--- /dev/null
+/*
+ * Copyright (c) 2005-2008 Apple Computer, Inc. All rights reserved.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
+ *
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
+ * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
+ */
+
+#define MACH__POSIX_C_SOURCE_PRIVATE 1 /* pulls in suitable savearea from
+ * mach/ppc/thread_status.h */
+#include <arm/proc_reg.h>
+
+#include <kern/thread.h>
+#include <mach/thread_status.h>
+
+#include <stdarg.h>
+#include <string.h>
+#include <sys/malloc.h>
+#include <sys/time.h>
+#include <sys/systm.h>
+#include <sys/proc.h>
+#include <sys/proc_internal.h>
+#include <sys/kauth.h>
+#include <sys/dtrace.h>
+#include <sys/dtrace_impl.h>
+#include <libkern/OSAtomic.h>
+#include <kern/simple_lock.h>
+#include <kern/sched_prim.h> /* for thread_wakeup() */
+#include <kern/thread_call.h>
+#include <kern/task.h>
+#include <miscfs/devfs/devfs.h>
+#include <mach/vm_param.h>
+
+extern struct arm_saved_state *find_kern_regs(thread_t);
+
+extern dtrace_id_t dtrace_probeid_error; /* special ERROR probe */
+typedef arm_saved_state_t savearea_t;
+
+extern lck_attr_t *dtrace_lck_attr;
+extern lck_grp_t *dtrace_lck_grp;
+
+
+struct frame {
+ struct frame *backchain;
+ uintptr_t retaddr;
+};
+
+/*
+ * Atomicity and synchronization
+ */
+inline void
+dtrace_membar_producer(void)
+{
+#if __ARM_SMP__
+ __asm__ volatile("dmb ish" : : : "memory");
+#else
+ __asm__ volatile("nop" : : : "memory");
+#endif
+}
+
+inline void
+dtrace_membar_consumer(void)
+{
+#if __ARM_SMP__
+ __asm__ volatile("dmb ish" : : : "memory");
+#else
+ __asm__ volatile("nop" : : : "memory");
+#endif
+}
+
+/*
+ * Interrupt manipulation
+ * XXX dtrace_getipl() can be called from probe context.
+ */
+int
+dtrace_getipl(void)
+{
+ /*
+ * XXX Drat, get_interrupt_level is MACH_KERNEL_PRIVATE
+ * in osfmk/kern/cpu_data.h
+ */
+ /* return get_interrupt_level(); */
+ return (ml_at_interrupt_context() ? 1 : 0);
+}
+
+#if __ARM_SMP__
+/*
+ * MP coordination
+ */
+
+decl_lck_mtx_data(static, dt_xc_lock);
+static uint32_t dt_xc_sync;
+
+typedef struct xcArg {
+ processorid_t cpu;
+ dtrace_xcall_t f;
+ void *arg;
+} xcArg_t;
+
+static void
+xcRemote(void *foo)
+{
+ xcArg_t *pArg = (xcArg_t *) foo;
+
+ if (pArg->cpu == CPU->cpu_id || pArg->cpu == DTRACE_CPUALL)
+ (pArg->f) (pArg->arg);
+
+ if (hw_atomic_sub(&dt_xc_sync, 1) == 0)
+ thread_wakeup((event_t) &dt_xc_sync);
+}
+#endif
+
+/*
+ * dtrace_xcall() is not called from probe context.
