9 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, MALLOC(hfsmp, struct hfsmount *, sizeof(struct hfsmount), M_HFSMNT, M_WAITOK); if (hfsmp == NULL) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountfs: MALLOC (2) failed\n"); + } retval = ENOMEM; goto error_exit; } @@ -1120,6 +1406,17 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, hfs_chashinit_finish(hfsmp); + /* + * See if the disk is a solid state device. We need this to decide what to do about + * hotfiles. + */ + if (VNOP_IOCTL(devvp, DKIOCISSOLIDSTATE, (caddr_t)&isssd, 0, context) == 0) { + if (isssd) { + hfsmp->hfs_flags |= HFS_SSD; + } + } + + /* * Init the volume information structure */ @@ -1128,7 +1425,8 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, lck_mtx_init(&hfsmp->hfc_mutex, hfs_mutex_group, hfs_lock_attr); lck_rw_init(&hfsmp->hfs_global_lock, hfs_rwlock_group, hfs_lock_attr); lck_rw_init(&hfsmp->hfs_insync, hfs_rwlock_group, hfs_lock_attr); - + lck_spin_init(&hfsmp->vcbFreeExtLock, hfs_spinlock_group, hfs_lock_attr); + vfs_setfsprivate(mp, hfsmp); hfsmp->hfs_mp = mp; /* Make VFSTOHFS work */ hfsmp->hfs_raw_dev = vnode_specrdev(devvp); @@ -1201,6 +1499,9 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, retval = EROFS; goto error_exit; } + + printf("hfs_mountfs: Mounting HFS Standard volumes was deprecated in Mac OS 10.7 \n"); + /* Treat it as if it's read-only and not writeable */ hfsmp->hfs_flags |= HFS_READ_ONLY; hfsmp->hfs_flags &= ~HFS_WRITEABLE_MEDIA; @@ -1272,11 +1573,18 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, log_blksize = 512; if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&log_blksize, FWRITE, context)) { + + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountfs: DKIOCSETBLOCKSIZE (3) failed\n"); + } retval = ENXIO; goto error_exit; } if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&log_blkcnt, 0, context)) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountfs: DKIOCGETBLOCKCOUNT (3) failed\n"); + } retval = ENXIO; goto error_exit; } @@ -1299,8 +1607,12 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, mdb_offset = (daddr64_t)((embeddedOffset / log_blksize) + HFS_PRI_SECTOR(log_blksize)); retval = (int)buf_meta_bread(devvp, HFS_PHYSBLK_ROUNDDOWN(mdb_offset, hfsmp->hfs_log_per_phys), phys_blksize, cred, &bp); - if (retval) + if (retval) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountfs: buf_meta_bread (2) failed with %d\n", retval); + } goto error_exit; + } bcopy((char *)buf_dataptr(bp) + HFS_PRI_OFFSET(phys_blksize), mdbp, 512); buf_brelse(bp); bp = NULL; @@ -1311,6 +1623,10 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, vhp = (HFSPlusVolumeHeader*) mdbp; } + if (isroot) { + hfs_root_unmounted_cleanly = (SWAP_BE32(vhp->attributes) & kHFSVolumeUnmountedMask) != 0; + } + /* * On inconsistent disks, do not allow read-write mount * unless it is the boot volume being mounted. We also @@ -1323,6 +1639,10 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, && (SWAP_BE32(vhp->attributes) & kHFSVolumeInconsistentMask) && !journal_replay_only && !(hfsmp->hfs_flags & HFS_READ_ONLY)) { + + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountfs: failed to mount non-root inconsistent disk\n"); + } retval = EINVAL; goto error_exit; } @@ -1360,6 +1680,9 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, // EROFS is a special error code that means the volume has an external // journal which we couldn't find. in that case we do not want to // rewrite the volume header - we'll just refuse to mount the volume. + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountfs: hfs_early_journal_init indicated external jnl \n"); + } retval = EINVAL; goto error_exit; } @@ -1368,7 +1691,11 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, // to be "FSK!" which fsck_hfs will see and force the fsck instead // of just bailing out because the volume is journaled. if (!ronly) { - HFSPlusVolumeHeader *jvhp; + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountfs: hfs_early_journal_init failed, setting to FSK \n"); + } + + HFSPlusVolumeHeader *jvhp; hfsmp->hfs_flags |= HFS_NEED_JNL_RESET; @@ -1403,6 +1730,9 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, // in the hopes that fsck_hfs will be able to // fix any damage that exists on the volume. if ( !(vfs_flags(mp) & MNT_ROOTFS)) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountfs: hfs_early_journal_init failed, erroring out \n"); + } retval = EINVAL; goto error_exit; } @@ -1431,10 +1761,16 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, "(%d) switching to 512\n", log_blksize); log_blksize = 512; if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&log_blksize, FWRITE, context)) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountfs: DKIOCSETBLOCKSIZE (4) failed \n"); + } retval = ENXIO; goto error_exit; } if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&log_blkcnt, 0, context)) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountfs: DKIOCGETBLOCKCOUNT (4) failed \n"); + } retval = ENXIO; goto error_exit; } @@ -1455,6 +1791,9 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, // to be "FSK!" which fsck_hfs will see and force the fsck instead // of just bailing out because the volume is journaled. if (!ronly) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountfs: hfs_early_journal_init (2) resetting.. \n"); + } HFSPlusVolumeHeader *jvhp; hfsmp->hfs_flags |= HFS_NEED_JNL_RESET; @@ -1489,6 +1828,9 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, // in the hopes that fsck_hfs will be able to // fix any damage that exists on the volume. if ( !(vfs_flags(mp) & MNT_ROOTFS)) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountfs: hfs_early_journal_init (2) failed \n"); + } retval = EINVAL; goto error_exit; } @@ -1497,6 +1839,9 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, /* Try again with a smaller block size... */ retval = hfs_MountHFSPlusVolume(hfsmp, vhp, embeddedOffset, disksize, p, args, cred); + if (retval && HFS_MOUNT_DEBUG) { + printf("hfs_MountHFSPlusVolume (late) returned %d\n",retval); + } } if (retval) (void) hfs_relconverter(0); @@ -1507,6 +1852,9 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, hfsmp->hfs_last_mounted_mtime = hfsmp->hfs_mtime; if ( retval ) { + if (HFS_MOUNT_DEBUG) { + printf("hfs_mountfs: encountered failure %d \n", retval); + } goto error_exit; } @@ -1523,7 +1871,7 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, mp->mnt_vtable->vfc_vfsflags |= VFC_VFSDIRLINKS; } else { /* HFS standard doesn't support extended readdir! */ - mp->mnt_vtable->vfc_vfsflags &= ~VFC_VFSREADDIR_EXTENDED; + mount_set_noreaddirext (mp); } if (args) { @@ -1548,10 +1896,10 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, /* * Set the free space warning levels for the root volume: * - * Set the "danger" limit to 5% of the volume size or 125MB, whichever - * is less. Set the "warning" limit to 10% of the volume size or 250MB, + * Set the "danger" limit to 5% of the volume size or 512MB, whichever + * is less. Set the "warning" limit to 10% of the volume size or 1GB, * whichever is less. And last, set the "desired" freespace level to - * to 11% of the volume size or 375MB, whichever is less. + * to 11% of the volume size or 1.25GB, whichever is less. */ hfsmp->hfs_freespace_notify_dangerlimit = MIN(HFS_ROOTVERYLOWDISKTRIGGERLEVEL / HFSTOVCB(hfsmp)->blockSize, @@ -1583,6 +1931,32 @@ hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, } } } + +#if CONFIG_HFS_ALLOC_RBTREE + /* + * We spawn a thread to create the pair of red-black trees for this volume. + * However, in so doing, we must be careful to ensure that if this thread is still + * running after mount has finished, it doesn't interfere with an unmount. Specifically, + * we'll need to set a bit that indicates we're in progress building the trees here. + * Unmount will check for this bit, and then if it's set, mark a corresponding bit that + * notifies the tree generation code that an unmount is waiting. Also mark the bit that + * indicates the tree is live and operating. + * + * Only do this if we're operating on a read-write mount (we wouldn't care for read-only). + */ + + if ((hfsmp->hfs_flags & HFS_READ_ONLY) == 0) { + hfsmp->extent_tree_flags |= (HFS_ALLOC_TREEBUILD_INFLIGHT | HFS_ALLOC_RB_ENABLED); + + /* Initialize EOF counter so that the thread can assume it started at initial values */ + hfsmp->offset_block_end = 0; + InitTree(hfsmp); + + kernel_thread_start ((thread_continue_t) hfs_initialize_allocator , hfsmp, &allocator_thread); + thread_deallocate(allocator_thread); + } + +#endif /* * Start looking for free space to drop below this level and generate a @@ -1636,7 +2010,7 @@ hfs_start(__unused struct mount *mp, __unused int flags, __unused vfs_context_t /* * unmount system call */ -static int +int hfs_unmount(struct mount *mp, int mntflags, vfs_context_t context) { struct proc *p = vfs_context_proc(context); @@ -1645,6 +2019,7 @@ hfs_unmount(struct mount *mp, int mntflags, vfs_context_t context) int flags; int force; int started_tr = 0; + int rb_used = 0; flags = 0; force = 0; @@ -1691,6 +2066,10 @@ hfs_unmount(struct mount *mp, int mntflags, vfs_context_t context) panic("hfs_unmount: pm_sync_incomplete underflow!\n"); } +#if CONFIG_HFS_ALLOC_RBTREE + rb_used = hfs_teardown_allocator(hfsmp); +#endif + /* * Flush out the b-trees, volume bitmap and Volume Header */ @@ -1753,22 +2132,31 @@ hfs_unmount(struct mount *mp, int mntflags, vfs_context_t context) HFSTOVCB(hfsmp)->vcbAtrb |= kHFSVolumeUnmountedMask; } - if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) { - int i; - u_int32_t min_start = hfsmp->totalBlocks; - - // set the nextAllocation pointer to the smallest free block number - // we've seen so on the next mount we won't rescan unnecessarily - for(i=0; i < (int)hfsmp->vcbFreeExtCnt; i++) { - if (hfsmp->vcbFreeExt[i].startBlock < min_start) { - min_start = hfsmp->vcbFreeExt[i].startBlock; + + if (rb_used) { + /* If the rb-tree was live, just set min_start to 0 */ + hfsmp->nextAllocation = 0; + } + else { + if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) { + int i; + u_int32_t min_start = hfsmp->totalBlocks; + + // set the nextAllocation pointer to the smallest free block number + // we've seen so on the next mount we won't rescan unnecessarily + lck_spin_lock(&hfsmp->vcbFreeExtLock); + for(i=0; i < (int)hfsmp->vcbFreeExtCnt; i++) { + if (hfsmp->vcbFreeExt[i].startBlock < min_start) { + min_start = hfsmp->vcbFreeExt[i].startBlock; + } + } + lck_spin_unlock(&hfsmp->vcbFreeExtLock); + if (min_start < hfsmp->nextAllocation) { + hfsmp->nextAllocation = min_start; } - } - if (min_start < hfsmp->nextAllocation) { - hfsmp->nextAllocation = min_start; } } - + retval = hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0); if (retval) { @@ -1784,7 +2172,7 @@ hfs_unmount(struct mount *mp, int mntflags, vfs_context_t context) } if (hfsmp->jnl) { - hfs_journal_flush(hfsmp); + hfs_journal_flush(hfsmp, FALSE); } /* @@ -1792,11 +2180,6 @@ hfs_unmount(struct mount *mp, int mntflags, vfs_context_t context) */ (void) hfsUnmount(hfsmp, p); - /* - * Last chance to dump unreferenced system files. - */ - (void) vflush(mp, NULLVP, FORCECLOSE); - if (HFSTOVCB(hfsmp)->vcbSigWord == kHFSSigWord) (void) hfs_relconverter(hfsmp->hfs_encoding); @@ -1818,7 +2201,12 @@ hfs_unmount(struct mount *mp, int mntflags, vfs_context_t context) } // XXXdbg -#ifdef HFS_SPARSE_DEV + /* + * Last chance to dump unreferenced system files. + */ + (void) vflush(mp, NULLVP, FORCECLOSE); + +#if HFS_SPARSE_DEV /* Drop our reference on the backing fs (if any). */ if ((hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) && hfsmp->hfs_backingfs_rootvp) { struct vnode * tmpvp; @@ -1830,6 +2218,7 @@ hfs_unmount(struct mount *mp, int mntflags, vfs_context_t context) } #endif /* HFS_SPARSE_DEV */ lck_mtx_destroy(&hfsmp->hfc_mutex, hfs_mutex_group); + lck_spin_destroy(&hfsmp->vcbFreeExtLock, hfs_spinlock_group); vnode_rele(hfsmp->hfs_devvp); hfs_delete_chash(hfsmp); @@ -1851,7 +2240,7 @@ hfs_unmount(struct mount *mp, int mntflags, vfs_context_t context) static int hfs_vfs_root(struct mount *mp, struct vnode **vpp, __unused vfs_context_t context) { - return hfs_vget(VFSTOHFS(mp), (cnid_t)kHFSRootFolderID, vpp, 1); + return hfs_vget(VFSTOHFS(mp), (cnid_t)kHFSRootFolderID, vpp, 1, 0); } @@ -1872,7 +2261,7 @@ hfs_quotactl(struct mount *mp, int cmds, uid_t uid, caddr_t datap, vfs_context_t int cmd, type, error; if (uid == ~0U) - uid = vfs_context_ucred(context)->cr_ruid; + uid = kauth_cred_getuid(vfs_context_ucred(context)); cmd = cmds >> SUBCMDSHIFT; switch (cmd) { @@ -1880,7 +2269,7 @@ hfs_quotactl(struct mount *mp, int cmds, uid_t uid, caddr_t datap, vfs_context_t case Q_QUOTASTAT: break; case Q_GETQUOTA: - if (uid == vfs_context_ucred(context)->cr_ruid) + if (uid == kauth_cred_getuid(vfs_context_ucred(context))) break; /* fall through */ default: @@ -1943,7 +2332,7 @@ hfs_quotactl(struct mount *mp, int cmds, uid_t uid, caddr_t datap, vfs_context_t /* * Get file system statistics. */ -static int +int hfs_statfs(struct mount *mp, register struct vfsstatfs *sbp, __unused vfs_context_t context) { ExtendedVCB *vcb = VFSTOVCB(mp); @@ -2084,7 +2473,7 @@ hfs_sync_callback(struct vnode *vp, void *cargs) * * Note: we are always called with the filesystem marked `MPBUSY'. */ -static int +int hfs_sync(struct mount *mp, int waitfor, vfs_context_t context) { struct proc *p = vfs_context_proc(context); @@ -2188,7 +2577,7 @@ hfs_sync(struct mount *mp, int waitfor, vfs_context_t context) } if (hfsmp->jnl) { - hfs_journal_flush(hfsmp); + hfs_journal_flush(hfsmp, FALSE); } { @@ -2229,7 +2618,7 @@ hfs_fhtovp(struct mount *mp, int fhlen, unsigned char *fhp, struct vnode **vpp, if (fhlen < (int)sizeof(struct hfsfid)) return (EINVAL); - result = hfs_vget(VFSTOHFS(mp), ntohl(hfsfhp->hfsfid_cnid), &nvp, 0); + result = hfs_vget(VFSTOHFS(mp), ntohl(hfsfhp->hfsfid_cnid), &nvp, 0, 0); if (result) { if (result == ENOENT) result = ESTALE; @@ -2304,6 +2693,7 @@ hfs_init(__unused struct vfsconf *vfsp) hfs_group_attr = lck_grp_attr_alloc_init(); hfs_mutex_group = lck_grp_alloc_init("hfs-mutex", hfs_group_attr); hfs_rwlock_group = lck_grp_alloc_init("hfs-rwlock", hfs_group_attr); + hfs_spinlock_group = lck_grp_alloc_init("hfs-spinlock", hfs_group_attr); #if HFS_COMPRESSION decmpfs_init(); @@ -2344,7 +2734,7 @@ hfs_getmountpoint(struct vnode *vp, struct hfsmount **hfsmpp) /* * HFS filesystem related variables. */ -static int +int hfs_sysctl(int *name, __unused u_int namelen, user_addr_t oldp, size_t *oldlenp, user_addr_t newp, size_t newlen, vfs_context_t context) { @@ -2490,6 +2880,15 @@ encodinghint_exit: 0, hfs_sync_metadata, hfsmp->hfs_mp); + /* + * Set up the trim callback function so that we can add + * recently freed extents to the free extent cache once + * the transaction that freed them is written to the + * journal on disk. + */ + if (jnl) + journal_trim_set_callback(jnl, hfs_trim_callback, hfsmp); + if (jnl == NULL) { printf("hfs: FAILED to create the journal!\n"); if (jvp && jvp != hfsmp->hfs_devvp) { @@ -2501,17 +2900,17 @@ encodinghint_exit: return EINVAL; } - hfs_global_exclusive_lock_acquire(hfsmp); - + hfs_lock_global (hfsmp, HFS_EXCLUSIVE_LOCK); + /* * Flush all dirty metadata buffers. */ - buf_flushdirtyblks(hfsmp->hfs_devvp, MNT_WAIT, 0, "hfs_sysctl"); - buf_flushdirtyblks(hfsmp->hfs_extents_vp, MNT_WAIT, 0, "hfs_sysctl"); - buf_flushdirtyblks(hfsmp->hfs_catalog_vp, MNT_WAIT, 0, "hfs_sysctl"); - buf_flushdirtyblks(hfsmp->hfs_allocation_vp, MNT_WAIT, 0, "hfs_sysctl"); + buf_flushdirtyblks(hfsmp->hfs_devvp, TRUE, 0, "hfs_sysctl"); + buf_flushdirtyblks(hfsmp->hfs_extents_vp, TRUE, 0, "hfs_sysctl"); + buf_flushdirtyblks(hfsmp->hfs_catalog_vp, TRUE, 0, "hfs_sysctl"); + buf_flushdirtyblks(hfsmp->hfs_allocation_vp, TRUE, 0, "hfs_sysctl"); if (hfsmp->hfs_attribute_vp) - buf_flushdirtyblks(hfsmp->hfs_attribute_vp, MNT_WAIT, 0, "hfs_sysctl"); + buf_flushdirtyblks(hfsmp->hfs_attribute_vp, TRUE, 0, "hfs_sysctl"); HFSTOVCB(hfsmp)->vcbJinfoBlock = name[1]; HFSTOVCB(hfsmp)->vcbAtrb |= kHFSVolumeJournaledMask; @@ -2526,7 +2925,7 @@ encodinghint_exit: vfs_setflags(hfsmp->hfs_mp, (u_int64_t)((unsigned int)MNT_JOURNALED)); - hfs_global_exclusive_lock_release(hfsmp); + hfs_unlock_global (hfsmp); hfs_flushvolumeheader(hfsmp, MNT_WAIT, 1); { @@ -2561,7 +2960,7 @@ encodinghint_exit: printf("hfs: disabling journaling for mount @ %p\n", vnode_mount(vp)); - hfs_global_exclusive_lock_acquire(hfsmp); + hfs_lock_global (hfsmp, HFS_EXCLUSIVE_LOCK); // Lights out for you buddy! journal_close(hfsmp->jnl); @@ -2580,7 +2979,8 @@ encodinghint_exit: HFSTOVCB(hfsmp)->vcbAtrb &= ~kHFSVolumeJournaledMask; - hfs_global_exclusive_lock_release(hfsmp); + hfs_unlock_global (hfsmp); + hfs_flushvolumeheader(hfsmp, MNT_WAIT, 1); { @@ -2661,6 +3061,10 @@ encodinghint_exit: file_drop(device_fd); vnode_put(devvp); return error; + } else if (name[0] == HFS_ENABLE_RESIZE_DEBUG) { + hfs_resize_debug = 1; + printf ("hfs_sysctl: Enabled volume resize debugging.