2 * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
59 * File: vm/vm_pageout.c
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
63 * The proverbial page-out daemon.
70 #include <mach_pagemap.h>
71 #include <mach_cluster_stats.h>
73 #include <mach/mach_types.h>
74 #include <mach/memory_object.h>
75 #include <mach/memory_object_default.h>
76 #include <mach/memory_object_control_server.h>
77 #include <mach/mach_host_server.h>
79 #include <mach/vm_map.h>
80 #include <mach/vm_param.h>
81 #include <mach/vm_statistics.h>
84 #include <kern/kern_types.h>
85 #include <kern/counter.h>
86 #include <kern/host_statistics.h>
87 #include <kern/machine.h>
88 #include <kern/misc_protos.h>
89 #include <kern/sched.h>
90 #include <kern/thread.h>
91 #include <kern/kalloc.h>
92 #include <kern/zalloc_internal.h>
93 #include <kern/policy_internal.h>
94 #include <kern/thread_group.h>
96 #include <machine/vm_tuning.h>
97 #include <machine/commpage.h>
100 #include <vm/vm_compressor_pager.h>
101 #include <vm/vm_fault.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_object.h>
104 #include <vm/vm_page.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_protos.h> /* must be last */
107 #include <vm/memory_object.h>
108 #include <vm/vm_purgeable_internal.h>
109 #include <vm/vm_shared_region.h>
110 #include <vm/vm_compressor.h>
112 #include <san/kasan.h>
114 #if CONFIG_PHANTOM_CACHE
115 #include <vm/vm_phantom_cache.h>
119 #include <libkern/OSDebug.h>
124 extern void mbuf_drain(boolean_t
);
126 #if VM_PRESSURE_EVENTS
128 extern unsigned int memorystatus_available_pages
;
129 extern unsigned int memorystatus_available_pages_pressure
;
130 extern unsigned int memorystatus_available_pages_critical
;
131 #else /* CONFIG_JETSAM */
132 extern uint64_t memorystatus_available_pages
;
133 extern uint64_t memorystatus_available_pages_pressure
;
134 extern uint64_t memorystatus_available_pages_critical
;
135 #endif /* CONFIG_JETSAM */
137 extern unsigned int memorystatus_frozen_count
;
138 extern unsigned int memorystatus_suspended_count
;
139 extern vm_pressure_level_t memorystatus_vm_pressure_level
;
141 extern lck_mtx_t memorystatus_jetsam_fg_band_lock
;
142 extern uint32_t memorystatus_jetsam_fg_band_waiters
;
144 void vm_pressure_response(void);
145 extern void consider_vm_pressure_events(void);
147 #define MEMORYSTATUS_SUSPENDED_THRESHOLD 4
148 #endif /* VM_PRESSURE_EVENTS */
150 thread_t vm_pageout_scan_thread
= THREAD_NULL
;
151 boolean_t vps_dynamic_priority_enabled
= FALSE
;
153 #ifndef VM_PAGEOUT_BURST_INACTIVE_THROTTLE /* maximum iterations of the inactive queue w/o stealing/cleaning a page */
154 #if !XNU_TARGET_OS_OSX
155 #define VM_PAGEOUT_BURST_INACTIVE_THROTTLE 1024
156 #else /* !XNU_TARGET_OS_OSX */
157 #define VM_PAGEOUT_BURST_INACTIVE_THROTTLE 4096
158 #endif /* !XNU_TARGET_OS_OSX */
161 #ifndef VM_PAGEOUT_DEADLOCK_RELIEF
162 #define VM_PAGEOUT_DEADLOCK_RELIEF 100 /* number of pages to move to break deadlock */
165 #ifndef VM_PAGE_LAUNDRY_MAX
166 #define VM_PAGE_LAUNDRY_MAX 128UL /* maximum pageouts on a given pageout queue */
167 #endif /* VM_PAGEOUT_LAUNDRY_MAX */
169 #ifndef VM_PAGEOUT_BURST_WAIT
170 #define VM_PAGEOUT_BURST_WAIT 1 /* milliseconds */
171 #endif /* VM_PAGEOUT_BURST_WAIT */
173 #ifndef VM_PAGEOUT_EMPTY_WAIT
174 #define VM_PAGEOUT_EMPTY_WAIT 50 /* milliseconds */
175 #endif /* VM_PAGEOUT_EMPTY_WAIT */
177 #ifndef VM_PAGEOUT_DEADLOCK_WAIT
178 #define VM_PAGEOUT_DEADLOCK_WAIT 100 /* milliseconds */
179 #endif /* VM_PAGEOUT_DEADLOCK_WAIT */
181 #ifndef VM_PAGEOUT_IDLE_WAIT
182 #define VM_PAGEOUT_IDLE_WAIT 10 /* milliseconds */
183 #endif /* VM_PAGEOUT_IDLE_WAIT */
185 #ifndef VM_PAGEOUT_SWAP_WAIT
186 #define VM_PAGEOUT_SWAP_WAIT 10 /* milliseconds */
187 #endif /* VM_PAGEOUT_SWAP_WAIT */
190 #ifndef VM_PAGE_SPECULATIVE_TARGET
191 #define VM_PAGE_SPECULATIVE_TARGET(total) ((total) * 1 / (100 / vm_pageout_state.vm_page_speculative_percentage))
192 #endif /* VM_PAGE_SPECULATIVE_TARGET */
196 * To obtain a reasonable LRU approximation, the inactive queue
197 * needs to be large enough to give pages on it a chance to be
198 * referenced a second time. This macro defines the fraction
199 * of active+inactive pages that should be inactive.
200 * The pageout daemon uses it to update vm_page_inactive_target.
202 * If vm_page_free_count falls below vm_page_free_target and
203 * vm_page_inactive_count is below vm_page_inactive_target,
204 * then the pageout daemon starts running.
207 #ifndef VM_PAGE_INACTIVE_TARGET
208 #define VM_PAGE_INACTIVE_TARGET(avail) ((avail) * 1 / 2)
209 #endif /* VM_PAGE_INACTIVE_TARGET */
212 * Once the pageout daemon starts running, it keeps going
213 * until vm_page_free_count meets or exceeds vm_page_free_target.
216 #ifndef VM_PAGE_FREE_TARGET
217 #if !XNU_TARGET_OS_OSX
218 #define VM_PAGE_FREE_TARGET(free) (15 + (free) / 100)
219 #else /* !XNU_TARGET_OS_OSX */
220 #define VM_PAGE_FREE_TARGET(free) (15 + (free) / 80)
221 #endif /* !XNU_TARGET_OS_OSX */
222 #endif /* VM_PAGE_FREE_TARGET */
226 * The pageout daemon always starts running once vm_page_free_count
227 * falls below vm_page_free_min.
230 #ifndef VM_PAGE_FREE_MIN
231 #if !XNU_TARGET_OS_OSX
232 #define VM_PAGE_FREE_MIN(free) (10 + (free) / 200)
233 #else /* !XNU_TARGET_OS_OSX */
234 #define VM_PAGE_FREE_MIN(free) (10 + (free) / 100)
235 #endif /* !XNU_TARGET_OS_OSX */
236 #endif /* VM_PAGE_FREE_MIN */
238 #if !XNU_TARGET_OS_OSX
239 #define VM_PAGE_FREE_RESERVED_LIMIT 100
240 #define VM_PAGE_FREE_MIN_LIMIT 1500
241 #define VM_PAGE_FREE_TARGET_LIMIT 2000
242 #else /* !XNU_TARGET_OS_OSX */
243 #define VM_PAGE_FREE_RESERVED_LIMIT 1700
244 #define VM_PAGE_FREE_MIN_LIMIT 3500
245 #define VM_PAGE_FREE_TARGET_LIMIT 4000
246 #endif /* !XNU_TARGET_OS_OSX */
249 * When vm_page_free_count falls below vm_page_free_reserved,
250 * only vm-privileged threads can allocate pages. vm-privilege
251 * allows the pageout daemon and default pager (and any other
252 * associated threads needed for default pageout) to continue
253 * operation by dipping into the reserved pool of pages.
256 #ifndef VM_PAGE_FREE_RESERVED
257 #define VM_PAGE_FREE_RESERVED(n) \
258 ((unsigned) (6 * VM_PAGE_LAUNDRY_MAX) + (n))
259 #endif /* VM_PAGE_FREE_RESERVED */
262 * When we dequeue pages from the inactive list, they are
263 * reactivated (ie, put back on the active queue) if referenced.
264 * However, it is possible to starve the free list if other
265 * processors are referencing pages faster than we can turn off
266 * the referenced bit. So we limit the number of reactivations
267 * we will make per call of vm_pageout_scan().
269 #define VM_PAGE_REACTIVATE_LIMIT_MAX 20000
271 #ifndef VM_PAGE_REACTIVATE_LIMIT
272 #if !XNU_TARGET_OS_OSX
273 #define VM_PAGE_REACTIVATE_LIMIT(avail) (VM_PAGE_INACTIVE_TARGET(avail) / 2)
274 #else /* !XNU_TARGET_OS_OSX */
275 #define VM_PAGE_REACTIVATE_LIMIT(avail) (MAX((avail) * 1 / 20,VM_PAGE_REACTIVATE_LIMIT_MAX))
276 #endif /* !XNU_TARGET_OS_OSX */
277 #endif /* VM_PAGE_REACTIVATE_LIMIT */
278 #define VM_PAGEOUT_INACTIVE_FORCE_RECLAIM 1000
280 extern boolean_t hibernate_cleaning_in_progress
;
283 * Forward declarations for internal routines.
286 struct vm_pageout_queue
*q
;
292 struct cq ciq
[MAX_COMPRESSOR_THREAD_COUNT
];
295 #if VM_PRESSURE_EVENTS
296 void vm_pressure_thread(void);
298 boolean_t
VM_PRESSURE_NORMAL_TO_WARNING(void);
299 boolean_t
VM_PRESSURE_WARNING_TO_CRITICAL(void);
301 boolean_t
VM_PRESSURE_WARNING_TO_NORMAL(void);
302 boolean_t
VM_PRESSURE_CRITICAL_TO_WARNING(void);
305 void vm_pageout_garbage_collect(int);
306 static void vm_pageout_iothread_external(void);
307 static void vm_pageout_iothread_internal(struct cq
*cq
);
308 static void vm_pageout_adjust_eq_iothrottle(struct vm_pageout_queue
*, boolean_t
);
310 extern void vm_pageout_continue(void);
311 extern void vm_pageout_scan(void);
313 boolean_t vm_pageout_running
= FALSE
;
315 uint32_t vm_page_upl_tainted
= 0;
316 uint32_t vm_page_iopl_tainted
= 0;
318 #if XNU_TARGET_OS_OSX
319 static boolean_t vm_pageout_waiter
= FALSE
;
320 #endif /* XNU_TARGET_OS_OSX */
323 #if DEVELOPMENT || DEBUG
324 struct vm_pageout_debug vm_pageout_debug
;
326 struct vm_pageout_vminfo vm_pageout_vminfo
;
327 struct vm_pageout_state vm_pageout_state
;
328 struct vm_config vm_config
;
330 struct vm_pageout_queue vm_pageout_queue_internal VM_PAGE_PACKED_ALIGNED
;
331 struct vm_pageout_queue vm_pageout_queue_external VM_PAGE_PACKED_ALIGNED
;
333 int vm_upl_wait_for_pages
= 0;
334 vm_object_t vm_pageout_scan_wants_object
= VM_OBJECT_NULL
;
336 boolean_t(*volatile consider_buffer_cache_collect
)(int) = NULL
;
338 int vm_debug_events
= 0;
340 LCK_GRP_DECLARE(vm_pageout_lck_grp
, "vm_pageout");
342 #if CONFIG_MEMORYSTATUS
343 extern boolean_t
memorystatus_kill_on_VM_page_shortage(boolean_t async
);
345 uint32_t vm_pageout_memorystatus_fb_factor_nr
= 5;
346 uint32_t vm_pageout_memorystatus_fb_factor_dr
= 2;
351 int vm_compressor_ebound
= 1;
352 int vm_pgo_pbound
= 0;
353 extern void thread_bind_cluster_type(thread_t
, char, bool);
358 * Routine: vm_pageout_object_terminate
360 * Destroy the pageout_object, and perform all of the
361 * required cleanup actions.
