]> git.saurik.com Git - apple/xnu.git/blob - osfmk/vm/vm_pageout.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / osfmk / vm / vm_pageout.c
1 /*
2 * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58 /*
59 * File: vm/vm_pageout.c
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
61 * Date: 1985
62 *
63 * The proverbial page-out daemon.
64 */
65
66 #include <stdint.h>
67 #include <ptrauth.h>
68
69 #include <debug.h>
70 #include <mach_pagemap.h>
71 #include <mach_cluster_stats.h>
72
73 #include <mach/mach_types.h>
74 #include <mach/memory_object.h>
75 #include <mach/memory_object_default.h>
76 #include <mach/memory_object_control_server.h>
77 #include <mach/mach_host_server.h>
78 #include <mach/upl.h>
79 #include <mach/vm_map.h>
80 #include <mach/vm_param.h>
81 #include <mach/vm_statistics.h>
82 #include <mach/sdt.h>
83
84 #include <kern/kern_types.h>
85 #include <kern/counter.h>
86 #include <kern/host_statistics.h>
87 #include <kern/machine.h>
88 #include <kern/misc_protos.h>
89 #include <kern/sched.h>
90 #include <kern/thread.h>
91 #include <kern/kalloc.h>
92 #include <kern/zalloc_internal.h>
93 #include <kern/policy_internal.h>
94 #include <kern/thread_group.h>
95
96 #include <machine/vm_tuning.h>
97 #include <machine/commpage.h>
98
99 #include <vm/pmap.h>
100 #include <vm/vm_compressor_pager.h>
101 #include <vm/vm_fault.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_object.h>
104 #include <vm/vm_page.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_protos.h> /* must be last */
107 #include <vm/memory_object.h>
108 #include <vm/vm_purgeable_internal.h>
109 #include <vm/vm_shared_region.h>
110 #include <vm/vm_compressor.h>
111
112 #include <san/kasan.h>
113
114 #if CONFIG_PHANTOM_CACHE
115 #include <vm/vm_phantom_cache.h>
116 #endif
117
118 #if UPL_DEBUG
119 #include <libkern/OSDebug.h>
120 #endif
121
122 extern int cs_debug;
123
124 extern void mbuf_drain(boolean_t);
125
126 #if VM_PRESSURE_EVENTS
127 #if CONFIG_JETSAM
128 extern unsigned int memorystatus_available_pages;
129 extern unsigned int memorystatus_available_pages_pressure;
130 extern unsigned int memorystatus_available_pages_critical;
131 #else /* CONFIG_JETSAM */
132 extern uint64_t memorystatus_available_pages;
133 extern uint64_t memorystatus_available_pages_pressure;
134 extern uint64_t memorystatus_available_pages_critical;
135 #endif /* CONFIG_JETSAM */
136
137 extern unsigned int memorystatus_frozen_count;
138 extern unsigned int memorystatus_suspended_count;
139 extern vm_pressure_level_t memorystatus_vm_pressure_level;
140
141 extern lck_mtx_t memorystatus_jetsam_fg_band_lock;
142 extern uint32_t memorystatus_jetsam_fg_band_waiters;
143
144 void vm_pressure_response(void);
145 extern void consider_vm_pressure_events(void);
146
147 #define MEMORYSTATUS_SUSPENDED_THRESHOLD 4
148 #endif /* VM_PRESSURE_EVENTS */
149
150 thread_t vm_pageout_scan_thread = THREAD_NULL;
151 boolean_t vps_dynamic_priority_enabled = FALSE;
152
153 #ifndef VM_PAGEOUT_BURST_INACTIVE_THROTTLE /* maximum iterations of the inactive queue w/o stealing/cleaning a page */
154 #if !XNU_TARGET_OS_OSX
155 #define VM_PAGEOUT_BURST_INACTIVE_THROTTLE 1024
156 #else /* !XNU_TARGET_OS_OSX */
157 #define VM_PAGEOUT_BURST_INACTIVE_THROTTLE 4096
158 #endif /* !XNU_TARGET_OS_OSX */
159 #endif
160
161 #ifndef VM_PAGEOUT_DEADLOCK_RELIEF
162 #define VM_PAGEOUT_DEADLOCK_RELIEF 100 /* number of pages to move to break deadlock */
163 #endif
164
165 #ifndef VM_PAGE_LAUNDRY_MAX
166 #define VM_PAGE_LAUNDRY_MAX 128UL /* maximum pageouts on a given pageout queue */
167 #endif /* VM_PAGEOUT_LAUNDRY_MAX */
168
169 #ifndef VM_PAGEOUT_BURST_WAIT
170 #define VM_PAGEOUT_BURST_WAIT 1 /* milliseconds */
171 #endif /* VM_PAGEOUT_BURST_WAIT */
172
173 #ifndef VM_PAGEOUT_EMPTY_WAIT
174 #define VM_PAGEOUT_EMPTY_WAIT 50 /* milliseconds */
175 #endif /* VM_PAGEOUT_EMPTY_WAIT */
176
177 #ifndef VM_PAGEOUT_DEADLOCK_WAIT
178 #define VM_PAGEOUT_DEADLOCK_WAIT 100 /* milliseconds */
179 #endif /* VM_PAGEOUT_DEADLOCK_WAIT */
180
181 #ifndef VM_PAGEOUT_IDLE_WAIT
182 #define VM_PAGEOUT_IDLE_WAIT 10 /* milliseconds */
183 #endif /* VM_PAGEOUT_IDLE_WAIT */
184
185 #ifndef VM_PAGEOUT_SWAP_WAIT
186 #define VM_PAGEOUT_SWAP_WAIT 10 /* milliseconds */
187 #endif /* VM_PAGEOUT_SWAP_WAIT */
188
189
190 #ifndef VM_PAGE_SPECULATIVE_TARGET
191 #define VM_PAGE_SPECULATIVE_TARGET(total) ((total) * 1 / (100 / vm_pageout_state.vm_page_speculative_percentage))
192 #endif /* VM_PAGE_SPECULATIVE_TARGET */
193
194
195 /*
196 * To obtain a reasonable LRU approximation, the inactive queue
197 * needs to be large enough to give pages on it a chance to be
198 * referenced a second time. This macro defines the fraction
199 * of active+inactive pages that should be inactive.
200 * The pageout daemon uses it to update vm_page_inactive_target.
201 *
202 * If vm_page_free_count falls below vm_page_free_target and
203 * vm_page_inactive_count is below vm_page_inactive_target,
204 * then the pageout daemon starts running.
205 */
206
207 #ifndef VM_PAGE_INACTIVE_TARGET
208 #define VM_PAGE_INACTIVE_TARGET(avail) ((avail) * 1 / 2)
209 #endif /* VM_PAGE_INACTIVE_TARGET */
210
211 /*
212 * Once the pageout daemon starts running, it keeps going
213 * until vm_page_free_count meets or exceeds vm_page_free_target.
214 */
215
216 #ifndef VM_PAGE_FREE_TARGET
217 #if !XNU_TARGET_OS_OSX
218 #define VM_PAGE_FREE_TARGET(free) (15 + (free) / 100)
219 #else /* !XNU_TARGET_OS_OSX */
220 #define VM_PAGE_FREE_TARGET(free) (15 + (free) / 80)
221 #endif /* !XNU_TARGET_OS_OSX */
222 #endif /* VM_PAGE_FREE_TARGET */
223
224
225 /*
226 * The pageout daemon always starts running once vm_page_free_count
227 * falls below vm_page_free_min.
228 */
229
230 #ifndef VM_PAGE_FREE_MIN
231 #if !XNU_TARGET_OS_OSX
232 #define VM_PAGE_FREE_MIN(free) (10 + (free) / 200)
233 #else /* !XNU_TARGET_OS_OSX */
234 #define VM_PAGE_FREE_MIN(free) (10 + (free) / 100)
235 #endif /* !XNU_TARGET_OS_OSX */
236 #endif /* VM_PAGE_FREE_MIN */
237
238 #if !XNU_TARGET_OS_OSX
239 #define VM_PAGE_FREE_RESERVED_LIMIT 100
240 #define VM_PAGE_FREE_MIN_LIMIT 1500
241 #define VM_PAGE_FREE_TARGET_LIMIT 2000
242 #else /* !XNU_TARGET_OS_OSX */
243 #define VM_PAGE_FREE_RESERVED_LIMIT 1700
244 #define VM_PAGE_FREE_MIN_LIMIT 3500
245 #define VM_PAGE_FREE_TARGET_LIMIT 4000
246 #endif /* !XNU_TARGET_OS_OSX */
247
248 /*
249 * When vm_page_free_count falls below vm_page_free_reserved,
250 * only vm-privileged threads can allocate pages. vm-privilege
251 * allows the pageout daemon and default pager (and any other
252 * associated threads needed for default pageout) to continue
253 * operation by dipping into the reserved pool of pages.
254 */
255
256 #ifndef VM_PAGE_FREE_RESERVED
257 #define VM_PAGE_FREE_RESERVED(n) \
258 ((unsigned) (6 * VM_PAGE_LAUNDRY_MAX) + (n))
259 #endif /* VM_PAGE_FREE_RESERVED */
260
261 /*
262 * When we dequeue pages from the inactive list, they are
263 * reactivated (ie, put back on the active queue) if referenced.
264 * However, it is possible to starve the free list if other
265 * processors are referencing pages faster than we can turn off
266 * the referenced bit. So we limit the number of reactivations
267 * we will make per call of vm_pageout_scan().
268 */
269 #define VM_PAGE_REACTIVATE_LIMIT_MAX 20000
270
271 #ifndef VM_PAGE_REACTIVATE_LIMIT
272 #if !XNU_TARGET_OS_OSX
273 #define VM_PAGE_REACTIVATE_LIMIT(avail) (VM_PAGE_INACTIVE_TARGET(avail) / 2)
274 #else /* !XNU_TARGET_OS_OSX */
275 #define VM_PAGE_REACTIVATE_LIMIT(avail) (MAX((avail) * 1 / 20,VM_PAGE_REACTIVATE_LIMIT_MAX))
276 #endif /* !XNU_TARGET_OS_OSX */
277 #endif /* VM_PAGE_REACTIVATE_LIMIT */
278 #define VM_PAGEOUT_INACTIVE_FORCE_RECLAIM 1000
279
280 extern boolean_t hibernate_cleaning_in_progress;
281
282 /*
283 * Forward declarations for internal routines.
284 */
285 struct cq {
286 struct vm_pageout_queue *q;
287 void *current_chead;
288 char *scratch_buf;
289 int id;
290 };
291
292 struct cq ciq[MAX_COMPRESSOR_THREAD_COUNT];
293
294
295 #if VM_PRESSURE_EVENTS
296 void vm_pressure_thread(void);
297
298 boolean_t VM_PRESSURE_NORMAL_TO_WARNING(void);
299 boolean_t VM_PRESSURE_WARNING_TO_CRITICAL(void);
300
301 boolean_t VM_PRESSURE_WARNING_TO_NORMAL(void);
302 boolean_t VM_PRESSURE_CRITICAL_TO_WARNING(void);
303 #endif
304
305 void vm_pageout_garbage_collect(int);
306 static void vm_pageout_iothread_external(void);
307 static void vm_pageout_iothread_internal(struct cq *cq);
308 static void vm_pageout_adjust_eq_iothrottle(struct vm_pageout_queue *, boolean_t);
309
310 extern void vm_pageout_continue(void);
311 extern void vm_pageout_scan(void);
312
313 boolean_t vm_pageout_running = FALSE;
314
315 uint32_t vm_page_upl_tainted = 0;
316 uint32_t vm_page_iopl_tainted = 0;
317
318 #if XNU_TARGET_OS_OSX
319 static boolean_t vm_pageout_waiter = FALSE;
320 #endif /* XNU_TARGET_OS_OSX */
321
322
323 #if DEVELOPMENT || DEBUG
324 struct vm_pageout_debug vm_pageout_debug;
325 #endif
326 struct vm_pageout_vminfo vm_pageout_vminfo;
327 struct vm_pageout_state vm_pageout_state;
328 struct vm_config vm_config;
329
330 struct vm_pageout_queue vm_pageout_queue_internal VM_PAGE_PACKED_ALIGNED;
331 struct vm_pageout_queue vm_pageout_queue_external VM_PAGE_PACKED_ALIGNED;
332
333 int vm_upl_wait_for_pages = 0;
334 vm_object_t vm_pageout_scan_wants_object = VM_OBJECT_NULL;
335
336 boolean_t(*volatile consider_buffer_cache_collect)(int) = NULL;
337
338 int vm_debug_events = 0;
339
340 LCK_GRP_DECLARE(vm_pageout_lck_grp, "vm_pageout");
341
342 #if CONFIG_MEMORYSTATUS
343 extern boolean_t memorystatus_kill_on_VM_page_shortage(boolean_t async);
344
345 uint32_t vm_pageout_memorystatus_fb_factor_nr = 5;
346 uint32_t vm_pageout_memorystatus_fb_factor_dr = 2;
347
348 #endif
349
350 #if __AMP__
351 int vm_compressor_ebound = 1;
352 int vm_pgo_pbound = 0;
353 extern void thread_bind_cluster_type(thread_t, char, bool);
354 #endif /* __AMP__ */
355
356
357 /*
358 * Routine: vm_pageout_object_terminate
359 * Purpose:
360 * Destroy the pageout_object, and perform all of the
361 * required cleanup actions.
362 *
363 * In/Out conditions:
364 * The object must be locked, and will be returned locked.
365 */
366 void
367 vm_pageout_object_terminate(
368 vm_object_t object)
369 {
370 vm_object_t shadow_object;
371
372 /*
373 * Deal with the deallocation (last reference) of a pageout object
374 * (used for cleaning-in-place) by dropping the paging references/
375 * freeing pages in the original object.
376 */
377
378 assert(object->pageout);
379 shadow_object = object->shadow;
380 vm_object_lock(shadow_object);
381
382 while (!vm_page_queue_empty(&object->memq)) {
383 vm_page_t p, m;
384 vm_object_offset_t offset;
385
386 p = (vm_page_t) vm_page_queue_first(&object->memq);
387
388 assert(p->vmp_private);
389 assert(p->vmp_free_when_done);
390 p->vmp_free_when_done = FALSE;
391 assert(!p->vmp_cleaning);
392 assert(!p->vmp_laundry);
393
394 offset = p->vmp_offset;
395 VM_PAGE_FREE(p);
396 p = VM_PAGE_NULL;
397
398 m = vm_page_lookup(shadow_object,
399 offset + object->vo_shadow_offset);
400
401 if (m == VM_PAGE_NULL) {
402 continue;
403 }
404
405 assert((m->vmp_dirty) || (m->vmp_precious) ||
406 (m->vmp_busy && m->vmp_cleaning));
407
408 /*
409 * Handle the trusted pager throttle.
410 * Also decrement the burst throttle (if external).
411 */
412 vm_page_lock_queues();
413 if (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) {
414 vm_pageout_throttle_up(m);
415 }
416
417 /*
418 * Handle the "target" page(s). These pages are to be freed if
419 * successfully cleaned. Target pages are always busy, and are
420 * wired exactly once. The initial target pages are not mapped,
421 * (so cannot be referenced or modified) but converted target
422 * pages may have been modified between the selection as an
423 * adjacent page and conversion to a target.
424 */
425 if (m->vmp_free_when_done) {
426 assert(m->vmp_busy);
427 assert(m->vmp_q_state == VM_PAGE_IS_WIRED);
428 assert(m->vmp_wire_count == 1);
429 m->vmp_cleaning = FALSE;
430 m->vmp_free_when_done = FALSE;
431 /*
432 * Revoke all access to the page. Since the object is
433 * locked, and the page is busy, this prevents the page
434 * from being dirtied after the pmap_disconnect() call
435 * returns.
436 *
437 * Since the page is left "dirty" but "not modifed", we
438 * can detect whether the page was redirtied during
439 * pageout by checking the modify state.
440 */
441 if (pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)) & VM_MEM_MODIFIED) {
442 SET_PAGE_DIRTY(m, FALSE);
443 } else {
444 m->vmp_dirty = FALSE;
445 }
446
447 if (m->vmp_dirty) {
448 vm_page_unwire(m, TRUE); /* reactivates */
449 counter_inc(&vm_statistics_reactivations);
450 PAGE_WAKEUP_DONE(m);
451 } else {
452 vm_page_free(m); /* clears busy, etc. */
453 }
454 vm_page_unlock_queues();
455 continue;
456 }
457 /*
458 * Handle the "adjacent" pages. These pages were cleaned in
459 * place, and should be left alone.
460 * If prep_pin_count is nonzero, then someone is using the
461 * page, so make it active.
462 */
463 if ((m->vmp_q_state == VM_PAGE_NOT_ON_Q) && !m->vmp_private) {
464 if (m->vmp_reference) {
465 vm_page_activate(m);
466 } else {
467 vm_page_deactivate(m);
468 }
469 }
470 if (m->vmp_overwriting) {
471 /*
472 * the (COPY_OUT_FROM == FALSE) request_page_list case
473 */
474 if (m->vmp_busy) {
475 /*
476 * We do not re-set m->vmp_dirty !
477 * The page was busy so no extraneous activity
478 * could have occurred. COPY_INTO is a read into the
479 * new pages. CLEAN_IN_PLACE does actually write
480 * out the pages but handling outside of this code
481 * will take care of resetting dirty. We clear the
482 * modify however for the Programmed I/O case.
483 */
484 pmap_clear_modify(VM_PAGE_GET_PHYS_PAGE(m));
485
486 m->vmp_busy = FALSE;
487 m->vmp_absent = FALSE;
488 } else {
489 /*
490 * alternate (COPY_OUT_FROM == FALSE) request_page_list case
491 * Occurs when the original page was wired
492 * at the time of the list request
493 */
494 assert(VM_PAGE_WIRED(m));
495 vm_page_unwire(m, TRUE); /* reactivates */
496 }
497 m->vmp_overwriting = FALSE;
498 } else {
499 m->vmp_dirty = FALSE;
500 }
501 m->vmp_cleaning = FALSE;
502
503 /*
504 * Wakeup any thread waiting for the page to be un-cleaning.
505 */
506 PAGE_WAKEUP(m);
507 vm_page_unlock_queues();
508 }
509 /*
510 * Account for the paging reference taken in vm_paging_object_allocate.
511 */
512 vm_object_activity_end(shadow_object);
513 vm_object_unlock(shadow_object);
514
515 assert(object->ref_count == 0);
516 assert(object->paging_in_progress == 0);
517 assert(object->activity_in_progress == 0);
518 assert(object->resident_page_count == 0);
519 return;
520 }
521
522 /*
523 * Routine: vm_pageclean_setup
524 *
525 * Purpose: setup a page to be cleaned (made non-dirty), but not
526 * necessarily flushed from the VM page cache.
527 * This is accomplished by cleaning in place.
528 *
529 * The page must not be busy, and new_object
530 * must be locked.
531 *
532 */
533 static void
534 vm_pageclean_setup(
535 vm_page_t m,
536 vm_page_t new_m,
537 vm_object_t new_object,
538 vm_object_offset_t new_offset)
539 {
540 assert(!m->vmp_busy);
541 #if 0
542 assert(!m->vmp_cleaning);
543 #endif
544
545 pmap_clear_modify(VM_PAGE_GET_PHYS_PAGE(m));
546
547 /*
548 * Mark original page as cleaning in place.
549 */
550 m->vmp_cleaning = TRUE;
551 SET_PAGE_DIRTY(m, FALSE);
552 m->vmp_precious = FALSE;
553
554 /*
555 * Convert the fictitious page to a private shadow of
556 * the real page.
557 */
558 assert(new_m->vmp_fictitious);
559 assert(VM_PAGE_GET_PHYS_PAGE(new_m) == vm_page_fictitious_addr);
560 new_m->vmp_fictitious = FALSE;
561 new_m->vmp_private = TRUE;
562 new_m->vmp_free_when_done = TRUE;
563 VM_PAGE_SET_PHYS_PAGE(new_m, VM_PAGE_GET_PHYS_PAGE(m));
564
565 vm_page_lockspin_queues();
566 vm_page_wire(new_m, VM_KERN_MEMORY_NONE, TRUE);
567 vm_page_unlock_queues();
568
569 vm_page_insert_wired(new_m, new_object, new_offset, VM_KERN_MEMORY_NONE);
570 assert(!new_m->vmp_wanted);
571 new_m->vmp_busy = FALSE;
572 }
573
574 /*
575 * Routine: vm_pageout_initialize_page
576 * Purpose:
577 * Causes the specified page to be initialized in
578 * the appropriate memory object. This routine is used to push
579 * pages into a copy-object when they are modified in the
580 * permanent object.
581 *
582 * The page is moved to a temporary object and paged out.
583 *
584 * In/out conditions:
585 * The page in question must not be on any pageout queues.
586 * The object to which it belongs must be locked.
587 * The page must be busy, but not hold a paging reference.
588 *
589 * Implementation:
590 * Move this page to a completely new object.
591 */
592 void
593 vm_pageout_initialize_page(
594 vm_page_t m)
595 {
596 vm_object_t object;
597 vm_object_offset_t paging_offset;
598 memory_object_t pager;
599
600 assert(VM_CONFIG_COMPRESSOR_IS_PRESENT);
601
602 object = VM_PAGE_OBJECT(m);
603
604 assert(m->vmp_busy);
605 assert(object->internal);
606
607 /*
608 * Verify that we really want to clean this page
609 */
610 assert(!m->vmp_absent);
611 assert(!m->vmp_error);
612 assert(m->vmp_dirty);
613
614 /*
615 * Create a paging reference to let us play with the object.
616 */
617 paging_offset = m->vmp_offset + object->paging_offset;
618
619 if (m->vmp_absent || m->vmp_error || m->vmp_restart || (!m->vmp_dirty && !m->vmp_precious)) {
620 panic("reservation without pageout?"); /* alan */
621
622 VM_PAGE_FREE(m);
623 vm_object_unlock(object);
624
625 return;
626 }
627
628 /*
629 * If there's no pager, then we can't clean the page. This should
630 * never happen since this should be a copy object and therefore not
631 * an external object, so the pager should always be there.
632 */
633
634 pager = object->pager;
635
636 if (pager == MEMORY_OBJECT_NULL) {
637 panic("missing pager for copy object");
638
639 VM_PAGE_FREE(m);
640 return;
641 }
642
643 /*
644 * set the page for future call to vm_fault_list_request
645 */
646 pmap_clear_modify(VM_PAGE_GET_PHYS_PAGE(m));
647 SET_PAGE_DIRTY(m, FALSE);
648
649 /*
650 * keep the object from collapsing or terminating
651 */
652 vm_object_paging_begin(object);
653 vm_object_unlock(object);
654
655 /*
656 * Write the data to its pager.
657 * Note that the data is passed by naming the new object,
658 * not a virtual address; the pager interface has been
659 * manipulated to use the "internal memory" data type.
660 * [The object reference from its allocation is donated
661 * to the eventual recipient.]
662 */
663 memory_object_data_initialize(pager, paging_offset, PAGE_SIZE);
664
665 vm_object_lock(object);
666 vm_object_paging_end(object);
667 }
668
669
670 /*
671 * vm_pageout_cluster:
672 *
673 * Given a page, queue it to the appropriate I/O thread,
674 * which will page it out and attempt to clean adjacent pages
675 * in the same operation.
676 *
677 * The object and queues must be locked. We will take a
678 * paging reference to prevent deallocation or collapse when we
679 * release the object lock back at the call site. The I/O thread
680 * is responsible for consuming this reference
681 *
682 * The page must not be on any pageout queue.
683 */
684 #if DEVELOPMENT || DEBUG
685 vmct_stats_t vmct_stats;
686
687 int32_t vmct_active = 0;
688 uint64_t vm_compressor_epoch_start = 0;
689 uint64_t vm_compressor_epoch_stop = 0;
690
691 typedef enum vmct_state_t {
692 VMCT_IDLE,
693 VMCT_AWAKENED,
694 VMCT_ACTIVE,
695 } vmct_state_t;
696 vmct_state_t vmct_state[MAX_COMPRESSOR_THREAD_COUNT];
697 #endif
698
699
700 void
701 vm_pageout_cluster(vm_page_t m)
702 {
703 vm_object_t object = VM_PAGE_OBJECT(m);
704 struct vm_pageout_queue *q;
705
706 VM_PAGE_CHECK(m);
707 LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
708 vm_object_lock_assert_exclusive(object);
709
710 /*
711 * Only a certain kind of page is appreciated here.
712 */
713 assert((m->vmp_dirty || m->vmp_precious) && (!VM_PAGE_WIRED(m)));
714 assert(!m->vmp_cleaning && !m->vmp_laundry);
715 assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q);
716
717 /*
718 * protect the object from collapse or termination
719 */
720 vm_object_activity_begin(object);
721
722 if (object->internal == TRUE) {
723 assert(VM_CONFIG_COMPRESSOR_IS_PRESENT);
724
725 m->vmp_busy = TRUE;
726
727 q = &vm_pageout_queue_internal;
728 } else {
729 q = &vm_pageout_queue_external;
730 }
731
732 /*
733 * pgo_laundry count is tied to the laundry bit
734 */
735 m->vmp_laundry = TRUE;
736 q->pgo_laundry++;
737
738 m->vmp_q_state = VM_PAGE_ON_PAGEOUT_Q;
739 vm_page_queue_enter(&q->pgo_pending, m, vmp_pageq);
740
741 if (q->pgo_idle == TRUE) {
742 q->pgo_idle = FALSE;
743 thread_wakeup((event_t) &q->pgo_pending);
744 }
745 VM_PAGE_CHECK(m);
746 }
747
748
749 /*
750 * A page is back from laundry or we are stealing it back from
751 * the laundering state. See if there are some pages waiting to
752 * go to laundry and if we can let some of them go now.
753 *
754 * Object and page queues must be locked.
755 */
756 void
757 vm_pageout_throttle_up(
758 vm_page_t m)
759 {
760 struct vm_pageout_queue *q;
761 vm_object_t m_object;
762
763 m_object = VM_PAGE_OBJECT(m);
764
765 assert(m_object != VM_OBJECT_NULL);
766 assert(m_object != kernel_object);
767
768 LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
769 vm_object_lock_assert_exclusive(m_object);
770
771 if (m_object->internal == TRUE) {
772 q = &vm_pageout_queue_internal;
773 } else {
774 q = &vm_pageout_queue_external;
775 }
776
777 if (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) {
778 vm_page_queue_remove(&q->pgo_pending, m, vmp_pageq);
779 m->vmp_q_state = VM_PAGE_NOT_ON_Q;
780
781 VM_PAGE_ZERO_PAGEQ_ENTRY(m);
782
783 vm_object_activity_end(m_object);
784
785 VM_PAGEOUT_DEBUG(vm_page_steal_pageout_page, 1);
786 }
787 if (m->vmp_laundry == TRUE) {
788 m->vmp_laundry = FALSE;
789 q->pgo_laundry--;
790
791 if (q->pgo_throttled == TRUE) {
792 q->pgo_throttled = FALSE;
793 thread_wakeup((event_t) &q->pgo_laundry);
794 }
795 if (q->pgo_draining == TRUE && q->pgo_laundry == 0) {
796 q->pgo_draining = FALSE;
797 thread_wakeup((event_t) (&q->pgo_laundry + 1));
798 }
799 VM_PAGEOUT_DEBUG(vm_pageout_throttle_up_count, 1);
800 }
801 }
802
803
804 static void
805 vm_pageout_throttle_up_batch(
806 struct vm_pageout_queue *q,
807 int batch_cnt)
808 {
809 LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
810
811 VM_PAGEOUT_DEBUG(vm_pageout_throttle_up_count, batch_cnt);
812
813 q->pgo_laundry -= batch_cnt;
814
815 if (q->pgo_throttled == TRUE) {
816 q->pgo_throttled = FALSE;
817 thread_wakeup((event_t) &q->pgo_laundry);
818 }
819 if (q->pgo_draining == TRUE && q->pgo_laundry == 0) {
820 q->pgo_draining = FALSE;
821 thread_wakeup((event_t) (&q->pgo_laundry + 1));
822 }
823 }
824
825
826
827 /*
828 * VM memory pressure monitoring.
829 *
830 * vm_pageout_scan() keeps track of the number of pages it considers and
831 * reclaims, in the currently active vm_pageout_stat[vm_pageout_stat_now].
832 *
833 * compute_memory_pressure() is called every second from compute_averages()
834 * and moves "vm_pageout_stat_now" forward, to start accumulating the number
835 * of recalimed pages in a new vm_pageout_stat[] bucket.
836 *
837 * mach_vm_pressure_monitor() collects past statistics about memory pressure.
838 * The caller provides the number of seconds ("nsecs") worth of statistics
839 * it wants, up to 30 seconds.
840 * It computes the number of pages reclaimed in the past "nsecs" seconds and
841 * also returns the number of pages the system still needs to reclaim at this
842 * moment in time.
843 */
844 #if DEVELOPMENT || DEBUG
845 #define VM_PAGEOUT_STAT_SIZE (30 * 8) + 1
846 #else
847 #define VM_PAGEOUT_STAT_SIZE (1 * 8) + 1
848 #endif
849 struct vm_pageout_stat {
850 unsigned long vm_page_active_count;
851 unsigned long vm_page_speculative_count;
852 unsigned long vm_page_inactive_count;
853 unsigned long vm_page_anonymous_count;
854
855 unsigned long vm_page_free_count;
856 unsigned long vm_page_wire_count;
857 unsigned long vm_page_compressor_count;
858
859 unsigned long vm_page_pages_compressed;
860 unsigned long vm_page_pageable_internal_count;
861 unsigned long vm_page_pageable_external_count;
862 unsigned long vm_page_xpmapped_external_count;
863
864 unsigned int pages_grabbed;
865 unsigned int pages_freed;
866
867 unsigned int pages_compressed;
868 unsigned int pages_grabbed_by_compressor;
869 unsigned int failed_compressions;
870
871 unsigned int pages_evicted;
872 unsigned int pages_purged;
873
874 unsigned int considered;
875 unsigned int considered_bq_internal;
876 unsigned int considered_bq_external;
877
878 unsigned int skipped_external;
879 unsigned int filecache_min_reactivations;
880
881 unsigned int freed_speculative;
882 unsigned int freed_cleaned;
883 unsigned int freed_internal;
884 unsigned int freed_external;
885
886 unsigned int cleaned_dirty_external;
887 unsigned int cleaned_dirty_internal;
888
889 unsigned int inactive_referenced;
890 unsigned int inactive_nolock;
891 unsigned int reactivation_limit_exceeded;
892 unsigned int forced_inactive_reclaim;
893
894 unsigned int throttled_internal_q;
895 unsigned int throttled_external_q;
896
897 unsigned int phantom_ghosts_found;
898 unsigned int phantom_ghosts_added;
899 } vm_pageout_stats[VM_PAGEOUT_STAT_SIZE] = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, };
900
901 unsigned int vm_pageout_stat_now = 0;
902
903 #define VM_PAGEOUT_STAT_BEFORE(i) \
904 (((i) == 0) ? VM_PAGEOUT_STAT_SIZE - 1 : (i) - 1)
905 #define VM_PAGEOUT_STAT_AFTER(i) \
906 (((i) == VM_PAGEOUT_STAT_SIZE - 1) ? 0 : (i) + 1)
907
908 #if VM_PAGE_BUCKETS_CHECK
909 int vm_page_buckets_check_interval = 80; /* in eighths of a second */
910 #endif /* VM_PAGE_BUCKETS_CHECK */
911
912
913 void
914 record_memory_pressure(void);
915 void
916 record_memory_pressure(void)
917 {
918 unsigned int vm_pageout_next;
919
920 #if VM_PAGE_BUCKETS_CHECK
921 /* check the consistency of VM page buckets at regular interval */
922 static int counter = 0;
923 if ((++counter % vm_page_buckets_check_interval) == 0) {
924 vm_page_buckets_check();
925 }
926 #endif /* VM_PAGE_BUCKETS_CHECK */
927
928 vm_pageout_state.vm_memory_pressure =
929 vm_pageout_stats[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now)].freed_speculative +
930 vm_pageout_stats[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now)].freed_cleaned +
931 vm_pageout_stats[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now)].freed_internal +
932 vm_pageout_stats[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now)].freed_external;
933
934 commpage_set_memory_pressure((unsigned int)vm_pageout_state.vm_memory_pressure );
935
936 /* move "now" forward */
937 vm_pageout_next = VM_PAGEOUT_STAT_AFTER(vm_pageout_stat_now);
938
939 bzero(&vm_pageout_stats[vm_pageout_next], sizeof(struct vm_pageout_stat));
940
941 vm_pageout_stat_now = vm_pageout_next;
942 }
943
944
945 /*
946 * IMPORTANT
947 * mach_vm_ctl_page_free_wanted() is called indirectly, via
948 * mach_vm_pressure_monitor(), when taking a stackshot. Therefore,
949 * it must be safe in the restricted stackshot context. Locks and/or
950 * blocking are not allowable.
951 */
952 unsigned int
953 mach_vm_ctl_page_free_wanted(void)
954 {
955 unsigned int page_free_target, page_free_count, page_free_wanted;
956
957 page_free_target = vm_page_free_target;
958 page_free_count = vm_page_free_count;
959 if (page_free_target > page_free_count) {
960 page_free_wanted = page_free_target - page_free_count;
961 } else {
962 page_free_wanted = 0;
963 }
964
965 return page_free_wanted;
966 }
967
968
969 /*
970 * IMPORTANT:
971 * mach_vm_pressure_monitor() is called when taking a stackshot, with
972 * wait_for_pressure FALSE, so that code path must remain safe in the
973 * restricted stackshot context. No blocking or locks are allowable.
974 * on that code path.
975 */
976
977 kern_return_t
978 mach_vm_pressure_monitor(
979 boolean_t wait_for_pressure,
980 unsigned int nsecs_monitored,
981 unsigned int *pages_reclaimed_p,
982 unsigned int *pages_wanted_p)
983 {
984 wait_result_t wr;
985 unsigned int vm_pageout_then, vm_pageout_now;
986 unsigned int pages_reclaimed;
987 unsigned int units_of_monitor;
988
989 units_of_monitor = 8 * nsecs_monitored;
990 /*
991 * We don't take the vm_page_queue_lock here because we don't want
992 * vm_pressure_monitor() to get in the way of the vm_pageout_scan()
993 * thread when it's trying to reclaim memory. We don't need fully
994 * accurate monitoring anyway...
995 */
996
997 if (wait_for_pressure) {
998 /* wait until there's memory pressure */
999 while (vm_page_free_count >= vm_page_free_target) {
1000 wr = assert_wait((event_t) &vm_page_free_wanted,
1001 THREAD_INTERRUPTIBLE);
1002 if (wr == THREAD_WAITING) {
1003 wr = thread_block(THREAD_CONTINUE_NULL);
1004 }
1005 if (wr == THREAD_INTERRUPTED) {
1006 return KERN_ABORTED;
1007 }
1008 if (wr == THREAD_AWAKENED) {
1009 /*
1010 * The memory pressure might have already
1011 * been relieved but let's not block again
1012 * and let's report that there was memory
1013 * pressure at some point.
1014 */
1015 break;
1016 }
1017 }
1018 }
1019
1020 /* provide the number of pages the system wants to reclaim */
1021 if (pages_wanted_p != NULL) {
1022 *pages_wanted_p = mach_vm_ctl_page_free_wanted();
1023 }
1024
1025 if (pages_reclaimed_p == NULL) {
1026 return KERN_SUCCESS;
1027 }
1028
1029 /* provide number of pages reclaimed in the last "nsecs_monitored" */
1030 vm_pageout_now = vm_pageout_stat_now;
1031 pages_reclaimed = 0;
1032 for (vm_pageout_then =
1033 VM_PAGEOUT_STAT_BEFORE(vm_pageout_now);
1034 vm_pageout_then != vm_pageout_now &&
1035 units_of_monitor-- != 0;
1036 vm_pageout_then =
1037 VM_PAGEOUT_STAT_BEFORE(vm_pageout_then)) {
1038 pages_reclaimed += vm_pageout_stats[vm_pageout_then].freed_speculative;
1039 pages_reclaimed += vm_pageout_stats[vm_pageout_then].freed_cleaned;
1040 pages_reclaimed += vm_pageout_stats[vm_pageout_then].freed_internal;
1041 pages_reclaimed += vm_pageout_stats[vm_pageout_then].freed_external;
1042 }
1043 *pages_reclaimed_p = pages_reclaimed;
1044
1045 return KERN_SUCCESS;
1046 }
1047
1048
1049
1050 #if DEVELOPMENT || DEBUG
1051
1052 static void
1053 vm_pageout_disconnect_all_pages_in_queue(vm_page_queue_head_t *, int);
1054
1055 /*
1056 * condition variable used to make sure there is
1057 * only a single sweep going on at a time
1058 */
1059 boolean_t vm_pageout_disconnect_all_pages_active = FALSE;
1060
1061
1062 void
1063 vm_pageout_disconnect_all_pages()
1064 {
1065 vm_page_lock_queues();
1066
1067 if (vm_pageout_disconnect_all_pages_active == TRUE) {
1068 vm_page_unlock_queues();
1069 return;
1070 }
1071 vm_pageout_disconnect_all_pages_active = TRUE;
1072 vm_page_unlock_queues();
1073
1074 vm_pageout_disconnect_all_pages_in_queue(&vm_page_queue_throttled, vm_page_throttled_count);
1075 vm_pageout_disconnect_all_pages_in_queue(&vm_page_queue_anonymous, vm_page_anonymous_count);
1076 vm_pageout_disconnect_all_pages_in_queue(&vm_page_queue_active, vm_page_active_count);
1077
1078 vm_pageout_disconnect_all_pages_active = FALSE;
1079 }
1080
1081
1082 void
1083 vm_pageout_disconnect_all_pages_in_queue(vm_page_queue_head_t *q, int qcount)
1084 {
1085 vm_page_t m;
1086 vm_object_t t_object = NULL;
1087 vm_object_t l_object = NULL;
1088 vm_object_t m_object = NULL;
1089 int delayed_unlock = 0;
1090 int try_failed_count = 0;
1091 int disconnected_count = 0;
1092 int paused_count = 0;
1093 int object_locked_count = 0;
1094
1095 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_DISCONNECT_ALL_PAGE_MAPPINGS)) | DBG_FUNC_START,
1096 q, qcount, 0, 0, 0);
1097
1098 vm_page_lock_queues();
1099
1100 while (qcount && !vm_page_queue_empty(q)) {
1101 LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
1102
1103 m = (vm_page_t) vm_page_queue_first(q);
1104 m_object = VM_PAGE_OBJECT(m);
1105
1106 /*
1107 * check to see if we currently are working
1108 * with the same object... if so, we've
1109 * already got the lock
1110 */
1111 if (m_object != l_object) {
1112 /*
1113 * the object associated with candidate page is
1114 * different from the one we were just working
1115 * with... dump the lock if we still own it
1116 */
1117 if (l_object != NULL) {
1118 vm_object_unlock(l_object);
1119 l_object = NULL;
1120 }
1121 if (m_object != t_object) {
1122 try_failed_count = 0;
1123 }
1124
1125 /*
1126 * Try to lock object; since we've alread got the
1127 * page queues lock, we can only 'try' for this one.
1128 * if the 'try' fails, we need to do a mutex_pause
1129 * to allow the owner of the object lock a chance to
1130 * run...
1131 */
1132 if (!vm_object_lock_try_scan(m_object)) {
1133 if (try_failed_count > 20) {
1134 goto reenter_pg_on_q;
1135 }
1136 vm_page_unlock_queues();
1137 mutex_pause(try_failed_count++);
1138 vm_page_lock_queues();
1139 delayed_unlock = 0;
1140
1141 paused_count++;
1142
1143 t_object = m_object;
1144 continue;
1145 }
1146 object_locked_count++;
1147
1148 l_object = m_object;
1149 }
1150 if (!m_object->alive || m->vmp_cleaning || m->vmp_laundry || m->vmp_busy || m->vmp_absent || m->vmp_error || m->vmp_free_when_done) {
1151 /*
1152 * put it back on the head of its queue
1153 */
1154 goto reenter_pg_on_q;
1155 }
1156 if (m->vmp_pmapped == TRUE) {
1157 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
1158
1159 disconnected_count++;
1160 }
1161 reenter_pg_on_q:
1162 vm_page_queue_remove(q, m, vmp_pageq);
1163 vm_page_queue_enter(q, m, vmp_pageq);
1164
1165 qcount--;
1166 try_failed_count = 0;
1167
1168 if (delayed_unlock++ > 128) {
1169 if (l_object != NULL) {
1170 vm_object_unlock(l_object);
1171 l_object = NULL;
1172 }
1173 lck_mtx_yield(&vm_page_queue_lock);
1174 delayed_unlock = 0;
1175 }
1176 }
1177 if (l_object != NULL) {
1178 vm_object_unlock(l_object);
1179 l_object = NULL;
1180 }
1181 vm_page_unlock_queues();
1182
1183 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_DISCONNECT_ALL_PAGE_MAPPINGS)) | DBG_FUNC_END,
1184 q, disconnected_count, object_locked_count, paused_count, 0);
1185 }
1186
1187 #endif
1188
1189
1190 static void
1191 vm_pageout_page_queue(vm_page_queue_head_t *, int);
1192
1193 /*
1194 * condition variable used to make sure there is
1195 * only a single sweep going on at a time
1196 */
1197 boolean_t vm_pageout_anonymous_pages_active = FALSE;
1198
1199
1200 void
1201 vm_pageout_anonymous_pages()
1202 {
1203 if (VM_CONFIG_COMPRESSOR_IS_PRESENT) {
1204 vm_page_lock_queues();
1205
1206 if (vm_pageout_anonymous_pages_active == TRUE) {
1207 vm_page_unlock_queues();
1208 return;
1209 }
1210 vm_pageout_anonymous_pages_active = TRUE;
1211 vm_page_unlock_queues();
1212
1213 vm_pageout_page_queue(&vm_page_queue_throttled, vm_page_throttled_count);
1214 vm_pageout_page_queue(&vm_page_queue_anonymous, vm_page_anonymous_count);
1215 vm_pageout_page_queue(&vm_page_queue_active, vm_page_active_count);
1216
1217 if (VM_CONFIG_SWAP_IS_PRESENT) {
1218 vm_consider_swapping();
1219 }
1220
1221 vm_page_lock_queues();
1222 vm_pageout_anonymous_pages_active = FALSE;
1223 vm_page_unlock_queues();
1224 }
1225 }
1226
1227
1228 void
1229 vm_pageout_page_queue(vm_page_queue_head_t *q, int qcount)
1230 {
1231 vm_page_t m;
1232 vm_object_t t_object = NULL;
1233 vm_object_t l_object = NULL;
1234 vm_object_t m_object = NULL;
1235 int delayed_unlock = 0;
1236 int try_failed_count = 0;
1237 int refmod_state;
1238 int pmap_options;
1239 struct vm_pageout_queue *iq;
1240 ppnum_t phys_page;
1241
1242
1243 iq = &vm_pageout_queue_internal;
1244
1245 vm_page_lock_queues();
1246
1247 while (qcount && !vm_page_queue_empty(q)) {
1248 LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
1249
1250 if (VM_PAGE_Q_THROTTLED(iq)) {
1251 if (l_object != NULL) {
1252 vm_object_unlock(l_object);
1253 l_object = NULL;
1254 }
1255 iq->pgo_draining = TRUE;
1256
1257 assert_wait((event_t) (&iq->pgo_laundry + 1), THREAD_INTERRUPTIBLE);
1258 vm_page_unlock_queues();
1259
1260 thread_block(THREAD_CONTINUE_NULL);
1261
1262 vm_page_lock_queues();
1263 delayed_unlock = 0;
1264 continue;
1265 }
1266 m = (vm_page_t) vm_page_queue_first(q);
1267 m_object = VM_PAGE_OBJECT(m);
1268
1269 /*
1270 * check to see if we currently are working
1271 * with the same object... if so, we've
1272 * already got the lock
1273 */
1274 if (m_object != l_object) {
1275 if (!m_object->internal) {
1276 goto reenter_pg_on_q;
1277 }
1278
1279 /*
1280 * the object associated with candidate page is
1281 * different from the one we were just working
1282 * with... dump the lock if we still own it
1283 */
1284 if (l_object != NULL) {
1285 vm_object_unlock(l_object);
1286 l_object = NULL;
1287 }
1288 if (m_object != t_object) {
1289 try_failed_count = 0;
1290 }
1291
1292 /*
1293 * Try to lock object; since we've alread got the
1294 * page queues lock, we can only 'try' for this one.
1295 * if the 'try' fails, we need to do a mutex_pause
1296 * to allow the owner of the object lock a chance to
1297 * run...