\n"); + return 0; } return (ENOTSUP); @@ -2681,7 +3085,7 @@ hfs_vfs_vget(struct mount *mp, ino64_t ino, struct vnode **vpp, __unused vfs_con hfsmp = VFSTOHFS(mp); - error = hfs_vget(hfsmp, (cnid_t)ino, vpp, 1); + error = hfs_vget(hfsmp, (cnid_t)ino, vpp, 1, 0); if (error) return (error); @@ -2722,9 +3126,8 @@ hfs_vfs_vget(struct mount *mp, ino64_t ino, struct vnode **vpp, __unused vfs_con * * If the object is a file then it will represent the data fork. */ -__private_extern__ int -hfs_vget(struct hfsmount *hfsmp, cnid_t cnid, struct vnode **vpp, int skiplock) +hfs_vget(struct hfsmount *hfsmp, cnid_t cnid, struct vnode **vpp, int skiplock, int allow_deleted) { struct vnode *vp = NULLVP; struct cat_desc cndesc; @@ -2746,7 +3149,7 @@ hfs_vget(struct hfsmount *hfsmp, cnid_t cnid, struct vnode **vpp, int skiplock) /* * Check the hash first */ - vp = hfs_chash_getvnode(hfsmp, cnid, 0, skiplock); + vp = hfs_chash_getvnode(hfsmp, cnid, 0, skiplock, allow_deleted); if (vp) { *vpp = vp; return(0); @@ -2826,7 +3229,7 @@ hfs_vget(struct hfsmount *hfsmp, cnid_t cnid, struct vnode **vpp, int skiplock) * Pick up the first link in the chain and get a descriptor for it. * This allows blind volfs paths to work for hardlinks. */ - if ((hfs_lookuplink(hfsmp, linkref, &prevlinkid, &nextlinkid) == 0) && + if ((hfs_lookup_siblinglinks(hfsmp, linkref, &prevlinkid, &nextlinkid) == 0) && (nextlinkid != 0)) { lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK); error = cat_findname(hfsmp, nextlinkid, &linkdesc); @@ -2839,13 +3242,17 @@ hfs_vget(struct hfsmount *hfsmp, cnid_t cnid, struct vnode **vpp, int skiplock) } if (linkref) { - error = hfs_getnewvnode(hfsmp, NULL, NULL, &cndesc, 0, &cnattr, &cnfork, &vp); + int newvnode_flags = 0; + + error = hfs_getnewvnode(hfsmp, NULL, NULL, &cndesc, 0, &cnattr, + &cnfork, &vp, &newvnode_flags); if (error == 0) { VTOC(vp)->c_flag |= C_HARDLINK; vnode_setmultipath(vp); } } else { struct componentname cn; + int newvnode_flags = 0; /* Supply hfs_getnewvnode with a component name. */ MALLOC_ZONE(cn.cn_pnbuf, caddr_t, MAXPATHLEN, M_NAMEI, M_WAITOK); @@ -2859,7 +3266,8 @@ hfs_vget(struct hfsmount *hfsmp, cnid_t cnid, struct vnode **vpp, int skiplock) cn.cn_consume = 0; bcopy(cndesc.cd_nameptr, cn.cn_nameptr, cndesc.cd_namelen + 1); - error = hfs_getnewvnode(hfsmp, NULLVP, &cn, &cndesc, 0, &cnattr, &cnfork, &vp); + error = hfs_getnewvnode(hfsmp, NULLVP, &cn, &cndesc, 0, &cnattr, + &cnfork, &vp, &newvnode_flags); if (error == 0 && (VTOC(vp)->c_flag & C_HARDLINK)) { hfs_savelinkorigin(VTOC(vp), cndesc.cd_parentcnid); @@ -2912,7 +3320,7 @@ hfs_flushfiles(struct mount *mp, int flags, __unused struct proc *p) } /* Obtain the root vnode so we can skip over it. */ - skipvp = hfs_chash_getvnode(hfsmp, kHFSRootFolderID, 0, 0); + skipvp = hfs_chash_getvnode(hfsmp, kHFSRootFolderID, 0, 0, 0); } #endif /* QUOTA */ @@ -2989,7 +3397,6 @@ hfs_setencodingbits(struct hfsmount *hfsmp, u_int32_t encoding) * * On journal volumes this will cause a volume header flush */ -__private_extern__ int hfs_volupdate(struct hfsmount *hfsmp, enum volop op, int inroot) { @@ -3064,7 +3471,7 @@ hfs_flushMDB(struct hfsmount *hfsmp, int waitfor, int altflush) mdb = (HFSMasterDirectoryBlock *)(buf_dataptr(bp) + HFS_PRI_OFFSET(sectorsize)); - mdb->drCrDate = SWAP_BE32 (UTCToLocal(to_hfs_time(vcb->vcbCrDate))); + mdb->drCrDate = SWAP_BE32 (UTCToLocal(to_hfs_time(vcb->hfs_itime))); mdb->drLsMod = SWAP_BE32 (UTCToLocal(to_hfs_time(vcb->vcbLsMod))); mdb->drAtrb = SWAP_BE16 (vcb->vcbAtrb); mdb->drNmFls = SWAP_BE16 (vcb->vcbNmFls); @@ -3141,7 +3548,6 @@ hfs_flushMDB(struct hfsmount *hfsmp, int waitfor, int altflush) * not flushed since the on-disk "H+" and "HX" signatures * are always stored in-memory as "H+". */ -__private_extern__ int hfs_flushvolumeheader(struct hfsmount *hfsmp, int waitfor, int altflush) { @@ -3449,7 +3855,6 @@ err_exit: /* * Extend a file system. */ -__private_extern__ int hfs_extendfs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context) { @@ -3470,10 +3875,11 @@ hfs_extendfs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context) u_int32_t phys_sectorsize; daddr64_t prev_alt_sector; daddr_t bitmapblks; - int lockflags; + int lockflags = 0; int error; int64_t oldBitmapSize; Boolean usedExtendFileC = false; + int transaction_begun = 0; devvp = hfsmp->hfs_devvp; vcb = HFSTOVCB(hfsmp); @@ -3493,7 +3899,7 @@ hfs_extendfs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context) * ownership and check permissions. */ if (suser(cred, NULL)) { - error = hfs_vget(hfsmp, kHFSRootFolderID, &vp, 0); + error = hfs_vget(hfsmp, kHFSRootFolderID, &vp, 0, 0); if (error) return (error); @@ -3546,13 +3952,32 @@ hfs_extendfs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context) addblks = newblkcnt - vcb->totalBlocks; - printf("hfs_extendfs: growing %s by %d blocks\n", vcb->vcbVN, addblks); + if (hfs_resize_debug) { + printf ("hfs_extendfs: old: size=%qu, blkcnt=%u\n", oldsize, hfsmp->totalBlocks); + printf ("hfs_extendfs: new: size=%qu, blkcnt=%u, addblks=%u\n", newsize, (u_int32_t)newblkcnt, addblks); + } + printf("hfs_extendfs: will extend \"%s\" by %d blocks\n", vcb->vcbVN, addblks); + + HFS_MOUNT_LOCK(hfsmp, TRUE); + if (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) { + HFS_MOUNT_UNLOCK(hfsmp, TRUE); + error = EALREADY; + goto out; + } + hfsmp->hfs_flags |= HFS_RESIZE_IN_PROGRESS; + HFS_MOUNT_UNLOCK(hfsmp, TRUE); + + /* Start with a clean journal. */ + hfs_journal_flush(hfsmp, TRUE); + /* * Enclose changes inside a transaction. */ if (hfs_start_transaction(hfsmp) != 0) { - return (EINVAL); + error = EINVAL; + goto out; } + transaction_begun = 1; /* * Note: we take the attributes lock in case we have an attribute data vnode @@ -3573,6 +3998,17 @@ hfs_extendfs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context) else bitmapblks = 0; + /* + * The allocation bitmap can contain unused bits that are beyond end of + * current volume's allocation blocks. Usually they are supposed to be + * zero'ed out but there can be cases where they might be marked as used. + * After extending the file system, those bits can represent valid + * allocation blocks, so we mark all the bits from the end of current + * volume to end of allocation bitmap as "free". + */ + BlockMarkFreeUnused(vcb, vcb->totalBlocks, + (fp->ff_blocks * vcb->blockSize * 8) - vcb->totalBlocks); + if (bitmapblks > 0) { daddr64_t blkno; daddr_t blkcnt; @@ -3592,8 +4028,8 @@ hfs_extendfs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context) * zone. */ error = ExtendFileC(vcb, fp, bitmapblks * vcb->blockSize, 0, - kEFAllMask | kEFNoClumpMask | kEFReserveMask | kEFMetadataMask, - &bytesAdded); + kEFAllMask | kEFNoClumpMask | kEFReserveMask + | kEFMetadataMask | kEFContigMask, &bytesAdded); if (error == 0) { usedExtendFileC = true; @@ -3705,7 +4141,8 @@ hfs_extendfs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context) * Restore to old state. */ if (usedExtendFileC) { - (void) TruncateFileC(vcb, fp, oldBitmapSize, false); + (void) TruncateFileC(vcb, fp, oldBitmapSize, 0, FORK_IS_RSRC(fp), + FTOC(fp)->c_fileid, false); } else { fp->ff_blocks -= bitmapblks; fp->ff_size -= (u_int64_t)bitmapblks * (u_int64_t)vcb->blockSize; @@ -3721,10 +4158,15 @@ hfs_extendfs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context) hfsmp->hfs_logical_block_count = prev_phys_block_count; hfsmp->hfs_alt_id_sector = prev_alt_sector; MarkVCBDirty(vcb); - if (vcb->blockSize == 512) - (void) BlockMarkAllocated(vcb, vcb->totalBlocks - 2, 2); - else - (void) BlockMarkAllocated(vcb, vcb->totalBlocks - 1, 1); + if (vcb->blockSize == 512) { + if (BlockMarkAllocated(vcb, vcb->totalBlocks - 2, 2)) { + hfs_mark_volume_inconsistent(hfsmp); + } + } else { + if (BlockMarkAllocated(vcb, vcb->totalBlocks - 1, 1)) { + hfs_mark_volume_inconsistent(hfsmp); + } + } goto out; } /* @@ -3745,9 +4187,10 @@ hfs_extendfs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context) } } - /* - * TODO: Adjust the size of the metadata zone based on new volume size? + /* + * Update the metadata zone size based on current volume size */ + hfs_metadatazone_init(hfsmp, false); /* * Adjust the size of hfsmp->hfs_attrdata_vp @@ -3769,23 +4212,48 @@ hfs_extendfs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context) } } + /* + * Update the R/B Tree if necessary. Since we don't have to drop the systemfile + * locks in the middle of these operations like we do in the truncate case + * where we have to relocate files, we can only update the red-black tree + * if there were actual changes made to the bitmap. Also, we can't really scan the + * new portion of the bitmap before it has been allocated. The BlockMarkAllocated + * routines are smart enough to avoid the r/b tree if the portion they are manipulating is + * not currently controlled by the tree. + * + * We only update hfsmp->allocLimit if totalBlocks actually increased. + */ + + if (error == 0) { + UpdateAllocLimit(hfsmp, hfsmp->totalBlocks); + } + + /* Log successful extending */ + printf("hfs_extendfs: extended \"%s\" to %d blocks (was %d blocks)\n", + hfsmp->vcbVN, hfsmp->totalBlocks, (u_int32_t)(oldsize/hfsmp->blockSize)); + out: if (error && fp) { /* Restore allocation fork. */ bcopy(&forkdata, &fp->ff_data, sizeof(forkdata)); VTOC(vp)->c_blocks = fp->ff_blocks; - + } - /* - Regardless of whether or not the totalblocks actually increased, - we should reset the allocLimit field. If it changed, it will - get updated; if not, it will remain the same. - */ - hfsmp->allocLimit = vcb->totalBlocks; - hfs_systemfile_unlock(hfsmp, lockflags); - hfs_end_transaction(hfsmp); - - return (error); + + HFS_MOUNT_LOCK(hfsmp, TRUE); + hfsmp->hfs_flags &= ~HFS_RESIZE_IN_PROGRESS; + HFS_MOUNT_UNLOCK(hfsmp, TRUE); + if (lockflags) { + hfs_systemfile_unlock(hfsmp, lockflags); + } + if (transaction_begun) { + hfs_end_transaction(hfsmp); + hfs_journal_flush(hfsmp, FALSE); + /* Just to be sure, sync all data to the disk */ + (void) VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, context); + } + + return MacToVFSError(error); } #define HFS_MIN_SIZE (32LL * 1024LL * 1024LL) @@ -3793,7 +4261,6 @@ out: /* * Truncate a file system (while still mounted). */ -__private_extern__ int hfs_truncatefs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context) { @@ -3803,7 +4270,9 @@ hfs_truncatefs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context) u_int32_t reclaimblks = 0; int lockflags = 0; int transaction_begun = 0; - int error; + Boolean updateFreeBlocks = false; + Boolean disable_sparse = false; + int error = 0; lck_mtx_lock(&hfsmp->hfs_mutex); if (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) { @@ -3811,8 +4280,9 @@ hfs_truncatefs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context) return (EALREADY); } hfsmp->hfs_flags |= HFS_RESIZE_IN_PROGRESS; - hfsmp->hfs_resize_filesmoved = 0; - hfsmp->hfs_resize_totalfiles = 0; + hfsmp->hfs_resize_blocksmoved = 0; + hfsmp->hfs_resize_totalblocks = 0; + hfsmp->hfs_resize_progress = 0; lck_mtx_unlock(&hfsmp->hfs_mutex); /* @@ -3828,31 +4298,80 @@ hfs_truncatefs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context) newblkcnt = newsize / hfsmp->blockSize; reclaimblks = hfsmp->totalBlocks - newblkcnt; + if (hfs_resize_debug) { + printf ("hfs_truncatefs: old: size=%qu, blkcnt=%u, freeblks=%u\n", oldsize, hfsmp->totalBlocks, hfs_freeblks(hfsmp, 1)); + printf ("hfs_truncatefs: new: size=%qu, blkcnt=%u, reclaimblks=%u\n", newsize, newblkcnt, reclaimblks); + } + /* Make sure new size is valid. */ if ((newsize < HFS_MIN_SIZE) || (newsize >= oldsize) || (newsize % hfsmp->hfs_logical_block_size) || (newsize % hfsmp->hfs_physical_block_size)) { - printf ("hfs_truncatefs: invalid size\n"); + printf ("hfs_truncatefs: invalid size (newsize=%qu, oldsize=%qu)\n", newsize, oldsize); error = EINVAL; goto out; } - /* Make sure there's enough space to work with. */ + + /* + * Make sure that the file system has enough free blocks reclaim. + * + * Before resize, the disk is divided into four zones - + * A. Allocated_Stationary - These are allocated blocks that exist + * before the new end of disk. These blocks will not be + * relocated or modified during resize. + * B. Free_Stationary - These are free blocks that exist before the + * new end of disk. These blocks can be used for any new + * allocations during resize, including allocation for relocating + * data from the area of disk being reclaimed. + * C. Allocated_To-Reclaim - These are allocated blocks that exist + * beyond the new end of disk. These blocks need to be reclaimed + * during resize by allocating equal number of blocks in Free + * Stationary zone and copying the data. + * D. Free_To-Reclaim - These are free blocks that exist beyond the + * new end of disk. Nothing special needs to be done to reclaim + * them. + * + * Total number of blocks on the disk before resize: + * ------------------------------------------------ + * Total Blocks = Allocated_Stationary + Free_Stationary + + * Allocated_To-Reclaim + Free_To-Reclaim + * + * Total number of blocks that need to be reclaimed: + * ------------------------------------------------ + * Blocks to Reclaim = Allocated_To-Reclaim + Free_To-Reclaim + * + * Note that the check below also makes sure that we have enough space + * to relocate data from Allocated_To-Reclaim to Free_Stationary. + * Therefore we do not need to check total number of blocks to relocate + * later in the code. + * + * The condition below gets converted to: + * + * Allocated To-Reclaim + Free To-Reclaim >= Free Stationary + Free To-Reclaim + * + * which is equivalent to: + * + * Allocated To-Reclaim >= Free Stationary + */ if (reclaimblks >= hfs_freeblks(hfsmp, 1)) { - printf("hfs_truncatefs: insufficient space (need %u blocks; have %u blocks)\n", reclaimblks, hfs_freeblks(hfsmp, 1)); + printf("hfs_truncatefs: insufficient space (need %u blocks; have %u free blocks)\n", reclaimblks, hfs_freeblks(hfsmp, 1)); error = ENOSPC; goto out; } /* Start with a clean journal. */ - hfs_journal_flush(hfsmp); + hfs_journal_flush(hfsmp, TRUE); if (hfs_start_transaction(hfsmp) != 0) { error = EINVAL; goto out; } transaction_begun = 1; - + + /* Take the bitmap lock to update the alloc limit field */ + lockflags = hfs_systemfile_lock(hfsmp, SFL_BITMAP, HFS_EXCLUSIVE_LOCK); + /* * Prevent new allocations from using the part we're trying to truncate. * @@ -3861,18 +4380,71 @@ hfs_truncatefs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context) * interfere with allocating the new alternate volume header, and no files * in the allocation blocks beyond (i.e. the blocks we're trying to * truncate away. + * + * Also shrink the red-black tree if needed. + */ + if (hfsmp->blockSize == 512) { + error = UpdateAllocLimit (hfsmp, newblkcnt - 2); + } + else { + error = UpdateAllocLimit (hfsmp, newblkcnt - 1); + } + + /* Sparse devices use first fit allocation which is not ideal + * for volume resize which requires best fit allocation. If a + * sparse device is being truncated, disable the sparse device + * property temporarily for the duration of resize. Also reset + * the free extent cache so that it is rebuilt as sorted by + * totalBlocks instead of startBlock. + * + * Note that this will affect all allocations on the volume and + * ideal fix would be just to modify resize-related allocations, + * but it will result in complexity like handling of two free + * extent caches sorted differently, etc. So we stick to this + * solution for now. + */ + HFS_MOUNT_LOCK(hfsmp, TRUE); + if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) { + hfsmp->hfs_flags &= ~HFS_HAS_SPARSE_DEVICE; + ResetVCBFreeExtCache(hfsmp); + disable_sparse = true; + } + + /* + * Update the volume free block count to reflect the total number + * of free blocks that will exist after a successful resize. + * Relocation of extents will result in no net change in the total + * free space on the disk. Therefore the code that allocates + * space for new extent and deallocates the old extent explicitly + * prevents updating the volume free block count. It will also + * prevent false disk full error when the number of blocks in + * an extent being relocated