+ */
+void
+dtrace_xcall(processorid_t cpu, dtrace_xcall_t f, void *arg)
+{
+#if __ARM_SMP__
+ /* Only one dtrace_xcall in flight allowed */
+ lck_mtx_lock(&dt_xc_lock);
+
+ xcArg_t xcArg;
+
+ xcArg.cpu = cpu;
+ xcArg.f = f;
+ xcArg.arg = arg;
+
+ cpu_broadcast_xcall(&dt_xc_sync, TRUE, xcRemote, (void*) &xcArg);
+
+ lck_mtx_unlock(&dt_xc_lock);
+ return;
+#else
+#pragma unused(cpu)
+ /* On uniprocessor systems, the cpu should always be either ourselves or all */
+ ASSERT(cpu == CPU->cpu_id || cpu == DTRACE_CPUALL);
+
+ (*f)(arg);
+ return;
+#endif
+}
+
+/*
+ * Initialization
+ */
+void
+dtrace_isa_init(void)
+{
+ lck_mtx_init(&dt_xc_lock, dtrace_lck_grp, dtrace_lck_attr);
+ return;
+}
+
+
+/**
+ * Register definitions
+ */
+#define ARM_FP 7
+#define ARM_SP 13
+#define ARM_LR 14
+#define ARM_PC 15
+#define ARM_CPSR 16
+
+#define ARM64_FP 29
+#define ARM64_LR 30
+#define ARM64_SP 31
+#define ARM64_PC 32
+#define ARM64_CPSR 33
+
+/*
+ * Runtime and ABI
+ */
+uint64_t
+dtrace_getreg(struct regs * savearea, uint_t reg)
+{
+ struct arm_saved_state *regs = (struct arm_saved_state *) savearea;
+
+ if (is_saved_state32(regs)) {
+ // Fix special registers if user is 32 bits
+ switch (reg) {
+ case ARM64_FP:
+ reg = ARM_FP;
+ break;
+ case ARM64_SP:
+ reg = ARM_SP;
+ break;
+ case ARM64_LR:
+ reg = ARM_LR;
+ break;
+ case ARM64_PC:
+ reg = ARM_PC;
+ break;
+ case ARM64_CPSR:
+ reg = ARM_CPSR;
+ break;
+ }
+ }
+
+ if (!check_saved_state_reglimit(regs, reg)) {
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
+ return (0);
+ }
+
+ return ((uint64_t)get_saved_state_reg(regs, reg));
+}
+
+#define RETURN_OFFSET 4
+#define RETURN_OFFSET64 8
+
+static int
+dtrace_getustack_common(uint64_t * pcstack, int pcstack_limit, user_addr_t pc,
+ user_addr_t sp)
+{
+ int ret = 0;
+ boolean_t is64bit = proc_is64bit(current_proc());
+
+ ASSERT(pcstack == NULL || pcstack_limit > 0);
+
+ while (pc != 0) {
+ ret++;
+ if (pcstack != NULL) {
+ *pcstack++ = (uint64_t) pc;
+ pcstack_limit--;
+ if (pcstack_limit <= 0)
+ break;
+ }
+
+ if (sp == 0)
+ break;
+
+ if (is64bit) {
+ pc = dtrace_fuword64((sp + RETURN_OFFSET64));
+ sp = dtrace_fuword64(sp);
+ } else {
+ pc = dtrace_fuword32((sp + RETURN_OFFSET));
+ sp = dtrace_fuword32(sp);
+ }
+ }
+
+ return (ret);
+}
+
+void
+dtrace_getupcstack(uint64_t * pcstack, int pcstack_limit)
+{
+ thread_t thread = current_thread();
+ savearea_t *regs;
+ user_addr_t pc, sp, fp;
+ volatile uint16_t *flags = (volatile uint16_t *) & cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
+ int n;
+
+ if (*flags & CPU_DTRACE_FAULT)
+ return;
+
+ if (pcstack_limit <= 0)
+ return;
+
+ /*
+ * If there's no user context we still need to zero the stack.