1298 */
1299 if (!vm_object_lock_try_scan(m_object)) {
1300 if (try_failed_count > 20) {
1301 goto reenter_pg_on_q;
1302 }
1303 vm_page_unlock_queues();
1304 mutex_pause(try_failed_count++);
1305 vm_page_lock_queues();
1306 delayed_unlock = 0;
1307
1308 t_object = m_object;
1309 continue;
1310 }
1311 l_object = m_object;
1312 }
1313 if (!m_object->alive || m->vmp_cleaning || m->vmp_laundry || m->vmp_busy || m->vmp_absent || m->vmp_error || m->vmp_free_when_done) {
1314 /*
1315 * page is not to be cleaned
1316 * put it back on the head of its queue
1317 */
1318 goto reenter_pg_on_q;
1319 }
1320 phys_page = VM_PAGE_GET_PHYS_PAGE(m);
1321
1322 if (m->vmp_reference == FALSE && m->vmp_pmapped == TRUE) {
1323 refmod_state = pmap_get_refmod(phys_page);
1324
1325 if (refmod_state & VM_MEM_REFERENCED) {
1326 m->vmp_reference = TRUE;
1327 }
1328 if (refmod_state & VM_MEM_MODIFIED) {
1329 SET_PAGE_DIRTY(m, FALSE);
1330 }
1331 }
1332 if (m->vmp_reference == TRUE) {
1333 m->vmp_reference = FALSE;
1334 pmap_clear_refmod_options(phys_page, VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void *)NULL);
1335 goto reenter_pg_on_q;
1336 }
1337 if (m->vmp_pmapped == TRUE) {
1338 if (m->vmp_dirty || m->vmp_precious) {
1339 pmap_options = PMAP_OPTIONS_COMPRESSOR;
1340 } else {
1341 pmap_options = PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED;
1342 }
1343 refmod_state = pmap_disconnect_options(phys_page, pmap_options, NULL);
1344 if (refmod_state & VM_MEM_MODIFIED) {
1345 SET_PAGE_DIRTY(m, FALSE);
1346 }
1347 }
1348
1349 if (!m->vmp_dirty && !m->vmp_precious) {
1350 vm_page_unlock_queues();
1351 VM_PAGE_FREE(m);
1352 vm_page_lock_queues();
1353 delayed_unlock = 0;
1354
1355 goto next_pg;
1356 }
1357 if (!m_object->pager_initialized || m_object->pager == MEMORY_OBJECT_NULL) {
1358 if (!m_object->pager_initialized) {
1359 vm_page_unlock_queues();
1360
1361 vm_object_collapse(m_object, (vm_object_offset_t) 0, TRUE);
1362
1363 if (!m_object->pager_initialized) {
1364 vm_object_compressor_pager_create(m_object);
1365 }
1366
1367 vm_page_lock_queues();
1368 delayed_unlock = 0;
1369 }
1370 if (!m_object->pager_initialized || m_object->pager == MEMORY_OBJECT_NULL) {
1371 goto reenter_pg_on_q;
1372 }
1373 /*
1374 * vm_object_compressor_pager_create will drop the object lock
1375 * which means 'm' may no longer be valid to use
1376 */
1377 continue;
1378 }
1379 /*
1380 * we've already factored out pages in the laundry which
1381 * means this page can't be on the pageout queue so it's
1382 * safe to do the vm_page_queues_remove
1383 */
1384 vm_page_queues_remove(m, TRUE);
1385
1386 LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
1387
1388 vm_pageout_cluster(m);
1389
1390 goto next_pg;
1391
1392 reenter_pg_on_q:
1393 vm_page_queue_remove(q, m, vmp_pageq);
1394 vm_page_queue_enter(q, m, vmp_pageq);
1395 next_pg:
1396 qcount--;
1397 try_failed_count = 0;
1398
1399 if (delayed_unlock++ > 128) {
1400 if (l_object != NULL) {
1401 vm_object_unlock(l_object);
1402 l_object = NULL;
1403 }
1404 lck_mtx_yield(&vm_page_queue_lock);
1405 delayed_unlock = 0;
1406 }
1407 }
1408 if (l_object != NULL) {
1409 vm_object_unlock(l_object);
1410 l_object = NULL;
1411 }
1412 vm_page_unlock_queues();
1413 }
1414
1415
1416
1417 /*
1418 * function in BSD to apply I/O throttle to the pageout thread
1419 */
1420 extern void vm_pageout_io_throttle(void);
1421
1422 #define VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m, obj) \
1423 MACRO_BEGIN \
1424 /* \
1425 * If a "reusable" page somehow made it back into \
1426 * the active queue, it's been re-used and is not \
1427 * quite re-usable. \
1428 * If the VM object was "all_reusable", consider it \
1429 * as "all re-used" instead of converting it to \
1430 * "partially re-used", which could be expensive. \
1431 */ \
1432 assert(VM_PAGE_OBJECT((m)) == (obj)); \
1433 if ((m)->vmp_reusable || \
1434 (obj)->all_reusable) { \
1435 vm_object_reuse_pages((obj), \
1436 (m)->vmp_offset, \
1437 (m)->vmp_offset + PAGE_SIZE_64, \
1438 FALSE); \
1439 } \
1440 MACRO_END
1441
1442
1443 #define VM_PAGEOUT_DELAYED_UNLOCK_LIMIT 64
1444 #define VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX 1024
1445
1446 #define FCS_IDLE 0
1447 #define FCS_DELAYED 1
1448 #define FCS_DEADLOCK_DETECTED 2
1449
1450 struct flow_control {
1451 int state;
1452 mach_timespec_t ts;
1453 };
1454
1455
1456 #if CONFIG_BACKGROUND_QUEUE
1457 uint64_t vm_pageout_rejected_bq_internal = 0;
1458 uint64_t vm_pageout_rejected_bq_external = 0;
1459 uint64_t vm_pageout_skipped_bq_internal = 0;
1460 #endif
1461
1462 #define ANONS_GRABBED_LIMIT 2
1463
1464
1465 #if 0
1466 static void vm_pageout_delayed_unlock(int *, int *, vm_page_t *);
1467 #endif
1468 static void vm_pageout_prepare_to_block(vm_object_t *, int *, vm_page_t *, int *, int);
1469
1470 #define VM_PAGEOUT_PB_NO_ACTION 0
1471 #define VM_PAGEOUT_PB_CONSIDER_WAKING_COMPACTOR_SWAPPER 1
1472 #define VM_PAGEOUT_PB_THREAD_YIELD 2
1473
1474
1475 #if 0
1476 static void
1477 vm_pageout_delayed_unlock(int *delayed_unlock, int *local_freed, vm_page_t *local_freeq)
1478 {
1479 if (*local_freeq) {
1480 vm_page_unlock_queues();
1481
1482 VM_DEBUG_CONSTANT_EVENT(
1483 vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START,
1484 vm_page_free_count, 0, 0, 1);
1485
1486 vm_page_free_list(*local_freeq, TRUE);
1487
1488 VM_DEBUG_CONSTANT_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END,
1489 vm_page_free_count, *local_freed, 0, 1);
1490
1491 *local_freeq = NULL;
1492 *local_freed = 0;
1493
1494 vm_page_lock_queues();
1495 } else {
1496 lck_mtx_yield(&vm_page_queue_lock);
1497 }
1498 *delayed_unlock = 1;
1499 }
1500 #endif
1501
1502
1503 static void
1504 vm_pageout_prepare_to_block(vm_object_t *object, int *delayed_unlock,
1505 vm_page_t *local_freeq, int *local_freed, int action)
1506 {
1507 vm_page_unlock_queues();
1508
1509 if (*object != NULL) {
1510 vm_object_unlock(*object);
1511 *object = NULL;
1512 }
1513 if (*local_freeq) {
1514 vm_page_free_list(*local_freeq, TRUE);
1515
1516 *local_freeq = NULL;
1517 *local_freed = 0;
1518 }
1519 *delayed_unlock = 1;
1520
1521 switch (action) {
1522 case VM_PAGEOUT_PB_CONSIDER_WAKING_COMPACTOR_SWAPPER:
1523 vm_consider_waking_compactor_swapper();
1524 break;
1525 case VM_PAGEOUT_PB_THREAD_YIELD:
1526 thread_yield_internal(1);
1527 break;
1528 case VM_PAGEOUT_PB_NO_ACTION:
1529 default:
1530 break;
1531 }
1532 vm_page_lock_queues();
1533 }
1534
1535
1536 static struct vm_pageout_vminfo last;
1537
1538 uint64_t last_vm_page_pages_grabbed = 0;
1539
1540 extern uint32_t c_segment_pages_compressed;
1541
1542 extern uint64_t shared_region_pager_reclaimed;
1543 extern struct memory_object_pager_ops shared_region_pager_ops;
1544
1545 void
1546 update_vm_info(void)
1547 {
1548 unsigned long tmp;
1549 uint64_t tmp64;
1550
1551 vm_pageout_stats[vm_pageout_stat_now].vm_page_active_count = vm_page_active_count;
1552 vm_pageout_stats[vm_pageout_stat_now].vm_page_speculative_count = vm_page_speculative_count;
1553 vm_pageout_stats[vm_pageout_stat_now].vm_page_inactive_count = vm_page_inactive_count;
1554 vm_pageout_stats[vm_pageout_stat_now].vm_page_anonymous_count = vm_page_anonymous_count;
1555
1556 vm_pageout_stats[vm_pageout_stat_now].vm_page_free_count = vm_page_free_count;
1557 vm_pageout_stats[vm_pageout_stat_now].vm_page_wire_count = vm_page_wire_count;
1558 vm_pageout_stats[vm_pageout_stat_now].vm_page_compressor_count = VM_PAGE_COMPRESSOR_COUNT;
1559
1560 vm_pageout_stats[vm_pageout_stat_now].vm_page_pages_compressed = c_segment_pages_compressed;
1561 vm_pageout_stats[vm_pageout_stat_now].vm_page_pageable_internal_count = vm_page_pageable_internal_count;
1562 vm_pageout_stats[vm_pageout_stat_now].vm_page_pageable_external_count = vm_page_pageable_external_count;
1563 vm_pageout_stats[vm_pageout_stat_now].vm_page_xpmapped_external_count = vm_page_xpmapped_external_count;
1564
1565
1566 tmp = vm_pageout_vminfo.vm_pageout_considered_page;
1567 vm_pageout_stats[vm_pageout_stat_now].considered = (unsigned int)(tmp - last.vm_pageout_considered_page);
1568 last.vm_pageout_considered_page = tmp;
1569
1570 tmp64 = vm_pageout_vminfo.vm_pageout_compressions;
1571 vm_pageout_stats[vm_pageout_stat_now].pages_compressed = (unsigned int)(tmp64 - last.vm_pageout_compressions);
1572 last.vm_pageout_compressions = tmp64;
1573
1574 tmp = vm_pageout_vminfo.vm_compressor_failed;
1575 vm_pageout_stats[vm_pageout_stat_now].failed_compressions = (unsigned int)(tmp - last.vm_compressor_failed);
1576 last.vm_compressor_failed = tmp;
1577
1578 tmp64 = vm_pageout_vminfo.vm_compressor_pages_grabbed;
1579 vm_pageout_stats[vm_pageout_stat_now].pages_grabbed_by_compressor = (unsigned int)(tmp64 - last.vm_compressor_pages_grabbed);
1580 last.vm_compressor_pages_grabbed = tmp64;
1581
1582 tmp = vm_pageout_vminfo.vm_phantom_cache_found_ghost;
1583 vm_pageout_stats[vm_pageout_stat_now].phantom_ghosts_found = (unsigned int)(tmp - last.vm_phantom_cache_found_ghost);
1584 last.vm_phantom_cache_found_ghost = tmp;
1585
1586 tmp = vm_pageout_vminfo.vm_phantom_cache_added_ghost;
1587 vm_pageout_stats[vm_pageout_stat_now].phantom_ghosts_added = (unsigned int)(tmp - last.vm_phantom_cache_added_ghost);
1588 last.vm_phantom_cache_added_ghost = tmp;
1589
1590 tmp64 = counter_load(&vm_page_grab_count);
1591 vm_pageout_stats[vm_pageout_stat_now].pages_grabbed = (unsigned int)(tmp64 - last_vm_page_pages_grabbed);
1592 last_vm_page_pages_grabbed = tmp64;
1593
1594 tmp = vm_pageout_vminfo.vm_page_pages_freed;
1595 vm_pageout_stats[vm_pageout_stat_now].pages_freed = (unsigned int)(tmp - last.vm_page_pages_freed);
1596 last.vm_page_pages_freed = tmp;
1597
1598
1599 if (vm_pageout_stats[vm_pageout_stat_now].considered) {
1600 tmp = vm_pageout_vminfo.vm_pageout_pages_evicted;
1601 vm_pageout_stats[vm_pageout_stat_now].pages_evicted = (unsigned int)(tmp - last.vm_pageout_pages_evicted);
1602 last.vm_pageout_pages_evicted = tmp;
1603
1604 tmp = vm_pageout_vminfo.vm_pageout_pages_purged;
1605 vm_pageout_stats[vm_pageout_stat_now].pages_purged = (unsigned int)(tmp - last.vm_pageout_pages_purged);
1606 last.vm_pageout_pages_purged = tmp;
1607
1608 tmp = vm_pageout_vminfo.vm_pageout_freed_speculative;
1609 vm_pageout_stats[vm_pageout_stat_now].freed_speculative = (unsigned int)(tmp - last.vm_pageout_freed_speculative);
1610 last.vm_pageout_freed_speculative = tmp;
1611
1612 tmp = vm_pageout_vminfo.vm_pageout_freed_external;
1613 vm_pageout_stats[vm_pageout_stat_now].freed_external = (unsigned int)(tmp - last.vm_pageout_freed_external);
1614 last.vm_pageout_freed_external = tmp;
1615
1616 tmp = vm_pageout_vminfo.vm_pageout_inactive_referenced;
1617 vm_pageout_stats[vm_pageout_stat_now].inactive_referenced = (unsigned int)(tmp - last.vm_pageout_inactive_referenced);
1618 last.vm_pageout_inactive_referenced = tmp;
1619
1620 tmp = vm_pageout_vminfo.vm_pageout_scan_inactive_throttled_external;
1621 vm_pageout_stats[vm_pageout_stat_now].throttled_external_q = (unsigned int)(tmp - last.vm_pageout_scan_inactive_throttled_external);
1622 last.vm_pageout_scan_inactive_throttled_external = tmp;
1623
1624 tmp = vm_pageout_vminfo.vm_pageout_inactive_dirty_external;
1625 vm_pageout_stats[vm_pageout_stat_now].cleaned_dirty_external = (unsigned int)(tmp - last.vm_pageout_inactive_dirty_external);
1626 last.vm_pageout_inactive_dirty_external = tmp;
1627
1628 tmp = vm_pageout_vminfo.vm_pageout_freed_cleaned;
1629 vm_pageout_stats[vm_pageout_stat_now].freed_cleaned = (unsigned int)(tmp - last.vm_pageout_freed_cleaned);
1630 last.vm_pageout_freed_cleaned = tmp;
1631
1632 tmp = vm_pageout_vminfo.vm_pageout_inactive_nolock;
1633 vm_pageout_stats[vm_pageout_stat_now].inactive_nolock = (unsigned int)(tmp - last.vm_pageout_inactive_nolock);
1634 last.vm_pageout_inactive_nolock = tmp;
1635
1636 tmp = vm_pageout_vminfo.vm_pageout_scan_inactive_throttled_internal;
1637 vm_pageout_stats[vm_pageout_stat_now].throttled_internal_q = (unsigned int)(tmp - last.vm_pageout_scan_inactive_throttled_internal);
1638 last.vm_pageout_scan_inactive_throttled_internal = tmp;
1639
1640 tmp = vm_pageout_vminfo.vm_pageout_skipped_external;
1641 vm_pageout_stats[vm_pageout_stat_now].skipped_external = (unsigned int)(tmp - last.vm_pageout_skipped_external);
1642 last.vm_pageout_skipped_external = tmp;
1643
1644 tmp = vm_pageout_vminfo.vm_pageout_reactivation_limit_exceeded;
1645 vm_pageout_stats[vm_pageout_stat_now].reactivation_limit_exceeded = (unsigned int)(tmp - last.vm_pageout_reactivation_limit_exceeded);
1646 last.vm_pageout_reactivation_limit_exceeded = tmp;
1647
1648 tmp = vm_pageout_vminfo.vm_pageout_inactive_force_reclaim;
1649 vm_pageout_stats[vm_pageout_stat_now].forced_inactive_reclaim = (unsigned int)(tmp - last.vm_pageout_inactive_force_reclaim);
1650 last.vm_pageout_inactive_force_reclaim = tmp;
1651
1652 tmp = vm_pageout_vminfo.vm_pageout_freed_internal;
1653 vm_pageout_stats[vm_pageout_stat_now].freed_internal = (unsigned int)(tmp - last.vm_pageout_freed_internal);
1654 last.vm_pageout_freed_internal = tmp;
1655
1656 tmp = vm_pageout_vminfo.vm_pageout_considered_bq_internal;
1657 vm_pageout_stats[vm_pageout_stat_now].considered_bq_internal = (unsigned int)(tmp - last.vm_pageout_considered_bq_internal);
1658 last.vm_pageout_considered_bq_internal = tmp;
1659
1660 tmp = vm_pageout_vminfo.vm_pageout_considered_bq_external;
1661 vm_pageout_stats[vm_pageout_stat_now].considered_bq_external = (unsigned int)(tmp - last.vm_pageout_considered_bq_external);
1662 last.vm_pageout_considered_bq_external = tmp;
1663
1664 tmp = vm_pageout_vminfo.vm_pageout_filecache_min_reactivated;
1665 vm_pageout_stats[vm_pageout_stat_now].filecache_min_reactivations = (unsigned int)(tmp - last.vm_pageout_filecache_min_reactivated);
1666 last.vm_pageout_filecache_min_reactivated = tmp;
1667
1668 tmp = vm_pageout_vminfo.vm_pageout_inactive_dirty_internal;
1669 vm_pageout_stats[vm_pageout_stat_now].cleaned_dirty_internal = (unsigned int)(tmp - last.vm_pageout_inactive_dirty_internal);
1670 last.vm_pageout_inactive_dirty_internal = tmp;
1671 }
1672
1673 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO1)) | DBG_FUNC_NONE,
1674 vm_pageout_stats[vm_pageout_stat_now].vm_page_active_count,
1675 vm_pageout_stats[vm_pageout_stat_now].vm_page_speculative_count,
1676 vm_pageout_stats[vm_pageout_stat_now].vm_page_inactive_count,
1677 vm_pageout_stats[vm_pageout_stat_now].vm_page_anonymous_count,
1678 0);
1679
1680 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO2)) | DBG_FUNC_NONE,
1681 vm_pageout_stats[vm_pageout_stat_now].vm_page_free_count,
1682 vm_pageout_stats[vm_pageout_stat_now].vm_page_wire_count,
1683 vm_pageout_stats[vm_pageout_stat_now].vm_page_compressor_count,
1684 0,
1685 0);
1686
1687 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO3)) | DBG_FUNC_NONE,
1688 vm_pageout_stats[vm_pageout_stat_now].vm_page_pages_compressed,
1689 vm_pageout_stats[vm_pageout_stat_now].vm_page_pageable_internal_count,
1690 vm_pageout_stats[vm_pageout_stat_now].vm_page_pageable_external_count,
1691 vm_pageout_stats[vm_pageout_stat_now].vm_page_xpmapped_external_count,
1692 0);
1693
1694 if (vm_pageout_stats[vm_pageout_stat_now].considered ||
1695 vm_pageout_stats[vm_pageout_stat_now].pages_compressed ||
1696 vm_pageout_stats[vm_pageout_stat_now].failed_compressions) {
1697 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO4)) | DBG_FUNC_NONE,
1698 vm_pageout_stats[vm_pageout_stat_now].considered,
1699 vm_pageout_stats[vm_pageout_stat_now].freed_speculative,
1700 vm_pageout_stats[vm_pageout_stat_now].freed_external,
1701 vm_pageout_stats[vm_pageout_stat_now].inactive_referenced,
1702 0);
1703
1704 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO5)) | DBG_FUNC_NONE,
1705 vm_pageout_stats[vm_pageout_stat_now].throttled_external_q,
1706 vm_pageout_stats[vm_pageout_stat_now].cleaned_dirty_external,
1707 vm_pageout_stats[vm_pageout_stat_now].freed_cleaned,
1708 vm_pageout_stats[vm_pageout_stat_now].inactive_nolock,
1709 0);
1710
1711 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO6)) | DBG_FUNC_NONE,
1712 vm_pageout_stats[vm_pageout_stat_now].throttled_internal_q,
1713 vm_pageout_stats[vm_pageout_stat_now].pages_compressed,
1714 vm_pageout_stats[vm_pageout_stat_now].pages_grabbed_by_compressor,
1715 vm_pageout_stats[vm_pageout_stat_now].skipped_external,
1716 0);
1717
1718 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO7)) | DBG_FUNC_NONE,
1719 vm_pageout_stats[vm_pageout_stat_now].reactivation_limit_exceeded,
1720 vm_pageout_stats[vm_pageout_stat_now].forced_inactive_reclaim,
1721 vm_pageout_stats[vm_pageout_stat_now].failed_compressions,
1722 vm_pageout_stats[vm_pageout_stat_now].freed_internal,
1723 0);
1724
1725 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO8)) | DBG_FUNC_NONE,
1726 vm_pageout_stats[vm_pageout_stat_now].considered_bq_internal,
1727 vm_pageout_stats[vm_pageout_stat_now].considered_bq_external,
1728 vm_pageout_stats[vm_pageout_stat_now].filecache_min_reactivations,
1729 vm_pageout_stats[vm_pageout_stat_now].cleaned_dirty_internal,
1730 0);
1731 }
1732 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO9)) | DBG_FUNC_NONE,
1733 vm_pageout_stats[vm_pageout_stat_now].pages_grabbed,
1734 vm_pageout_stats[vm_pageout_stat_now].pages_freed,
1735 vm_pageout_stats[vm_pageout_stat_now].phantom_ghosts_found,
1736 vm_pageout_stats[vm_pageout_stat_now].phantom_ghosts_added,
1737 0);
1738
1739 record_memory_pressure();
1740 }
1741
1742 extern boolean_t hibernation_vmqueues_inspection;
1743
1744 /*
1745 * Return values for functions called by vm_pageout_scan
1746 * that control its flow.
1747 *
1748 * PROCEED -- vm_pageout_scan will keep making forward progress.
1749 * DONE_RETURN -- page demand satisfied, work is done -> vm_pageout_scan returns.
1750 * NEXT_ITERATION -- restart the 'for' loop in vm_pageout_scan aka continue.
1751 */
1752
1753 #define VM_PAGEOUT_SCAN_PROCEED (0)
1754 #define VM_PAGEOUT_SCAN_DONE_RETURN (1)
1755 #define VM_PAGEOUT_SCAN_NEXT_ITERATION (2)
1756
1757 /*
1758 * This function is called only from vm_pageout_scan and
1759 * it moves overflow secluded pages (one-at-a-time) to the
1760 * batched 'local' free Q or active Q.
1761 */
1762 static void
1763 vps_deal_with_secluded_page_overflow(vm_page_t *local_freeq, int *local_freed)
1764 {
1765 #if CONFIG_SECLUDED_MEMORY
1766 /*
1767 * Deal with secluded_q overflow.
1768 */
1769 if (vm_page_secluded_count > vm_page_secluded_target) {
1770 vm_page_t secluded_page;
1771
1772 /*
1773 * SECLUDED_AGING_BEFORE_ACTIVE:
1774 * Excess secluded pages go to the active queue and
1775 * will later go to the inactive queue.
1776 */
1777 assert((vm_page_secluded_count_free +
1778 vm_page_secluded_count_inuse) ==
1779 vm_page_secluded_count);
1780 secluded_page = (vm_page_t)vm_page_queue_first(&vm_page_queue_secluded);
1781 assert(secluded_page->vmp_q_state == VM_PAGE_ON_SECLUDED_Q);
1782
1783 vm_page_queues_remove(secluded_page, FALSE);
1784 assert(!secluded_page->vmp_fictitious);
1785 assert(!VM_PAGE_WIRED(secluded_page));
1786
1787 if (secluded_page->vmp_object == 0) {
1788 /* transfer to free queue */
1789 assert(secluded_page->vmp_busy);
1790 secluded_page->vmp_snext = *local_freeq;
1791 *local_freeq = secluded_page;
1792 *local_freed += 1;
1793 } else {
1794 /* transfer to head of active queue */
1795 vm_page_enqueue_active(secluded_page, FALSE);
1796 secluded_page = VM_PAGE_NULL;
1797 }
1798 }
1799 #else /* CONFIG_SECLUDED_MEMORY */
1800
1801 #pragma unused(local_freeq)
1802 #pragma unused(local_freed)
1803
1804 return;
1805
1806 #endif /* CONFIG_SECLUDED_MEMORY */
1807 }
1808
1809 /*
1810 * This function is called only from vm_pageout_scan and
1811 * it initializes the loop targets for vm_pageout_scan().
1812 */
1813 static void
1814 vps_init_page_targets(void)
1815 {
1816 /*
1817 * LD TODO: Other page targets should be calculated here too.
1818 */
1819 vm_page_anonymous_min = vm_page_inactive_target / 20;
1820
1821 if (vm_pageout_state.vm_page_speculative_percentage > 50) {
1822 vm_pageout_state.vm_page_speculative_percentage = 50;
1823 } else if (vm_pageout_state.vm_page_speculative_percentage <= 0) {
1824 vm_pageout_state.vm_page_speculative_percentage = 1;
1825 }
1826
1827 vm_pageout_state.vm_page_speculative_target = VM_PAGE_SPECULATIVE_TARGET(vm_page_active_count +
1828 vm_page_inactive_count);
1829 }
1830
1831 /*
1832 * This function is called only from vm_pageout_scan and
1833 * it purges a single VM object at-a-time and will either
1834 * make vm_pageout_scan() restart the loop or keeping moving forward.
1835 */
1836 static int
1837 vps_purge_object()
1838 {
1839 int force_purge;
1840
1841 assert(available_for_purge >= 0);
1842 force_purge = 0; /* no force-purging */
1843
1844 #if VM_PRESSURE_EVENTS
1845 vm_pressure_level_t pressure_level;
1846
1847 pressure_level = memorystatus_vm_pressure_level;
1848
1849 if (pressure_level > kVMPressureNormal) {
1850 if (pressure_level >= kVMPressureCritical) {
1851 force_purge = vm_pageout_state.memorystatus_purge_on_critical;
1852 } else if (pressure_level >= kVMPressureUrgent) {
1853 force_purge = vm_pageout_state.memorystatus_purge_on_urgent;
1854 } else if (pressure_level >= kVMPressureWarning) {
1855 force_purge = vm_pageout_state.memorystatus_purge_on_warning;
1856 }
1857 }
1858 #endif /* VM_PRESSURE_EVENTS */
1859
1860 if (available_for_purge || force_purge) {
1861 memoryshot(VM_PAGEOUT_PURGEONE, DBG_FUNC_START);
1862
1863 VM_DEBUG_EVENT(vm_pageout_purgeone, VM_PAGEOUT_PURGEONE, DBG_FUNC_START, vm_page_free_count, 0, 0, 0);
1864 if (vm_purgeable_object_purge_one(force_purge, C_DONT_BLOCK)) {
1865 VM_PAGEOUT_DEBUG(vm_pageout_purged_objects, 1);
1866 VM_DEBUG_EVENT(vm_pageout_purgeone, VM_PAGEOUT_PURGEONE, DBG_FUNC_END, vm_page_free_count, 0, 0, 0);
1867 memoryshot(VM_PAGEOUT_PURGEONE, DBG_FUNC_END);
1868
1869 return VM_PAGEOUT_SCAN_NEXT_ITERATION;
1870 }
1871 VM_DEBUG_EVENT(vm_pageout_purgeone, VM_PAGEOUT_PURGEONE, DBG_FUNC_END, 0, 0, 0, -1);
1872 memoryshot(VM_PAGEOUT_PURGEONE, DBG_FUNC_END);
1873 }
1874
1875 return VM_PAGEOUT_SCAN_PROCEED;
1876 }
1877
1878 /*
1879 * This function is called only from vm_pageout_scan and
1880 * it will try to age the next speculative Q if the oldest
1881 * one is empty.
1882 */
1883 static int
1884 vps_age_speculative_queue(boolean_t force_speculative_aging)
1885 {
1886 #define DELAY_SPECULATIVE_AGE 1000
1887
1888 /*
1889 * try to pull pages from the aging bins...
1890 * see vm_page.h for an explanation of how
1891 * this mechanism works
1892 */
1893 boolean_t can_steal = FALSE;
1894 int num_scanned_queues;
1895 static int delay_speculative_age = 0; /* depends the # of times we go through the main pageout_scan loop.*/
1896 mach_timespec_t ts;
1897 struct vm_speculative_age_q *aq;
1898 struct vm_speculative_age_q *sq;
1899
1900 sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q];
1901
1902 aq = &vm_page_queue_speculative[speculative_steal_index];
1903
1904 num_scanned_queues = 0;
1905 while (vm_page_queue_empty(&aq->age_q) &&
1906 num_scanned_queues++ != VM_PAGE_MAX_SPECULATIVE_AGE_Q) {
1907 speculative_steal_index++;
1908
1909 if (speculative_steal_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) {
1910 speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q;
1911 }
1912
1913 aq = &vm_page_queue_speculative[speculative_steal_index];
1914 }
1915
1916 if (num_scanned_queues == VM_PAGE_MAX_SPECULATIVE_AGE_Q + 1) {
1917 /*
1918 * XXX We've scanned all the speculative
1919 * queues but still haven't found one
1920 * that is not empty, even though
1921 * vm_page_speculative_count is not 0.
1922 */
1923 if (!vm_page_queue_empty(&sq->age_q)) {
1924 return VM_PAGEOUT_SCAN_NEXT_ITERATION;
1925 }
1926 #if DEVELOPMENT || DEBUG
1927 panic("vm_pageout_scan: vm_page_speculative_count=%d but queues are empty", vm_page_speculative_count);
1928 #endif
1929 /* readjust... */
1930 vm_page_speculative_count = 0;
1931 /* ... and continue */
1932 return VM_PAGEOUT_SCAN_NEXT_ITERATION;
1933 }
1934
1935 if (vm_page_speculative_count > vm_pageout_state.vm_page_speculative_target || force_speculative_aging == TRUE) {
1936 can_steal = TRUE;
1937 } else {
1938 if (!delay_speculative_age) {
1939 mach_timespec_t ts_fully_aged;
1940
1941 ts_fully_aged.tv_sec = (VM_PAGE_MAX_SPECULATIVE_AGE_Q * vm_pageout_state.vm_page_speculative_q_age_ms) / 1000;
1942 ts_fully_aged.tv_nsec = ((VM_PAGE_MAX_SPECULATIVE_AGE_Q * vm_pageout_state.vm_page_speculative_q_age_ms) % 1000)
1943 * 1000 * NSEC_PER_USEC;
1944
1945 ADD_MACH_TIMESPEC(&ts_fully_aged, &aq->age_ts);
1946
1947 clock_sec_t sec;
1948 clock_nsec_t nsec;
1949 clock_get_system_nanotime(&sec, &nsec);
1950 ts.tv_sec = (unsigned int) sec;
1951 ts.tv_nsec = nsec;
1952
1953 if (CMP_MACH_TIMESPEC(&ts, &ts_fully_aged) >= 0) {
1954 can_steal = TRUE;
1955 } else {
1956 delay_speculative_age++;
1957 }
1958 } else {
1959 delay_speculative_age++;
1960 if (delay_speculative_age == DELAY_SPECULATIVE_AGE) {
1961 delay_speculative_age = 0;
1962 }
1963 }
1964 }
1965 if (can_steal == TRUE) {
1966 vm_page_speculate_ageit(aq);
1967 }
1968
1969 return VM_PAGEOUT_SCAN_PROCEED;
1970 }
1971
1972 /*
1973 * This function is called only from vm_pageout_scan and
1974 * it evicts a single VM object from the cache.
1975 */
1976 static int inline
1977 vps_object_cache_evict(vm_object_t *object_to_unlock)
1978 {
1979 static int cache_evict_throttle = 0;
1980 struct vm_speculative_age_q *sq;
1981
1982 sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q];
1983
1984 if (vm_page_queue_empty(&sq->age_q) && cache_evict_throttle == 0) {
1985 int pages_evicted;
1986
1987 if (*object_to_unlock != NULL) {
1988 vm_object_unlock(*object_to_unlock);
1989 *object_to_unlock = NULL;
1990 }
1991 KERNEL_DEBUG_CONSTANT(0x13001ec | DBG_FUNC_START, 0, 0, 0, 0, 0);
1992
1993 pages_evicted = vm_object_cache_evict(100, 10);
1994
1995 KERNEL_DEBUG_CONSTANT(0x13001ec | DBG_FUNC_END, pages_evicted, 0, 0, 0, 0);
1996
1997 if (pages_evicted) {
1998 vm_pageout_vminfo.vm_pageout_pages_evicted += pages_evicted;
1999
2000 VM_DEBUG_EVENT(vm_pageout_cache_evict, VM_PAGEOUT_CACHE_EVICT, DBG_FUNC_NONE,
2001 vm_page_free_count, pages_evicted, vm_pageout_vminfo.vm_pageout_pages_evicted, 0);
2002 memoryshot(VM_PAGEOUT_CACHE_EVICT, DBG_FUNC_NONE);
2003
2004 /*
2005 * we just freed up to 100 pages,
2006 * so go back to the top of the main loop
2007 * and re-evaulate the memory situation
2008 */
2009 return VM_PAGEOUT_SCAN_NEXT_ITERATION;
2010 } else {
2011 cache_evict_throttle = 1000;
2012 }
2013 }
2014 if (cache_evict_throttle) {
2015 cache_evict_throttle--;
2016 }
2017
2018 return VM_PAGEOUT_SCAN_PROCEED;
2019 }
2020
2021
2022 /*
2023 * This function is called only from vm_pageout_scan and
2024 * it calculates the filecache min. that needs to be maintained
2025 * as we start to steal pages.
2026 */
2027 static void
2028 vps_calculate_filecache_min(void)
2029 {
2030 int divisor = vm_pageout_state.vm_page_filecache_min_divisor;
2031
2032 #if CONFIG_JETSAM
2033 /*
2034 * don't let the filecache_min fall below 15% of available memory
2035 * on systems with an active compressor that isn't nearing its
2036 * limits w/r to accepting new data
2037 *
2038 * on systems w/o the compressor/swapper, the filecache is always
2039 * a very large percentage of the AVAILABLE_NON_COMPRESSED_MEMORY
2040 * since most (if not all) of the anonymous pages are in the
2041 * throttled queue (which isn't counted as available) which
2042 * effectively disables this filter
2043 */
2044 if (vm_compressor_low_on_space() || divisor == 0) {
2045 vm_pageout_state.vm_page_filecache_min = 0;
2046 } else {
2047 vm_pageout_state.vm_page_filecache_min =
2048 ((AVAILABLE_NON_COMPRESSED_MEMORY) * 10) / divisor;
2049 }
2050 #else
2051 if (vm_compressor_out_of_space() || divisor == 0) {
2052 vm_pageout_state.vm_page_filecache_min = 0;
2053 } else {
2054 /*
2055 * don't let the filecache_min fall below the specified critical level
2056 */
2057 vm_pageout_state.vm_page_filecache_min =
2058 ((AVAILABLE_NON_COMPRESSED_MEMORY) * 10) / divisor;
2059 }
2060 #endif
2061 if (vm_page_free_count < (vm_page_free_reserved / 4)) {
2062 vm_pageout_state.vm_page_filecache_min = 0;
2063 }
2064 }
2065
2066 /*
2067 * This function is called only from vm_pageout_scan and
2068 * it updates the flow control time to detect if VM pageoutscan
2069 * isn't making progress.
2070 */
2071 static void
2072 vps_flow_control_reset_deadlock_timer(struct flow_control *flow_control)
2073 {
2074 mach_timespec_t ts;
2075 clock_sec_t sec;
2076 clock_nsec_t nsec;
2077
2078 ts.tv_sec = vm_pageout_state.vm_pageout_deadlock_wait / 1000;
2079 ts.tv_nsec = (vm_pageout_state.vm_pageout_deadlock_wait % 1000) * 1000 * NSEC_PER_USEC;
2080 clock_get_system_nanotime(&sec, &nsec);
2081 flow_control->ts.tv_sec = (unsigned int) sec;
2082 flow_control->ts.tv_nsec = nsec;
2083 ADD_MACH_TIMESPEC(&flow_control->ts, &ts);
2084
2085 flow_control->state = FCS_DELAYED;
2086
2087 vm_pageout_vminfo.vm_pageout_scan_inactive_throttled_internal++;
2088 }
2089
2090 /*
2091 * This function is called only from vm_pageout_scan and
2092 * it is the flow control logic of VM pageout scan which
2093 * controls if it should block and for how long.
2094 * Any blocking of vm_pageout_scan happens ONLY in this function.
2095 */
2096 static int
2097 vps_flow_control(struct flow_control *flow_control, int *anons_grabbed, vm_object_t *object, int *delayed_unlock,
2098 vm_page_t *local_freeq, int *local_freed, int *vm_pageout_deadlock_target, unsigned int inactive_burst_count)
2099 {
2100 boolean_t exceeded_burst_throttle = FALSE;
2101 unsigned int msecs = 0;
2102 uint32_t inactive_external_count;
2103 mach_timespec_t ts;
2104 struct vm_pageout_queue *iq;
2105 struct vm_pageout_queue *eq;
2106 struct vm_speculative_age_q *sq;
2107
2108 iq = &vm_pageout_queue_internal;
2109 eq = &vm_pageout_queue_external;
2110 sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q];
2111
2112 /*
2113 * Sometimes we have to pause:
2114 * 1) No inactive pages - nothing to do.
2115 * 2) Loop control - no acceptable pages found on the inactive queue
2116 * within the last vm_pageout_burst_inactive_throttle iterations
2117 * 3) Flow control - default pageout queue is full
2118 */
2119 if (vm_page_queue_empty(&vm_page_queue_inactive) &&
2120 vm_page_queue_empty(&vm_page_queue_anonymous) &&
2121 vm_page_queue_empty(&vm_page_queue_cleaned) &&
2122 vm_page_queue_empty(&sq->age_q)) {
2123 VM_PAGEOUT_DEBUG(vm_pageout_scan_empty_throttle, 1);
2124 msecs = vm_pageout_state.vm_pageout_empty_wait;
2125 } else if (inactive_burst_count >=
2126 MIN(vm_pageout_state.vm_pageout_burst_inactive_throttle,
2127 (vm_page_inactive_count +
2128 vm_page_speculative_count))) {
2129 VM_PAGEOUT_DEBUG(vm_pageout_scan_burst_throttle, 1);
2130 msecs = vm_pageout_state.vm_pageout_burst_wait;
2131
2132 exceeded_burst_throttle = TRUE;
2133 } else if (VM_PAGE_Q_THROTTLED(iq) &&
2134 VM_DYNAMIC_PAGING_ENABLED()) {
2135 clock_sec_t sec;
2136 clock_nsec_t nsec;
2137
2138 switch (flow_control->state) {
2139 case FCS_IDLE:
2140 if ((vm_page_free_count + *local_freed) < vm_page_free_target &&
2141 vm_pageout_state.vm_restricted_to_single_processor == FALSE) {
2142 /*
2143 * since the compressor is running independently of vm_pageout_scan
2144 * let's not wait for it just yet... as long as we have a healthy supply
2145 * of filecache pages to work with, let's keep stealing those.
2146 */
2147 inactive_external_count = vm_page_inactive_count - vm_page_anonymous_count;
2148
2149 if (vm_page_pageable_external_count > vm_pageout_state.vm_page_filecache_min &&
2150 (inactive_external_count >= VM_PAGE_INACTIVE_TARGET(vm_page_pageable_external_count))) {
2151 *anons_grabbed = ANONS_GRABBED_LIMIT;
2152 VM_PAGEOUT_DEBUG(vm_pageout_scan_throttle_deferred, 1);
2153 return VM_PAGEOUT_SCAN_PROCEED;
2154 }
2155 }
2156
2157 vps_flow_control_reset_deadlock_timer(flow_control);
2158 msecs = vm_pageout_state.vm_pageout_deadlock_wait;
2159
2160 break;
2161
2162 case FCS_DELAYED:
2163 clock_get_system_nanotime(&sec, &nsec);
2164 ts.tv_sec = (unsigned int) sec;
2165 ts.tv_nsec = nsec;
2166
2167 if (CMP_MACH_TIMESPEC(&ts, &flow_control->ts) >= 0) {
2168 /*
2169 * the pageout thread for the default pager is potentially
2170 * deadlocked since the
2171 * default pager queue has been throttled for more than the
2172 * allowable time... we need to move some clean pages or dirty
2173 * pages belonging to the external pagers if they aren't throttled
2174 * vm_page_free_wanted represents the number of threads currently
2175 * blocked waiting for pages... we'll move one page for each of
2176 * these plus a fixed amount to break the logjam... once we're done
2177 * moving this number of pages, we'll re-enter the FSC_DELAYED state
2178 * with a new timeout target since we have no way of knowing
2179 * whether we've broken the deadlock except through observation
2180 * of the queue associated with the default pager... we need to
2181 * stop moving pages and allow the system to run to see what
2182 * state it settles into.
2183 */
2184
2185 *vm_pageout_deadlock_target = vm_pageout_state.vm_pageout_deadlock_relief +
2186 vm_page_free_wanted + vm_page_free_wanted_privileged;
2187 VM_PAGEOUT_DEBUG(vm_pageout_scan_deadlock_detected, 1);
2188 flow_control->state = FCS_DEADLOCK_DETECTED;
2189 thread_wakeup((event_t) &vm_pageout_garbage_collect);
2190 return VM_PAGEOUT_SCAN_PROCEED;
2191 }
2192 /*
2193 * just resniff instead of trying
2194 * to compute a new delay time... we're going to be
2195 * awakened immediately upon a laundry completion,
2196 * so we won't wait any longer than necessary
2197 */
2198 msecs = vm_pageout_state.vm_pageout_idle_wait;
2199 break;
2200
2201 case FCS_DEADLOCK_DETECTED:
2202 if (*vm_pageout_deadlock_target) {
2203 return VM_PAGEOUT_SCAN_PROCEED;
2204 }
2205
2206 vps_flow_control_reset_deadlock_timer(flow_control);
2207 msecs = vm_pageout_state.vm_pageout_deadlock_wait;
2208
2209 break;
2210 }
2211 } else {
2212 /*
2213 * No need to pause...
2214 */
2215 return VM_PAGEOUT_SCAN_PROCEED;
2216 }
2217
2218 vm_pageout_scan_wants_object = VM_OBJECT_NULL;
2219
2220 vm_pageout_prepare_to_block(object, delayed_unlock, local_freeq, local_freed,
2221 VM_PAGEOUT_PB_CONSIDER_WAKING_COMPACTOR_SWAPPER);
2222
2223 if (vm_page_free_count >= vm_page_free_target) {
2224 /*
2225 * we're here because
2226 * 1) someone else freed up some pages while we had
2227 * the queues unlocked above
2228 * and we've hit one of the 3 conditions that
2229 * cause us to pause the pageout scan thread
2230 *
2231 * since we already have enough free pages,
2232 * let's avoid stalling and return normally
2233 *
2234 * before we return, make sure the pageout I/O threads
2235 * are running throttled in case there are still requests
2236 * in the laundry... since we have enough free pages
2237 * we don't need the laundry to be cleaned in a timely
2238 * fashion... so let's avoid interfering with foreground
2239 * activity
2240 *
2241 * we don't want to hold vm_page_queue_free_lock when
2242 * calling vm_pageout_adjust_eq_iothrottle (since it
2243 * may cause other locks to be taken), we do the intitial
2244 * check outside of the lock. Once we take the lock,
2245 * we recheck the condition since it may have changed.
2246 * if it has, no problem, we will make the threads
2247 * non-throttled before actually blocking
2248 */
2249 vm_pageout_adjust_eq_iothrottle(eq, TRUE);
2250 }
2251 lck_mtx_lock(&vm_page_queue_free_lock);
2252
2253 if (vm_page_free_count >= vm_page_free_target &&
2254 (vm_page_free_wanted == 0) && (vm_page_free_wanted_privileged == 0)) {
2255 return VM_PAGEOUT_SCAN_DONE_RETURN;
2256 }
2257 lck_mtx_unlock(&vm_page_queue_free_lock);
2258
2259 if ((vm_page_free_count + vm_page_cleaned_count) < vm_page_free_target) {
2260 /*
2261 * we're most likely about to block due to one of
2262 * the 3 conditions that cause vm_pageout_scan to
2263 * not be able to make forward progress w/r
2264 * to providing new pages to the free queue,
2265 * so unthrottle the I/O threads in case we
2266 * have laundry to be cleaned... it needs
2267 * to be completed ASAP.
2268 *
2269 * even if we don't block, we want the io threads
2270 * running unthrottled since the sum of free +
2271 * clean pages is still under our free target
2272 */
2273 vm_pageout_adjust_eq_iothrottle(eq, FALSE);
2274 }
2275 if (vm_page_cleaned_count > 0 && exceeded_burst_throttle == FALSE) {
2276 /*
2277 * if we get here we're below our free target and
2278 * we're stalling due to a full laundry queue or
2279 * we don't have any inactive pages other then
2280 * those in the clean queue...
2281 * however, we have pages on the clean queue that
2282 * can be moved to the free queue, so let's not
2283 * stall the pageout scan
2284 */
2285 flow_control->state = FCS_IDLE;
2286 return VM_PAGEOUT_SCAN_PROCEED;
2287 }
2288 if (flow_control->state == FCS_DELAYED && !VM_PAGE_Q_THROTTLED(iq)) {
2289 flow_control->state = FCS_IDLE;
2290 return VM_PAGEOUT_SCAN_PROCEED;
2291 }
2292
2293 VM_CHECK_MEMORYSTATUS;
2294
2295 if (flow_control->state != FCS_IDLE) {
2296 VM_PAGEOUT_DEBUG(vm_pageout_scan_throttle, 1);
2297 }
2298
2299 iq->pgo_throttled = TRUE;
2300 assert_wait_timeout((event_t) &iq->pgo_laundry, THREAD_INTERRUPTIBLE, msecs, 1000 * NSEC_PER_USEC);
2301
2302 vm_page_unlock_queues();
2303
2304 assert(vm_pageout_scan_wants_object == VM_OBJECT_NULL);
2305
2306 VM_DEBUG_EVENT(vm_pageout_thread_block, VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_START,
2307 iq->pgo_laundry, iq->pgo_maxlaundry, msecs, 0);
2308 memoryshot(VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_START);
2309
2310 thread_block(THREAD_CONTINUE_NULL);
2311
2312 VM_DEBUG_EVENT(vm_pageout_thread_block, VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_END,
2313 iq->pgo_laundry, iq->pgo_maxlaundry, msecs, 0);
2314 memoryshot(VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_END);
2315
2316 vm_page_lock_queues();
2317
2318 iq->pgo_throttled = FALSE;
2319
2320 vps_init_page_targets();
2321
2322 return VM_PAGEOUT_SCAN_NEXT_ITERATION;
2323 }
2324
2325 /*
2326 * This function is called only from vm_pageout_scan and
2327 * it will find and return the most appropriate page to be
2328 * reclaimed.
2329 */
2330 static int
2331 vps_choose_victim_page(vm_page_t *victim_page, int *anons_grabbed, boolean_t *grab_anonymous, boolean_t force_anonymous,
2332 boolean_t *is_page_from_bg_q, unsigned int *reactivated_this_call)
2333 {
2334 vm_page_t m = NULL;
2335 vm_object_t m_object = VM_OBJECT_NULL;
2336 uint32_t inactive_external_count;
2337 struct vm_speculative_age_q *sq;
2338 struct vm_pageout_queue *iq;
2339 int retval = VM_PAGEOUT_SCAN_PROCEED;
2340
2341 sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q];
2342 iq = &vm_pageout_queue_internal;
2343
2344 *is_page_from_bg_q = FALSE;
2345
2346 m = NULL;
2347 m_object = VM_OBJECT_NULL;
2348
2349 if (VM_DYNAMIC_PAGING_ENABLED()) {
2350 assert(vm_page_throttled_count == 0);
2351 assert(vm_page_queue_empty(&vm_page_queue_throttled));
2352 }
2353
2354 /*
2355 * Try for a clean-queue inactive page.
2356 * These are pages that vm_pageout_scan tried to steal earlier, but
2357 * were dirty and had to be cleaned. Pick them up now that they are clean.
2358 */
2359 if (!vm_page_queue_empty(&vm_page_queue_cleaned)) {
2360 m = (vm_page_t) vm_page_queue_first(&vm_page_queue_cleaned);
2361
2362 assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q);
2363
2364 goto found_page;
2365 }
2366
2367 /*
2368 * The next most eligible pages are ones we paged in speculatively,
2369 * but which have not yet been touched and have been aged out.
2370 */
2371 if (!vm_page_queue_empty(&sq->age_q)) {
2372 m = (vm_page_t) vm_page_queue_first(&sq->age_q);
2373
2374 assert(m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q);
2375
2376 if (!m->vmp_dirty || force_anonymous == FALSE) {
2377 goto found_page;
2378 } else {
2379 m = NULL;
2380 }
2381 }
2382
2383 #if CONFIG_BACKGROUND_QUEUE
2384 if (vm_page_background_mode != VM_PAGE_BG_DISABLED && (vm_page_background_count > vm_page_background_target)) {
2385 vm_object_t bg_m_object = NULL;
2386
2387 m = (vm_page_t) vm_page_queue_first(&vm_page_queue_background);
2388
2389 bg_m_object = VM_PAGE_OBJECT(m);
2390
2391 if (!VM_PAGE_PAGEABLE(m)) {
2392 /*
2393 * This page is on the background queue
2394 * but not on a pageable queue. This is
2395 * likely a transient state and whoever
2396 * took it out of its pageable queue
2397 * will likely put it back on a pageable
2398 * queue soon but we can't deal with it
2399 * at this point, so let's ignore this
2400 * page.
2401 */
2402 } else if (force_anonymous == FALSE || bg_m_object->internal) {
2403 if (bg_m_object->internal &&
2404 (VM_PAGE_Q_THROTTLED(iq) ||
2405 vm_compressor_out_of_space() == TRUE ||
2406 vm_page_free_count < (vm_page_free_reserved / 4))) {
2407 vm_pageout_skipped_bq_internal++;
2408 } else {
2409 *is_page_from_bg_q = TRUE;
2410
2411 if (bg_m_object->internal) {
2412 vm_pageout_vminfo.vm_pageout_considered_bq_internal++;
2413 } else {
2414 vm_pageout_vminfo.vm_pageout_considered_bq_external++;
2415 }
2416 goto found_page;
2417 }
2418 }
2419 }
2420 #endif /* CONFIG_BACKGROUND_QUEUE */
2421
2422 inactive_external_count = vm_page_inactive_count - vm_page_anonymous_count;
2423
2424 if ((vm_page_pageable_external_count < vm_pageout_state.vm_page_filecache_min || force_anonymous == TRUE) ||
2425 (inactive_external_count < VM_PAGE_INACTIVE_TARGET(vm_page_pageable_external_count))) {
2426 *grab_anonymous = TRUE;
2427 *anons_grabbed = 0;
2428
2429 vm_pageout_vminfo.vm_pageout_skipped_external++;
2430 goto want_anonymous;
2431 }
2432 *grab_anonymous = (vm_page_anonymous_count > vm_page_anonymous_min);
2433
2434 #if CONFIG_JETSAM
2435 /* If the file-backed pool has accumulated
2436 * significantly more pages than the jetsam
2437 * threshold, prefer to reclaim those
2438 * inline to minimise compute overhead of reclaiming
2439 * anonymous pages.
2440 * This calculation does not account for the CPU local
2441 * external page queues, as those are expected to be
2442 * much smaller relative to the global pools.
2443 */
2444
2445 struct vm_pageout_queue *eq = &vm_pageout_queue_external;
2446
2447 if (*grab_anonymous == TRUE && !VM_PAGE_Q_THROTTLED(eq)) {
2448 if (vm_page_pageable_external_count >
2449 vm_pageout_state.vm_page_filecache_min) {
2450 if ((vm_page_pageable_external_count *
2451 vm_pageout_memorystatus_fb_factor_dr) >
2452 (memorystatus_available_pages_critical *
2453 vm_pageout_memorystatus_fb_factor_nr)) {
2454 *grab_anonymous = FALSE;
2455
2456 VM_PAGEOUT_DEBUG(vm_grab_anon_overrides, 1);
2457 }
2458 }
2459 if (*grab_anonymous) {
2460 VM_PAGEOUT_DEBUG(vm_grab_anon_nops, 1);
2461 }
2462 }
2463 #endif /* CONFIG_JETSAM */
2464
2465 want_anonymous:
2466 if (*grab_anonymous == FALSE || *anons_grabbed >= ANONS_GRABBED_LIMIT || vm_page_queue_empty(&vm_page_queue_anonymous)) {
2467 if (!vm_page_queue_empty(&vm_page_queue_inactive)) {
2468 m = (vm_page_t) vm_page_queue_first(&vm_page_queue_inactive);
2469
2470 assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_EXTERNAL_Q);
2471 *anons_grabbed = 0;
2472
2473 if (vm_page_pageable_external_count < vm_pageout_state.vm_page_filecache_min) {
2474 if (!vm_page_queue_empty(&vm_page_queue_anonymous)) {
2475 if ((++(*reactivated_this_call) % 100)) {
2476 vm_pageout_vminfo.vm_pageout_filecache_min_reactivated++;
2477
2478 vm_page_activate(m);
2479 counter_inc(&vm_statistics_reactivations);
2480 #if CONFIG_BACKGROUND_QUEUE
2481 #if DEVELOPMENT || DEBUG
2482 if (*is_page_from_bg_q == TRUE) {
2483 if (m_object->internal) {
2484 vm_pageout_rejected_bq_internal++;
2485 } else {
2486 vm_pageout_rejected_bq_external++;
2487 }
2488 }
2489 #endif /* DEVELOPMENT || DEBUG */
2490 #endif /* CONFIG_BACKGROUND_QUEUE */
2491 vm_pageout_state.vm_pageout_inactive_used++;
2492
2493 m = NULL;
2494 retval = VM_PAGEOUT_SCAN_NEXT_ITERATION;
2495
2496 goto found_page;
2497 }
2498
2499 /*
2500 * steal 1 of the file backed pages even if
2501 * we are under the limit that has been set
2502 * for a healthy filecache
2503 */
2504 }
2505 }
2506 goto found_page;
2507 }
2508 }
2509 if (!vm_page_queue_empty(&vm_page_queue_anonymous)) {
2510 m = (vm_page_t) vm_page_queue_first(&vm_page_queue_anonymous);
2511
2512 assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q);
2513 *anons_grabbed += 1;
2514
2515 goto found_page;
2516 }
2517
2518 m = NULL;
2519
2520 found_page:
2521 *victim_page = m;
2522
2523 return retval;
2524 }
2525
2526 /*
2527 * This function is called only from vm_pageout_scan and
2528 * it will put a page back on the active/inactive queue
2529 * if we can't reclaim it for some reason.
2530 */
2531 static void
2532 vps_requeue_page(vm_page_t m, int page_prev_q_state, __unused boolean_t page_from_bg_q)
2533 {
2534 if (page_prev_q_state == VM_PAGE_ON_SPECULATIVE_Q) {
2535 vm_page_enqueue_inactive(m, FALSE);
2536 } else {
2537 vm_page_activate(m);
2538 }
2539
2540 #if CONFIG_BACKGROUND_QUEUE
2541 #if DEVELOPMENT || DEBUG
2542 vm_object_t m_object = VM_PAGE_OBJECT(m);
2543
2544 if (page_from_bg_q == TRUE) {
2545 if (m_object->internal) {
2546 vm_pageout_rejected_bq_internal++;
2547 } else {
2548 vm_pageout_rejected_bq_external++;
2549 }
2550 }
2551 #endif /* DEVELOPMENT || DEBUG */
2552 #endif /* CONFIG_BACKGROUND_QUEUE */
2553 }
2554
2555 /*
2556 * This function is called only from vm_pageout_scan and
2557 * it will try to grab the victim page's VM object (m_object)
2558 * which differs from the previous victim page's object (object).
2559 */
2560 static int
2561 vps_switch_object(vm_page_t m, vm_object_t m_object, vm_object_t *object, int page_prev_q_state, boolean_t avoid_anon_pages, boolean_t page_from_bg_q)
2562 {
2563 struct vm_speculative_age_q *sq;
2564
2565 sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q];
2566
2567 /*
2568 * the object associated with candidate page is
2569 * different from the one we were just working
2570 * with... dump the lock if we still own it
2571 */
2572 if (*object != NULL) {
2573 vm_object_unlock(*object);
2574 *object = NULL;
2575 }
2576 /*
2577 * Try to lock object; since we've alread got the
2578 * page queues lock, we can only 'try' for this one.
2579 * if the 'try' fails, we need to do a mutex_pause
2580 * to allow the owner of the object lock a chance to
2581 * run... otherwise, we're likely to trip over this
2582 * object in the same state as we work our way through
2583 * the queue... clumps of pages associated with the same
2584 * object are fairly typical on the inactive and active queues
2585 */
2586 if (!vm_object_lock_try_scan(m_object)) {
2587 vm_page_t m_want = NULL;
2588
2589 vm_pageout_vminfo.vm_pageout_inactive_nolock++;
2590
2591 if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) {
2592 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_nolock, 1);
2593 }
2594
2595 pmap_clear_reference(VM_PAGE_GET_PHYS_PAGE(m));
2596
2597 m->vmp_reference = FALSE;
2598
2599 if (!m_object->object_is_shared_cache) {
2600 /*
2601 * don't apply this optimization if this is the shared cache
2602 * object, it's too easy to get rid of very hot and important
2603 * pages...
2604 * m->vmp_object must be stable since we hold the page queues lock...
2605 * we can update the scan_collisions field sans the object lock
2606 * since it is a separate field and this is the only spot that does
2607 * a read-modify-write operation and it is never executed concurrently...
2608 * we can asynchronously set this field to 0 when creating a UPL, so it
2609 * is possible for the value to be a bit non-determistic, but that's ok
2610 * since it's only used as a hint
2611 */
2612 m_object->scan_collisions = 1;
2613 }
2614 if (!vm_page_queue_empty(&vm_page_queue_cleaned)) {
2615 m_want = (vm_page_t) vm_page_queue_first(&vm_page_queue_cleaned);
2616 } else if (!vm_page_queue_empty(&sq->age_q)) {
2617 m_want = (vm_page_t) vm_page_queue_first(&sq->age_q);
2618 } else if ((avoid_anon_pages || vm_page_queue_empty(&vm_page_queue_anonymous)) &&
2619 !vm_page_queue_empty(&vm_page_queue_inactive)) {
2620 m_want = (vm_page_t) vm_page_queue_first(&vm_page_queue_inactive);
2621 } else if (!vm_page_queue_empty(&vm_page_queue_anonymous)) {
2622 m_want = (vm_page_t) vm_page_queue_first(&vm_page_queue_anonymous);
2623 }
2624
2625 /*
2626 * this is the next object we're going to be interested in
2627 * try to make sure its available after the mutex_pause
2628 * returns control
2629 */
2630 if (m_want) {
2631 vm_pageout_scan_wants_object = VM_PAGE_OBJECT(m_want);
2632 }
2633
2634 vps_requeue_page(m, page_prev_q_state, page_from_bg_q);
2635
2636 return VM_PAGEOUT_SCAN_NEXT_ITERATION;
2637 } else {
2638 *object = m_object;
2639 vm_pageout_scan_wants_object = VM_OBJECT_NULL;
2640 }
2641
2642 return VM_PAGEOUT_SCAN_PROCEED;
2643 }
2644
2645 /*
2646 * This function is called only from vm_pageout_scan and
2647 * it notices that pageout scan may be rendered ineffective
2648 * due to a FS deadlock and will jetsam a process if possible.
2649 * If jetsam isn't supported, it'll move the page to the active
2650 * queue to try and get some different pages pushed onwards so
2651 * we can try to get out of this scenario.
2652 */
2653 static void
2654 vps_deal_with_throttled_queues(vm_page_t m, vm_object_t *object, uint32_t *vm_pageout_inactive_external_forced_reactivate_limit,
2655 int *delayed_unlock, boolean_t *force_anonymous, __unused boolean_t is_page_from_bg_q)
2656 {
2657 struct vm_pageout_queue *eq;
2658 vm_object_t cur_object = VM_OBJECT_NULL;
2659
2660 cur_object = *object;
2661
2662 eq = &vm_pageout_queue_external;
2663
2664 if (cur_object->internal == FALSE) {
2665 /*
2666 * we need to break up the following potential deadlock case...
2667 * a) The external pageout thread is stuck on the truncate lock for a file that is being extended i.e. written.