is more than the free blocks that + * will exist after the volume is resized. */ - lck_mtx_lock(&hfsmp->hfs_mutex); - if (hfsmp->blockSize == 512) - hfsmp->allocLimit = newblkcnt - 2; - else - hfsmp->allocLimit = newblkcnt - 1; hfsmp->freeBlocks -= reclaimblks; - lck_mtx_unlock(&hfsmp->hfs_mutex); + updateFreeBlocks = true; + HFS_MOUNT_UNLOCK(hfsmp, TRUE); + + if (lockflags) { + hfs_systemfile_unlock(hfsmp, lockflags); + lockflags = 0; + } /* - * Look for files that have blocks at or beyond the location of the - * new alternate volume header. + * Update the metadata zone size to match the new volume size, + * and if it too less, metadata zone might be disabled. + */ + hfs_metadatazone_init(hfsmp, false); + + /* + * If some files have blocks at or beyond the location of the + * new alternate volume header, recalculate free blocks and + * reclaim blocks. Otherwise just update free blocks count. + * + * The current allocLimit is set to the location of new alternate + * volume header, and reclaimblks are the total number of blocks + * that need to be reclaimed. So the check below is really + * ignoring the blocks allocated for old alternate volume header. */ if (hfs_isallocated(hfsmp, hfsmp->allocLimit, reclaimblks)) { /* @@ -3883,8 +4455,9 @@ hfs_truncatefs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context) transaction_begun = 0; /* Attempt to reclaim some space. */ - if (hfs_reclaimspace(hfsmp, hfsmp->allocLimit, reclaimblks, context) != 0) { - printf("hfs_truncatefs: couldn't reclaim space on %s\n", hfsmp->vcbVN); + error = hfs_reclaimspace(hfsmp, hfsmp->allocLimit, reclaimblks, context); + if (error != 0) { + printf("hfs_truncatefs: couldn't reclaim space on %s (error=%d)\n", hfsmp->vcbVN, error); error = ENOSPC; goto out; } @@ -3895,28 +4468,20 @@ hfs_truncatefs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context) transaction_begun = 1; /* Check if we're clear now. */ - if (hfs_isallocated(hfsmp, hfsmp->allocLimit, reclaimblks)) { - printf("hfs_truncatefs: didn't reclaim enough space on %s\n", hfsmp->vcbVN); + error = hfs_isallocated(hfsmp, hfsmp->allocLimit, reclaimblks); + if (error != 0) { + printf("hfs_truncatefs: didn't reclaim enough space on %s (error=%d)\n", hfsmp->vcbVN, error); error = EAGAIN; /* tell client to try again */ goto out; } - } - + } + /* * Note: we take the attributes lock in case we have an attribute data vnode * which needs to change size. */ lockflags = hfs_systemfile_lock(hfsmp, SFL_ATTRIBUTE | SFL_EXTENTS | SFL_BITMAP, HFS_EXCLUSIVE_LOCK); - /* - * Mark the old alternate volume header as free. - * We don't bother shrinking allocation bitmap file. - */ - if (hfsmp->blockSize == 512) - (void) BlockMarkFree(hfsmp, hfsmp->totalBlocks - 2, 2); - else - (void) BlockMarkFree(hfsmp, hfsmp->totalBlocks - 1, 1); - /* * Allocate last 1KB for alternate volume header. */ @@ -3926,6 +4491,15 @@ hfs_truncatefs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context) goto out; } + /* + * Mark the old alternate volume header as free. + * We don't bother shrinking allocation bitmap file. + */ + if (hfsmp->blockSize == 512) + (void) BlockMarkFree(hfsmp, hfsmp->totalBlocks - 2, 2); + else + (void) BlockMarkFree(hfsmp, hfsmp->totalBlocks - 1, 1); + /* * Invalidate the existing alternate volume header. * @@ -3933,14 +4507,16 @@ hfs_truncatefs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context) * since this block will be outside of the truncated file system! */ if (hfsmp->hfs_alt_id_sector) { - if (buf_meta_bread(hfsmp->hfs_devvp, + error = buf_meta_bread(hfsmp->hfs_devvp, HFS_PHYSBLK_ROUNDDOWN(hfsmp->hfs_alt_id_sector, hfsmp->hfs_log_per_phys), - hfsmp->hfs_physical_block_size, NOCRED, &bp) == 0) { - + hfsmp->hfs_physical_block_size, NOCRED, &bp); + if (error == 0) { bzero((void*)((char *)buf_dataptr(bp) + HFS_ALT_OFFSET(hfsmp->hfs_physical_block_size)), kMDBSize); (void) VNOP_BWRITE(bp); - } else if (bp) { - buf_brelse(bp); + } else { + if (bp) { + buf_brelse(bp); + } } bp = NULL; } @@ -3959,11 +4535,7 @@ hfs_truncatefs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context) error = hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH); if (error) panic("hfs_truncatefs: unexpected error flushing volume header (%d)\n", error); - - /* - * TODO: Adjust the size of the metadata zone based on new volume size? - */ - + /* * Adjust the size of hfsmp->hfs_attrdata_vp */ @@ -3985,25 +4557,49 @@ hfs_truncatefs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context) } out: - if (error) + /* + * Update the allocLimit to acknowledge the last one or two blocks now. + * Add it to the tree as well if necessary. + */ + UpdateAllocLimit (hfsmp, hfsmp->totalBlocks); + + HFS_MOUNT_LOCK(hfsmp, TRUE); + if (disable_sparse == true) { + /* Now that resize is completed, set the volume to be sparse + * device again so that all further allocations will be first + * fit instead of best fit. Reset free extent cache so that + * it is rebuilt. + */ + hfsmp->hfs_flags |= HFS_HAS_SPARSE_DEVICE; + ResetVCBFreeExtCache(hfsmp); + } + + if (error && (updateFreeBlocks == true)) { hfsmp->freeBlocks += reclaimblks; + } - lck_mtx_lock(&hfsmp->hfs_mutex); - hfsmp->allocLimit = hfsmp->totalBlocks; - if (hfsmp->nextAllocation >= hfsmp->allocLimit) + if (hfsmp->nextAllocation >= hfsmp->allocLimit) { hfsmp->nextAllocation = hfsmp->hfs_metazone_end + 1; + } hfsmp->hfs_flags &= ~HFS_RESIZE_IN_PROGRESS; - lck_mtx_unlock(&hfsmp->hfs_mutex); + HFS_MOUNT_UNLOCK(hfsmp, TRUE); + + /* On error, reset the metadata zone for original volume size */ + if (error && (updateFreeBlocks == true)) { + hfs_metadatazone_init(hfsmp, false); + } if (lockflags) { hfs_systemfile_unlock(hfsmp, lockflags); } if (transaction_begun) { hfs_end_transaction(hfsmp); - hfs_journal_flush(hfsmp); + hfs_journal_flush(hfsmp, FALSE); + /* Just to be sure, sync all data to the disk */ + (void) VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, context); } - return (error); + return MacToVFSError(error); } @@ -4065,6 +4661,9 @@ hfs_copy_extent( u_int32_t ioSizeSectors; /* Device sectors in this I/O */ daddr64_t srcSector, destSector; u_int32_t sectorsPerBlock = hfsmp->blockSize / hfsmp->hfs_logical_block_size; +#if CONFIG_PROTECT + int cpenabled = 0; +#endif /* * Sanity check that we have locked the vnode of the file we're copying. @@ -4077,18 +4676,25 @@ hfs_copy_extent( if (cp != hfsmp->hfs_allocation_cp && cp->c_lockowner != current_thread()) panic("hfs_copy_extent: vp=%p (cp=%p) not owned?\n", vp, cp); - /* - * Wait for any in-progress writes to this vnode to complete, so that we'll - * be copying consistent bits. (Otherwise, it's possible that an async - * write will complete to the old extent after we read from it. That - * could lead to corruption.) - */ - err = vnode_waitforwrites(vp, 0, 0, 0, "hfs_copy_extent"); - if (err) { - printf("hfs_copy_extent: Error %d from vnode_waitforwrites\n", err); - return err; +#if CONFIG_PROTECT + /* Prepare the CP blob and get it ready for use */ + if (!vnode_issystem (vp) && vnode_isreg(vp) && + cp_fs_protected (hfsmp->hfs_mp)) { + int cp_err = 0; + cp_err = cp_handle_relocate (cp); + if (cp_err) { + /* + * can't copy the file because we couldn't set up keys. + * bail out + */ + return cp_err; + } + else { + cpenabled = 1; + } } - +#endif + /* * Determine the I/O size to use * @@ -4118,7 +4724,14 @@ hfs_copy_extent( buf_setcount(bp, ioSize); buf_setblkno(bp, srcSector); buf_setlblkno(bp, srcSector); - + + /* Attach the CP to the buffer */ +#if CONFIG_PROTECT + if (cpenabled) { + buf_setcpaddr (bp, cp->c_cpentry); + } +#endif + /* Do the read */ err = VNOP_STRATEGY(bp); if (!err) @@ -4134,8 +4747,15 @@ hfs_copy_extent( buf_setcount(bp, ioSize); buf_setblkno(bp, destSector); buf_setlblkno(bp, destSector); - if (journal_uses_fua(hfsmp->jnl)) + if (vnode_issystem(vp) && journal_uses_fua(hfsmp->jnl)) buf_markfua(bp); + +#if CONFIG_PROTECT + /* Attach the CP to the buffer */ + if (cpenabled) { + buf_setcpaddr (bp, cp->c_cpentry); + } +#endif /* Do the write */ vnode_startwrite(hfsmp->hfs_devvp); @@ -4157,7 +4777,7 @@ hfs_copy_extent( kmem_free(kernel_map, (vm_offset_t)buffer, bufferSize); /* Make sure all writes have been flushed to disk. */ - if (!journal_uses_fua(hfsmp->jnl)) { + if (vnode_issystem(vp) && !journal_uses_fua(hfsmp->jnl)) { err = VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, context); if (err) { printf("hfs_copy_extent: DKIOCSYNCHRONIZECACHE failed (%d)\n", err); @@ -4172,222 +4792,1089 @@ hfs_copy_extent( } -/* - * Reclaim space at the end of a volume, used by a given system file. +/* Structure to store state of reclaiming extents from a + * given file. hfs_reclaim_file()/hfs_reclaim_xattr() + * initializes the values in this structure which are then + * used by code that reclaims and splits the extents. + */ +struct hfs_reclaim_extent_info { + struct vnode *vp; + u_int32_t fileID; + u_int8_t forkType; + u_int8_t is_dirlink; /* Extent belongs to directory hard link */ + u_int8_t is_sysfile; /* Extent belongs to system file */ + u_int8_t is_xattr; /* Extent belongs to extent-based xattr */ + u_int8_t extent_index; + int lockflags; /* Locks that reclaim and split code should grab before modifying the extent record */ + u_int32_t blocks_relocated; /* Total blocks relocated for this file till now */ + u_int32_t recStartBlock; /* File allocation block number (FABN) for current extent record */ + u_int32_t cur_blockCount; /* Number of allocation blocks that have been checked for reclaim */ + struct filefork *catalog_fp; /* If non-NULL, extent is from catalog record */ + union record { + HFSPlusExtentRecord overflow;/* Extent record from overflow extents btree */ + HFSPlusAttrRecord xattr; /* Attribute record for large EAs */ + } record; + HFSPlusExtentDescriptor *extents; /* Pointer to current extent record being processed. + * For catalog extent record, points to the correct + * extent information in filefork. For overflow extent + * record, or xattr record, points to extent record + * in the structure above + */ + struct cat_desc *dirlink_desc; + struct cat_attr *dirlink_attr; + struct filefork *dirlink_fork; /* For directory hard links, fp points actually to this */ + struct BTreeIterator *iterator; /* Shared read/write iterator, hfs_reclaim_file/xattr() + * use it for reading and hfs_reclaim_extent()/hfs_split_extent() + * use it for writing updated extent record + */ + struct FSBufferDescriptor btdata; /* Shared btdata for reading/writing extent record, same as iterator above */ + u_int16_t recordlen; + int overflow_count; /* For debugging, counter for overflow extent record */ + FCB *fcb; /* Pointer to the current btree being traversed */ +}; + +/* + * Split the current extent into two extents, with first extent + * to contain given number of allocation blocks. Splitting of + * extent creates one new extent entry which can result in + * shifting of many entries through all the extent records of a + * file, and/or creating a new extent record in the overflow + * extent btree. * - * This routine attempts to move any extent which contains allocation blocks - * at or after "startblk." A separate transaction is used to do the move. - * The contents of any moved extents are read and written via the volume's - * device vnode -- NOT via "vp." During the move, moved blocks which are part - * of a transaction have their physical block numbers invalidated so they will - * eventually be written to their new locations. + * Example: + * The diagram below represents two consecutive extent records, + * for simplicity, lets call them record X and X+1 respectively. + * Interesting extent entries have been denoted by letters. + * If the letter is unchanged before and after split, it means + * that the extent entry was not modified during the split. + * A '.' means that the entry remains unchanged after the split + * and is not relevant for our example. A '0' means that the + * extent entry is empty. * - * This routine can be used to move overflow extents for the allocation file. + * If there isn't sufficient contiguous free space to relocate + * an extent (extent "C" below), we will have to break the one + * extent into multiple smaller extents, and relocate each of + * the smaller extents individually. The way we do this is by + * finding the largest contiguous free space that is currently + * available (N allocation blocks), and then convert extent "C" + * into two extents, C1 and C2, that occupy exactly the same + * allocation blocks as extent C. Extent C1 is the first + * N allocation blocks of extent C, and extent C2 is the remainder + * of extent C. Then we can relocate extent C1 since we know + * we have enough contiguous free space to relocate it in its + * entirety. We then repeat the process starting with extent C2. * - * Inputs: - * hfsmp The volume being resized. - * startblk Blocks >= this allocation block need to be moved. - * locks Which locks need to be taken for the given system file. - * vp The vnode for the system file. + * In record X, only the entries following entry C are shifted, and + * the original entry C is replaced with two entries C1 and C2 which + * are actually two extent entries for contiguous allocation blocks. + * + * Note that the entry E from record X is shifted into record X+1 as + * the new first entry. Since the first entry of record X+1 is updated, + * the FABN will also get updated with the blockCount of entry E. + * This also results in shifting of all extent entries in record X+1. + * Note that the number of empty entries after the split has been + * changed from 3 to 2. * - * Outputs: - * moved Set to true if any extents were moved. + * Before: + * record X record X+1 + * ---------------------===--------- --------------------------------- + * | A | . | . | . | B | C | D | E | | F | . | . | . | G | 0 | 0 | 0 | + * ---------------------===--------- --------------------------------- + * + * After: + * ---------------------=======----- --------------------------------- + * | A | . | . | . | B | C1| C2| D | | E | F | . | . | . | G | 0 | 0 | + * ---------------------=======----- --------------------------------- + * + * C1.startBlock = C.startBlock + * C1.blockCount = N + * + * C2.startBlock = C.startBlock + N + * C2.blockCount = C.blockCount - N + * + * FABN = old FABN - E.blockCount + * + * Inputs: + * extent_info - This is the structure that contains state about + * the current file, extent, and extent record that + * is being relocated. This structure is shared + * among code that traverses through all the extents + * of the file, code that relocates extents, and + * code that splits the extent. + * Output: + * Zero on success, non-zero on failure. */ -static int -hfs_relocate_callback(__unused HFSPlusExtentKey *key, HFSPlusExtentRecord *record, HFSPlusExtentRecord *state) -{ - bcopy(state, record, sizeof(HFSPlusExtentRecord)); - return 0; -} -static int -hfs_reclaim_sys_file(struct hfsmount *hfsmp, struct vnode *vp, u_long startblk, int locks, Boolean *moved, vfs_context_t context) +static int +hfs_split_extent(struct hfs_reclaim_extent_info *extent_info, uint32_t newBlockCount) { - int error; - int lockflags; + int error = 0; + int index = extent_info->extent_index; int i; - u_long datablks; - u_long block; - u_int32_t oldStartBlock; - u_int32_t newStartBlock; - u_int32_t blockCount; - struct filefork *fp; + HFSPlusExtentDescriptor shift_extent; /* Extent entry that should be shifted into next extent record */ + HFSPlusExtentDescriptor last_extent; + HFSPlusExtentDescriptor *extents; /* Pointer to current extent record being manipulated */ + HFSPlusExtentRecord *extents_rec = NULL; + HFSPlusExtentKey *extents_key = NULL; + HFSPlusAttrRecord *xattr_rec = NULL; + HFSPlusAttrKey *xattr_key = NULL; + struct BTreeIterator iterator; + struct FSBufferDescriptor btdata; + uint16_t reclen; + uint32_t read_recStartBlock; /* Starting allocation block number to read old extent record */ + uint32_t write_recStartBlock; /* Starting allocation block number to insert newly updated extent record */ + Boolean create_record = false; + Boolean is_xattr; + struct cnode *cp; + + is_xattr = extent_info->is_xattr; + extents = extent_info->extents; + cp = VTOC(extent_info->vp); - /* If there is no vnode for this file, then there's nothing to do. */ - if (vp == NULL) - return 0; + if (hfs_resize_debug) { + printf ("hfs_split_extent: Split record:%u recStartBlock=%u %u:(%u,%u) for %u blocks\n", extent_info->overflow_count, extent_info->recStartBlock, index, extents[index].startBlock, extents[index].blockCount, newBlockCount); + } - /* printf("hfs_reclaim_sys_file: %.