364 * The object must be locked, and will be returned locked.
367 vm_pageout_object_terminate(
370 vm_object_t shadow_object
;
373 * Deal with the deallocation (last reference) of a pageout object
374 * (used for cleaning-in-place) by dropping the paging references/
375 * freeing pages in the original object.
378 assert(object
->pageout
);
379 shadow_object
= object
->shadow
;
380 vm_object_lock(shadow_object
);
382 while (!vm_page_queue_empty(&object
->memq
)) {
384 vm_object_offset_t offset
;
386 p
= (vm_page_t
) vm_page_queue_first(&object
->memq
);
388 assert(p
->vmp_private
);
389 assert(p
->vmp_free_when_done
);
390 p
->vmp_free_when_done
= FALSE
;
391 assert(!p
->vmp_cleaning
);
392 assert(!p
->vmp_laundry
);
394 offset
= p
->vmp_offset
;
398 m
= vm_page_lookup(shadow_object
,
399 offset
+ object
->vo_shadow_offset
);
401 if (m
== VM_PAGE_NULL
) {
405 assert((m
->vmp_dirty
) || (m
->vmp_precious
) ||
406 (m
->vmp_busy
&& m
->vmp_cleaning
));
409 * Handle the trusted pager throttle.
410 * Also decrement the burst throttle (if external).
412 vm_page_lock_queues();
413 if (m
->vmp_q_state
== VM_PAGE_ON_PAGEOUT_Q
) {
414 vm_pageout_throttle_up(m
);
418 * Handle the "target" page(s). These pages are to be freed if
419 * successfully cleaned. Target pages are always busy, and are
420 * wired exactly once. The initial target pages are not mapped,
421 * (so cannot be referenced or modified) but converted target
422 * pages may have been modified between the selection as an
423 * adjacent page and conversion to a target.
425 if (m
->vmp_free_when_done
) {
427 assert(m
->vmp_q_state
== VM_PAGE_IS_WIRED
);
428 assert(m
->vmp_wire_count
== 1);
429 m
->vmp_cleaning
= FALSE
;
430 m
->vmp_free_when_done
= FALSE
;
432 * Revoke all access to the page. Since the object is
433 * locked, and the page is busy, this prevents the page
434 * from being dirtied after the pmap_disconnect() call
437 * Since the page is left "dirty" but "not modifed", we
438 * can detect whether the page was redirtied during
439 * pageout by checking the modify state.
441 if (pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m
)) & VM_MEM_MODIFIED
) {
442 SET_PAGE_DIRTY(m
, FALSE
);
444 m
->vmp_dirty
= FALSE
;
448 vm_page_unwire(m
, TRUE
); /* reactivates */
449 counter_inc(&vm_statistics_reactivations
);
452 vm_page_free(m
); /* clears busy, etc. */
454 vm_page_unlock_queues();
458 * Handle the "adjacent" pages. These pages were cleaned in
459 * place, and should be left alone.
460 * If prep_pin_count is nonzero, then someone is using the
461 * page, so make it active.
463 if ((m
->vmp_q_state
== VM_PAGE_NOT_ON_Q
) && !m
->vmp_private
) {
464 if (m
->vmp_reference
) {
467 vm_page_deactivate(m
);
470 if (m
->vmp_overwriting
) {
472 * the (COPY_OUT_FROM == FALSE) request_page_list case
476 * We do not re-set m->vmp_dirty !
477 * The page was busy so no extraneous activity
478 * could have occurred. COPY_INTO is a read into the
479 * new pages. CLEAN_IN_PLACE does actually write
480 * out the pages but handling outside of this code
481 * will take care of resetting dirty. We clear the
482 * modify however for the Programmed I/O case.
484 pmap_clear_modify(VM_PAGE_GET_PHYS_PAGE(m
));
487 m
->vmp_absent
= FALSE
;
490 * alternate (COPY_OUT_FROM == FALSE) request_page_list case
491 * Occurs when the original page was wired
492 * at the time of the list request
494 assert(VM_PAGE_WIRED(m
));
495 vm_page_unwire(m
, TRUE
); /* reactivates */
497 m
->vmp_overwriting
= FALSE
;
499 m
->vmp_dirty
= FALSE
;
501 m
->vmp_cleaning
= FALSE
;
504 * Wakeup any thread waiting for the page to be un-cleaning.
507 vm_page_unlock_queues();
510 * Account for the paging reference taken in vm_paging_object_allocate.
512 vm_object_activity_end(shadow_object
);
513 vm_object_unlock(shadow_object
);
515 assert(object
->ref_count
== 0);
516 assert(object
->paging_in_progress
== 0);
517 assert(object
->activity_in_progress
== 0);
518 assert(object
->resident_page_count
== 0);
523 * Routine: vm_pageclean_setup
525 * Purpose: setup a page to be cleaned (made non-dirty), but not
526 * necessarily flushed from the VM page cache.
527 * This is accomplished by cleaning in place.
529 * The page must not be busy, and new_object
537 vm_object_t new_object
,
538 vm_object_offset_t new_offset
)
540 assert(!m
->vmp_busy
);
542 assert(!m
->vmp_cleaning
);
545 pmap_clear_modify(VM_PAGE_GET_PHYS_PAGE(m
));
548 * Mark original page as cleaning in place.
550 m
->vmp_cleaning
= TRUE
;
551 SET_PAGE_DIRTY(m
, FALSE
);
552 m
->vmp_precious
= FALSE
;
555 * Convert the fictitious page to a private shadow of
558 assert(new_m
->vmp_fictitious
);
559 assert(VM_PAGE_GET_PHYS_PAGE(new_m
) == vm_page_fictitious_addr
);
560 new_m
->vmp_fictitious
= FALSE
;
561 new_m
->vmp_private
= TRUE
;
562 new_m
->vmp_free_when_done
= TRUE
;
563 VM_PAGE_SET_PHYS_PAGE(new_m
, VM_PAGE_GET_PHYS_PAGE(m
));
565 vm_page_lockspin_queues();
566 vm_page_wire(new_m
, VM_KERN_MEMORY_NONE
, TRUE
);
567 vm_page_unlock_queues();
569 vm_page_insert_wired(new_m
, new_object
, new_offset
, VM_KERN_MEMORY_NONE
);
570 assert(!new_m
->vmp_wanted
);
571 new_m
->vmp_busy
= FALSE
;
575 * Routine: vm_pageout_initialize_page
577 * Causes the specified page to be initialized in
578 * the appropriate memory object. This routine is used to push
579 * pages into a copy-object when they are modified in the
582 * The page is moved to a temporary object and paged out.
585 * The page in question must not be on any pageout queues.
586 * The object to which it belongs must be locked.
587 * The page must be busy, but not hold a paging reference.
590 * Move this page to a completely new object.
593 vm_pageout_initialize_page(
597 vm_object_offset_t paging_offset
;
598 memory_object_t pager
;
600 assert(VM_CONFIG_COMPRESSOR_IS_PRESENT
);
602 object
= VM_PAGE_OBJECT(m
);
605 assert(object
->internal
);
608 * Verify that we really want to clean this page
610 assert(!m
->vmp_absent
);
611 assert(!m
->vmp_error
);
612 assert(m
->vmp_dirty
);
615 * Create a paging reference to let us play with the object.
617 paging_offset
= m
->vmp_offset
+ object
->paging_offset
;
619 if (m
->vmp_absent
|| m
->vmp_error
|| m
->vmp_restart
|| (!m
->vmp_dirty
&& !m
->vmp_precious
)) {
620 panic("reservation without pageout?"); /* alan */
623 vm_object_unlock(object
);
629 * If there's no pager, then we can't clean the page. This should
630 * never happen since this should be a copy object and therefore not
631 * an external object, so the pager should always be there.
634 pager
= object
->pager
;
636 if (pager
== MEMORY_OBJECT_NULL
) {
637 panic("missing pager for copy object");
644 * set the page for future call to vm_fault_list_request
646 pmap_clear_modify(VM_PAGE_GET_PHYS_PAGE(m
));
647 SET_PAGE_DIRTY(m
, FALSE
);
650 * keep the object from collapsing or terminating
652 vm_object_paging_begin(object
);
653 vm_object_unlock(object
);
656 * Write the data to its pager.
657 * Note that the data is passed by naming the new object,
658 * not a virtual address; the pager interface has been
659 * manipulated to use the "internal memory" data type.
660 * [The object reference from its allocation is donated
661 * to the eventual recipient.]
663 memory_object_data_initialize(pager
, paging_offset
, PAGE_SIZE
);
665 vm_object_lock(object
);
666 vm_object_paging_end(object
);
671 * vm_pageout_cluster:
673 * Given a page, queue it to the appropriate I/O thread,
674 * which will page it out and attempt to clean adjacent pages
675 * in the same operation.
677 * The object and queues must be locked. We will take a
678 * paging reference to prevent deallocation or collapse when we
679 * release the object lock back at the call site. The I/O thread
680 * is responsible for consuming this reference
682 * The page must not be on any pageout queue.
684 #if DEVELOPMENT || DEBUG
685 vmct_stats_t vmct_stats
;
687 int32_t vmct_active
= 0;
688 uint64_t vm_compressor_epoch_start
= 0;
689 uint64_t vm_compressor_epoch_stop
= 0;
691 typedef enum vmct_state_t
{
696 vmct_state_t vmct_state
[MAX_COMPRESSOR_THREAD_COUNT
];
701 vm_pageout_cluster(vm_page_t m
)
703 vm_object_t object
= VM_PAGE_OBJECT(m
);
704 struct vm_pageout_queue
*q
;
707 LCK_MTX_ASSERT(&vm_page_queue_lock
, LCK_MTX_ASSERT_OWNED
);
708 vm_object_lock_assert_exclusive(object
);
711 * Only a certain kind of page is appreciated here.
713 assert((m
->vmp_dirty
|| m
->vmp_precious
) && (!VM_PAGE_WIRED(m
)));
714 assert(!m
->vmp_cleaning
&& !m
->vmp_laundry
);
715 assert(m
->vmp_q_state
== VM_PAGE_NOT_ON_Q
);
718 * protect the object from collapse or termination
720 vm_object_activity_begin(object
);
722 if (object
->internal
== TRUE
) {
723 assert(VM_CONFIG_COMPRESSOR_IS_PRESENT
);
727 q
= &vm_pageout_queue_internal
;
729 q
= &vm_pageout_queue_external
;
733 * pgo_laundry count is tied to the laundry bit
735 m
->vmp_laundry
= TRUE
;
738 m
->vmp_q_state
= VM_PAGE_ON_PAGEOUT_Q
;
739 vm_page_queue_enter(&q
->pgo_pending
, m
, vmp_pageq
);
741 if (q
->pgo_idle
== TRUE
) {
743 thread_wakeup((event_t
) &q
->pgo_pending
);
750 * A page is back from laundry or we are stealing it back from
751 * the laundering state. See if there are some pages waiting to
752 * go to laundry and if we can let some of them go now.