2668 * b) The thread doing the writing is waiting for pages while holding the truncate lock
2669 * c) Most of the pages in the inactive queue belong to this file.
2670 *
2671 * we are potentially in this deadlock because...
2672 * a) the external pageout queue is throttled
2673 * b) we're done with the active queue and moved on to the inactive queue
2674 * c) we've got a dirty external page
2675 *
2676 * since we don't know the reason for the external pageout queue being throttled we
2677 * must suspect that we are deadlocked, so move the current page onto the active queue
2678 * in an effort to cause a page from the active queue to 'age' to the inactive queue
2679 *
2680 * if we don't have jetsam configured (i.e. we have a dynamic pager), set
2681 * 'force_anonymous' to TRUE to cause us to grab a page from the cleaned/anonymous
2682 * pool the next time we select a victim page... if we can make enough new free pages,
2683 * the deadlock will break, the external pageout queue will empty and it will no longer
2684 * be throttled
2685 *
2686 * if we have jetsam configured, keep a count of the pages reactivated this way so
2687 * that we can try to find clean pages in the active/inactive queues before
2688 * deciding to jetsam a process
2689 */
2690 vm_pageout_vminfo.vm_pageout_scan_inactive_throttled_external++;
2691
2692 vm_page_check_pageable_safe(m);
2693 assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q);
2694 vm_page_queue_enter(&vm_page_queue_active, m, vmp_pageq);
2695 m->vmp_q_state = VM_PAGE_ON_ACTIVE_Q;
2696 vm_page_active_count++;
2697 vm_page_pageable_external_count++;
2698
2699 vm_pageout_adjust_eq_iothrottle(eq, FALSE);
2700
2701 #if CONFIG_MEMORYSTATUS && CONFIG_JETSAM
2702
2703 #pragma unused(force_anonymous)
2704
2705 *vm_pageout_inactive_external_forced_reactivate_limit -= 1;
2706
2707 if (*vm_pageout_inactive_external_forced_reactivate_limit <= 0) {
2708 *vm_pageout_inactive_external_forced_reactivate_limit = vm_page_active_count + vm_page_inactive_count;
2709 /*
2710 * Possible deadlock scenario so request jetsam action
2711 */
2712
2713 assert(cur_object);
2714 vm_object_unlock(cur_object);
2715
2716 cur_object = VM_OBJECT_NULL;
2717
2718 /*
2719 * VM pageout scan needs to know we have dropped this lock and so set the
2720 * object variable we got passed in to NULL.
2721 */
2722 *object = VM_OBJECT_NULL;
2723
2724 vm_page_unlock_queues();
2725
2726 VM_DEBUG_CONSTANT_EVENT(vm_pageout_jetsam, VM_PAGEOUT_JETSAM, DBG_FUNC_START,
2727 vm_page_active_count, vm_page_inactive_count, vm_page_free_count, vm_page_free_count);
2728
2729 /* Kill first suitable process. If this call returned FALSE, we might have simply purged a process instead. */
2730 if (memorystatus_kill_on_VM_page_shortage(FALSE) == TRUE) {
2731 VM_PAGEOUT_DEBUG(vm_pageout_inactive_external_forced_jetsam_count, 1);
2732 }
2733
2734 VM_DEBUG_CONSTANT_EVENT(vm_pageout_jetsam, VM_PAGEOUT_JETSAM, DBG_FUNC_END,
2735 vm_page_active_count, vm_page_inactive_count, vm_page_free_count, vm_page_free_count);
2736
2737 vm_page_lock_queues();
2738 *delayed_unlock = 1;
2739 }
2740 #else /* CONFIG_MEMORYSTATUS && CONFIG_JETSAM */
2741
2742 #pragma unused(vm_pageout_inactive_external_forced_reactivate_limit)
2743 #pragma unused(delayed_unlock)
2744
2745 *force_anonymous = TRUE;
2746 #endif /* CONFIG_MEMORYSTATUS && CONFIG_JETSAM */
2747 } else {
2748 vm_page_activate(m);
2749 counter_inc(&vm_statistics_reactivations);
2750
2751 #if CONFIG_BACKGROUND_QUEUE
2752 #if DEVELOPMENT || DEBUG
2753 if (is_page_from_bg_q == TRUE) {
2754 if (cur_object->internal) {
2755 vm_pageout_rejected_bq_internal++;
2756 } else {
2757 vm_pageout_rejected_bq_external++;
2758 }
2759 }
2760 #endif /* DEVELOPMENT || DEBUG */
2761 #endif /* CONFIG_BACKGROUND_QUEUE */
2762
2763 vm_pageout_state.vm_pageout_inactive_used++;
2764 }
2765 }
2766
2767
2768 void
2769 vm_page_balance_inactive(int max_to_move)
2770 {
2771 vm_page_t m;
2772
2773 LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
2774
2775 if (hibernation_vmqueues_inspection || hibernate_cleaning_in_progress) {
2776 /*
2777 * It is likely that the hibernation code path is
2778 * dealing with these very queues as we are about
2779 * to move pages around in/from them and completely
2780 * change the linkage of the pages.
2781 *
2782 * And so we skip the rebalancing of these queues.
2783 */
2784 return;
2785 }
2786 vm_page_inactive_target = VM_PAGE_INACTIVE_TARGET(vm_page_active_count +
2787 vm_page_inactive_count +
2788 vm_page_speculative_count);
2789
2790 while (max_to_move-- && (vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_target) {
2791 VM_PAGEOUT_DEBUG(vm_pageout_balanced, 1);
2792
2793 m = (vm_page_t) vm_page_queue_first(&vm_page_queue_active);
2794
2795 assert(m->vmp_q_state == VM_PAGE_ON_ACTIVE_Q);
2796 assert(!m->vmp_laundry);
2797 assert(VM_PAGE_OBJECT(m) != kernel_object);
2798 assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr);
2799
2800 DTRACE_VM2(scan, int, 1, (uint64_t *), NULL);
2801
2802 /*
2803 * by not passing in a pmap_flush_context we will forgo any TLB flushing, local or otherwise...
2804 *
2805 * a TLB flush isn't really needed here since at worst we'll miss the reference bit being
2806 * updated in the PTE if a remote processor still has this mapping cached in its TLB when the
2807 * new reference happens. If no futher references happen on the page after that remote TLB flushes
2808 * we'll see a clean, non-referenced page when it eventually gets pulled out of the inactive queue
2809 * by pageout_scan, which is just fine since the last reference would have happened quite far
2810 * in the past (TLB caches don't hang around for very long), and of course could just as easily
2811 * have happened before we moved the page
2812 */
2813 if (m->vmp_pmapped == TRUE) {
2814 pmap_clear_refmod_options(VM_PAGE_GET_PHYS_PAGE(m), VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void *)NULL);
2815 }
2816
2817 /*
2818 * The page might be absent or busy,
2819 * but vm_page_deactivate can handle that.
2820 * FALSE indicates that we don't want a H/W clear reference
2821 */
2822 vm_page_deactivate_internal(m, FALSE);
2823 }
2824 }
2825
2826
2827 /*
2828 * vm_pageout_scan does the dirty work for the pageout daemon.
2829 * It returns with both vm_page_queue_free_lock and vm_page_queue_lock
2830 * held and vm_page_free_wanted == 0.
2831 */
2832 void
2833 vm_pageout_scan(void)
2834 {
2835 unsigned int loop_count = 0;
2836 unsigned int inactive_burst_count = 0;
2837 unsigned int reactivated_this_call;
2838 unsigned int reactivate_limit;
2839 vm_page_t local_freeq = NULL;
2840 int local_freed = 0;
2841 int delayed_unlock;
2842 int delayed_unlock_limit = 0;
2843 int refmod_state = 0;
2844 int vm_pageout_deadlock_target = 0;
2845 struct vm_pageout_queue *iq;
2846 struct vm_pageout_queue *eq;
2847 struct vm_speculative_age_q *sq;
2848 struct flow_control flow_control = { .state = 0, .ts = { .tv_sec = 0, .tv_nsec = 0 } };
2849 boolean_t inactive_throttled = FALSE;
2850 vm_object_t object = NULL;
2851 uint32_t inactive_reclaim_run;
2852 boolean_t grab_anonymous = FALSE;
2853 boolean_t force_anonymous = FALSE;
2854 boolean_t force_speculative_aging = FALSE;
2855 int anons_grabbed = 0;
2856 int page_prev_q_state = 0;
2857 boolean_t page_from_bg_q = FALSE;
2858 uint32_t vm_pageout_inactive_external_forced_reactivate_limit = 0;
2859 vm_object_t m_object = VM_OBJECT_NULL;
2860 int retval = 0;
2861 boolean_t lock_yield_check = FALSE;
2862
2863
2864 VM_DEBUG_CONSTANT_EVENT(vm_pageout_scan, VM_PAGEOUT_SCAN, DBG_FUNC_START,
2865 vm_pageout_vminfo.vm_pageout_freed_speculative,
2866 vm_pageout_state.vm_pageout_inactive_clean,
2867 vm_pageout_vminfo.vm_pageout_inactive_dirty_internal,
2868 vm_pageout_vminfo.vm_pageout_inactive_dirty_external);
2869
2870 flow_control.state = FCS_IDLE;
2871 iq = &vm_pageout_queue_internal;
2872 eq = &vm_pageout_queue_external;
2873 sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q];
2874
2875 /* Ask the pmap layer to return any pages it no longer needs. */
2876 uint64_t pmap_wired_pages_freed = pmap_release_pages_fast();
2877
2878 vm_page_lock_queues();
2879
2880 vm_page_wire_count -= pmap_wired_pages_freed;
2881
2882 delayed_unlock = 1;
2883
2884 /*
2885 * Calculate the max number of referenced pages on the inactive
2886 * queue that we will reactivate.
2887 */
2888 reactivated_this_call = 0;
2889 reactivate_limit = VM_PAGE_REACTIVATE_LIMIT(vm_page_active_count +
2890 vm_page_inactive_count);
2891 inactive_reclaim_run = 0;
2892
2893 vm_pageout_inactive_external_forced_reactivate_limit = vm_page_active_count + vm_page_inactive_count;
2894
2895 /*
2896 * We must limit the rate at which we send pages to the pagers
2897 * so that we don't tie up too many pages in the I/O queues.
2898 * We implement a throttling mechanism using the laundry count
2899 * to limit the number of pages outstanding to the default
2900 * and external pagers. We can bypass the throttles and look
2901 * for clean pages if the pageout queues don't drain in a timely
2902 * fashion since this may indicate that the pageout paths are
2903 * stalled waiting for memory, which only we can provide.
2904 */
2905
2906 vps_init_page_targets();
2907 assert(object == NULL);
2908 assert(delayed_unlock != 0);
2909
2910 for (;;) {
2911 vm_page_t m;
2912
2913 DTRACE_VM2(rev, int, 1, (uint64_t *), NULL);
2914
2915 if (lock_yield_check) {
2916 lock_yield_check = FALSE;
2917
2918 if (delayed_unlock++ > delayed_unlock_limit) {
2919 int freed = local_freed;
2920
2921 vm_pageout_prepare_to_block(&object, &delayed_unlock, &local_freeq, &local_freed,
2922 VM_PAGEOUT_PB_CONSIDER_WAKING_COMPACTOR_SWAPPER);
2923 if (freed == 0) {
2924 lck_mtx_yield(&vm_page_queue_lock);
2925 }
2926 } else if (vm_pageout_scan_wants_object) {
2927 vm_page_unlock_queues();
2928 mutex_pause(0);
2929 vm_page_lock_queues();
2930 }
2931 }
2932
2933 if (vm_upl_wait_for_pages < 0) {
2934 vm_upl_wait_for_pages = 0;
2935 }
2936
2937 delayed_unlock_limit = VM_PAGEOUT_DELAYED_UNLOCK_LIMIT + vm_upl_wait_for_pages;
2938
2939 if (delayed_unlock_limit > VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX) {
2940 delayed_unlock_limit = VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX;
2941 }
2942
2943 vps_deal_with_secluded_page_overflow(&local_freeq, &local_freed);
2944
2945 assert(delayed_unlock);
2946
2947 /*
2948 * maintain our balance
2949 */
2950 vm_page_balance_inactive(1);
2951
2952
2953 /**********************************************************************
2954 * above this point we're playing with the active and secluded queues
2955 * below this point we're playing with the throttling mechanisms
2956 * and the inactive queue
2957 **********************************************************************/
2958
2959 if (vm_page_free_count + local_freed >= vm_page_free_target) {
2960 vm_pageout_scan_wants_object = VM_OBJECT_NULL;
2961
2962 vm_pageout_prepare_to_block(&object, &delayed_unlock, &local_freeq, &local_freed,
2963 VM_PAGEOUT_PB_CONSIDER_WAKING_COMPACTOR_SWAPPER);
2964 /*
2965 * make sure the pageout I/O threads are running
2966 * throttled in case there are still requests
2967 * in the laundry... since we have met our targets
2968 * we don't need the laundry to be cleaned in a timely
2969 * fashion... so let's avoid interfering with foreground
2970 * activity
2971 */
2972 vm_pageout_adjust_eq_iothrottle(eq, TRUE);
2973
2974 lck_mtx_lock(&vm_page_queue_free_lock);
2975
2976 if ((vm_page_free_count >= vm_page_free_target) &&
2977 (vm_page_free_wanted == 0) && (vm_page_free_wanted_privileged == 0)) {
2978 /*
2979 * done - we have met our target *and*
2980 * there is no one waiting for a page.
2981 */
2982 return_from_scan:
2983 assert(vm_pageout_scan_wants_object == VM_OBJECT_NULL);
2984
2985 VM_DEBUG_CONSTANT_EVENT(vm_pageout_scan, VM_PAGEOUT_SCAN, DBG_FUNC_NONE,
2986 vm_pageout_state.vm_pageout_inactive,
2987 vm_pageout_state.vm_pageout_inactive_used, 0, 0);
2988 VM_DEBUG_CONSTANT_EVENT(vm_pageout_scan, VM_PAGEOUT_SCAN, DBG_FUNC_END,
2989 vm_pageout_vminfo.vm_pageout_freed_speculative,
2990 vm_pageout_state.vm_pageout_inactive_clean,
2991 vm_pageout_vminfo.vm_pageout_inactive_dirty_internal,
2992 vm_pageout_vminfo.vm_pageout_inactive_dirty_external);
2993
2994 return;
2995 }
2996 lck_mtx_unlock(&vm_page_queue_free_lock);
2997 }
2998
2999 /*
3000 * Before anything, we check if we have any ripe volatile
3001 * objects around. If so, try to purge the first object.
3002 * If the purge fails, fall through to reclaim a page instead.
3003 * If the purge succeeds, go back to the top and reevalute
3004 * the new memory situation.
3005 */
3006 retval = vps_purge_object();
3007
3008 if (retval == VM_PAGEOUT_SCAN_NEXT_ITERATION) {
3009 /*
3010 * Success
3011 */
3012 if (object != NULL) {
3013 vm_object_unlock(object);
3014 object = NULL;
3015 }
3016
3017 lock_yield_check = FALSE;
3018 continue;
3019 }
3020
3021 /*
3022 * If our 'aged' queue is empty and we have some speculative pages
3023 * in the other queues, let's go through and see if we need to age
3024 * them.
3025 *
3026 * If we succeeded in aging a speculative Q or just that everything
3027 * looks normal w.r.t queue age and queue counts, we keep going onward.
3028 *
3029 * If, for some reason, we seem to have a mismatch between the spec.
3030 * page count and the page queues, we reset those variables and
3031 * restart the loop (LD TODO: Track this better?).
3032 */
3033 if (vm_page_queue_empty(&sq->age_q) && vm_page_speculative_count) {
3034 retval = vps_age_speculative_queue(force_speculative_aging);
3035
3036 if (retval == VM_PAGEOUT_SCAN_NEXT_ITERATION) {
3037 lock_yield_check = FALSE;
3038 continue;
3039 }
3040 }
3041 force_speculative_aging = FALSE;
3042
3043 /*
3044 * Check to see if we need to evict objects from the cache.
3045 *
3046 * Note: 'object' here doesn't have anything to do with
3047 * the eviction part. We just need to make sure we have dropped
3048 * any object lock we might be holding if we need to go down
3049 * into the eviction logic.
3050 */
3051 retval = vps_object_cache_evict(&object);
3052
3053 if (retval == VM_PAGEOUT_SCAN_NEXT_ITERATION) {
3054 lock_yield_check = FALSE;
3055 continue;
3056 }
3057
3058
3059 /*
3060 * Calculate our filecache_min that will affect the loop
3061 * going forward.
3062 */
3063 vps_calculate_filecache_min();
3064
3065 /*
3066 * LD TODO: Use a structure to hold all state variables for a single
3067 * vm_pageout_scan iteration and pass that structure to this function instead.
3068 */
3069 retval = vps_flow_control(&flow_control, &anons_grabbed, &object,
3070 &delayed_unlock, &local_freeq, &local_freed,
3071 &vm_pageout_deadlock_target, inactive_burst_count);
3072
3073 if (retval == VM_PAGEOUT_SCAN_NEXT_ITERATION) {
3074 if (loop_count >= vm_page_inactive_count) {
3075 loop_count = 0;
3076 }
3077
3078 inactive_burst_count = 0;
3079
3080 assert(object == NULL);
3081 assert(delayed_unlock != 0);
3082
3083 lock_yield_check = FALSE;
3084 continue;
3085 } else if (retval == VM_PAGEOUT_SCAN_DONE_RETURN) {
3086 goto return_from_scan;
3087 }
3088
3089 flow_control.state = FCS_IDLE;
3090
3091 vm_pageout_inactive_external_forced_reactivate_limit = MIN((vm_page_active_count + vm_page_inactive_count),
3092 vm_pageout_inactive_external_forced_reactivate_limit);
3093 loop_count++;
3094 inactive_burst_count++;
3095 vm_pageout_state.vm_pageout_inactive++;
3096
3097 /*
3098 * Choose a victim.
3099 */
3100
3101 m = NULL;
3102 retval = vps_choose_victim_page(&m, &anons_grabbed, &grab_anonymous, force_anonymous, &page_from_bg_q, &reactivated_this_call);
3103
3104 if (m == NULL) {
3105 if (retval == VM_PAGEOUT_SCAN_NEXT_ITERATION) {
3106 inactive_burst_count = 0;
3107
3108 if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) {
3109 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated, 1);
3110 }
3111
3112 lock_yield_check = TRUE;
3113 continue;
3114 }
3115
3116 /*
3117 * if we've gotten here, we have no victim page.
3118 * check to see if we've not finished balancing the queues
3119 * or we have a page on the aged speculative queue that we
3120 * skipped due to force_anonymous == TRUE.. or we have
3121 * speculative pages that we can prematurely age... if
3122 * one of these cases we'll keep going, else panic
3123 */
3124 force_anonymous = FALSE;
3125 VM_PAGEOUT_DEBUG(vm_pageout_no_victim, 1);
3126
3127 if (!vm_page_queue_empty(&sq->age_q)) {
3128 lock_yield_check = TRUE;
3129 continue;
3130 }
3131
3132 if (vm_page_speculative_count) {
3133 force_speculative_aging = TRUE;
3134 lock_yield_check = TRUE;
3135 continue;
3136 }
3137 panic("vm_pageout: no victim");
3138
3139 /* NOTREACHED */
3140 }
3141
3142 assert(VM_PAGE_PAGEABLE(m));
3143 m_object = VM_PAGE_OBJECT(m);
3144 force_anonymous = FALSE;
3145
3146 page_prev_q_state = m->vmp_q_state;
3147 /*
3148 * we just found this page on one of our queues...
3149 * it can't also be on the pageout queue, so safe
3150 * to call vm_page_queues_remove
3151 */
3152 vm_page_queues_remove(m, TRUE);
3153
3154 assert(!m->vmp_laundry);
3155 assert(!m->vmp_private);
3156 assert(!m->vmp_fictitious);
3157 assert(m_object != kernel_object);
3158 assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr);
3159
3160 vm_pageout_vminfo.vm_pageout_considered_page++;
3161
3162 DTRACE_VM2(scan, int, 1, (uint64_t *), NULL);
3163
3164 /*
3165 * check to see if we currently are working
3166 * with the same object... if so, we've
3167 * already got the lock
3168 */
3169 if (m_object != object) {
3170 boolean_t avoid_anon_pages = (grab_anonymous == FALSE || anons_grabbed >= ANONS_GRABBED_LIMIT);
3171
3172 /*
3173 * vps_switch_object() will always drop the 'object' lock first
3174 * and then try to acquire the 'm_object' lock. So 'object' has to point to
3175 * either 'm_object' or NULL.
3176 */
3177 retval = vps_switch_object(m, m_object, &object, page_prev_q_state, avoid_anon_pages, page_from_bg_q);
3178
3179 if (retval == VM_PAGEOUT_SCAN_NEXT_ITERATION) {
3180 lock_yield_check = TRUE;
3181 continue;
3182 }
3183 }
3184 assert(m_object == object);
3185 assert(VM_PAGE_OBJECT(m) == m_object);
3186
3187 if (m->vmp_busy) {
3188 /*
3189 * Somebody is already playing with this page.
3190 * Put it back on the appropriate queue
3191 *
3192 */
3193 VM_PAGEOUT_DEBUG(vm_pageout_inactive_busy, 1);
3194
3195 if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) {
3196 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_busy, 1);
3197 }
3198
3199 vps_requeue_page(m, page_prev_q_state, page_from_bg_q);
3200
3201 lock_yield_check = TRUE;
3202 continue;
3203 }
3204
3205 /*
3206 * if (m->vmp_cleaning && !m->vmp_free_when_done)
3207 * If already cleaning this page in place
3208 * just leave if off the paging queues.
3209 * We can leave the page mapped, and upl_commit_range
3210 * will put it on the clean queue.
3211 *
3212 * if (m->vmp_free_when_done && !m->vmp_cleaning)
3213 * an msync INVALIDATE is in progress...
3214 * this page has been marked for destruction
3215 * after it has been cleaned,
3216 * but not yet gathered into a UPL
3217 * where 'cleaning' will be set...
3218 * just leave it off the paging queues
3219 *
3220 * if (m->vmp_free_when_done && m->vmp_clenaing)
3221 * an msync INVALIDATE is in progress
3222 * and the UPL has already gathered this page...
3223 * just leave it off the paging queues
3224 */
3225 if (m->vmp_free_when_done || m->vmp_cleaning) {
3226 lock_yield_check = TRUE;
3227 continue;
3228 }
3229
3230
3231 /*
3232 * If it's absent, in error or the object is no longer alive,
3233 * we can reclaim the page... in the no longer alive case,
3234 * there are 2 states the page can be in that preclude us
3235 * from reclaiming it - busy or cleaning - that we've already
3236 * dealt with
3237 */
3238 if (m->vmp_absent || m->vmp_error || !object->alive) {
3239 if (m->vmp_absent) {
3240 VM_PAGEOUT_DEBUG(vm_pageout_inactive_absent, 1);
3241 } else if (!object->alive) {
3242 VM_PAGEOUT_DEBUG(vm_pageout_inactive_notalive, 1);
3243 } else {
3244 VM_PAGEOUT_DEBUG(vm_pageout_inactive_error, 1);
3245 }
3246 reclaim_page:
3247 if (vm_pageout_deadlock_target) {
3248 VM_PAGEOUT_DEBUG(vm_pageout_scan_inactive_throttle_success, 1);
3249 vm_pageout_deadlock_target--;
3250 }
3251
3252 DTRACE_VM2(dfree, int, 1, (uint64_t *), NULL);
3253
3254 if (object->internal) {
3255 DTRACE_VM2(anonfree, int, 1, (uint64_t *), NULL);
3256 } else {
3257 DTRACE_VM2(fsfree, int, 1, (uint64_t *), NULL);
3258 }
3259 assert(!m->vmp_cleaning);
3260 assert(!m->vmp_laundry);
3261
3262 if (!object->internal &&
3263 object->pager != NULL &&
3264 object->pager->mo_pager_ops == &shared_region_pager_ops) {
3265 shared_region_pager_reclaimed++;
3266 }
3267
3268 m->vmp_busy = TRUE;
3269
3270 /*
3271 * remove page from object here since we're already
3272 * behind the object lock... defer the rest of the work
3273 * we'd normally do in vm_page_free_prepare_object
3274 * until 'vm_page_free_list' is called
3275 */
3276 if (m->vmp_tabled) {
3277 vm_page_remove(m, TRUE);
3278 }
3279
3280 assert(m->vmp_pageq.next == 0 && m->vmp_pageq.prev == 0);
3281 m->vmp_snext = local_freeq;
3282 local_freeq = m;
3283 local_freed++;
3284
3285 if (page_prev_q_state == VM_PAGE_ON_SPECULATIVE_Q) {
3286 vm_pageout_vminfo.vm_pageout_freed_speculative++;
3287 } else if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) {
3288 vm_pageout_vminfo.vm_pageout_freed_cleaned++;
3289 } else if (page_prev_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q) {
3290 vm_pageout_vminfo.vm_pageout_freed_internal++;
3291 } else {
3292 vm_pageout_vminfo.vm_pageout_freed_external++;
3293 }
3294
3295 inactive_burst_count = 0;
3296
3297 lock_yield_check = TRUE;
3298 continue;
3299 }
3300 if (object->copy == VM_OBJECT_NULL) {
3301 /*
3302 * No one else can have any interest in this page.
3303 * If this is an empty purgable object, the page can be
3304 * reclaimed even if dirty.
3305 * If the page belongs to a volatile purgable object, we
3306 * reactivate it if the compressor isn't active.
3307 */
3308 if (object->purgable == VM_PURGABLE_EMPTY) {
3309 if (m->vmp_pmapped == TRUE) {
3310 /* unmap the page */
3311 refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
3312 if (refmod_state & VM_MEM_MODIFIED) {
3313 SET_PAGE_DIRTY(m, FALSE);
3314 }
3315 }
3316 if (m->vmp_dirty || m->vmp_precious) {
3317 /* we saved the cost of cleaning this page ! */
3318 vm_page_purged_count++;
3319 }
3320 goto reclaim_page;
3321 }
3322
3323 if (VM_CONFIG_COMPRESSOR_IS_ACTIVE) {
3324 /*
3325 * With the VM compressor, the cost of
3326 * reclaiming a page is much lower (no I/O),
3327 * so if we find a "volatile" page, it's better
3328 * to let it get compressed rather than letting
3329 * it occupy a full page until it gets purged.
3330 * So no need to check for "volatile" here.
3331 */
3332 } else if (object->purgable == VM_PURGABLE_VOLATILE) {
3333 /*
3334 * Avoid cleaning a "volatile" page which might
3335 * be purged soon.
3336 */
3337
3338 /* if it's wired, we can't put it on our queue */
3339 assert(!VM_PAGE_WIRED(m));
3340
3341 /* just stick it back on! */
3342 reactivated_this_call++;
3343
3344 if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) {
3345 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_volatile_reactivated, 1);
3346 }
3347
3348 goto reactivate_page;
3349 }
3350 }
3351 /*
3352 * If it's being used, reactivate.
3353 * (Fictitious pages are either busy or absent.)
3354 * First, update the reference and dirty bits
3355 * to make sure the page is unreferenced.
3356 */
3357 refmod_state = -1;
3358
3359 if (m->vmp_reference == FALSE && m->vmp_pmapped == TRUE) {
3360 refmod_state = pmap_get_refmod(VM_PAGE_GET_PHYS_PAGE(m));
3361
3362 if (refmod_state & VM_MEM_REFERENCED) {
3363 m->vmp_reference = TRUE;
3364 }
3365 if (refmod_state & VM_MEM_MODIFIED) {
3366 SET_PAGE_DIRTY(m, FALSE);
3367 }
3368 }
3369
3370 if (m->vmp_reference || m->vmp_dirty) {
3371 /* deal with a rogue "reusable" page */
3372 VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m, m_object);
3373 }
3374
3375 if (vm_pageout_state.vm_page_xpmapped_min_divisor == 0) {
3376 vm_pageout_state.vm_page_xpmapped_min = 0;
3377 } else {
3378 vm_pageout_state.vm_page_xpmapped_min = (vm_page_external_count * 10) / vm_pageout_state.vm_page_xpmapped_min_divisor;
3379 }
3380
3381 if (!m->vmp_no_cache &&
3382 page_from_bg_q == FALSE &&
3383 (m->vmp_reference || (m->vmp_xpmapped && !object->internal &&
3384 (vm_page_xpmapped_external_count < vm_pageout_state.vm_page_xpmapped_min)))) {
3385 /*
3386 * The page we pulled off the inactive list has
3387 * been referenced. It is possible for other
3388 * processors to be touching pages faster than we
3389 * can clear the referenced bit and traverse the
3390 * inactive queue, so we limit the number of
3391 * reactivations.
3392 */
3393 if (++reactivated_this_call >= reactivate_limit) {
3394 vm_pageout_vminfo.vm_pageout_reactivation_limit_exceeded++;
3395 } else if (++inactive_reclaim_run >= VM_PAGEOUT_INACTIVE_FORCE_RECLAIM) {
3396 vm_pageout_vminfo.vm_pageout_inactive_force_reclaim++;
3397 } else {
3398 uint32_t isinuse;
3399
3400 if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) {
3401 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reference_reactivated, 1);
3402 }
3403
3404 vm_pageout_vminfo.vm_pageout_inactive_referenced++;
3405 reactivate_page:
3406 if (!object->internal && object->pager != MEMORY_OBJECT_NULL &&
3407 vnode_pager_get_isinuse(object->pager, &isinuse) == KERN_SUCCESS && !isinuse) {
3408 /*
3409 * no explict mappings of this object exist
3410 * and it's not open via the filesystem
3411 */
3412 vm_page_deactivate(m);
3413 VM_PAGEOUT_DEBUG(vm_pageout_inactive_deactivated, 1);
3414 } else {
3415 /*
3416 * The page was/is being used, so put back on active list.
3417 */
3418 vm_page_activate(m);
3419 counter_inc(&vm_statistics_reactivations);
3420 inactive_burst_count = 0;
3421 }
3422 #if CONFIG_BACKGROUND_QUEUE
3423 #if DEVELOPMENT || DEBUG
3424 if (page_from_bg_q == TRUE) {
3425 if (m_object->internal) {
3426 vm_pageout_rejected_bq_internal++;
3427 } else {
3428 vm_pageout_rejected_bq_external++;
3429 }
3430 }
3431 #endif /* DEVELOPMENT || DEBUG */
3432 #endif /* CONFIG_BACKGROUND_QUEUE */
3433
3434 if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) {
3435 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated, 1);
3436 }
3437 vm_pageout_state.vm_pageout_inactive_used++;
3438
3439 lock_yield_check = TRUE;
3440 continue;
3441 }
3442 /*
3443 * Make sure we call pmap_get_refmod() if it
3444 * wasn't already called just above, to update
3445 * the dirty bit.
3446 */
3447 if ((refmod_state == -1) && !m->vmp_dirty && m->vmp_pmapped) {
3448 refmod_state = pmap_get_refmod(VM_PAGE_GET_PHYS_PAGE(m));
3449 if (refmod_state & VM_MEM_MODIFIED) {
3450 SET_PAGE_DIRTY(m, FALSE);
3451 }
3452 }
3453 }
3454
3455 /*
3456 * we've got a candidate page to steal...
3457 *
3458 * m->vmp_dirty is up to date courtesy of the
3459 * preceding check for m->vmp_reference... if
3460 * we get here, then m->vmp_reference had to be
3461 * FALSE (or possibly "reactivate_limit" was
3462 * exceeded), but in either case we called
3463 * pmap_get_refmod() and updated both
3464 * m->vmp_reference and m->vmp_dirty
3465 *
3466 * if it's dirty or precious we need to
3467 * see if the target queue is throtttled
3468 * it if is, we need to skip over it by moving it back
3469 * to the end of the inactive queue
3470 */
3471
3472 inactive_throttled = FALSE;
3473
3474 if (m->vmp_dirty || m->vmp_precious) {
3475 if (object->internal) {
3476 if (VM_PAGE_Q_THROTTLED(iq)) {
3477 inactive_throttled = TRUE;
3478 }
3479 } else if (VM_PAGE_Q_THROTTLED(eq)) {
3480 inactive_throttled = TRUE;
3481 }
3482 }
3483 throttle_inactive:
3484 if (!VM_DYNAMIC_PAGING_ENABLED() &&
3485 object->internal && m->vmp_dirty &&
3486 (object->purgable == VM_PURGABLE_DENY ||
3487 object->purgable == VM_PURGABLE_NONVOLATILE ||
3488 object->purgable == VM_PURGABLE_VOLATILE)) {
3489 vm_page_check_pageable_safe(m);
3490 assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q);
3491 vm_page_queue_enter(&vm_page_queue_throttled, m, vmp_pageq);
3492 m->vmp_q_state = VM_PAGE_ON_THROTTLED_Q;
3493 vm_page_throttled_count++;
3494
3495 VM_PAGEOUT_DEBUG(vm_pageout_scan_reclaimed_throttled, 1);
3496
3497 inactive_burst_count = 0;
3498
3499 lock_yield_check = TRUE;
3500 continue;
3501 }
3502 if (inactive_throttled == TRUE) {
3503 vps_deal_with_throttled_queues(m, &object, &vm_pageout_inactive_external_forced_reactivate_limit,
3504 &delayed_unlock, &force_anonymous, page_from_bg_q);
3505
3506 inactive_burst_count = 0;
3507
3508 if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) {
3509 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated, 1);
3510 }
3511
3512 lock_yield_check = TRUE;
3513 continue;
3514 }
3515
3516 /*
3517 * we've got a page that we can steal...
3518 * eliminate all mappings and make sure
3519 * we have the up-to-date modified state
3520 *
3521 * if we need to do a pmap_disconnect then we
3522 * need to re-evaluate m->vmp_dirty since the pmap_disconnect
3523 * provides the true state atomically... the
3524 * page was still mapped up to the pmap_disconnect
3525 * and may have been dirtied at the last microsecond
3526 *
3527 * Note that if 'pmapped' is FALSE then the page is not
3528 * and has not been in any map, so there is no point calling
3529 * pmap_disconnect(). m->vmp_dirty could have been set in anticipation
3530 * of likely usage of the page.
3531 */
3532 if (m->vmp_pmapped == TRUE) {
3533 int pmap_options;
3534
3535 /*
3536 * Don't count this page as going into the compressor
3537 * if any of these are true:
3538 * 1) compressed pager isn't enabled
3539 * 2) Freezer enabled device with compressed pager
3540 * backend (exclusive use) i.e. most of the VM system
3541 * (including vm_pageout_scan) has no knowledge of
3542 * the compressor
3543 * 3) This page belongs to a file and hence will not be
3544 * sent into the compressor
3545 */
3546 if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE ||
3547 object->internal == FALSE) {
3548 pmap_options = 0;
3549 } else if (m->vmp_dirty || m->vmp_precious) {
3550 /*
3551 * VM knows that this page is dirty (or
3552 * precious) and needs to be compressed
3553 * rather than freed.
3554 * Tell the pmap layer to count this page
3555 * as "compressed".
3556 */
3557 pmap_options = PMAP_OPTIONS_COMPRESSOR;
3558 } else {
3559 /*
3560 * VM does not know if the page needs to
3561 * be preserved but the pmap layer might tell
3562 * us if any mapping has "modified" it.
3563 * Let's the pmap layer to count this page
3564 * as compressed if and only if it has been
3565 * modified.
3566 */
3567 pmap_options =
3568 PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED;
3569 }
3570 refmod_state = pmap_disconnect_options(VM_PAGE_GET_PHYS_PAGE(m),
3571 pmap_options,
3572 NULL);
3573 if (refmod_state & VM_MEM_MODIFIED) {
3574 SET_PAGE_DIRTY(m, FALSE);
3575 }
3576 }
3577
3578 /*
3579 * reset our count of pages that have been reclaimed
3580 * since the last page was 'stolen'
3581 */
3582 inactive_reclaim_run = 0;
3583
3584 /*
3585 * If it's clean and not precious, we can free the page.
3586 */
3587 if (!m->vmp_dirty && !m->vmp_precious) {
3588 vm_pageout_state.vm_pageout_inactive_clean++;
3589
3590 /*
3591 * OK, at this point we have found a page we are going to free.
3592 */
3593 #if CONFIG_PHANTOM_CACHE
3594 if (!object->internal) {
3595 vm_phantom_cache_add_ghost(m);
3596 }
3597 #endif
3598 goto reclaim_page;
3599 }
3600
3601 /*
3602 * The page may have been dirtied since the last check
3603 * for a throttled target queue (which may have been skipped
3604 * if the page was clean then). With the dirty page
3605 * disconnected here, we can make one final check.
3606 */
3607 if (object->internal) {
3608 if (VM_PAGE_Q_THROTTLED(iq)) {
3609 inactive_throttled = TRUE;
3610 }
3611 } else if (VM_PAGE_Q_THROTTLED(eq)) {
3612 inactive_throttled = TRUE;
3613 }
3614
3615 if (inactive_throttled == TRUE) {
3616 goto throttle_inactive;
3617 }
3618
3619 #if VM_PRESSURE_EVENTS
3620 #if CONFIG_JETSAM
3621
3622 /*
3623 * If Jetsam is enabled, then the sending
3624 * of memory pressure notifications is handled
3625 * from the same thread that takes care of high-water
3626 * and other jetsams i.e. the memorystatus_thread.
3627 */
3628
3629 #else /* CONFIG_JETSAM */
3630
3631 vm_pressure_response();
3632
3633 #endif /* CONFIG_JETSAM */
3634 #endif /* VM_PRESSURE_EVENTS */
3635
3636 if (page_prev_q_state == VM_PAGE_ON_SPECULATIVE_Q) {
3637 VM_PAGEOUT_DEBUG(vm_pageout_speculative_dirty, 1);
3638 }
3639
3640 if (object->internal) {
3641 vm_pageout_vminfo.vm_pageout_inactive_dirty_internal++;
3642 } else {
3643 vm_pageout_vminfo.vm_pageout_inactive_dirty_external++;
3644 }
3645
3646 /*
3647 * internal pages will go to the compressor...
3648 * external pages will go to the appropriate pager to be cleaned
3649 * and upon completion will end up on 'vm_page_queue_cleaned' which
3650 * is a preferred queue to steal from
3651 */
3652 vm_pageout_cluster(m);
3653 inactive_burst_count = 0;
3654
3655 /*
3656 * back to top of pageout scan loop
3657 */
3658 }
3659 }
3660
3661
3662 void
3663 vm_page_free_reserve(
3664 int pages)
3665 {
3666 int free_after_reserve;
3667
3668 if (VM_CONFIG_COMPRESSOR_IS_PRESENT) {
3669 if ((vm_page_free_reserved + pages + COMPRESSOR_FREE_RESERVED_LIMIT) >= (VM_PAGE_FREE_RESERVED_LIMIT + COMPRESSOR_FREE_RESERVED_LIMIT)) {
3670 vm_page_free_reserved = VM_PAGE_FREE_RESERVED_LIMIT + COMPRESSOR_FREE_RESERVED_LIMIT;
3671 } else {
3672 vm_page_free_reserved += (pages + COMPRESSOR_FREE_RESERVED_LIMIT);
3673 }
3674 } else {
3675 if ((vm_page_free_reserved + pages) >= VM_PAGE_FREE_RESERVED_LIMIT) {
3676 vm_page_free_reserved = VM_PAGE_FREE_RESERVED_LIMIT;
3677 } else {
3678 vm_page_free_reserved += pages;
3679 }
3680 }
3681 free_after_reserve = vm_pageout_state.vm_page_free_count_init - vm_page_free_reserved;
3682
3683 vm_page_free_min = vm_page_free_reserved +
3684 VM_PAGE_FREE_MIN(free_after_reserve);
3685
3686 if (vm_page_free_min > VM_PAGE_FREE_MIN_LIMIT) {
3687 vm_page_free_min = VM_PAGE_FREE_MIN_LIMIT;
3688 }
3689
3690 vm_page_free_target = vm_page_free_reserved +
3691 VM_PAGE_FREE_TARGET(free_after_reserve);
3692
3693 if (vm_page_free_target > VM_PAGE_FREE_TARGET_LIMIT) {
3694 vm_page_free_target = VM_PAGE_FREE_TARGET_LIMIT;
3695 }
3696
3697 if (vm_page_free_target < vm_page_free_min + 5) {
3698 vm_page_free_target = vm_page_free_min + 5;
3699 }
3700
3701 vm_page_throttle_limit = vm_page_free_target - (vm_page_free_target / 2);
3702 }
3703
3704 /*
3705 * vm_pageout is the high level pageout daemon.
3706 */
3707
3708 void
3709 vm_pageout_continue(void)
3710 {
3711 DTRACE_VM2(pgrrun, int, 1, (uint64_t *), NULL);
3712 VM_PAGEOUT_DEBUG(vm_pageout_scan_event_counter, 1);
3713
3714 lck_mtx_lock(&vm_page_queue_free_lock);
3715 vm_pageout_running = TRUE;
3716 lck_mtx_unlock(&vm_page_queue_free_lock);
3717
3718 vm_pageout_scan();
3719 /*
3720 * we hold both the vm_page_queue_free_lock
3721 * and the vm_page_queues_lock at this point
3722 */
3723 assert(vm_page_free_wanted == 0);
3724 assert(vm_page_free_wanted_privileged == 0);
3725 assert_wait((event_t) &vm_page_free_wanted, THREAD_UNINT);
3726
3727 vm_pageout_running = FALSE;
3728 #if XNU_TARGET_OS_OSX
3729 if (vm_pageout_waiter) {
3730 vm_pageout_waiter = FALSE;
3731 thread_wakeup((event_t)&vm_pageout_waiter);
3732 }
3733 #endif /* XNU_TARGET_OS_OSX */
3734
3735 lck_mtx_unlock(&vm_page_queue_free_lock);
3736 vm_page_unlock_queues();
3737
3738 thread_block((thread_continue_t)vm_pageout_continue);
3739 /*NOTREACHED*/
3740 }
3741
3742 #if XNU_TARGET_OS_OSX
3743 kern_return_t
3744 vm_pageout_wait(uint64_t deadline)
3745 {
3746 kern_return_t kr;
3747
3748 lck_mtx_lock(&vm_page_queue_free_lock);
3749 for (kr = KERN_SUCCESS; vm_pageout_running && (KERN_SUCCESS == kr);) {
3750 vm_pageout_waiter = TRUE;
3751 if (THREAD_AWAKENED != lck_mtx_sleep_deadline(
3752 &vm_page_queue_free_lock, LCK_SLEEP_DEFAULT,
3753 (event_t) &vm_pageout_waiter, THREAD_UNINT, deadline)) {
3754 kr = KERN_OPERATION_TIMED_OUT;
3755 }
3756 }
3757 lck_mtx_unlock(&vm_page_queue_free_lock);
3758
3759 return kr;
3760 }
3761 #endif /* XNU_TARGET_OS_OSX */
3762
3763
3764 static void
3765 vm_pageout_iothread_external_continue(struct vm_pageout_queue *q)
3766 {
3767 vm_page_t m = NULL;
3768 vm_object_t object;
3769 vm_object_offset_t offset;
3770 memory_object_t pager;
3771
3772 /* On systems with a compressor, the external IO thread clears its
3773 * VM privileged bit to accommodate large allocations (e.g. bulk UPL
3774 * creation)
3775 */
3776 if (vm_pageout_state.vm_pageout_internal_iothread != THREAD_NULL) {
3777 current_thread()->options &= ~TH_OPT_VMPRIV;
3778 }
3779
3780 vm_page_lockspin_queues();
3781
3782 while (!vm_page_queue_empty(&q->pgo_pending)) {
3783 q->pgo_busy = TRUE;
3784 vm_page_queue_remove_first(&q->pgo_pending, m, vmp_pageq);
3785
3786 assert(m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q);
3787 VM_PAGE_CHECK(m);
3788 /*
3789 * grab a snapshot of the object and offset this
3790 * page is tabled in so that we can relookup this
3791 * page after we've taken the object lock - these
3792 * fields are stable while we hold the page queues lock
3793 * but as soon as we drop it, there is nothing to keep
3794 * this page in this object... we hold an activity_in_progress
3795 * on this object which will keep it from terminating
3796 */
3797 object = VM_PAGE_OBJECT(m);
3798 offset = m->vmp_offset;
3799
3800 m->vmp_q_state = VM_PAGE_NOT_ON_Q;
3801 VM_PAGE_ZERO_PAGEQ_ENTRY(m);
3802
3803 vm_page_unlock_queues();
3804
3805 vm_object_lock(object);
3806
3807 m = vm_page_lookup(object, offset);
3808
3809 if (m == NULL || m->vmp_busy || m->vmp_cleaning ||
3810 !m->vmp_laundry || (m->vmp_q_state != VM_PAGE_NOT_ON_Q)) {
3811 /*
3812 * it's either the same page that someone else has
3813 * started cleaning (or it's finished cleaning or
3814 * been put back on the pageout queue), or
3815 * the page has been freed or we have found a
3816 * new page at this offset... in all of these cases
3817 * we merely need to release the activity_in_progress
3818 * we took when we put the page on the pageout queue
3819 */
3820 vm_object_activity_end(object);
3821 vm_object_unlock(object);
3822
3823 vm_page_lockspin_queues();
3824 continue;
3825 }
3826 pager = object->pager;
3827
3828 if (pager == MEMORY_OBJECT_NULL) {
3829 /*
3830 * This pager has been destroyed by either
3831 * memory_object_destroy or vm_object_destroy, and
3832 * so there is nowhere for the page to go.
3833 */
3834 if (m->vmp_free_when_done) {
3835 /*
3836 * Just free the page... VM_PAGE_FREE takes
3837 * care of cleaning up all the state...
3838 * including doing the vm_pageout_throttle_up
3839 */
3840 VM_PAGE_FREE(m);
3841 } else {
3842 vm_page_lockspin_queues();
3843
3844 vm_pageout_throttle_up(m);
3845 vm_page_activate(m);
3846
3847 vm_page_unlock_queues();
3848
3849 /*
3850 * And we are done with it.
3851 */
3852 }
3853 vm_object_activity_end(object);
3854 vm_object_unlock(object);
3855
3856 vm_page_lockspin_queues();
3857 continue;
3858 }
3859 #if 0
3860 /*
3861 * we don't hold the page queue lock
3862 * so this check isn't safe to make
3863 */
3864 VM_PAGE_CHECK(m);
3865 #endif
3866 /*
3867 * give back the activity_in_progress reference we
3868 * took when we queued up this page and replace it
3869 * it with a paging_in_progress reference that will
3870 * also hold the paging offset from changing and
3871 * prevent the object from terminating
3872 */
3873 vm_object_activity_end(object);
3874 vm_object_paging_begin(object);
3875 vm_object_unlock(object);
3876
3877 /*
3878 * Send the data to the pager.
3879 * any pageout clustering happens there
3880 */
3881 memory_object_data_return(pager,
3882 m->vmp_offset + object->paging_offset,
3883 PAGE_SIZE,
3884 NULL,
3885 NULL,
3886 FALSE,
3887 FALSE,
3888 0);
3889
3890 vm_object_lock(object);
3891 vm_object_paging_end(object);
3892 vm_object_unlock(object);
3893
3894 vm_pageout_io_throttle();
3895
3896 vm_page_lockspin_queues();
3897 }
3898 q->pgo_busy = FALSE;
3899 q->pgo_idle = TRUE;
3900
3901 assert_wait((event_t) &q->pgo_pending, THREAD_UNINT);
3902 vm_page_unlock_queues();
3903
3904 thread_block_parameter((thread_continue_t)vm_pageout_iothread_external_continue, (void *) q);
3905 /*NOTREACHED*/
3906 }
3907
3908
3909 #define MAX_FREE_BATCH 32
3910 uint32_t vm_compressor_time_thread; /* Set via sysctl to record time accrued by
3911 * this thread.
3912 */
3913
3914
3915 void
3916 vm_pageout_iothread_internal_continue(struct cq *);
3917 void
3918 vm_pageout_iothread_internal_continue(struct cq *cq)
3919 {
3920 struct vm_pageout_queue *q;
3921 vm_page_t m = NULL;
3922 boolean_t pgo_draining;
3923 vm_page_t local_q;
3924 int local_cnt;
3925 vm_page_t local_freeq = NULL;
3926 int local_freed = 0;
3927 int local_batch_size;
3928 #if DEVELOPMENT || DEBUG
3929 int ncomps = 0;
3930 boolean_t marked_active = FALSE;
3931 #endif
3932 KERNEL_DEBUG(0xe040000c | DBG_FUNC_END, 0, 0, 0, 0, 0);
3933
3934 q = cq->q;
3935 #if __AMP__
3936 if (vm_compressor_ebound && (vm_pageout_state.vm_compressor_thread_count > 1)) {
3937 local_batch_size = (q->pgo_maxlaundry >> 3);
3938 local_batch_size = MAX(local_batch_size, 16);
3939 } else {
3940 local_batch_size = q->pgo_maxlaundry / (vm_pageout_state.vm_compressor_thread_count * 2);
3941 }
3942 #else
3943 local_batch_size = q->pgo_maxlaundry / (vm_pageout_state.vm_compressor_thread_count * 2);
3944 #endif
3945
3946 #if RECORD_THE_COMPRESSED_DATA
3947 if (q->pgo_laundry) {
3948 c_compressed_record_init();
3949 }
3950 #endif
3951 while (TRUE) {
3952 int pages_left_on_q = 0;
3953
3954 local_cnt = 0;
3955 local_q = NULL;
3956
3957 KERNEL_DEBUG(0xe0400014 | DBG_FUNC_START, 0, 0, 0, 0, 0);
3958
3959 vm_page_lock_queues();
3960 #if DEVELOPMENT || DEBUG
3961 if (marked_active == FALSE) {
3962 vmct_active++;
3963 vmct_state[cq->id] = VMCT_ACTIVE;
3964 marked_active = TRUE;
3965 if (vmct_active == 1) {
3966 vm_compressor_epoch_start = mach_absolute_time();
3967 }
3968 }
3969 #endif
3970 KERNEL_DEBUG(0xe0400014 | DBG_FUNC_END, 0, 0, 0, 0, 0);
3971
3972 KERNEL_DEBUG(0xe0400018 | DBG_FUNC_START, q->pgo_laundry, 0, 0, 0, 0);
3973
3974 while (!vm_page_queue_empty(&q->pgo_pending) && local_cnt < local_batch_size) {
3975 vm_page_queue_remove_first(&q->pgo_pending, m, vmp_pageq);
3976 assert(m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q);
3977 VM_PAGE_CHECK(m);
3978
3979 m->vmp_q_state = VM_PAGE_NOT_ON_Q;
3980 VM_PAGE_ZERO_PAGEQ_ENTRY(m);
3981 m->vmp_laundry = FALSE;
3982
3983 m->vmp_snext = local_q;
3984 local_q = m;
3985 local_cnt++;
3986 }
3987 if (local_q == NULL) {
3988 break;
3989 }
3990
3991 q->pgo_busy = TRUE;
3992
3993 if ((pgo_draining = q->pgo_draining) == FALSE) {
3994 vm_pageout_throttle_up_batch(q, local_cnt);
3995 pages_left_on_q = q->pgo_laundry;
3996 } else {
3997 pages_left_on_q = q->pgo_laundry - local_cnt;
3998 }
3999
4000 vm_page_unlock_queues();
4001
4002 #if !RECORD_THE_COMPRESSED_DATA
4003 if (pages_left_on_q >= local_batch_size && cq->id < (vm_pageout_state.vm_compressor_thread_count - 1)) {
4004 thread_wakeup((event_t) ((uintptr_t)&q->pgo_pending + cq->id + 1));
4005 }
4006 #endif
4007 KERNEL_DEBUG(0xe0400018 | DBG_FUNC_END, q->pgo_laundry, 0, 0, 0, 0);
4008
4009 while (local_q) {
4010 KERNEL_DEBUG(0xe0400024 | DBG_FUNC_START, local_cnt, 0, 0, 0, 0);
4011
4012 m = local_q;
4013 local_q = m->vmp_snext;
4014 m->vmp_snext = NULL;
4015
4016 if (vm_pageout_compress_page(&cq->current_chead, cq->scratch_buf, m) == KERN_SUCCESS) {
4017 #if DEVELOPMENT || DEBUG
4018 ncomps++;
4019 #endif
4020 KERNEL_DEBUG(0xe0400024 | DBG_FUNC_END, local_cnt, 0, 0, 0, 0);
4021
4022 m->vmp_snext = local_freeq;
4023 local_freeq = m;
4024 local_freed++;
4025
4026 if (local_freed >= MAX_FREE_BATCH) {
4027 OSAddAtomic64(local_freed, &vm_pageout_vminfo.vm_pageout_compressions);
4028
4029 vm_page_free_list(local_freeq, TRUE);
4030
4031 local_freeq = NULL;
4032 local_freed = 0;
4033 }
4034 }
4035 #if !CONFIG_JETSAM
4036 while (vm_page_free_count < COMPRESSOR_FREE_RESERVED_LIMIT) {
4037 kern_return_t wait_result;
4038 int need_wakeup = 0;
4039
4040 if (local_freeq) {
4041 OSAddAtomic64(local_freed, &vm_pageout_vminfo.vm_pageout_compressions);
4042
4043 vm_page_free_list(local_freeq, TRUE);
4044 local_freeq = NULL;
4045 local_freed = 0;
4046
4047 continue;
4048 }
4049 lck_mtx_lock_spin(&vm_page_queue_free_lock);
4050
4051 if (vm_page_free_count < COMPRESSOR_FREE_RESERVED_LIMIT) {
4052 if (vm_page_free_wanted_privileged++ == 0) {
4053 need_wakeup = 1;
4054 }
4055 wait_result = assert_wait((event_t)&vm_page_free_wanted_privileged, THREAD_UNINT);
4056
4057 lck_mtx_unlock(&vm_page_queue_free_lock);
4058
4059 if (need_wakeup) {
4060 thread_wakeup((event_t)&vm_page_free_wanted);
4061 }
4062
4063 if (wait_result == THREAD_WAITING) {
4064 thread_block(THREAD_CONTINUE_NULL);
4065 }
4066 } else {
4067 lck_mtx_unlock(&vm_page_queue_free_lock);
4068 }
4069 }
4070 #endif
4071 }
4072 if (local_freeq) {
4073 OSAddAtomic64(local_freed, &vm_pageout_vminfo.vm_pageout_compressions);
4074
4075 vm_page_free_list(local_freeq, TRUE);
4076 local_freeq = NULL;
4077 local_freed = 0;
4078 }
4079 if (pgo_draining == TRUE) {
4080 vm_page_lockspin_queues();
4081 vm_pageout_throttle_up_batch(q, local_cnt);
4082 vm_page_unlock_queues();
4083 }
4084 }
4085 KERNEL_DEBUG(0xe040000c | DBG_FUNC_START, 0, 0, 0, 0, 0);
4086
4087 /*
4088 * queue lock is held and our q is empty
4089 */
4090 q->pgo_busy = FALSE;
4091 q->pgo_idle = TRUE;
4092
4093 assert_wait((event_t) ((uintptr_t)&q->pgo_pending + cq->id), THREAD_UNINT);
4094 #if DEVELOPMENT || DEBUG
4095 if (marked_active == TRUE) {
4096 vmct_active--;
4097 vmct_state[cq->id] = VMCT_IDLE;
4098
4099 if (vmct_active == 0) {
4100 vm_compressor_epoch_stop = mach_absolute_time();
4101 assertf(vm_compressor_epoch_stop >= vm_compressor_epoch_start,
4102 "Compressor epoch non-monotonic: 0x%llx -> 0x%llx",
4103 vm_compressor_epoch_start, vm_compressor_epoch_stop);
4104 /* This interval includes intervals where one or more
4105 * compressor threads were pre-empted
4106 */
4107 vmct_stats.vmct_cthreads_total += vm_compressor_epoch_stop - vm_compressor_epoch_start;
4108 }
4109 }
4110 #endif
4111 vm_page_unlock_queues();
4112 #if DEVELOPMENT || DEBUG
4113 if (__improbable(vm_compressor_time_thread)) {
4114 vmct_stats.vmct_runtimes[cq->id] = thread_get_runtime_self();
4115 vmct_stats.vmct_pages[cq->id] += ncomps;
4116 vmct_stats.vmct_iterations[cq->id]++;
4117 if (ncomps > vmct_stats.vmct_maxpages[cq->id]) {
4118 vmct_stats.vmct_maxpages[cq->id] = ncomps;
4119 }
4120 if (ncomps < vmct_stats.vmct_minpages[cq->id]) {
4121 vmct_stats.vmct_minpages[cq->id] = ncomps;
4122 }
4123 }
4124 #endif
4125
4126 KERNEL_DEBUG(0xe0400018 | DBG_FUNC_END, 0, 0, 0, 0, 0);
4127
4128 thread_block_parameter((thread_continue_t)vm_pageout_iothread_internal_continue, (void *) cq);
4129 /*NOTREACHED*/
4130 }
4131
4132
4133 kern_return_t
4134 vm_pageout_compress_page(void **current_chead, char *scratch_buf, vm_page_t m)
4135 {
4136 vm_object_t object;
4137 memory_object_t pager;
4138 int compressed_count_delta;
4139 kern_return_t retval;
4140
4141 object = VM_PAGE_OBJECT(m);
4142
4143 assert(!m->vmp_free_when_done);
4144 assert(!m->vmp_laundry);
4145
4146 pager = object->pager;
4147
4148 if (!object->pager_initialized || pager == MEMORY_OBJECT_NULL) {
4149 KERNEL_DEBUG(0xe0400010 | DBG_FUNC_START, object, pager, 0, 0, 0);
4150
4151 vm_object_lock(object);
4152
4153 /*
4154 * If there is no memory object for the page, create
4155 * one and hand it to the compression pager.
