X-Git-Url: https://git.saurik.com/apple/xnu.git/blobdiff_plain/4d15aeb193b2c68f1d38666c317f8d3734f5f083..5ba3f43ea354af8ad55bea84372a2bc834d8757c:/bsd/dev/arm64/dtrace_isa.c diff --git a/bsd/dev/arm64/dtrace_isa.c b/bsd/dev/arm64/dtrace_isa.c new file mode 100644 index 000000000..3f81cb706 --- /dev/null +++ b/bsd/dev/arm64/dtrace_isa.c @@ -0,0 +1,696 @@ +/* + * Copyright (c) 2005-2008 Apple Computer, Inc. All rights reserved. + * + * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ + * + * This file contains Original Code and/or Modifications of Original Code + * as defined in and that are subject to the Apple Public Source License + * Version 2.0 (the 'License'). You may not use this file except in + * compliance with the License. The rights granted to you under the License + * may not be used to create, or enable the creation or redistribution of, + * unlawful or unlicensed copies of an Apple operating system, or to + * circumvent, violate, or enable the circumvention or violation of, any + * terms of an Apple operating system software license agreement. + * + * Please obtain a copy of the License at + * http://www.opensource.apple.com/apsl/ and read it before using this file. + * + * The Original Code and all software distributed under the License are + * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER + * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, + * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. + * Please see the License for the specific language governing rights and + * limitations under the License. + * + * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ + */ + +#define MACH__POSIX_C_SOURCE_PRIVATE 1 /* pulls in suitable savearea from + * mach/ppc/thread_status.h */ +#include + +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include /* for thread_wakeup() */ +#include +#include +#include +#include + +extern struct arm_saved_state *find_kern_regs(thread_t); + +extern dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ +typedef arm_saved_state_t savearea_t; + +extern lck_attr_t *dtrace_lck_attr; +extern lck_grp_t *dtrace_lck_grp; + + +struct frame { + struct frame *backchain; + uintptr_t retaddr; +}; + +/* + * Atomicity and synchronization + */ +inline void +dtrace_membar_producer(void) +{ +#if __ARM_SMP__ + __asm__ volatile("dmb ish" : : : "memory"); +#else + __asm__ volatile("nop" : : : "memory"); +#endif +} + +inline void +dtrace_membar_consumer(void) +{ +#if __ARM_SMP__ + __asm__ volatile("dmb ish" : : : "memory"); +#else + __asm__ volatile("nop" : : : "memory"); +#endif +} + +/* + * Interrupt manipulation + * XXX dtrace_getipl() can be called from probe context. + */ +int +dtrace_getipl(void) +{ + /* + * XXX Drat, get_interrupt_level is MACH_KERNEL_PRIVATE + * in osfmk/kern/cpu_data.h + */ + /* return get_interrupt_level(); */ + return (ml_at_interrupt_context() ? 1 : 0); +} + +#if __ARM_SMP__ +/* + * MP coordination + */ + +decl_lck_mtx_data(static, dt_xc_lock); +static uint32_t dt_xc_sync; + +typedef struct xcArg { + processorid_t cpu; + dtrace_xcall_t f; + void *arg; +} xcArg_t; + +static void +xcRemote(void *foo) +{ + xcArg_t *pArg = (xcArg_t *) foo; + + if (pArg->cpu == CPU->cpu_id || pArg->cpu == DTRACE_CPUALL) + (pArg->f) (pArg->arg); + + if (hw_atomic_sub(&dt_xc_sync, 1) == 0) + thread_wakeup((event_t) &dt_xc_sync); +} +#endif + +/* + * dtrace_xcall() is not called from probe context. + */ +void +dtrace_xcall(processorid_t cpu, dtrace_xcall_t f, void *arg) +{ +#if __ARM_SMP__ + /* Only one dtrace_xcall in flight allowed */ + lck_mtx_lock(&dt_xc_lock); + + xcArg_t xcArg; + + xcArg.cpu = cpu; + xcArg.f = f; + xcArg.arg = arg; + + cpu_broadcast_xcall(&dt_xc_sync, TRUE, xcRemote, (void*) &xcArg); + + lck_mtx_unlock(&dt_xc_lock); + return; +#else +#pragma unused(cpu) + /* On uniprocessor systems, the cpu should always be either ourselves or all */ + ASSERT(cpu == CPU->cpu_id || cpu == DTRACE_CPUALL); + + (*f)(arg); + return; +#endif +} + +/* + * Initialization + */ +void +dtrace_isa_init(void) +{ + lck_mtx_init(&dt_xc_lock, dtrace_lck_grp, dtrace_lck_attr); + return; +} + + +/** + * Register definitions + */ +#define ARM_FP 7 +#define ARM_SP 13 +#define ARM_LR 14 +#define ARM_PC 15 +#define ARM_CPSR 16 + +#define ARM64_FP 29 +#define ARM64_LR 30 +#define ARM64_SP 31 +#define ARM64_PC 32 +#define ARM64_CPSR 33 + +/* + * Runtime and ABI + */ +uint64_t +dtrace_getreg(struct regs * savearea, uint_t reg) +{ + struct arm_saved_state *regs = (struct arm_saved_state *) savearea; + + if (is_saved_state32(regs)) { + // Fix special registers if user is 32 bits + switch (reg) { + case ARM64_FP: + reg = ARM_FP; + break; + case ARM64_SP: + reg = ARM_SP; + break; + case ARM64_LR: + reg = ARM_LR; + break; + case ARM64_PC: + reg = ARM_PC; + break; + case ARM64_CPSR: + reg = ARM_CPSR; + break; + } + } + + if (!check_saved_state_reglimit(regs, reg)) { + DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); + return (0); + } + + return ((uint64_t)get_saved_state_reg(regs, reg)); +} + +#define RETURN_OFFSET 4 +#define RETURN_OFFSET64 8 + +static int +dtrace_getustack_common(uint64_t * pcstack, int pcstack_limit, user_addr_t pc, + user_addr_t sp) +{ + int ret = 0; + boolean_t is64bit = proc_is64bit(current_proc()); + + ASSERT(pcstack == NULL || pcstack_limit > 0); + + while (pc != 0) { + ret++; + if (pcstack != NULL) { + *pcstack++ = (uint64_t) pc; + pcstack_limit--; + if (pcstack_limit <= 0) + break; + } + + if (sp == 0) + break; + + if (is64bit) { + pc = dtrace_fuword64((sp + RETURN_OFFSET64)); + sp = dtrace_fuword64(sp); + } else { + pc = dtrace_fuword32((sp + RETURN_OFFSET)); + sp = dtrace_fuword32(sp); + } + } + + return (ret); +} + +void +dtrace_getupcstack(uint64_t * pcstack, int pcstack_limit) +{ + thread_t thread = current_thread(); + savearea_t *regs; + user_addr_t pc, sp, fp; + volatile uint16_t *flags = (volatile uint16_t *) & cpu_core[CPU->cpu_id].cpuc_dtrace_flags; + int n; + + if (*flags & CPU_DTRACE_FAULT) + return; + + if (pcstack_limit <= 0) + return; + + /* + * If there's no user context we still need to zero the stack. + */ + if (thread == NULL) + goto zero; + + regs = (savearea_t *) find_user_regs(thread); + if (regs == NULL) + goto zero; + + *pcstack++ = (uint64_t)dtrace_proc_selfpid(); + pcstack_limit--; + + if (pcstack_limit <= 0) + return; + + pc = get_saved_state_pc(regs); + sp = get_saved_state_sp(regs); + fp = get_saved_state_fp(regs); + + if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { + *pcstack++ = (uint64_t) pc; + pcstack_limit--; + if (pcstack_limit <= 0) + return; + + pc = get_saved_state_lr(regs); + } + + n = dtrace_getustack_common(pcstack, pcstack_limit, pc, fp); + + ASSERT(n >= 0); + ASSERT(n <= pcstack_limit); + + pcstack += n; + pcstack_limit -= n; + +zero: + while (pcstack_limit-- > 0) + *pcstack++ = 0ULL; +} + +int +dtrace_getustackdepth(void) +{ + thread_t thread = current_thread(); + savearea_t *regs; + user_addr_t pc, sp, fp; + int n = 0; + + if (thread == NULL) + return 0; + + if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) + return (-1); + + regs = (savearea_t *) find_user_regs(thread); + if (regs == NULL) + return 0; + + pc = get_saved_state_pc(regs); + sp = get_saved_state_sp(regs); + fp = get_saved_state_fp(regs); + + if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { + n++; + pc = get_saved_state_lr(regs); + } + + /* + * Note that unlike ppc, the arm code does not use + * CPU_DTRACE_USTACK_FP. This is because arm always + * traces from the sp, even in syscall/profile/fbt + * providers. + */ + + n += dtrace_getustack_common(NULL, 0, pc, fp); + + return (n); +} + +void +dtrace_getufpstack(uint64_t * pcstack, uint64_t * fpstack, int pcstack_limit) +{ + thread_t thread = current_thread(); + boolean_t is64bit = proc_is64bit(current_proc()); + savearea_t *regs; + user_addr_t pc, sp; + volatile uint16_t *flags = (volatile uint16_t *) & cpu_core[CPU->cpu_id].cpuc_dtrace_flags; + +#if 0 + uintptr_t