754 * Object and page queues must be locked.
757 vm_pageout_throttle_up(
760 struct vm_pageout_queue
*q
;
761 vm_object_t m_object
;
763 m_object
= VM_PAGE_OBJECT(m
);
765 assert(m_object
!= VM_OBJECT_NULL
);
766 assert(m_object
!= kernel_object
);
768 LCK_MTX_ASSERT(&vm_page_queue_lock
, LCK_MTX_ASSERT_OWNED
);
769 vm_object_lock_assert_exclusive(m_object
);
771 if (m_object
->internal
== TRUE
) {
772 q
= &vm_pageout_queue_internal
;
774 q
= &vm_pageout_queue_external
;
777 if (m
->vmp_q_state
== VM_PAGE_ON_PAGEOUT_Q
) {
778 vm_page_queue_remove(&q
->pgo_pending
, m
, vmp_pageq
);
779 m
->vmp_q_state
= VM_PAGE_NOT_ON_Q
;
781 VM_PAGE_ZERO_PAGEQ_ENTRY(m
);
783 vm_object_activity_end(m_object
);
785 VM_PAGEOUT_DEBUG(vm_page_steal_pageout_page
, 1);
787 if (m
->vmp_laundry
== TRUE
) {
788 m
->vmp_laundry
= FALSE
;
791 if (q
->pgo_throttled
== TRUE
) {
792 q
->pgo_throttled
= FALSE
;
793 thread_wakeup((event_t
) &q
->pgo_laundry
);
795 if (q
->pgo_draining
== TRUE
&& q
->pgo_laundry
== 0) {
796 q
->pgo_draining
= FALSE
;
797 thread_wakeup((event_t
) (&q
->pgo_laundry
+ 1));
799 VM_PAGEOUT_DEBUG(vm_pageout_throttle_up_count
, 1);
805 vm_pageout_throttle_up_batch(
806 struct vm_pageout_queue
*q
,
809 LCK_MTX_ASSERT(&vm_page_queue_lock
, LCK_MTX_ASSERT_OWNED
);
811 VM_PAGEOUT_DEBUG(vm_pageout_throttle_up_count
, batch_cnt
);
813 q
->pgo_laundry
-= batch_cnt
;
815 if (q
->pgo_throttled
== TRUE
) {
816 q
->pgo_throttled
= FALSE
;
817 thread_wakeup((event_t
) &q
->pgo_laundry
);
819 if (q
->pgo_draining
== TRUE
&& q
->pgo_laundry
== 0) {
820 q
->pgo_draining
= FALSE
;
821 thread_wakeup((event_t
) (&q
->pgo_laundry
+ 1));
828 * VM memory pressure monitoring.
830 * vm_pageout_scan() keeps track of the number of pages it considers and
831 * reclaims, in the currently active vm_pageout_stat[vm_pageout_stat_now].
833 * compute_memory_pressure() is called every second from compute_averages()
834 * and moves "vm_pageout_stat_now" forward, to start accumulating the number
835 * of recalimed pages in a new vm_pageout_stat[] bucket.
837 * mach_vm_pressure_monitor() collects past statistics about memory pressure.
838 * The caller provides the number of seconds ("nsecs") worth of statistics
839 * it wants, up to 30 seconds.
840 * It computes the number of pages reclaimed in the past "nsecs" seconds and
841 * also returns the number of pages the system still needs to reclaim at this
844 #if DEVELOPMENT || DEBUG
845 #define VM_PAGEOUT_STAT_SIZE (30 * 8) + 1
847 #define VM_PAGEOUT_STAT_SIZE (1 * 8) + 1
849 struct vm_pageout_stat
{
850 unsigned long vm_page_active_count
;
851 unsigned long vm_page_speculative_count
;
852 unsigned long vm_page_inactive_count
;
853 unsigned long vm_page_anonymous_count
;
855 unsigned long vm_page_free_count
;
856 unsigned long vm_page_wire_count
;
857 unsigned long vm_page_compressor_count
;
859 unsigned long vm_page_pages_compressed
;
860 unsigned long vm_page_pageable_internal_count
;
861 unsigned long vm_page_pageable_external_count
;
862 unsigned long vm_page_xpmapped_external_count
;
864 unsigned int pages_grabbed
;
865 unsigned int pages_freed
;
867 unsigned int pages_compressed
;
868 unsigned int pages_grabbed_by_compressor
;
869 unsigned int failed_compressions
;
871 unsigned int pages_evicted
;
872 unsigned int pages_purged
;
874 unsigned int considered
;
875 unsigned int considered_bq_internal
;
876 unsigned int considered_bq_external
;
878 unsigned int skipped_external
;
879 unsigned int filecache_min_reactivations
;
881 unsigned int freed_speculative
;
882 unsigned int freed_cleaned
;
883 unsigned int freed_internal
;
884 unsigned int freed_external
;
886 unsigned int cleaned_dirty_external
;
887 unsigned int cleaned_dirty_internal
;
889 unsigned int inactive_referenced
;
890 unsigned int inactive_nolock
;
891 unsigned int reactivation_limit_exceeded
;
892 unsigned int forced_inactive_reclaim
;
894 unsigned int throttled_internal_q
;
895 unsigned int throttled_external_q
;
897 unsigned int phantom_ghosts_found
;
898 unsigned int phantom_ghosts_added
;
899 } vm_pageout_stats
[VM_PAGEOUT_STAT_SIZE
] = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, };
901 unsigned int vm_pageout_stat_now
= 0;
903 #define VM_PAGEOUT_STAT_BEFORE(i) \
904 (((i) == 0) ? VM_PAGEOUT_STAT_SIZE - 1 : (i) - 1)
905 #define VM_PAGEOUT_STAT_AFTER(i) \
906 (((i) == VM_PAGEOUT_STAT_SIZE - 1) ? 0 : (i) + 1)
908 #if VM_PAGE_BUCKETS_CHECK
909 int vm_page_buckets_check_interval
= 80; /* in eighths of a second */
910 #endif /* VM_PAGE_BUCKETS_CHECK */
914 record_memory_pressure(void);
916 record_memory_pressure(void)
918 unsigned int vm_pageout_next
;
920 #if VM_PAGE_BUCKETS_CHECK
921 /* check the consistency of VM page buckets at regular interval */
922 static int counter
= 0;
923 if ((++counter
% vm_page_buckets_check_interval
) == 0) {
924 vm_page_buckets_check();
926 #endif /* VM_PAGE_BUCKETS_CHECK */
928 vm_pageout_state
.vm_memory_pressure
=
929 vm_pageout_stats
[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now
)].freed_speculative
+
930 vm_pageout_stats
[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now
)].freed_cleaned
+
931 vm_pageout_stats
[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now
)].freed_internal
+
932 vm_pageout_stats
[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now
)].freed_external
;
934 commpage_set_memory_pressure((unsigned int)vm_pageout_state
.vm_memory_pressure
);
936 /* move "now" forward */
937 vm_pageout_next
= VM_PAGEOUT_STAT_AFTER(vm_pageout_stat_now
);
939 bzero(&vm_pageout_stats
[vm_pageout_next
], sizeof(struct vm_pageout_stat
));
941 vm_pageout_stat_now
= vm_pageout_next
;
947 * mach_vm_ctl_page_free_wanted() is called indirectly, via
948 * mach_vm_pressure_monitor(), when taking a stackshot. Therefore,
949 * it must be safe in the restricted stackshot context. Locks and/or
950 * blocking are not allowable.
953 mach_vm_ctl_page_free_wanted(void)
955 unsigned int page_free_target
, page_free_count
, page_free_wanted
;
957 page_free_target
= vm_page_free_target
;
958 page_free_count
= vm_page_free_count
;
959 if (page_free_target
> page_free_count
) {
960 page_free_wanted
= page_free_target
- page_free_count
;
962 page_free_wanted
= 0;
965 return page_free_wanted
;
971 * mach_vm_pressure_monitor() is called when taking a stackshot, with
972 * wait_for_pressure FALSE, so that code path must remain safe in the
973 * restricted stackshot context. No blocking or locks are allowable.
978 mach_vm_pressure_monitor(
979 boolean_t wait_for_pressure
,
980 unsigned int nsecs_monitored
,
981 unsigned int *pages_reclaimed_p
,
982 unsigned int *pages_wanted_p
)
985 unsigned int vm_pageout_then
, vm_pageout_now
;
986 unsigned int pages_reclaimed
;
987 unsigned int units_of_monitor
;
989 units_of_monitor
= 8 * nsecs_monitored
;
991 * We don't take the vm_page_queue_lock here because we don't want
992 * vm_pressure_monitor() to get in the way of the vm_pageout_scan()
993 * thread when it's trying to reclaim memory. We don't need fully
994 * accurate monitoring anyway...
997 if (wait_for_pressure
) {
998 /* wait until there's memory pressure */
999 while (vm_page_free_count
>= vm_page_free_target
) {
1000 wr
= assert_wait((event_t
) &vm_page_free_wanted
,
1001 THREAD_INTERRUPTIBLE
);
1002 if (wr
== THREAD_WAITING
) {
1003 wr
= thread_block(THREAD_CONTINUE_NULL
);
1005 if (wr
== THREAD_INTERRUPTED
) {
1006 return KERN_ABORTED
;
1008 if (wr
== THREAD_AWAKENED
) {
1010 * The memory pressure might have already
1011 * been relieved but let's not block again
1012 * and let's report that there was memory
1013 * pressure at some point.