4156 */
4157
4158 if (!object->pager_initialized) {
4159 vm_object_collapse(object, (vm_object_offset_t) 0, TRUE);
4160 }
4161 if (!object->pager_initialized) {
4162 vm_object_compressor_pager_create(object);
4163 }
4164
4165 pager = object->pager;
4166
4167 if (!object->pager_initialized || pager == MEMORY_OBJECT_NULL) {
4168 /*
4169 * Still no pager for the object,
4170 * or the pager has been destroyed.
4171 * Reactivate the page.
4172 *
4173 * Should only happen if there is no
4174 * compression pager
4175 */
4176 PAGE_WAKEUP_DONE(m);
4177
4178 vm_page_lockspin_queues();
4179 vm_page_activate(m);
4180 VM_PAGEOUT_DEBUG(vm_pageout_dirty_no_pager, 1);
4181 vm_page_unlock_queues();
4182
4183 /*
4184 * And we are done with it.
4185 */
4186 vm_object_activity_end(object);
4187 vm_object_unlock(object);
4188
4189 return KERN_FAILURE;
4190 }
4191 vm_object_unlock(object);
4192
4193 KERNEL_DEBUG(0xe0400010 | DBG_FUNC_END, object, pager, 0, 0, 0);
4194 }
4195 assert(object->pager_initialized && pager != MEMORY_OBJECT_NULL);
4196 assert(object->activity_in_progress > 0);
4197
4198 retval = vm_compressor_pager_put(
4199 pager,
4200 m->vmp_offset + object->paging_offset,
4201 VM_PAGE_GET_PHYS_PAGE(m),
4202 current_chead,
4203 scratch_buf,
4204 &compressed_count_delta);
4205
4206 vm_object_lock(object);
4207
4208 assert(object->activity_in_progress > 0);
4209 assert(VM_PAGE_OBJECT(m) == object);
4210 assert( !VM_PAGE_WIRED(m));
4211
4212 vm_compressor_pager_count(pager,
4213 compressed_count_delta,
4214 FALSE, /* shared_lock */
4215 object);
4216
4217 if (retval == KERN_SUCCESS) {
4218 /*
4219 * If the object is purgeable, its owner's
4220 * purgeable ledgers will be updated in
4221 * vm_page_remove() but the page still
4222 * contributes to the owner's memory footprint,
4223 * so account for it as such.
4224 */
4225 if ((object->purgable != VM_PURGABLE_DENY ||
4226 object->vo_ledger_tag) &&
4227 object->vo_owner != NULL) {
4228 /* one more compressed purgeable/tagged page */
4229 vm_object_owner_compressed_update(object,
4230 +1);
4231 }
4232 counter_inc(&vm_statistics_compressions);
4233
4234 if (m->vmp_tabled) {
4235 vm_page_remove(m, TRUE);
4236 }
4237 } else {
4238 PAGE_WAKEUP_DONE(m);
4239
4240 vm_page_lockspin_queues();
4241
4242 vm_page_activate(m);
4243 vm_pageout_vminfo.vm_compressor_failed++;
4244
4245 vm_page_unlock_queues();
4246 }
4247 vm_object_activity_end(object);
4248 vm_object_unlock(object);
4249
4250 return retval;
4251 }
4252
4253
4254 static void
4255 vm_pageout_adjust_eq_iothrottle(struct vm_pageout_queue *eq, boolean_t req_lowpriority)
4256 {
4257 uint32_t policy;
4258
4259 if (hibernate_cleaning_in_progress == TRUE) {
4260 req_lowpriority = FALSE;
4261 }
4262
4263 if (eq->pgo_inited == TRUE && eq->pgo_lowpriority != req_lowpriority) {
4264 vm_page_unlock_queues();
4265
4266 if (req_lowpriority == TRUE) {
4267 policy = THROTTLE_LEVEL_PAGEOUT_THROTTLED;
4268 DTRACE_VM(laundrythrottle);
4269 } else {
4270 policy = THROTTLE_LEVEL_PAGEOUT_UNTHROTTLED;
4271 DTRACE_VM(laundryunthrottle);
4272 }
4273 proc_set_thread_policy_with_tid(kernel_task, eq->pgo_tid,
4274 TASK_POLICY_EXTERNAL, TASK_POLICY_IO, policy);
4275
4276 vm_page_lock_queues();
4277 eq->pgo_lowpriority = req_lowpriority;
4278 }
4279 }
4280
4281
4282 static void
4283 vm_pageout_iothread_external(void)
4284 {
4285 thread_t self = current_thread();
4286
4287 self->options |= TH_OPT_VMPRIV;
4288
4289 DTRACE_VM2(laundrythrottle, int, 1, (uint64_t *), NULL);
4290
4291 proc_set_thread_policy(self, TASK_POLICY_EXTERNAL,
4292 TASK_POLICY_IO, THROTTLE_LEVEL_PAGEOUT_THROTTLED);
4293
4294 vm_page_lock_queues();
4295
4296 vm_pageout_queue_external.pgo_tid = self->thread_id;
4297 vm_pageout_queue_external.pgo_lowpriority = TRUE;
4298 vm_pageout_queue_external.pgo_inited = TRUE;
4299
4300 vm_page_unlock_queues();
4301
4302 vm_pageout_iothread_external_continue(&vm_pageout_queue_external);
4303
4304 /*NOTREACHED*/
4305 }
4306
4307
4308 static void
4309 vm_pageout_iothread_internal(struct cq *cq)
4310 {
4311 thread_t self = current_thread();
4312
4313 self->options |= TH_OPT_VMPRIV;
4314
4315 vm_page_lock_queues();
4316
4317 vm_pageout_queue_internal.pgo_tid = self->thread_id;
4318 vm_pageout_queue_internal.pgo_lowpriority = TRUE;
4319 vm_pageout_queue_internal.pgo_inited = TRUE;
4320
4321 vm_page_unlock_queues();
4322
4323 if (vm_pageout_state.vm_restricted_to_single_processor == TRUE) {
4324 thread_vm_bind_group_add();
4325 }
4326
4327 #if CONFIG_THREAD_GROUPS
4328 thread_group_vm_add();
4329 #endif /* CONFIG_THREAD_GROUPS */
4330
4331 #if __AMP__
4332 if (vm_compressor_ebound) {
4333 /*
4334 * Use the soft bound option for vm_compressor to allow it to run on
4335 * P-cores if E-cluster is unavailable.
4336 */
4337 thread_bind_cluster_type(self, 'E', true);
4338 }
4339 #endif /* __AMP__ */
4340
4341 thread_set_thread_name(current_thread(), "VM_compressor");
4342 #if DEVELOPMENT || DEBUG
4343 vmct_stats.vmct_minpages[cq->id] = INT32_MAX;
4344 #endif
4345 vm_pageout_iothread_internal_continue(cq);
4346
4347 /*NOTREACHED*/
4348 }
4349
4350 kern_return_t
4351 vm_set_buffer_cleanup_callout(boolean_t (*func)(int))
4352 {
4353 if (OSCompareAndSwapPtr(NULL, ptrauth_nop_cast(void *, func), (void * volatile *) &consider_buffer_cache_collect)) {
4354 return KERN_SUCCESS;
4355 } else {
4356 return KERN_FAILURE; /* Already set */
4357 }
4358 }
4359
4360 extern boolean_t memorystatus_manual_testing_on;
4361 extern unsigned int memorystatus_level;
4362
4363
4364 #if VM_PRESSURE_EVENTS
4365
4366 boolean_t vm_pressure_events_enabled = FALSE;
4367
4368 void
4369 vm_pressure_response(void)
4370 {
4371 vm_pressure_level_t old_level = kVMPressureNormal;
4372 int new_level = -1;
4373 unsigned int total_pages;
4374 uint64_t available_memory = 0;
4375
4376 if (vm_pressure_events_enabled == FALSE) {
4377 return;
4378 }
4379
4380 #if !XNU_TARGET_OS_OSX
4381
4382 available_memory = (uint64_t) memorystatus_available_pages;
4383
4384 #else /* !XNU_TARGET_OS_OSX */
4385
4386 available_memory = (uint64_t) AVAILABLE_NON_COMPRESSED_MEMORY;
4387 memorystatus_available_pages = (uint64_t) AVAILABLE_NON_COMPRESSED_MEMORY;
4388
4389 #endif /* !XNU_TARGET_OS_OSX */
4390
4391 total_pages = (unsigned int) atop_64(max_mem);
4392 #if CONFIG_SECLUDED_MEMORY
4393 total_pages -= vm_page_secluded_count;
4394 #endif /* CONFIG_SECLUDED_MEMORY */
4395 memorystatus_level = (unsigned int) ((available_memory * 100) / total_pages);
4396
4397 if (memorystatus_manual_testing_on) {
4398 return;
4399 }
4400
4401 old_level = memorystatus_vm_pressure_level;
4402
4403 switch (memorystatus_vm_pressure_level) {
4404 case kVMPressureNormal:
4405 {
4406 if (VM_PRESSURE_WARNING_TO_CRITICAL()) {
4407 new_level = kVMPressureCritical;
4408 } else if (VM_PRESSURE_NORMAL_TO_WARNING()) {
4409 new_level = kVMPressureWarning;
4410 }
4411 break;
4412 }
4413
4414 case kVMPressureWarning:
4415 case kVMPressureUrgent:
4416 {
4417 if (VM_PRESSURE_WARNING_TO_NORMAL()) {
4418 new_level = kVMPressureNormal;
4419 } else if (VM_PRESSURE_WARNING_TO_CRITICAL()) {
4420 new_level = kVMPressureCritical;
4421 }
4422 break;
4423 }
4424
4425 case kVMPressureCritical:
4426 {
4427 if (VM_PRESSURE_WARNING_TO_NORMAL()) {
4428 new_level = kVMPressureNormal;
4429 } else if (VM_PRESSURE_CRITICAL_TO_WARNING()) {
4430 new_level = kVMPressureWarning;
4431 }
4432 break;
4433 }
4434
4435 default:
4436 return;
4437 }
4438
4439 if (new_level != -1) {
4440 memorystatus_vm_pressure_level = (vm_pressure_level_t) new_level;
4441
4442 if (new_level != (int) old_level) {
4443 VM_DEBUG_CONSTANT_EVENT(vm_pressure_level_change, VM_PRESSURE_LEVEL_CHANGE, DBG_FUNC_NONE,
4444 new_level, old_level, 0, 0);
4445 }
4446
4447 if ((memorystatus_vm_pressure_level != kVMPressureNormal) || (old_level != memorystatus_vm_pressure_level)) {
4448 if (vm_pageout_state.vm_pressure_thread_running == FALSE) {
4449 thread_wakeup(&vm_pressure_thread);
4450 }
4451
4452 if (old_level != memorystatus_vm_pressure_level) {
4453 thread_wakeup(&vm_pageout_state.vm_pressure_changed);
4454 }
4455 }
4456 }
4457 }
4458 #endif /* VM_PRESSURE_EVENTS */
4459
4460 /*
4461 * Function called by a kernel thread to either get the current pressure level or
4462 * wait until memory pressure changes from a given level.
4463 */
4464 kern_return_t
4465 mach_vm_pressure_level_monitor(__unused boolean_t wait_for_pressure, __unused unsigned int *pressure_level)
4466 {
4467 #if !VM_PRESSURE_EVENTS
4468
4469 return KERN_FAILURE;
4470
4471 #else /* VM_PRESSURE_EVENTS */
4472
4473 wait_result_t wr = 0;
4474 vm_pressure_level_t old_level = memorystatus_vm_pressure_level;
4475
4476 if (pressure_level == NULL) {
4477 return KERN_INVALID_ARGUMENT;
4478 }
4479
4480 if (*pressure_level == kVMPressureJetsam) {
4481 if (!wait_for_pressure) {
4482 return KERN_INVALID_ARGUMENT;
4483 }
4484
4485 lck_mtx_lock(&memorystatus_jetsam_fg_band_lock);
4486 wr = assert_wait((event_t)&memorystatus_jetsam_fg_band_waiters,
4487 THREAD_INTERRUPTIBLE);
4488 if (wr == THREAD_WAITING) {
4489 ++memorystatus_jetsam_fg_band_waiters;
4490 lck_mtx_unlock(&memorystatus_jetsam_fg_band_lock);
4491 wr = thread_block(THREAD_CONTINUE_NULL);
4492 } else {
4493 lck_mtx_unlock(&memorystatus_jetsam_fg_band_lock);
4494 }
4495 if (wr != THREAD_AWAKENED) {
4496 return KERN_ABORTED;
4497 }
4498 *pressure_level = kVMPressureJetsam;
4499 return KERN_SUCCESS;
4500 }
4501
4502 if (wait_for_pressure == TRUE) {
4503 while (old_level == *pressure_level) {
4504 wr = assert_wait((event_t) &vm_pageout_state.vm_pressure_changed,
4505 THREAD_INTERRUPTIBLE);
4506 if (wr == THREAD_WAITING) {
4507 wr = thread_block(THREAD_CONTINUE_NULL);
4508 }
4509 if (wr == THREAD_INTERRUPTED) {
4510 return KERN_ABORTED;
4511 }
4512
4513 if (wr == THREAD_AWAKENED) {
4514 old_level = memorystatus_vm_pressure_level;
4515 }
4516 }
4517 }
4518
4519 *pressure_level = old_level;
4520 return KERN_SUCCESS;
4521 #endif /* VM_PRESSURE_EVENTS */
4522 }
4523
4524 #if VM_PRESSURE_EVENTS
4525 void
4526 vm_pressure_thread(void)
4527 {
4528 static boolean_t thread_initialized = FALSE;
4529
4530 if (thread_initialized == TRUE) {
4531 vm_pageout_state.vm_pressure_thread_running = TRUE;
4532 consider_vm_pressure_events();
4533 vm_pageout_state.vm_pressure_thread_running = FALSE;
4534 }
4535
4536 thread_set_thread_name(current_thread(), "VM_pressure");
4537 thread_initialized = TRUE;
4538 assert_wait((event_t) &vm_pressure_thread, THREAD_UNINT);
4539 thread_block((thread_continue_t)vm_pressure_thread);
4540 }
4541 #endif /* VM_PRESSURE_EVENTS */
4542
4543
4544 /*
4545 * called once per-second via "compute_averages"
4546 */
4547 void
4548 compute_pageout_gc_throttle(__unused void *arg)
4549 {
4550 if (vm_pageout_vminfo.vm_pageout_considered_page != vm_pageout_state.vm_pageout_considered_page_last) {
4551 vm_pageout_state.vm_pageout_considered_page_last = vm_pageout_vminfo.vm_pageout_considered_page;
4552
4553 thread_wakeup((event_t) &vm_pageout_garbage_collect);
4554 }
4555 }
4556
4557 /*
4558 * vm_pageout_garbage_collect can also be called when the zone allocator needs
4559 * to call zone_gc on a different thread in order to trigger zone-map-exhaustion
4560 * jetsams. We need to check if the zone map size is above its jetsam limit to
4561 * decide if this was indeed the case.
4562 *
4563 * We need to do this on a different thread because of the following reasons:
4564 *
4565 * 1. In the case of synchronous jetsams, the leaking process can try to jetsam
4566 * itself causing the system to hang. We perform synchronous jetsams if we're
4567 * leaking in the VM map entries zone, so the leaking process could be doing a
4568 * zalloc for a VM map entry while holding its vm_map lock, when it decides to
4569 * jetsam itself. We also need the vm_map lock on the process termination path,
4570 * which would now lead the dying process to deadlock against itself.
4571 *
4572 * 2. The jetsam path might need to allocate zone memory itself. We could try
4573 * using the non-blocking variant of zalloc for this path, but we can still
4574 * end up trying to do a kernel_memory_allocate when the zone maps are almost
4575 * full.
4576 */
4577
4578 void
4579 vm_pageout_garbage_collect(int collect)
4580 {
4581 if (collect) {
4582 if (zone_map_nearing_exhaustion()) {
4583 /*
4584 * Woken up by the zone allocator for zone-map-exhaustion jetsams.
4585 *
4586 * Bail out after calling zone_gc (which triggers the
4587 * zone-map-exhaustion jetsams). If we fall through, the subsequent
4588 * operations that clear out a bunch of caches might allocate zone
4589 * memory themselves (for eg. vm_map operations would need VM map
4590 * entries). Since the zone map is almost full at this point, we
4591 * could end up with a panic. We just need to quickly jetsam a
4592 * process and exit here.
4593 *
4594 * It could so happen that we were woken up to relieve memory
4595 * pressure and the zone map also happened to be near its limit at
4596 * the time, in which case we'll skip out early. But that should be
4597 * ok; if memory pressure persists, the thread will simply be woken
4598 * up again.
4599 */
4600 zone_gc(ZONE_GC_JETSAM);
4601 } else {
4602 /* Woken up by vm_pageout_scan or compute_pageout_gc_throttle. */
4603 boolean_t buf_large_zfree = FALSE;
4604 boolean_t first_try = TRUE;
4605
4606 stack_collect();
4607
4608 consider_machine_collect();
4609 mbuf_drain(FALSE);
4610
4611 do {
4612 if (consider_buffer_cache_collect != NULL) {
4613 buf_large_zfree = (*consider_buffer_cache_collect)(0);
4614 }
4615 if (first_try == TRUE || buf_large_zfree == TRUE) {
4616 /*
4617 * zone_gc should be last, because the other operations
4618 * might return memory to zones.
4619 */
4620 zone_gc(ZONE_GC_TRIM);
4621 }
4622 first_try = FALSE;
4623 } while (buf_large_zfree == TRUE && vm_page_free_count < vm_page_free_target);
4624
4625 consider_machine_adjust();
4626 }
4627 }
4628
4629 assert_wait((event_t) &vm_pageout_garbage_collect, THREAD_UNINT);
4630
4631 thread_block_parameter((thread_continue_t) vm_pageout_garbage_collect, (void *)1);
4632 /*NOTREACHED*/
4633 }
4634
4635
4636 #if VM_PAGE_BUCKETS_CHECK
4637 #if VM_PAGE_FAKE_BUCKETS
4638 extern vm_map_offset_t vm_page_fake_buckets_start, vm_page_fake_buckets_end;
4639 #endif /* VM_PAGE_FAKE_BUCKETS */
4640 #endif /* VM_PAGE_BUCKETS_CHECK */
4641
4642
4643
4644 void
4645 vm_set_restrictions(unsigned int num_cpus)
4646 {
4647 int vm_restricted_to_single_processor = 0;
4648
4649 if (PE_parse_boot_argn("vm_restricted_to_single_processor", &vm_restricted_to_single_processor, sizeof(vm_restricted_to_single_processor))) {
4650 kprintf("Overriding vm_restricted_to_single_processor to %d\n", vm_restricted_to_single_processor);
4651 vm_pageout_state.vm_restricted_to_single_processor = (vm_restricted_to_single_processor ? TRUE : FALSE);
4652 } else {
4653 assert(num_cpus > 0);
4654
4655 if (num_cpus <= 3) {
4656 /*
4657 * on systems with a limited number of CPUS, bind the
4658 * 4 major threads that can free memory and that tend to use
4659 * a fair bit of CPU under pressured conditions to a single processor.
4660 * This insures that these threads don't hog all of the available CPUs
4661 * (important for camera launch), while allowing them to run independently
4662 * w/r to locks... the 4 threads are
4663 * vm_pageout_scan, vm_pageout_iothread_internal (compressor),
4664 * vm_compressor_swap_trigger_thread (minor and major compactions),
4665 * memorystatus_thread (jetsams).
4666 *
4667 * the first time the thread is run, it is responsible for checking the
4668 * state of vm_restricted_to_single_processor, and if TRUE it calls
4669 * thread_bind_master... someday this should be replaced with a group
4670 * scheduling mechanism and KPI.
4671 */
4672 vm_pageout_state.vm_restricted_to_single_processor = TRUE;
4673 } else {
4674 vm_pageout_state.vm_restricted_to_single_processor = FALSE;
4675 }
4676 }
4677 }
4678
4679 void
4680 vm_pageout(void)
4681 {
4682 thread_t self = current_thread();
4683 thread_t thread;
4684 kern_return_t result;
4685 spl_t s;
4686
4687 /*
4688 * Set thread privileges.
4689 */
4690 s = splsched();
4691
4692 vm_pageout_scan_thread = self;
4693
4694 #if CONFIG_VPS_DYNAMIC_PRIO
4695
4696 int vps_dynprio_bootarg = 0;
4697
4698 if (PE_parse_boot_argn("vps_dynamic_priority_enabled", &vps_dynprio_bootarg, sizeof(vps_dynprio_bootarg))) {
4699 vps_dynamic_priority_enabled = (vps_dynprio_bootarg ? TRUE : FALSE);
4700 kprintf("Overriding vps_dynamic_priority_enabled to %d\n", vps_dynamic_priority_enabled);
4701 } else {
4702 if (vm_pageout_state.vm_restricted_to_single_processor == TRUE) {
4703 vps_dynamic_priority_enabled = TRUE;
4704 } else {
4705 vps_dynamic_priority_enabled = FALSE;
4706 }
4707 }
4708
4709 if (vps_dynamic_priority_enabled) {
4710 sched_set_kernel_thread_priority(self, MAXPRI_THROTTLE);
4711 thread_set_eager_preempt(self);
4712 } else {
4713 sched_set_kernel_thread_priority(self, BASEPRI_VM);
4714 }
4715
4716 #else /* CONFIG_VPS_DYNAMIC_PRIO */
4717
4718 vps_dynamic_priority_enabled = FALSE;
4719 sched_set_kernel_thread_priority(self, BASEPRI_VM);
4720
4721 #endif /* CONFIG_VPS_DYNAMIC_PRIO */
4722
4723 thread_lock(self);
4724 self->options |= TH_OPT_VMPRIV;
4725 thread_unlock(self);
4726
4727 if (!self->reserved_stack) {
4728 self->reserved_stack = self->kernel_stack;
4729 }
4730
4731 if (vm_pageout_state.vm_restricted_to_single_processor == TRUE &&
4732 vps_dynamic_priority_enabled == FALSE) {
4733 thread_vm_bind_group_add();
4734 }
4735
4736
4737 #if CONFIG_THREAD_GROUPS
4738 thread_group_vm_add();
4739 #endif /* CONFIG_THREAD_GROUPS */
4740
4741 #if __AMP__
4742 PE_parse_boot_argn("vmpgo_pcluster", &vm_pgo_pbound, sizeof(vm_pgo_pbound));
4743 if (vm_pgo_pbound) {
4744 /*
4745 * Use the soft bound option for vm pageout to allow it to run on
4746 * E-cores if P-cluster is unavailable.
4747 */
4748 thread_bind_cluster_type(self, 'P', true);
4749 }
4750 #endif /* __AMP__ */
4751
4752 splx(s);
4753
4754 thread_set_thread_name(current_thread(), "VM_pageout_scan");
4755
4756 /*
4757 * Initialize some paging parameters.
4758 */
4759
4760 vm_pageout_state.vm_pressure_thread_running = FALSE;
4761 vm_pageout_state.vm_pressure_changed = FALSE;
4762 vm_pageout_state.memorystatus_purge_on_warning = 2;
4763 vm_pageout_state.memorystatus_purge_on_urgent = 5;
4764 vm_pageout_state.memorystatus_purge_on_critical = 8;
4765 vm_pageout_state.vm_page_speculative_q_age_ms = VM_PAGE_SPECULATIVE_Q_AGE_MS;
4766 vm_pageout_state.vm_page_speculative_percentage = 5;
4767 vm_pageout_state.vm_page_speculative_target = 0;
4768
4769 vm_pageout_state.vm_pageout_external_iothread = THREAD_NULL;
4770 vm_pageout_state.vm_pageout_internal_iothread = THREAD_NULL;
4771
4772 vm_pageout_state.vm_pageout_swap_wait = 0;
4773 vm_pageout_state.vm_pageout_idle_wait = 0;
4774 vm_pageout_state.vm_pageout_empty_wait = 0;
4775 vm_pageout_state.vm_pageout_burst_wait = 0;
4776 vm_pageout_state.vm_pageout_deadlock_wait = 0;
4777 vm_pageout_state.vm_pageout_deadlock_relief = 0;
4778 vm_pageout_state.vm_pageout_burst_inactive_throttle = 0;
4779
4780 vm_pageout_state.vm_pageout_inactive = 0;
4781 vm_pageout_state.vm_pageout_inactive_used = 0;
4782 vm_pageout_state.vm_pageout_inactive_clean = 0;
4783
4784 vm_pageout_state.vm_memory_pressure = 0;
4785 vm_pageout_state.vm_page_filecache_min = 0;
4786 #if CONFIG_JETSAM
4787 vm_pageout_state.vm_page_filecache_min_divisor = 70;
4788 vm_pageout_state.vm_page_xpmapped_min_divisor = 40;
4789 #else
4790 vm_pageout_state.vm_page_filecache_min_divisor = 27;
4791 vm_pageout_state.vm_page_xpmapped_min_divisor = 36;
4792 #endif
4793 vm_pageout_state.vm_page_free_count_init = vm_page_free_count;
4794
4795 vm_pageout_state.vm_pageout_considered_page_last = 0;
4796
4797 if (vm_pageout_state.vm_pageout_swap_wait == 0) {
4798 vm_pageout_state.vm_pageout_swap_wait = VM_PAGEOUT_SWAP_WAIT;
4799 }
4800
4801 if (vm_pageout_state.vm_pageout_idle_wait == 0) {
4802 vm_pageout_state.vm_pageout_idle_wait = VM_PAGEOUT_IDLE_WAIT;
4803 }
4804
4805 if (vm_pageout_state.vm_pageout_burst_wait == 0) {
4806 vm_pageout_state.vm_pageout_burst_wait = VM_PAGEOUT_BURST_WAIT;
4807 }
4808
4809 if (vm_pageout_state.vm_pageout_empty_wait == 0) {
4810 vm_pageout_state.vm_pageout_empty_wait = VM_PAGEOUT_EMPTY_WAIT;
4811 }
4812
4813 if (vm_pageout_state.vm_pageout_deadlock_wait == 0) {
4814 vm_pageout_state.vm_pageout_deadlock_wait = VM_PAGEOUT_DEADLOCK_WAIT;
4815 }
4816
4817 if (vm_pageout_state.vm_pageout_deadlock_relief == 0) {
4818 vm_pageout_state.vm_pageout_deadlock_relief = VM_PAGEOUT_DEADLOCK_RELIEF;
4819 }
4820
4821 if (vm_pageout_state.vm_pageout_burst_inactive_throttle == 0) {
4822 vm_pageout_state.vm_pageout_burst_inactive_throttle = VM_PAGEOUT_BURST_INACTIVE_THROTTLE;
4823 }
4824 /*
4825 * even if we've already called vm_page_free_reserve
4826 * call it again here to insure that the targets are
4827 * accurately calculated (it uses vm_page_free_count_init)
4828 * calling it with an arg of 0 will not change the reserve
4829 * but will re-calculate free_min and free_target
4830 */
4831 if (vm_page_free_reserved < VM_PAGE_FREE_RESERVED(processor_count)) {
4832 vm_page_free_reserve((VM_PAGE_FREE_RESERVED(processor_count)) - vm_page_free_reserved);
4833 } else {
4834 vm_page_free_reserve(0);
4835 }
4836
4837
4838 vm_page_queue_init(&vm_pageout_queue_external.pgo_pending);
4839 vm_pageout_queue_external.pgo_maxlaundry = VM_PAGE_LAUNDRY_MAX;
4840 vm_pageout_queue_external.pgo_laundry = 0;
4841 vm_pageout_queue_external.pgo_idle = FALSE;
4842 vm_pageout_queue_external.pgo_busy = FALSE;
4843 vm_pageout_queue_external.pgo_throttled = FALSE;
4844 vm_pageout_queue_external.pgo_draining = FALSE;
4845 vm_pageout_queue_external.pgo_lowpriority = FALSE;
4846 vm_pageout_queue_external.pgo_tid = -1;
4847 vm_pageout_queue_external.pgo_inited = FALSE;
4848
4849 vm_page_queue_init(&vm_pageout_queue_internal.pgo_pending);
4850 vm_pageout_queue_internal.pgo_maxlaundry = 0;
4851 vm_pageout_queue_internal.pgo_laundry = 0;
4852 vm_pageout_queue_internal.pgo_idle = FALSE;
4853 vm_pageout_queue_internal.pgo_busy = FALSE;
4854 vm_pageout_queue_internal.pgo_throttled = FALSE;
4855 vm_pageout_queue_internal.pgo_draining = FALSE;
4856 vm_pageout_queue_internal.pgo_lowpriority = FALSE;
4857 vm_pageout_queue_internal.pgo_tid = -1;
4858 vm_pageout_queue_internal.pgo_inited = FALSE;
4859
4860 /* internal pageout thread started when default pager registered first time */
4861 /* external pageout and garbage collection threads started here */
4862
4863 result = kernel_thread_start_priority((thread_continue_t)vm_pageout_iothread_external, NULL,
4864 BASEPRI_VM,
4865 &vm_pageout_state.vm_pageout_external_iothread);
4866 if (result != KERN_SUCCESS) {
4867 panic("vm_pageout_iothread_external: create failed");
4868 }
4869 thread_set_thread_name(vm_pageout_state.vm_pageout_external_iothread, "VM_pageout_external_iothread");
4870 thread_deallocate(vm_pageout_state.vm_pageout_external_iothread);
4871
4872 result = kernel_thread_create((thread_continue_t)vm_pageout_garbage_collect, NULL,
4873 BASEPRI_DEFAULT,
4874 &thread);
4875 if (result != KERN_SUCCESS) {
4876 panic("vm_pageout_garbage_collect: create failed");
4877 }
4878 thread_set_thread_name(thread, "VM_pageout_garbage_collect");
4879 if (thread->reserved_stack == 0) {
4880 assert(thread->kernel_stack);
4881 thread->reserved_stack = thread->kernel_stack;
4882 }
4883
4884 thread_mtx_lock(thread);
4885 thread_start(thread);
4886 thread_mtx_unlock(thread);
4887
4888 thread_deallocate(thread);
4889
4890 #if VM_PRESSURE_EVENTS
4891 result = kernel_thread_start_priority((thread_continue_t)vm_pressure_thread, NULL,
4892 BASEPRI_DEFAULT,
4893 &thread);
4894
4895 if (result != KERN_SUCCESS) {
4896 panic("vm_pressure_thread: create failed");
4897 }
4898
4899 thread_deallocate(thread);
4900 #endif
4901
4902 vm_object_reaper_init();
4903
4904
4905 bzero(&vm_config, sizeof(vm_config));
4906
4907 switch (vm_compressor_mode) {
4908 case VM_PAGER_DEFAULT:
4909 printf("mapping deprecated VM_PAGER_DEFAULT to VM_PAGER_COMPRESSOR_WITH_SWAP\n");
4910 OS_FALLTHROUGH;
4911
4912 case VM_PAGER_COMPRESSOR_WITH_SWAP:
4913 vm_config.compressor_is_present = TRUE;
4914 vm_config.swap_is_present = TRUE;
4915 vm_config.compressor_is_active = TRUE;
4916 vm_config.swap_is_active = TRUE;
4917 break;
4918
4919 case VM_PAGER_COMPRESSOR_NO_SWAP:
4920 vm_config.compressor_is_present = TRUE;
4921 vm_config.swap_is_present = TRUE;
4922 vm_config.compressor_is_active = TRUE;
4923 break;
4924
4925 case VM_PAGER_FREEZER_DEFAULT:
4926 printf("mapping deprecated VM_PAGER_FREEZER_DEFAULT to VM_PAGER_FREEZER_COMPRESSOR_NO_SWAP\n");
4927 OS_FALLTHROUGH;
4928
4929 case VM_PAGER_FREEZER_COMPRESSOR_NO_SWAP:
4930 vm_config.compressor_is_present = TRUE;
4931 vm_config.swap_is_present = TRUE;
4932 break;
4933
4934 case VM_PAGER_COMPRESSOR_NO_SWAP_PLUS_FREEZER_COMPRESSOR_WITH_SWAP:
4935 vm_config.compressor_is_present = TRUE;
4936 vm_config.swap_is_present = TRUE;
4937 vm_config.compressor_is_active = TRUE;
4938 vm_config.freezer_swap_is_active = TRUE;
4939 break;
4940
4941 case VM_PAGER_NOT_CONFIGURED:
4942 break;
4943
4944 default:
4945 printf("unknown compressor mode - %x\n", vm_compressor_mode);
4946 break;
4947 }
4948 if (VM_CONFIG_COMPRESSOR_IS_PRESENT) {
4949 vm_compressor_pager_init();
4950 }
4951
4952 #if VM_PRESSURE_EVENTS
4953 vm_pressure_events_enabled = TRUE;
4954 #endif /* VM_PRESSURE_EVENTS */
4955
4956 #if CONFIG_PHANTOM_CACHE
4957 vm_phantom_cache_init();
4958 #endif
4959 #if VM_PAGE_BUCKETS_CHECK
4960 #if VM_PAGE_FAKE_BUCKETS
4961 printf("**** DEBUG: protecting fake buckets [0x%llx:0x%llx]\n",
4962 (uint64_t) vm_page_fake_buckets_start,
4963 (uint64_t) vm_page_fake_buckets_end);
4964 pmap_protect(kernel_pmap,
4965 vm_page_fake_buckets_start,
4966 vm_page_fake_buckets_end,
4967 VM_PROT_READ);
4968 // *(char *) vm_page_fake_buckets_start = 'x'; /* panic! */
4969 #endif /* VM_PAGE_FAKE_BUCKETS */
4970 #endif /* VM_PAGE_BUCKETS_CHECK */
4971
4972 #if VM_OBJECT_TRACKING
4973 vm_object_tracking_init();
4974 #endif /* VM_OBJECT_TRACKING */
4975
4976 vm_pageout_continue();
4977
4978 /*
4979 * Unreached code!
4980 *
4981 * The vm_pageout_continue() call above never returns, so the code below is never
4982 * executed. We take advantage of this to declare several DTrace VM related probe
4983 * points that our kernel doesn't have an analog for. These are probe points that
4984 * exist in Solaris and are in the DTrace documentation, so people may have written
4985 * scripts that use them. Declaring the probe points here means their scripts will
4986 * compile and execute which we want for portability of the scripts, but since this
4987 * section of code is never reached, the probe points will simply never fire. Yes,
4988 * this is basically a hack. The problem is the DTrace probe points were chosen with
4989 * Solaris specific VM events in mind, not portability to different VM implementations.
4990 */
4991
4992 DTRACE_VM2(execfree, int, 1, (uint64_t *), NULL);
4993 DTRACE_VM2(execpgin, int, 1, (uint64_t *), NULL);
4994 DTRACE_VM2(execpgout, int, 1, (uint64_t *), NULL);
4995 DTRACE_VM2(pgswapin, int, 1, (uint64_t *), NULL);
4996 DTRACE_VM2(pgswapout, int, 1, (uint64_t *), NULL);
4997 DTRACE_VM2(swapin, int, 1, (uint64_t *), NULL);
4998 DTRACE_VM2(swapout, int, 1, (uint64_t *), NULL);
4999 /*NOTREACHED*/
5000 }
5001
5002
5003
5004 kern_return_t
5005 vm_pageout_internal_start(void)
5006 {
5007 kern_return_t result;
5008 host_basic_info_data_t hinfo;
5009 vm_offset_t buf, bufsize;
5010
5011 assert(VM_CONFIG_COMPRESSOR_IS_PRESENT);
5012
5013 mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT;
5014 #define BSD_HOST 1
5015 host_info((host_t)BSD_HOST, HOST_BASIC_INFO, (host_info_t)&hinfo, &count);
5016
5017 assert(hinfo.max_cpus > 0);
5018
5019 #if !XNU_TARGET_OS_OSX
5020 vm_pageout_state.vm_compressor_thread_count = 1;
5021 #else /* !XNU_TARGET_OS_OSX */
5022 if (hinfo.max_cpus > 4) {
5023 vm_pageout_state.vm_compressor_thread_count = 2;
5024 } else {
5025 vm_pageout_state.vm_compressor_thread_count = 1;
5026 }
5027 #endif /* !XNU_TARGET_OS_OSX */
5028 PE_parse_boot_argn("vmcomp_threads", &vm_pageout_state.vm_compressor_thread_count,
5029 sizeof(vm_pageout_state.vm_compressor_thread_count));
5030
5031 #if __AMP__
5032 PE_parse_boot_argn("vmcomp_ecluster", &vm_compressor_ebound, sizeof(vm_compressor_ebound));
5033 if (vm_compressor_ebound) {
5034 vm_pageout_state.vm_compressor_thread_count = 2;
5035 }
5036 #endif
5037 if (vm_pageout_state.vm_compressor_thread_count >= hinfo.max_cpus) {
5038 vm_pageout_state.vm_compressor_thread_count = hinfo.max_cpus - 1;
5039 }
5040 if (vm_pageout_state.vm_compressor_thread_count <= 0) {
5041 vm_pageout_state.vm_compressor_thread_count = 1;
5042 } else if (vm_pageout_state.vm_compressor_thread_count > MAX_COMPRESSOR_THREAD_COUNT) {
5043 vm_pageout_state.vm_compressor_thread_count = MAX_COMPRESSOR_THREAD_COUNT;
5044 }
5045
5046 vm_pageout_queue_internal.pgo_maxlaundry =
5047 (vm_pageout_state.vm_compressor_thread_count * 4) * VM_PAGE_LAUNDRY_MAX;
5048
5049 PE_parse_boot_argn("vmpgoi_maxlaundry",
5050 &vm_pageout_queue_internal.pgo_maxlaundry,
5051 sizeof(vm_pageout_queue_internal.pgo_maxlaundry));
5052
5053 bufsize = COMPRESSOR_SCRATCH_BUF_SIZE;
5054 if (kernel_memory_allocate(kernel_map, &buf,
5055 bufsize * vm_pageout_state.vm_compressor_thread_count,
5056 0, KMA_KOBJECT | KMA_PERMANENT, VM_KERN_MEMORY_COMPRESSOR)) {
5057 panic("vm_pageout_internal_start: Unable to allocate %zd bytes",
5058 (size_t)(bufsize * vm_pageout_state.vm_compressor_thread_count));
5059 }
5060
5061 for (int i = 0; i < vm_pageout_state.vm_compressor_thread_count; i++) {
5062 ciq[i].id = i;
5063 ciq[i].q = &vm_pageout_queue_internal;
5064 ciq[i].current_chead = NULL;
5065 ciq[i].scratch_buf = (char *)(buf + i * bufsize);
5066
5067 result = kernel_thread_start_priority((thread_continue_t)vm_pageout_iothread_internal,
5068 (void *)&ciq[i], BASEPRI_VM,
5069 &vm_pageout_state.vm_pageout_internal_iothread);
5070
5071 if (result == KERN_SUCCESS) {
5072 thread_deallocate(vm_pageout_state.vm_pageout_internal_iothread);
5073 } else {
5074 break;
5075 }
5076 }
5077 return result;
5078 }
5079
5080 #if CONFIG_IOSCHED
5081 /*
5082 * To support I/O Expedite for compressed files we mark the upls with special flags.
5083 * The way decmpfs works is that we create a big upl which marks all the pages needed to
5084 * represent the compressed file as busy. We tag this upl with the flag UPL_DECMP_REQ. Decmpfs
5085 * then issues smaller I/Os for compressed I/Os, deflates them and puts the data into the pages
5086 * being held in the big original UPL. We mark each of these smaller UPLs with the flag
5087 * UPL_DECMP_REAL_IO. Any outstanding real I/O UPL is tracked by the big req upl using the
5088 * decmp_io_upl field (in the upl structure). This link is protected in the forward direction
5089 * by the req upl lock (the reverse link doesnt need synch. since we never inspect this link
5090 * unless the real I/O upl is being destroyed).
5091 */
5092
5093
5094 static void
5095 upl_set_decmp_info(upl_t upl, upl_t src_upl)
5096 {
5097 assert((src_upl->flags & UPL_DECMP_REQ) != 0);
5098
5099 upl_lock(src_upl);
5100 if (src_upl->decmp_io_upl) {
5101 /*
5102 * If there is already an alive real I/O UPL, ignore this new UPL.
5103 * This case should rarely happen and even if it does, it just means
5104 * that we might issue a spurious expedite which the driver is expected
5105 * to handle.
5106 */
5107 upl_unlock(src_upl);
5108 return;
5109 }
5110 src_upl->decmp_io_upl = (void *)upl;
5111 src_upl->ref_count++;
5112
5113 upl->flags |= UPL_DECMP_REAL_IO;
5114 upl->decmp_io_upl = (void *)src_upl;
5115 upl_unlock(src_upl);
5116 }
5117 #endif /* CONFIG_IOSCHED */
5118
5119 #if UPL_DEBUG
5120 int upl_debug_enabled = 1;
5121 #else
5122 int upl_debug_enabled = 0;
5123 #endif
5124
5125 static upl_t
5126 upl_create(int type, int flags, upl_size_t size)
5127 {
5128 upl_t upl;
5129 vm_size_t page_field_size = 0;
5130 int upl_flags = 0;
5131 vm_size_t upl_size = sizeof(struct upl);
5132
5133 assert(page_aligned(size));
5134
5135 size = round_page_32(size);
5136
5137 if (type & UPL_CREATE_LITE) {
5138 page_field_size = (atop(size) + 7) >> 3;
5139 page_field_size = (page_field_size + 3) & 0xFFFFFFFC;
5140
5141 upl_flags |= UPL_LITE;
5142 }
5143 if (type & UPL_CREATE_INTERNAL) {
5144 upl_size += sizeof(struct upl_page_info) * atop(size);
5145
5146 upl_flags |= UPL_INTERNAL;
5147 }
5148 upl = (upl_t)kalloc(upl_size + page_field_size);
5149
5150 if (page_field_size) {
5151 bzero((char *)upl + upl_size, page_field_size);
5152 }
5153
5154 upl->flags = upl_flags | flags;
5155 upl->kaddr = (vm_offset_t)0;
5156 upl->u_offset = 0;
5157 upl->u_size = 0;
5158 upl->map_object = NULL;
5159 upl->ref_count = 1;
5160 upl->ext_ref_count = 0;
5161 upl->highest_page = 0;
5162 upl_lock_init(upl);
5163 upl->vector_upl = NULL;
5164 upl->associated_upl = NULL;
5165 upl->upl_iodone = NULL;
5166 #if CONFIG_IOSCHED
5167 if (type & UPL_CREATE_IO_TRACKING) {
5168 upl->upl_priority = proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO);
5169 }
5170
5171 upl->upl_reprio_info = 0;
5172 upl->decmp_io_upl = 0;
5173 if ((type & UPL_CREATE_INTERNAL) && (type & UPL_CREATE_EXPEDITE_SUP)) {
5174 /* Only support expedite on internal UPLs */
5175 thread_t curthread = current_thread();
5176 upl->upl_reprio_info = (uint64_t *)kalloc(sizeof(uint64_t) * atop(size));
5177 bzero(upl->upl_reprio_info, (sizeof(uint64_t) * atop(size)));
5178 upl->flags |= UPL_EXPEDITE_SUPPORTED;
5179 if (curthread->decmp_upl != NULL) {
5180 upl_set_decmp_info(upl, curthread->decmp_upl);
5181 }
5182 }
5183 #endif
5184 #if CONFIG_IOSCHED || UPL_DEBUG
5185 if ((type & UPL_CREATE_IO_TRACKING) || upl_debug_enabled) {
5186 upl->upl_creator = current_thread();
5187 upl->uplq.next = 0;
5188 upl->uplq.prev = 0;
5189 upl->flags |= UPL_TRACKED_BY_OBJECT;
5190 }
5191 #endif
5192
5193 #if UPL_DEBUG
5194 upl->ubc_alias1 = 0;
5195 upl->ubc_alias2 = 0;
5196
5197 upl->upl_state = 0;
5198 upl->upl_commit_index = 0;
5199 bzero(&upl->upl_commit_records[0], sizeof(upl->upl_commit_records));
5200
5201 (void) OSBacktrace(&upl->upl_create_retaddr[0], UPL_DEBUG_STACK_FRAMES);
5202 #endif /* UPL_DEBUG */
5203
5204 return upl;
5205 }
5206
5207 static void
5208 upl_destroy(upl_t upl)
5209 {
5210 int page_field_size; /* bit field in word size buf */
5211 int size;
5212
5213 // DEBUG4K_UPL("upl %p (u_offset 0x%llx u_size 0x%llx) object %p\n", upl, (uint64_t)upl->u_offset, (uint64_t)upl->u_size, upl->map_object);
5214
5215 if (upl->ext_ref_count) {
5216 panic("upl(%p) ext_ref_count", upl);
5217 }
5218
5219 #if CONFIG_IOSCHED
5220 if ((upl->flags & UPL_DECMP_REAL_IO) && upl->decmp_io_upl) {
5221 upl_t src_upl;
5222 src_upl = upl->decmp_io_upl;
5223 assert((src_upl->flags & UPL_DECMP_REQ) != 0);
5224 upl_lock(src_upl);
5225 src_upl->decmp_io_upl = NULL;
5226 upl_unlock(src_upl);
5227 upl_deallocate(src_upl);
5228 }
5229 #endif /* CONFIG_IOSCHED */
5230
5231 #if CONFIG_IOSCHED || UPL_DEBUG
5232 if (((upl->flags & UPL_TRACKED_BY_OBJECT) || upl_debug_enabled) &&
5233 !(upl->flags & UPL_VECTOR)) {
5234 vm_object_t object;
5235
5236 if (upl->flags & UPL_SHADOWED) {
5237 object = upl->map_object->shadow;
5238 } else {
5239 object = upl->map_object;
5240 }
5241
5242 vm_object_lock(object);
5243 queue_remove(&object->uplq, upl, upl_t, uplq);
5244 vm_object_activity_end(object);
5245 vm_object_collapse(object, 0, TRUE);
5246 vm_object_unlock(object);
5247 }
5248 #endif
5249 /*
5250 * drop a reference on the map_object whether or
5251 * not a pageout object is inserted
5252 */
5253 if (upl->flags & UPL_SHADOWED) {
5254 vm_object_deallocate(upl->map_object);
5255 }
5256
5257 if (upl->flags & UPL_DEVICE_MEMORY) {
5258 size = PAGE_SIZE;
5259 } else {
5260 size = upl_adjusted_size(upl, PAGE_MASK);
5261 }
5262 page_field_size = 0;
5263
5264 if (upl->flags & UPL_LITE) {
5265 page_field_size = ((size / PAGE_SIZE) + 7) >> 3;
5266 page_field_size = (page_field_size + 3) & 0xFFFFFFFC;
5267 }
5268 upl_lock_destroy(upl);
5269 upl->vector_upl = (vector_upl_t) 0xfeedbeef;
5270
5271 #if CONFIG_IOSCHED
5272 if (upl->flags & UPL_EXPEDITE_SUPPORTED) {
5273 kfree(upl->upl_reprio_info, sizeof(uint64_t) * (size / PAGE_SIZE));
5274 }
5275 #endif
5276
5277 if (upl->flags & UPL_INTERNAL) {
5278 kfree(upl,
5279 sizeof(struct upl) +
5280 (sizeof(struct upl_page_info) * (size / PAGE_SIZE))
5281 + page_field_size);
5282 } else {
5283 kfree(upl, sizeof(struct upl) + page_field_size);
5284 }
5285 }
5286
5287 void
5288 upl_deallocate(upl_t upl)
5289 {
5290 upl_lock(upl);
5291
5292 if (--upl->ref_count == 0) {
5293 if (vector_upl_is_valid(upl)) {
5294 vector_upl_deallocate(upl);
5295 }
5296 upl_unlock(upl);
5297
5298 if (upl->upl_iodone) {
5299 upl_callout_iodone(upl);
5300 }
5301
5302 upl_destroy(upl);
5303 } else {
5304 upl_unlock(upl);
5305 }
5306 }
5307
5308 #if CONFIG_IOSCHED
5309 void
5310 upl_mark_decmp(upl_t upl)
5311 {
5312 if (upl->flags & UPL_TRACKED_BY_OBJECT) {
5313 upl->flags |= UPL_DECMP_REQ;
5314 upl->upl_creator->decmp_upl = (void *)upl;
5315 }
5316 }
5317
5318 void
5319 upl_unmark_decmp(upl_t upl)
5320 {
5321 if (upl && (upl->flags & UPL_DECMP_REQ)) {
5322 upl->upl_creator->decmp_upl = NULL;
5323 }
5324 }
5325
5326 #endif /* CONFIG_IOSCHED */
5327
5328 #define VM_PAGE_Q_BACKING_UP(q) \
5329 ((q)->pgo_laundry >= (((q)->pgo_maxlaundry * 8) / 10))
5330
5331 boolean_t must_throttle_writes(void);
5332
5333 boolean_t
5334 must_throttle_writes()
5335 {
5336 if (VM_PAGE_Q_BACKING_UP(&vm_pageout_queue_external) &&
5337 vm_page_pageable_external_count > (AVAILABLE_NON_COMPRESSED_MEMORY * 6) / 10) {
5338 return TRUE;
5339 }
5340
5341 return FALSE;
5342 }
5343
5344 #define MIN_DELAYED_WORK_CTX_ALLOCATED (16)
5345 #define MAX_DELAYED_WORK_CTX_ALLOCATED (512)
5346
5347 int vm_page_delayed_work_ctx_needed = 0;
5348 SECURITY_READ_ONLY_LATE(zone_t) dw_ctx_zone;
5349
5350 void
5351 vm_page_delayed_work_init_ctx(void)
5352 {
5353 size_t elem_size = sizeof(struct vm_page_delayed_work_ctx);
5354
5355 dw_ctx_zone = zone_create_ext("delayed-work-ctx", elem_size,
5356 ZC_NOGC, ZONE_ID_ANY, ^(zone_t z) {
5357 zone_set_exhaustible(z, MAX_DELAYED_WORK_CTX_ALLOCATED);
5358 });
5359
5360 zone_fill_initially(dw_ctx_zone, MIN_DELAYED_WORK_CTX_ALLOCATED);
5361 }
5362
5363 struct vm_page_delayed_work*
5364 vm_page_delayed_work_get_ctx(void)
5365 {
5366 struct vm_page_delayed_work_ctx * dw_ctx = NULL;
5367
5368 dw_ctx = (struct vm_page_delayed_work_ctx*) zalloc_noblock(dw_ctx_zone);
5369
5370 if (dw_ctx) {
5371 dw_ctx->delayed_owner = current_thread();
5372 } else {
5373 vm_page_delayed_work_ctx_needed++;
5374 }
5375 return dw_ctx ? dw_ctx->dwp : NULL;
5376 }
5377
5378 void
5379 vm_page_delayed_work_finish_ctx(struct vm_page_delayed_work* dwp)
5380 {
5381 struct vm_page_delayed_work_ctx *ldw_ctx;
5382
5383 ldw_ctx = (struct vm_page_delayed_work_ctx *)dwp;
5384 ldw_ctx->delayed_owner = NULL;
5385
5386 zfree(dw_ctx_zone, ldw_ctx);
5387 }
5388
5389 /*
5390 * Routine: vm_object_upl_request
5391 * Purpose:
5392 * Cause the population of a portion of a vm_object.