oldcontext; + size_t s1, s2; +#endif + + if (*flags & CPU_DTRACE_FAULT) + return; + + if (pcstack_limit <= 0) + return; + + /* + * If there's no user context we still need to zero the stack. + */ + if (thread == NULL) + goto zero; + + regs = (savearea_t *) find_user_regs(thread); + if (regs == NULL) + goto zero; + + *pcstack++ = (uint64_t)dtrace_proc_selfpid(); + pcstack_limit--; + + if (pcstack_limit <= 0) + return; + + pc = get_saved_state_pc(regs); + sp = get_saved_state_lr(regs); + +#if 0 /* XXX signal stack crawl */ + oldcontext = lwp->lwp_oldcontext; + + if (p->p_model == DATAMODEL_NATIVE) { + s1 = sizeof(struct frame) + 2 * sizeof(long); + s2 = s1 + sizeof(siginfo_t); + } else { + s1 = sizeof(struct frame32) + 3 * sizeof(int); + s2 = s1 + sizeof(siginfo32_t); + } +#endif + + if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { + *pcstack++ = (uint64_t) pc; + *fpstack++ = 0; + pcstack_limit--; + if (pcstack_limit <= 0) + return; + + if (is64bit) + pc = dtrace_fuword64(sp); + else + pc = dtrace_fuword32(sp); + } + while (pc != 0 && sp != 0) { + *pcstack++ = (uint64_t) pc; + *fpstack++ = sp; + pcstack_limit--; + if (pcstack_limit <= 0) + break; + +#if 0 /* XXX signal stack crawl */ + if (oldcontext == sp + s1 || oldcontext == sp + s2) { + if (p->p_model == DATAMODEL_NATIVE) { + ucontext_t *ucp = (ucontext_t *) oldcontext; + greg_t *gregs = ucp->uc_mcontext.gregs; + + sp = dtrace_fulword(&gregs[REG_FP]); + pc = dtrace_fulword(&gregs[REG_PC]); + + oldcontext = dtrace_fulword(&ucp->uc_link); + } else { + ucontext_t *ucp = (ucontext_t *) oldcontext; + greg_t *gregs = ucp->uc_mcontext.gregs; + + sp = dtrace_fuword32(&gregs[EBP]); + pc = dtrace_fuword32(&gregs[EIP]); + + oldcontext = dtrace_fuword32(&ucp->uc_link); + } + } else +#endif + { + if (is64bit) { + pc = dtrace_fuword64((sp + RETURN_OFFSET64)); + sp = dtrace_fuword64(sp); + } else { + pc = dtrace_fuword32((sp + RETURN_OFFSET)); + sp = dtrace_fuword32(sp); + } + } + +#if 0 + /* XXX ARMTODO*/ + /* + * This is totally bogus: if we faulted, we're going to clear + * the fault and break. This is to deal with the apparently + * broken Java stacks on x86. + */ + if (*flags & CPU_DTRACE_FAULT) { + *flags &= ~CPU_DTRACE_FAULT; + break; + } +#endif + } + +zero: + while (pcstack_limit-- > 0) + *pcstack++ = 0ULL; +} + + +void +dtrace_getpcstack(pc_t * pcstack, int pcstack_limit, int aframes, + uint32_t * intrpc) +{ + struct frame *fp = (struct frame *) __builtin_frame_address(0); + struct frame *nextfp, *minfp, *stacktop; + int depth = 0; + int on_intr; + int last = 0; + uintptr_t pc; + uintptr_t caller = CPU->cpu_dtrace_caller; + + if ((on_intr = CPU_ON_INTR(CPU)) != 0) + stacktop = (struct frame *) dtrace_get_cpu_int_stack_top(); + else + stacktop = (struct frame *) (dtrace_get_kernel_stack(current_thread()) + kernel_stack_size); + + minfp = fp; + + aframes++; + + if (intrpc != NULL && depth < pcstack_limit) + pcstack[depth++] = (pc_t) intrpc; + + while (depth < pcstack_limit) { + nextfp = *(struct frame **) fp; + pc = *(uintptr_t *) (((uintptr_t) fp) + RETURN_OFFSET64); + + if (nextfp <= minfp || nextfp >= stacktop) { + if (on_intr) { + /* + * Hop from interrupt stack to thread stack. + */ + arm_saved_state_t *arm_kern_regs = (arm_saved_state_t *) find_kern_regs(current_thread()); + if (arm_kern_regs) { + nextfp = (struct frame *)(saved_state64(arm_kern_regs)->fp); + + { + vm_offset_t kstack_base = dtrace_get_kernel_stack(current_thread()); + + minfp = (struct frame *)kstack_base; + stacktop = (struct frame *)(kstack_base + kernel_stack_size); + } + + on_intr = 0; + + if (nextfp <= minfp || nextfp >= stacktop) { + last = 1; + } + } else { + /* + * If this thread was on the interrupt stack, but did not + * take an interrupt (i.e, the idle thread), there is no + * explicit saved state for us to use. + */ + last = 1; + } + } else { + { + /* + * This is the last frame we can process; indicate + * that we should return after processing this frame. + */ + last = 