1020 /* provide the number of pages the system wants to reclaim */
1021 if (pages_wanted_p
!= NULL
) {
1022 *pages_wanted_p
= mach_vm_ctl_page_free_wanted();
1025 if (pages_reclaimed_p
== NULL
) {
1026 return KERN_SUCCESS
;
1029 /* provide number of pages reclaimed in the last "nsecs_monitored" */
1030 vm_pageout_now
= vm_pageout_stat_now
;
1031 pages_reclaimed
= 0;
1032 for (vm_pageout_then
=
1033 VM_PAGEOUT_STAT_BEFORE(vm_pageout_now
);
1034 vm_pageout_then
!= vm_pageout_now
&&
1035 units_of_monitor
-- != 0;
1037 VM_PAGEOUT_STAT_BEFORE(vm_pageout_then
)) {
1038 pages_reclaimed
+= vm_pageout_stats
[vm_pageout_then
].freed_speculative
;
1039 pages_reclaimed
+= vm_pageout_stats
[vm_pageout_then
].freed_cleaned
;
1040 pages_reclaimed
+= vm_pageout_stats
[vm_pageout_then
].freed_internal
;
1041 pages_reclaimed
+= vm_pageout_stats
[vm_pageout_then
].freed_external
;
1043 *pages_reclaimed_p
= pages_reclaimed
;
1045 return KERN_SUCCESS
;
1050 #if DEVELOPMENT || DEBUG
1053 vm_pageout_disconnect_all_pages_in_queue(vm_page_queue_head_t
*, int);
1056 * condition variable used to make sure there is
1057 * only a single sweep going on at a time
1059 boolean_t vm_pageout_disconnect_all_pages_active
= FALSE
;
1063 vm_pageout_disconnect_all_pages()
1065 vm_page_lock_queues();
1067 if (vm_pageout_disconnect_all_pages_active
== TRUE
) {
1068 vm_page_unlock_queues();
1071 vm_pageout_disconnect_all_pages_active
= TRUE
;
1072 vm_page_unlock_queues();
1074 vm_pageout_disconnect_all_pages_in_queue(&vm_page_queue_throttled
, vm_page_throttled_count
);
1075 vm_pageout_disconnect_all_pages_in_queue(&vm_page_queue_anonymous
, vm_page_anonymous_count
);
1076 vm_pageout_disconnect_all_pages_in_queue(&vm_page_queue_active
, vm_page_active_count
);
1078 vm_pageout_disconnect_all_pages_active
= FALSE
;
1083 vm_pageout_disconnect_all_pages_in_queue(vm_page_queue_head_t
*q
, int qcount
)
1086 vm_object_t t_object
= NULL
;
1087 vm_object_t l_object
= NULL
;
1088 vm_object_t m_object
= NULL
;
1089 int delayed_unlock
= 0;
1090 int try_failed_count
= 0;
1091 int disconnected_count
= 0;
1092 int paused_count
= 0;
1093 int object_locked_count
= 0;
1095 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
, (MACHDBG_CODE(DBG_MACH_WORKINGSET
, VM_DISCONNECT_ALL_PAGE_MAPPINGS
)) | DBG_FUNC_START
,
1096 q
, qcount
, 0, 0, 0);
1098 vm_page_lock_queues();
1100 while (qcount
&& !vm_page_queue_empty(q
)) {
1101 LCK_MTX_ASSERT(&vm_page_queue_lock
, LCK_MTX_ASSERT_OWNED
);
1103 m
= (vm_page_t
) vm_page_queue_first(q
);
1104 m_object
= VM_PAGE_OBJECT(m
);
1107 * check to see if we currently are working
1108 * with the same object... if so, we've
1109 * already got the lock
1111 if (m_object
!= l_object
) {
1113 * the object associated with candidate page is
1114 * different from the one we were just working
1115 * with... dump the lock if we still own it
1117 if (l_object
!= NULL
) {
1118 vm_object_unlock(l_object
);
1121 if (m_object
!= t_object
) {
1122 try_failed_count
= 0;
1126 * Try to lock object; since we've alread got the
1127 * page queues lock, we can only 'try' for this one.
1128 * if the 'try' fails, we need to do a mutex_pause
1129 * to allow the owner of the object lock a chance to
1132 if (!vm_object_lock_try_scan(m_object
)) {
1133 if (try_failed_count
> 20) {
1134 goto reenter_pg_on_q
;
1136 vm_page_unlock_queues();
1137 mutex_pause(try_failed_count
++);
1138 vm_page_lock_queues();
1143 t_object
= m_object
;
1146 object_locked_count
++;
1148 l_object
= m_object
;
1150 if (!m_object
->alive
|| m
->vmp_cleaning
|| m
->vmp_laundry
|| m
->vmp_busy
|| m
->vmp_absent
|| m
->vmp_error
|| m
->vmp_free_when_done
) {
1152 * put it back on the head of its queue
1154 goto reenter_pg_on_q
;
1156 if (m
->vmp_pmapped
== TRUE
) {
1157 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m
));
1159 disconnected_count
++;
1162 vm_page_queue_remove(q
, m
, vmp_pageq
);
1163 vm_page_queue_enter(q
, m
, vmp_pageq
);
1166 try_failed_count
= 0;
1168 if (delayed_unlock
++ > 128) {
1169 if (l_object
!= NULL
) {
1170 vm_object_unlock(l_object
);
1173 lck_mtx_yield(&vm_page_queue_lock
);
1177 if (l_object
!= NULL
) {
1178 vm_object_unlock(l_object
);
1181 vm_page_unlock_queues();
1183 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
, (MACHDBG_CODE(DBG_MACH_WORKINGSET
, VM_DISCONNECT_ALL_PAGE_MAPPINGS
)) | DBG_FUNC_END
,
1184 q
, disconnected_count
, object_locked_count
, paused_count
, 0);
1191 vm_pageout_page_queue(vm_page_queue_head_t
*, int);
1194 * condition variable used to make sure there is
1195 * only a single sweep going on at a time
1197 boolean_t vm_pageout_anonymous_pages_active
= FALSE
;
1201 vm_pageout_anonymous_pages()
1203 if (VM_CONFIG_COMPRESSOR_IS_PRESENT
) {
1204 vm_page_lock_queues();
1206 if (vm_pageout_anonymous_pages_active
== TRUE
) {
1207 vm_page_unlock_queues();
1210 vm_pageout_anonymous_pages_active
= TRUE
;
1211 vm_page_unlock_queues();
1213 vm_pageout_page_queue(&vm_page_queue_throttled
, vm_page_throttled_count
);
1214 vm_pageout_page_queue(&vm_page_queue_anonymous
, vm_page_anonymous_count
);
1215 vm_pageout_page_queue(&vm_page_queue_active
, vm_page_active_count
);
1217 if (VM_CONFIG_SWAP_IS_PRESENT
) {
1218 vm_consider_swapping();
1221 vm_page_lock_queues();
1222 vm_pageout_anonymous_pages_active
= FALSE
;
1223 vm_page_unlock_queues();
1229 vm_pageout_page_queue(vm_page_queue_head_t
*q
, int qcount
)
1232 vm_object_t t_object
= NULL
;
1233 vm_object_t l_object
= NULL
;
1234 vm_object_t m_object
= NULL
;
1235 int delayed_unlock
= 0;
1236 int try_failed_count
= 0;
1239 struct vm_pageout_queue
*iq
;
1243 iq
= &vm_pageout_queue_internal
;
1245 vm_page_lock_queues();
1247 while (qcount
&& !vm_page_queue_empty(q
)) {
1248 LCK_MTX_ASSERT(&vm_page_queue_lock
, LCK_MTX_ASSERT_OWNED
);
1250 if (VM_PAGE_Q_THROTTLED(iq
)) {
1251 if (l_object
!= NULL
) {
1252 vm_object_unlock(l_object
);
1255 iq
->pgo_draining
= TRUE
;
1257 assert_wait((event_t
) (&iq
->pgo_laundry
+ 1), THREAD_INTERRUPTIBLE
);
1258 vm_page_unlock_queues();
1260 thread_block(THREAD_CONTINUE_NULL
);
1262 vm_page_lock_queues();
1266 m
= (vm_page_t
) vm_page_queue_first(q
);
1267 m_object
= VM_PAGE_OBJECT(m
);
1270 * check to see if we currently are working
1271 * with the same object... if so, we've
1272 * already got the lock
1274 if (m_object
!= l_object
) {
1275 if (!m_object
->internal
) {
1276 goto reenter_pg_on_q
;
1280 * the object associated with candidate page is
1281 * different from the one we were just working
1282 * with... dump the lock if we still own it
1284 if (l_object
!= NULL
) {
1285 vm_object_unlock(l_object
);
1288 if (m_object
!= t_object
) {
1289 try_failed_count
= 0;
1293 * Try to lock object; since we've alread got the
1294 * page queues lock, we can only 'try' for this one.
1295 * if the 'try' fails, we need to do a mutex_pause
1296 * to allow the owner of the object lock a chance to
1299 if (!vm_object_lock_try_scan(m_object
)) {
1300 if (try_failed_count
> 20) {
1301 goto reenter_pg_on_q
;
1303 vm_page_unlock_queues();
1304 mutex_pause(try_failed_count
++);
1305 vm_page_lock_queues();
1308 t_object
= m_object
;
1311 l_object
= m_object
;
1313 if (!m_object
->alive
|| m
->vmp_cleaning
|| m
->vmp_laundry
|| m
->vmp_busy
|| m
->vmp_absent
|| m
->vmp_error
|| m
->vmp_free_when_done
) {
1315 * page is not to be cleaned
1316 * put it back on the head of its queue
1318 goto reenter_pg_on_q
;
1320 phys_page
= VM_PAGE_GET_PHYS_PAGE(m
);
1322 if (m
->vmp_reference
== FALSE
&& m
->vmp_pmapped
== TRUE
) {
1323 refmod_state
= pmap_get_refmod(phys_page
);
1325 if (refmod_state
& VM_MEM_REFERENCED
) {
1326 m
->vmp_reference
= TRUE
;
1328 if (refmod_state
& VM_MEM_MODIFIED
) {
1329 SET_PAGE_DIRTY(m
, FALSE
);
1332 if (m
->vmp_reference
== TRUE
) {
1333 m
->vmp_reference
= FALSE
;
1334 pmap_clear_refmod_options(phys_page
, VM_MEM_REFERENCED
, PMAP_OPTIONS_NOFLUSH
, (void *)NULL
);
1335 goto reenter_pg_on_q
;
1337 if (m
->vmp_pmapped
== TRUE
) {
1338 if (m
->vmp_dirty
|| m
->vmp_precious
) {
1339 pmap_options
= PMAP_OPTIONS_COMPRESSOR
;
1341 pmap_options
= PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED
;
1343 refmod_state
= pmap_disconnect_options(phys_page
, pmap_options
, NULL
);
1344 if (refmod_state
& VM_MEM_MODIFIED
) {
1345 SET_PAGE_DIRTY(m
, FALSE
);
1349 if (!m
->vmp_dirty
&& !m
->vmp_precious
) {
1350 vm_page_unlock_queues();
1352 vm_page_lock_queues();
1357 if (!m_object
->pager_initialized
|| m_object
->pager
== MEMORY_OBJECT_NULL
) {
1358 if (!m_object
->pager_initialized
) {
1359 vm_page_unlock_queues();
1361 vm_object_collapse(m_object
, (vm_object_offset_t
) 0, TRUE
);
1363 if (!m_object
->pager_initialized
) {
1364 vm_object_compressor_pager_create(m_object
);
1367 vm_page_lock_queues();
1370 if (!m_object
->pager_initialized
|| m_object
->pager
== MEMORY_OBJECT_NULL
) {
1371 goto reenter_pg_on_q
;
1374 * vm_object_compressor_pager_create will drop the object lock
1375 * which means 'm' may no longer be valid to use
1380 * we've already factored out pages in the laundry which
1381 * means this page can't be on the pageout queue so it's
1382 * safe to do the vm_page_queues_remove
1384 vm_page_queues_remove(m
, TRUE
);
1386 LCK_MTX_ASSERT(&vm_page_queue_lock
, LCK_MTX_ASSERT_OWNED
);
1388 vm_pageout_cluster(m
);
1393 vm_page_queue_remove(q
, m