5393 * Depending on the nature of the request, the pages
5394 * returned may be contain valid data or be uninitialized.
5395 * A page list structure, listing the physical pages
5396 * will be returned upon request.
5397 * This function is called by the file system or any other
5398 * supplier of backing store to a pager.
5399 * IMPORTANT NOTE: The caller must still respect the relationship
5400 * between the vm_object and its backing memory object. The
5401 * caller MUST NOT substitute changes in the backing file
5402 * without first doing a memory_object_lock_request on the
5403 * target range unless it is know that the pages are not
5404 * shared with another entity at the pager level.
5405 * Copy_in_to:
5406 * if a page list structure is present
5407 * return the mapped physical pages, where a
5408 * page is not present, return a non-initialized
5409 * one. If the no_sync bit is turned on, don't
5410 * call the pager unlock to synchronize with other
5411 * possible copies of the page. Leave pages busy
5412 * in the original object, if a page list structure
5413 * was specified. When a commit of the page list
5414 * pages is done, the dirty bit will be set for each one.
5415 * Copy_out_from:
5416 * If a page list structure is present, return
5417 * all mapped pages. Where a page does not exist
5418 * map a zero filled one. Leave pages busy in
5419 * the original object. If a page list structure
5420 * is not specified, this call is a no-op.
5421 *
5422 * Note: access of default pager objects has a rather interesting
5423 * twist. The caller of this routine, presumably the file system
5424 * page cache handling code, will never actually make a request
5425 * against a default pager backed object. Only the default
5426 * pager will make requests on backing store related vm_objects
5427 * In this way the default pager can maintain the relationship
5428 * between backing store files (abstract memory objects) and
5429 * the vm_objects (cache objects), they support.
5430 *
5431 */
5432
5433 __private_extern__ kern_return_t
5434 vm_object_upl_request(
5435 vm_object_t object,
5436 vm_object_offset_t offset,
5437 upl_size_t size,
5438 upl_t *upl_ptr,
5439 upl_page_info_array_t user_page_list,
5440 unsigned int *page_list_count,
5441 upl_control_flags_t cntrl_flags,
5442 vm_tag_t tag)
5443 {
5444 vm_page_t dst_page = VM_PAGE_NULL;
5445 vm_object_offset_t dst_offset;
5446 upl_size_t xfer_size;
5447 unsigned int size_in_pages;
5448 boolean_t dirty;
5449 boolean_t hw_dirty;
5450 upl_t upl = NULL;
5451 unsigned int entry;
5452 vm_page_t alias_page = NULL;
5453 int refmod_state = 0;
5454 wpl_array_t lite_list = NULL;
5455 vm_object_t last_copy_object;
5456 struct vm_page_delayed_work dw_array;
5457 struct vm_page_delayed_work *dwp, *dwp_start;
5458 bool dwp_finish_ctx = TRUE;
5459 int dw_count;
5460 int dw_limit;
5461 int io_tracking_flag = 0;
5462 int grab_options;
5463 int page_grab_count = 0;
5464 ppnum_t phys_page;
5465 pmap_flush_context pmap_flush_context_storage;
5466 boolean_t pmap_flushes_delayed = FALSE;
5467 #if DEVELOPMENT || DEBUG
5468 task_t task = current_task();
5469 #endif /* DEVELOPMENT || DEBUG */
5470
5471 dwp_start = dwp = NULL;
5472
5473 if (cntrl_flags & ~UPL_VALID_FLAGS) {
5474 /*
5475 * For forward compatibility's sake,
5476 * reject any unknown flag.
5477 */
5478 return KERN_INVALID_VALUE;
5479 }
5480 if ((!object->internal) && (object->paging_offset != 0)) {
5481 panic("vm_object_upl_request: external object with non-zero paging offset\n");
5482 }
5483 if (object->phys_contiguous) {
5484 panic("vm_object_upl_request: contiguous object specified\n");
5485 }
5486
5487 assertf(page_aligned(offset) && page_aligned(size),
5488 "offset 0x%llx size 0x%x",
5489 offset, size);
5490
5491 VM_DEBUG_CONSTANT_EVENT(vm_object_upl_request, VM_UPL_REQUEST, DBG_FUNC_START, size, cntrl_flags, 0, 0);
5492
5493 dw_count = 0;
5494 dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
5495 dwp_start = vm_page_delayed_work_get_ctx();
5496 if (dwp_start == NULL) {
5497 dwp_start = &dw_array;
5498 dw_limit = 1;
5499 dwp_finish_ctx = FALSE;
5500 }
5501
5502 dwp = dwp_start;
5503
5504 if (size > MAX_UPL_SIZE_BYTES) {
5505 size = MAX_UPL_SIZE_BYTES;
5506 }
5507
5508 if ((cntrl_flags & UPL_SET_INTERNAL) && page_list_count != NULL) {
5509 *page_list_count = MAX_UPL_SIZE_BYTES >> PAGE_SHIFT;
5510 }
5511
5512 #if CONFIG_IOSCHED || UPL_DEBUG
5513 if (object->io_tracking || upl_debug_enabled) {
5514 io_tracking_flag |= UPL_CREATE_IO_TRACKING;
5515 }
5516 #endif
5517 #if CONFIG_IOSCHED
5518 if (object->io_tracking) {
5519 io_tracking_flag |= UPL_CREATE_EXPEDITE_SUP;
5520 }
5521 #endif
5522
5523 if (cntrl_flags & UPL_SET_INTERNAL) {
5524 if (cntrl_flags & UPL_SET_LITE) {
5525 upl = upl_create(UPL_CREATE_INTERNAL | UPL_CREATE_LITE | io_tracking_flag, 0, size);
5526
5527 user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
5528 lite_list = (wpl_array_t)
5529 (((uintptr_t)user_page_list) +
5530 ((size / PAGE_SIZE) * sizeof(upl_page_info_t)));
5531 if (size == 0) {
5532 user_page_list = NULL;
5533 lite_list = NULL;
5534 }
5535 } else {
5536 upl = upl_create(UPL_CREATE_INTERNAL | io_tracking_flag, 0, size);
5537
5538 user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
5539 if (size == 0) {
5540 user_page_list = NULL;
5541 }
5542 }
5543 } else {
5544 if (cntrl_flags & UPL_SET_LITE) {
5545 upl = upl_create(UPL_CREATE_EXTERNAL | UPL_CREATE_LITE | io_tracking_flag, 0, size);
5546
5547 lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl));
5548 if (size == 0) {
5549 lite_list = NULL;
5550 }
5551 } else {
5552 upl = upl_create(UPL_CREATE_EXTERNAL | io_tracking_flag, 0, size);
5553 }
5554 }
5555 *upl_ptr = upl;
5556
5557 if (user_page_list) {
5558 user_page_list[0].device = FALSE;
5559 }
5560
5561 if (cntrl_flags & UPL_SET_LITE) {
5562 upl->map_object = object;
5563 } else {
5564 upl->map_object = vm_object_allocate(size);
5565 /*
5566 * No neeed to lock the new object: nobody else knows
5567 * about it yet, so it's all ours so far.
5568 */
5569 upl->map_object->shadow = object;
5570 upl->map_object->pageout = TRUE;
5571 upl->map_object->can_persist = FALSE;
5572 upl->map_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
5573 upl->map_object->vo_shadow_offset = offset;
5574 upl->map_object->wimg_bits = object->wimg_bits;
5575 assertf(page_aligned(upl->map_object->vo_shadow_offset),
5576 "object %p shadow_offset 0x%llx",
5577 upl->map_object, upl->map_object->vo_shadow_offset);
5578
5579 alias_page = vm_page_grab_fictitious(TRUE);
5580
5581 upl->flags |= UPL_SHADOWED;
5582 }
5583 if (cntrl_flags & UPL_FOR_PAGEOUT) {
5584 upl->flags |= UPL_PAGEOUT;
5585 }
5586
5587 vm_object_lock(object);
5588 vm_object_activity_begin(object);
5589
5590 grab_options = 0;
5591 #if CONFIG_SECLUDED_MEMORY
5592 if (object->can_grab_secluded) {
5593 grab_options |= VM_PAGE_GRAB_SECLUDED;
5594 }
5595 #endif /* CONFIG_SECLUDED_MEMORY */
5596
5597 /*
5598 * we can lock in the paging_offset once paging_in_progress is set
5599 */
5600 upl->u_size = size;
5601 upl->u_offset = offset + object->paging_offset;
5602
5603 #if CONFIG_IOSCHED || UPL_DEBUG
5604 if (object->io_tracking || upl_debug_enabled) {
5605 vm_object_activity_begin(object);
5606 queue_enter(&object->uplq, upl, upl_t, uplq);
5607 }
5608 #endif
5609 if ((cntrl_flags & UPL_WILL_MODIFY) && object->copy != VM_OBJECT_NULL) {
5610 /*
5611 * Honor copy-on-write obligations
5612 *
5613 * The caller is gathering these pages and
5614 * might modify their contents. We need to
5615 * make sure that the copy object has its own
5616 * private copies of these pages before we let
5617 * the caller modify them.
5618 */
5619 vm_object_update(object,
5620 offset,
5621 size,
5622 NULL,
5623 NULL,
5624 FALSE, /* should_return */
5625 MEMORY_OBJECT_COPY_SYNC,
5626 VM_PROT_NO_CHANGE);
5627
5628 VM_PAGEOUT_DEBUG(upl_cow, 1);
5629 VM_PAGEOUT_DEBUG(upl_cow_pages, (size >> PAGE_SHIFT));
5630 }
5631 /*
5632 * remember which copy object we synchronized with
5633 */
5634 last_copy_object = object->copy;
5635 entry = 0;
5636
5637 xfer_size = size;
5638 dst_offset = offset;
5639 size_in_pages = size / PAGE_SIZE;
5640
5641 if (vm_page_free_count > (vm_page_free_target + size_in_pages) ||
5642 object->resident_page_count < ((MAX_UPL_SIZE_BYTES * 2) >> PAGE_SHIFT)) {
5643 object->scan_collisions = 0;
5644 }
5645
5646 if ((cntrl_flags & UPL_WILL_MODIFY) && must_throttle_writes() == TRUE) {
5647 boolean_t isSSD = FALSE;
5648
5649 #if !XNU_TARGET_OS_OSX
5650 isSSD = TRUE;
5651 #else /* !XNU_TARGET_OS_OSX */
5652 vnode_pager_get_isSSD(object->pager, &isSSD);
5653 #endif /* !XNU_TARGET_OS_OSX */
5654 vm_object_unlock(object);
5655
5656 OSAddAtomic(size_in_pages, &vm_upl_wait_for_pages);
5657
5658 if (isSSD == TRUE) {
5659 delay(1000 * size_in_pages);
5660 } else {
5661 delay(5000 * size_in_pages);
5662 }
5663 OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages);
5664
5665 vm_object_lock(object);
5666 }
5667
5668 while (xfer_size) {
5669 dwp->dw_mask = 0;
5670
5671 if ((alias_page == NULL) && !(cntrl_flags & UPL_SET_LITE)) {
5672 vm_object_unlock(object);
5673 alias_page = vm_page_grab_fictitious(TRUE);
5674 vm_object_lock(object);
5675 }
5676 if (cntrl_flags & UPL_COPYOUT_FROM) {
5677 upl->flags |= UPL_PAGE_SYNC_DONE;
5678
5679 if (((dst_page = vm_page_lookup(object, dst_offset)) == VM_PAGE_NULL) ||
5680 dst_page->vmp_fictitious ||
5681 dst_page->vmp_absent ||
5682 dst_page->vmp_error ||
5683 dst_page->vmp_cleaning ||
5684 (VM_PAGE_WIRED(dst_page))) {
5685 if (user_page_list) {
5686 user_page_list[entry].phys_addr = 0;
5687 }
5688
5689 goto try_next_page;
5690 }
5691 phys_page = VM_PAGE_GET_PHYS_PAGE(dst_page);
5692
5693 /*
5694 * grab this up front...
5695 * a high percentange of the time we're going to
5696 * need the hardware modification state a bit later
5697 * anyway... so we can eliminate an extra call into
5698 * the pmap layer by grabbing it here and recording it
5699 */
5700 if (dst_page->vmp_pmapped) {
5701 refmod_state = pmap_get_refmod(phys_page);
5702 } else {
5703 refmod_state = 0;
5704 }
5705
5706 if ((refmod_state & VM_MEM_REFERENCED) && VM_PAGE_INACTIVE(dst_page)) {
5707 /*
5708 * page is on inactive list and referenced...
5709 * reactivate it now... this gets it out of the
5710 * way of vm_pageout_scan which would have to
5711 * reactivate it upon tripping over it
5712 */
5713 dwp->dw_mask |= DW_vm_page_activate;
5714 }
5715 if (cntrl_flags & UPL_RET_ONLY_DIRTY) {
5716 /*
5717 * we're only asking for DIRTY pages to be returned
5718 */
5719 if (dst_page->vmp_laundry || !(cntrl_flags & UPL_FOR_PAGEOUT)) {
5720 /*
5721 * if we were the page stolen by vm_pageout_scan to be
5722 * cleaned (as opposed to a buddy being clustered in
5723 * or this request is not being driven by a PAGEOUT cluster
5724 * then we only need to check for the page being dirty or
5725 * precious to decide whether to return it
5726 */
5727 if (dst_page->vmp_dirty || dst_page->vmp_precious || (refmod_state & VM_MEM_MODIFIED)) {
5728 goto check_busy;
5729 }
5730 goto dont_return;
5731 }
5732 /*
5733 * this is a request for a PAGEOUT cluster and this page
5734 * is merely along for the ride as a 'buddy'... not only
5735 * does it have to be dirty to be returned, but it also
5736 * can't have been referenced recently...
5737 */
5738 if ((hibernate_cleaning_in_progress == TRUE ||
5739 (!((refmod_state & VM_MEM_REFERENCED) || dst_page->vmp_reference) ||
5740 (dst_page->vmp_q_state == VM_PAGE_ON_THROTTLED_Q))) &&
5741 ((refmod_state & VM_MEM_MODIFIED) || dst_page->vmp_dirty || dst_page->vmp_precious)) {
5742 goto check_busy;
5743 }
5744 dont_return:
5745 /*
5746 * if we reach here, we're not to return
5747 * the page... go on to the next one
5748 */
5749 if (dst_page->vmp_laundry == TRUE) {
5750 /*
5751 * if we get here, the page is not 'cleaning' (filtered out above).
5752 * since it has been referenced, remove it from the laundry
5753 * so we don't pay the cost of an I/O to clean a page
5754 * we're just going to take back
5755 */
5756 vm_page_lockspin_queues();
5757
5758 vm_pageout_steal_laundry(dst_page, TRUE);
5759 vm_page_activate(dst_page);
5760
5761 vm_page_unlock_queues();
5762 }
5763 if (user_page_list) {
5764 user_page_list[entry].phys_addr = 0;
5765 }
5766
5767 goto try_next_page;
5768 }
5769 check_busy:
5770 if (dst_page->vmp_busy) {
5771 if (cntrl_flags & UPL_NOBLOCK) {
5772 if (user_page_list) {
5773 user_page_list[entry].phys_addr = 0;
5774 }
5775 dwp->dw_mask = 0;
5776
5777 goto try_next_page;
5778 }
5779 /*
5780 * someone else is playing with the
5781 * page. We will have to wait.
5782 */
5783 PAGE_SLEEP(object, dst_page, THREAD_UNINT);
5784
5785 continue;
5786 }
5787 if (dst_page->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) {
5788 vm_page_lockspin_queues();
5789
5790 if (dst_page->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) {
5791 /*
5792 * we've buddied up a page for a clustered pageout
5793 * that has already been moved to the pageout
5794 * queue by pageout_scan... we need to remove
5795 * it from the queue and drop the laundry count
5796 * on that queue
5797 */
5798 vm_pageout_throttle_up(dst_page);
5799 }
5800 vm_page_unlock_queues();
5801 }
5802 hw_dirty = refmod_state & VM_MEM_MODIFIED;
5803 dirty = hw_dirty ? TRUE : dst_page->vmp_dirty;
5804
5805 if (phys_page > upl->highest_page) {
5806 upl->highest_page = phys_page;
5807 }
5808
5809 assert(!pmap_is_noencrypt(phys_page));
5810
5811 if (cntrl_flags & UPL_SET_LITE) {
5812 unsigned int pg_num;
5813
5814 pg_num = (unsigned int) ((dst_offset - offset) / PAGE_SIZE);
5815 assert(pg_num == (dst_offset - offset) / PAGE_SIZE);
5816 lite_list[pg_num >> 5] |= 1U << (pg_num & 31);
5817
5818 if (hw_dirty) {
5819 if (pmap_flushes_delayed == FALSE) {
5820 pmap_flush_context_init(&pmap_flush_context_storage);
5821 pmap_flushes_delayed = TRUE;
5822 }
5823 pmap_clear_refmod_options(phys_page,
5824 VM_MEM_MODIFIED,
5825 PMAP_OPTIONS_NOFLUSH | PMAP_OPTIONS_CLEAR_WRITE,
5826 &pmap_flush_context_storage);
5827 }
5828
5829 /*
5830 * Mark original page as cleaning
5831 * in place.
5832 */
5833 dst_page->vmp_cleaning = TRUE;
5834 dst_page->vmp_precious = FALSE;
5835 } else {
5836 /*
5837 * use pageclean setup, it is more
5838 * convenient even for the pageout
5839 * cases here
5840 */
5841 vm_object_lock(upl->map_object);
5842 vm_pageclean_setup(dst_page, alias_page, upl->map_object, size - xfer_size);
5843 vm_object_unlock(upl->map_object);
5844
5845 alias_page->vmp_absent = FALSE;
5846 alias_page = NULL;
5847 }
5848 if (dirty) {
5849 SET_PAGE_DIRTY(dst_page, FALSE);
5850 } else {
5851 dst_page->vmp_dirty = FALSE;
5852 }
5853
5854 if (!dirty) {
5855 dst_page->vmp_precious = TRUE;
5856 }
5857
5858 if (!(cntrl_flags & UPL_CLEAN_IN_PLACE)) {
5859 if (!VM_PAGE_WIRED(dst_page)) {
5860 dst_page->vmp_free_when_done = TRUE;
5861 }
5862 }
5863 } else {
5864 if ((cntrl_flags & UPL_WILL_MODIFY) && object->copy != last_copy_object) {
5865 /*
5866 * Honor copy-on-write obligations
5867 *
5868 * The copy object has changed since we
5869 * last synchronized for copy-on-write.
5870 * Another copy object might have been
5871 * inserted while we released the object's
5872 * lock. Since someone could have seen the
5873 * original contents of the remaining pages
5874 * through that new object, we have to
5875 * synchronize with it again for the remaining
5876 * pages only. The previous pages are "busy"
5877 * so they can not be seen through the new
5878 * mapping. The new mapping will see our
5879 * upcoming changes for those previous pages,
5880 * but that's OK since they couldn't see what
5881 * was there before. It's just a race anyway
5882 * and there's no guarantee of consistency or
5883 * atomicity. We just don't want new mappings
5884 * to see both the *before* and *after* pages.
5885 */
5886 if (object->copy != VM_OBJECT_NULL) {
5887 vm_object_update(
5888 object,
5889 dst_offset,/* current offset */
5890 xfer_size, /* remaining size */
5891 NULL,
5892 NULL,
5893 FALSE, /* should_return */
5894 MEMORY_OBJECT_COPY_SYNC,
5895 VM_PROT_NO_CHANGE);
5896
5897 VM_PAGEOUT_DEBUG(upl_cow_again, 1);
5898 VM_PAGEOUT_DEBUG(upl_cow_again_pages, (xfer_size >> PAGE_SHIFT));
5899 }
5900 /*
5901 * remember the copy object we synced with
5902 */
5903 last_copy_object = object->copy;
5904 }
5905 dst_page = vm_page_lookup(object, dst_offset);
5906
5907 if (dst_page != VM_PAGE_NULL) {
5908 if ((cntrl_flags & UPL_RET_ONLY_ABSENT)) {
5909 /*
5910 * skip over pages already present in the cache
5911 */
5912 if (user_page_list) {
5913 user_page_list[entry].phys_addr = 0;
5914 }
5915
5916 goto try_next_page;
5917 }
5918 if (dst_page->vmp_fictitious) {
5919 panic("need corner case for fictitious page");
5920 }
5921
5922 if (dst_page->vmp_busy || dst_page->vmp_cleaning) {
5923 /*
5924 * someone else is playing with the
5925 * page. We will have to wait.
5926 */
5927 PAGE_SLEEP(object, dst_page, THREAD_UNINT);
5928
5929 continue;
5930 }
5931 if (dst_page->vmp_laundry) {
5932 vm_pageout_steal_laundry(dst_page, FALSE);
5933 }
5934 } else {
5935 if (object->private) {
5936 /*
5937 * This is a nasty wrinkle for users
5938 * of upl who encounter device or
5939 * private memory however, it is
5940 * unavoidable, only a fault can
5941 * resolve the actual backing
5942 * physical page by asking the
5943 * backing device.
5944 */
5945 if (user_page_list) {
5946 user_page_list[entry].phys_addr = 0;
5947 }
5948
5949 goto try_next_page;
5950 }
5951 if (object->scan_collisions) {
5952 /*
5953 * the pageout_scan thread is trying to steal
5954 * pages from this object, but has run into our
5955 * lock... grab 2 pages from the head of the object...
5956 * the first is freed on behalf of pageout_scan, the
5957 * 2nd is for our own use... we use vm_object_page_grab
5958 * in both cases to avoid taking pages from the free
5959 * list since we are under memory pressure and our
5960 * lock on this object is getting in the way of
5961 * relieving it
5962 */
5963 dst_page = vm_object_page_grab(object);
5964
5965 if (dst_page != VM_PAGE_NULL) {
5966 vm_page_release(dst_page,
5967 FALSE);
5968 }
5969
5970 dst_page = vm_object_page_grab(object);
5971 }
5972 if (dst_page == VM_PAGE_NULL) {
5973 /*
5974 * need to allocate a page
5975 */
5976 dst_page = vm_page_grab_options(grab_options);
5977 if (dst_page != VM_PAGE_NULL) {
5978 page_grab_count++;
5979 }
5980 }
5981 if (dst_page == VM_PAGE_NULL) {
5982 if ((cntrl_flags & (UPL_RET_ONLY_ABSENT | UPL_NOBLOCK)) == (UPL_RET_ONLY_ABSENT | UPL_NOBLOCK)) {
5983 /*
5984 * we don't want to stall waiting for pages to come onto the free list
5985 * while we're already holding absent pages in this UPL
5986 * the caller will deal with the empty slots
5987 */
5988 if (user_page_list) {
5989 user_page_list[entry].phys_addr = 0;
5990 }
5991
5992 goto try_next_page;
5993 }
5994 /*
5995 * no pages available... wait
5996 * then try again for the same
5997 * offset...
5998 */
5999 vm_object_unlock(object);
6000
6001 OSAddAtomic(size_in_pages, &vm_upl_wait_for_pages);
6002
6003 VM_DEBUG_EVENT(vm_upl_page_wait, VM_UPL_PAGE_WAIT, DBG_FUNC_START, vm_upl_wait_for_pages, 0, 0, 0);
6004
6005 VM_PAGE_WAIT();
6006 OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages);
6007
6008 VM_DEBUG_EVENT(vm_upl_page_wait, VM_UPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, 0);
6009
6010 vm_object_lock(object);
6011
6012 continue;
6013 }
6014 vm_page_insert(dst_page, object, dst_offset);
6015
6016 dst_page->vmp_absent = TRUE;
6017 dst_page->vmp_busy = FALSE;
6018
6019 if (cntrl_flags & UPL_RET_ONLY_ABSENT) {
6020 /*
6021 * if UPL_RET_ONLY_ABSENT was specified,
6022 * than we're definitely setting up a
6023 * upl for a clustered read/pagein
6024 * operation... mark the pages as clustered
6025 * so upl_commit_range can put them on the
6026 * speculative list
6027 */
6028 dst_page->vmp_clustered = TRUE;
6029
6030 if (!(cntrl_flags & UPL_FILE_IO)) {
6031 counter_inc(&vm_statistics_pageins);
6032 }
6033 }
6034 }
6035 phys_page = VM_PAGE_GET_PHYS_PAGE(dst_page);
6036
6037 dst_page->vmp_overwriting = TRUE;
6038
6039 if (dst_page->vmp_pmapped) {
6040 if (!(cntrl_flags & UPL_FILE_IO)) {
6041 /*
6042 * eliminate all mappings from the
6043 * original object and its prodigy
6044 */
6045 refmod_state = pmap_disconnect(phys_page);
6046 } else {
6047 refmod_state = pmap_get_refmod(phys_page);
6048 }
6049 } else {
6050 refmod_state = 0;
6051 }
6052
6053 hw_dirty = refmod_state & VM_MEM_MODIFIED;
6054 dirty = hw_dirty ? TRUE : dst_page->vmp_dirty;
6055
6056 if (cntrl_flags & UPL_SET_LITE) {
6057 unsigned int pg_num;
6058
6059 pg_num = (unsigned int) ((dst_offset - offset) / PAGE_SIZE);
6060 assert(pg_num == (dst_offset - offset) / PAGE_SIZE);
6061 lite_list[pg_num >> 5] |= 1U << (pg_num & 31);
6062
6063 if (hw_dirty) {
6064 pmap_clear_modify(phys_page);
6065 }
6066
6067 /*
6068 * Mark original page as cleaning
6069 * in place.
6070 */
6071 dst_page->vmp_cleaning = TRUE;
6072 dst_page->vmp_precious = FALSE;
6073 } else {
6074 /*
6075 * use pageclean setup, it is more
6076 * convenient even for the pageout
6077 * cases here
6078 */
6079 vm_object_lock(upl->map_object);
6080 vm_pageclean_setup(dst_page, alias_page, upl->map_object, size - xfer_size);
6081 vm_object_unlock(upl->map_object);
6082
6083 alias_page->vmp_absent = FALSE;
6084 alias_page = NULL;
6085 }
6086
6087 if (cntrl_flags & UPL_REQUEST_SET_DIRTY) {
6088 upl->flags &= ~UPL_CLEAR_DIRTY;
6089 upl->flags |= UPL_SET_DIRTY;
6090 dirty = TRUE;
6091 /*
6092 * Page belonging to a code-signed object is about to
6093 * be written. Mark it tainted and disconnect it from
6094 * all pmaps so processes have to fault it back in and
6095 * deal with the tainted bit.
6096 */
6097 if (object->code_signed && dst_page->vmp_cs_tainted != VMP_CS_ALL_TRUE) {
6098 dst_page->vmp_cs_tainted = VMP_CS_ALL_TRUE;
6099 vm_page_upl_tainted++;
6100 if (dst_page->vmp_pmapped) {
6101 refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(dst_page));
6102 if (refmod_state & VM_MEM_REFERENCED) {
6103 dst_page->vmp_reference = TRUE;
6104 }
6105 }
6106 }
6107 } else if (cntrl_flags & UPL_CLEAN_IN_PLACE) {
6108 /*
6109 * clean in place for read implies
6110 * that a write will be done on all
6111 * the pages that are dirty before
6112 * a upl commit is done. The caller
6113 * is obligated to preserve the
6114 * contents of all pages marked dirty
6115 */
6116 upl->flags |= UPL_CLEAR_DIRTY;
6117 }
6118 dst_page->vmp_dirty = dirty;
6119
6120 if (!dirty) {
6121 dst_page->vmp_precious = TRUE;
6122 }
6123
6124 if (!VM_PAGE_WIRED(dst_page)) {
6125 /*
6126 * deny access to the target page while
6127 * it is being worked on
6128 */
6129 dst_page->vmp_busy = TRUE;
6130 } else {
6131 dwp->dw_mask |= DW_vm_page_wire;
6132 }
6133
6134 /*
6135 * We might be about to satisfy a fault which has been
6136 * requested. So no need for the "restart" bit.
6137 */
6138 dst_page->vmp_restart = FALSE;
6139 if (!dst_page->vmp_absent && !(cntrl_flags & UPL_WILL_MODIFY)) {
6140 /*
6141 * expect the page to be used
6142 */
6143 dwp->dw_mask |= DW_set_reference;
6144 }
6145 if (cntrl_flags & UPL_PRECIOUS) {
6146 if (object->internal) {
6147 SET_PAGE_DIRTY(dst_page, FALSE);
6148 dst_page->vmp_precious = FALSE;
6149 } else {
6150 dst_page->vmp_precious = TRUE;
6151 }
6152 } else {
6153 dst_page->vmp_precious = FALSE;
6154 }
6155 }
6156 if (dst_page->vmp_busy) {
6157 upl->flags |= UPL_HAS_BUSY;
6158 }
6159
6160 if (phys_page > upl->highest_page) {
6161 upl->highest_page = phys_page;
6162 }
6163 assert(!pmap_is_noencrypt(phys_page));
6164 if (user_page_list) {
6165 user_page_list[entry].phys_addr = phys_page;
6166 user_page_list[entry].free_when_done = dst_page->vmp_free_when_done;
6167 user_page_list[entry].absent = dst_page->vmp_absent;
6168 user_page_list[entry].dirty = dst_page->vmp_dirty;
6169 user_page_list[entry].precious = dst_page->vmp_precious;
6170 user_page_list[entry].device = FALSE;
6171 user_page_list[entry].needed = FALSE;
6172 if (dst_page->vmp_clustered == TRUE) {
6173 user_page_list[entry].speculative = (dst_page->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) ? TRUE : FALSE;
6174 } else {
6175 user_page_list[entry].speculative = FALSE;
6176 }
6177 user_page_list[entry].cs_validated = dst_page->vmp_cs_validated;
6178 user_page_list[entry].cs_tainted = dst_page->vmp_cs_tainted;
6179 user_page_list[entry].cs_nx = dst_page->vmp_cs_nx;
6180 user_page_list[entry].mark = FALSE;
6181 }
6182 /*
6183 * if UPL_RET_ONLY_ABSENT is set, then
6184 * we are working with a fresh page and we've
6185 * just set the clustered flag on it to
6186 * indicate that it was drug in as part of a
6187 * speculative cluster... so leave it alone
6188 */
6189 if (!(cntrl_flags & UPL_RET_ONLY_ABSENT)) {
6190 /*
6191 * someone is explicitly grabbing this page...
6192 * update clustered and speculative state
6193 *
6194 */
6195 if (dst_page->vmp_clustered) {
6196 VM_PAGE_CONSUME_CLUSTERED(dst_page);
6197 }
6198 }
6199 try_next_page:
6200 if (dwp->dw_mask) {
6201 if (dwp->dw_mask & DW_vm_page_activate) {
6202 counter_inc(&vm_statistics_reactivations);
6203 }
6204
6205 VM_PAGE_ADD_DELAYED_WORK(dwp, dst_page, dw_count);
6206
6207 if (dw_count >= dw_limit) {
6208 vm_page_do_delayed_work(object, tag, dwp_start, dw_count);
6209
6210 dwp = dwp_start;
6211 dw_count = 0;
6212 }
6213 }
6214 entry++;
6215 dst_offset += PAGE_SIZE_64;
6216 xfer_size -= PAGE_SIZE;
6217 }
6218 if (dw_count) {
6219 vm_page_do_delayed_work(object, tag, dwp_start, dw_count);
6220 dwp = dwp_start;
6221 dw_count = 0;
6222 }
6223
6224 if (alias_page != NULL) {
6225 VM_PAGE_FREE(alias_page);
6226 }
6227 if (pmap_flushes_delayed == TRUE) {
6228 pmap_flush(&pmap_flush_context_storage);
6229 }
6230
6231 if (page_list_count != NULL) {
6232 if (upl->flags & UPL_INTERNAL) {
6233 *page_list_count = 0;
6234 } else if (*page_list_count > entry) {
6235 *page_list_count = entry;
6236 }
6237 }
6238 #if UPL_DEBUG
6239 upl->upl_state = 1;
6240 #endif
6241 vm_object_unlock(object);
6242
6243 VM_DEBUG_CONSTANT_EVENT(vm_object_upl_request, VM_UPL_REQUEST, DBG_FUNC_END, page_grab_count, 0, 0, 0);
6244 #if DEVELOPMENT || DEBUG
6245 if (task != NULL) {
6246 ledger_credit(task->ledger, task_ledgers.pages_grabbed_upl, page_grab_count);
6247 }
6248 #endif /* DEVELOPMENT || DEBUG */
6249
6250 if (dwp_start && dwp_finish_ctx) {
6251 vm_page_delayed_work_finish_ctx(dwp_start);
6252 dwp_start = dwp = NULL;
6253 }
6254
6255 return KERN_SUCCESS;
6256 }
6257
6258 /*
6259 * Routine: vm_object_super_upl_request
6260 * Purpose:
6261 * Cause the population of a portion of a vm_object
6262 * in much the same way as memory_object_upl_request.
6263 * Depending on the nature of the request, the pages
6264 * returned may be contain valid data or be uninitialized.
6265 * However, the region may be expanded up to the super
6266 * cluster size provided.
6267 */
6268
6269 __private_extern__ kern_return_t
6270 vm_object_super_upl_request(
6271 vm_object_t object,
6272 vm_object_offset_t offset,
6273 upl_size_t size,
6274 upl_size_t super_cluster,
6275 upl_t *upl,
6276 upl_page_info_t *user_page_list,
6277 unsigned int *page_list_count,
6278 upl_control_flags_t cntrl_flags,
6279 vm_tag_t tag)
6280 {
6281 if (object->paging_offset > offset || ((cntrl_flags & UPL_VECTOR) == UPL_VECTOR)) {
6282 return KERN_FAILURE;
6283 }
6284
6285 assert(object->paging_in_progress);
6286 offset = offset - object->paging_offset;
6287
6288 if (super_cluster > size) {
6289 vm_object_offset_t base_offset;
6290 upl_size_t super_size;
6291 vm_object_size_t super_size_64;
6292
6293 base_offset = (offset & ~((vm_object_offset_t) super_cluster - 1));
6294 super_size = (offset + size) > (base_offset + super_cluster) ? super_cluster << 1 : super_cluster;
6295 super_size_64 = ((base_offset + super_size) > object->vo_size) ? (object->vo_size - base_offset) : super_size;
6296 super_size = (upl_size_t) super_size_64;
6297 assert(super_size == super_size_64);
6298
6299 if (offset > (base_offset + super_size)) {
6300 panic("vm_object_super_upl_request: Missed target pageout"
6301 " %#llx,%#llx, %#x, %#x, %#x, %#llx\n",
6302 offset, base_offset, super_size, super_cluster,
6303 size, object->paging_offset);
6304 }
6305 /*
6306 * apparently there is a case where the vm requests a
6307 * page to be written out who's offset is beyond the
6308 * object size
6309 */
6310 if ((offset + size) > (base_offset + super_size)) {
6311 super_size_64 = (offset + size) - base_offset;
6312 super_size = (upl_size_t) super_size_64;
6313 assert(super_size == super_size_64);
6314 }
6315
6316 offset = base_offset;
6317 size = super_size;
6318 }
6319 return vm_object_upl_request(object, offset, size, upl, user_page_list, page_list_count, cntrl_flags, tag);
6320 }
6321
6322 int cs_executable_create_upl = 0;
6323 extern int proc_selfpid(void);
6324 extern char *proc_name_address(void *p);
6325
6326 kern_return_t
6327 vm_map_create_upl(
6328 vm_map_t map,
6329 vm_map_address_t offset,
6330 upl_size_t *upl_size,
6331 upl_t *upl,
6332 upl_page_info_array_t page_list,
6333 unsigned int *count,
6334 upl_control_flags_t *flags,
6335 vm_tag_t tag)
6336 {
6337 vm_map_entry_t entry;
6338 upl_control_flags_t caller_flags;
6339 int force_data_sync;
6340 int sync_cow_data;
6341 vm_object_t local_object;
6342 vm_map_offset_t local_offset;
6343 vm_map_offset_t local_start;
6344 kern_return_t ret;
6345 vm_map_address_t original_offset;
6346 vm_map_size_t original_size, adjusted_size;
6347 vm_map_offset_t local_entry_start;
6348 vm_object_offset_t local_entry_offset;
6349 vm_object_offset_t offset_in_mapped_page;
6350 boolean_t release_map = FALSE;
6351
6352 start_with_map:
6353
6354 original_offset = offset;
6355 original_size = *upl_size;
6356 adjusted_size = original_size;
6357
6358 caller_flags = *flags;
6359
6360 if (caller_flags & ~UPL_VALID_FLAGS) {
6361 /*
6362 * For forward compatibility's sake,
6363 * reject any unknown flag.
6364 */
6365 ret = KERN_INVALID_VALUE;
6366 goto done;
6367 }
6368 force_data_sync = (caller_flags & UPL_FORCE_DATA_SYNC);
6369 sync_cow_data = !(caller_flags & UPL_COPYOUT_FROM);
6370
6371 if (upl == NULL) {
6372 ret = KERN_INVALID_ARGUMENT;
6373 goto done;
6374 }
6375
6376 REDISCOVER_ENTRY:
6377 vm_map_lock_read(map);
6378
6379 if (!vm_map_lookup_entry(map, offset, &entry)) {
6380 vm_map_unlock_read(map);
6381 ret = KERN_FAILURE;
6382 goto done;
6383 }
6384
6385 local_entry_start = entry->vme_start;
6386 local_entry_offset = VME_OFFSET(entry);
6387
6388 if (VM_MAP_PAGE_SHIFT(map) < PAGE_SHIFT) {
6389 DEBUG4K_UPL("map %p (%d) offset 0x%llx size 0x%x flags 0x%llx\n", map, VM_MAP_PAGE_SHIFT(map), (uint64_t)offset, *upl_size, *flags);
6390 }
6391
6392 if (entry->vme_end - original_offset < adjusted_size) {
6393 adjusted_size = entry->vme_end - original_offset;
6394 assert(adjusted_size > 0);
6395 *upl_size = (upl_size_t) adjusted_size;
6396 assert(*upl_size == adjusted_size);
6397 }
6398
6399 if (caller_flags & UPL_QUERY_OBJECT_TYPE) {
6400 *flags = 0;
6401
6402 if (!entry->is_sub_map &&
6403 VME_OBJECT(entry) != VM_OBJECT_NULL) {
6404 if (VME_OBJECT(entry)->private) {
6405 *flags = UPL_DEV_MEMORY;
6406 }
6407
6408 if (VME_OBJECT(entry)->phys_contiguous) {
6409 *flags |= UPL_PHYS_CONTIG;
6410 }
6411 }
6412 vm_map_unlock_read(map);
6413 ret = KERN_SUCCESS;
6414 goto done;
6415 }
6416
6417 offset_in_mapped_page = 0;
6418 if (VM_MAP_PAGE_SIZE(map) < PAGE_SIZE) {
6419 offset = vm_map_trunc_page(original_offset, VM_MAP_PAGE_MASK(map));
6420 *upl_size = (upl_size_t)
6421 (vm_map_round_page(original_offset + adjusted_size,
6422 VM_MAP_PAGE_MASK(map))
6423 - offset);
6424
6425 offset_in_mapped_page = original_offset - offset;
6426 assert(offset_in_mapped_page < VM_MAP_PAGE_SIZE(map));
6427
6428 DEBUG4K_UPL("map %p (%d) offset 0x%llx size 0x%llx flags 0x%llx -> offset 0x%llx adjusted_size 0x%llx *upl_size 0x%x offset_in_mapped_page 0x%llx\n", map, VM_MAP_PAGE_SHIFT(map), (uint64_t)original_offset, (uint64_t)original_size, *flags, (uint64_t)offset, (uint64_t)adjusted_size, *upl_size, offset_in_mapped_page);
6429 }
6430
6431 if (VME_OBJECT(entry) == VM_OBJECT_NULL ||
6432 !VME_OBJECT(entry)->phys_contiguous) {
6433 if (*upl_size > MAX_UPL_SIZE_BYTES) {
6434 *upl_size = MAX_UPL_SIZE_BYTES;
6435 }
6436 }
6437
6438 /*
6439 * Create an object if necessary.
6440 */
6441 if (VME_OBJECT(entry) == VM_OBJECT_NULL) {
6442 if (vm_map_lock_read_to_write(map)) {
6443 goto REDISCOVER_ENTRY;
6444 }
6445
6446 VME_OBJECT_SET(entry,
6447 vm_object_allocate((vm_size_t)
6448 vm_object_round_page((entry->vme_end - entry->vme_start))));
6449 VME_OFFSET_SET(entry, 0);
6450 assert(entry->use_pmap);
6451
6452 vm_map_lock_write_to_read(map);
6453 }
6454
6455 if (!(caller_flags & UPL_COPYOUT_FROM) &&
6456 !entry->is_sub_map &&
6457 !(entry->protection & VM_PROT_WRITE)) {
6458 vm_map_unlock_read(map);
6459 ret = KERN_PROTECTION_FAILURE;
6460 goto done;
6461 }
6462
6463 #if !XNU_TARGET_OS_OSX
6464 if (map->pmap != kernel_pmap &&
6465 (caller_flags & UPL_COPYOUT_FROM) &&
6466 (entry->protection & VM_PROT_EXECUTE) &&
6467 !(entry->protection & VM_PROT_WRITE)) {
6468 vm_offset_t kaddr;
6469 vm_size_t ksize;
6470
6471 /*
6472 * We're about to create a read-only UPL backed by
6473 * memory from an executable mapping.
6474 * Wiring the pages would result in the pages being copied
6475 * (due to the "MAP_PRIVATE" mapping) and no longer
6476 * code-signed, so no longer eligible for execution.
6477 * Instead, let's copy the data into a kernel buffer and
6478 * create the UPL from this kernel buffer.
6479 * The kernel buffer is then freed, leaving the UPL holding
6480 * the last reference on the VM object, so the memory will
6481 * be released when the UPL is committed.
6482 */
6483
6484 vm_map_unlock_read(map);
6485 entry = VM_MAP_ENTRY_NULL;
6486 /* allocate kernel buffer */
6487 ksize = round_page(*upl_size);
6488 kaddr = 0;
6489 ret = kmem_alloc_pageable(kernel_map,
6490 &kaddr,
6491 ksize,
6492 tag);
6493 if (ret == KERN_SUCCESS) {
6494 /* copyin the user data */
6495 ret = copyinmap(map, offset, (void *)kaddr, *upl_size);
6496 }
6497 if (ret == KERN_SUCCESS) {
6498 if (ksize > *upl_size) {
6499 /* zero out the extra space in kernel buffer */
6500 memset((void *)(kaddr + *upl_size),
6501 0,
6502 ksize - *upl_size);
6503 }
6504 /* create the UPL from the kernel buffer */
6505 vm_object_offset_t offset_in_object;
6506 vm_object_offset_t offset_in_object_page;
6507
6508 offset_in_object = offset - local_entry_start + local_entry_offset;
6509 offset_in_object_page = offset_in_object - vm_object_trunc_page(offset_in_object);
6510 assert(offset_in_object_page < PAGE_SIZE);
6511 assert(offset_in_object_page + offset_in_mapped_page < PAGE_SIZE);
6512 *upl_size -= offset_in_object_page + offset_in_mapped_page;
6513 ret = vm_map_create_upl(kernel_map,
6514 (vm_map_address_t)(kaddr + offset_in_object_page + offset_in_mapped_page),
6515 upl_size, upl, page_list, count, flags, tag);
6516 }
6517 if (kaddr != 0) {
6518 /* free the kernel buffer */
6519 kmem_free(kernel_map, kaddr, ksize);
6520 kaddr = 0;
6521 ksize = 0;
6522 }
6523 #if DEVELOPMENT || DEBUG
6524 DTRACE_VM4(create_upl_from_executable,
6525 vm_map_t, map,
6526 vm_map_address_t, offset,
6527 upl_size_t, *upl_size,
6528 kern_return_t, ret);
6529 #endif /* DEVELOPMENT || DEBUG */
6530 goto done;
6531 }
6532 #endif /* !XNU_TARGET_OS_OSX */
6533
6534 local_object = VME_OBJECT(entry);
6535 assert(local_object != VM_OBJECT_NULL);
6536
6537 if (!entry->is_sub_map &&
6538 !entry->needs_copy &&
6539 *upl_size != 0 &&
6540 local_object->vo_size > *upl_size && /* partial UPL */
6541 entry->wired_count == 0 && /* No COW for entries that are wired */
6542 (map->pmap != kernel_pmap) && /* alias checks */
6543 (vm_map_entry_should_cow_for_true_share(entry) /* case 1 */
6544 ||
6545 ( /* case 2 */
6546 local_object->internal &&
6547 (local_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) &&
6548 local_object->ref_count > 1))) {
6549 vm_prot_t prot;
6550
6551 /*
6552 * Case 1:
6553 * Set up the targeted range for copy-on-write to avoid
6554 * applying true_share/copy_delay to the entire object.
6555 *
6556 * Case 2:
6557 * This map entry covers only part of an internal
6558 * object. There could be other map entries covering
6559 * other areas of this object and some of these map
6560 * entries could be marked as "needs_copy", which
6561 * assumes that the object is COPY_SYMMETRIC.
6562 * To avoid marking this object as COPY_DELAY and
6563 * "true_share", let's shadow it and mark the new
6564 * (smaller) object as "true_share" and COPY_DELAY.
6565 */
6566
6567 if (vm_map_lock_read_to_write(map)) {
6568 goto REDISCOVER_ENTRY;
6569 }
6570 vm_map_lock_assert_exclusive(map);
6571 assert(VME_OBJECT(entry) == local_object);
6572
6573 vm_map_clip_start(map,
6574 entry,
6575 vm_map_trunc_page(offset,
6576 VM_MAP_PAGE_MASK(map)));
6577 vm_map_clip_end(map,
6578 entry,
6579 vm_map_round_page(offset + *upl_size,
6580 VM_MAP_PAGE_MASK(map)));
6581 if ((entry->vme_end - offset) < *upl_size) {
6582 *upl_size = (upl_size_t) (entry->vme_end - offset);
6583 assert(*upl_size == entry->vme_end - offset);
6584 }
6585
6586 prot = entry->protection & ~VM_PROT_WRITE;
6587 if (override_nx(map, VME_ALIAS(entry)) && prot) {
6588 prot |= VM_PROT_EXECUTE;
6589 }
6590 vm_object_pmap_protect(local_object,
6591 VME_OFFSET(entry),
6592 entry->vme_end - entry->vme_start,
6593 ((entry->is_shared ||
6594 map->mapped_in_other_pmaps)
6595 ? PMAP_NULL
6596 : map->pmap),
6597 VM_MAP_PAGE_SIZE(map),
6598 entry->vme_start,
6599 prot);
6600
6601 assert(entry->wired_count == 0);
6602
6603 /*
6604 * Lock the VM object and re-check its status: if it's mapped
6605 * in another address space, we could still be racing with
6606 * another thread holding that other VM map exclusively.
6607 */
6608 vm_object_lock(local_object);
6609 if (local_object->true_share) {
6610 /* object is already in proper state: no COW needed */
6611 assert(local_object->copy_strategy !=
6612 MEMORY_OBJECT_COPY_SYMMETRIC);
6613 } else {
6614 /* not true_share: ask for copy-on-write below */
6615 assert(local_object->copy_strategy ==
6616 MEMORY_OBJECT_COPY_SYMMETRIC);
6617 entry->needs_copy = TRUE;
6618 }
6619 vm_object_unlock(local_object);
6620
6621 vm_map_lock_write_to_read(map);
6622 }
6623
6624 if (entry->needs_copy) {
6625 /*
6626 * Honor copy-on-write for COPY_SYMMETRIC
6627 * strategy.