*s\n", VTOC(vp)->c_desc.cd_namelen, VTOC(vp)->c_desc.cd_nameptr); */ - - /* We always need the allocation bitmap and extents B-tree */ - locks |= SFL_BITMAP | SFL_EXTENTS; - - error = hfs_start_transaction(hfsmp); - if (error) { - printf("hfs_reclaim_sys_file: hfs_start_transaction returned %d\n", error); - return error; + /* Extents overflow btree can not have more than 8 extents. + * No split allowed if the 8th extent is already used. + */ + if ((extent_info->fileID == kHFSExtentsFileID) && (extents[kHFSPlusExtentDensity - 1].blockCount != 0)) { + printf ("hfs_split_extent: Maximum 8 extents allowed for extents overflow btree, cannot split further.\n"); + error = ENOSPC; + goto out; } - lockflags = hfs_systemfile_lock(hfsmp, locks, HFS_EXCLUSIVE_LOCK); - fp = VTOF(vp); - datablks = 0; - /* Relocate non-overflow extents */ - for (i = 0; i < kHFSPlusExtentDensity; ++i) { - if (fp->ff_extents[i].blockCount == 0) + /* Determine the starting allocation block number for the following + * overflow extent record, if any, before the current record + * gets modified. + */ + read_recStartBlock = extent_info->recStartBlock; + for (i = 0; i < kHFSPlusExtentDensity; i++) { + if (extents[i].blockCount == 0) { break; - oldStartBlock = fp->ff_extents[i].startBlock; - blockCount = fp->ff_extents[i].blockCount; - datablks += blockCount; - block = oldStartBlock + blockCount; - if (block > startblk) { - error = BlockAllocate(hfsmp, 1, blockCount, blockCount, true, true, &newStartBlock, &blockCount); - if (error) { - printf("hfs_reclaim_sys_file: BlockAllocate returned %d\n", error); - goto fail; - } - if (blockCount != fp->ff_extents[i].blockCount) { - printf("hfs_reclaim_sys_file: new blockCount=%u, original blockCount=%u", blockCount, fp->ff_extents[i].blockCount); - goto free_fail; - } - error = hfs_copy_extent(hfsmp, vp, oldStartBlock, newStartBlock, blockCount, context); - if (error) { - printf("hfs_reclaim_sys_file: hfs_copy_extent returned %d\n", error); - goto free_fail; - } - fp->ff_extents[i].startBlock = newStartBlock; - VTOC(vp)->c_flag |= C_MODIFIED; - *moved = true; - error = BlockDeallocate(hfsmp, oldStartBlock, blockCount); - if (error) { - /* TODO: Mark volume inconsistent? */ - printf("hfs_reclaim_sys_file: BlockDeallocate returned %d\n", error); - goto fail; - } - error = hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH); - if (error) { - /* TODO: Mark volume inconsistent? */ - printf("hfs_reclaim_sys_file: hfs_flushvolumeheader returned %d\n", error); - goto fail; + } + read_recStartBlock += extents[i].blockCount; + } + + /* Shift and split */ + if (index == kHFSPlusExtentDensity-1) { + /* The new extent created after split will go into following overflow extent record */ + shift_extent.startBlock = extents[index].startBlock + newBlockCount; + shift_extent.blockCount = extents[index].blockCount - newBlockCount; + + /* Last extent in the record will be split, so nothing to shift */ + } else { + /* Splitting of extents can result in at most of one + * extent entry to be shifted into following overflow extent + * record. So, store the last extent entry for later. + */ + shift_extent = extents[kHFSPlusExtentDensity-1]; + if ((hfs_resize_debug) && (shift_extent.blockCount != 0)) { + printf ("hfs_split_extent: Save 7:(%u,%u) to shift into overflow record\n", shift_extent.startBlock, shift_extent.blockCount); + } + + /* Start shifting extent information from the end of the extent + * record to the index where we want to insert the new extent. + * Note that kHFSPlusExtentDensity-1 is already saved above, and + * does not need to be shifted. The extent entry that is being + * split does not get shifted. + */ + for (i = kHFSPlusExtentDensity-2; i > index; i--) { + if (hfs_resize_debug) { + if (extents[i].blockCount) { + printf ("hfs_split_extent: Shift %u:(%u,%u) to %u:(%u,%u)\n", i, extents[i].startBlock, extents[i].blockCount, i+1, extents[i].startBlock, extents[i].blockCount); + } } + extents[i+1] = extents[i]; } } - /* Relocate overflow extents (if any) */ - if (i == kHFSPlusExtentDensity && fp->ff_blocks > datablks) { - struct BTreeIterator *iterator = NULL; - struct FSBufferDescriptor btdata; - HFSPlusExtentRecord record; - HFSPlusExtentKey *key; - FCB *fcb; - u_int32_t fileID; - u_int8_t forktype; + if (index == kHFSPlusExtentDensity-1) { + /* The second half of the extent being split will be the overflow + * entry that will go into following overflow extent record. The + * value has been stored in 'shift_extent' above, so there is + * nothing to be done here. + */ + } else { + /* Update the values in the second half of the extent being split + * before updating the first half of the split. Note that the + * extent to split or first half of the split is at index 'index' + * and a new extent or second half of the split will be inserted at + * 'index+1' or into following overflow extent record. + */ + extents[index+1].startBlock = extents[index].startBlock + newBlockCount; + extents[index+1].blockCount = extents[index].blockCount - newBlockCount; + } + /* Update the extent being split, only the block count will change */ + extents[index].blockCount = newBlockCount; + + if (hfs_resize_debug) { + printf ("hfs_split_extent: Split %u:(%u,%u) and ", index, extents[index].startBlock, extents[index].blockCount); + if (index != kHFSPlusExtentDensity-1) { + printf ("%u:(%u,%u)\n", index+1, extents[index+1].startBlock, extents[index+1].blockCount); + } else { + printf ("overflow:(%u,%u)\n", shift_extent.startBlock, shift_extent.blockCount); + } + } - forktype = VNODE_IS_RSRC(vp) ? 0xFF : 0; - fileID = VTOC(vp)->c_cnid; - if (kmem_alloc(kernel_map, (vm_offset_t*) &iterator, sizeof(*iterator))) { - printf("hfs_reclaim_sys_file: kmem_alloc failed!\n"); - error = ENOMEM; - goto fail; + /* Write out information about the newly split extent to the disk */ + if (extent_info->catalog_fp) { + /* (extent_info->catalog_fp != NULL) means the newly split + * extent exists in the catalog record. This means that + * the cnode was updated. Therefore, to write out the changes, + * mark the cnode as modified. We cannot call hfs_update() + * in this function because the caller hfs_reclaim_extent() + * is holding the catalog lock currently. + */ + cp->c_flag |= C_MODIFIED; + } else { + /* The newly split extent is for large EAs or is in overflow + * extent record, so update it directly in the btree using the + * iterator information from the shared extent_info structure + */ + error = BTReplaceRecord(extent_info->fcb, extent_info->iterator, + &(extent_info->btdata), extent_info->recordlen); + if (error) { + printf ("hfs_split_extent: fileID=%u BTReplaceRecord returned error=%d\n", extent_info->fileID, error); + goto out; + } + } + + /* No extent entry to be shifted into another extent overflow record */ + if (shift_extent.blockCount == 0) { + if (hfs_resize_debug) { + printf ("hfs_split_extent: No extent entry to be shifted into overflow records\n"); } + error = 0; + goto out; + } - bzero(iterator, sizeof(*iterator)); - key = (HFSPlusExtentKey *) &iterator->key; - key->keyLength = kHFSPlusExtentKeyMaximumLength; - key->forkType = forktype; - key->fileID = fileID; - key->startBlock = datablks; + /* The overflow extent entry has to be shifted into an extent + * overflow record. This means that we might have to shift + * extent entries from all subsequent overflow records by one. + * We start iteration from the first record to the last record, + * and shift the extent entry from one record to another. + * We might have to create a new extent record for the last + * extent entry for the file. + */ - btdata.bufferAddress = &record; - btdata.itemSize = sizeof(record); + /* Initialize iterator to search the next record */ + bzero(&iterator, sizeof(iterator)); + if (is_xattr) { + /* Copy the key from the iterator that was used to update the modified attribute record. */ + xattr_key = (HFSPlusAttrKey *)&(iterator.key); + bcopy((HFSPlusAttrKey *)&(extent_info->iterator->key), xattr_key, sizeof(HFSPlusAttrKey)); + /* Note: xattr_key->startBlock will be initialized later in the iteration loop */ + + MALLOC(xattr_rec, HFSPlusAttrRecord *, + sizeof(HFSPlusAttrRecord), M_TEMP, M_WAITOK); + if (xattr_rec == NULL) { + error = ENOMEM; + goto out; + } + btdata.bufferAddress = xattr_rec; + btdata.itemSize = sizeof(HFSPlusAttrRecord); btdata.itemCount = 1; - - fcb = VTOF(hfsmp->hfs_extents_vp); + extents = xattr_rec->overflowExtents.extents; + } else { + /* Initialize the extent key for the current file */ + extents_key = (HFSPlusExtentKey *) &(iterator.key); + extents_key->keyLength = kHFSPlusExtentKeyMaximumLength; + extents_key->forkType = extent_info->forkType; + extents_key->fileID = extent_info->fileID; + /* Note: extents_key->startBlock will be initialized later in the iteration loop */ + + MALLOC(extents_rec, HFSPlusExtentRecord *, + sizeof(HFSPlusExtentRecord), M_TEMP, M_WAITOK); + if (extents_rec == NULL) { + error = ENOMEM; + goto out; + } + btdata.bufferAddress = extents_rec; + btdata.itemSize = sizeof(HFSPlusExtentRecord); + btdata.itemCount = 1; + extents = extents_rec[0]; + } - error = BTSearchRecord(fcb, iterator, &btdata, NULL, iterator); - while (error == 0) { - /* Stop when we encounter a different file or fork. */ - if ((key->fileID != fileID) || - (key->forkType != forktype)) { - break; + /* The overflow extent entry has to be shifted into an extent + * overflow record. This means that we might have to shift + * extent entries from all subsequent overflow records by one. + * We start iteration from the first record to the last record, + * examine one extent record in each iteration and shift one + * extent entry from one record to another. We might have to + * create a new extent record for the last extent entry for the + * file. + * + * If shift_extent.blockCount is non-zero, it means that there is + * an extent entry that needs to be shifted into the next + * overflow extent record. We keep on going till there are no such + * entries left to be shifted. This will also change the starting + * allocation block number of the extent record which is part of + * the key for the extent record in each iteration. Note that + * because the extent record key is changing while we are searching, + * the record can not be updated directly, instead it has to be + * deleted and inserted again. + */ + while (shift_extent.blockCount) { + if (hfs_resize_debug) { + printf ("hfs_split_extent: Will shift (%u,%u) into overflow record with startBlock=%u\n", shift_extent.startBlock, shift_extent.blockCount, read_recStartBlock); + } + + /* Search if there is any existing overflow extent record + * that matches the current file and the logical start block + * number. + * + * For this, the logical start block number in the key is + * the value calculated based on the logical start block + * number of the current extent record and the total number + * of blocks existing in the current extent record. + */ + if (is_xattr) { + xattr_key->startBlock = read_recStartBlock; + } else { + extents_key->startBlock = read_recStartBlock; + } + error = BTSearchRecord(extent_info->fcb, &iterator, &btdata, &reclen, &iterator); + if (error) { + if (error != btNotFound) { + printf ("hfs_split_extent: fileID=%u startBlock=%u BTSearchRecord error=%d\n", extent_info->fileID, read_recStartBlock, error); + goto out; } - /* - * Check if the file overlaps target space. + /* No matching record was found, so create a new extent record. + * Note: Since no record was found, we can't rely on the + * btree key in the iterator any longer. This will be initialized + * later before we insert the record. */ - for (i = 0; i < kHFSPlusExtentDensity; ++i) { - if (record[i].blockCount == 0) { - goto overflow_done; - } - oldStartBlock = record[i].startBlock; - blockCount = record[i].blockCount; - block = oldStartBlock + blockCount; - if (block > startblk) { - error = BlockAllocate(hfsmp, 1, blockCount, blockCount, true, true, &newStartBlock, &blockCount); - if (error) { - printf("hfs_reclaim_sys_file: BlockAllocate returned %d\n", error); - goto overflow_done; - } - if (blockCount != record[i].blockCount) { - printf("hfs_reclaim_sys_file: new blockCount=%u, original blockCount=%u", blockCount, fp->ff_extents[i].blockCount); - kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator)); - goto free_fail; - } - error = hfs_copy_extent(hfsmp, vp, oldStartBlock, newStartBlock, blockCount, context); - if (error) { - printf("hfs_reclaim_sys_file: hfs_copy_extent returned %d\n", error); - kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator)); - goto free_fail; - } - record[i].startBlock = newStartBlock; - VTOC(vp)->c_flag |= C_MODIFIED; - *moved = true; - /* - * NOTE: To support relocating overflow extents of the - * allocation file, we must update the BTree record BEFORE - * deallocating the old extent so that BlockDeallocate will - * use the extent's new location to calculate physical block - * numbers. (This is for the case where the old extent's - * bitmap bits actually reside in the extent being moved.) - */ - error = BTUpdateRecord(fcb, iterator, (IterateCallBackProcPtr) hfs_relocate_callback, &record); - if (error) { - /* TODO: Mark volume inconsistent? */ - printf("hfs_reclaim_sys_file: BTUpdateRecord returned %d\n", error); - goto overflow_done; - } - error = BlockDeallocate(hfsmp, oldStartBlock, blockCount); - if (error) { - /* TODO: Mark volume inconsistent? */ - printf("hfs_reclaim_sys_file: BlockDeallocate returned %d\n", error); - goto overflow_done; - } - } + create_record = true; + } + + /* The extra extent entry from the previous record is being inserted + * as the first entry in the current extent record. This will change + * the file allocation block number (FABN) of the current extent + * record, which is the startBlock value from the extent record key. + * Since one extra entry is being inserted in the record, the new + * FABN for the record will less than old FABN by the number of blocks + * in the new extent entry being inserted at the start. We have to + * do this before we update read_recStartBlock to point at the + * startBlock of the following record. + */ + write_recStartBlock = read_recStartBlock - shift_extent.blockCount; + if (hfs_resize_debug) { + if (create_record) { + printf ("hfs_split_extent: No records found for startBlock=%u, will create new with startBlock=%u\n", read_recStartBlock, write_recStartBlock); } - /* Look for more records. */ - error = BTIterateRecord(fcb, kBTreeNextRecord, iterator, &btdata, NULL); - if (error == btNotFound) { - error = 0; + } + + /* Now update the read_recStartBlock to account for total number + * of blocks in this extent record. It will now point to the + * starting allocation block number for the next extent record. + */ + for (i = 0; i < kHFSPlusExtentDensity; i++) { + if (extents[i].blockCount == 0) { break; } + read_recStartBlock += extents[i].blockCount; } -overflow_done: - kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator)); - if (error) { - goto fail; - } - } - - hfs_systemfile_unlock(hfsmp, lockflags); - error = hfs_end_transaction(hfsmp); - if (error) { - printf("hfs_reclaim_sys_file: hfs_end_transaction returned %d\n", error); - } - return error; + if (create_record == true) { + /* Initialize new record content with only one extent entry */ + bzero(extents, sizeof(HFSPlusExtentRecord)); + /* The new record will contain only one extent entry */ + extents[0] = shift_extent; + /* There are no more overflow extents to be shifted */ + shift_extent.startBlock = shift_extent.blockCount = 0; + + if (is_xattr) { + /* BTSearchRecord above returned btNotFound, + * but since the attribute btree is never empty + * if we are trying to insert new overflow + * record for the xattrs, the extents_key will + * contain correct data. So we don't need to + * re-initialize it again like below. + */ + + /* Initialize the new xattr record */ + xattr_rec->recordType = kHFSPlusAttrExtents; + xattr_rec->overflowExtents.reserved = 0; + reclen = sizeof(HFSPlusAttrExtents); + } else { + /* BTSearchRecord above returned btNotFound, + * which means that extents_key content might + * not correspond to the record that we are + * trying to create, especially when the extents + * overflow btree is empty. So we reinitialize + * the extents_key again always. + */ + extents_key->keyLength = kHFSPlusExtentKeyMaximumLength; + extents_key->forkType = extent_info->forkType; + extents_key->fileID = extent_info->fileID; + + /* Initialize the new extent record */ + reclen = sizeof(HFSPlusExtentRecord); + } + } else { + /* The overflow