, vmp_pageq
);
1394 vm_page_queue_enter(q
, m
, vmp_pageq
);
1397 try_failed_count
= 0;
1399 if (delayed_unlock
++ > 128) {
1400 if (l_object
!= NULL
) {
1401 vm_object_unlock(l_object
);
1404 lck_mtx_yield(&vm_page_queue_lock
);
1408 if (l_object
!= NULL
) {
1409 vm_object_unlock(l_object
);
1412 vm_page_unlock_queues();
1418 * function in BSD to apply I/O throttle to the pageout thread
1420 extern void vm_pageout_io_throttle(void);
1422 #define VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m, obj) \
1425 * If a "reusable" page somehow made it back into \
1426 * the active queue, it's been re-used and is not \
1427 * quite re-usable. \
1428 * If the VM object was "all_reusable", consider it \
1429 * as "all re-used" instead of converting it to \
1430 * "partially re-used", which could be expensive. \
1432 assert(VM_PAGE_OBJECT((m)) == (obj)); \
1433 if ((m)->vmp_reusable || \
1434 (obj)->all_reusable) { \
1435 vm_object_reuse_pages((obj), \
1437 (m)->vmp_offset + PAGE_SIZE_64, \
1443 #define VM_PAGEOUT_DELAYED_UNLOCK_LIMIT 64
1444 #define VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX 1024
1447 #define FCS_DELAYED 1
1448 #define FCS_DEADLOCK_DETECTED 2
1450 struct flow_control
{
1456 #if CONFIG_BACKGROUND_QUEUE
1457 uint64_t vm_pageout_rejected_bq_internal
= 0;
1458 uint64_t vm_pageout_rejected_bq_external
= 0;
1459 uint64_t vm_pageout_skipped_bq_internal
= 0;
1462 #define ANONS_GRABBED_LIMIT 2
1466 static void vm_pageout_delayed_unlock(int *, int *, vm_page_t
*);
1468 static void vm_pageout_prepare_to_block(vm_object_t
*, int *, vm_page_t
*, int *, int);
1470 #define VM_PAGEOUT_PB_NO_ACTION 0
1471 #define VM_PAGEOUT_PB_CONSIDER_WAKING_COMPACTOR_SWAPPER 1
1472 #define VM_PAGEOUT_PB_THREAD_YIELD 2
1477 vm_pageout_delayed_unlock(int *delayed_unlock
, int *local_freed
, vm_page_t
*local_freeq
)
1480 vm_page_unlock_queues();
1482 VM_DEBUG_CONSTANT_EVENT(
1483 vm_pageout_freelist
, VM_PAGEOUT_FREELIST
, DBG_FUNC_START
,
1484 vm_page_free_count
, 0, 0, 1);
1486 vm_page_free_list(*local_freeq
, TRUE
);
1488 VM_DEBUG_CONSTANT_EVENT(vm_pageout_freelist
, VM_PAGEOUT_FREELIST
, DBG_FUNC_END
,
1489 vm_page_free_count
, *local_freed
, 0, 1);
1491 *local_freeq
= NULL
;
1494 vm_page_lock_queues();
1496 lck_mtx_yield(&vm_page_queue_lock
);
1498 *delayed_unlock
= 1;
1504 vm_pageout_prepare_to_block(vm_object_t
*object
, int *delayed_unlock
,
1505 vm_page_t
*local_freeq
, int *local_freed
, int action
)
1507 vm_page_unlock_queues();
1509 if (*object
!= NULL
) {
1510 vm_object_unlock(*object
);
1514 vm_page_free_list(*local_freeq
, TRUE
);
1516 *local_freeq
= NULL
;
1519 *delayed_unlock
= 1;
1522 case VM_PAGEOUT_PB_CONSIDER_WAKING_COMPACTOR_SWAPPER
:
1523 vm_consider_waking_compactor_swapper();
1525 case VM_PAGEOUT_PB_THREAD_YIELD
:
1526 thread_yield_internal(1);
1528 case VM_PAGEOUT_PB_NO_ACTION
:
1532 vm_page_lock_queues();
1536 static struct vm_pageout_vminfo last
;
1538 uint64_t last_vm_page_pages_grabbed
= 0;
1540 extern uint32_t c_segment_pages_compressed
;
1542 extern uint64_t shared_region_pager_reclaimed
;
1543 extern struct memory_object_pager_ops shared_region_pager_ops
;
1546 update_vm_info(void)
1551 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_active_count
= vm_page_active_count
;
1552 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_speculative_count
= vm_page_speculative_count
;
1553 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_inactive_count
= vm_page_inactive_count
;
1554 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_anonymous_count
= vm_page_anonymous_count
;
1556 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_free_count
= vm_page_free_count
;
1557 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_wire_count
= vm_page_wire_count
;
1558 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_compressor_count
= VM_PAGE_COMPRESSOR_COUNT
;
1560 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_pages_compressed
= c_segment_pages_compressed
;
1561 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_pageable_internal_count
= vm_page_pageable_internal_count
;
1562 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_pageable_external_count
= vm_page_pageable_external_count
;
1563 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_xpmapped_external_count
= vm_page_xpmapped_external_count
;
1566 tmp
= vm_pageout_vminfo
.vm_pageout_considered_page
;
1567 vm_pageout_stats
[vm_pageout_stat_now
].considered
= (unsigned int)(tmp
- last
.vm_pageout_considered_page
);
1568 last
.vm_pageout_considered_page
= tmp
;
1570 tmp64
= vm_pageout_vminfo
.vm_pageout_compressions
;
1571 vm_pageout_stats
[vm_pageout_stat_now
].pages_compressed
= (unsigned int)(tmp64
- last
.vm_pageout_compressions
);
1572 last
.vm_pageout_compressions
= tmp64
;
1574 tmp
= vm_pageout_vminfo
.vm_compressor_failed
;
1575 vm_pageout_stats
[vm_pageout_stat_now
].failed_compressions
= (unsigned int)(tmp
- last
.vm_compressor_failed
);
1576 last
.vm_compressor_failed
= tmp
;
1578 tmp64
= vm_pageout_vminfo
.vm_compressor_pages_grabbed
;
1579 vm_pageout_stats
[vm_pageout_stat_now
].pages_grabbed_by_compressor
= (unsigned int)(tmp64
- last
.vm_compressor_pages_grabbed
);
1580 last
.vm_compressor_pages_grabbed
= tmp64
;
1582 tmp
= vm_pageout_vminfo
.vm_phantom_cache_found_ghost
;
1583 vm_pageout_stats
[vm_pageout_stat_now
].phantom_ghosts_found
= (unsigned int)(tmp
- last
.vm_phantom_cache_found_ghost
);
1584 last
.vm_phantom_cache_found_ghost
= tmp
;
1586 tmp
= vm_pageout_vminfo
.vm_phantom_cache_added_ghost
;
1587 vm_pageout_stats
[vm_pageout_stat_now
].phantom_ghosts_added
= (unsigned int)(tmp
- last
.vm_phantom_cache_added_ghost
);
1588 last
.vm_phantom_cache_added_ghost
= tmp
;
1590 tmp64
= counter_load(&vm_page_grab_count
);
1591 vm_pageout_stats
[vm_pageout_stat_now
].pages_grabbed
= (unsigned int)(tmp64
- last_vm_page_pages_grabbed
);
1592 last_vm_page_pages_grabbed
= tmp64
;
1594 tmp
= vm_pageout_vminfo
.vm_page_pages_freed
;
1595 vm_pageout_stats
[vm_pageout_stat_now
].pages_freed
= (unsigned int)(tmp
- last
.vm_page_pages_freed
);
1596 last
.vm_page_pages_freed
= tmp
;
1599 if (vm_pageout_stats
[vm_pageout_stat_now
].considered
) {
1600 tmp
= vm_pageout_vminfo
.vm_pageout_pages_evicted
;
1601 vm_pageout_stats
[vm_pageout_stat_now
].pages_evicted
= (unsigned int)(tmp
- last
.vm_pageout_pages_evicted
);
1602 last
.vm_pageout_pages_evicted
= tmp
;
1604 tmp
= vm_pageout_vminfo
.vm_pageout_pages_purged
;
1605 vm_pageout_stats
[vm_pageout_stat_now
].pages_purged
= (unsigned int)(tmp
- last
.vm_pageout_pages_purged
);
1606 last
.vm_pageout_pages_purged
= tmp
;
1608 tmp
= vm_pageout_vminfo
.vm_pageout_freed_speculative
;
1609 vm_pageout_stats
[vm_pageout_stat_now
].freed_speculative
= (unsigned int)(tmp
- last
.vm_pageout_freed_speculative
);
1610 last
.vm_pageout_freed_speculative
= tmp
;
1612 tmp
= vm_pageout_vminfo
.vm_pageout_freed_external
;
1613 vm_pageout_stats
[vm_pageout_stat_now
].freed_external
= (unsigned int)(tmp
- last
.vm_pageout_freed_external
);
1614 last
.vm_pageout_freed_external
= tmp
;
1616 tmp
= vm_pageout_vminfo
.vm_pageout_inactive_referenced
;
1617 vm_pageout_stats
[vm_pageout_stat_now
].inactive_referenced
= (unsigned int)(tmp
- last
.vm_pageout_inactive_referenced
);
1618 last
.vm_pageout_inactive_referenced
= tmp
;
1620 tmp
= vm_pageout_vminfo
.vm_pageout_scan_inactive_throttled_external
;
1621 vm_pageout_stats
[vm_pageout_stat_now
].throttled_external_q
= (unsigned int)(tmp
- last
.vm_pageout_scan_inactive_throttled_external
);
1622 last
.vm_pageout_scan_inactive_throttled_external
= tmp
;
1624 tmp
= vm_pageout_vminfo
.vm_pageout_inactive_dirty_external
;
1625 vm_pageout_stats
[vm_pageout_stat_now
].cleaned_dirty_external
= (unsigned int)(tmp
- last
.vm_pageout_inactive_dirty_external
);
1626 last
.vm_pageout_inactive_dirty_external
= tmp
;
1628 tmp
= vm_pageout_vminfo
.vm_pageout_freed_cleaned
;
1629 vm_pageout_stats
[vm_pageout_stat_now
].freed_cleaned
= (unsigned int)(tmp
- last
.vm_pageout_freed_cleaned
);
1630 last
.vm_pageout_freed_cleaned
= tmp
;
1632 tmp
= vm_pageout_vminfo
.vm_pageout_inactive_nolock
;
1633 vm_pageout_stats
[vm_pageout_stat_now
].inactive_nolock
= (unsigned int)(tmp
- last
.vm_pageout_inactive_nolock
);
1634 last
.vm_pageout_inactive_nolock
= tmp
;
1636 tmp
= vm_pageout_vminfo
.vm_pageout_scan_inactive_throttled_internal
;
1637 vm_pageout_stats
[vm_pageout_stat_now
].throttled_internal_q
= (unsigned int)(tmp
- last
.vm_pageout_scan_inactive_throttled_internal
);
1638 last
.vm_pageout_scan_inactive_throttled_internal
= tmp
;
1640 tmp
= vm_pageout_vminfo
.vm_pageout_skipped_external
;
1641 vm_pageout_stats
[vm_pageout_stat_now
].skipped_external
= (unsigned int)(tmp
- last
.vm_pageout_skipped_external
);
1642 last
.vm_pageout_skipped_external
= tmp
;
1644 tmp
= vm_pageout_vminfo
.vm_pageout_reactivation_limit_exceeded
;
1645 vm_pageout_stats
[vm_pageout_stat_now
].reactivation_limit_exceeded
= (unsigned int)(tmp
- last
.vm_pageout_reactivation_limit_exceeded
);
1646 last
.vm_pageout_reactivation_limit_exceeded
= tmp
;
1648 tmp
= vm_pageout_vminfo
.vm_pageout_inactive_force_reclaim
;
1649 vm_pageout_stats
[vm_pageout_stat_now
].forced_inactive_reclaim
= (unsigned int)(tmp
- last
.vm_pageout_inactive_force_reclaim
);
1650 last
.vm_pageout_inactive_force_reclaim