+ */
+ if (thread == NULL)
+ goto zero;
+
+ regs = (savearea_t *) find_user_regs(thread);
+ if (regs == NULL)
+ goto zero;
+
+ *pcstack++ = (uint64_t)dtrace_proc_selfpid();
+ pcstack_limit--;
+
+ if (pcstack_limit <= 0)
+ return;
+
+ pc = get_saved_state_pc(regs);
+ sp = get_saved_state_sp(regs);
+ fp = get_saved_state_fp(regs);
+
+ if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) {
+ *pcstack++ = (uint64_t) pc;
+ pcstack_limit--;
+ if (pcstack_limit <= 0)
+ return;
+
+ pc = get_saved_state_lr(regs);
+ }
+
+ n = dtrace_getustack_common(pcstack, pcstack_limit, pc, fp);
+
+ ASSERT(n >= 0);
+ ASSERT(n <= pcstack_limit);
+
+ pcstack += n;
+ pcstack_limit -= n;
+
+zero:
+ while (pcstack_limit-- > 0)
+ *pcstack++ = 0ULL;
+}
+
+int
+dtrace_getustackdepth(void)
+{
+ thread_t thread = current_thread();
+ savearea_t *regs;
+ user_addr_t pc, sp, fp;
+ int n = 0;
+
+ if (thread == NULL)
+ return 0;
+
+ if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
+ return (-1);
+
+ regs = (savearea_t *) find_user_regs(thread);
+ if (regs == NULL)
+ return 0;
+
+ pc = get_saved_state_pc(regs);
+ sp = get_saved_state_sp(regs);
+ fp = get_saved_state_fp(regs);
+
+ if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) {
+ n++;
+ pc = get_saved_state_lr(regs);
+ }
+
+ /*
+ * Note that unlike ppc, the arm code does not use
+ * CPU_DTRACE_USTACK_FP. This is because arm always
+ * traces from the sp, even in syscall/profile/fbt
+ * providers.
+ */
+
+ n += dtrace_getustack_common(NULL, 0, pc, fp);
+
+ return (n);
+}
+
+void
+dtrace_getufpstack(uint64_t * pcstack, uint64_t * fpstack, int pcstack_limit)
+{
+ thread_t thread = current_thread();
+ boolean_t is64bit = proc_is64bit(current_proc());
+ savearea_t *regs;
+ user_addr_t pc, sp;
+ volatile uint16_t *flags = (volatile uint16_t *) & cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
+
+#if 0
+ uintptr_t oldcontext;
+ size_t s1, s2;
+#endif
+
+ if (*flags & CPU_DTRACE_FAULT)
+ return;
+
+ if (pcstack_limit <= 0)
+ return;
+
+ /*
+ * If there's no user context we still need to zero the stack.
+ */
+ if (thread == NULL)
+ goto zero;
+
+ regs = (savearea_t *) find_user_regs(thread);
+ if (regs == NULL)
+ goto zero;
+
+ *pcstack++ = (uint64_t)dtrace_proc_selfpid();
+ pcstack_limit--;
+
+ if (pcstack_limit <= 0)
+ return;
+
+ pc = get_saved_state_pc(regs);
+ sp = get_saved_state_lr(regs);
+
+#if 0 /* XXX signal stack crawl */
+ oldcontext = lwp->lwp_oldcontext;
+
+ if (p->p_model == DATAMODEL_NATIVE) {
+ s1 = sizeof(struct frame) + 2 * sizeof(long);
+ s2 = s1 + sizeof(siginfo_t);
+ } else {
+ s1 = sizeof(struct frame32) + 3 * sizeof(int);
+ s2 = s1 + sizeof(siginfo32_t);
+ }
+#endif
+
+ if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) {
+ *pcstack++ = (uint64_t) pc;
+ *fpstack++ = 0;
+ pcstack_limit--;
+ if (pcstack_limit <= 0)
+ return;
+
+ if (is64bit)
+ pc = dtrace_fuword64(sp);
+ else
+ pc = dtrace_fuword32(sp);
+ }
+ while (pc != 0 && sp != 0) {
+ *pcstack++ = (uint64_t) pc;
+ *fpstack++ = sp;
+ pcstack_limit--;
+ if (pcstack_limit <= 0)
+ break;
+
+#if 0 /* XXX signal stack crawl */
+ if (oldcontext == sp + s1 || oldcontext == sp + s2) {
+ if (p->p_model == DATAMODEL_NATIVE) {
+ ucontext_t *ucp = (ucontext_t *) oldcontext;
+ greg_t *gregs = ucp->uc_mcontext.gregs;
+
+ sp = dtrace_fulword(&gregs[REG_FP]);
+ pc = dtrace_fulword(&gregs[REG_PC]);
+
+ oldcontext = dtrace_fulword(&ucp->uc_link);
+ } else {
+ ucontext_t *ucp = (ucontext_t *) oldcontext;
+ greg_t *gregs = ucp->uc_mcontext.gregs;
+
+ sp = dtrace_fuword32(&gregs[EBP]);
+ pc = dtrace_fuword32(&gregs[EIP]);
+
+ oldcontext = dtrace_fuword32(&ucp->uc_link);
+ }
+ } else
+#endif
+ {
+ if (is64bit) {
+ pc = dtrace_fuword64((sp + RETURN_OFFSET64));
+ sp = dtrace_fuword64(sp);
+ } else {
+ pc = dtrace_fuword32((sp + RETURN_OFFSET));
+ sp = dtrace_fuword32(sp);
+ }
+ }
+
+#if 0
+ /* XXX ARMTODO*/
+ /*
+ * This is totally bogus: if we faulted, we're going to clear
+ * the fault and break. This is to deal with the apparently
+ * broken Java stacks on x86.