extent entry from previous record will be + * the first entry in this extent record. If the last + * extent entry in this record is valid, it will be shifted + * into the following extent record as its first entry. So + * save the last entry before shifting entries in current + * record. + */ + last_extent = extents[kHFSPlusExtentDensity-1]; + + /* Shift all entries by one index towards the end */ + for (i = kHFSPlusExtentDensity-2; i >= 0; i--) { + extents[i+1] = extents[i]; + } + + /* Overflow extent entry saved from previous record + * is now the first entry in the current record. + */ + extents[0] = shift_extent; + + if (hfs_resize_debug) { + printf ("hfs_split_extent: Shift overflow=(%u,%u) to record with updated startBlock=%u\n", shift_extent.startBlock, shift_extent.blockCount, write_recStartBlock); + } + + /* The last entry from current record will be the + * overflow entry which will be the first entry for + * the following extent record. + */ + shift_extent = last_extent; + + /* Since the key->startBlock is being changed for this record, + * it should be deleted and inserted with the new key. + */ + error = BTDeleteRecord(extent_info->fcb, &iterator); + if (error) { + printf ("hfs_split_extent: fileID=%u startBlock=%u BTDeleteRecord error=%d\n", extent_info->fileID, read_recStartBlock, error); + goto out; + } + if (hfs_resize_debug) { + printf ("hfs_split_extent: Deleted record with startBlock=%u\n", (is_xattr ? xattr_key->startBlock : extents_key->startBlock)); + } + } + + /* Insert the newly created or modified extent record */ + bzero(&iterator.hint, sizeof(iterator.hint)); + if (is_xattr) { + xattr_key->startBlock = write_recStartBlock; + } else { + extents_key->startBlock = write_recStartBlock; + } + error = BTInsertRecord(extent_info->fcb, &iterator, &btdata, reclen); + if (error) { + printf ("hfs_split_extent: fileID=%u, startBlock=%u BTInsertRecord error=%d\n", extent_info->fileID, write_recStartBlock, error); + goto out; + } + if (hfs_resize_debug) { + printf ("hfs_split_extent: Inserted extent record with startBlock=%u\n", write_recStartBlock); + } + } + BTFlushPath(extent_info->fcb); +out: + if (extents_rec) { + FREE (extents_rec, M_TEMP); + } + if (xattr_rec) { + FREE (xattr_rec, M_TEMP); + } + return error; +} + + +/* + * Relocate an extent if it lies beyond the expected end of volume. + * + * This function is called for every extent of the file being relocated. + * It allocates space for relocation, copies the data, deallocates + * the old extent, and update corresponding on-disk extent. If the function + * does not find contiguous space to relocate an extent, it splits the + * extent in smaller size to be able to relocate it out of the area of + * disk being reclaimed. As an optimization, if an extent lies partially + * in the area of the disk being reclaimed, it is split so that we only + * have to relocate the area that was overlapping with the area of disk + * being reclaimed. + * + * Note that every extent is relocated in its own transaction so that + * they do not overwhelm the journal. This function handles the extent + * record that exists in the catalog record, extent record from overflow + * extents btree, and extents for large EAs. + * + * Inputs: + * extent_info - This is the structure that contains state about + * the current file, extent, and extent record that + * is being relocated. This structure is shared + * among code that traverses through all the extents + * of the file, code that relocates extents, and + * code that splits the extent. + */ +static int +hfs_reclaim_extent(struct hfsmount *hfsmp, const u_long allocLimit, struct hfs_reclaim_extent_info *extent_info, vfs_context_t context) +{ + int error = 0; + int index; + struct cnode *cp; + u_int32_t oldStartBlock; + u_int32_t oldBlockCount; + u_int32_t newStartBlock; + u_int32_t newBlockCount; + u_int32_t roundedBlockCount; + uint16_t node_size; + uint32_t remainder_blocks; + u_int32_t alloc_flags; + int blocks_allocated = false; + + index = extent_info->extent_index; + cp = VTOC(extent_info->vp); + + oldStartBlock = extent_info->extents[index].startBlock; + oldBlockCount = extent_info->extents[index].blockCount; + + if (0 && hfs_resize_debug) { + printf ("hfs_reclaim_extent: Examine record:%u recStartBlock=%u, %u:(%u,%u)\n", extent_info->overflow_count, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount); + } + + /* If the current extent lies completely within allocLimit, + * it does not require any relocation. + */ + if ((oldStartBlock + oldBlockCount) <= allocLimit) { + extent_info->cur_blockCount += oldBlockCount; + return error; + } + + /* Every extent should be relocated in its own transaction + * to make sure that we don't overflow the journal buffer. + */ + error = hfs_start_transaction(hfsmp); + if (error) { + return error; + } + extent_info->lockflags = hfs_systemfile_lock(hfsmp, extent_info->lockflags, HFS_EXCLUSIVE_LOCK); + + /* Check if the extent lies partially in the area to reclaim, + * i.e. it starts before allocLimit and ends beyond allocLimit. + * We have already skipped extents that lie completely within + * allocLimit in the check above, so we only check for the + * startBlock. If it lies partially, split it so that we + * only relocate part of the extent. + */ + if (oldStartBlock < allocLimit) { + newBlockCount = allocLimit - oldStartBlock; + + /* If the extent belongs to a btree, check and trim + * it to be multiple of the node size. + */ + if (extent_info->is_sysfile) { + node_size = get_btree_nodesize(extent_info->vp); + /* If the btree node size is less than the block size, + * splitting this extent will not split a node across + * different extents. So we only check and trim if + * node size is more than the allocation block size. + */ + if (node_size > hfsmp->blockSize) { + remainder_blocks = newBlockCount % (node_size / hfsmp->blockSize); + if (remainder_blocks) { + newBlockCount -= remainder_blocks; + if (hfs_resize_debug) { + printf ("hfs_reclaim_extent: Fixing extent block count, node_blks=%u, old=%u, new=%u\n", node_size/hfsmp->blockSize, newBlockCount + remainder_blocks, newBlockCount); + } + } + } + } + + if (hfs_resize_debug) { + int idx = extent_info->extent_index; + printf ("hfs_reclaim_extent: Split straddling extent %u:(%u,%u) for %u blocks\n", idx, extent_info->extents[idx].startBlock, extent_info->extents[idx].blockCount, newBlockCount); + } + + /* Split the extents into two parts --- the first extent lies + * completely within allocLimit and therefore does not require + * relocation. The second extent will require relocation which + * will be handled when the caller calls this function again + * for the next extent. + */ + error = hfs_split_extent(extent_info, newBlockCount); + if (error == 0) { + /* Split success, no relocation required */ + goto out; + } + /* Split failed, so try to relocate entire extent */ + if (hfs_resize_debug) { + printf ("hfs_reclaim_extent: Split straddling extent failed, reclocate full extent\n"); + } + } + + /* At this point, the current extent requires relocation. + * We will try to allocate space equal to the size of the extent + * being relocated first to try to relocate it without splitting. + * If the allocation fails, we will try to allocate contiguous + * blocks out of metadata zone. If that allocation also fails, + * then we will take a whatever contiguous block run is returned + * by the allocation, split the extent into two parts, and then + * relocate the first splitted extent. + */ + alloc_flags = HFS_ALLOC_FORCECONTIG | HFS_ALLOC_SKIPFREEBLKS; + if (extent_info->is_sysfile) { + alloc_flags |= HFS_ALLOC_METAZONE; + } + + error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount, alloc_flags, + &newStartBlock, &newBlockCount); + if ((extent_info->is_sysfile == false) && + ((error == dskFulErr) || (error == ENOSPC))) { + /* For non-system files, try reallocating space in metadata zone */ + alloc_flags |= HFS_ALLOC_METAZONE; + error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount, + alloc_flags, &newStartBlock, &newBlockCount); + } + if ((error == dskFulErr) || (error == ENOSPC)) { + /* We did not find desired contiguous space for this extent. + * So try to allocate the maximum contiguous space available. + */ + alloc_flags &= ~HFS_ALLOC_FORCECONTIG; + + error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount, + alloc_flags, &newStartBlock, &newBlockCount); + if (error) { + printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u) BlockAllocate error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, error); + goto out; + } + blocks_allocated = true; + + /* The number of blocks allocated is less than the requested + * number of blocks. For btree extents, check and trim the + * extent to be multiple of the node size. + */ + if (extent_info->is_sysfile) { + node_size = get_btree_nodesize(extent_info->vp); + if (node_size > hfsmp->blockSize) { + remainder_blocks = newBlockCount % (node_size / hfsmp->blockSize); + if (remainder_blocks) { + roundedBlockCount = newBlockCount - remainder_blocks; + /* Free tail-end blocks of the newly allocated extent */ + BlockDeallocate(hfsmp, newStartBlock + roundedBlockCount, + newBlockCount - roundedBlockCount, + HFS_ALLOC_SKIPFREEBLKS); + newBlockCount = roundedBlockCount; + if (hfs_resize_debug) { + printf ("hfs_reclaim_extent: Fixing extent block count, node_blks=%u, old=%u, new=%u\n", node_size/hfsmp->blockSize, newBlockCount + remainder_blocks, newBlockCount); + } + if (newBlockCount == 0) { + printf ("hfs_reclaim_extent: Not enough contiguous blocks available to relocate fileID=%d\n", extent_info->fileID); + error = ENOSPC; + goto out; + } + } + } + } + + /* The number of blocks allocated is less than the number of + * blocks requested, so split this extent --- the first extent + * will be relocated as part of this function call and the caller + * will handle relocating the second extent by calling this + * function again for the second extent. + */ + error = hfs_split_extent(extent_info, newBlockCount); + if (error) { + printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u) split error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, error); + goto out; + } + oldBlockCount = newBlockCount; + } + if (error) { + printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u) contig BlockAllocate error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, error); + goto out; + } + blocks_allocated = true; + + /* Copy data from old location to new location */ + error = hfs_copy_extent(hfsmp, extent_info->vp, oldStartBlock, + newStartBlock, newBlockCount, context); + if (error) { + printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u)=>(%u,%u) hfs_copy_extent error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, newStartBlock, newBlockCount, error); + goto out; + } + + /* Update the extent record with the new start block information */ + extent_info->extents[index].startBlock = newStartBlock; + + /* Sync the content back to the disk */ + if (extent_info->catalog_fp) { + /* Update the extents in catalog record */ + if (extent_info->is_dirlink) { + error = cat_update_dirlink(hfsmp, extent_info->forkType, + extent_info->dirlink_desc, extent_info->dirlink_attr, + &(extent_info->dirlink_fork->ff_data)); + } else { + cp->c_flag |= C_MODIFIED; + /* If this is a system file, sync volume headers on disk */ + if (extent_info->is_sysfile) { + error = hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH); + } + } + } else { + /* Replace record for extents overflow or extents-based xattrs */ + error = BTReplaceRecord(extent_info->fcb, extent_info->iterator, + &(extent_info->btdata), extent_info->recordlen); + } + if (error) { + printf ("hfs_reclaim_extent: fileID=%u, update record error=%u\n", extent_info->fileID, error); + goto out; + } + + /* Deallocate the old extent */ + error = BlockDeallocate(hfsmp, oldStartBlock, oldBlockCount, HFS_ALLOC_SKIPFREEBLKS); + if (error) { + printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u) BlockDeallocate error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, error); + goto out; + } + extent_info->blocks_relocated += newBlockCount; + + if (hfs_resize_debug) { + printf ("hfs_reclaim_extent: Relocated record:%u %u:(%u,%u) to (%u,%u)\n", extent_info->overflow_count, index, oldStartBlock, oldBlockCount, newStartBlock, newBlockCount); + } + +out: + if (error != 0) { + if (blocks_allocated == true) { + BlockDeallocate(hfsmp, newStartBlock, newBlockCount, HFS_ALLOC_SKIPFREEBLKS); + } + } else { + /* On success, increment the total allocation blocks processed */ + extent_info->cur_blockCount += newBlockCount; + } + + hfs_systemfile_unlock(hfsmp, extent_info->lockflags); + + /* For a non-system file, if an extent entry from catalog record + * was modified, sync the in-memory changes to the catalog record + * on disk before ending the transaction. + */ + if ((extent_info->catalog_fp) && + (extent_info->is_sysfile == false)) { + (void) hfs_update(extent_info->vp, MNT_WAIT); + } + + hfs_end_transaction(hfsmp); + + return error; +} + +/* Report intermediate progress during volume resize */ +static void +hfs_truncatefs_progress(struct hfsmount *hfsmp) +{ + u_int32_t cur_progress; + + hfs_resize_progress(hfsmp, &cur_progress); + if (cur_progress > (hfsmp->hfs_resize_progress + 9)) { + printf("hfs_truncatefs: %d%% done...\n", cur_progress); + hfsmp->hfs_resize_progress = cur_progress; + } + return; +} + +/* + * Reclaim space at the end of a volume for given file and forktype. + * + * This routine attempts to move any extent which contains allocation blocks + * at or after "allocLimit." A separate transaction is used for every extent + * that needs to be moved. If there is not contiguous space available for + * moving an extent, it can be split into smaller extents. The contents of + * any moved extents are read and written via the volume's device vnode -- + * NOT via "vp." During the move, moved blocks which are part of a transaction + * have their physical block numbers invalidated so they will eventually be + * written to their new locations. + * + * This function is also called for directory hard links. Directory hard links + * are regular files with no data fork and resource fork that contains alias + * information for backward compatibility with pre-Leopard systems. However + * non-Mac OS X implementation can add/modify data fork or resource fork + * information to directory hard links, so we check, and if required, relocate + * both data fork and resource fork. + * + * Inputs: + * hfsmp The volume being resized. + * vp The vnode for the system file. + * fileID ID of the catalog record that needs to be relocated + * forktype The type of fork that needs relocated, + * kHFSResourceForkType for resource fork, + * kHFSDataForkType for data fork + * allocLimit Allocation limit for the new volume size, + * do not use this block or beyond. All extents + * that use this block or any blocks beyond this limit + * will be relocated. + * + * Side Effects: + * hfsmp->hfs_resize_blocksmoved is incremented by the number of allocation + * blocks that were relocated. + */ +static int +hfs_reclaim_file(struct hfsmount *hfsmp, struct vnode *vp, u_int32_t fileID, + u_int8_t forktype, u_long allocLimit, vfs_context_t context) +{ + int error = 0; + struct hfs_reclaim_extent_info *extent_info; + int i; + int lockflags = 0; + struct cnode *cp; + struct filefork *fp; + int took_truncate_lock = false; + int release_desc = false; + HFSPlusExtentKey *key; + + /* If there is no vnode for this file, then there's nothing to do. */ + if (vp == NULL) { + return 0; + } + + cp = VTOC(vp); + + MALLOC(extent_info, struct hfs_reclaim_extent_info *, + sizeof(struct hfs_reclaim_extent_info), M_TEMP, M_WAITOK); + if (extent_info == NULL) { + return ENOMEM; + } + bzero(extent_info, sizeof(struct hfs_reclaim_extent_info)); + extent_info->vp = vp; + extent_info->fileID = fileID; + extent_info->forkType = forktype; + extent_info->is_sysfile = vnode_issystem(vp); + if (vnode_isdir(vp) && (cp->c_flag & C_HARDLINK)) { + extent_info->is_dirlink = true; + } + /* We always need allocation bitmap and extent btree lock */ + lockflags = SFL_BITMAP | SFL_EXTENTS; + if ((fileID == kHFSCatalogFileID) || (extent_info->is_dirlink == true)) { + lockflags |= SFL_CATALOG; + } else if (fileID == kHFSAttributesFileID) { + lockflags |= SFL_ATTRIBUTE; + } else if (fileID == kHFSStartupFileID) { + lockflags |= SFL_STARTUP; + } + extent_info->lockflags = lockflags; + extent_info->fcb = VTOF(hfsmp->hfs_extents_vp); + + /* Flush data associated with current file on