6628 */
6629 vm_map_t local_map;
6630 vm_object_t object;
6631 vm_object_offset_t new_offset;
6632 vm_prot_t prot;
6633 boolean_t wired;
6634 vm_map_version_t version;
6635 vm_map_t real_map;
6636 vm_prot_t fault_type;
6637
6638 local_map = map;
6639
6640 if (caller_flags & UPL_COPYOUT_FROM) {
6641 fault_type = VM_PROT_READ | VM_PROT_COPY;
6642 vm_counters.create_upl_extra_cow++;
6643 vm_counters.create_upl_extra_cow_pages +=
6644 (entry->vme_end - entry->vme_start) / PAGE_SIZE;
6645 } else {
6646 fault_type = VM_PROT_WRITE;
6647 }
6648 if (vm_map_lookup_locked(&local_map,
6649 offset, fault_type,
6650 OBJECT_LOCK_EXCLUSIVE,
6651 &version, &object,
6652 &new_offset, &prot, &wired,
6653 NULL,
6654 &real_map, NULL) != KERN_SUCCESS) {
6655 if (fault_type == VM_PROT_WRITE) {
6656 vm_counters.create_upl_lookup_failure_write++;
6657 } else {
6658 vm_counters.create_upl_lookup_failure_copy++;
6659 }
6660 vm_map_unlock_read(local_map);
6661 ret = KERN_FAILURE;
6662 goto done;
6663 }
6664 if (real_map != local_map) {
6665 vm_map_unlock(real_map);
6666 }
6667 vm_map_unlock_read(local_map);
6668
6669 vm_object_unlock(object);
6670
6671 goto REDISCOVER_ENTRY;
6672 }
6673
6674 if (entry->is_sub_map) {
6675 vm_map_t submap;
6676
6677 submap = VME_SUBMAP(entry);
6678 local_start = entry->vme_start;
6679 local_offset = (vm_map_offset_t)VME_OFFSET(entry);
6680
6681 vm_map_reference(submap);
6682 vm_map_unlock_read(map);
6683
6684 DEBUG4K_UPL("map %p offset 0x%llx (0x%llx) size 0x%x (adjusted 0x%llx original 0x%llx) offset_in_mapped_page 0x%llx submap %p\n", map, (uint64_t)offset, (uint64_t)original_offset, *upl_size, (uint64_t)adjusted_size, (uint64_t)original_size, offset_in_mapped_page, submap);
6685 offset += offset_in_mapped_page;
6686 *upl_size -= offset_in_mapped_page;
6687
6688 if (release_map) {
6689 vm_map_deallocate(map);
6690 }
6691 map = submap;
6692 release_map = TRUE;
6693 offset = local_offset + (offset - local_start);
6694 goto start_with_map;
6695 }
6696
6697 if (sync_cow_data &&
6698 (VME_OBJECT(entry)->shadow ||
6699 VME_OBJECT(entry)->copy)) {
6700 local_object = VME_OBJECT(entry);
6701 local_start = entry->vme_start;
6702 local_offset = (vm_map_offset_t)VME_OFFSET(entry);
6703
6704 vm_object_reference(local_object);
6705 vm_map_unlock_read(map);
6706
6707 if (local_object->shadow && local_object->copy) {
6708 vm_object_lock_request(local_object->shadow,
6709 ((vm_object_offset_t)
6710 ((offset - local_start) +
6711 local_offset) +
6712 local_object->vo_shadow_offset),
6713 *upl_size, FALSE,
6714 MEMORY_OBJECT_DATA_SYNC,
6715 VM_PROT_NO_CHANGE);
6716 }
6717 sync_cow_data = FALSE;
6718 vm_object_deallocate(local_object);
6719
6720 goto REDISCOVER_ENTRY;
6721 }
6722 if (force_data_sync) {
6723 local_object = VME_OBJECT(entry);
6724 local_start = entry->vme_start;
6725 local_offset = (vm_map_offset_t)VME_OFFSET(entry);
6726
6727 vm_object_reference(local_object);
6728 vm_map_unlock_read(map);
6729
6730 vm_object_lock_request(local_object,
6731 ((vm_object_offset_t)
6732 ((offset - local_start) +
6733 local_offset)),
6734 (vm_object_size_t)*upl_size,
6735 FALSE,
6736 MEMORY_OBJECT_DATA_SYNC,
6737 VM_PROT_NO_CHANGE);
6738
6739 force_data_sync = FALSE;
6740 vm_object_deallocate(local_object);
6741
6742 goto REDISCOVER_ENTRY;
6743 }
6744 if (VME_OBJECT(entry)->private) {
6745 *flags = UPL_DEV_MEMORY;
6746 } else {
6747 *flags = 0;
6748 }
6749
6750 if (VME_OBJECT(entry)->phys_contiguous) {
6751 *flags |= UPL_PHYS_CONTIG;
6752 }
6753
6754 local_object = VME_OBJECT(entry);
6755 local_offset = (vm_map_offset_t)VME_OFFSET(entry);
6756 local_start = entry->vme_start;
6757
6758 /*
6759 * Wiring will copy the pages to the shadow object.
6760 * The shadow object will not be code-signed so
6761 * attempting to execute code from these copied pages
6762 * would trigger a code-signing violation.
6763 */
6764 if (entry->protection & VM_PROT_EXECUTE) {
6765 #if MACH_ASSERT
6766 printf("pid %d[%s] create_upl out of executable range from "
6767 "0x%llx to 0x%llx: side effects may include "
6768 "code-signing violations later on\n",
6769 proc_selfpid(),
6770 (current_task()->bsd_info
6771 ? proc_name_address(current_task()->bsd_info)
6772 : "?"),
6773 (uint64_t) entry->vme_start,
6774 (uint64_t) entry->vme_end);
6775 #endif /* MACH_ASSERT */
6776 DTRACE_VM2(cs_executable_create_upl,
6777 uint64_t, (uint64_t)entry->vme_start,
6778 uint64_t, (uint64_t)entry->vme_end);
6779 cs_executable_create_upl++;
6780 }
6781
6782 vm_object_lock(local_object);
6783
6784 /*
6785 * Ensure that this object is "true_share" and "copy_delay" now,
6786 * while we're still holding the VM map lock. After we unlock the map,
6787 * anything could happen to that mapping, including some copy-on-write
6788 * activity. We need to make sure that the IOPL will point at the
6789 * same memory as the mapping.
6790 */
6791 if (local_object->true_share) {
6792 assert(local_object->copy_strategy !=
6793 MEMORY_OBJECT_COPY_SYMMETRIC);
6794 } else if (local_object != kernel_object &&
6795 local_object != compressor_object &&
6796 !local_object->phys_contiguous) {
6797 #if VM_OBJECT_TRACKING_OP_TRUESHARE
6798 if (!local_object->true_share &&
6799 vm_object_tracking_inited) {
6800 void *bt[VM_OBJECT_TRACKING_BTDEPTH];
6801 int num = 0;
6802 num = OSBacktrace(bt,
6803 VM_OBJECT_TRACKING_BTDEPTH);
6804 btlog_add_entry(vm_object_tracking_btlog,
6805 local_object,
6806 VM_OBJECT_TRACKING_OP_TRUESHARE,
6807 bt,
6808 num);
6809 }
6810 #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */
6811 local_object->true_share = TRUE;
6812 if (local_object->copy_strategy ==
6813 MEMORY_OBJECT_COPY_SYMMETRIC) {
6814 local_object->copy_strategy = MEMORY_OBJECT_COPY_DELAY;
6815 }
6816 }
6817
6818 vm_object_reference_locked(local_object);
6819 vm_object_unlock(local_object);
6820
6821 vm_map_unlock_read(map);
6822
6823 offset += offset_in_mapped_page;
6824 assert(*upl_size > offset_in_mapped_page);
6825 *upl_size -= offset_in_mapped_page;
6826
6827 ret = vm_object_iopl_request(local_object,
6828 ((vm_object_offset_t)
6829 ((offset - local_start) + local_offset)),
6830 *upl_size,
6831 upl,
6832 page_list,
6833 count,
6834 caller_flags,
6835 tag);
6836 vm_object_deallocate(local_object);
6837
6838 done:
6839 if (release_map) {
6840 vm_map_deallocate(map);
6841 }
6842
6843 return ret;
6844 }
6845
6846 /*
6847 * Internal routine to enter a UPL into a VM map.
6848 *
6849 * JMM - This should just be doable through the standard
6850 * vm_map_enter() API.
6851 */
6852 kern_return_t
6853 vm_map_enter_upl(
6854 vm_map_t map,
6855 upl_t upl,
6856 vm_map_offset_t *dst_addr)
6857 {
6858 vm_map_size_t size;
6859 vm_object_offset_t offset;
6860 vm_map_offset_t addr;
6861 vm_page_t m;
6862 kern_return_t kr;
6863 int isVectorUPL = 0, curr_upl = 0;
6864 upl_t vector_upl = NULL;
6865 vm_offset_t vector_upl_dst_addr = 0;
6866 vm_map_t vector_upl_submap = NULL;
6867 upl_offset_t subupl_offset = 0;
6868 upl_size_t subupl_size = 0;
6869
6870 if (upl == UPL_NULL) {
6871 return KERN_INVALID_ARGUMENT;
6872 }
6873
6874 DEBUG4K_UPL("map %p upl %p flags 0x%x object %p offset 0x%llx size 0x%x \n", map, upl, upl->flags, upl->map_object, upl->u_offset, upl->u_size);
6875 assert(map == kernel_map);
6876
6877 if ((isVectorUPL = vector_upl_is_valid(upl))) {
6878 int mapped = 0, valid_upls = 0;
6879 vector_upl = upl;
6880
6881 upl_lock(vector_upl);
6882 for (curr_upl = 0; curr_upl < MAX_VECTOR_UPL_ELEMENTS; curr_upl++) {
6883 upl = vector_upl_subupl_byindex(vector_upl, curr_upl );
6884 if (upl == NULL) {
6885 continue;
6886 }
6887 valid_upls++;
6888 if (UPL_PAGE_LIST_MAPPED & upl->flags) {
6889 mapped++;
6890 }
6891 }
6892
6893 if (mapped) {
6894 if (mapped != valid_upls) {
6895 panic("Only %d of the %d sub-upls within the Vector UPL are alread mapped\n", mapped, valid_upls);
6896 } else {
6897 upl_unlock(vector_upl);
6898 return KERN_FAILURE;
6899 }
6900 }
6901
6902 if (VM_MAP_PAGE_MASK(map) < PAGE_MASK) {
6903 panic("TODO4K: vector UPL not implemented");
6904 }
6905
6906 kr = kmem_suballoc(map, &vector_upl_dst_addr,
6907 vector_upl->u_size,
6908 FALSE,
6909 VM_FLAGS_ANYWHERE, VM_MAP_KERNEL_FLAGS_NONE, VM_KERN_MEMORY_NONE,
6910 &vector_upl_submap);
6911 if (kr != KERN_SUCCESS) {
6912 panic("Vector UPL submap allocation failed\n");
6913 }
6914 map = vector_upl_submap;
6915 vector_upl_set_submap(vector_upl, vector_upl_submap, vector_upl_dst_addr);
6916 curr_upl = 0;
6917 } else {
6918 upl_lock(upl);
6919 }
6920
6921 process_upl_to_enter:
6922 if (isVectorUPL) {
6923 if (curr_upl == MAX_VECTOR_UPL_ELEMENTS) {
6924 *dst_addr = vector_upl_dst_addr;
6925 upl_unlock(vector_upl);
6926 return KERN_SUCCESS;
6927 }
6928 upl = vector_upl_subupl_byindex(vector_upl, curr_upl++ );
6929 if (upl == NULL) {
6930 goto process_upl_to_enter;
6931 }
6932
6933 vector_upl_get_iostate(vector_upl, upl, &subupl_offset, &subupl_size);
6934 *dst_addr = (vm_map_offset_t)(vector_upl_dst_addr + (vm_map_offset_t)subupl_offset);
6935 } else {
6936 /*
6937 * check to see if already mapped
6938 */
6939 if (UPL_PAGE_LIST_MAPPED & upl->flags) {
6940 upl_unlock(upl);
6941 return KERN_FAILURE;
6942 }
6943 }
6944
6945 size = upl_adjusted_size(upl, VM_MAP_PAGE_MASK(map));
6946
6947 if ((!(upl->flags & UPL_SHADOWED)) &&
6948 ((upl->flags & UPL_HAS_BUSY) ||
6949 !((upl->flags & (UPL_DEVICE_MEMORY | UPL_IO_WIRE)) || (upl->map_object->phys_contiguous)))) {
6950 vm_object_t object;
6951 vm_page_t alias_page;
6952 vm_object_offset_t new_offset;
6953 unsigned int pg_num;
6954 wpl_array_t lite_list;
6955
6956 if (upl->flags & UPL_INTERNAL) {
6957 lite_list = (wpl_array_t)
6958 ((((uintptr_t)upl) + sizeof(struct upl))
6959 + ((size / PAGE_SIZE) * sizeof(upl_page_info_t)));
6960 } else {
6961 lite_list = (wpl_array_t)(((uintptr_t)upl) + sizeof(struct upl));
6962 }
6963 object = upl->map_object;
6964 upl->map_object = vm_object_allocate(vm_object_round_page(size));
6965
6966 vm_object_lock(upl->map_object);
6967
6968 upl->map_object->shadow = object;
6969 upl->map_object->pageout = TRUE;
6970 upl->map_object->can_persist = FALSE;
6971 upl->map_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
6972 upl->map_object->vo_shadow_offset = upl_adjusted_offset(upl, PAGE_MASK) - object->paging_offset;
6973 assertf(page_aligned(upl->map_object->vo_shadow_offset),
6974 "object %p shadow_offset 0x%llx",
6975 upl->map_object,
6976 (uint64_t)upl->map_object->vo_shadow_offset);
6977 upl->map_object->wimg_bits = object->wimg_bits;
6978 assertf(page_aligned(upl->map_object->vo_shadow_offset),
6979 "object %p shadow_offset 0x%llx",
6980 upl->map_object, upl->map_object->vo_shadow_offset);
6981 offset = upl->map_object->vo_shadow_offset;
6982 new_offset = 0;
6983 size = upl_adjusted_size(upl, VM_MAP_PAGE_MASK(map));
6984
6985 upl->flags |= UPL_SHADOWED;
6986
6987 while (size) {
6988 pg_num = (unsigned int) (new_offset / PAGE_SIZE);
6989 assert(pg_num == new_offset / PAGE_SIZE);
6990
6991 if (lite_list[pg_num >> 5] & (1U << (pg_num & 31))) {
6992 alias_page = vm_page_grab_fictitious(TRUE);
6993
6994 vm_object_lock(object);
6995
6996 m = vm_page_lookup(object, offset);
6997 if (m == VM_PAGE_NULL) {
6998 panic("vm_upl_map: page missing\n");
6999 }
7000
7001 /*
7002 * Convert the fictitious page to a private
7003 * shadow of the real page.
7004 */
7005 assert(alias_page->vmp_fictitious);
7006 alias_page->vmp_fictitious = FALSE;
7007 alias_page->vmp_private = TRUE;
7008 alias_page->vmp_free_when_done = TRUE;
7009 /*
7010 * since m is a page in the upl it must
7011 * already be wired or BUSY, so it's
7012 * safe to assign the underlying physical
7013 * page to the alias
7014 */
7015 VM_PAGE_SET_PHYS_PAGE(alias_page, VM_PAGE_GET_PHYS_PAGE(m));
7016
7017 vm_object_unlock(object);
7018
7019 vm_page_lockspin_queues();
7020 vm_page_wire(alias_page, VM_KERN_MEMORY_NONE, TRUE);
7021 vm_page_unlock_queues();
7022
7023 vm_page_insert_wired(alias_page, upl->map_object, new_offset, VM_KERN_MEMORY_NONE);
7024
7025 assert(!alias_page->vmp_wanted);
7026 alias_page->vmp_busy = FALSE;
7027 alias_page->vmp_absent = FALSE;
7028 }
7029 size -= PAGE_SIZE;
7030 offset += PAGE_SIZE_64;
7031 new_offset += PAGE_SIZE_64;
7032 }
7033 vm_object_unlock(upl->map_object);
7034 }
7035 if (upl->flags & UPL_SHADOWED) {
7036 offset = 0;
7037 } else {
7038 offset = upl_adjusted_offset(upl, VM_MAP_PAGE_MASK(map)) - upl->map_object->paging_offset;
7039 }
7040
7041 size = upl_adjusted_size(upl, VM_MAP_PAGE_MASK(map));
7042
7043 vm_object_reference(upl->map_object);
7044
7045 if (!isVectorUPL) {
7046 *dst_addr = 0;
7047 /*
7048 * NEED A UPL_MAP ALIAS
7049 */
7050 kr = vm_map_enter(map, dst_addr, (vm_map_size_t)size, (vm_map_offset_t) 0,
7051 VM_FLAGS_ANYWHERE, VM_MAP_KERNEL_FLAGS_NONE, VM_KERN_MEMORY_OSFMK,
7052 upl->map_object, offset, FALSE,
7053 VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT);
7054
7055 if (kr != KERN_SUCCESS) {
7056 vm_object_deallocate(upl->map_object);
7057 upl_unlock(upl);
7058 return kr;
7059 }
7060 } else {
7061 kr = vm_map_enter(map, dst_addr, (vm_map_size_t)size, (vm_map_offset_t) 0,
7062 VM_FLAGS_FIXED, VM_MAP_KERNEL_FLAGS_NONE, VM_KERN_MEMORY_OSFMK,
7063 upl->map_object, offset, FALSE,
7064 VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT);
7065 if (kr) {
7066 panic("vm_map_enter failed for a Vector UPL\n");
7067 }
7068 }
7069 vm_object_lock(upl->map_object);
7070
7071 for (addr = *dst_addr; size > 0; size -= PAGE_SIZE, addr += PAGE_SIZE) {
7072 m = vm_page_lookup(upl->map_object, offset);
7073
7074 if (m) {
7075 m->vmp_pmapped = TRUE;
7076
7077 /* CODE SIGNING ENFORCEMENT: page has been wpmapped,
7078 * but only in kernel space. If this was on a user map,
7079 * we'd have to set the wpmapped bit. */
7080 /* m->vmp_wpmapped = TRUE; */
7081 assert(map->pmap == kernel_pmap);
7082
7083 PMAP_ENTER(map->pmap, addr, m, VM_PROT_DEFAULT, VM_PROT_NONE, 0, TRUE, kr);
7084
7085 assert(kr == KERN_SUCCESS);
7086 #if KASAN
7087 kasan_notify_address(addr, PAGE_SIZE_64);
7088 #endif
7089 }
7090 offset += PAGE_SIZE_64;
7091 }
7092 vm_object_unlock(upl->map_object);
7093
7094 /*
7095 * hold a reference for the mapping
7096 */
7097 upl->ref_count++;
7098 upl->flags |= UPL_PAGE_LIST_MAPPED;
7099 upl->kaddr = (vm_offset_t) *dst_addr;
7100 assert(upl->kaddr == *dst_addr);
7101
7102 if (isVectorUPL) {
7103 goto process_upl_to_enter;
7104 }
7105
7106 if (!isVectorUPL) {
7107 vm_map_offset_t addr_adjustment;
7108
7109 addr_adjustment = (vm_map_offset_t)(upl->u_offset - upl_adjusted_offset(upl, VM_MAP_PAGE_MASK(map)));
7110 if (addr_adjustment) {
7111 assert(VM_MAP_PAGE_MASK(map) != PAGE_MASK);
7112 DEBUG4K_UPL("dst_addr 0x%llx (+ 0x%llx) -> 0x%llx\n", (uint64_t)*dst_addr, (uint64_t)addr_adjustment, (uint64_t)(*dst_addr + addr_adjustment));
7113 *dst_addr += addr_adjustment;
7114 }
7115 }
7116
7117 upl_unlock(upl);
7118
7119 return KERN_SUCCESS;
7120 }
7121
7122 /*
7123 * Internal routine to remove a UPL mapping from a VM map.
7124 *
7125 * XXX - This should just be doable through a standard
7126 * vm_map_remove() operation. Otherwise, implicit clean-up
7127 * of the target map won't be able to correctly remove
7128 * these (and release the reference on the UPL). Having
7129 * to do this means we can't map these into user-space
7130 * maps yet.
7131 */
7132 kern_return_t
7133 vm_map_remove_upl(
7134 vm_map_t map,
7135 upl_t upl)
7136 {
7137 vm_address_t addr;
7138 upl_size_t size;
7139 int isVectorUPL = 0, curr_upl = 0;
7140 upl_t vector_upl = NULL;
7141
7142 if (upl == UPL_NULL) {
7143 return KERN_INVALID_ARGUMENT;
7144 }
7145
7146 if ((isVectorUPL = vector_upl_is_valid(upl))) {
7147 int unmapped = 0, valid_upls = 0;
7148 vector_upl = upl;
7149 upl_lock(vector_upl);
7150 for (curr_upl = 0; curr_upl < MAX_VECTOR_UPL_ELEMENTS; curr_upl++) {
7151 upl = vector_upl_subupl_byindex(vector_upl, curr_upl );
7152 if (upl == NULL) {
7153 continue;
7154 }
7155 valid_upls++;
7156 if (!(UPL_PAGE_LIST_MAPPED & upl->flags)) {
7157 unmapped++;
7158 }
7159 }
7160
7161 if (unmapped) {
7162 if (unmapped != valid_upls) {
7163 panic("%d of the %d sub-upls within the Vector UPL is/are not mapped\n", unmapped, valid_upls);
7164 } else {
7165 upl_unlock(vector_upl);
7166 return KERN_FAILURE;
7167 }
7168 }
7169 curr_upl = 0;
7170 } else {
7171 upl_lock(upl);
7172 }
7173
7174 process_upl_to_remove:
7175 if (isVectorUPL) {
7176 if (curr_upl == MAX_VECTOR_UPL_ELEMENTS) {
7177 vm_map_t v_upl_submap;
7178 vm_offset_t v_upl_submap_dst_addr;
7179 vector_upl_get_submap(vector_upl, &v_upl_submap, &v_upl_submap_dst_addr);
7180
7181 vm_map_remove(map, v_upl_submap_dst_addr,
7182 v_upl_submap_dst_addr + vector_upl->u_size,
7183 VM_MAP_REMOVE_NO_FLAGS);
7184 vm_map_deallocate(v_upl_submap);
7185 upl_unlock(vector_upl);
7186 return KERN_SUCCESS;
7187 }
7188
7189 upl = vector_upl_subupl_byindex(vector_upl, curr_upl++ );
7190 if (upl == NULL) {
7191 goto process_upl_to_remove;
7192 }
7193 }
7194
7195 if (upl->flags & UPL_PAGE_LIST_MAPPED) {
7196 addr = upl->kaddr;
7197 size = upl_adjusted_size(upl, VM_MAP_PAGE_MASK(map));
7198
7199 assert(upl->ref_count > 1);
7200 upl->ref_count--; /* removing mapping ref */
7201
7202 upl->flags &= ~UPL_PAGE_LIST_MAPPED;
7203 upl->kaddr = (vm_offset_t) 0;
7204
7205 if (!isVectorUPL) {
7206 upl_unlock(upl);
7207
7208 vm_map_remove(
7209 map,
7210 vm_map_trunc_page(addr,
7211 VM_MAP_PAGE_MASK(map)),
7212 vm_map_round_page(addr + size,
7213 VM_MAP_PAGE_MASK(map)),
7214 VM_MAP_REMOVE_NO_FLAGS);
7215 return KERN_SUCCESS;
7216 } else {
7217 /*
7218 * If it's a Vectored UPL, we'll be removing the entire
7219 * submap anyways, so no need to remove individual UPL
7220 * element mappings from within the submap
7221 */
7222 goto process_upl_to_remove;
7223 }
7224 }
7225 upl_unlock(upl);
7226
7227 return KERN_FAILURE;
7228 }
7229
7230
7231 kern_return_t
7232 upl_commit_range(
7233 upl_t upl,
7234 upl_offset_t offset,
7235 upl_size_t size,
7236 int flags,
7237 upl_page_info_t *page_list,
7238 mach_msg_type_number_t count,
7239 boolean_t *empty)
7240 {
7241 upl_size_t xfer_size, subupl_size;
7242 vm_object_t shadow_object;
7243 vm_object_t object;
7244 vm_object_t m_object;
7245 vm_object_offset_t target_offset;
7246 upl_offset_t subupl_offset = offset;
7247 int entry;
7248 wpl_array_t lite_list;
7249 int occupied;
7250 int clear_refmod = 0;
7251 int pgpgout_count = 0;
7252 struct vm_page_delayed_work dw_array;
7253 struct vm_page_delayed_work *dwp, *dwp_start;
7254 bool dwp_finish_ctx = TRUE;
7255 int dw_count;
7256 int dw_limit;
7257 int isVectorUPL = 0;
7258 upl_t vector_upl = NULL;
7259 boolean_t should_be_throttled = FALSE;
7260
7261 vm_page_t nxt_page = VM_PAGE_NULL;
7262 int fast_path_possible = 0;
7263 int fast_path_full_commit = 0;
7264 int throttle_page = 0;
7265 int unwired_count = 0;
7266 int local_queue_count = 0;
7267 vm_page_t first_local, last_local;
7268 vm_object_offset_t obj_start, obj_end, obj_offset;
7269 kern_return_t kr = KERN_SUCCESS;
7270
7271 // DEBUG4K_UPL("upl %p (u_offset 0x%llx u_size 0x%llx) object %p offset 0x%llx size 0x%llx flags 0x%x\n", upl, (uint64_t)upl->u_offset, (uint64_t)upl->u_size, upl->map_object, (uint64_t)offset, (uint64_t)size, flags);
7272
7273 dwp_start = dwp = NULL;
7274
7275 subupl_size = size;
7276 *empty = FALSE;
7277
7278 if (upl == UPL_NULL) {
7279 return KERN_INVALID_ARGUMENT;
7280 }
7281
7282 dw_count = 0;
7283 dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
7284 dwp_start = vm_page_delayed_work_get_ctx();
7285 if (dwp_start == NULL) {
7286 dwp_start = &dw_array;
7287 dw_limit = 1;
7288 dwp_finish_ctx = FALSE;
7289 }
7290
7291 dwp = dwp_start;
7292
7293 if (count == 0) {
7294 page_list = NULL;
7295 }
7296
7297 if ((isVectorUPL = vector_upl_is_valid(upl))) {
7298 vector_upl = upl;
7299 upl_lock(vector_upl);
7300 } else {
7301 upl_lock(upl);
7302 }
7303
7304 process_upl_to_commit:
7305
7306 if (isVectorUPL) {
7307 size = subupl_size;
7308 offset = subupl_offset;
7309 if (size == 0) {
7310 upl_unlock(vector_upl);
7311 kr = KERN_SUCCESS;
7312 goto done;
7313 }
7314 upl = vector_upl_subupl_byoffset(vector_upl, &offset, &size);
7315 if (upl == NULL) {
7316 upl_unlock(vector_upl);
7317 kr = KERN_FAILURE;
7318 goto done;
7319 }
7320 page_list = UPL_GET_INTERNAL_PAGE_LIST_SIMPLE(upl);
7321 subupl_size -= size;
7322 subupl_offset += size;
7323 }
7324
7325 #if UPL_DEBUG
7326 if (upl->upl_commit_index < UPL_DEBUG_COMMIT_RECORDS) {
7327 (void) OSBacktrace(&upl->upl_commit_records[upl->upl_commit_index].c_retaddr[0], UPL_DEBUG_STACK_FRAMES);
7328
7329 upl->upl_commit_records[upl->upl_commit_index].c_beg = offset;
7330 upl->upl_commit_records[upl->upl_commit_index].c_end = (offset + size);
7331
7332 upl->upl_commit_index++;
7333 }
7334 #endif
7335 if (upl->flags & UPL_DEVICE_MEMORY) {
7336 xfer_size = 0;
7337 } else if ((offset + size) <= upl_adjusted_size(upl, PAGE_MASK)) {
7338 xfer_size = size;
7339 } else {
7340 if (!isVectorUPL) {
7341 upl_unlock(upl);
7342 } else {
7343 upl_unlock(vector_upl);
7344 }
7345 DEBUG4K_ERROR("upl %p (u_offset 0x%llx u_size 0x%x) offset 0x%x size 0x%x\n", upl, upl->u_offset, upl->u_size, offset, size);
7346 kr = KERN_FAILURE;
7347 goto done;
7348 }
7349 if (upl->flags & UPL_SET_DIRTY) {
7350 flags |= UPL_COMMIT_SET_DIRTY;
7351 }
7352 if (upl->flags & UPL_CLEAR_DIRTY) {
7353 flags |= UPL_COMMIT_CLEAR_DIRTY;
7354 }
7355
7356 if (upl->flags & UPL_INTERNAL) {
7357 lite_list = (wpl_array_t) ((((uintptr_t)upl) + sizeof(struct upl))
7358 + ((upl_adjusted_size(upl, PAGE_MASK) / PAGE_SIZE) * sizeof(upl_page_info_t)));
7359 } else {
7360 lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl));
7361 }
7362
7363 object = upl->map_object;
7364
7365 if (upl->flags & UPL_SHADOWED) {
7366 vm_object_lock(object);
7367 shadow_object = object->shadow;
7368 } else {
7369 shadow_object = object;
7370 }
7371 entry = offset / PAGE_SIZE;
7372 target_offset = (vm_object_offset_t)offset;
7373
7374 if (upl->flags & UPL_KERNEL_OBJECT) {
7375 vm_object_lock_shared(shadow_object);
7376 } else {
7377 vm_object_lock(shadow_object);
7378 }
7379
7380 VM_OBJECT_WIRED_PAGE_UPDATE_START(shadow_object);
7381
7382 if (upl->flags & UPL_ACCESS_BLOCKED) {
7383 assert(shadow_object->blocked_access);
7384 shadow_object->blocked_access = FALSE;
7385 vm_object_wakeup(object, VM_OBJECT_EVENT_UNBLOCKED);
7386 }
7387
7388 if (shadow_object->code_signed) {
7389 /*
7390 * CODE SIGNING:
7391 * If the object is code-signed, do not let this UPL tell
7392 * us if the pages are valid or not. Let the pages be
7393 * validated by VM the normal way (when they get mapped or
7394 * copied).
7395 */
7396 flags &= ~UPL_COMMIT_CS_VALIDATED;
7397 }
7398 if (!page_list) {
7399 /*
7400 * No page list to get the code-signing info from !?
7401 */
7402 flags &= ~UPL_COMMIT_CS_VALIDATED;
7403 }
7404 if (!VM_DYNAMIC_PAGING_ENABLED() && shadow_object->internal) {
7405 should_be_throttled = TRUE;
7406 }
7407
7408 if ((upl->flags & UPL_IO_WIRE) &&
7409 !(flags & UPL_COMMIT_FREE_ABSENT) &&
7410 !isVectorUPL &&
7411 shadow_object->purgable != VM_PURGABLE_VOLATILE &&
7412 shadow_object->purgable != VM_PURGABLE_EMPTY) {
7413 if (!vm_page_queue_empty(&shadow_object->memq)) {
7414 if (size == shadow_object->vo_size) {
7415 nxt_page = (vm_page_t)vm_page_queue_first(&shadow_object->memq);
7416 fast_path_full_commit = 1;
7417 }
7418 fast_path_possible = 1;
7419
7420 if (!VM_DYNAMIC_PAGING_ENABLED() && shadow_object->internal &&
7421 (shadow_object->purgable == VM_PURGABLE_DENY ||
7422 shadow_object->purgable == VM_PURGABLE_NONVOLATILE ||
7423 shadow_object->purgable == VM_PURGABLE_VOLATILE)) {
7424 throttle_page = 1;
7425 }
7426 }
7427 }
7428 first_local = VM_PAGE_NULL;
7429 last_local = VM_PAGE_NULL;
7430
7431 obj_start = target_offset + upl->u_offset - shadow_object->paging_offset;
7432 obj_end = obj_start + xfer_size;
7433 obj_start = vm_object_trunc_page(obj_start);
7434 obj_end = vm_object_round_page(obj_end);
7435 for (obj_offset = obj_start;
7436 obj_offset < obj_end;
7437 obj_offset += PAGE_SIZE) {
7438 vm_page_t t, m;
7439
7440 dwp->dw_mask = 0;
7441 clear_refmod = 0;
7442
7443 m = VM_PAGE_NULL;
7444
7445 if (upl->flags & UPL_LITE) {
7446 unsigned int pg_num;
7447
7448 if (nxt_page != VM_PAGE_NULL) {
7449 m = nxt_page;
7450 nxt_page = (vm_page_t)vm_page_queue_next(&nxt_page->vmp_listq);
7451 target_offset = m->vmp_offset;
7452 }
7453 pg_num = (unsigned int) (target_offset / PAGE_SIZE);
7454 assert(pg_num == target_offset / PAGE_SIZE);
7455
7456 if (lite_list[pg_num >> 5] & (1U << (pg_num & 31))) {
7457 lite_list[pg_num >> 5] &= ~(1U << (pg_num & 31));
7458
7459 if (!(upl->flags & UPL_KERNEL_OBJECT) && m == VM_PAGE_NULL) {
7460 m = vm_page_lookup(shadow_object, obj_offset);
7461 }
7462 } else {
7463 m = NULL;
7464 }
7465 }
7466 if (upl->flags & UPL_SHADOWED) {
7467 if ((t = vm_page_lookup(object, target_offset)) != VM_PAGE_NULL) {
7468 t->vmp_free_when_done = FALSE;
7469
7470 VM_PAGE_FREE(t);
7471
7472 if (!(upl->flags & UPL_KERNEL_OBJECT) && m == VM_PAGE_NULL) {
7473 m = vm_page_lookup(shadow_object, target_offset + object->vo_shadow_offset);
7474 }
7475 }
7476 }
7477 if (m == VM_PAGE_NULL) {
7478 goto commit_next_page;
7479 }
7480
7481 m_object = VM_PAGE_OBJECT(m);
7482
7483 if (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) {
7484 assert(m->vmp_busy);
7485
7486 dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
7487 goto commit_next_page;
7488 }
7489
7490 if (flags & UPL_COMMIT_CS_VALIDATED) {
7491 /*
7492 * CODE SIGNING:
7493 * Set the code signing bits according to
7494 * what the UPL says they should be.
7495 */
7496 m->vmp_cs_validated |= page_list[entry].cs_validated;
7497 m->vmp_cs_tainted |= page_list[entry].cs_tainted;
7498 m->vmp_cs_nx |= page_list[entry].cs_nx;
7499 }
7500 if (flags & UPL_COMMIT_WRITTEN_BY_KERNEL) {
7501 m->vmp_written_by_kernel = TRUE;
7502 }
7503
7504 if (upl->flags & UPL_IO_WIRE) {
7505 if (page_list) {
7506 page_list[entry].phys_addr = 0;
7507 }
7508
7509 if (flags & UPL_COMMIT_SET_DIRTY) {
7510 SET_PAGE_DIRTY(m, FALSE);
7511 } else if (flags & UPL_COMMIT_CLEAR_DIRTY) {
7512 m->vmp_dirty = FALSE;
7513
7514 if (!(flags & UPL_COMMIT_CS_VALIDATED) &&
7515 m->vmp_cs_validated &&
7516 m->vmp_cs_tainted != VMP_CS_ALL_TRUE) {
7517 /*
7518 * CODE SIGNING:
7519 * This page is no longer dirty
7520 * but could have been modified,
7521 * so it will need to be
7522 * re-validated.
7523 */
7524 m->vmp_cs_validated = VMP_CS_ALL_FALSE;
7525
7526 VM_PAGEOUT_DEBUG(vm_cs_validated_resets, 1);
7527
7528 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
7529 }
7530 clear_refmod |= VM_MEM_MODIFIED;
7531 }
7532 if (upl->flags & UPL_ACCESS_BLOCKED) {
7533 /*
7534 * We blocked access to the pages in this UPL.
7535 * Clear the "busy" bit and wake up any waiter
7536 * for this page.
7537 */
7538 dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
7539 }
7540 if (fast_path_possible) {
7541 assert(m_object->purgable != VM_PURGABLE_EMPTY);
7542 assert(m_object->purgable != VM_PURGABLE_VOLATILE);
7543 if (m->vmp_absent) {
7544 assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q);
7545 assert(m->vmp_wire_count == 0);
7546 assert(m->vmp_busy);
7547
7548 m->vmp_absent = FALSE;
7549 dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
7550 } else {
7551 if (m->vmp_wire_count == 0) {
7552 panic("wire_count == 0, m = %p, obj = %p\n", m, shadow_object);
7553 }
7554 assert(m->vmp_q_state == VM_PAGE_IS_WIRED);
7555
7556 /*
7557 * XXX FBDP need to update some other
7558 * counters here (purgeable_wired_count)
7559 * (ledgers), ...
7560 */
7561 assert(m->vmp_wire_count > 0);
7562 m->vmp_wire_count--;
7563
7564 if (m->vmp_wire_count == 0) {
7565 m->vmp_q_state = VM_PAGE_NOT_ON_Q;
7566 unwired_count++;
7567 }
7568 }
7569 if (m->vmp_wire_count == 0) {
7570 assert(m->vmp_pageq.next == 0 && m->vmp_pageq.prev == 0);
7571
7572 if (last_local == VM_PAGE_NULL) {
7573 assert(first_local == VM_PAGE_NULL);
7574
7575 last_local = m;
7576 first_local = m;
7577 } else {
7578 assert(first_local != VM_PAGE_NULL);
7579
7580 m->vmp_pageq.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_local);
7581 first_local->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(m);
7582 first_local = m;
7583 }
7584 local_queue_count++;
7585
7586 if (throttle_page) {
7587 m->vmp_q_state = VM_PAGE_ON_THROTTLED_Q;
7588 } else {
7589 if (flags & UPL_COMMIT_INACTIVATE) {
7590 if (shadow_object->internal) {
7591 m->vmp_q_state = VM_PAGE_ON_INACTIVE_INTERNAL_Q;
7592 } else {
7593 m->vmp_q_state = VM_PAGE_ON_INACTIVE_EXTERNAL_Q;
7594 }
7595 } else {
7596 m->vmp_q_state = VM_PAGE_ON_ACTIVE_Q;
7597 }
7598 }
7599 }
7600 } else {
7601 if (flags & UPL_COMMIT_INACTIVATE) {
7602 dwp->dw_mask |= DW_vm_page_deactivate_internal;
7603 clear_refmod |= VM_MEM_REFERENCED;
7604 }
7605 if (m->vmp_absent) {
7606 if (flags & UPL_COMMIT_FREE_ABSENT) {
7607 dwp->dw_mask |= DW_vm_page_free;
7608 } else {
7609 m->vmp_absent = FALSE;
7610 dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
7611
7612 if (!(dwp->dw_mask & DW_vm_page_deactivate_internal)) {
7613 dwp->dw_mask |= DW_vm_page_activate;
7614 }
7615 }
7616 } else {
7617 dwp->dw_mask |= DW_vm_page_unwire;
7618 }
7619 }
7620 goto commit_next_page;
7621 }
7622 assert(m->vmp_q_state != VM_PAGE_USED_BY_COMPRESSOR);
7623
7624 if (page_list) {
7625 page_list[entry].phys_addr = 0;
7626 }
7627
7628 /*
7629 * make sure to clear the hardware
7630 * modify or reference bits before
7631 * releasing the BUSY bit on this page
7632 * otherwise we risk losing a legitimate
7633 * change of state
7634 */
7635 if (flags & UPL_COMMIT_CLEAR_DIRTY) {
7636 m->vmp_dirty = FALSE;
7637
7638 clear_refmod |= VM_MEM_MODIFIED;
7639 }
7640 if (m->vmp_laundry) {
7641 dwp->dw_mask |= DW_vm_pageout_throttle_up;
7642 }
7643
7644 if (VM_PAGE_WIRED(m)) {
7645 m->vmp_free_when_done = FALSE;
7646 }
7647
7648 if (!(flags & UPL_COMMIT_CS_VALIDATED) &&
7649 m->vmp_cs_validated &&
7650 m->vmp_cs_tainted != VMP_CS_ALL_TRUE) {
7651 /*
7652 * CODE SIGNING:
7653 * This page is no longer dirty
7654 * but could have been modified,
7655 * so it will need to be
7656 * re-validated.
7657 */
7658 m->vmp_cs_validated = VMP_CS_ALL_FALSE;
7659
7660 VM_PAGEOUT_DEBUG(vm_cs_validated_resets, 1);
7661
7662 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
7663 }
7664 if (m->vmp_overwriting) {
7665 /*
7666 * the (COPY_OUT_FROM == FALSE) request_page_list case
7667 */
7668 if (m->vmp_busy) {
7669 #if CONFIG_PHANTOM_CACHE
7670 if (m->vmp_absent && !m_object->internal) {
7671 dwp->dw_mask |= DW_vm_phantom_cache_update;
7672 }
7673 #endif
7674 m->vmp_absent = FALSE;
7675
7676 dwp->dw_mask |= DW_clear_busy;
7677 } else {
7678 /*
7679 * alternate (COPY_OUT_FROM == FALSE) page_list case
7680 * Occurs when the original page was wired
7681 * at the time of the list request
7682 */
7683 assert(VM_PAGE_WIRED(m));
7684
7685 dwp->dw_mask |= DW_vm_page_unwire; /* reactivates */
7686 }
7687 m->vmp_overwriting = FALSE;
7688 }
7689 m->vmp_cleaning = FALSE;
7690
7691 if (m->vmp_free_when_done) {
7692 /*
7693 * With the clean queue enabled, UPL_PAGEOUT should
7694 * no longer set the pageout bit. Its pages now go
7695 * to the clean queue.
7696 *
7697 * We don't use the cleaned Q anymore and so this
7698 * assert isn't correct. The code for the clean Q
7699 * still exists and might be used in the future. If we
7700 * go back to the cleaned Q, we will re-enable this
7701 * assert.
7702 *
7703 * assert(!(upl->flags & UPL_PAGEOUT));
7704 */
7705 assert(!m_object->internal);
7706
7707 m->vmp_free_when_done = FALSE;
7708
7709 if ((flags & UPL_COMMIT_SET_DIRTY) ||
7710 (m->vmp_pmapped && (pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)) & VM_MEM_MODIFIED))) {
7711 /*
7712 * page was re-dirtied after we started
7713 * the pageout... reactivate it since
7714 * we don't know whether the on-disk
7715 * copy matches what is now in memory
7716 */
7717 SET_PAGE_DIRTY(m, FALSE);
7718
7719 dwp->dw_mask |= DW_vm_page_activate | DW_PAGE_WAKEUP;
7720
7721 if (upl->flags & UPL_PAGEOUT) {
7722 counter_inc(&vm_statistics_reactivations);
7723 DTRACE_VM2(pgrec, int, 1, (uint64_t *), NULL);
7724 }
7725 } else {
7726 /*
7727 * page has been successfully cleaned
7728 * go ahead and free it for other use
7729 */
7730 if (m_object->internal) {
7731 DTRACE_VM2(anonpgout, int, 1, (uint64_t *), NULL);
7732 } else {
7733 DTRACE_VM2(fspgout, int, 1, (uint64_t *), NULL);
7734 }
7735 m->vmp_dirty = FALSE;
7736 m->vmp_busy = TRUE;
7737
7738 dwp->dw_mask |= DW_vm_page_free;
7739 }
7740 goto commit_next_page;
7741 }
7742 /*
7743 * It is a part of the semantic of COPYOUT_FROM
7744 * UPLs that a commit implies cache sync
7745 * between the vm page and the backing store
7746 * this can be used to strip the precious bit
7747 * as well as clean
7748 */
7749 if ((upl->flags & UPL_PAGE_SYNC_DONE) || (flags & UPL_COMMIT_CLEAR_PRECIOUS)) {
7750 m->vmp_precious = FALSE;
7751 }
7752
7753 if (flags & UPL_COMMIT_SET_DIRTY) {
7754 SET_PAGE_DIRTY(m, FALSE);
7755 } else {
7756 m->vmp_dirty = FALSE;
7757 }
7758
7759 /* with the clean queue on, move *all* cleaned pages to the clean queue */
7760 if (hibernate_cleaning_in_progress == FALSE && !m->vmp_dirty && (upl->flags & UPL_PAGEOUT)) {
7761 pgpgout_count++;
7762
7763 counter_inc(&vm_statistics_pageouts);
7764 DTRACE_VM2(pgout, int, 1, (uint64_t *), NULL);
7765
7766 dwp->dw_mask |= DW_enqueue_cleaned;
7767 } else if (should_be_throttled == TRUE && (m->vmp_q_state == VM_PAGE_NOT_ON_Q)) {
7768 /*
7769 * page coming back in from being 'frozen'...
7770 * it was dirty before it was frozen, so keep it so
7771 * the vm_page_activate will notice that it really belongs
7772 * on the throttle queue and put it there
7773 */
7774 SET_PAGE_DIRTY(m, FALSE);
7775 dwp->dw_mask |= DW_vm_page_activate;
7776 } else {
7777 if ((flags & UPL_COMMIT_INACTIVATE) && !m->vmp_clustered && (m->vmp_q_state != VM_PAGE_ON_SPECULATIVE_Q)) {
7778 dwp->dw_mask |= DW_vm_page_deactivate_internal;
7779 clear_refmod |= VM_MEM_REFERENCED;
7780 } else if (!VM_PAGE_PAGEABLE(m)) {
7781 if (m->vmp_clustered || (flags & UPL_COMMIT_SPECULATE)) {
7782 dwp->dw_mask |= DW_vm_page_speculate;
7783 } else if (m->vmp_reference) {
7784 dwp->dw_mask |= DW_vm_page_activate;
7785 } else {
7786 dwp->dw_mask |= DW_vm_page_deactivate_internal;
7787 clear_refmod |= VM_MEM_REFERENCED;
7788 }
7789 }
7790 }
7791 if (upl->flags & UPL_ACCESS_BLOCKED) {
7792 /*
7793 * We blocked access to the pages in this URL.
7794 * Clear the "busy" bit on this page before we
7795 * wake up any waiter.
7796 */
7797 dwp->dw_mask |= DW_clear_busy;
7798 }
7799 /*
7800 * Wakeup any thread waiting for the page to be un-cleaning.
7801 */
7802 dwp->dw_mask |= DW_PAGE_WAKEUP;
7803
7804 commit_next_page:
7805 if (clear_refmod) {
7806 pmap_clear_refmod(VM_PAGE_GET_PHYS_PAGE(m), clear_refmod);
7807 }
7808
7809 target_offset += PAGE_SIZE_64;
7810 xfer_size -= PAGE_SIZE;
7811 entry++;
7812
7813 if (dwp->dw_mask) {
7814 if (dwp->dw_mask & ~(DW_clear_busy | DW_PAGE_WAKEUP)) {
7815 VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count);
7816
7817 if (dw_count >= dw_limit) {
7818 vm_page_do_delayed_work(shadow_object, VM_KERN_MEMORY_NONE, dwp_start, dw_count);
7819
7820 dwp = dwp_start;
7821 dw_count = 0;
7822 }
7823 } else {
7824 if (dwp->dw_mask & DW_clear_busy) {
7825 m->vmp_busy = FALSE;
7826 }
7827
7828 if (dwp->dw_mask & DW_PAGE_WAKEUP) {
7829 PAGE_WAKEUP(m);
7830 }
7831 }
7832 }
7833 }
7834 if (dw_count) {
7835 vm_page_do_delayed_work(shadow_object, VM_KERN_MEMORY_NONE, dwp_start, dw_count);
7836 dwp = dwp_start;
7837 dw_count = 0;
7838 }
7839
7840 if (fast_path_possible) {
7841 assert(shadow_object->purgable != VM_PURGABLE_VOLATILE);
7842 assert(shadow_object->purgable != VM_PURGABLE_EMPTY);
7843
7844 if (local_queue_count || unwired_count) {
7845 if (local_queue_count) {
7846 vm_page_t first_target;
7847 vm_page_queue_head_t *target_queue;
7848
7849 if (throttle_page) {
7850 target_queue = &vm_page_queue_throttled;
7851 } else {
7852 if (flags & UPL_COMMIT_INACTIVATE) {
7853 if (shadow_object->internal) {
7854 target_queue = &vm_page_queue_anonymous;
7855 } else {
7856 target_queue = &vm_page_queue_inactive;
7857 }
7858 } else {
7859 target_queue = &vm_page_queue_active;
7860 }
7861 }
7862 /*
7863 * Transfer the entire local queue to a regular LRU page queues.
7864 */
7865 vm_page_lockspin_queues();
7866
7867 first_target = (vm_page_t) vm_page_queue_first(target_queue);
7868
7869 if (vm_page_queue_empty(target_queue)) {
7870 target_queue->prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_local);
7871 } else {
7872 first_target->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_local);
7873 }
7874
7875 target_queue->next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_local);
7876 first_local->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(target_queue);
7877 last_local->vmp_pageq.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_target);
7878
7879 /*
7880 * Adjust the global page counts.
7881 */
7882 if (throttle_page) {
7883 vm_page_throttled_count += local_queue_count;
7884 } else {
7885 if (flags & UPL_COMMIT_INACTIVATE) {
7886 if (shadow_object->internal) {
7887 vm_page_anonymous_count += local_queue_count;
7888 }
7889 vm_page_inactive_count += local_queue_count;
7890
7891 token_new_pagecount += local_queue_count;
7892 } else {
7893 vm_page_active_count += local_queue_count;
7894 }
7895
7896 if (shadow_object->internal) {
7897 vm_page_pageable_internal_count += local_queue_count;
7898 } else {
7899 vm_page_pageable_external_count += local_queue_count;
7900 }
7901 }
7902 } else {
7903 vm_page_lockspin_queues();
7904 }
7905 if (unwired_count) {
7906 vm_page_wire_count -= unwired_count;
7907 VM_CHECK_MEMORYSTATUS;
7908 }
7909 vm_page_unlock_queues();
7910
7911 VM_OBJECT_WIRED_PAGE_COUNT(shadow_object, -unwired_count);
7912 }
7913 }
7914 occupied = 1;
7915
7916 if (upl->flags & UPL_DEVICE_MEMORY) {
7917 occupied = 0;
7918 } else if (upl->flags & UPL_LITE) {
7919 int pg_num;
7920 int i;
7921
7922 occupied = 0;
7923
7924 if (!fast_path_full_commit) {
7925 pg_num = upl_adjusted_size(upl, PAGE_MASK) / PAGE_SIZE;
7926 pg_num = (pg_num + 31) >> 5;
7927
7928 for (i = 0; i < pg_num; i++) {
7929 if (lite_list[i] != 0) {
7930 occupied = 1;
7931 break;
7932 }
7933 }
7934 }
7935 } else {
7936 if (vm_page_queue_empty(&upl->map_object->memq)) {
7937 occupied = 0;
7938 }
7939 }
7940 if (occupied == 0) {
7941 /*
7942 * If this UPL element belongs to a Vector UPL and is
7943 * empty, then this is the right function to deallocate
7944 * it. So go ahead set the *empty variable. The flag
7945 * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view
7946 * should be considered relevant for the Vector UPL and not
7947 * the internal UPLs.
7948 */
7949 if ((upl->flags & UPL_COMMIT_NOTIFY_EMPTY) || isVectorUPL) {
7950 *empty = TRUE;
7951 }
7952
7953 if (object == shadow_object && !(upl->flags & UPL_KERNEL_OBJECT)) {
7954 /*
7955 * this is not a paging object
7956 * so we need to drop the paging reference
7957 * that was taken when we created the UPL
7958 * against this object
7959 */
7960 vm_object_activity_end(shadow_object);
7961 vm_object_collapse(shadow_object, 0, TRUE);
7962 } else {
7963 /*
7964 * we dontated the paging reference to
7965 * the map object... vm_pageout_object_terminate
7966 * will drop this reference
7967 */
7968 }
7969 }
7970 VM_OBJECT_WIRED_PAGE_UPDATE_END(shadow_object, shadow_object->wire_tag);
7971 vm_object_unlock(shadow_object);
7972 if (object != shadow_object) {
7973 vm_object_unlock(object);
7974 }
7975
7976 if (!isVectorUPL) {
7977 upl_unlock(upl);
7978 } else {
7979 /*
7980 * If we completed our operations on an UPL that is
7981 * part of a Vectored UPL and if empty is TRUE, then
7982 * we should go ahead and deallocate this UPL element.
7983 * Then we check if this was the last of the UPL elements
7984 * within that Vectored UPL. If so, set empty to TRUE
7985 * so that in ubc_upl_commit_range or ubc_upl_commit, we
7986 * can go ahead and deallocate the Vector UPL too.