+ */
+ if (*flags & CPU_DTRACE_FAULT) {
+ *flags &= ~CPU_DTRACE_FAULT;
+ break;
+ }
+#endif
+ }
+
+zero:
+ while (pcstack_limit-- > 0)
+ *pcstack++ = 0ULL;
+}
+
+
+void
+dtrace_getpcstack(pc_t * pcstack, int pcstack_limit, int aframes,
+ uint32_t * intrpc)
+{
+ struct frame *fp = (struct frame *) __builtin_frame_address(0);
+ struct frame *nextfp, *minfp, *stacktop;
+ int depth = 0;
+ int on_intr;
+ int last = 0;
+ uintptr_t pc;
+ uintptr_t caller = CPU->cpu_dtrace_caller;
+
+ if ((on_intr = CPU_ON_INTR(CPU)) != 0)
+ stacktop = (struct frame *) dtrace_get_cpu_int_stack_top();
+ else
+ stacktop = (struct frame *) (dtrace_get_kernel_stack(current_thread()) + kernel_stack_size);
+
+ minfp = fp;
+
+ aframes++;
+
+ if (intrpc != NULL && depth < pcstack_limit)
+ pcstack[depth++] = (pc_t) intrpc;
+
+ while (depth < pcstack_limit) {
+ nextfp = *(struct frame **) fp;
+ pc = *(uintptr_t *) (((uintptr_t) fp) + RETURN_OFFSET64);
+
+ if (nextfp <= minfp || nextfp >= stacktop) {
+ if (on_intr) {
+ /*
+ * Hop from interrupt stack to thread stack.
+ */
+ arm_saved_state_t *arm_kern_regs = (arm_saved_state_t *) find_kern_regs(current_thread());
+ if (arm_kern_regs) {
+ nextfp = (struct frame *)(saved_state64(arm_kern_regs)->fp);
+
+ {
+ vm_offset_t kstack_base = dtrace_get_kernel_stack(current_thread());
+
+ minfp = (struct frame *)kstack_base;
+ stacktop = (struct frame *)(kstack_base + kernel_stack_size);
+ }
+
+ on_intr = 0;
+
+ if (nextfp <= minfp || nextfp >= stacktop) {
+ last = 1;
+ }
+ } else {
+ /*
+ * If this thread was on the interrupt stack, but did not
+ * take an interrupt (i.e, the idle thread), there is no
+ * explicit saved state for us to use.
+ */
+ last = 1;
+ }
+ } else {
+ {
+ /*
+ * This is the last frame we can process; indicate
+ * that we should return after processing this frame.
+ */
+ last = 1;
+ }
+ }
+ }
+ if (aframes > 0) {
+ if (--aframes == 0 && caller != (uintptr_t)NULL) {
+ /*
+ * We've just run out of artificial frames,
+ * and we have a valid caller -- fill it in
+ * now.
+ */
+ ASSERT(depth < pcstack_limit);
+ pcstack[depth++] = (pc_t) caller;
+ caller = (uintptr_t)NULL;
+ }
+ } else {
+ if (depth < pcstack_limit)
+ pcstack[depth++] = (pc_t) pc;
+ }
+
+ if (last) {
+ while (depth < pcstack_limit)
+ pcstack[depth++] = (pc_t) NULL;
+ return;
+ }
+ fp = nextfp;
+ minfp = fp;
+ }
+}
+
+/*
+ * On arm64, we support both 32bit and 64bit user processes.
+ * This routine is only called when handling 32bit processes
+ * where thumb_mode is pertinent.