disk. + * + * If the current vnode is directory hard link, no flushing of + * journal or vnode is required. The current kernel does not + * modify data/resource fork of directory hard links, so nothing + * will be in the cache. If a directory hard link is newly created, + * the resource fork data is written directly using devvp and + * the code that actually relocates data (hfs_copy_extent()) also + * uses devvp for its I/O --- so they will see a consistent copy. + */ + if (extent_info->is_sysfile) { + /* If the current vnode is system vnode, flush journal + * to make sure that all data is written to the disk. + */ + error = hfs_journal_flush(hfsmp, TRUE); + if (error) { + printf ("hfs_reclaim_file: journal_flush returned %d\n", error); + goto out; + } + } else if (extent_info->is_dirlink == false) { + /* Flush all blocks associated with this regular file vnode. + * Normally there should not be buffer cache blocks for regular + * files, but for objects like symlinks, we can have buffer cache + * blocks associated with the vnode. Therefore we call + * buf_flushdirtyblks() also. + */ + buf_flushdirtyblks(vp, 0, BUF_SKIP_LOCKED, "hfs_reclaim_file"); + + hfs_unlock(cp); + hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK); + took_truncate_lock = true; + (void) cluster_push(vp, 0); + error = hfs_lock(cp, HFS_FORCE_LOCK); + if (error) { + goto out; + } + + /* If the file no longer exists, nothing left to do */ + if (cp->c_flag & C_NOEXISTS) { + error = 0; + goto out; + } + + /* Wait for any in-progress writes to this vnode to complete, so that we'll + * be copying consistent bits. (Otherwise, it's possible that an async + * write will complete to the old extent after we read from it. That + * could lead to corruption.) + */ + error = vnode_waitforwrites(vp, 0, 0, 0, "hfs_reclaim_file"); + if (error) { + goto out; + } + } + + if (hfs_resize_debug) { + printf("hfs_reclaim_file: === Start reclaiming %sfork for %sid=%u ===\n", (forktype ? "rsrc" : "data"), (extent_info->is_dirlink ? "dirlink" : "file"), fileID); + } + + if (extent_info->is_dirlink) { + MALLOC(extent_info->dirlink_desc, struct cat_desc *, + sizeof(struct cat_desc), M_TEMP, M_WAITOK); + MALLOC(extent_info->dirlink_attr, struct cat_attr *, + sizeof(struct cat_attr), M_TEMP, M_WAITOK); + MALLOC(extent_info->dirlink_fork, struct filefork *, + sizeof(struct filefork), M_TEMP, M_WAITOK); + if ((extent_info->dirlink_desc == NULL) || + (extent_info->dirlink_attr == NULL) || + (extent_info->dirlink_fork == NULL)) { + error = ENOMEM; + goto out; + } + + /* Lookup catalog record for directory hard link and + * create a fake filefork for the value looked up from + * the disk. + */ + fp = extent_info->dirlink_fork; + bzero(extent_info->dirlink_fork, sizeof(struct filefork)); + extent_info->dirlink_fork->ff_cp = cp; + lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); + error = cat_lookup_dirlink(hfsmp, fileID, forktype, + extent_info->dirlink_desc, extent_info->dirlink_attr, + &(extent_info->dirlink_fork->ff_data)); + hfs_systemfile_unlock(hfsmp, lockflags); + if (error) { + printf ("hfs_reclaim_file: cat_lookup_dirlink for fileID=%u returned error=%u\n", fileID, error); + goto out; + } + release_desc = true; + } else { + fp = VTOF(vp); + } + + extent_info->catalog_fp = fp; + extent_info->recStartBlock = 0; + extent_info->extents = extent_info->catalog_fp->ff_extents; + /* Relocate extents from the catalog record */ + for (i = 0; i < kHFSPlusExtentDensity; ++i) { + if (fp->ff_extents[i].blockCount == 0) { + break; + } + extent_info->extent_index = i; + error = hfs_reclaim_extent(hfsmp, allocLimit, extent_info, context); + if (error) { + printf ("hfs_reclaim_file: fileID=%u #%d %u:(%u,%u) hfs_reclaim_extent error=%d\n", fileID, extent_info->overflow_count, i, fp->ff_extents[i].startBlock, fp->ff_extents[i].blockCount, error); + goto out; + } + } + + /* If the number of allocation blocks processed for reclaiming + * are less than total number of blocks for the file, continuing + * working on overflow extents record. + */ + if (fp->ff_blocks <= extent_info->cur_blockCount) { + if (0 && hfs_resize_debug) { + printf ("hfs_reclaim_file: Nothing more to relocate, offset=%d, ff_blocks=%u, cur_blockCount=%u\n", i, fp->ff_blocks, extent_info->cur_blockCount); + } + goto out; + } + + if (hfs_resize_debug) { + printf ("hfs_reclaim_file: Will check overflow records, offset=%d, ff_blocks=%u, cur_blockCount=%u\n", i, fp->ff_blocks, extent_info->cur_blockCount); + } + + MALLOC(extent_info->iterator, struct BTreeIterator *, sizeof(struct BTreeIterator), M_TEMP, M_WAITOK); + if (extent_info->iterator == NULL) { + error = ENOMEM; + goto out; + } + bzero(extent_info->iterator, sizeof(struct BTreeIterator)); + key = (HFSPlusExtentKey *) &(extent_info->iterator->key); + key->keyLength = kHFSPlusExtentKeyMaximumLength; + key->forkType = forktype; + key->fileID = fileID; + key->startBlock = extent_info->cur_blockCount; + + extent_info->btdata.bufferAddress = extent_info->record.overflow; + extent_info->btdata.itemSize = sizeof(HFSPlusExtentRecord); + extent_info->btdata.itemCount = 1; + + extent_info->catalog_fp = NULL; + + /* Search the first overflow extent with expected startBlock as 'cur_blockCount' */ + lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); + error = BTSearchRecord(extent_info->fcb, extent_info->iterator, + &(extent_info->btdata), &(extent_info->recordlen), + extent_info->iterator); + hfs_systemfile_unlock(hfsmp, lockflags); + while (error == 0) { + extent_info->overflow_count++; + extent_info->recStartBlock = key->startBlock; + extent_info->extents = extent_info->record.overflow; + for (i = 0; i < kHFSPlusExtentDensity; i++) { + if (extent_info->record.overflow[i].blockCount == 0) { + goto out; + } + extent_info->extent_index = i; + error = hfs_reclaim_extent(hfsmp, allocLimit, extent_info, context); + if (error) { + printf ("hfs_reclaim_file: fileID=%u #%d %u:(%u,%u) hfs_reclaim_extent error=%d\n", fileID, extent_info->overflow_count, i, extent_info->record.overflow[i].startBlock, extent_info->record.overflow[i].blockCount, error); + goto out; + } + } + + /* Look for more overflow records */ + lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); + error = BTIterateRecord(extent_info->fcb, kBTreeNextRecord, + extent_info->iterator, &(extent_info->btdata), + &(extent_info->recordlen)); + hfs_systemfile_unlock(hfsmp, lockflags); + if (error) { + break; + } + /* Stop when we encounter a different file or fork. */ + if ((key->fileID != fileID) || (key->forkType != forktype)) { + break; + } + } + if (error == fsBTRecordNotFoundErr || error == fsBTEndOfIterationErr) { + error = 0; + } + +out: + /* If any blocks were relocated, account them and report progress */ + if (extent_info->blocks_relocated) { + hfsmp->hfs_resize_blocksmoved += extent_info->blocks_relocated; + hfs_truncatefs_progress(hfsmp); + if (fileID < kHFSFirstUserCatalogNodeID) { + printf ("hfs_reclaim_file: Relocated %u blocks from fileID=%u on \"%s\"\n", + extent_info->blocks_relocated, fileID, hfsmp->vcbVN); + } + } + if (extent_info->iterator) { + FREE(extent_info->iterator, M_TEMP); + } + if (release_desc == true) { + cat_releasedesc(extent_info->dirlink_desc); + } + if (extent_info->dirlink_desc) { + FREE(extent_info->dirlink_desc, M_TEMP); + } + if (extent_info->dirlink_attr) { + FREE(extent_info->dirlink_attr, M_TEMP); + } + if (extent_info->dirlink_fork) { + FREE(extent_info->dirlink_fork, M_TEMP); + } + if ((extent_info->blocks_relocated != 0) && (extent_info->is_sysfile == false)) { + (void) hfs_update(vp, MNT_WAIT); + } + if (took_truncate_lock) { + hfs_unlock_truncate(cp, 0); + } + if (extent_info) { + FREE(extent_info, M_TEMP); + } + if (hfs_resize_debug) { + printf("hfs_reclaim_file: === Finished relocating %sfork for fileid=%u (error=%d) ===\n", (forktype ? "rsrc" : "data"), fileID, error); + } -free_fail: - (void) BlockDeallocate(hfsmp, newStartBlock, blockCount); -fail: - (void) hfs_systemfile_unlock(hfsmp, lockflags); - (void) hfs_end_transaction(hfsmp); return error; } @@ -4424,6 +5911,9 @@ hfs_journal_relocate_callback(void *_args) hfsmp->blockSize, vfs_context_ucred(args->context), &bp); if (error) { printf("hfs_reclaim_journal_file: failed to read JIB (%d)\n", error); + if (bp) { + buf_brelse(bp); + } return error; } jibp = (JournalInfoBlock*) buf_dataptr(bp); @@ -4449,10 +5939,12 @@ hfs_journal_relocate_callback(void *_args) static int -hfs_reclaim_journal_file(struct hfsmount *hfsmp, vfs_context_t context) +hfs_reclaim_journal_file(struct hfsmount *hfsmp, u_int32_t allocLimit, vfs_context_t context) { int error; + int journal_err; int lockflags; + u_int32_t oldStartBlock; u_int32_t newStartBlock; u_int32_t oldBlockCount; u_int32_t newBlockCount; @@ -4461,6 +5953,11 @@ hfs_reclaim_journal_file(struct hfsmount *hfsmp, vfs_context_t context) struct cat_fork journal_fork; struct hfs_journal_relocate_args callback_args; + if (hfsmp->jnl_start + (hfsmp->jnl_size / hfsmp->blockSize) <= allocLimit) { + /* The journal does not require relocation */ + return 0; + } + error = hfs_start_transaction(hfsmp); if (error) { printf("hfs_reclaim_journal_file: hfs_start_transaction returned %d\n", error); @@ -4471,7 +5968,9 @@ hfs_reclaim_journal_file(struct hfsmount *hfsmp, vfs_context_t context) oldBlockCount = hfsmp->jnl_size / hfsmp->blockSize; /* TODO: Allow the journal to change size based on the new volume size. */ - error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount, true, true, &newStartBlock, &newBlockCount); + error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount, + HFS_ALLOC_METAZONE | HFS_ALLOC_FORCECONTIG | HFS_ALLOC_SKIPFREEBLKS, + &newStartBlock, &newBlockCount); if (error) { printf("hfs_reclaim_journal_file: BlockAllocate returned %d\n", error); goto fail; @@ -4481,7 +5980,7 @@ hfs_reclaim_journal_file(struct hfsmount *hfsmp, vfs_context_t context) goto free_fail; } - error = BlockDeallocate(hfsmp, hfsmp->jnl_start, oldBlockCount); + error = BlockDeallocate(hfsmp, hfsmp->jnl_start, oldBlockCount, HFS_ALLOC_SKIPFREEBLKS); if (error) { printf("hfs_reclaim_journal_file: BlockDeallocate returned %d\n", error); goto free_fail; @@ -4493,6 +5992,7 @@ hfs_reclaim_journal_file(struct hfsmount *hfsmp, vfs_context_t context) printf("hfs_reclaim_journal_file: cat_idlookup returned %d\n", error); goto free_fail; } + oldStartBlock = journal_fork.cf_extents[0].startBlock; journal_fork.cf_size = newBlockCount * hfsmp->blockSize; journal_fork.cf_extents[0].startBlock = newStartBlock; journal_fork.cf_extents[0].blockCount = newBlockCount; @@ -4524,13 +6024,30 @@ hfs_reclaim_journal_file(struct hfsmount *hfsmp, vfs_context_t context) printf("hfs_reclaim_journal_file: hfs_end_transaction returned %d\n", error); } + /* Account for the blocks relocated and print progress */ + hfsmp->hfs_resize_blocksmoved += oldBlockCount; + hfs_truncatefs_progress(hfsmp); + if (!error) { + printf ("hfs_reclaim_journal_file: Relocated %u blocks from journal on \"%s\"\n", + oldBlockCount, hfsmp->vcbVN); + if (hfs_resize_debug) { + printf ("hfs_reclaim_journal_file: Successfully relocated journal from (%u,%u) to (%u,%u)\n", oldStartBlock, oldBlockCount, newStartBlock, newBlockCount); + } + } return error; free_fail: - (void) BlockDeallocate(hfsmp, newStartBlock, newBlockCount); + journal_err = BlockDeallocate(hfsmp, newStartBlock, newBlockCount, HFS_ALLOC_SKIPFREEBLKS); + if (journal_err) { + printf("hfs_reclaim_journal_file: BlockDeallocate returned %d\n", error); + hfs_mark_volume_inconsistent(hfsmp); + } fail: hfs_systemfile_unlock(hfsmp, lockflags); (void) hfs_end_transaction(hfsmp); + if (hfs_resize_debug) { + printf ("hfs_reclaim_journal_file: Error relocating journal file (error=%d)\n", error); + } return error; } @@ -4541,16 +6058,23 @@ fail: * the field in the volume header and the catalog record. */ static int -hfs_reclaim_journal_info_block(struct hfsmount *hfsmp, vfs_context_t context) +hfs_reclaim_journal_info_block(struct hfsmount *hfsmp, u_int32_t allocLimit, vfs_context_t context) { int error; + int journal_err; int lockflags; + u_int32_t oldBlock; u_int32_t newBlock; u_int32_t blockCount; struct cat_desc jib_desc; struct cat_attr jib_attr; struct cat_fork jib_fork; buf_t old_bp, new_bp; + + if (hfsmp->vcbJinfoBlock <= allocLimit) { + /* The journal info block does not require relocation */ + return 0; + } error = hfs_start_transaction(hfsmp); if (error) { @@ -4559,7 +6083,9 @@ hfs_reclaim_journal_info_block(struct hfsmount *hfsmp, vfs_context_t context) } lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_BITMAP, HFS_EXCLUSIVE_LOCK); - error = BlockAllocate(hfsmp, 1, 1, 1, true, true, &newBlock, &blockCount); + error = BlockAllocate(hfsmp, 1, 1, 1, + HFS_ALLOC_METAZONE | HFS_ALLOC_FORCECONTIG | HFS_ALLOC_SKIPFREEBLKS, + &newBlock, &blockCount); if (error) { printf("hfs_reclaim_journal_info_block: BlockAllocate returned %d\n", error); goto fail; @@ -4568,7 +6094,7 @@ hfs_reclaim_journal_info_block(struct hfsmount *hfsmp, vfs_context_t context) printf("hfs_reclaim_journal_info_block: blockCount != 1 (%u)\n", blockCount); goto free_fail; } - error = BlockDeallocate(hfsmp, hfsmp->vcbJinfoBlock, 1); + error = BlockDeallocate(hfsmp, hfsmp->vcbJinfoBlock, 1, HFS_ALLOC_SKIPFREEBLKS); if (error) { printf("hfs_reclaim_journal_info_block: BlockDeallocate returned %d\n", error); goto free_fail; @@ -4580,6 +6106,9 @@ hfs_reclaim_journal_info_block(struct hfsmount *hfsmp, vfs_context_t context) hfsmp->blockSize, vfs_context_ucred(context), &old_bp); if (error) { printf("hfs_reclaim_journal_info_block: failed to read JIB (%d)\n", error); + if (old_bp) { + buf_brelse(old_bp); + } goto free_fail; } new_bp = buf_getblk(hfsmp->hfs_devvp, @@ -4608,6 +6137,7 @@ hfs_reclaim_journal_info_block(struct hfsmount *hfsmp, vfs_context_t context) printf("hfs_reclaim_journal_file: cat_idlookup returned %d\n", error); goto fail; } + oldBlock = jib_fork.cf_extents[0].startBlock; jib_fork.cf_size = hfsmp->blockSize; jib_fork.cf_extents[0].startBlock = newBlock; jib_fork.cf_extents[0].blockCount = 1; @@ -4631,340 +6161,654 @@ hfs_reclaim_journal_info_block(struct hfsmount *hfsmp, vfs_context_t context) if (error) { printf("hfs_reclaim_journal_info_block: hfs_end_transaction returned %d\n", error); } - error = hfs_journal_flush(hfsmp); - if (error) { - printf("hfs_reclaim_journal_info_block: journal_flush returned %d\n", error); + error = hfs_journal_flush(hfsmp, FALSE); + if (error) { + printf("hfs_reclaim_journal_info_block: journal_flush returned %d\n", error); + } + + /* Account for the block relocated and print progress */ + hfsmp->hfs_resize_blocksmoved += 1; + hfs_truncatefs_progress(hfsmp); + if (!error) { + printf ("hfs_reclaim_journal_info: Relocated 1 block from journal info on \"%s\"\n", + hfsmp->vcbVN); + if (hfs_resize_debug) { + printf ("hfs_reclaim_journal_info_block: Successfully relocated journal info block from (%u,%u) to (%u,%u)\n", oldBlock, blockCount, newBlock, blockCount); + } + } + return error; + +free_fail: + journal_err = BlockDeallocate(hfsmp, newBlock, blockCount, HFS_ALLOC_SKIPFREEBLKS); + if (journal_err) { + printf("hfs_reclaim_journal_info_block: BlockDeallocate returned %d\n", error); + hfs_mark_volume_inconsistent(hfsmp); + } + +fail: + hfs_systemfile_unlock(hfsmp, lockflags); + (void) hfs_end_transaction(hfsmp); + if (hfs_resize_debug) { + printf ("hfs_reclaim_journal_info_block: Error relocating journal info block (error=%d)\n", error); + } + return error; +} + + +/* + * This function traverses through all extended attribute records for a given + * fileID, and calls function that reclaims data blocks that exist in the + * area of the disk being reclaimed which in turn is responsible for allocating + * new space, copying extent data, deallocating new space, and if required, + * splitting the extent. + * + * Note: The caller has already acquired the cnode lock on the file. Therefore + * we are assured that no other thread would be creating/deleting/modifying + * extended attributes for this file. + * + * Side Effects: + * hfsmp->hfs_resize_blocksmoved is incremented by the number of allocation + * blocks that were relocated. + * + * Returns: + * 0 on success, non-zero on failure. + */ +static int +hfs_reclaim_xattr(struct hfsmount *hfsmp, struct vnode *vp, u_int32_t fileID, u_int32_t allocLimit, vfs_context_t context) +{ + int error = 0; + struct hfs_reclaim_extent_info *extent_info; + int i; + HFSPlusAttrKey *key; + int *lockflags; + + if (hfs_resize_debug) { + printf("hfs_reclaim_xattr: === Start reclaiming xattr for id=%u ===\n", fileID); + } + + MALLOC(extent_info, struct