= tmp
;
1652 tmp
= vm_pageout_vminfo
.vm_pageout_freed_internal
;
1653 vm_pageout_stats
[vm_pageout_stat_now
].freed_internal
= (unsigned int)(tmp
- last
.vm_pageout_freed_internal
);
1654 last
.vm_pageout_freed_internal
= tmp
;
1656 tmp
= vm_pageout_vminfo
.vm_pageout_considered_bq_internal
;
1657 vm_pageout_stats
[vm_pageout_stat_now
].considered_bq_internal
= (unsigned int)(tmp
- last
.vm_pageout_considered_bq_internal
);
1658 last
.vm_pageout_considered_bq_internal
= tmp
;
1660 tmp
= vm_pageout_vminfo
.vm_pageout_considered_bq_external
;
1661 vm_pageout_stats
[vm_pageout_stat_now
].considered_bq_external
= (unsigned int)(tmp
- last
.vm_pageout_considered_bq_external
);
1662 last
.vm_pageout_considered_bq_external
= tmp
;
1664 tmp
= vm_pageout_vminfo
.vm_pageout_filecache_min_reactivated
;
1665 vm_pageout_stats
[vm_pageout_stat_now
].filecache_min_reactivations
= (unsigned int)(tmp
- last
.vm_pageout_filecache_min_reactivated
);
1666 last
.vm_pageout_filecache_min_reactivated
= tmp
;
1668 tmp
= vm_pageout_vminfo
.vm_pageout_inactive_dirty_internal
;
1669 vm_pageout_stats
[vm_pageout_stat_now
].cleaned_dirty_internal
= (unsigned int)(tmp
- last
.vm_pageout_inactive_dirty_internal
);
1670 last
.vm_pageout_inactive_dirty_internal
= tmp
;
1673 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM
, VM_INFO1
)) | DBG_FUNC_NONE
,
1674 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_active_count
,
1675 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_speculative_count
,
1676 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_inactive_count
,
1677 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_anonymous_count
,
1680 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM
, VM_INFO2
)) | DBG_FUNC_NONE
,
1681 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_free_count
,
1682 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_wire_count
,
1683 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_compressor_count
,
1687 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM
, VM_INFO3
)) | DBG_FUNC_NONE
,
1688 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_pages_compressed
,
1689 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_pageable_internal_count
,
1690 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_pageable_external_count
,
1691 vm_pageout_stats
[vm_pageout_stat_now
].vm_page_xpmapped_external_count
,
1694 if (vm_pageout_stats
[vm_pageout_stat_now
].considered
||
1695 vm_pageout_stats
[vm_pageout_stat_now
].pages_compressed
||
1696 vm_pageout_stats
[vm_pageout_stat_now
].failed_compressions
) {
1697 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM
, VM_INFO4
)) | DBG_FUNC_NONE
,
1698 vm_pageout_stats
[vm_pageout_stat_now
].considered
,
1699 vm_pageout_stats
[vm_pageout_stat_now
].freed_speculative
,
1700 vm_pageout_stats
[vm_pageout_stat_now
].freed_external
,
1701 vm_pageout_stats
[vm_pageout_stat_now
].inactive_referenced
,
1704 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM
, VM_INFO5
)) | DBG_FUNC_NONE
,
1705 vm_pageout_stats
[vm_pageout_stat_now
].throttled_external_q
,
1706 vm_pageout_stats
[vm_pageout_stat_now
].cleaned_dirty_external
,
1707 vm_pageout_stats
[vm_pageout_stat_now
].freed_cleaned
,
1708 vm_pageout_stats
[vm_pageout_stat_now
].inactive_nolock
,
1711 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM
, VM_INFO6
)) | DBG_FUNC_NONE
,
1712 vm_pageout_stats
[vm_pageout_stat_now
].throttled_internal_q
,
1713 vm_pageout_stats
[vm_pageout_stat_now
].pages_compressed
,
1714 vm_pageout_stats
[vm_pageout_stat_now
].pages_grabbed_by_compressor
,
1715 vm_pageout_stats
[vm_pageout_stat_now
].skipped_external
,
1718 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM
, VM_INFO7
)) | DBG_FUNC_NONE
,
1719 vm_pageout_stats
[vm_pageout_stat_now
].reactivation_limit_exceeded
,
1720 vm_pageout_stats
[vm_pageout_stat_now
].forced_inactive_reclaim
,
1721 vm_pageout_stats
[vm_pageout_stat_now
].failed_compressions
,
1722 vm_pageout_stats
[vm_pageout_stat_now
].freed_internal
,
1725 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM
, VM_INFO8
)) | DBG_FUNC_NONE
,
1726 vm_pageout_stats
[vm_pageout_stat_now
].considered_bq_internal
,
1727 vm_pageout_stats
[vm_pageout_stat_now
].considered_bq_external
,
1728 vm_pageout_stats
[vm_pageout_stat_now
].filecache_min_reactivations
,
1729 vm_pageout_stats
[vm_pageout_stat_now
].cleaned_dirty_internal
,
1732 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM
, VM_INFO9
)) | DBG_FUNC_NONE
,
1733 vm_pageout_stats
[vm_pageout_stat_now
].pages_grabbed
,
1734 vm_pageout_stats
[vm_pageout_stat_now
].pages_freed
,
1735 vm_pageout_stats
[vm_pageout_stat_now
].phantom_ghosts_found
,
1736 vm_pageout_stats
[vm_pageout_stat_now
].phantom_ghosts_added
,
1739 record_memory_pressure();
1742 extern boolean_t hibernation_vmqueues_inspection
;
1745 * Return values for functions called by vm_pageout_scan
1746 * that control its flow.
1748 * PROCEED -- vm_pageout_scan will keep making forward progress.
1749 * DONE_RETURN -- page demand satisfied, work is done -> vm_pageout_scan returns.
1750 * NEXT_ITERATION -- restart the 'for' loop in vm_pageout_scan aka continue.
1753 #define VM_PAGEOUT_SCAN_PROCEED (0)
1754 #define VM_PAGEOUT_SCAN_DONE_RETURN (1)
1755 #define VM_PAGEOUT_SCAN_NEXT_ITERATION (2)
1758 * This function is called only from vm_pageout_scan and
1759 * it moves overflow secluded pages (one-at-a-time) to the
1760 * batched 'local' free Q or active Q.
1763 vps_deal_with_secluded_page_overflow(vm_page_t
*local_freeq
, int *local_freed
)
1765 #if CONFIG_SECLUDED_MEMORY
1767 * Deal with secluded_q overflow.
1769 if (vm_page_secluded_count
> vm_page_secluded_target
) {
1770 vm_page_t secluded_page
;
1773 * SECLUDED_AGING_BEFORE_ACTIVE:
1774 * Excess secluded pages go to the active queue and
1775 * will later go to the inactive queue.
1777 assert((vm_page_secluded_count_free
+
1778 vm_page_secluded_count_inuse
) ==
1779 vm_page_secluded_count
);
1780 secluded_page
= (vm_page_t
)vm_page_queue_first(&vm_page_queue_secluded
);
1781 assert(secluded_page
->vmp_q_state
== VM_PAGE_ON_SECLUDED_Q
);
1783 vm_page_queues_remove(secluded_page
, FALSE
);
1784 assert(!secluded_page
->vmp_fictitious
);
1785 assert(!VM_PAGE_WIRED(secluded_page
));
1787 if (secluded_page
->vmp_object
== 0) {
1788 /* transfer to free queue */
1789 assert(secluded_page
->vmp_busy
);
1790 secluded_page
->vmp_snext
= *local_freeq
;
1791 *local_freeq
= secluded_page
;
1794 /* transfer to head of active queue */
1795 vm_page_enqueue_active(secluded_page
, FALSE
);
1796 secluded_page
= VM_PAGE_NULL
;
1799 #else /* CONFIG_SECLUDED_MEMORY */
1801 #pragma unused(local_freeq)
1802 #pragma unused(local_freed)
1806 #endif /* CONFIG_SECLUDED_MEMORY */
1810 * This function is called only from vm_pageout_scan and
1811 * it initializes the loop targets for vm_pageout_scan().
1814 vps_init_page_targets(void)
1817 * LD TODO: Other page targets should be calculated here too.
1819 vm_page_anonymous_min
= vm_page_inactive_target
/ 20;
1821 if (vm_pageout_state
.vm_page_speculative_percentage
> 50) {
1822 vm_pageout_state
.vm_page_speculative_percentage
= 50;
1823 } else if (vm_pageout_state
.vm_page_speculative_percentage
<= 0) {
1824 vm_pageout_state
.vm_page_speculative_percentage
= 1;
1827 vm_pageout_state
.vm_page_speculative_target
= VM_PAGE_SPECULATIVE_TARGET(vm_page_active_count
+
1828 vm_page_inactive_count
);
1832 * This function is called only from vm_pageout_scan and
1833 * it purges a single VM object at-a-time and will either
1834 * make vm_pageout_scan() restart the loop or keeping moving forward.
1841 assert(available_for_purge
>= 0);
1842 force_purge
= 0; /* no force-purging */
1844 #if VM_PRESSURE_EVENTS
1845 vm_pressure_level_t pressure_level
;
1847 pressure_level
= memorystatus_vm_pressure_level
;
1849 if (pressure_level
> kVMPressureNormal
) {
1850 if (pressure_level
>= kVMPressureCritical
) {
1851 force_purge
= vm_pageout_state
.memorystatus_purge_on_critical
;
1852 } else if (pressure_level
>= kVMPressureUrgent
) {
1853 force_purge
= vm_pageout_state
.memorystatus_purge_on_urgent
;
1854 } else if (pressure_level
>= kVMPressureWarning
) {
1855 force_purge
= vm_pageout_state
.memorystatus_purge_on_warning
;
1858 #endif /* VM_PRESSURE_EVENTS */
1860 if (available_for_purge
|| force_purge
) {
1861 memoryshot(VM_PAGEOUT_PURGEONE
, DBG_FUNC_START
);
1863 VM_DEBUG_EVENT(vm_pageout_purgeone
, VM_PAGEOUT_PURGEONE
, DBG_FUNC_START
, vm_page_free_count
, 0, 0, 0);
1864 if (vm_purgeable_object_purge_one(force_purge
, C_DONT_BLOCK
)) {
1865 VM_PAGEOUT_DEBUG(vm_pageout_purged_objects
, 1);
1866 VM_DEBUG_EVENT(vm_pageout_purgeone
, VM_PAGEOUT_PURGEONE
, DBG_FUNC_END
, vm_page_free_count
, 0, 0, 0);
1867 memoryshot(VM_PAGEOUT_PURGEONE
, DBG_FUNC_END
);
1869 return VM_PAGEOUT_SCAN_NEXT_ITERATION
;
1871 VM_DEBUG_EVENT(vm_pageout_purgeone
, VM_PAGEOUT_PURGEONE
, DBG_FUNC_END
, 0, 0, 0, -1);
1872 memoryshot(VM_PAGEOUT_PURGEONE
, DBG_FUNC_END
);
1875 return VM_PAGEOUT_SCAN_PROCEED
;
1879 * This function is called only from vm_pageout_scan and
1880 * it will try to age the next speculative Q if the oldest
1884 vps_age_speculative_queue(boolean_t force_speculative_aging
)
1886 #define DELAY_SPECULATIVE_AGE 1000
1889 * try to pull pages from the aging bins...