7987 */
7988 if (*empty == TRUE) {
7989 *empty = vector_upl_set_subupl(vector_upl, upl, 0);
7990 upl_deallocate(upl);
7991 }
7992 goto process_upl_to_commit;
7993 }
7994 if (pgpgout_count) {
7995 DTRACE_VM2(pgpgout, int, pgpgout_count, (uint64_t *), NULL);
7996 }
7997
7998 kr = KERN_SUCCESS;
7999 done:
8000 if (dwp_start && dwp_finish_ctx) {
8001 vm_page_delayed_work_finish_ctx(dwp_start);
8002 dwp_start = dwp = NULL;
8003 }
8004
8005 return kr;
8006 }
8007
8008 kern_return_t
8009 upl_abort_range(
8010 upl_t upl,
8011 upl_offset_t offset,
8012 upl_size_t size,
8013 int error,
8014 boolean_t *empty)
8015 {
8016 upl_page_info_t *user_page_list = NULL;
8017 upl_size_t xfer_size, subupl_size;
8018 vm_object_t shadow_object;
8019 vm_object_t object;
8020 vm_object_offset_t target_offset;
8021 upl_offset_t subupl_offset = offset;
8022 int entry;
8023 wpl_array_t lite_list;
8024 int occupied;
8025 struct vm_page_delayed_work dw_array;
8026 struct vm_page_delayed_work *dwp, *dwp_start;
8027 bool dwp_finish_ctx = TRUE;
8028 int dw_count;
8029 int dw_limit;
8030 int isVectorUPL = 0;
8031 upl_t vector_upl = NULL;
8032 vm_object_offset_t obj_start, obj_end, obj_offset;
8033 kern_return_t kr = KERN_SUCCESS;
8034
8035 // DEBUG4K_UPL("upl %p (u_offset 0x%llx u_size 0x%llx) object %p offset 0x%llx size 0x%llx error 0x%x\n", upl, (uint64_t)upl->u_offset, (uint64_t)upl->u_size, upl->map_object, (uint64_t)offset, (uint64_t)size, error);
8036
8037 dwp_start = dwp = NULL;
8038
8039 subupl_size = size;
8040 *empty = FALSE;
8041
8042 if (upl == UPL_NULL) {
8043 return KERN_INVALID_ARGUMENT;
8044 }
8045
8046 if ((upl->flags & UPL_IO_WIRE) && !(error & UPL_ABORT_DUMP_PAGES)) {
8047 return upl_commit_range(upl, offset, size, UPL_COMMIT_FREE_ABSENT, NULL, 0, empty);
8048 }
8049
8050 dw_count = 0;
8051 dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
8052 dwp_start = vm_page_delayed_work_get_ctx();
8053 if (dwp_start == NULL) {
8054 dwp_start = &dw_array;
8055 dw_limit = 1;
8056 dwp_finish_ctx = FALSE;
8057 }
8058
8059 dwp = dwp_start;
8060
8061 if ((isVectorUPL = vector_upl_is_valid(upl))) {
8062 vector_upl = upl;
8063 upl_lock(vector_upl);
8064 } else {
8065 upl_lock(upl);
8066 }
8067
8068 process_upl_to_abort:
8069 if (isVectorUPL) {
8070 size = subupl_size;
8071 offset = subupl_offset;
8072 if (size == 0) {
8073 upl_unlock(vector_upl);
8074 kr = KERN_SUCCESS;
8075 goto done;
8076 }
8077 upl = vector_upl_subupl_byoffset(vector_upl, &offset, &size);
8078 if (upl == NULL) {
8079 upl_unlock(vector_upl);
8080 kr = KERN_FAILURE;
8081 goto done;
8082 }
8083 subupl_size -= size;
8084 subupl_offset += size;
8085 }
8086
8087 *empty = FALSE;
8088
8089 #if UPL_DEBUG
8090 if (upl->upl_commit_index < UPL_DEBUG_COMMIT_RECORDS) {
8091 (void) OSBacktrace(&upl->upl_commit_records[upl->upl_commit_index].c_retaddr[0], UPL_DEBUG_STACK_FRAMES);
8092
8093 upl->upl_commit_records[upl->upl_commit_index].c_beg = offset;
8094 upl->upl_commit_records[upl->upl_commit_index].c_end = (offset + size);
8095 upl->upl_commit_records[upl->upl_commit_index].c_aborted = 1;
8096
8097 upl->upl_commit_index++;
8098 }
8099 #endif
8100 if (upl->flags & UPL_DEVICE_MEMORY) {
8101 xfer_size = 0;
8102 } else if ((offset + size) <= upl_adjusted_size(upl, PAGE_MASK)) {
8103 xfer_size = size;
8104 } else {
8105 if (!isVectorUPL) {
8106 upl_unlock(upl);
8107 } else {
8108 upl_unlock(vector_upl);
8109 }
8110 DEBUG4K_ERROR("upl %p (u_offset 0x%llx u_size 0x%x) offset 0x%x size 0x%x\n", upl, upl->u_offset, upl->u_size, offset, size);
8111 kr = KERN_FAILURE;
8112 goto done;
8113 }
8114 if (upl->flags & UPL_INTERNAL) {
8115 lite_list = (wpl_array_t)
8116 ((((uintptr_t)upl) + sizeof(struct upl))
8117 + ((upl_adjusted_size(upl, PAGE_MASK) / PAGE_SIZE) * sizeof(upl_page_info_t)));
8118
8119 user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
8120 } else {
8121 lite_list = (wpl_array_t)
8122 (((uintptr_t)upl) + sizeof(struct upl));
8123 }
8124 object = upl->map_object;
8125
8126 if (upl->flags & UPL_SHADOWED) {
8127 vm_object_lock(object);
8128 shadow_object = object->shadow;
8129 } else {
8130 shadow_object = object;
8131 }
8132
8133 entry = offset / PAGE_SIZE;
8134 target_offset = (vm_object_offset_t)offset;
8135
8136 if (upl->flags & UPL_KERNEL_OBJECT) {
8137 vm_object_lock_shared(shadow_object);
8138 } else {
8139 vm_object_lock(shadow_object);
8140 }
8141
8142 if (upl->flags & UPL_ACCESS_BLOCKED) {
8143 assert(shadow_object->blocked_access);
8144 shadow_object->blocked_access = FALSE;
8145 vm_object_wakeup(object, VM_OBJECT_EVENT_UNBLOCKED);
8146 }
8147
8148 if ((error & UPL_ABORT_DUMP_PAGES) && (upl->flags & UPL_KERNEL_OBJECT)) {
8149 panic("upl_abort_range: kernel_object being DUMPED");
8150 }
8151
8152 obj_start = target_offset + upl->u_offset - shadow_object->paging_offset;
8153 obj_end = obj_start + xfer_size;
8154 obj_start = vm_object_trunc_page(obj_start);
8155 obj_end = vm_object_round_page(obj_end);
8156 for (obj_offset = obj_start;
8157 obj_offset < obj_end;
8158 obj_offset += PAGE_SIZE) {
8159 vm_page_t t, m;
8160 unsigned int pg_num;
8161 boolean_t needed;
8162
8163 pg_num = (unsigned int) (target_offset / PAGE_SIZE);
8164 assert(pg_num == target_offset / PAGE_SIZE);
8165
8166 needed = FALSE;
8167
8168 if (user_page_list) {
8169 needed = user_page_list[pg_num].needed;
8170 }
8171
8172 dwp->dw_mask = 0;
8173 m = VM_PAGE_NULL;
8174
8175 if (upl->flags & UPL_LITE) {
8176 if (lite_list[pg_num >> 5] & (1U << (pg_num & 31))) {
8177 lite_list[pg_num >> 5] &= ~(1U << (pg_num & 31));
8178
8179 if (!(upl->flags & UPL_KERNEL_OBJECT)) {
8180 m = vm_page_lookup(shadow_object, obj_offset);
8181 }
8182 }
8183 }
8184 if (upl->flags & UPL_SHADOWED) {
8185 if ((t = vm_page_lookup(object, target_offset)) != VM_PAGE_NULL) {
8186 t->vmp_free_when_done = FALSE;
8187
8188 VM_PAGE_FREE(t);
8189
8190 if (m == VM_PAGE_NULL) {
8191 m = vm_page_lookup(shadow_object, target_offset + object->vo_shadow_offset);
8192 }
8193 }
8194 }
8195 if ((upl->flags & UPL_KERNEL_OBJECT)) {
8196 goto abort_next_page;
8197 }
8198
8199 if (m != VM_PAGE_NULL) {
8200 assert(m->vmp_q_state != VM_PAGE_USED_BY_COMPRESSOR);
8201
8202 if (m->vmp_absent) {
8203 boolean_t must_free = TRUE;
8204
8205 /*
8206 * COPYOUT = FALSE case
8207 * check for error conditions which must
8208 * be passed back to the pages customer
8209 */
8210 if (error & UPL_ABORT_RESTART) {
8211 m->vmp_restart = TRUE;
8212 m->vmp_absent = FALSE;
8213 m->vmp_unusual = TRUE;
8214 must_free = FALSE;
8215 } else if (error & UPL_ABORT_UNAVAILABLE) {
8216 m->vmp_restart = FALSE;
8217 m->vmp_unusual = TRUE;
8218 must_free = FALSE;
8219 } else if (error & UPL_ABORT_ERROR) {
8220 m->vmp_restart = FALSE;
8221 m->vmp_absent = FALSE;
8222 m->vmp_error = TRUE;
8223 m->vmp_unusual = TRUE;
8224 must_free = FALSE;
8225 }
8226 if (m->vmp_clustered && needed == FALSE) {
8227 /*
8228 * This page was a part of a speculative
8229 * read-ahead initiated by the kernel
8230 * itself. No one is expecting this
8231 * page and no one will clean up its
8232 * error state if it ever becomes valid
8233 * in the future.
8234 * We have to free it here.
8235 */
8236 must_free = TRUE;
8237 }
8238 m->vmp_cleaning = FALSE;
8239
8240 if (m->vmp_overwriting && !m->vmp_busy) {
8241 /*
8242 * this shouldn't happen since
8243 * this is an 'absent' page, but
8244 * it doesn't hurt to check for
8245 * the 'alternate' method of
8246 * stabilizing the page...
8247 * we will mark 'busy' to be cleared
8248 * in the following code which will
8249 * take care of the primary stabilzation
8250 * method (i.e. setting 'busy' to TRUE)
8251 */
8252 dwp->dw_mask |= DW_vm_page_unwire;
8253 }
8254 m->vmp_overwriting = FALSE;
8255
8256 dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
8257
8258 if (must_free == TRUE) {
8259 dwp->dw_mask |= DW_vm_page_free;
8260 } else {
8261 dwp->dw_mask |= DW_vm_page_activate;
8262 }
8263 } else {
8264 /*
8265 * Handle the trusted pager throttle.
8266 */
8267 if (m->vmp_laundry) {
8268 dwp->dw_mask |= DW_vm_pageout_throttle_up;
8269 }
8270
8271 if (upl->flags & UPL_ACCESS_BLOCKED) {
8272 /*
8273 * We blocked access to the pages in this UPL.
8274 * Clear the "busy" bit and wake up any waiter
8275 * for this page.
8276 */
8277 dwp->dw_mask |= DW_clear_busy;
8278 }
8279 if (m->vmp_overwriting) {
8280 if (m->vmp_busy) {
8281 dwp->dw_mask |= DW_clear_busy;
8282 } else {
8283 /*
8284 * deal with the 'alternate' method
8285 * of stabilizing the page...
8286 * we will either free the page
8287 * or mark 'busy' to be cleared
8288 * in the following code which will
8289 * take care of the primary stabilzation
8290 * method (i.e. setting 'busy' to TRUE)
8291 */
8292 dwp->dw_mask |= DW_vm_page_unwire;
8293 }
8294 m->vmp_overwriting = FALSE;
8295 }
8296 m->vmp_free_when_done = FALSE;
8297 m->vmp_cleaning = FALSE;
8298
8299 if (error & UPL_ABORT_DUMP_PAGES) {
8300 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
8301
8302 dwp->dw_mask |= DW_vm_page_free;
8303 } else {
8304 if (!(dwp->dw_mask & DW_vm_page_unwire)) {
8305 if (error & UPL_ABORT_REFERENCE) {
8306 /*
8307 * we've been told to explictly
8308 * reference this page... for
8309 * file I/O, this is done by
8310 * implementing an LRU on the inactive q
8311 */
8312 dwp->dw_mask |= DW_vm_page_lru;
8313 } else if (!VM_PAGE_PAGEABLE(m)) {
8314 dwp->dw_mask |= DW_vm_page_deactivate_internal;
8315 }
8316 }
8317 dwp->dw_mask |= DW_PAGE_WAKEUP;
8318 }
8319 }
8320 }
8321 abort_next_page:
8322 target_offset += PAGE_SIZE_64;
8323 xfer_size -= PAGE_SIZE;
8324 entry++;
8325
8326 if (dwp->dw_mask) {
8327 if (dwp->dw_mask & ~(DW_clear_busy | DW_PAGE_WAKEUP)) {
8328 VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count);
8329
8330 if (dw_count >= dw_limit) {
8331 vm_page_do_delayed_work(shadow_object, VM_KERN_MEMORY_NONE, dwp_start, dw_count);
8332
8333 dwp = dwp_start;
8334 dw_count = 0;
8335 }
8336 } else {
8337 if (dwp->dw_mask & DW_clear_busy) {
8338 m->vmp_busy = FALSE;
8339 }
8340
8341 if (dwp->dw_mask & DW_PAGE_WAKEUP) {
8342 PAGE_WAKEUP(m);
8343 }
8344 }
8345 }
8346 }
8347 if (dw_count) {
8348 vm_page_do_delayed_work(shadow_object, VM_KERN_MEMORY_NONE, dwp_start, dw_count);
8349 dwp = dwp_start;
8350 dw_count = 0;
8351 }
8352
8353 occupied = 1;
8354
8355 if (upl->flags & UPL_DEVICE_MEMORY) {
8356 occupied = 0;
8357 } else if (upl->flags & UPL_LITE) {
8358 int pg_num;
8359 int i;
8360
8361 pg_num = upl_adjusted_size(upl, PAGE_MASK) / PAGE_SIZE;
8362 pg_num = (pg_num + 31) >> 5;
8363 occupied = 0;
8364
8365 for (i = 0; i < pg_num; i++) {
8366 if (lite_list[i] != 0) {
8367 occupied = 1;
8368 break;
8369 }
8370 }
8371 } else {
8372 if (vm_page_queue_empty(&upl->map_object->memq)) {
8373 occupied = 0;
8374 }
8375 }
8376 if (occupied == 0) {
8377 /*
8378 * If this UPL element belongs to a Vector UPL and is
8379 * empty, then this is the right function to deallocate
8380 * it. So go ahead set the *empty variable. The flag
8381 * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view
8382 * should be considered relevant for the Vector UPL and
8383 * not the internal UPLs.
8384 */
8385 if ((upl->flags & UPL_COMMIT_NOTIFY_EMPTY) || isVectorUPL) {
8386 *empty = TRUE;
8387 }
8388
8389 if (object == shadow_object && !(upl->flags & UPL_KERNEL_OBJECT)) {
8390 /*
8391 * this is not a paging object
8392 * so we need to drop the paging reference
8393 * that was taken when we created the UPL
8394 * against this object
8395 */
8396 vm_object_activity_end(shadow_object);
8397 vm_object_collapse(shadow_object, 0, TRUE);
8398 } else {
8399 /*
8400 * we dontated the paging reference to
8401 * the map object... vm_pageout_object_terminate
8402 * will drop this reference
8403 */
8404 }
8405 }
8406 vm_object_unlock(shadow_object);
8407 if (object != shadow_object) {
8408 vm_object_unlock(object);
8409 }
8410
8411 if (!isVectorUPL) {
8412 upl_unlock(upl);
8413 } else {
8414 /*
8415 * If we completed our operations on an UPL that is
8416 * part of a Vectored UPL and if empty is TRUE, then
8417 * we should go ahead and deallocate this UPL element.
8418 * Then we check if this was the last of the UPL elements
8419 * within that Vectored UPL. If so, set empty to TRUE
8420 * so that in ubc_upl_abort_range or ubc_upl_abort, we
8421 * can go ahead and deallocate the Vector UPL too.
8422 */
8423 if (*empty == TRUE) {
8424 *empty = vector_upl_set_subupl(vector_upl, upl, 0);
8425 upl_deallocate(upl);
8426 }
8427 goto process_upl_to_abort;
8428 }
8429
8430 kr = KERN_SUCCESS;
8431
8432 done:
8433 if (dwp_start && dwp_finish_ctx) {
8434 vm_page_delayed_work_finish_ctx(dwp_start);
8435 dwp_start = dwp = NULL;
8436 }
8437
8438 return kr;
8439 }
8440
8441
8442 kern_return_t
8443 upl_abort(
8444 upl_t upl,
8445 int error)
8446 {
8447 boolean_t empty;
8448
8449 if (upl == UPL_NULL) {
8450 return KERN_INVALID_ARGUMENT;
8451 }
8452
8453 return upl_abort_range(upl, 0, upl->u_size, error, &empty);
8454 }
8455
8456
8457 /* an option on commit should be wire */
8458 kern_return_t
8459 upl_commit(
8460 upl_t upl,
8461 upl_page_info_t *page_list,
8462 mach_msg_type_number_t count)
8463 {
8464 boolean_t empty;
8465
8466 if (upl == UPL_NULL) {
8467 return KERN_INVALID_ARGUMENT;
8468 }
8469
8470 return upl_commit_range(upl, 0, upl->u_size, 0,
8471 page_list, count, &empty);
8472 }
8473
8474
8475 void
8476 iopl_valid_data(
8477 upl_t upl,
8478 vm_tag_t tag)
8479 {
8480 vm_object_t object;
8481 vm_offset_t offset;
8482 vm_page_t m, nxt_page = VM_PAGE_NULL;
8483 upl_size_t size;
8484 int wired_count = 0;
8485
8486 if (upl == NULL) {
8487 panic("iopl_valid_data: NULL upl");
8488 }
8489 if (vector_upl_is_valid(upl)) {
8490 panic("iopl_valid_data: vector upl");
8491 }
8492 if ((upl->flags & (UPL_DEVICE_MEMORY | UPL_SHADOWED | UPL_ACCESS_BLOCKED | UPL_IO_WIRE | UPL_INTERNAL)) != UPL_IO_WIRE) {
8493 panic("iopl_valid_data: unsupported upl, flags = %x", upl->flags);
8494 }
8495
8496 object = upl->map_object;
8497
8498 if (object == kernel_object || object == compressor_object) {
8499 panic("iopl_valid_data: object == kernel or compressor");
8500 }
8501
8502 if (object->purgable == VM_PURGABLE_VOLATILE ||
8503 object->purgable == VM_PURGABLE_EMPTY) {
8504 panic("iopl_valid_data: object %p purgable %d",
8505 object, object->purgable);
8506 }
8507
8508 size = upl_adjusted_size(upl, PAGE_MASK);
8509
8510 vm_object_lock(object);
8511 VM_OBJECT_WIRED_PAGE_UPDATE_START(object);
8512
8513 if (object->vo_size == size && object->resident_page_count == (size / PAGE_SIZE)) {
8514 nxt_page = (vm_page_t)vm_page_queue_first(&object->memq);
8515 } else {
8516 offset = (vm_offset_t)(upl_adjusted_offset(upl, PAGE_MASK) - object->paging_offset);
8517 }
8518
8519 while (size) {
8520 if (nxt_page != VM_PAGE_NULL) {
8521 m = nxt_page;
8522 nxt_page = (vm_page_t)vm_page_queue_next(&nxt_page->vmp_listq);
8523 } else {
8524 m = vm_page_lookup(object, offset);
8525 offset += PAGE_SIZE;
8526
8527 if (m == VM_PAGE_NULL) {
8528 panic("iopl_valid_data: missing expected page at offset %lx", (long)offset);
8529 }
8530 }
8531 if (m->vmp_busy) {
8532 if (!m->vmp_absent) {
8533 panic("iopl_valid_data: busy page w/o absent");
8534 }
8535
8536 if (m->vmp_pageq.next || m->vmp_pageq.prev) {
8537 panic("iopl_valid_data: busy+absent page on page queue");
8538 }
8539 if (m->vmp_reusable) {
8540 panic("iopl_valid_data: %p is reusable", m);
8541 }
8542
8543 m->vmp_absent = FALSE;
8544 m->vmp_dirty = TRUE;
8545 assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q);
8546 assert(m->vmp_wire_count == 0);
8547 m->vmp_wire_count++;
8548 assert(m->vmp_wire_count);
8549 if (m->vmp_wire_count == 1) {
8550 m->vmp_q_state = VM_PAGE_IS_WIRED;
8551 wired_count++;
8552 } else {
8553 panic("iopl_valid_data: %p already wired\n", m);
8554 }
8555
8556 PAGE_WAKEUP_DONE(m);
8557 }
8558 size -= PAGE_SIZE;
8559 }
8560 if (wired_count) {
8561 VM_OBJECT_WIRED_PAGE_COUNT(object, wired_count);
8562 assert(object->resident_page_count >= object->wired_page_count);
8563
8564 /* no need to adjust purgeable accounting for this object: */
8565 assert(object->purgable != VM_PURGABLE_VOLATILE);
8566 assert(object->purgable != VM_PURGABLE_EMPTY);
8567
8568 vm_page_lockspin_queues();
8569 vm_page_wire_count += wired_count;
8570 vm_page_unlock_queues();
8571 }
8572 VM_OBJECT_WIRED_PAGE_UPDATE_END(object, tag);
8573 vm_object_unlock(object);
8574 }
8575
8576
8577 void
8578 vm_object_set_pmap_cache_attr(
8579 vm_object_t object,
8580 upl_page_info_array_t user_page_list,
8581 unsigned int num_pages,
8582 boolean_t batch_pmap_op)
8583 {
8584 unsigned int cache_attr = 0;
8585
8586 cache_attr = object->wimg_bits & VM_WIMG_MASK;
8587 assert(user_page_list);
8588 if (cache_attr != VM_WIMG_USE_DEFAULT) {
8589 PMAP_BATCH_SET_CACHE_ATTR(object, user_page_list, cache_attr, num_pages, batch_pmap_op);
8590 }
8591 }
8592
8593
8594 boolean_t vm_object_iopl_wire_full(vm_object_t, upl_t, upl_page_info_array_t, wpl_array_t, upl_control_flags_t, vm_tag_t);
8595 kern_return_t vm_object_iopl_wire_empty(vm_object_t, upl_t, upl_page_info_array_t, wpl_array_t, upl_control_flags_t, vm_tag_t, vm_object_offset_t *, int, int*);
8596
8597
8598
8599 boolean_t
8600 vm_object_iopl_wire_full(vm_object_t object, upl_t upl, upl_page_info_array_t user_page_list,
8601 wpl_array_t lite_list, upl_control_flags_t cntrl_flags, vm_tag_t tag)
8602 {
8603 vm_page_t dst_page;
8604 unsigned int entry;
8605 int page_count;
8606 int delayed_unlock = 0;
8607 boolean_t retval = TRUE;
8608 ppnum_t phys_page;
8609
8610 vm_object_lock_assert_exclusive(object);
8611 assert(object->purgable != VM_PURGABLE_VOLATILE);
8612 assert(object->purgable != VM_PURGABLE_EMPTY);
8613 assert(object->pager == NULL);
8614 assert(object->copy == NULL);
8615 assert(object->shadow == NULL);
8616
8617 page_count = object->resident_page_count;
8618 dst_page = (vm_page_t)vm_page_queue_first(&object->memq);
8619
8620 vm_page_lock_queues();
8621
8622 while (page_count--) {
8623 if (dst_page->vmp_busy ||
8624 dst_page->vmp_fictitious ||
8625 dst_page->vmp_absent ||
8626 dst_page->vmp_error ||
8627 dst_page->vmp_cleaning ||
8628 dst_page->vmp_restart ||
8629 dst_page->vmp_laundry) {
8630 retval = FALSE;
8631 goto done;
8632 }
8633 if ((cntrl_flags & UPL_REQUEST_FORCE_COHERENCY) && dst_page->vmp_written_by_kernel == TRUE) {
8634 retval = FALSE;
8635 goto done;
8636 }
8637 dst_page->vmp_reference = TRUE;
8638
8639 vm_page_wire(dst_page, tag, FALSE);
8640
8641 if (!(cntrl_flags & UPL_COPYOUT_FROM)) {
8642 SET_PAGE_DIRTY(dst_page, FALSE);
8643 }
8644 entry = (unsigned int)(dst_page->vmp_offset / PAGE_SIZE);
8645 assert(entry >= 0 && entry < object->resident_page_count);
8646 lite_list[entry >> 5] |= 1U << (entry & 31);
8647
8648 phys_page = VM_PAGE_GET_PHYS_PAGE(dst_page);
8649
8650 if (phys_page > upl->highest_page) {
8651 upl->highest_page = phys_page;
8652 }
8653
8654 if (user_page_list) {
8655 user_page_list[entry].phys_addr = phys_page;
8656 user_page_list[entry].absent = dst_page->vmp_absent;
8657 user_page_list[entry].dirty = dst_page->vmp_dirty;
8658 user_page_list[entry].free_when_done = dst_page->vmp_free_when_done;
8659 user_page_list[entry].precious = dst_page->vmp_precious;
8660 user_page_list[entry].device = FALSE;
8661 user_page_list[entry].speculative = FALSE;
8662 user_page_list[entry].cs_validated = FALSE;
8663 user_page_list[entry].cs_tainted = FALSE;
8664 user_page_list[entry].cs_nx = FALSE;
8665 user_page_list[entry].needed = FALSE;
8666 user_page_list[entry].mark = FALSE;
8667 }
8668 if (delayed_unlock++ > 256) {
8669 delayed_unlock = 0;
8670 lck_mtx_yield(&vm_page_queue_lock);
8671
8672 VM_CHECK_MEMORYSTATUS;
8673 }
8674 dst_page = (vm_page_t)vm_page_queue_next(&dst_page->vmp_listq);
8675 }
8676 done:
8677 vm_page_unlock_queues();
8678
8679 VM_CHECK_MEMORYSTATUS;
8680
8681 return retval;
8682 }
8683
8684
8685 kern_return_t
8686 vm_object_iopl_wire_empty(vm_object_t object, upl_t upl, upl_page_info_array_t user_page_list,
8687 wpl_array_t lite_list, upl_control_flags_t cntrl_flags, vm_tag_t tag, vm_object_offset_t *dst_offset,
8688 int page_count, int* page_grab_count)
8689 {
8690 vm_page_t dst_page;
8691 boolean_t no_zero_fill = FALSE;
8692 int interruptible;
8693 int pages_wired = 0;
8694 int pages_inserted = 0;
8695 int entry = 0;
8696 uint64_t delayed_ledger_update = 0;
8697 kern_return_t ret = KERN_SUCCESS;
8698 int grab_options;
8699 ppnum_t phys_page;
8700
8701 vm_object_lock_assert_exclusive(object);
8702 assert(object->purgable != VM_PURGABLE_VOLATILE);
8703 assert(object->purgable != VM_PURGABLE_EMPTY);
8704 assert(object->pager == NULL);
8705 assert(object->copy == NULL);
8706 assert(object->shadow == NULL);
8707
8708 if (cntrl_flags & UPL_SET_INTERRUPTIBLE) {
8709 interruptible = THREAD_ABORTSAFE;
8710 } else {
8711 interruptible = THREAD_UNINT;
8712 }
8713
8714 if (cntrl_flags & (UPL_NOZEROFILL | UPL_NOZEROFILLIO)) {
8715 no_zero_fill = TRUE;
8716 }
8717
8718 grab_options = 0;
8719 #if CONFIG_SECLUDED_MEMORY
8720 if (object->can_grab_secluded) {
8721 grab_options |= VM_PAGE_GRAB_SECLUDED;
8722 }
8723 #endif /* CONFIG_SECLUDED_MEMORY */
8724
8725 while (page_count--) {
8726 while ((dst_page = vm_page_grab_options(grab_options))
8727 == VM_PAGE_NULL) {
8728 OSAddAtomic(page_count, &vm_upl_wait_for_pages);
8729
8730 VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_START, vm_upl_wait_for_pages, 0, 0, 0);
8731
8732 if (vm_page_wait(interruptible) == FALSE) {
8733 /*
8734 * interrupted case
8735 */
8736 OSAddAtomic(-page_count, &vm_upl_wait_for_pages);
8737
8738 VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, -1);
8739
8740 ret = MACH_SEND_INTERRUPTED;
8741 goto done;
8742 }
8743 OSAddAtomic(-page_count, &vm_upl_wait_for_pages);
8744
8745 VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, 0);
8746 }
8747 if (no_zero_fill == FALSE) {
8748 vm_page_zero_fill(dst_page);
8749 } else {
8750 dst_page->vmp_absent = TRUE;
8751 }
8752
8753 dst_page->vmp_reference = TRUE;
8754
8755 if (!(cntrl_flags & UPL_COPYOUT_FROM)) {
8756 SET_PAGE_DIRTY(dst_page, FALSE);
8757 }
8758 if (dst_page->vmp_absent == FALSE) {
8759 assert(dst_page->vmp_q_state == VM_PAGE_NOT_ON_Q);
8760 assert(dst_page->vmp_wire_count == 0);
8761 dst_page->vmp_wire_count++;
8762 dst_page->vmp_q_state = VM_PAGE_IS_WIRED;
8763 assert(dst_page->vmp_wire_count);
8764 pages_wired++;
8765 PAGE_WAKEUP_DONE(dst_page);
8766 }
8767 pages_inserted++;
8768
8769 vm_page_insert_internal(dst_page, object, *dst_offset, tag, FALSE, TRUE, TRUE, TRUE, &delayed_ledger_update);
8770
8771 lite_list[entry >> 5] |= 1U << (entry & 31);
8772
8773 phys_page = VM_PAGE_GET_PHYS_PAGE(dst_page);
8774
8775 if (phys_page > upl->highest_page) {
8776 upl->highest_page = phys_page;
8777 }
8778
8779 if (user_page_list) {
8780 user_page_list[entry].phys_addr = phys_page;
8781 user_page_list[entry].absent = dst_page->vmp_absent;
8782 user_page_list[entry].dirty = dst_page->vmp_dirty;
8783 user_page_list[entry].free_when_done = FALSE;
8784 user_page_list[entry].precious = FALSE;
8785 user_page_list[entry].device = FALSE;
8786 user_page_list[entry].speculative = FALSE;
8787 user_page_list[entry].cs_validated = FALSE;
8788 user_page_list[entry].cs_tainted = FALSE;
8789 user_page_list[entry].cs_nx = FALSE;
8790 user_page_list[entry].needed = FALSE;
8791 user_page_list[entry].mark = FALSE;
8792 }
8793 entry++;
8794 *dst_offset += PAGE_SIZE_64;
8795 }
8796 done:
8797 if (pages_wired) {
8798 vm_page_lockspin_queues();
8799 vm_page_wire_count += pages_wired;
8800 vm_page_unlock_queues();
8801 }
8802 if (pages_inserted) {
8803 if (object->internal) {
8804 OSAddAtomic(pages_inserted, &vm_page_internal_count);
8805 } else {
8806 OSAddAtomic(pages_inserted, &vm_page_external_count);
8807 }
8808 }
8809 if (delayed_ledger_update) {
8810 task_t owner;
8811 int ledger_idx_volatile;
8812 int ledger_idx_nonvolatile;
8813 int ledger_idx_volatile_compressed;
8814 int ledger_idx_nonvolatile_compressed;
8815 boolean_t do_footprint;
8816
8817 owner = VM_OBJECT_OWNER(object);
8818 assert(owner);
8819
8820 vm_object_ledger_tag_ledgers(object,
8821 &ledger_idx_volatile,
8822 &ledger_idx_nonvolatile,
8823 &ledger_idx_volatile_compressed,
8824 &ledger_idx_nonvolatile_compressed,
8825 &do_footprint);
8826
8827 /* more non-volatile bytes */
8828 ledger_credit(owner->ledger,
8829 ledger_idx_nonvolatile,
8830 delayed_ledger_update);
8831 if (do_footprint) {
8832 /* more footprint */
8833 ledger_credit(owner->ledger,
8834 task_ledgers.phys_footprint,
8835 delayed_ledger_update);
8836 }
8837 }
8838
8839 assert(page_grab_count);
8840 *page_grab_count = pages_inserted;
8841
8842 return ret;
8843 }
8844
8845
8846
8847 kern_return_t
8848 vm_object_iopl_request(
8849 vm_object_t object,
8850 vm_object_offset_t offset,
8851 upl_size_t size,
8852 upl_t *upl_ptr,
8853 upl_page_info_array_t user_page_list,
8854 unsigned int *page_list_count,
8855 upl_control_flags_t cntrl_flags,
8856 vm_tag_t tag)
8857 {
8858 vm_page_t dst_page;
8859 vm_object_offset_t dst_offset;
8860 upl_size_t xfer_size;
8861 upl_t upl = NULL;
8862 unsigned int entry;
8863 wpl_array_t lite_list = NULL;
8864 int no_zero_fill = FALSE;
8865 unsigned int size_in_pages;
8866 int page_grab_count = 0;
8867 u_int32_t psize;
8868 kern_return_t ret;
8869 vm_prot_t prot;
8870 struct vm_object_fault_info fault_info = {};
8871 struct vm_page_delayed_work dw_array;
8872 struct vm_page_delayed_work *dwp, *dwp_start;
8873 bool dwp_finish_ctx = TRUE;
8874 int dw_count;
8875 int dw_limit;
8876 int dw_index;
8877 boolean_t caller_lookup;
8878 int io_tracking_flag = 0;
8879 int interruptible;
8880 ppnum_t phys_page;
8881
8882 boolean_t set_cache_attr_needed = FALSE;
8883 boolean_t free_wired_pages = FALSE;
8884 boolean_t fast_path_empty_req = FALSE;
8885 boolean_t fast_path_full_req = FALSE;
8886
8887 #if DEVELOPMENT || DEBUG
8888 task_t task = current_task();
8889 #endif /* DEVELOPMENT || DEBUG */
8890
8891 dwp_start = dwp = NULL;
8892
8893 vm_object_offset_t original_offset = offset;
8894 upl_size_t original_size = size;
8895
8896 // DEBUG4K_UPL("object %p offset 0x%llx size 0x%llx cntrl_flags 0x%llx\n", object, (uint64_t)offset, (uint64_t)size, cntrl_flags);
8897
8898 size = (upl_size_t)(vm_object_round_page(offset + size) - vm_object_trunc_page(offset));
8899 offset = vm_object_trunc_page(offset);
8900 if (size != original_size || offset != original_offset) {
8901 DEBUG4K_IOKIT("flags 0x%llx object %p offset 0x%llx size 0x%x -> offset 0x%llx size 0x%x\n", cntrl_flags, object, original_offset, original_size, offset, size);
8902 }
8903
8904 if (cntrl_flags & ~UPL_VALID_FLAGS) {
8905 /*
8906 * For forward compatibility's sake,
8907 * reject any unknown flag.
8908 */
8909 return KERN_INVALID_VALUE;
8910 }
8911 if (vm_lopage_needed == FALSE) {
8912 cntrl_flags &= ~UPL_NEED_32BIT_ADDR;
8913 }
8914
8915 if (cntrl_flags & UPL_NEED_32BIT_ADDR) {
8916 if ((cntrl_flags & (UPL_SET_IO_WIRE | UPL_SET_LITE)) != (UPL_SET_IO_WIRE | UPL_SET_LITE)) {
8917 return KERN_INVALID_VALUE;
8918 }
8919
8920 if (object->phys_contiguous) {
8921 if ((offset + object->vo_shadow_offset) >= (vm_object_offset_t)max_valid_dma_address) {
8922 return KERN_INVALID_ADDRESS;
8923 }
8924
8925 if (((offset + object->vo_shadow_offset) + size) >= (vm_object_offset_t)max_valid_dma_address) {
8926 return KERN_INVALID_ADDRESS;
8927 }
8928 }
8929 }
8930 if (cntrl_flags & (UPL_NOZEROFILL | UPL_NOZEROFILLIO)) {
8931 no_zero_fill = TRUE;
8932 }
8933
8934 if (cntrl_flags & UPL_COPYOUT_FROM) {
8935 prot = VM_PROT_READ;
8936 } else {
8937 prot = VM_PROT_READ | VM_PROT_WRITE;
8938 }
8939
8940 if ((!object->internal) && (object->paging_offset != 0)) {
8941 panic("vm_object_iopl_request: external object with non-zero paging offset\n");
8942 }
8943
8944
8945 VM_DEBUG_CONSTANT_EVENT(vm_object_iopl_request, VM_IOPL_REQUEST, DBG_FUNC_START, size, cntrl_flags, prot, 0);
8946
8947 #if CONFIG_IOSCHED || UPL_DEBUG
8948 if ((object->io_tracking && object != kernel_object) || upl_debug_enabled) {
8949 io_tracking_flag |= UPL_CREATE_IO_TRACKING;
8950 }
8951 #endif
8952
8953 #if CONFIG_IOSCHED
8954 if (object->io_tracking) {
8955 /* Check if we're dealing with the kernel object. We do not support expedite on kernel object UPLs */
8956 if (object != kernel_object) {
8957 io_tracking_flag |= UPL_CREATE_EXPEDITE_SUP;
8958 }
8959 }
8960 #endif
8961
8962 if (object->phys_contiguous) {
8963 psize = PAGE_SIZE;
8964 } else {
8965 psize = size;
8966
8967 dw_count = 0;
8968 dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
8969 dwp_start = vm_page_delayed_work_get_ctx();
8970 if (dwp_start == NULL) {
8971 dwp_start = &dw_array;
8972 dw_limit = 1;
8973 dwp_finish_ctx = FALSE;
8974 }
8975
8976 dwp = dwp_start;
8977 }
8978
8979 if (cntrl_flags & UPL_SET_INTERNAL) {
8980 upl = upl_create(UPL_CREATE_INTERNAL | UPL_CREATE_LITE | io_tracking_flag, UPL_IO_WIRE, psize);
8981
8982 user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
8983 lite_list = (wpl_array_t) (((uintptr_t)user_page_list) +
8984 ((psize / PAGE_SIZE) * sizeof(upl_page_info_t)));
8985 if (size == 0) {
8986 user_page_list = NULL;
8987 lite_list = NULL;
8988 }
8989 } else {
8990 upl = upl_create(UPL_CREATE_LITE | io_tracking_flag, UPL_IO_WIRE, psize);
8991
8992 lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl));
8993 if (size == 0) {
8994 lite_list = NULL;
8995 }
8996 }
8997 if (user_page_list) {
8998 user_page_list[0].device = FALSE;
8999 }
9000 *upl_ptr = upl;
9001
9002 if (cntrl_flags & UPL_NOZEROFILLIO) {
9003 DTRACE_VM4(upl_nozerofillio,
9004 vm_object_t, object,
9005 vm_object_offset_t, offset,
9006 upl_size_t, size,
9007 upl_t, upl);
9008 }
9009
9010 upl->map_object = object;
9011 upl->u_offset = original_offset;
9012 upl->u_size = original_size;
9013
9014 size_in_pages = size / PAGE_SIZE;
9015
9016 if (object == kernel_object &&
9017 !(cntrl_flags & (UPL_NEED_32BIT_ADDR | UPL_BLOCK_ACCESS))) {
9018 upl->flags |= UPL_KERNEL_OBJECT;
9019 #if UPL_DEBUG
9020 vm_object_lock(object);
9021 #else
9022 vm_object_lock_shared(object);
9023 #endif
9024 } else {
9025 vm_object_lock(object);
9026 vm_object_activity_begin(object);
9027 }
9028 /*
9029 * paging in progress also protects the paging_offset
9030 */
9031 upl->u_offset = original_offset + object->paging_offset;
9032
9033 if (cntrl_flags & UPL_BLOCK_ACCESS) {
9034 /*
9035 * The user requested that access to the pages in this UPL
9036 * be blocked until the UPL is commited or aborted.
9037 */
9038 upl->flags |= UPL_ACCESS_BLOCKED;
9039 }
9040
9041 #if CONFIG_IOSCHED || UPL_DEBUG
9042 if ((upl->flags & UPL_TRACKED_BY_OBJECT) || upl_debug_enabled) {
9043 vm_object_activity_begin(object);
9044 queue_enter(&object->uplq, upl, upl_t, uplq);
9045 }
9046 #endif
9047
9048 if (object->phys_contiguous) {
9049 if (upl->flags & UPL_ACCESS_BLOCKED) {
9050 assert(!object->blocked_access);
9051 object->blocked_access = TRUE;
9052 }
9053
9054 vm_object_unlock(object);
9055
9056 /*
9057 * don't need any shadow mappings for this one
9058 * since it is already I/O memory
9059 */
9060 upl->flags |= UPL_DEVICE_MEMORY;
9061
9062 upl->highest_page = (ppnum_t) ((offset + object->vo_shadow_offset + size - 1) >> PAGE_SHIFT);
9063
9064 if (user_page_list) {
9065 user_page_list[0].phys_addr = (ppnum_t) ((offset + object->vo_shadow_offset) >> PAGE_SHIFT);
9066 user_page_list[0].device = TRUE;
9067 }
9068 if (page_list_count != NULL) {
9069 if (upl->flags & UPL_INTERNAL) {
9070 *page_list_count = 0;
9071 } else {
9072 *page_list_count = 1;
9073 }
9074 }
9075
9076 VM_DEBUG_CONSTANT_EVENT(vm_object_iopl_request, VM_IOPL_REQUEST, DBG_FUNC_END, page_grab_count, KERN_SUCCESS, 0, 0);
9077 #if DEVELOPMENT || DEBUG
9078 if (task != NULL) {
9079 ledger_credit(task->ledger, task_ledgers.pages_grabbed_iopl, page_grab_count);
9080 }
9081 #endif /* DEVELOPMENT || DEBUG */
9082 return KERN_SUCCESS;
9083 }
9084 if (object != kernel_object && object != compressor_object) {
9085 /*
9086 * Protect user space from future COW operations
9087 */
9088 #if VM_OBJECT_TRACKING_OP_TRUESHARE
9089 if (!object->true_share &&
9090 vm_object_tracking_inited) {
9091 void *bt[VM_OBJECT_TRACKING_BTDEPTH];
9092 int num = 0;
9093
9094 num = OSBacktrace(bt,
9095 VM_OBJECT_TRACKING_BTDEPTH);
9096 btlog_add_entry(vm_object_tracking_btlog,
9097 object,
9098 VM_OBJECT_TRACKING_OP_TRUESHARE,
9099 bt,
9100 num);
9101 }
9102 #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */
9103
9104 vm_object_lock_assert_exclusive(object);
9105 object->true_share = TRUE;
9106
9107 if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) {
9108 object->copy_strategy = MEMORY_OBJECT_COPY_DELAY;
9109 }
9110 }
9111
9112 if (!(cntrl_flags & UPL_COPYOUT_FROM) &&
9113 object->copy != VM_OBJECT_NULL) {
9114 /*
9115 * Honor copy-on-write obligations
9116 *
9117 * The caller is gathering these pages and
9118 * might modify their contents. We need to
9119 * make sure that the copy object has its own
9120 * private copies of these pages before we let
9121 * the caller modify them.
9122 *
9123 * NOTE: someone else could map the original object
9124 * after we've done this copy-on-write here, and they
9125 * could then see an inconsistent picture of the memory
9126 * while it's being modified via the UPL. To prevent this,
9127 * we would have to block access to these pages until the
9128 * UPL is released. We could use the UPL_BLOCK_ACCESS
9129 * code path for that...
9130 */
9131 vm_object_update(object,
9132 offset,
9133 size,
9134 NULL,
9135 NULL,
9136 FALSE, /* should_return */
9137 MEMORY_OBJECT_COPY_SYNC,
9138 VM_PROT_NO_CHANGE);
9139 VM_PAGEOUT_DEBUG(iopl_cow, 1);
9140 VM_PAGEOUT_DEBUG(iopl_cow_pages, (size >> PAGE_SHIFT));
9141 }
9142 if (!(cntrl_flags & (UPL_NEED_32BIT_ADDR | UPL_BLOCK_ACCESS)) &&
9143 object->purgable != VM_PURGABLE_VOLATILE &&
9144 object->purgable != VM_PURGABLE_EMPTY &&
9145 object->copy == NULL &&
9146 size == object->vo_size &&
9147 offset == 0 &&
9148 object->shadow == NULL &&
9149 object->pager == NULL) {
9150 if (object->resident_page_count == size_in_pages) {
9151 assert(object != compressor_object);
9152 assert(object != kernel_object);
9153 fast_path_full_req = TRUE;
9154 } else if (object->resident_page_count == 0) {
9155 assert(object != compressor_object);
9156 assert(object != kernel_object);
9157 fast_path_empty_req = TRUE;
9158 set_cache_attr_needed = TRUE;
9159 }
9160 }
9161
9162 if (cntrl_flags & UPL_SET_INTERRUPTIBLE) {
9163 interruptible = THREAD_ABORTSAFE;
9164 } else {
9165 interruptible = THREAD_UNINT;
9166 }
9167
9168 entry = 0;
9169
9170 xfer_size = size;
9171 dst_offset = offset;
9172
9173 if (fast_path_full_req) {
9174 if (vm_object_iopl_wire_full(object, upl, user_page_list, lite_list, cntrl_flags, tag) == TRUE) {
9175 goto finish;
9176 }
9177 /*
9178 * we couldn't complete the processing of this request on the fast path
9179 * so fall through to the slow path and finish up
9180 */
9181 } else if (fast_path_empty_req) {
9182 if (cntrl_flags & UPL_REQUEST_NO_FAULT) {
9183 ret = KERN_MEMORY_ERROR;
9184 goto return_err;
9185 }
9186 ret = vm_object_iopl_wire_empty(object, upl, user_page_list, lite_list, cntrl_flags, tag, &dst_offset, size_in_pages, &page_grab_count);
9187
9188 if (ret) {
9189 free_wired_pages = TRUE;
9190 goto return_err;
9191 }
9192 goto finish;
9193 }
9194
9195 fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL;
9196 fault_info.lo_offset = offset;
9197 fault_info.hi_offset = offset + xfer_size;
9198 fault_info.mark_zf_absent = TRUE;
9199 fault_info.interruptible = interruptible;
9200 fault_info.batch_pmap_op = TRUE;
9201
9202 while (xfer_size) {
9203 vm_fault_return_t result;
9204
9205 dwp->dw_mask = 0;
9206
9207 if (fast_path_full_req) {
9208 /*
9209 * if we get here, it means that we ran into a page
9210 * state we couldn't handle in the fast path and
9211 * bailed out to the slow path... since the order
9212 * we look at pages is different between the 2 paths,
9213 * the following check is needed to determine whether
9214 * this page was already processed in the fast path
9215 */
9216 if (lite_list[entry >> 5] & (1 << (entry & 31))) {
9217 goto skip_page;
9218 }
9219 }
9220 dst_page = vm_page_lookup(object, dst_offset);
9221
9222 if (dst_page == VM_PAGE_NULL ||
9223 dst_page->vmp_busy ||
9224 dst_page->vmp_error ||
9225 dst_page->vmp_restart ||
9226 dst_page->vmp_absent ||
9227 dst_page->vmp_fictitious) {
9228 if (object == kernel_object) {
9229 panic("vm_object_iopl_request: missing/bad page in kernel object\n");
9230 }
9231 if (object == compressor_object) {
9232 panic("vm_object_iopl_request: missing/bad page in compressor object\n");
9233 }
9234
9235 if (cntrl_flags & UPL_REQUEST_NO_FAULT) {
9236 ret = KERN_MEMORY_ERROR;
9237 goto return_err;
9238 }
9239 set_cache_attr_needed = TRUE;
9240
9241 /*
9242 * We just looked up the page and the result remains valid
9243 * until the object lock is release, so send it to
9244 * vm_fault_page() (as "dst_page"), to avoid having to
9245 * look it up again there.
9246 */
9247 caller_lookup = TRUE;
9248
9249 do {
9250 vm_page_t top_page;
9251 kern_return_t error_code;
9252
9253 fault_info.cluster_size = xfer_size;
9254
9255 vm_object_paging_begin(object);
9256
9257 result = vm_fault_page(object, dst_offset,
9258 prot | VM_PROT_WRITE, FALSE,
9259 caller_lookup,
9260 &prot, &dst_page, &top_page,
9261 (int *)0,
9262 &error_code, no_zero_fill,
9263 FALSE, &fault_info);
9264
9265 /* our lookup is no longer valid at this point */
9266 caller_lookup = FALSE;
9267
9268 switch (result) {
9269 case VM_FAULT_SUCCESS:
9270 page_grab_count++;
9271
9272 if (!dst_page->vmp_absent) {
9273 PAGE_WAKEUP_DONE(dst_page);
9274 } else {
9275 /*
9276 * we only get back an absent page if we
9277 * requested that it not be zero-filled
9278 * because we are about to fill it via I/O
9279 *
9280 * absent pages should be left BUSY
9281 * to prevent them from being faulted
9282 * into an address space before we've
9283 * had a chance to complete the I/O on
9284 * them since they may contain info that
9285 * shouldn't be seen by the faulting task
9286 */
9287 }
9288 /*
9289 * Release paging references and
9290 * top-level placeholder page, if any.
9291 */
9292 if (top_page != VM_PAGE_NULL) {
9293 vm_object_t local_object;
9294
9295 local_object = VM_PAGE_OBJECT(top_page);
9296
9297 /*
9298 * comparing 2 packed pointers
9299 */
9300 if (top_page->vmp_object != dst_page->vmp_object) {
9301 vm_object_lock(local_object);
9302 VM_PAGE_FREE(top_page);
9303 vm_object_paging_end(local_object);
9304 vm_object_unlock(local_object);
9305 } else {
9306 VM_PAGE_FREE(top_page);
9307 vm_object_paging_end(local_object);
9308 }
9309 }
9310 vm_object_paging_end(object);
9311 break;
9312
9313 case VM_FAULT_RETRY:
9314 vm_object_lock(object);
9315 break;
9316
9317 case VM_FAULT_MEMORY_SHORTAGE:
9318 OSAddAtomic((size_in_pages - entry), &vm_upl_wait_for_pages);
9319
9320 VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_START, vm_upl_wait_for_pages, 0, 0, 0);
9321
9322 if (vm_page_wait(interruptible)) {
9323 OSAddAtomic(-(size_in_pages - entry), &vm_upl_wait_for_pages);
9324
9325 VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, 0);
9326 vm_object_lock(object);
9327
9328 break;
9329 }
9330 OSAddAtomic(-(size_in_pages - entry), &vm_upl_wait_for_pages);
9331
9332 VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, -1);
9333
9334 OS_FALLTHROUGH;
9335
9336 case VM_FAULT_INTERRUPTED:
9337 error_code = MACH_SEND_INTERRUPTED;
9338 OS_FALLTHROUGH;
9339 case VM_FAULT_MEMORY_ERROR:
9340 memory_error:
9341 ret = (error_code ? error_code: KERN_MEMORY_ERROR);
9342
9343 vm_object_lock(object);
9344 goto return_err;
9345
9346 case VM_FAULT_SUCCESS_NO_VM_PAGE:
9347 /* success but no page: fail */
9348 vm_object_paging_end(object);
9349 vm_object_unlock(object);
9350 goto memory_error;
9351
9352 default:
9353 panic("vm_object_iopl_request: unexpected error"
9354 " 0x%x from vm_fault_page()\n", result);
9355 }
9356 } while (result != VM_FAULT_SUCCESS);
9357 }
9358 phys_page = VM_PAGE_GET_PHYS_PAGE(dst_page);
9359
9360 if (upl->flags & UPL_KERNEL_OBJECT) {
9361 goto record_phys_addr;
9362 }
9363
9364 if (dst_page->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) {
9365 dst_page->vmp_busy = TRUE;
9366 goto record_phys_addr;
9367 }
9368
9369 if (dst_page->vmp_cleaning) {
9370 /*
9371 * Someone else is cleaning this page in place.
9372 * In theory, we should be able to proceed and use this
9373 * page but they'll probably end up clearing the "busy"
9374 * bit on it in upl_commit_range() but they didn't set
9375 * it, so they would clear our "busy" bit and open
9376 * us to race conditions.
9377 * We'd better wait for the cleaning to complete and
9378 * then try again.
9379 */
9380 VM_PAGEOUT_DEBUG(vm_object_iopl_request_sleep_for_cleaning, 1);
9381 PAGE_SLEEP(object, dst_page, THREAD_UNINT);
9382 continue;
9383 }
9384 if (dst_page->vmp_laundry) {
9385 vm_pageout_steal_laundry(dst_page, FALSE);
9386 }
9387
9388 if ((cntrl_flags & UPL_NEED_32BIT_ADDR) &&
9389 phys_page >= (max_valid_dma_address >> PAGE_SHIFT)) {
9390 vm_page_t low_page;
9391 int refmod;
9392
9393 /*
9394 * support devices that can't DMA above 32 bits
9395 * by substituting pages from a pool of low address
9396 * memory for any pages we find above the 4G mark
9397 * can't substitute if the page is already wired because
9398 * we don't know whether that physical address has been
9399 * handed out to some other 64 bit capable DMA device to use
9400 */
9401 if (VM_PAGE_WIRED(dst_page)) {
9402 ret = KERN_PROTECTION_FAILURE;
9403 goto return_err;
9404 }
9405 low_page = vm_page_grablo();
9406
9407 if (low_page == VM_PAGE_NULL) {
9408 ret = KERN_RESOURCE_SHORTAGE;
9409 goto return_err;
9410 }
9411 /*
9412 * from here until the vm_page_replace completes
9413 * we musn't drop the object lock... we don't
9414 * want anyone refaulting this page in and using
9415 * it after we disconnect it... we want the fault
9416 * to find the new page being substituted.
9417 */
9418 if (dst_page->vmp_pmapped) {
9419 refmod = pmap_disconnect(phys_page);
9420 } else {
9421 refmod = 0;
9422 }
9423
9424 if (!dst_page->vmp_absent) {
9425 vm_page_copy(dst_page, low_page);
9426 }
9427
9428 low_page->vmp_reference = dst_page->vmp_reference;
9429 low_page->vmp_dirty = dst_page->vmp_dirty;
9430 low_page->vmp_absent = dst_page->vmp_absent;
9431
9432 if (refmod & VM_MEM_REFERENCED) {
9433 low_page->vmp_reference = TRUE;
9434 }
9435 if (refmod & VM_MEM_MODIFIED) {
9436 SET_PAGE_DIRTY(low_page, FALSE);
9437 }
9438
9439 vm_page_replace(low_page, object, dst_offset);
9440
9441 dst_page = low_page;
9442 /*
9443 * vm_page_grablo returned the page marked
9444 * BUSY... we don't need a PAGE_WAKEUP_DONE
9445 * here, because we've never dropped the object lock
9446 */
9447 if (!dst_page->vmp_absent) {
9448 dst_page->vmp_busy = FALSE;
9449 }
9450
9451 phys_page = VM_PAGE_GET_PHYS_PAGE(dst_page);
9452 }
9453 if (!dst_page->vmp_busy) {
9454 dwp->dw_mask |= DW_vm_page_wire;
9455 }
9456
9457 if (cntrl_flags & UPL_BLOCK_ACCESS) {
9458 /*
9459 * Mark the page "busy" to block any future page fault
9460 * on this page in addition to wiring it.