hfs_reclaim_extent_info *, + sizeof(struct hfs_reclaim_extent_info), M_TEMP, M_WAITOK); + if (extent_info == NULL) { + return ENOMEM; + } + bzero(extent_info, sizeof(struct hfs_reclaim_extent_info)); + extent_info->vp = vp; + extent_info->fileID = fileID; + extent_info->is_xattr = true; + extent_info->is_sysfile = vnode_issystem(vp); + extent_info->fcb = VTOF(hfsmp->hfs_attribute_vp); + lockflags = &(extent_info->lockflags); + *lockflags = SFL_ATTRIBUTE | SFL_BITMAP; + + /* Initialize iterator from the extent_info structure */ + MALLOC(extent_info->iterator, struct BTreeIterator *, + sizeof(struct BTreeIterator), M_TEMP, M_WAITOK); + if (extent_info->iterator == NULL) { + error = ENOMEM; + goto out; + } + bzero(extent_info->iterator, sizeof(struct BTreeIterator)); + + /* Build attribute key */ + key = (HFSPlusAttrKey *)&(extent_info->iterator->key); + error = hfs_buildattrkey(fileID, NULL, key); + if (error) { + goto out; + } + + /* Initialize btdata from extent_info structure. Note that the + * buffer pointer actually points to the xattr record from the + * extent_info structure itself. + */ + extent_info->btdata.bufferAddress = &(extent_info->record.xattr); + extent_info->btdata.itemSize = sizeof(HFSPlusAttrRecord); + extent_info->btdata.itemCount = 1; + + /* + * Sync all extent-based attribute data to the disk. + * + * All extent-based attribute data I/O is performed via cluster + * I/O using a virtual file that spans across entire file system + * space. + */ + hfs_lock_truncate(VTOC(hfsmp->hfs_attrdata_vp), HFS_EXCLUSIVE_LOCK); + (void)cluster_push(hfsmp->hfs_attrdata_vp, 0); + error = vnode_waitforwrites(hfsmp->hfs_attrdata_vp, 0, 0, 0, "hfs_reclaim_xattr"); + hfs_unlock_truncate(VTOC(hfsmp->hfs_attrdata_vp), 0); + if (error) { + goto out; + } + + /* Search for extended attribute for current file. This + * will place the iterator before the first matching record. + */ + *lockflags = hfs_systemfile_lock(hfsmp, *lockflags, HFS_EXCLUSIVE_LOCK); + error = BTSearchRecord(extent_info->fcb, extent_info->iterator, + &(extent_info->btdata), &(extent_info->recordlen), + extent_info->iterator); + hfs_systemfile_unlock(hfsmp, *lockflags); + if (error) { + if (error != btNotFound) { + goto out; + } + /* btNotFound is expected here, so just mask it */ + error = 0; + } + + while (1) { + /* Iterate to the next record */ + *lockflags = hfs_systemfile_lock(hfsmp, *lockflags, HFS_EXCLUSIVE_LOCK); + error = BTIterateRecord(extent_info->fcb, kBTreeNextRecord, + extent_info->iterator, &(extent_info->btdata), + &(extent_info->recordlen)); + hfs_systemfile_unlock(hfsmp, *lockflags); + + /* Stop the iteration if we encounter end of btree or xattr with different fileID */ + if (error || key->fileID != fileID) { + if (error == fsBTRecordNotFoundErr || error == fsBTEndOfIterationErr) { + error = 0; + } + break; + } + + /* We only care about extent-based EAs */ + if ((extent_info->record.xattr.recordType != kHFSPlusAttrForkData) && + (extent_info->record.xattr.recordType != kHFSPlusAttrExtents)) { + continue; + } + + if (extent_info->record.xattr.recordType == kHFSPlusAttrForkData) { + extent_info->overflow_count = 0; + extent_info->extents = extent_info->record.xattr.forkData.theFork.extents; + } else if (extent_info->record.xattr.recordType == kHFSPlusAttrExtents) { + extent_info->overflow_count++; + extent_info->extents = extent_info->record.xattr.overflowExtents.extents; + } + + extent_info->recStartBlock = key->startBlock; + for (i = 0; i < kHFSPlusExtentDensity; i++) { + if (extent_info->extents[i].blockCount == 0) { + break; + } + extent_info->extent_index = i; + error = hfs_reclaim_extent(hfsmp, allocLimit, extent_info, context); + if (error) { + printf ("hfs_reclaim_xattr: fileID=%u hfs_reclaim_extent error=%d\n", fileID, error); + goto out; + } + } + } + +out: + /* If any blocks were relocated, account them and report progress */ + if (extent_info->blocks_relocated) { + hfsmp->hfs_resize_blocksmoved += extent_info->blocks_relocated; + hfs_truncatefs_progress(hfsmp); + } + if (extent_info->iterator) { + FREE(extent_info->iterator, M_TEMP); + } + if (extent_info) { + FREE(extent_info, M_TEMP); + } + if (hfs_resize_debug) { + printf("hfs_reclaim_xattr: === Finished relocating xattr for fileid=%u (error=%d) ===\n", fileID, error); + } + return error; +} + +/* + * Reclaim any extent-based extended attributes allocation blocks from + * the area of the disk that is being truncated. + * + * The function traverses the attribute btree to find out the fileIDs + * of the extended attributes that need to be relocated. For every + * file whose large EA requires relocation, it looks up the cnode and + * calls hfs_reclaim_xattr() to do all the work for allocating + * new space, copying data, deallocating old space, and if required, + * splitting the extents. + * + * Inputs: + * allocLimit - starting block of the area being reclaimed + * + * Returns: + * returns 0 on success, non-zero on failure. + */ +static int +hfs_reclaim_xattrspace(struct hfsmount *hfsmp, u_int32_t allocLimit, vfs_context_t context) +{ + int error = 0; + FCB *fcb; + struct BTreeIterator *iterator = NULL; + struct FSBufferDescriptor btdata; + HFSPlusAttrKey *key; + HFSPlusAttrRecord rec; + int lockflags = 0; + cnid_t prev_fileid = 0; + struct vnode *vp; + int need_relocate; + int btree_operation; + u_int32_t files_moved = 0; + u_int32_t prev_blocksmoved; + int i; + + fcb = VTOF(hfsmp->hfs_attribute_vp); + /* Store the value to print total blocks moved by this function in end */ + prev_blocksmoved = hfsmp->hfs_resize_blocksmoved; + + if (kmem_alloc(kernel_map, (vm_offset_t *)&iterator, sizeof(*iterator))) { + return ENOMEM; + } + bzero(iterator, sizeof(*iterator)); + key = (HFSPlusAttrKey *)&iterator->key; + btdata.bufferAddress = &rec; + btdata.itemSize = sizeof(rec); + btdata.itemCount = 1; + + need_relocate = false; + btree_operation = kBTreeFirstRecord; + /* Traverse the attribute btree to find extent-based EAs to reclaim */ + while (1) { + lockflags = hfs_systemfile_lock(hfsmp, SFL_ATTRIBUTE, HFS_SHARED_LOCK); + error = BTIterateRecord(fcb, btree_operation, iterator, &btdata, NULL); + hfs_systemfile_unlock(hfsmp, lockflags); + if (error) { + if (error == fsBTRecordNotFoundErr || error == fsBTEndOfIterationErr) { + error = 0; + } + break; + } + btree_operation = kBTreeNextRecord; + + /* If the extents of current fileID were already relocated, skip it */ + if (prev_fileid == key->fileID) { + continue; + } + + /* Check if any of the extents in the current record need to be relocated */ + need_relocate = false; + switch(rec.recordType) { + case kHFSPlusAttrForkData: + for (i = 0; i < kHFSPlusExtentDensity; i++) { + if (rec.forkData.theFork.extents[i].blockCount == 0) { + break; + } + if ((rec.forkData.theFork.extents[i].startBlock + + rec.forkData.theFork.extents[i].blockCount) > allocLimit) { + need_relocate = true; + break; + } + } + break; + + case kHFSPlusAttrExtents: + for (i = 0; i < kHFSPlusExtentDensity; i++) { + if (rec.overflowExtents.extents[i].blockCount == 0) { + break; + } + if ((rec.overflowExtents.extents[i].startBlock + + rec.overflowExtents.extents[i].blockCount) > allocLimit) { + need_relocate = true; + break; + } + } + break; + }; + + /* Continue iterating to next attribute record */ + if (need_relocate == false) { + continue; + } + + /* Look up the vnode for corresponding file. The cnode + * will be locked which will ensure that no one modifies + * the xattrs when we are relocating them. + * + * We want to allow open-unlinked files to be moved, + * so provide allow_deleted == 1 for hfs_vget(). + */ + if (hfs_vget(hfsmp, key->fileID, &vp, 0, 1) != 0) { + continue; + } + + error = hfs_reclaim_xattr(hfsmp, vp, key->fileID, allocLimit, context); + hfs_unlock(VTOC(vp)); + vnode_put(vp); + if (error) { + printf ("hfs_reclaim_xattrspace: Error relocating xattrs for fileid=%u (error=%d)\n", key->fileID, error); + break; + } + prev_fileid = key->fileID; + files_moved++; + } + + if (files_moved) { + printf("hfs_reclaim_xattrspace: Relocated %u xattr blocks from %u files on \"%s\"\n", + (hfsmp->hfs_resize_blocksmoved - prev_blocksmoved), + files_moved, hfsmp->vcbVN); } - return error; -free_fail: - (void) BlockDeallocate(hfsmp, newBlock, blockCount); -fail: - hfs_systemfile_unlock(hfsmp, lockflags); - (void) hfs_end_transaction(hfsmp); + kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator)); return error; } - -/* - * Reclaim space at the end of a file system. +/* + * Reclaim blocks from regular files. + * + * This function iterates over all the record in catalog btree looking + * for files with extents that overlap into the space we're trying to + * free up. If a file extent requires relocation, it looks up the vnode + * and calls function to relocate the data. + * + * Returns: + * Zero on success, non-zero on failure. */ -static int -hfs_reclaimspace(struct hfsmount *hfsmp, u_int32_t startblk, u_int32_t reclaimblks, vfs_context_t context) +static int +hfs_reclaim_filespace(struct hfsmount *hfsmp, u_int32_t allocLimit, vfs_context_t context) { - struct vnode *vp = NULL; + int error; FCB *fcb; - struct BTreeIterator * iterator = NULL; + struct BTreeIterator *iterator = NULL; struct FSBufferDescriptor btdata; - struct HFSPlusCatalogFile filerec; - u_int32_t saved_next_allocation; - cnid_t * cnidbufp; - size_t cnidbufsize; - int filecnt = 0; - int maxfilecnt; - u_int32_t block; - u_int32_t datablks; - u_int32_t rsrcblks; - u_int32_t blkstomove = 0; + int btree_operation; int lockflags; - int i; - int error; - int lastprogress = 0; - Boolean system_file_moved = false; + struct HFSPlusCatalogFile filerec; + struct vnode *vp; + struct vnode *rvp; + struct filefork *datafork; + u_int32_t files_moved = 0; + u_int32_t prev_blocksmoved; - /* Relocate extents of the Allocation file if they're in the way. */ - error = hfs_reclaim_sys_file(hfsmp, hfsmp->hfs_allocation_vp, startblk, SFL_BITMAP, &system_file_moved, context); - if (error) { - printf("hfs_reclaimspace: reclaim allocation file returned %d\n", error); - return error; - } - /* Relocate extents of the Extents B-tree if they're in the way. */ - error = hfs_reclaim_sys_file(hfsmp, hfsmp->hfs_extents_vp, startblk, SFL_EXTENTS, &system_file_moved, context); - if (error) { - printf("hfs_reclaimspace: reclaim extents b-tree returned %d\n", error); - return error; - } - /* Relocate extents of the Catalog B-tree if they're in the way. */ - error = hfs_reclaim_sys_file(hfsmp, hfsmp->hfs_catalog_vp, startblk, SFL_CATALOG, &system_file_moved, context); - if (error) { - printf("hfs_reclaimspace: reclaim catalog b-tree returned %d\n", error); - return error; - } - /* Relocate extents of the Attributes B-tree if they're in the way. */ - error = hfs_reclaim_sys_file(hfsmp, hfsmp->hfs_attribute_vp, startblk, SFL_ATTRIBUTE, &system_file_moved, context); - if (error) { - printf("hfs_reclaimspace: reclaim attribute b-tree returned %d\n", error); - return error; - } - /* Relocate extents of the Startup File if there is one and they're in the way. */ - error = hfs_reclaim_sys_file(hfsmp, hfsmp->hfs_startup_vp, startblk, SFL_STARTUP, &system_file_moved, context); - if (error) { - printf("hfs_reclaimspace: reclaim startup file returned %d\n", error); - return error; - } - - /* - * We need to make sure the alternate volume header gets flushed if we moved - * any extents in the volume header. But we need to do that before - * shrinking the size of the volume, or else the journal code will panic - * with an invalid (too large) block number. - * - * Note that system_file_moved will be set if ANY extent was moved, even - * if it was just an overflow extent. In this case, the journal_flush isn't - * strictly required, but shouldn't hurt. - */ - if (system_file_moved) - hfs_journal_flush(hfsmp); + fcb = VTOF(hfsmp->hfs_catalog_vp); + /* Store the value to print total blocks moved by this function at the end */ + prev_blocksmoved = hfsmp->hfs_resize_blocksmoved; - if (hfsmp->jnl_start + (hfsmp->jnl_size / hfsmp->blockSize) > startblk) { - error = hfs_reclaim_journal_file(hfsmp, context); - if (error) { - printf("hfs_reclaimspace: hfs_reclaim_journal_file failed (%d)\n", error); - return error; - } - } - - if (hfsmp->vcbJinfoBlock >= startblk) { - error = hfs_reclaim_journal_info_block(hfsmp, context); - if (error) { - printf("hfs_reclaimspace: hfs_reclaim_journal_info_block failed (%d)\n", error); - return error; - } - } - - /* For now move a maximum of 250,000 files. */ - maxfilecnt = MIN(hfsmp->hfs_filecount, 250000); - maxfilecnt = MIN((u_int32_t)maxfilecnt, reclaimblks); - cnidbufsize = maxfilecnt * sizeof(cnid_t); - if (kmem_alloc(kernel_map, (vm_offset_t *)&cnidbufp, cnidbufsize)) { - return (ENOMEM); - } if (kmem_alloc(kernel_map, (vm_offset_t *)&iterator, sizeof(*iterator))) { - kmem_free(kernel_map, (vm_offset_t)cnidbufp, cnidbufsize); - return (ENOMEM); - } - - saved_next_allocation = hfsmp->nextAllocation; - HFS_UPDATE_NEXT_ALLOCATION(hfsmp, hfsmp->hfs_metazone_start); - - fcb = VTOF(hfsmp->hfs_catalog_vp); + return ENOMEM; + } bzero(iterator, sizeof(*iterator)); btdata.bufferAddress = &filerec; btdata.itemSize = sizeof(filerec); btdata.itemCount = 1; - /* Keep the Catalog and extents files locked during iteration. */ - lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_EXTENTS, HFS_SHARED_LOCK); - - error = BTIterateRecord(fcb, kBTreeFirstRecord, iterator, NULL, NULL); - if (error) { - goto end_iteration; - } - /* - * Iterate over all the catalog records looking for files - * that overlap into the space we're trying to free up. - */ - for (filecnt = 0; filecnt < maxfilecnt; ) { - error = BTIterateRecord(fcb, kBTreeNextRecord, iterator, &btdata, NULL); + btree_operation = kBTreeFirstRecord; + while (1) { + lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK); + error = BTIterateRecord(fcb, btree_operation, iterator, &btdata, NULL); + hfs_systemfile_unlock(hfsmp, lockflags); if (error) { if (error == fsBTRecordNotFoundErr || error == fsBTEndOfIterationErr) { error = 0; } break; } + btree_operation = kBTreeNextRecord; + if (filerec.recordType != kHFSPlusFileRecord) { continue; } - datablks = rsrcblks = 0; - /* - * Check if either fork overlaps target space. - */ - for (i = 0; i < kHFSPlusExtentDensity; ++i) { - if (filerec.dataFork.extents[i].blockCount != 0) { - datablks += filerec.dataFork.extents[i].blockCount; - block = filerec.dataFork.extents[i].startBlock + - filerec.dataFork.extents[i].blockCount; - if (block >= startblk) { - if ((filerec.fileID == hfsmp->hfs_jnlfileid) || - (filerec.fileID == hfsmp->hfs_jnlinfoblkid)) { - printf("hfs_reclaimspace: cannot move active journal\n"); - error = EPERM; - goto end_iteration; - } - cnidbufp[filecnt++] = filerec.fileID; - blkstomove += filerec.dataFork.totalBlocks; - break; - } + + /* Check if any of the extents require relocation */ + if (hfs_file_extent_overlaps(hfsmp, allocLimit, &filerec) == false) { + continue; + } + + /* We want to allow open-unlinked files to be moved, so allow_deleted == 1 */ + if (hfs_vget(hfsmp, filerec.fileID, &vp, 0, 1) != 0) { + continue; + } + + /* If data fork exists or item is a directory hard link, relocate blocks */ + datafork = VTOF(vp); + if ((datafork && datafork->ff_blocks > 0) || vnode_isdir(vp)) { + error = hfs_reclaim_file(hfsmp, vp, filerec.fileID, + kHFSDataForkType, allocLimit, context); + if (error) { + printf ("hfs_reclaimspace: Error reclaiming datafork blocks of fileid=%u (error=%d)\n", filerec.fileID, error); + hfs_unlock(VTOC(vp)); + vnode_put(vp); + break; } - if (filerec.resourceFork.extents[i].blockCount != 0) { - rsrcblks += filerec.resourceFork.extents[i].blockCount; - block = filerec.resourceFork.extents[i].startBlock + - filerec.resourceFork.extents[i].blockCount; - if (block >= startblk) { - cnidbufp[filecnt++] = filerec.fileID; - blkstomove += filerec.resourceFork.totalBlocks; + } + + /* If resource fork exists or item is a directory hard link, relocate blocks */ + if (((VTOC(vp)->c_blocks - (datafork ? datafork->ff_blocks : 0)) > 0) || vnode_isdir(vp)) { + if (vnode_isdir(vp)) { + /* Resource fork vnode lookup is invalid for directory hard link. + * So we fake data fork vnode as resource fork vnode. + */ + rvp = vp; + } else { + error = hfs_vgetrsrc(hfsmp, vp, &rvp, TRUE, FALSE); + if (error) { + printf ("hfs_reclaimspace: Error looking up rvp for fileid=%u (error=%d)\n", filerec.fileID, error); + hfs_unlock(VTOC(vp)); + vnode_put(vp); break; } + VTOC(rvp)->c_flag |= C_NEED_RVNODE_PUT; } - } - /* - * Check for any overflow extents that overlap. - */ - if (i == kHFSPlusExtentDensity) { - if (filerec.dataFork.totalBlocks > datablks) { - if (hfs_overlapped_overflow_extents(hfsmp, startblk, datablks, filerec.fileID, 0)) { - cnidbufp[filecnt++] = filerec.fileID; - blkstomove += filerec.dataFork.totalBlocks; - } - } else if (filerec.resourceFork.totalBlocks > rsrcblks) { - if (hfs_overlapped_overflow_extents(hfsmp, startblk, rsrcblks, filerec.fileID, 1)) { - cnidbufp[filecnt++] = filerec.fileID; - blkstomove += filerec.resourceFork.totalBlocks; - } + + error = hfs_reclaim_file(hfsmp, rvp, filerec.fileID, + kHFSResourceForkType, allocLimit, context); + if (error) { + printf ("hfs_reclaimspace: Error reclaiming rsrcfork blocks of fileid=%u (error=%d)\n", filerec.fileID, error); + hfs_unlock(VTOC(vp)); + vnode_put(vp); + break; } } + + /* The file forks were relocated successfully, now drop the + * cnode lock and vnode reference, and continue iterating to + * next catalog record. + */ + hfs_unlock(VTOC(vp)); + vnode_put(vp); + files_moved++; } -end_iteration: - if (filecnt == 0 && !system_file_moved) { - printf("hfs_reclaimspace: no files moved\n"); - error = ENOSPC; + if (files_moved) { + printf("hfs_reclaim_filespace: Relocated %u blocks from %u files on \"%s\"\n", + (hfsmp->hfs_resize_blocksmoved - prev_blocksmoved), + files_moved, hfsmp->vcbVN); } - /* All done with catalog. */ - hfs_systemfile_unlock(hfsmp, lockflags); - if (error || filecnt == 0) - goto out; - /* - * Double check space requirements to make sure - * there is enough space to relocate any files - * that reside in the reclaim area. - * - * Blocks To Move -------------- - * | | | - * V V V - * ------------------------------------------------------------------------ - * | | / /// // | - * | | / /// // | - * | | / /// // | - * ------------------------------------------------------------------------ - * - * <------------------- New Total Blocks ------------------><-- Reclaim --> - * - * <------------------------ Original Total Blocks -----------------------> + kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator)); + return error; +} + +/* + * Reclaim space at the end of a file system. + * + * Inputs - + * allocLimit - start block of the space being reclaimed + * reclaimblks - number of allocation blocks to reclaim + */ +static int +hfs_reclaimspace(struct hfsmount *hfsmp, u_int32_t allocLimit, u_int32_t reclaimblks, vfs_context_t context) +{ + int error = 0; + + /* + * Preflight the bitmap to find out total number of blocks that need + * relocation. * + * Note: Since allocLimit is set to the location of new alternate volume + * header, the check below does not account for blocks allocated for old + * alternate volume header. */ - if (blkstomove >= hfs_freeblks(hfsmp, 1)) { - printf("hfs_truncatefs: insufficient space (need %u blocks; have %u blocks)\n", blkstomove, hfs_freeblks(hfsmp, 1)); - error = ENOSPC; - goto out; + error = hfs_count_allocated(hfsmp, allocLimit, reclaimblks, &(hfsmp->hfs_resize_totalblocks)); + if (error) { + printf ("hfs_reclaimspace: Unable to determine total blocks to reclaim error=%d\n", error); + return error; + } + if (hfs_resize_debug) { + printf ("hfs_reclaimspace: Total number of blocks to reclaim = %u\n", hfsmp->hfs_resize_totalblocks); } - hfsmp->hfs_resize_filesmoved = 0; - hfsmp->hfs_resize_totalfiles = filecnt; - - /* Now move any files that are in the way. */ - for (i = 0; i < filecnt; ++i) { - struct vnode * rvp; - struct cnode * cp; - if (hfs_vget(hfsmp, cnidbufp[i], &vp, 0) != 0) - continue; + /* Just to be safe, sync the content of the journal to the disk before we proceed */ + hfs_journal_flush(hfsmp, TRUE); - /* Relocating directory hard links is not supported, so we - * punt (see radar 6217026). */ - cp = VTOC(vp); - if ((cp->c_flag & C_HARDLINK) && vnode_isdir(vp)) { - printf("hfs_reclaimspace: unable to relocate directory hard link %d\n", cp->c_cnid); - error = EINVAL; - goto out; - } + /* First, relocate journal file blocks if they're in the way. + * Doing this first will make sure that journal relocate code + * gets access to contiguous blocks on disk first. The journal + * file has to be contiguous on the disk, otherwise resize will + * fail. + */ + error = hfs_reclaim_journal_file(hfsmp, allocLimit, context); + if (error) { + printf("hfs_reclaimspace: hfs_reclaim_journal_file failed (%d)\n", error); + return error; + } + + /* Relocate journal info block blocks if they're in the way. */ + error = hfs_reclaim_journal_info_block(hfsmp, allocLimit, context); + if (error) { + printf("hfs_reclaimspace: hfs_reclaim_journal_info_block failed (%d)\n", error); + return error; + } - /* Relocate any data fork blocks. */ - if (VTOF(vp) && VTOF(vp)->ff_blocks > 0) { - error = hfs_relocate(vp, hfsmp->hfs_metazone_end + 1, kauth_cred_get(), current_proc()); - } - if (error) - break; + /* Relocate extents of the Extents B-tree if they're in the way. + * Relocating extents btree before other btrees is important as + * this will provide access to largest contiguous block range on + * the disk for relocating extents btree. Note that extents btree + * can only have maximum of 8 extents. + */ + error = hfs_reclaim_file(hfsmp, hfsmp->hfs_extents_vp, kHFSExtentsFileID, + kHFSDataForkType, allocLimit, context); + if (error) { + printf("hfs_reclaimspace: reclaim extents b-tree returned %d\n", error); + return error; + } - /* Relocate any resource fork blocks. */ - if ((cp->c_blocks - (VTOF(vp) ? VTOF((vp))->ff_blocks : 0)) > 0) { - error = hfs_vgetrsrc(hfsmp, vp, &rvp, TRUE); - if (error) - break; - error = hfs_relocate(rvp, hfsmp->hfs_metazone_end + 1, kauth_cred_get(), current_proc()); - VTOC(rvp)->c_flag |= C_NEED_RVNODE_PUT; - if (error) - break; - } - hfs_unlock(cp); - vnode_put(vp); - vp = NULL; + /* Relocate extents of the Allocation file if they're in the way. */ + error = hfs_reclaim_file(hfsmp, hfsmp->hfs_allocation_vp, kHFSAllocationFileID, + kHFSDataForkType, allocLimit, context); + if (error) { + printf("hfs_reclaimspace: reclaim allocation file returned %d\n", error); + return error; + } - ++hfsmp->hfs_resize_filesmoved; + /* Relocate extents of the Catalog B-tree if they're in the way. */ + error = hfs_reclaim_file(hfsmp, hfsmp->hfs_catalog_vp, kHFSCatalogFileID, + kHFSDataForkType, allocLimit, context); + if (error) { + printf("hfs_reclaimspace: reclaim catalog b-tree returned %d\n", error); + return error; + } - /* Report intermediate progress. */ - if (filecnt > 100) { - int progress; + /* Relocate extents of the Attributes B-tree if they're in the way. */ + error = hfs_reclaim_file(hfsmp, hfsmp->hfs_attribute_vp, kHFSAttributesFileID, + kHFSDataForkType, allocLimit, context); + if (error) { + printf("hfs_reclaimspace: reclaim attribute b-tree returned %d\n", error); + return error; + } - progress = (i * 100) / filecnt; - if (progress > (lastprogress + 9)) { - printf("hfs_reclaimspace: %d%% done...\n", progress); - lastprogress = progress; - } - } + /* Relocate extents of the Startup File if there is one and they're in the way. */ + error = hfs_reclaim_file(hfsmp, hfsmp->hfs_startup_vp, kHFSStartupFileID, + kHFSDataForkType, allocLimit, context); + if (error) { + printf("hfs_reclaimspace: reclaim startup file returned %d\n", error); + return error; } - if (vp) { - hfs_unlock(VTOC(vp)); - vnode_put(vp); - vp = NULL; + + /* + * We need to make sure the alternate volume header gets flushed if we moved + * any extents in the volume header. But we need to do that before + * shrinking the size of the volume, or else the journal code will panic + * with an invalid (too large) block number. + * + * Note that blks_moved will be set if ANY extent was moved, even + * if it was just an overflow extent. In this case, the journal_flush isn't + * strictly required, but shouldn't hurt. + */ + if (hfsmp->hfs_resize_blocksmoved) { + hfs_journal_flush(hfsmp, TRUE); } - if (hfsmp->hfs_resize_filesmoved != 0) { - printf("hfs_reclaimspace: relocated %d files on \"%s\"\n", - (int)hfsmp->hfs_resize_filesmoved, hfsmp->vcbVN); + + /* Reclaim extents from catalog file records */ + error = hfs_reclaim_filespace(hfsmp, allocLimit, context); + if (error) { + printf ("hfs_reclaimspace: hfs_reclaim_filespace returned error=%d\n", error); + return error; } -out: - kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator)); - kmem_free(kernel_map, (vm_offset_t)cnidbufp, cnidbufsize); - /* - * Restore the roving allocation pointer on errors. - * (but only if we didn't move any files) - */ - if (error && hfsmp->hfs_resize_filesmoved == 0) { - HFS_UPDATE_NEXT_ALLOCATION(hfsmp, saved_next_allocation); + /* Reclaim extents from extent-based extended attributes, if any */ + error = hfs_reclaim_xattrspace(hfsmp, allocLimit, context); + if (error) { + printf ("hfs_reclaimspace: hfs_reclaim_xattrspace returned error=%d\n", error); + return error; } - return (error); + + return error; } /* - * Check if there are any overflow extents that overlap. + * Check if there are any extents (including overflow extents) that overlap + * into the disk space that is being reclaimed. + * + * Output - + * true - One of the extents need to be relocated + * false - No overflow extents need to be relocated, or there was an error */ static int -hfs_overlapped_overflow_extents(struct hfsmount *hfsmp, u_int32_t startblk, u_int32_t catblks, u_int32_t fileID, int rsrcfork) +hfs_file_extent_overlaps(struct hfsmount *hfsmp, u_int32_t allocLimit, struct HFSPlusCatalogFile *filerec) { struct BTreeIterator * iterator = NULL; struct FSBufferDescriptor btdata; HFSPlusExtentRecord extrec; HFSPlusExtentKey *extkeyptr; FCB *fcb; - u_int32_t block; - u_int8_t forktype; - int overlapped = 0; - int i; + int overlapped = false; + int i, j; int error; + int lockflags = 0; + u_int32_t endblock; + + /* Check if data fork overlaps the target space */ + for (i = 0; i < kHFSPlusExtentDensity; ++i) { + if (filerec->dataFork.extents[i].blockCount == 0) { + break; + } + endblock = filerec->dataFork.extents[i].startBlock + + filerec->dataFork.extents[i].blockCount; + if (endblock > allocLimit) { + overlapped = true; + goto out; + } + } + + /* Check if resource fork overlaps the target space */ + for (j = 0; j < kHFSPlusExtentDensity; ++j) { + if (filerec->resourceFork.extents[j].blockCount == 0) { + break; + } + endblock = filerec->resourceFork.extents[j].startBlock + + filerec->resourceFork.extents[j].blockCount; + if (endblock > allocLimit) { + overlapped = true; + goto out; + } + } + + /* Return back if there are no overflow extents for this file */ + if ((i < kHFSPlusExtentDensity) && (j < kHFSPlusExtentDensity)) { + goto out; + } - forktype = rsrcfork ? 0xFF : 0; if (kmem_alloc(kernel_map, (vm_offset_t *)&iterator, sizeof(*iterator))) { - return (0); + return 0; } bzero(iterator, sizeof(*iterator)); extkeyptr = (HFSPlusExtentKey *)&iterator->key; extkeyptr->keyLength = kHFSPlusExtentKeyMaximumLength; - extkeyptr->forkType = forktype; - extkeyptr->fileID = fileID; - extkeyptr->startBlock = catblks; + extkeyptr->forkType = 0; + extkeyptr->fileID = filerec->fileID; + extkeyptr->startBlock = 0; btdata.bufferAddress = &extrec; btdata.itemSize = sizeof(extrec); @@ -4972,32 +6816,49 @@ hfs_overlapped_overflow_extents(struct hfsmount *hfsmp, u_int32_t startblk, u_in fcb = VTOF(hfsmp->hfs_extents_vp); + lockflags = hfs_systemfile_lock(hfsmp, SFL_EXTENTS, HFS_SHARED_LOCK); + + /* This will position the iterator just before the first overflow + * extent record for given fileID. It will always return btNotFound, + * so we special case the error code. + */ error = BTSearchRecord(fcb, iterator, &btdata, NULL, iterator); + if (error && (error != btNotFound)) { + goto out; + } + + /* BTIterateRecord() might return error if the btree is empty, and + * therefore we return that the extent does not overflow to the caller + */ + error = BTIterateRecord(fcb, kBTreeNextRecord, iterator, &btdata, NULL); while (error == 0) { /* Stop when we encounter a different file. */ - if ((extkeyptr->fileID != fileID) || - (extkeyptr->forkType != forktype)) { + if (extkeyptr->fileID != filerec->fileID) { break; } - /* - * Check if the file overlaps target space. - */ + /* Check if any of the forks exist in the target space. */ for (i = 0; i < kHFSPlusExtentDensity; ++i) { if (extrec[i].blockCount == 0) { break; } - block = extrec[i].startBlock + extrec[i].blockCount; - if (block >= startblk) { - overlapped = 1; - break; + endblock = extrec[i].startBlock + extrec[i].blockCount; + if (endblock > allocLimit) { + overlapped = true; + goto out; } } /* Look for more records. */ error = BTIterateRecord(fcb, kBTreeNextRecord, iterator, &btdata, NULL); } - kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator)); - return (overlapped); +out: + if (lockflags) { + hfs_systemfile_unlock(hfsmp, lockflags); + } + if (iterator) { + kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator)); + } + return overlapped; } @@ -5012,10 +6873,11 @@ hfs_resize_progress(struct hfsmount *hfsmp, u_int32_t *progress) return (ENXIO); } - if (hfsmp->hfs_resize_totalfiles > 0) - *progress = (hfsmp->hfs_resize_filesmoved * 100) / hfsmp->hfs_resize_totalfiles; - else + if (hfsmp->hfs_resize_totalblocks > 0) { + *progress = (u_int32_t)((hfsmp->hfs_resize_blocksmoved * 100ULL) / hfsmp->hfs_resize_totalblocks); + } else { *progress = 0; + } return (0); } @@ -5051,6 +6913,7 @@ hfs_vfs_getattr(struct mount *mp, struct vfs_attr *fsap, __unused vfs_context_t { #define HFS_ATTR_CMN_VALIDMASK (ATTR_CMN_VALIDMASK & ~(ATTR_CMN_NAMEDATTRCOUNT | ATTR_CMN_NAMEDATTRLIST)) #define HFS_ATTR_FILE_VALIDMASK (ATTR_FILE_VALIDMASK & ~(ATTR_FILE_FILETYPE | ATTR_FILE_FORKCOUNT | ATTR_FILE_FORKLIST)) +#define HFS_ATTR_CMN_VOL_VALIDMASK (ATTR_CMN_VALIDMASK & ~(ATTR_CMN_NAMEDATTRCOUNT | ATTR_CMN_NAMEDATTRLIST | ATTR_CMN_ACCTIME)) ExtendedVCB *vcb = VFSTOVCB(mp); struct hfsmount *hfsmp = VFSTOHFS(mp); @@ -5177,20 +7040,20 @@ hfs_vfs_getattr(struct mount *mp, struct vfs_attr *fsap, __unused vfs_context_t if (VFSATTR_IS_ACTIVE(fsap, f_attributes)) { vol_attributes_attr_t *attrp = &fsap->f_attributes; - attrp->validattr.commonattr = HFS_ATTR_CMN_VALIDMASK; + attrp->validattr.commonattr = HFS_ATTR_CMN_VOL_VALIDMASK; attrp->validattr.volattr = ATTR_VOL_VALIDMASK & ~ATTR_VOL_INFO; attrp->validattr.dirattr = ATTR_DIR_VALIDMASK; attrp->validattr.fileattr = HFS_ATTR_FILE_VALIDMASK; attrp->validattr.forkattr = 0; - attrp->nativeattr.commonattr = HFS_ATTR_CMN_VALIDMASK; + attrp->nativeattr.commonattr = HFS_ATTR_CMN_VOL_VALIDMASK; attrp->nativeattr.volattr = ATTR_VOL_VALIDMASK & ~ATTR_VOL_INFO; attrp->nativeattr.dirattr = ATTR_DIR_VALIDMASK; attrp->nativeattr.fileattr = HFS_ATTR_FILE_VALIDMASK; attrp->nativeattr.forkattr = 0; VFSATTR_SET_SUPPORTED(fsap, f_attributes); } - fsap->f_create_time.tv_sec = hfsmp->vcbCrDate; + fsap->f_create_time.tv_sec = hfsmp->hfs_itime; fsap->f_create_time.tv_nsec = 0; VFSATTR_SET_SUPPORTED(fsap, f_create_time); fsap->f_modify_time.tv_sec = hfsmp->vcbLsMod; @@ -5251,6 +7114,10 @@ hfs_rename_volume(struct vnode *vp, const char *name, proc_t p) cat_cookie_t cookie; int lockflags; int error = 0; + char converted_volname[256]; + size_t volname_length = 0; + size_t conv_volname_length = 0; + /* * Ignore attempts to rename a volume to a zero-length name. @@ -5285,8 +7152,16 @@ hfs_rename_volume(struct vnode *vp, const char *name, proc_t p) */ if (!error) { strlcpy((char *)vcb->vcbVN, name, sizeof(vcb->vcbVN)); + volname_length = strlen ((const char*)vcb->vcbVN); +#define DKIOCCSSETLVNAME _IOW('d', 198, char[1024]) + /* Send the volume name down to CoreStorage if necessary */ + error = utf8_normalizestr(vcb->vcbVN, volname_length, (u_int8_t*)converted_volname, &conv_volname_length, 256, UTF_PRECOMPOSED); + if (error == 0) { + (void) VNOP_IOCTL (hfsmp->hfs_devvp, DKIOCCSSETLVNAME, converted_volname, 0, vfs_context_current()); + } + error = 0; } - + hfs_systemfile_unlock(hfsmp, lockflags); cat_postflight(hfsmp, &cookie, p); @@ -5385,7 +7260,7 @@ static int hfs_journal_replay(vnode_t devvp, vfs_context_t context) struct hfs_mount_args *args = NULL; /* Replay allowed only on raw devices */ - if (!vnode_ischr(devvp)) { + if (!vnode_ischr(devvp) && !vnode_isblk(devvp)) { retval = EINVAL; goto out; } @@ -5407,7 +7282,10 @@ static int hfs_journal_replay(vnode_t devvp, vfs_context_t context) bzero(args, sizeof(struct hfs_mount_args)); retval = hfs_mountfs(devvp, mp, args, 1, context); - buf_flushdirtyblks(devvp, MNT_WAIT, 0, "hfs_journal_replay"); + buf_flushdirtyblks(devvp, TRUE, 0, "hfs_journal_replay"); + + /* FSYNC the devnode to be sure all data has been flushed */ + retval = VNOP_FSYNC(devvp, MNT_WAIT, context); out: if (mp) {