1; + } + } + } + if (aframes > 0) { + if (--aframes == 0 && caller != (uintptr_t)NULL) { + /* + * We've just run out of artificial frames, + * and we have a valid caller -- fill it in + * now. + */ + ASSERT(depth < pcstack_limit); + pcstack[depth++] = (pc_t) caller; + caller = (uintptr_t)NULL; + } + } else { + if (depth < pcstack_limit) + pcstack[depth++] = (pc_t) pc; + } + + if (last) { + while (depth < pcstack_limit) + pcstack[depth++] = (pc_t) NULL; + return; + } + fp = nextfp; + minfp = fp; + } +} + +/* + * On arm64, we support both 32bit and 64bit user processes. + * This routine is only called when handling 32bit processes + * where thumb_mode is pertinent. + * If this routine is called when handling 64bit processes + * thumb_mode should always be zero. + */ +int +dtrace_instr_size(uint32_t instr, int thumb_mode) +{ + if (thumb_mode) { + uint16_t instr16 = *(uint16_t*) &instr; + if (((instr16 >> 11) & 0x1F) > 0x1C) + return 4; + else + return 2; + } else { + return 4; + } +} + +uint64_t +dtrace_getarg(int arg, int aframes, dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) +{ +#pragma unused(arg, aframes) + uint64_t val = 0; + struct frame *fp = (struct frame *)__builtin_frame_address(0); + uintptr_t *stack; + uintptr_t pc; + int i; + + /* + * A total of 8 arguments are passed via registers; any argument with + * index of 7 or lower is therefore in a register. + */ + int inreg = 7; + + for (i = 1; i <= aframes; ++i) { + fp = fp->backchain; + pc = fp->retaddr; + + if (dtrace_invop_callsite_pre != NULL + && pc > (uintptr_t) dtrace_invop_callsite_pre + && pc <= (uintptr_t) dtrace_invop_callsite_post) + { + /* fp points to frame of dtrace_invop() activation */ + fp = fp->backchain; /* to fbt_perfCallback activation */ + fp = fp->backchain; /* to sleh_synchronous activation */ + fp = fp->backchain; /* to fleh_synchronous activation */ + + arm_saved_state_t *tagged_regs = (arm_saved_state_t*) ((void*) &fp[1]); + arm_saved_state64_t *saved_state = saved_state64(tagged_regs); + + if (arg <= inreg) { + /* the argument will be found in a register */ + stack = (uintptr_t*) &saved_state->x[0]; + } else { + /* the argument will be found in the stack */ + fp = (struct frame*) saved_state->sp; + stack = (uintptr_t*) &fp[1]; + arg -= (inreg + 1); + } + + goto load; + } + } + + /* + * We know that we did not come through a trap to get into + * dtrace_probe() -- We arrive here when the provider has + * called dtrace_probe() directly. + * The probe ID is the first argument to dtrace_probe(). + * We must advance beyond that to get the argX. + */ + arg++; /* Advance past probeID */ + + if (arg <= inreg) { + /* + * This shouldn't happen. If the argument is passed in a + * register then it should have been, well, passed in a + * register... + */ + DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); + return (0); + } + + arg -= (inreg + 1); + stack = (uintptr_t*) &fp[1]; /* Find marshalled arguments */ + +load: + if (dtrace_canload((uint64_t)(stack + arg), sizeof(uint64_t), + mstate, vstate)) { + /* dtrace_probe arguments arg0 ... arg4 are 64bits wide */ + val = dtrace_load64((uint64_t)(stack + arg)); + } + + return (val); +} + +void +dtrace_probe_error(dtrace_state_t *state, dtrace_epid_t epid, int which, + int fltoffs, int fault, uint64_t illval) +{ + /* XXX ARMTODO */ + /* + * For the case of the error probe firing lets + * stash away "illval" here, and special-case retrieving it in DIF_VARIABLE_ARG. + */ + state->dts_arg_error_illval = illval; + dtrace_probe( dtrace_probeid_error, (uint64_t)(uintptr_t)state, epid, which, fltoffs, fault ); +} + +void +dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit)) +{ + /* XXX ARMTODO check copied from ppc/x86*/ + /* + * "base" is the smallest toxic address in the range, "limit" is the first + * VALID address greater than "base". + */ + func(0x0, VM_MIN_KERNEL_ADDRESS); + if (VM_MAX_KERNEL_ADDRESS < ~(uintptr_t)0) + func(VM_MAX_KERNEL_ADDRESS + 1, ~(uintptr_t)0); +} +