1890 * see vm_page.h for an explanation of how
1891 * this mechanism works
1893 boolean_t can_steal
= FALSE
;
1894 int num_scanned_queues
;
1895 static int delay_speculative_age
= 0; /* depends the # of times we go through the main pageout_scan loop.*/
1897 struct vm_speculative_age_q
*aq
;
1898 struct vm_speculative_age_q
*sq
;
1900 sq
= &vm_page_queue_speculative
[VM_PAGE_SPECULATIVE_AGED_Q
];
1902 aq
= &vm_page_queue_speculative
[speculative_steal_index
];
1904 num_scanned_queues
= 0;
1905 while (vm_page_queue_empty(&aq
->age_q
) &&
1906 num_scanned_queues
++ != VM_PAGE_MAX_SPECULATIVE_AGE_Q
) {
1907 speculative_steal_index
++;
1909 if (speculative_steal_index
> VM_PAGE_MAX_SPECULATIVE_AGE_Q
) {
1910 speculative_steal_index
= VM_PAGE_MIN_SPECULATIVE_AGE_Q
;
1913 aq
= &vm_page_queue_speculative
[speculative_steal_index
];
1916 if (num_scanned_queues
== VM_PAGE_MAX_SPECULATIVE_AGE_Q
+ 1) {
1918 * XXX We've scanned all the speculative
1919 * queues but still haven't found one
1920 * that is not empty, even though
1921 * vm_page_speculative_count is not 0.
1923 if (!vm_page_queue_empty(&sq
->age_q
)) {
1924 return VM_PAGEOUT_SCAN_NEXT_ITERATION
;
1926 #if DEVELOPMENT || DEBUG
1927 panic("vm_pageout_scan: vm_page_speculative_count=%d but queues are empty", vm_page_speculative_count
);
1930 vm_page_speculative_count
= 0;
1931 /* ... and continue */
1932 return VM_PAGEOUT_SCAN_NEXT_ITERATION
;
1935 if (vm_page_speculative_count
> vm_pageout_state
.vm_page_speculative_target
|| force_speculative_aging
== TRUE
) {
1938 if (!delay_speculative_age
) {
1939 mach_timespec_t ts_fully_aged
;
1941 ts_fully_aged
.tv_sec
= (VM_PAGE_MAX_SPECULATIVE_AGE_Q
* vm_pageout_state
.vm_page_speculative_q_age_ms
) / 1000;
1942 ts_fully_aged
.tv_nsec
= ((VM_PAGE_MAX_SPECULATIVE_AGE_Q
* vm_pageout_state
.vm_page_speculative_q_age_ms
) % 1000)
1943 * 1000 * NSEC_PER_USEC
;
1945 ADD_MACH_TIMESPEC(&ts_fully_aged
, &aq
->age_ts
);
1949 clock_get_system_nanotime(&sec
, &nsec
);
1950 ts
.tv_sec
= (unsigned int) sec
;
1953 if (CMP_MACH_TIMESPEC(&ts
, &ts_fully_aged
) >= 0) {
1956 delay_speculative_age
++;
1959 delay_speculative_age
++;
1960 if (delay_speculative_age
== DELAY_SPECULATIVE_AGE
) {
1961 delay_speculative_age
= 0;
1965 if (can_steal
== TRUE
) {
1966 vm_page_speculate_ageit(aq
);
1969 return VM_PAGEOUT_SCAN_PROCEED
;
1973 * This function is called only from vm_pageout_scan and
1974 * it evicts a single VM object from the cache.
1977 vps_object_cache_evict(vm_object_t
*object_to_unlock
)
1979 static int cache_evict_throttle
= 0;
1980 struct vm_speculative_age_q
*sq
;
1982 sq
= &vm_page_queue_speculative
[VM_PAGE_SPECULATIVE_AGED_Q
];
1984 if (vm_page_queue_empty(&sq
->age_q
) && cache_evict_throttle
== 0) {
1987 if (*object_to_unlock
!= NULL
) {
1988 vm_object_unlock(*object_to_unlock
);
1989 *object_to_unlock
= NULL
;
1991 KERNEL_DEBUG_CONSTANT(0x13001ec | DBG_FUNC_START
, 0, 0, 0, 0, 0);
1993 pages_evicted
= vm_object_cache_evict(100, 10);
1995 KERNEL_DEBUG_CONSTANT(0x13001ec | DBG_FUNC_END
, pages_evicted
, 0, 0, 0, 0);
1997 if (pages_evicted
) {
1998 vm_pageout_vminfo
.vm_pageout_pages_evicted
+= pages_evicted
;
2000 VM_DEBUG_EVENT(vm_pageout_cache_evict
, VM_PAGEOUT_CACHE_EVICT
, DBG_FUNC_NONE
,
2001 vm_page_free_count
, pages_evicted
, vm_pageout_vminfo
.vm_pageout_pages_evicted
, 0);
2002 memoryshot(VM_PAGEOUT_CACHE_EVICT
, DBG_FUNC_NONE
);
2005 * we just freed up to 100 pages,
2006 * so go back to the top of the main loop
2007 * and re-evaulate the memory situation
2009 return VM_PAGEOUT_SCAN_NEXT_ITERATION
;
2011 cache_evict_throttle
= 1000;
2014 if (cache_evict_throttle
) {
2015 cache_evict_throttle
--;
2018 return VM_PAGEOUT_SCAN_PROCEED
;
2023 * This function is called only from vm_pageout_scan and
2024 * it calculates the filecache min. that needs to be maintained
2025 * as we start to steal pages.
2028 vps_calculate_filecache_min(void)
2030 int divisor
= vm_pageout_state
.vm_page_filecache_min_divisor
;
2034 * don't let the filecache_min fall below 15% of available memory
2035 * on systems with an active compressor that isn't nearing its
2036 * limits w/r to accepting new data
2038 * on systems w/o the compressor/swapper, the filecache is always
2039 * a very large percentage of the AVAILABLE_NON_COMPRESSED_MEMORY
2040 * since most (if not all) of the anonymous pages are in the
2041 * throttled queue (which isn't counted as available) which
2042 * effectively disables this filter
2044 if (vm_compressor_low_on_space() || divisor
== 0) {
2045 vm_pageout_state
.vm_page_filecache_min
= 0;
2047 vm_pageout_state
.vm_page_filecache_min
=
2048 ((AVAILABLE_NON_COMPRESSED_MEMORY
) * 10) / divisor
;
2051 if (vm_compressor_out_of_space() || divisor
== 0) {
2052 vm_pageout_state
.vm_page_filecache_min
= 0;
2055 * don't let the filecache_min fall below the specified critical level
2057 vm_pageout_state
.vm_page_filecache_min
=
2058 ((AVAILABLE_NON_COMPRESSED_MEMORY
) * 10) / divisor
;
2061 if (vm_page_free_count
< (vm_page_free_reserved
/ 4)) {
2062 vm_pageout_state
.vm_page_filecache_min
= 0;
2067 * This function is called only from vm_pageout_scan and
2068 * it updates the flow control time to detect if VM pageoutscan
2069 * isn't making progress.
2072 vps_flow_control_reset_deadlock_timer(struct flow_control
*flow_control
)
2078 ts
.tv_sec
= vm_pageout_state
.vm_pageout_deadlock_wait
/ 1000;
2079 ts
.tv_nsec
= (vm_pageout_state
.vm_pageout_deadlock_wait
% 1000) * 1000 * NSEC_PER_USEC
;
2080 clock_get_system_nanotime(&sec
, &nsec
);
2081 flow_control
->ts
.tv_sec
= (unsigned int) sec
;
2082 flow_control
->ts
.tv_nsec
= nsec
;
2083 ADD_MACH_TIMESPEC(&flow_control
->ts
, &ts
);
2085 flow_control
->state
= FCS_DELAYED
;
2087 vm_pageout_vminfo
.vm_pageout_scan_inactive_throttled_internal
++;
2091 * This function is called only from vm_pageout_scan and
2092 * it is the flow control logic of VM pageout scan which
2093 * controls if it should block and for how long.
2094 * Any blocking of vm_pageout_scan happens ONLY in this function.
2097 vps_flow_control(struct flow_control
*flow_control
, int *anons_grabbed
, vm_object_t
*object
, int *delayed_unlock
,
2098 vm_page_t
*local_freeq
, int *local_freed
, int *vm_pageout_deadlock_target
, unsigned int inactive_burst_count
)
2100 boolean_t exceeded_burst_throttle
= FALSE
;
2101 unsigned int msecs
= 0;
2102 uint32_t inactive_external_count
;
2104 struct vm_pageout_queue
*iq
;
2105 struct vm_pageout_queue
*eq
;
2106 struct vm_speculative_age_q
*sq
;
2108 iq
= &vm_pageout_queue_internal
;
2109 eq
= &vm_pageout_queue_external
;
2110 sq
= &vm_page_queue_speculative
[VM_PAGE_SPECULATIVE_AGED_Q
];
2113 * Sometimes we have to pause:
2114 * 1) No inactive pages - nothing to do.
2115 * 2) Loop control - no acceptable pages found on the inactive queue
2116 * within the last vm_pageout_burst_inactive_throttle iterations
2117 * 3) Flow control - default pageout queue is full
2119 if (vm_page_queue_empty(&vm_page_queue_inactive
) &&
2120 vm_page_queue_empty(&vm_page_queue_anonymous
) &&
2121 vm_page_queue_empty(&vm_page_queue_cleaned
) &&
2122 vm_page_queue_empty(&sq
->age_q
)) {
2123 VM_PAGEOUT_DEBUG(vm_pageout_scan_empty_throttle
, 1);
2124 msecs
= vm_pageout_state
.vm_pageout_empty_wait
;
2125 } else if (inactive_burst_count
>=
2126 MIN(vm_pageout_state
.vm_pageout_burst_inactive_throttle
,
2127 (vm_page_inactive_count
+
2128 vm_page_speculative_count
))) {
2129 VM_PAGEOUT_DEBUG(vm_pageout_scan_burst_throttle
, 1);
2130 msecs
= vm_pageout_state
.vm_pageout_burst_wait
;
2132 exceeded_burst_throttle
= TRUE
;
2133 } else if (VM_PAGE_Q_THROTTLED(iq
) &&
2134 VM_DYNAMIC_PAGING_ENABLED()) {
2138 switch (flow_control
->state
) {
2140 if ((vm_page_free_count
+ *local_freed
) < vm_page_free_target
&&
2141 vm_pageout_state
.vm_restricted_to_single_processor
== FALSE
) {
2143 * since the compressor is running independently of vm_pageout_scan
2144 * let's not wait for it just yet... as long as we have a healthy supply
2145 * of filecache pages to work with, let's keep stealing those.
2147 inactive_external_count
= vm_page_inactive_count
- vm_page_anonymous_count
;
2149 if (vm_page_pageable_external_count
> vm_pageout_state
.vm_page_filecache_min
&&
2150 (inactive_external_count
>= VM_PAGE_INACTIVE_TARGET(vm_page_pageable_external_count
))) {
2151 *anons_grabbed
= ANONS_GRABBED_LIMIT
;
2152 VM_PAGEOUT_DEBUG(vm_pageout_scan_throttle_deferred
, 1);
2153 return VM_PAGEOUT_SCAN_PROCEED
;
2157 vps_flow_control_reset_deadlock_timer(flow_control
);
2158 msecs
= vm_pageout_state
.vm_pageout_deadlock_wait
;
2163 clock_get_system_nanotime(&sec
, &nsec
);
2164 ts
.tv_sec
= (unsigned int) sec
;
2167 if (CMP_MACH_TIMESPEC(&ts
, &flow_control
->ts
) >= 0) {
2169 * the pageout thread for the default pager is potentially
2170 * deadlocked since the
2171 * default pager queue has been throttled for more than the
2172 * allowable time... we need to move some clean pages or dirty
2173 * pages belonging to the external pagers if they aren't throttled
2174 * vm_page_free_wanted represents the number of threads currently
2175 * blocked waiting for pages... we'll move one page for each of
2176 * these plus a fixed amount to break the logjam... once we're done
2177 * moving this number of pages, we'll re-enter the FSC_DELAYED state
2178 * with a new timeout target since we have no way of knowing
2179 * whether we've broken the deadlock except through observation
2180 * of the queue associated with the default pager... we need to
2181 * stop moving pages and allow the system to run to see what
2182 * state it settles into.