9461 * We'll also remove the mapping
9462 * of all these pages before leaving this routine.
9463 */
9464 assert(!dst_page->vmp_fictitious);
9465 dst_page->vmp_busy = TRUE;
9466 }
9467 /*
9468 * expect the page to be used
9469 * page queues lock must be held to set 'reference'
9470 */
9471 dwp->dw_mask |= DW_set_reference;
9472
9473 if (!(cntrl_flags & UPL_COPYOUT_FROM)) {
9474 SET_PAGE_DIRTY(dst_page, TRUE);
9475 /*
9476 * Page belonging to a code-signed object is about to
9477 * be written. Mark it tainted and disconnect it from
9478 * all pmaps so processes have to fault it back in and
9479 * deal with the tainted bit.
9480 */
9481 if (object->code_signed && dst_page->vmp_cs_tainted != VMP_CS_ALL_TRUE) {
9482 dst_page->vmp_cs_tainted = VMP_CS_ALL_TRUE;
9483 vm_page_iopl_tainted++;
9484 if (dst_page->vmp_pmapped) {
9485 int refmod = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(dst_page));
9486 if (refmod & VM_MEM_REFERENCED) {
9487 dst_page->vmp_reference = TRUE;
9488 }
9489 }
9490 }
9491 }
9492 if ((cntrl_flags & UPL_REQUEST_FORCE_COHERENCY) && dst_page->vmp_written_by_kernel == TRUE) {
9493 pmap_sync_page_attributes_phys(phys_page);
9494 dst_page->vmp_written_by_kernel = FALSE;
9495 }
9496
9497 record_phys_addr:
9498 if (dst_page->vmp_busy) {
9499 upl->flags |= UPL_HAS_BUSY;
9500 }
9501
9502 lite_list[entry >> 5] |= 1U << (entry & 31);
9503
9504 if (phys_page > upl->highest_page) {
9505 upl->highest_page = phys_page;
9506 }
9507
9508 if (user_page_list) {
9509 user_page_list[entry].phys_addr = phys_page;
9510 user_page_list[entry].free_when_done = dst_page->vmp_free_when_done;
9511 user_page_list[entry].absent = dst_page->vmp_absent;
9512 user_page_list[entry].dirty = dst_page->vmp_dirty;
9513 user_page_list[entry].precious = dst_page->vmp_precious;
9514 user_page_list[entry].device = FALSE;
9515 user_page_list[entry].needed = FALSE;
9516 if (dst_page->vmp_clustered == TRUE) {
9517 user_page_list[entry].speculative = (dst_page->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) ? TRUE : FALSE;
9518 } else {
9519 user_page_list[entry].speculative = FALSE;
9520 }
9521 user_page_list[entry].cs_validated = dst_page->vmp_cs_validated;
9522 user_page_list[entry].cs_tainted = dst_page->vmp_cs_tainted;
9523 user_page_list[entry].cs_nx = dst_page->vmp_cs_nx;
9524 user_page_list[entry].mark = FALSE;
9525 }
9526 if (object != kernel_object && object != compressor_object) {
9527 /*
9528 * someone is explicitly grabbing this page...
9529 * update clustered and speculative state
9530 *
9531 */
9532 if (dst_page->vmp_clustered) {
9533 VM_PAGE_CONSUME_CLUSTERED(dst_page);
9534 }
9535 }
9536 skip_page:
9537 entry++;
9538 dst_offset += PAGE_SIZE_64;
9539 xfer_size -= PAGE_SIZE;
9540
9541 if (dwp->dw_mask) {
9542 VM_PAGE_ADD_DELAYED_WORK(dwp, dst_page, dw_count);
9543
9544 if (dw_count >= dw_limit) {
9545 vm_page_do_delayed_work(object, tag, dwp_start, dw_count);
9546
9547 dwp = dwp_start;
9548 dw_count = 0;
9549 }
9550 }
9551 }
9552 assert(entry == size_in_pages);
9553
9554 if (dw_count) {
9555 vm_page_do_delayed_work(object, tag, dwp_start, dw_count);
9556 dwp = dwp_start;
9557 dw_count = 0;
9558 }
9559 finish:
9560 if (user_page_list && set_cache_attr_needed == TRUE) {
9561 vm_object_set_pmap_cache_attr(object, user_page_list, size_in_pages, TRUE);
9562 }
9563
9564 if (page_list_count != NULL) {
9565 if (upl->flags & UPL_INTERNAL) {
9566 *page_list_count = 0;
9567 } else if (*page_list_count > size_in_pages) {
9568 *page_list_count = size_in_pages;
9569 }
9570 }
9571 vm_object_unlock(object);
9572
9573 if (cntrl_flags & UPL_BLOCK_ACCESS) {
9574 /*
9575 * We've marked all the pages "busy" so that future
9576 * page faults will block.
9577 * Now remove the mapping for these pages, so that they
9578 * can't be accessed without causing a page fault.
9579 */
9580 vm_object_pmap_protect(object, offset, (vm_object_size_t)size,
9581 PMAP_NULL,
9582 PAGE_SIZE,
9583 0, VM_PROT_NONE);
9584 assert(!object->blocked_access);
9585 object->blocked_access = TRUE;
9586 }
9587
9588 VM_DEBUG_CONSTANT_EVENT(vm_object_iopl_request, VM_IOPL_REQUEST, DBG_FUNC_END, page_grab_count, KERN_SUCCESS, 0, 0);
9589 #if DEVELOPMENT || DEBUG
9590 if (task != NULL) {
9591 ledger_credit(task->ledger, task_ledgers.pages_grabbed_iopl, page_grab_count);
9592 }
9593 #endif /* DEVELOPMENT || DEBUG */
9594
9595 if (dwp_start && dwp_finish_ctx) {
9596 vm_page_delayed_work_finish_ctx(dwp_start);
9597 dwp_start = dwp = NULL;
9598 }
9599
9600 return KERN_SUCCESS;
9601
9602 return_err:
9603 dw_index = 0;
9604
9605 for (; offset < dst_offset; offset += PAGE_SIZE) {
9606 boolean_t need_unwire;
9607
9608 dst_page = vm_page_lookup(object, offset);
9609
9610 if (dst_page == VM_PAGE_NULL) {
9611 panic("vm_object_iopl_request: Wired page missing. \n");
9612 }
9613
9614 /*
9615 * if we've already processed this page in an earlier
9616 * dw_do_work, we need to undo the wiring... we will
9617 * leave the dirty and reference bits on if they
9618 * were set, since we don't have a good way of knowing
9619 * what the previous state was and we won't get here
9620 * under any normal circumstances... we will always
9621 * clear BUSY and wakeup any waiters via vm_page_free
9622 * or PAGE_WAKEUP_DONE
9623 */
9624 need_unwire = TRUE;
9625
9626 if (dw_count) {
9627 if ((dwp_start)[dw_index].dw_m == dst_page) {
9628 /*
9629 * still in the deferred work list
9630 * which means we haven't yet called
9631 * vm_page_wire on this page
9632 */
9633 need_unwire = FALSE;
9634
9635 dw_index++;
9636 dw_count--;
9637 }
9638 }
9639 vm_page_lock_queues();
9640
9641 if (dst_page->vmp_absent || free_wired_pages == TRUE) {
9642 vm_page_free(dst_page);
9643
9644 need_unwire = FALSE;
9645 } else {
9646 if (need_unwire == TRUE) {
9647 vm_page_unwire(dst_page, TRUE);
9648 }
9649
9650 PAGE_WAKEUP_DONE(dst_page);
9651 }
9652 vm_page_unlock_queues();
9653
9654 if (need_unwire == TRUE) {
9655 counter_inc(&vm_statistics_reactivations);
9656 }
9657 }
9658 #if UPL_DEBUG
9659 upl->upl_state = 2;
9660 #endif
9661 if (!(upl->flags & UPL_KERNEL_OBJECT)) {
9662 vm_object_activity_end(object);
9663 vm_object_collapse(object, 0, TRUE);
9664 }
9665 vm_object_unlock(object);
9666 upl_destroy(upl);
9667
9668 VM_DEBUG_CONSTANT_EVENT(vm_object_iopl_request, VM_IOPL_REQUEST, DBG_FUNC_END, page_grab_count, ret, 0, 0);
9669 #if DEVELOPMENT || DEBUG
9670 if (task != NULL) {
9671 ledger_credit(task->ledger, task_ledgers.pages_grabbed_iopl, page_grab_count);
9672 }
9673 #endif /* DEVELOPMENT || DEBUG */
9674
9675 if (dwp_start && dwp_finish_ctx) {
9676 vm_page_delayed_work_finish_ctx(dwp_start);
9677 dwp_start = dwp = NULL;
9678 }
9679 return ret;
9680 }
9681
9682 kern_return_t
9683 upl_transpose(
9684 upl_t upl1,
9685 upl_t upl2)
9686 {
9687 kern_return_t retval;
9688 boolean_t upls_locked;
9689 vm_object_t object1, object2;
9690
9691 if (upl1 == UPL_NULL || upl2 == UPL_NULL || upl1 == upl2 || ((upl1->flags & UPL_VECTOR) == UPL_VECTOR) || ((upl2->flags & UPL_VECTOR) == UPL_VECTOR)) {
9692 return KERN_INVALID_ARGUMENT;
9693 }
9694
9695 upls_locked = FALSE;
9696
9697 /*
9698 * Since we need to lock both UPLs at the same time,
9699 * avoid deadlocks by always taking locks in the same order.
9700 */
9701 if (upl1 < upl2) {
9702 upl_lock(upl1);
9703 upl_lock(upl2);
9704 } else {
9705 upl_lock(upl2);
9706 upl_lock(upl1);
9707 }
9708 upls_locked = TRUE; /* the UPLs will need to be unlocked */
9709
9710 object1 = upl1->map_object;
9711 object2 = upl2->map_object;
9712
9713 if (upl1->u_offset != 0 || upl2->u_offset != 0 ||
9714 upl1->u_size != upl2->u_size) {
9715 /*
9716 * We deal only with full objects, not subsets.
9717 * That's because we exchange the entire backing store info
9718 * for the objects: pager, resident pages, etc... We can't do
9719 * only part of it.
9720 */
9721 retval = KERN_INVALID_VALUE;
9722 goto done;
9723 }
9724
9725 /*
9726 * Tranpose the VM objects' backing store.
9727 */
9728 retval = vm_object_transpose(object1, object2,
9729 upl_adjusted_size(upl1, PAGE_MASK));
9730
9731 if (retval == KERN_SUCCESS) {
9732 /*
9733 * Make each UPL point to the correct VM object, i.e. the
9734 * object holding the pages that the UPL refers to...
9735 */
9736 #if CONFIG_IOSCHED || UPL_DEBUG
9737 if ((upl1->flags & UPL_TRACKED_BY_OBJECT) || (upl2->flags & UPL_TRACKED_BY_OBJECT)) {
9738 vm_object_lock(object1);
9739 vm_object_lock(object2);
9740 }
9741 if ((upl1->flags & UPL_TRACKED_BY_OBJECT) || upl_debug_enabled) {
9742 queue_remove(&object1->uplq, upl1, upl_t, uplq);
9743 }
9744 if ((upl2->flags & UPL_TRACKED_BY_OBJECT) || upl_debug_enabled) {
9745 queue_remove(&object2->uplq, upl2, upl_t, uplq);
9746 }
9747 #endif
9748 upl1->map_object = object2;
9749 upl2->map_object = object1;
9750
9751 #if CONFIG_IOSCHED || UPL_DEBUG
9752 if ((upl1->flags & UPL_TRACKED_BY_OBJECT) || upl_debug_enabled) {
9753 queue_enter(&object2->uplq, upl1, upl_t, uplq);
9754 }
9755 if ((upl2->flags & UPL_TRACKED_BY_OBJECT) || upl_debug_enabled) {
9756 queue_enter(&object1->uplq, upl2, upl_t, uplq);
9757 }
9758 if ((upl1->flags & UPL_TRACKED_BY_OBJECT) || (upl2->flags & UPL_TRACKED_BY_OBJECT)) {
9759 vm_object_unlock(object2);
9760 vm_object_unlock(object1);
9761 }
9762 #endif
9763 }
9764
9765 done:
9766 /*
9767 * Cleanup.
9768 */
9769 if (upls_locked) {
9770 upl_unlock(upl1);
9771 upl_unlock(upl2);
9772 upls_locked = FALSE;
9773 }
9774
9775 return retval;
9776 }
9777
9778 void
9779 upl_range_needed(
9780 upl_t upl,
9781 int index,
9782 int count)
9783 {
9784 upl_page_info_t *user_page_list;
9785 int size_in_pages;
9786
9787 if (!(upl->flags & UPL_INTERNAL) || count <= 0) {
9788 return;
9789 }
9790
9791 size_in_pages = upl_adjusted_size(upl, PAGE_MASK) / PAGE_SIZE;
9792
9793 user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
9794
9795 while (count-- && index < size_in_pages) {
9796 user_page_list[index++].needed = TRUE;
9797 }
9798 }
9799
9800
9801 /*
9802 * Reserve of virtual addresses in the kernel address space.
9803 * We need to map the physical pages in the kernel, so that we
9804 * can call the code-signing or slide routines with a kernel
9805 * virtual address. We keep this pool of pre-allocated kernel
9806 * virtual addresses so that we don't have to scan the kernel's
9807 * virtaul address space each time we need to work with
9808 * a physical page.
9809 */
9810 SIMPLE_LOCK_DECLARE(vm_paging_lock, 0);
9811 #define VM_PAGING_NUM_PAGES 64
9812 vm_map_offset_t vm_paging_base_address = 0;
9813 boolean_t vm_paging_page_inuse[VM_PAGING_NUM_PAGES] = { FALSE, };
9814 int vm_paging_max_index = 0;
9815 int vm_paging_page_waiter = 0;
9816 int vm_paging_page_waiter_total = 0;
9817
9818 unsigned long vm_paging_no_kernel_page = 0;
9819 unsigned long vm_paging_objects_mapped = 0;
9820 unsigned long vm_paging_pages_mapped = 0;
9821 unsigned long vm_paging_objects_mapped_slow = 0;
9822 unsigned long vm_paging_pages_mapped_slow = 0;
9823
9824 __startup_func
9825 void
9826 vm_paging_map_init(void)
9827 {
9828 kern_return_t kr;
9829 vm_map_offset_t page_map_offset;
9830 vm_map_entry_t map_entry;
9831
9832 assert(vm_paging_base_address == 0);
9833
9834 /*
9835 * Initialize our pool of pre-allocated kernel
9836 * virtual addresses.
9837 */
9838 page_map_offset = 0;
9839 kr = vm_map_find_space(kernel_map,
9840 &page_map_offset,
9841 VM_PAGING_NUM_PAGES * PAGE_SIZE,
9842 0,
9843 0,
9844 VM_MAP_KERNEL_FLAGS_NONE,
9845 VM_KERN_MEMORY_NONE,
9846 &map_entry);
9847 if (kr != KERN_SUCCESS) {
9848 panic("vm_paging_map_init: kernel_map full\n");
9849 }
9850 VME_OBJECT_SET(map_entry, kernel_object);
9851 VME_OFFSET_SET(map_entry, page_map_offset);
9852 map_entry->protection = VM_PROT_NONE;
9853 map_entry->max_protection = VM_PROT_NONE;
9854 map_entry->permanent = TRUE;
9855 vm_object_reference(kernel_object);
9856 vm_map_unlock(kernel_map);
9857
9858 assert(vm_paging_base_address == 0);
9859 vm_paging_base_address = page_map_offset;
9860 }
9861
9862 /*
9863 * vm_paging_map_object:
9864 * Maps part of a VM object's pages in the kernel
9865 * virtual address space, using the pre-allocated
9866 * kernel virtual addresses, if possible.
9867 * Context:
9868 * The VM object is locked. This lock will get
9869 * dropped and re-acquired though, so the caller
9870 * must make sure the VM object is kept alive
9871 * (by holding a VM map that has a reference
9872 * on it, for example, or taking an extra reference).
9873 * The page should also be kept busy to prevent
9874 * it from being reclaimed.
9875 */
9876 kern_return_t
9877 vm_paging_map_object(
9878 vm_page_t page,
9879 vm_object_t object,
9880 vm_object_offset_t offset,
9881 vm_prot_t protection,
9882 boolean_t can_unlock_object,
9883 vm_map_size_t *size, /* IN/OUT */
9884 vm_map_offset_t *address, /* OUT */
9885 boolean_t *need_unmap) /* OUT */
9886 {
9887 kern_return_t kr;
9888 vm_map_offset_t page_map_offset;
9889 vm_map_size_t map_size;
9890 vm_object_offset_t object_offset;
9891 int i;
9892
9893 if (page != VM_PAGE_NULL && *size == PAGE_SIZE) {
9894 /* use permanent 1-to-1 kernel mapping of physical memory ? */
9895 *address = (vm_map_offset_t)
9896 phystokv((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(page) << PAGE_SHIFT);
9897 *need_unmap = FALSE;
9898 return KERN_SUCCESS;
9899
9900 assert(page->vmp_busy);
9901 /*
9902 * Use one of the pre-allocated kernel virtual addresses
9903 * and just enter the VM page in the kernel address space
9904 * at that virtual address.
9905 */
9906 simple_lock(&vm_paging_lock, &vm_pageout_lck_grp);
9907
9908 /*
9909 * Try and find an available kernel virtual address
9910 * from our pre-allocated pool.
9911 */
9912 page_map_offset = 0;
9913 for (;;) {
9914 for (i = 0; i < VM_PAGING_NUM_PAGES; i++) {
9915 if (vm_paging_page_inuse[i] == FALSE) {
9916 page_map_offset =
9917 vm_paging_base_address +
9918 (i * PAGE_SIZE);
9919 break;
9920 }
9921 }
9922 if (page_map_offset != 0) {
9923 /* found a space to map our page ! */
9924 break;
9925 }
9926
9927 if (can_unlock_object) {
9928 /*
9929 * If we can afford to unlock the VM object,
9930 * let's take the slow path now...
9931 */
9932 break;
9933 }
9934 /*
9935 * We can't afford to unlock the VM object, so
9936 * let's wait for a space to become available...
9937 */
9938 vm_paging_page_waiter_total++;
9939 vm_paging_page_waiter++;
9940 kr = assert_wait((event_t)&vm_paging_page_waiter, THREAD_UNINT);
9941 if (kr == THREAD_WAITING) {
9942 simple_unlock(&vm_paging_lock);
9943 kr = thread_block(THREAD_CONTINUE_NULL);
9944 simple_lock(&vm_paging_lock, &vm_pageout_lck_grp);
9945 }
9946 vm_paging_page_waiter--;
9947 /* ... and try again */
9948 }
9949
9950 if (page_map_offset != 0) {
9951 /*
9952 * We found a kernel virtual address;
9953 * map the physical page to that virtual address.
9954 */
9955 if (i > vm_paging_max_index) {
9956 vm_paging_max_index = i;
9957 }
9958 vm_paging_page_inuse[i] = TRUE;
9959 simple_unlock(&vm_paging_lock);
9960
9961 page->vmp_pmapped = TRUE;
9962
9963 /*
9964 * Keep the VM object locked over the PMAP_ENTER
9965 * and the actual use of the page by the kernel,
9966 * or this pmap mapping might get undone by a
9967 * vm_object_pmap_protect() call...
9968 */
9969 PMAP_ENTER(kernel_pmap,
9970 page_map_offset,
9971 page,
9972 protection,
9973 VM_PROT_NONE,
9974 0,
9975 TRUE,
9976 kr);
9977 assert(kr == KERN_SUCCESS);
9978 vm_paging_objects_mapped++;
9979 vm_paging_pages_mapped++;
9980 *address = page_map_offset;
9981 *need_unmap = TRUE;
9982
9983 #if KASAN
9984 kasan_notify_address(page_map_offset, PAGE_SIZE);
9985 #endif
9986
9987 /* all done and mapped, ready to use ! */
9988 return KERN_SUCCESS;
9989 }
9990
9991 /*
9992 * We ran out of pre-allocated kernel virtual
9993 * addresses. Just map the page in the kernel
9994 * the slow and regular way.
9995 */
9996 vm_paging_no_kernel_page++;
9997 simple_unlock(&vm_paging_lock);
9998 }
9999
10000 if (!can_unlock_object) {
10001 *address = 0;
10002 *size = 0;
10003 *need_unmap = FALSE;
10004 return KERN_NOT_SUPPORTED;
10005 }
10006
10007 object_offset = vm_object_trunc_page(offset);
10008 map_size = vm_map_round_page(*size,
10009 VM_MAP_PAGE_MASK(kernel_map));
10010
10011 /*
10012 * Try and map the required range of the object
10013 * in the kernel_map
10014 */
10015
10016 vm_object_reference_locked(object); /* for the map entry */
10017 vm_object_unlock(object);
10018
10019 kr = vm_map_enter(kernel_map,
10020 address,
10021 map_size,
10022 0,
10023 VM_FLAGS_ANYWHERE,
10024 VM_MAP_KERNEL_FLAGS_NONE,
10025 VM_KERN_MEMORY_NONE,
10026 object,
10027 object_offset,
10028 FALSE,
10029 protection,
10030 VM_PROT_ALL,
10031 VM_INHERIT_NONE);
10032 if (kr != KERN_SUCCESS) {
10033 *address = 0;
10034 *size = 0;
10035 *need_unmap = FALSE;
10036 vm_object_deallocate(object); /* for the map entry */
10037 vm_object_lock(object);
10038 return kr;
10039 }
10040
10041 *size = map_size;
10042
10043 /*
10044 * Enter the mapped pages in the page table now.
10045 */
10046 vm_object_lock(object);
10047 /*
10048 * VM object must be kept locked from before PMAP_ENTER()
10049 * until after the kernel is done accessing the page(s).
10050 * Otherwise, the pmap mappings in the kernel could be
10051 * undone by a call to vm_object_pmap_protect().
10052 */
10053
10054 for (page_map_offset = 0;
10055 map_size != 0;
10056 map_size -= PAGE_SIZE_64, page_map_offset += PAGE_SIZE_64) {
10057 page = vm_page_lookup(object, offset + page_map_offset);
10058 if (page == VM_PAGE_NULL) {
10059 printf("vm_paging_map_object: no page !?");
10060 vm_object_unlock(object);
10061 kr = vm_map_remove(kernel_map, *address, *size,
10062 VM_MAP_REMOVE_NO_FLAGS);
10063 assert(kr == KERN_SUCCESS);
10064 *address = 0;
10065 *size = 0;
10066 *need_unmap = FALSE;
10067 vm_object_lock(object);
10068 return KERN_MEMORY_ERROR;
10069 }
10070 page->vmp_pmapped = TRUE;
10071
10072 //assert(pmap_verify_free(VM_PAGE_GET_PHYS_PAGE(page)));
10073 PMAP_ENTER(kernel_pmap,
10074 *address + page_map_offset,
10075 page,
10076 protection,
10077 VM_PROT_NONE,
10078 0,
10079 TRUE,
10080 kr);
10081 assert(kr == KERN_SUCCESS);
10082 #if KASAN
10083 kasan_notify_address(*address + page_map_offset, PAGE_SIZE);
10084 #endif
10085 }
10086
10087 vm_paging_objects_mapped_slow++;
10088 vm_paging_pages_mapped_slow += (unsigned long) (map_size / PAGE_SIZE_64);
10089
10090 *need_unmap = TRUE;
10091
10092 return KERN_SUCCESS;
10093 }
10094
10095 /*
10096 * vm_paging_unmap_object:
10097 * Unmaps part of a VM object's pages from the kernel
10098 * virtual address space.
10099 * Context:
10100 * The VM object is locked. This lock will get
10101 * dropped and re-acquired though.
10102 */
10103 void
10104 vm_paging_unmap_object(
10105 vm_object_t object,
10106 vm_map_offset_t start,
10107 vm_map_offset_t end)
10108 {
10109 kern_return_t kr;
10110 int i;
10111
10112 if ((vm_paging_base_address == 0) ||
10113 (start < vm_paging_base_address) ||
10114 (end > (vm_paging_base_address
10115 + (VM_PAGING_NUM_PAGES * PAGE_SIZE)))) {
10116 /*
10117 * We didn't use our pre-allocated pool of
10118 * kernel virtual address. Deallocate the
10119 * virtual memory.
10120 */
10121 if (object != VM_OBJECT_NULL) {
10122 vm_object_unlock(object);
10123 }
10124 kr = vm_map_remove(kernel_map, start, end,
10125 VM_MAP_REMOVE_NO_FLAGS);
10126 if (object != VM_OBJECT_NULL) {
10127 vm_object_lock(object);
10128 }
10129 assert(kr == KERN_SUCCESS);
10130 } else {
10131 /*
10132 * We used a kernel virtual address from our
10133 * pre-allocated pool. Put it back in the pool
10134 * for next time.
10135 */
10136 assert(end - start == PAGE_SIZE);
10137 i = (int) ((start - vm_paging_base_address) >> PAGE_SHIFT);
10138 assert(i >= 0 && i < VM_PAGING_NUM_PAGES);
10139
10140 /* undo the pmap mapping */
10141 pmap_remove(kernel_pmap, start, end);
10142
10143 simple_lock(&vm_paging_lock, &vm_pageout_lck_grp);
10144 vm_paging_page_inuse[i] = FALSE;
10145 if (vm_paging_page_waiter) {
10146 thread_wakeup(&vm_paging_page_waiter);
10147 }
10148 simple_unlock(&vm_paging_lock);
10149 }
10150 }
10151
10152
10153 /*
10154 * page->vmp_object must be locked
10155 */
10156 void
10157 vm_pageout_steal_laundry(vm_page_t page, boolean_t queues_locked)
10158 {
10159 if (!queues_locked) {
10160 vm_page_lockspin_queues();
10161 }
10162
10163 page->vmp_free_when_done = FALSE;
10164 /*
10165 * need to drop the laundry count...
10166 * we may also need to remove it
10167 * from the I/O paging queue...
10168 * vm_pageout_throttle_up handles both cases
10169 *
10170 * the laundry and pageout_queue flags are cleared...
10171 */
10172 vm_pageout_throttle_up(page);
10173
10174 if (!queues_locked) {
10175 vm_page_unlock_queues();
10176 }
10177 }
10178
10179 upl_t
10180 vector_upl_create(vm_offset_t upl_offset)
10181 {
10182 int vector_upl_size = sizeof(struct _vector_upl);
10183 int i = 0;
10184 upl_t upl;
10185 vector_upl_t vector_upl = (vector_upl_t)kalloc(vector_upl_size);
10186
10187 upl = upl_create(0, UPL_VECTOR, 0);
10188 upl->vector_upl = vector_upl;
10189 upl->u_offset = upl_offset;
10190 vector_upl->size = 0;
10191 vector_upl->offset = upl_offset;
10192 vector_upl->invalid_upls = 0;
10193 vector_upl->num_upls = 0;
10194 vector_upl->pagelist = NULL;
10195
10196 for (i = 0; i < MAX_VECTOR_UPL_ELEMENTS; i++) {
10197 vector_upl->upl_iostates[i].size = 0;
10198 vector_upl->upl_iostates[i].offset = 0;
10199 }
10200 return upl;
10201 }
10202
10203 void
10204 vector_upl_deallocate(upl_t upl)
10205 {
10206 if (upl) {
10207 vector_upl_t vector_upl = upl->vector_upl;
10208 if (vector_upl) {
10209 if (vector_upl->invalid_upls != vector_upl->num_upls) {
10210 panic("Deallocating non-empty Vectored UPL\n");
10211 }
10212 kfree(vector_upl->pagelist, (sizeof(struct upl_page_info) * (vector_upl->size / PAGE_SIZE)));
10213 vector_upl->invalid_upls = 0;
10214 vector_upl->num_upls = 0;
10215 vector_upl->pagelist = NULL;
10216 vector_upl->size = 0;
10217 vector_upl->offset = 0;
10218 kfree(vector_upl, sizeof(struct _vector_upl));
10219 vector_upl = (vector_upl_t)0xfeedfeed;
10220 } else {
10221 panic("vector_upl_deallocate was passed a non-vectored upl\n");
10222 }
10223 } else {
10224 panic("vector_upl_deallocate was passed a NULL upl\n");
10225 }
10226 }
10227
10228 boolean_t
10229 vector_upl_is_valid(upl_t upl)
10230 {
10231 if (upl && ((upl->flags & UPL_VECTOR) == UPL_VECTOR)) {
10232 vector_upl_t vector_upl = upl->vector_upl;
10233 if (vector_upl == NULL || vector_upl == (vector_upl_t)0xfeedfeed || vector_upl == (vector_upl_t)0xfeedbeef) {
10234 return FALSE;
10235 } else {
10236 return TRUE;
10237 }
10238 }
10239 return FALSE;
10240 }
10241
10242 boolean_t
10243 vector_upl_set_subupl(upl_t upl, upl_t subupl, uint32_t io_size)
10244 {
10245 if (vector_upl_is_valid(upl)) {
10246 vector_upl_t vector_upl = upl->vector_upl;
10247
10248 if (vector_upl) {
10249 if (subupl) {
10250 if (io_size) {
10251 if (io_size < PAGE_SIZE) {
10252 io_size = PAGE_SIZE;
10253 }
10254 subupl->vector_upl = (void*)vector_upl;
10255 vector_upl->upl_elems[vector_upl->num_upls++] = subupl;
10256 vector_upl->size += io_size;
10257 upl->u_size += io_size;
10258 } else {
10259 uint32_t i = 0, invalid_upls = 0;
10260 for (i = 0; i < vector_upl->num_upls; i++) {
10261 if (vector_upl->upl_elems[i] == subupl) {
10262 break;
10263 }
10264 }
10265 if (i == vector_upl->num_upls) {
10266 panic("Trying to remove sub-upl when none exists");
10267 }
10268
10269 vector_upl->upl_elems[i] = NULL;
10270 invalid_upls = os_atomic_inc(&(vector_upl)->invalid_upls,
10271 relaxed);
10272 if (invalid_upls == vector_upl->num_upls) {
10273 return TRUE;
10274 } else {
10275 return FALSE;
10276 }
10277 }
10278 } else {
10279 panic("vector_upl_set_subupl was passed a NULL upl element\n");
10280 }
10281 } else {
10282 panic("vector_upl_set_subupl was passed a non-vectored upl\n");
10283 }
10284 } else {
10285 panic("vector_upl_set_subupl was passed a NULL upl\n");
10286 }
10287
10288 return FALSE;
10289 }
10290
10291 void
10292 vector_upl_set_pagelist(upl_t upl)
10293 {
10294 if (vector_upl_is_valid(upl)) {
10295 uint32_t i = 0;
10296 vector_upl_t vector_upl = upl->vector_upl;
10297
10298 if (vector_upl) {
10299 vm_offset_t pagelist_size = 0, cur_upl_pagelist_size = 0;
10300
10301 vector_upl->pagelist = (upl_page_info_array_t)kalloc(sizeof(struct upl_page_info) * (vector_upl->size / PAGE_SIZE));
10302
10303 for (i = 0; i < vector_upl->num_upls; i++) {
10304 cur_upl_pagelist_size = sizeof(struct upl_page_info) * upl_adjusted_size(vector_upl->upl_elems[i], PAGE_MASK) / PAGE_SIZE;
10305 bcopy(UPL_GET_INTERNAL_PAGE_LIST_SIMPLE(vector_upl->upl_elems[i]), (char*)vector_upl->pagelist + pagelist_size, cur_upl_pagelist_size);
10306 pagelist_size += cur_upl_pagelist_size;
10307 if (vector_upl->upl_elems[i]->highest_page > upl->highest_page) {
10308 upl->highest_page = vector_upl->upl_elems[i]->highest_page;
10309 }
10310 }
10311 assert( pagelist_size == (sizeof(struct upl_page_info) * (vector_upl->size / PAGE_SIZE)));
10312 } else {
10313 panic("vector_upl_set_pagelist was passed a non-vectored upl\n");
10314 }
10315 } else {
10316 panic("vector_upl_set_pagelist was passed a NULL upl\n");
10317 }
10318 }
10319
10320 upl_t
10321 vector_upl_subupl_byindex(upl_t upl, uint32_t index)
10322 {
10323 if (vector_upl_is_valid(upl)) {
10324 vector_upl_t vector_upl = upl->vector_upl;
10325 if (vector_upl) {
10326 if (index < vector_upl->num_upls) {
10327 return vector_upl->upl_elems[index];
10328 }
10329 } else {
10330 panic("vector_upl_subupl_byindex was passed a non-vectored upl\n");
10331 }
10332 }
10333 return NULL;
10334 }
10335
10336 upl_t
10337 vector_upl_subupl_byoffset(upl_t upl, upl_offset_t *upl_offset, upl_size_t *upl_size)
10338 {
10339 if (vector_upl_is_valid(upl)) {
10340 uint32_t i = 0;
10341 vector_upl_t vector_upl = upl->vector_upl;
10342
10343 if (vector_upl) {
10344 upl_t subupl = NULL;
10345 vector_upl_iostates_t subupl_state;
10346
10347 for (i = 0; i < vector_upl->num_upls; i++) {
10348 subupl = vector_upl->upl_elems[i];
10349 subupl_state = vector_upl->upl_iostates[i];
10350 if (*upl_offset <= (subupl_state.offset + subupl_state.size - 1)) {
10351 /* We could have been passed an offset/size pair that belongs
10352 * to an UPL element that has already been committed/aborted.
10353 * If so, return NULL.
10354 */
10355 if (subupl == NULL) {
10356 return NULL;
10357 }
10358 if ((subupl_state.offset + subupl_state.size) < (*upl_offset + *upl_size)) {
10359 *upl_size = (subupl_state.offset + subupl_state.size) - *upl_offset;
10360 if (*upl_size > subupl_state.size) {
10361 *upl_size = subupl_state.size;
10362 }
10363 }
10364 if (*upl_offset >= subupl_state.offset) {
10365 *upl_offset -= subupl_state.offset;
10366 } else if (i) {
10367 panic("Vector UPL offset miscalculation\n");
10368 }
10369 return subupl;
10370 }
10371 }
10372 } else {
10373 panic("vector_upl_subupl_byoffset was passed a non-vectored UPL\n");
10374 }
10375 }
10376 return NULL;
10377 }
10378
10379 void
10380 vector_upl_get_submap(upl_t upl, vm_map_t *v_upl_submap, vm_offset_t *submap_dst_addr)
10381 {
10382 *v_upl_submap = NULL;
10383
10384 if (vector_upl_is_valid(upl)) {
10385 vector_upl_t vector_upl = upl->vector_upl;
10386 if (vector_upl) {
10387 *v_upl_submap = vector_upl->submap;
10388 *submap_dst_addr = vector_upl->submap_dst_addr;
10389 } else {
10390 panic("vector_upl_get_submap was passed a non-vectored UPL\n");
10391 }
10392 } else {
10393 panic("vector_upl_get_submap was passed a null UPL\n");
10394 }
10395 }
10396
10397 void
10398 vector_upl_set_submap(upl_t upl, vm_map_t submap, vm_offset_t submap_dst_addr)
10399 {
10400 if (vector_upl_is_valid(upl)) {
10401 vector_upl_t vector_upl = upl->vector_upl;
10402 if (vector_upl) {
10403 vector_upl->submap = submap;
10404 vector_upl->submap_dst_addr = submap_dst_addr;
10405 } else {
10406 panic("vector_upl_get_submap was passed a non-vectored UPL\n");
10407 }
10408 } else {
10409 panic("vector_upl_get_submap was passed a NULL UPL\n");
10410 }
10411 }
10412
10413 void
10414 vector_upl_set_iostate(upl_t upl, upl_t subupl, upl_offset_t offset, upl_size_t size)
10415 {
10416 if (vector_upl_is_valid(upl)) {
10417 uint32_t i = 0;
10418 vector_upl_t vector_upl = upl->vector_upl;
10419
10420 if (vector_upl) {
10421 for (i = 0; i < vector_upl->num_upls; i++) {
10422 if (vector_upl->upl_elems[i] == subupl) {
10423 break;
10424 }
10425 }
10426
10427 if (i == vector_upl->num_upls) {
10428 panic("setting sub-upl iostate when none exists");
10429 }
10430
10431 vector_upl->upl_iostates[i].offset = offset;
10432 if (size < PAGE_SIZE) {
10433 size = PAGE_SIZE;
10434 }
10435 vector_upl->upl_iostates[i].size = size;
10436 } else {
10437 panic("vector_upl_set_iostate was passed a non-vectored UPL\n");
10438 }
10439 } else {
10440 panic("vector_upl_set_iostate was passed a NULL UPL\n");
10441 }
10442 }
10443
10444 void
10445 vector_upl_get_iostate(upl_t upl, upl_t subupl, upl_offset_t *offset, upl_size_t *size)
10446 {
10447 if (vector_upl_is_valid(upl)) {
10448 uint32_t i = 0;
10449 vector_upl_t vector_upl = upl->vector_upl;
10450
10451 if (vector_upl) {
10452 for (i = 0; i < vector_upl->num_upls; i++) {
10453 if (vector_upl->upl_elems[i] == subupl) {
10454 break;
10455 }
10456 }
10457
10458 if (i == vector_upl->num_upls) {
10459 panic("getting sub-upl iostate when none exists");
10460 }
10461
10462 *offset = vector_upl->upl_iostates[i].offset;
10463 *size = vector_upl->upl_iostates[i].size;
10464 } else {
10465 panic("vector_upl_get_iostate was passed a non-vectored UPL\n");
10466 }
10467 } else {
10468 panic("vector_upl_get_iostate was passed a NULL UPL\n");
10469 }
10470 }
10471
10472 void
10473 vector_upl_get_iostate_byindex(upl_t upl, uint32_t index, upl_offset_t *offset, upl_size_t *size)
10474 {
10475 if (vector_upl_is_valid(upl)) {
10476 vector_upl_t vector_upl = upl->vector_upl;
10477 if (vector_upl) {
10478 if (index < vector_upl->num_upls) {
10479 *offset = vector_upl->upl_iostates[index].offset;
10480 *size = vector_upl->upl_iostates[index].size;
10481 } else {
10482 *offset = *size = 0;
10483 }
10484 } else {
10485 panic("vector_upl_get_iostate_byindex was passed a non-vectored UPL\n");
10486 }
10487 } else {
10488 panic("vector_upl_get_iostate_byindex was passed a NULL UPL\n");
10489 }
10490 }
10491
10492 upl_page_info_t *
10493 upl_get_internal_vectorupl_pagelist(upl_t upl)
10494 {
10495 return ((vector_upl_t)(upl->vector_upl))->pagelist;
10496 }
10497
10498 void *
10499 upl_get_internal_vectorupl(upl_t upl)
10500 {
10501 return upl->vector_upl;
10502 }
10503
10504 vm_size_t
10505 upl_get_internal_pagelist_offset(void)
10506 {
10507 return sizeof(struct upl);
10508 }
10509
10510 void
10511 upl_clear_dirty(
10512 upl_t upl,
10513 boolean_t value)
10514 {
10515 if (value) {
10516 upl->flags |= UPL_CLEAR_DIRTY;
10517 } else {
10518 upl->flags &= ~UPL_CLEAR_DIRTY;
10519 }
10520 }
10521
10522 void
10523 upl_set_referenced(
10524 upl_t upl,
10525 boolean_t value)
10526 {
10527 upl_lock(upl);
10528 if (value) {
10529 upl->ext_ref_count++;
10530 } else {
10531 if (!upl->ext_ref_count) {
10532 panic("upl_set_referenced not %p\n", upl);
10533 }
10534 upl->ext_ref_count--;
10535 }
10536 upl_unlock(upl);
10537 }
10538
10539 #if CONFIG_IOSCHED
10540 void
10541 upl_set_blkno(
10542 upl_t upl,
10543 vm_offset_t upl_offset,
10544 int io_size,
10545 int64_t blkno)
10546 {
10547 int i, j;
10548 if ((upl->flags & UPL_EXPEDITE_SUPPORTED) == 0) {
10549 return;
10550 }
10551
10552 assert(upl->upl_reprio_info != 0);
10553 for (i = (int)(upl_offset / PAGE_SIZE), j = 0; j < io_size; i++, j += PAGE_SIZE) {
10554 UPL_SET_REPRIO_INFO(upl, i, blkno, io_size);
10555 }
10556 }
10557 #endif
10558
10559 void inline
10560 memoryshot(unsigned int event, unsigned int control)
10561 {
10562 if (vm_debug_events) {
10563 KERNEL_DEBUG_CONSTANT1((MACHDBG_CODE(DBG_MACH_VM_PRESSURE, event)) | control,
10564 vm_page_active_count, vm_page_inactive_count,
10565 vm_page_free_count, vm_page_speculative_count,
10566 vm_page_throttled_count);
10567 } else {
10568 (void) event;
10569 (void) control;
10570 }
10571 }
10572
10573 #ifdef MACH_BSD
10574
10575 boolean_t
10576 upl_device_page(upl_page_info_t *upl)
10577 {
10578 return UPL_DEVICE_PAGE(upl);
10579 }
10580 boolean_t
10581 upl_page_present(upl_page_info_t *upl, int index)
10582 {
10583 return UPL_PAGE_PRESENT(upl, index);
10584 }
10585 boolean_t
10586 upl_speculative_page(upl_page_info_t *upl, int index)
10587 {
10588 return UPL_SPECULATIVE_PAGE(upl, index);
10589 }
10590 boolean_t
10591 upl_dirty_page(upl_page_info_t *upl, int index)
10592 {
10593 return UPL_DIRTY_PAGE(upl, index);
10594 }
10595 boolean_t
10596 upl_valid_page(upl_page_info_t *upl, int index)
10597 {
10598 return UPL_VALID_PAGE(upl, index);
10599 }
10600 ppnum_t
10601 upl_phys_page(upl_page_info_t *upl, int index)
10602 {
10603 return UPL_PHYS_PAGE(upl, index);
10604 }
10605
10606 void
10607 upl_page_set_mark(upl_page_info_t *upl, int index, boolean_t v)
10608 {
10609 upl[index].mark = v;
10610 }
10611
10612 boolean_t
10613 upl_page_get_mark(upl_page_info_t *upl, int index)
10614 {
10615 return upl[index].mark;
10616 }
10617
10618 void
10619 vm_countdirtypages(void)
10620 {
10621 vm_page_t m;
10622 int dpages;
10623 int pgopages;
10624 int precpages;
10625
10626
10627 dpages = 0;
10628 pgopages = 0;
10629 precpages = 0;
10630
10631 vm_page_lock_queues();
10632 m = (vm_page_t) vm_page_queue_first(&vm_page_queue_inactive);
10633 do {
10634 if (m == (vm_page_t)0) {
10635 break;
10636 }
10637
10638 if (m->vmp_dirty) {
10639 dpages++;
10640 }
10641 if (m->vmp_free_when_done) {
10642 pgopages++;
10643 }
10644 if (m->vmp_precious) {
10645 precpages++;
10646 }
10647
10648 assert(VM_PAGE_OBJECT(m) != kernel_object);
10649 m = (vm_page_t) vm_page_queue_next(&m->vmp_pageq);
10650 if (m == (vm_page_t)0) {
10651 break;
10652 }
10653 } while (!vm_page_queue_end(&vm_page_queue_inactive, (vm_page_queue_entry_t) m));
10654 vm_page_unlock_queues();
10655
10656 vm_page_lock_queues();
10657 m = (vm_page_t) vm_page_queue_first(&vm_page_queue_throttled);
10658 do {
10659 if (m == (vm_page_t)0) {
10660 break;
10661 }
10662
10663 dpages++;
10664 assert(m->vmp_dirty);
10665 assert(!m->vmp_free_when_done);
10666 assert(VM_PAGE_OBJECT(m) != kernel_object);
10667 m = (vm_page_t) vm_page_queue_next(&m->vmp_pageq);
10668 if (m == (vm_page_t)0) {
10669 break;
10670 }
10671 } while (!vm_page_queue_end(&vm_page_queue_throttled, (vm_page_queue_entry_t) m));
10672 vm_page_unlock_queues();
10673
10674 vm_page_lock_queues();
10675 m = (vm_page_t) vm_page_queue_first(&vm_page_queue_anonymous);
10676 do {
10677 if (m == (vm_page_t)0) {
10678 break;
10679 }
10680
10681 if (m->vmp_dirty) {
10682 dpages++;
10683 }
10684 if (m->vmp_free_when_done) {
10685 pgopages++;
10686 }
10687 if (m->vmp_precious) {
10688 precpages++;
10689 }
10690
10691 assert(VM_PAGE_OBJECT(m) != kernel_object);
10692 m = (vm_page_t) vm_page_queue_next(&m->vmp_pageq);
10693 if (m == (vm_page_t)0) {
10694 break;
10695 }
10696 } while (!vm_page_queue_end(&vm_page_queue_anonymous, (vm_page_queue_entry_t) m));
10697 vm_page_unlock_queues();
10698
10699 printf("IN Q: %d : %d : %d\n", dpages, pgopages, precpages);
10700
10701 dpages = 0;
10702 pgopages = 0;
10703 precpages = 0;
10704
10705 vm_page_lock_queues();
10706 m = (vm_page_t) vm_page_queue_first(&vm_page_queue_active);
10707
10708 do {
10709 if (m == (vm_page_t)0) {
10710 break;
10711 }
10712 if (m->vmp_dirty) {
10713 dpages++;
10714 }
10715 if (m->vmp_free_when_done) {
10716 pgopages++;
10717 }
10718 if (m->vmp_precious) {
10719 precpages++;
10720 }
10721
10722 assert(VM_PAGE_OBJECT(m) != kernel_object);
10723 m = (vm_page_t) vm_page_queue_next(&m->vmp_pageq);
10724 if (m == (vm_page_t)0) {
10725 break;
10726 }
10727 } while (!vm_page_queue_end(&vm_page_queue_active, (vm_page_queue_entry_t) m));
10728 vm_page_unlock_queues();
10729
10730 printf("AC Q: %d : %d : %d\n", dpages, pgopages, precpages);
10731 }
10732 #endif /* MACH_BSD */
10733
10734
10735 #if CONFIG_IOSCHED
10736 int
10737 upl_get_cached_tier(upl_t upl)
10738 {
10739 assert(upl);
10740 if (upl->flags & UPL_TRACKED_BY_OBJECT) {
10741 return upl->upl_priority;
10742 }
10743 return -1;
10744 }
10745 #endif /* CONFIG_IOSCHED */
10746
10747
10748 void
10749 upl_callout_iodone(upl_t upl)
10750 {
10751 struct upl_io_completion *upl_ctx = upl->upl_iodone;
10752
10753 if (upl_ctx) {
10754 void (*iodone_func)(void *, int) = upl_ctx->io_done;
10755
10756 assert(upl_ctx->io_done);
10757
10758 (*iodone_func)(upl_ctx->io_context, upl_ctx->io_error);
10759 }
10760 }
10761
10762 void
10763 upl_set_iodone(upl_t upl, void *upl_iodone)
10764 {
10765 upl->upl_iodone = (struct upl_io_completion *)upl_iodone;
10766 }
10767
10768 void
10769 upl_set_iodone_error(upl_t upl, int error)
10770 {
10771 struct upl_io_completion *upl_ctx = upl->upl_iodone;
10772
10773 if (upl_ctx) {
10774 upl_ctx->io_error = error;
10775 }
10776 }
10777
10778
10779 ppnum_t
10780 upl_get_highest_page(
10781 upl_t upl)
10782 {
10783 return upl->highest_page;
10784 }
10785
10786 upl_size_t
10787 upl_get_size(
10788 upl_t upl)
10789 {
10790 return upl_adjusted_size(upl, PAGE_MASK);
10791 }
10792
10793 upl_size_t
10794 upl_adjusted_size(
10795 upl_t upl,
10796 vm_map_offset_t pgmask)
10797 {
10798 vm_object_offset_t start_offset, end_offset;
10799
10800 start_offset = trunc_page_mask_64(upl->u_offset, pgmask);
10801 end_offset = round_page_mask_64(upl->u_offset + upl->u_size, pgmask);
10802
10803 return (upl_size_t)(end_offset - start_offset);
10804 }
10805
10806 vm_object_offset_t
10807 upl_adjusted_offset(
10808 upl_t upl,
10809 vm_map_offset_t pgmask)
10810 {
10811 return trunc_page_mask_64(upl->u_offset, pgmask);
10812 }
10813
10814 vm_object_offset_t
10815 upl_get_data_offset(
10816 upl_t upl)
10817 {
10818 return upl->u_offset - upl_adjusted_offset(upl, PAGE_MASK);
10819 }
10820
10821 upl_t
10822 upl_associated_upl(upl_t upl)
10823 {
10824 return upl->associated_upl;
10825 }
10826
10827 void
10828 upl_set_associated_upl(upl_t upl, upl_t associated_upl)
10829 {
10830 upl->associated_upl = associated_upl;
10831 }
10832
10833 struct vnode *
10834 upl_lookup_vnode(upl_t upl)
10835 {
10836 if (!upl->map_object->internal) {
10837 return vnode_pager_lookup_vnode(upl->map_object->pager);
10838 } else {
10839 return NULL;
10840 }
10841 }
10842
10843 #if UPL_DEBUG
10844 kern_return_t
10845 upl_ubc_alias_set(upl_t upl, uintptr_t alias1, uintptr_t alias2)
10846 {
10847 upl->ubc_alias1 = alias1;
10848 upl->ubc_alias2 = alias2;
10849 return KERN_SUCCESS;
10850 }
10851 int
10852 upl_ubc_alias_get(upl_t upl, uintptr_t * al, uintptr_t * al2)
10853 {
10854 if (al) {
10855 *al = upl->ubc_alias1;
10856 }
10857 if (al2) {
10858 *al2 = upl->ubc_alias2;
10859 }
10860 return KERN_SUCCESS;
10861 }
10862 #endif /* UPL_DEBUG */
10863
10864 #if VM_PRESSURE_EVENTS
10865 /*
10866 * Upward trajectory.
10867 */
10868 extern boolean_t vm_compressor_low_on_space(void);
10869
10870 boolean_t
10871 VM_PRESSURE_NORMAL_TO_WARNING(void)
10872 {
10873 if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE) {
10874 /* Available pages below our threshold */
10875 if (memorystatus_available_pages < memorystatus_available_pages_pressure) {
10876 /* No frozen processes to kill */
10877 if (memorystatus_frozen_count == 0) {
10878 /* Not enough suspended processes available. */
10879 if (memorystatus_suspended_count < MEMORYSTATUS_SUSPENDED_THRESHOLD) {
10880 return TRUE;
10881 }
10882 }
10883 }
10884 return FALSE;
10885 } else {
10886 return (AVAILABLE_NON_COMPRESSED_MEMORY < VM_PAGE_COMPRESSOR_COMPACT_THRESHOLD) ? 1 : 0;
10887 }
10888 }
10889
10890 boolean_t
10891 VM_PRESSURE_WARNING_TO_CRITICAL(void)
10892 {
10893 if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE) {
10894 /* Available pages below our threshold */
10895 if (memorystatus_available_pages < memorystatus_available_pages_critical) {
10896 return TRUE;
10897 }
10898 return FALSE;
10899 } else {
10900 return vm_compressor_low_on_space() || (AVAILABLE_NON_COMPRESSED_MEMORY < ((12 * VM_PAGE_COMPRESSOR_SWAP_UNTHROTTLE_THRESHOLD) / 10)) ? 1 : 0;
10901 }
10902 }
10903
10904 /*
10905 * Downward trajectory.
10906 */
10907 boolean_t
10908 VM_PRESSURE_WARNING_TO_NORMAL(void)
10909 {
10910 if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE) {
10911 /* Available pages above our threshold */
10912 unsigned int target_threshold = (unsigned int) (memorystatus_available_pages_pressure + ((15 * memorystatus_available_pages_pressure) / 100));
10913 if (memorystatus_available_pages > target_threshold) {
10914 return TRUE;
10915 }
10916 return FALSE;
10917 } else {
10918 return (AVAILABLE_NON_COMPRESSED_MEMORY > ((12 * VM_PAGE_COMPRESSOR_COMPACT_THRESHOLD) / 10)) ? 1 : 0;
10919 }
10920 }
10921
10922 boolean_t
10923 VM_PRESSURE_CRITICAL_TO_WARNING(void)
10924 {
10925 if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE) {
10926 /* Available pages above our threshold */
10927 unsigned int target_threshold = (unsigned int)(memorystatus_available_pages_critical + ((15 * memorystatus_available_pages_critical) / 100));
10928 if (memorystatus_available_pages > target_threshold) {
10929 return TRUE;
10930 }
10931 return FALSE;
10932 } else {
10933 return (AVAILABLE_NON_COMPRESSED_MEMORY > ((14 * VM_PAGE_COMPRESSOR_SWAP_UNTHROTTLE_THRESHOLD) / 10)) ? 1 : 0;
10934 }
10935 }
10936 #endif /* VM_PRESSURE_EVENTS */