+ * If this routine is called when handling 64bit processes
+ * thumb_mode should always be zero.
+ */
+int
+dtrace_instr_size(uint32_t instr, int thumb_mode)
+{
+ if (thumb_mode) {
+ uint16_t instr16 = *(uint16_t*) &instr;
+ if (((instr16 >> 11) & 0x1F) > 0x1C)
+ return 4;
+ else
+ return 2;
+ } else {
+ return 4;
+ }
+}
+
+uint64_t
+dtrace_getarg(int arg, int aframes, dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
+{
+#pragma unused(arg, aframes)
+ uint64_t val = 0;
+ struct frame *fp = (struct frame *)__builtin_frame_address(0);
+ uintptr_t *stack;
+ uintptr_t pc;
+ int i;
+
+ /*
+ * A total of 8 arguments are passed via registers; any argument with
+ * index of 7 or lower is therefore in a register.
+ */
+ int inreg = 7;
+
+ for (i = 1; i <= aframes; ++i) {
+ fp = fp->backchain;
+ pc = fp->retaddr;
+
+ if (dtrace_invop_callsite_pre != NULL
+ && pc > (uintptr_t) dtrace_invop_callsite_pre
+ && pc <= (uintptr_t) dtrace_invop_callsite_post)
+ {
+ /* fp points to frame of dtrace_invop() activation */
+ fp = fp->backchain; /* to fbt_perfCallback activation */
+ fp = fp->backchain; /* to sleh_synchronous activation */
+ fp = fp->backchain; /* to fleh_synchronous activation */
+
+ arm_saved_state_t *tagged_regs = (arm_saved_state_t*) ((void*) &fp[1]);
+ arm_saved_state64_t *saved_state = saved_state64(tagged_regs);
+
+ if (arg <= inreg) {
+ /* the argument will be found in a register */
+ stack = (uintptr_t*) &saved_state->x[0];
+ } else {
+ /* the argument will be found in the stack */
+ fp = (struct frame*) saved_state->sp;
+ stack = (uintptr_t*) &fp[1];
+ arg -= (inreg + 1);
+ }
+
+ goto load;
+ }
+ }
+
+ /*
+ * We know that we did not come through a trap to get into
+ * dtrace_probe() -- We arrive here when the provider has
+ * called dtrace_probe() directly.
+ * The probe ID is the first argument to dtrace_probe().
+ * We must advance beyond that to get the argX.
+ */
+ arg++; /* Advance past probeID */
+
+ if (arg <= inreg) {
+ /*
+ * This shouldn't happen. If the argument is passed in a
+ * register then it should have been, well, passed in a
+ * register...
+ */
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
+ return (0);
+ }
+
+ arg -= (inreg + 1);
+ stack = (uintptr_t*) &fp[1]; /* Find marshalled arguments */
+
+load:
+ if (dtrace_canload((uint64_t)(stack + arg), sizeof(uint64_t),
+ mstate, vstate)) {
+ /* dtrace_probe arguments arg0 ... arg4 are 64bits wide */
+ val = dtrace_load64((uint64_t)(stack + arg));
+ }
+
+ return (val);
+}
+
+void
+dtrace_probe_error(dtrace_state_t *state, dtrace_epid_t epid, int which,
+ int fltoffs, int fault, uint64_t illval)
+{
+ /* XXX ARMTODO */
+ /*
+ * For the case of the error probe firing lets
+ * stash away "illval" here, and special-case retrieving it in DIF_VARIABLE_ARG.
+ */
+ state->dts_arg_error_illval = illval;
+ dtrace_probe( dtrace_probeid_error, (uint64_t)(uintptr_t)state, epid, which, fltoffs, fault );
+}
+
+void
+dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
+{
+ /* XXX ARMTODO check copied from ppc/x86*/
+ /*
+ * "base" is the smallest toxic address in the range, "limit" is the first
+ * VALID address greater than "base".
+ */
+ func(0x0, VM_MIN_KERNEL_ADDRESS);
+ if (VM_MAX_KERNEL_ADDRESS < ~(uintptr_t)0)
+ func(VM_MAX_KERNEL_ADDRESS + 1, ~(uintptr_t)0);
+}
+