2185 *vm_pageout_deadlock_target
= vm_pageout_state
.vm_pageout_deadlock_relief
+
2186 vm_page_free_wanted
+ vm_page_free_wanted_privileged
;
2187 VM_PAGEOUT_DEBUG(vm_pageout_scan_deadlock_detected
, 1);
2188 flow_control
->state
= FCS_DEADLOCK_DETECTED
;
2189 thread_wakeup((event_t
) &vm_pageout_garbage_collect
);
2190 return VM_PAGEOUT_SCAN_PROCEED
;
2193 * just resniff instead of trying
2194 * to compute a new delay time... we're going to be
2195 * awakened immediately upon a laundry completion,
2196 * so we won't wait any longer than necessary
2198 msecs
= vm_pageout_state
.vm_pageout_idle_wait
;
2201 case FCS_DEADLOCK_DETECTED
:
2202 if (*vm_pageout_deadlock_target
) {
2203 return VM_PAGEOUT_SCAN_PROCEED
;
2206 vps_flow_control_reset_deadlock_timer(flow_control
);
2207 msecs
= vm_pageout_state
.vm_pageout_deadlock_wait
;
2213 * No need to pause...
2215 return VM_PAGEOUT_SCAN_PROCEED
;
2218 vm_pageout_scan_wants_object
= VM_OBJECT_NULL
;
2220 vm_pageout_prepare_to_block(object
, delayed_unlock
, local_freeq
, local_freed
,
2221 VM_PAGEOUT_PB_CONSIDER_WAKING_COMPACTOR_SWAPPER
);
2223 if (vm_page_free_count
>= vm_page_free_target
) {
2225 * we're here because
2226 * 1) someone else freed up some pages while we had
2227 * the queues unlocked above
2228 * and we've hit one of the 3 conditions that
2229 * cause us to pause the pageout scan thread
2231 * since we already have enough free pages,
2232 * let's avoid stalling and return normally
2234 * before we return, make sure the pageout I/O threads
2235 * are running throttled in case there are still requests
2236 * in the laundry... since we have enough free pages
2237 * we don't need the laundry to be cleaned in a timely
2238 * fashion... so let's avoid interfering with foreground
2241 * we don't want to hold vm_page_queue_free_lock when
2242 * calling vm_pageout_adjust_eq_iothrottle (since it
2243 * may cause other locks to be taken), we do the intitial
2244 * check outside of the lock. Once we take the lock,
2245 * we recheck the condition since it may have changed.
2246 * if it has, no problem, we will make the threads
2247 * non-throttled before actually blocking
2249 vm_pageout_adjust_eq_iothrottle(eq
, TRUE
);
2251 lck_mtx_lock(&vm_page_queue_free_lock
);
2253 if (vm_page_free_count
>= vm_page_free_target
&&
2254 (vm_page_free_wanted
== 0) && (vm_page_free_wanted_privileged
== 0)) {
2255 return VM_PAGEOUT_SCAN_DONE_RETURN
;
2257 lck_mtx_unlock(&vm_page_queue_free_lock
);
2259 if ((vm_page_free_count
+ vm_page_cleaned_count
) < vm_page_free_target
) {
2261 * we're most likely about to block due to one of
2262 * the 3 conditions that cause vm_pageout_scan to
2263 * not be able to make forward progress w/r
2264 * to providing new pages to the free queue,
2265 * so unthrottle the I/O threads in case we
2266 * have laundry to be cleaned... it needs
2267 * to be completed ASAP.
2269 * even if we don't block, we want the io threads
2270 * running unthrottled since the sum of free +
2271 * clean pages is still under our free target
2273 vm_pageout_adjust_eq_iothrottle(eq
, FALSE
);
2275 if (vm_page_cleaned_count
> 0 && exceeded_burst_throttle
== FALSE
) {
2277 * if we get here we're below our free target and
2278 * we're stalling due to a full laundry queue or
2279 * we don't have any inactive pages other then
2280 * those in the clean queue...
2281 * however, we have pages on the clean queue that
2282 * can be moved to the free queue, so let's not
2283 * stall the pageout scan
2285 flow_control
->state
= FCS_IDLE
;
2286 return VM_PAGEOUT_SCAN_PROCEED
;
2288 if (flow_control
->state
== FCS_DELAYED
&& !VM_PAGE_Q_THROTTLED(iq
)) {
2289 flow_control
->state
= FCS_IDLE
;
2290 return VM_PAGEOUT_SCAN_PROCEED
;
2293 VM_CHECK_MEMORYSTATUS
;
2295 if (flow_control
->state
!= FCS_IDLE
) {
2296 VM_PAGEOUT_DEBUG(vm_pageout_scan_throttle
, 1);
2299 iq
->pgo_throttled
= TRUE
;
2300 assert_wait_timeout((event_t
) &iq
->pgo_laundry
, THREAD_INTERRUPTIBLE
, msecs
, 1000 * NSEC_PER_USEC
);
2302 vm_page_unlock_queues();
2304 assert(vm_pageout_scan_wants_object
== VM_OBJECT_NULL
);
2306 VM_DEBUG_EVENT(vm_pageout_thread_block
, VM_PAGEOUT_THREAD_BLOCK
, DBG_FUNC_START
,
2307 iq
->pgo_laundry
, iq
->pgo_maxlaundry
, msecs
, 0);
2308 memoryshot(VM_PAGEOUT_THREAD_BLOCK
, DBG_FUNC_START
);
2310 thread_block(THREAD_CONTINUE_NULL
);
2312 VM_DEBUG_EVENT(vm_pageout_thread_block
, VM_PAGEOUT_THREAD_BLOCK
, DBG_FUNC_END
,
2313 iq
->pgo_laundry
, iq
->pgo_maxlaundry
, msecs
, 0);
2314 memoryshot(VM_PAGEOUT_THREAD_BLOCK
, DBG_FUNC_END
);
2316 vm_page_lock_queues();
2318 iq
->pgo_throttled
= FALSE
;
2320 vps_init_page_targets();
2322 return VM_PAGEOUT_SCAN_NEXT_ITERATION
;
2326 * This function is called only from vm_pageout_scan and
2327 * it will find and return the most appropriate page to be
2331 vps_choose_victim_page(vm_page_t
*victim_page
, int *anons_grabbed
, boolean_t
*grab_anonymous
, boolean_t force_anonymous
,
2332 boolean_t
*is_page_from_bg_q
, unsigned int *reactivated_this_call
)
2335 vm_object_t m_object
= VM_OBJECT_NULL
;
2336 uint32_t inactive_external_count
;
2337 struct vm_speculative_age_q
*sq
;
2338 struct vm_pageout_queue
*iq
;
2339 int retval
= VM_PAGEOUT_SCAN_PROCEED
;
2341 sq
= &vm_page_queue_speculative
[VM_PAGE_SPECULATIVE_AGED_Q
];
2342 iq
= &vm_pageout_queue_internal
;
2344 *is_page_from_bg_q
= FALSE
;
2347 m_object
= VM_OBJECT_NULL
;
2349 if (VM_DYNAMIC_PAGING_ENABLED()) {
2350 assert(vm_page_throttled_count
== 0);
2351 assert(vm_page_queue_empty(&vm_page_queue_throttled
));
2355 * Try for a clean-queue inactive page.
2356 * These are pages that vm_pageout_scan tried to steal earlier, but
2357 * were dirty and had to be cleaned. Pick them up now that they are clean.
2359 if (!vm_page_queue_empty(&vm_page_queue_cleaned
)) {
2360 m
= (vm_page_t
) vm_page_queue_first(&vm_page_queue_cleaned
);
2362 assert(m
->vmp_q_state
== VM_PAGE_ON_INACTIVE_CLEANED_Q
);
2368 * The next most eligible pages are ones we paged in speculatively,
2369 * but which have not yet been touched and have been aged out.
2371 if (!vm_page_queue_empty(&sq
->age_q
)) {
2372 m
= (vm_page_t
) vm_page_queue_first(&sq
->age_q
);
2374 assert(m
->vmp_q_state
== VM_PAGE_ON_SPECULATIVE_Q
);
2376 if (!m
->vmp_dirty
|| force_anonymous
== FALSE
) {
2383 #if CONFIG_BACKGROUND_QUEUE
2384 if (vm_page_background_mode
!= VM_PAGE_BG_DISABLED
&& (vm_page_background_count
> vm_page_background_target
)) {
2385 vm_object_t bg_m_object
= NULL
;
2387 m
= (vm_page_t
) vm_page_queue_first(&vm_page_queue_background
);
2389 bg_m_object
= VM_PAGE_OBJECT(m
);
2391 if (!VM_PAGE_PAGEABLE(m
)) {
2393 * This page is on the background queue
2394 * but not on a pageable queue. This is
2395 * likely a transient state and whoever
2396 * took it out of its pageable queue
2397 * will likely put it back on a pageable
2398 * queue soon but we can't deal with it
2399 * at this point, so let's ignore this
2402 } else if (force_anonymous
== FALSE
|| bg_m_object
->internal
) {
2403 if (bg_m_object
->internal
&&
2404 (VM_PAGE_Q_THROTTLED(iq
) ||
2405 vm_compressor_out_of_space() == TRUE
||
2406 vm_page_free_count
< (vm_page_free_reserved
/ 4))) {
2407 vm_pageout_skipped_bq_internal
++;
2409 *is_page_from_bg_q
= TRUE
;
2411 if (bg_m_object
->internal
) {
2412 vm_pageout_vminfo
.vm_pageout_considered_bq_internal
++;
2414 vm_pageout_vminfo
.vm_pageout_considered_bq_external
++;
2420 #endif /* CONFIG_BACKGROUND_QUEUE */
2422 inactive_external_count
= vm_page_inactive_count
- vm_page_anonymous_count
;
2424 if ((vm_page_pageable_external_count
< vm_pageout_state
.vm_page_filecache_min
|| force_anonymous
== TRUE
) ||
2425 (inactive_external_count
< VM_PAGE_INACTIVE_TARGET(vm_page_pageable_external_count
))) {
2426 *grab_anonymous
= TRUE
;
2429 vm_pageout_vminfo
.vm_pageout_skipped_external
++;
2430 goto want_anonymous
;
2432 *grab_anonymous
= (vm_page_anonymous_count
> vm_page_anonymous_min
);
2435 /* If the file-backed pool has accumulated
2436 * significantly more pages than the jetsam
2437 * threshold, prefer to reclaim those
2438 * inline to minimise compute overhead of reclaiming
2440 * This calculation does not account for the CPU local
2441 * external page queues, as those are expected to be
2442 * much smaller relative to the global pools.
2445 struct vm_pageout_queue
*eq
= &vm_pageout_queue_external
;
2447 if (*grab_anonymous
== TRUE
&& !VM_PAGE_Q_THROTTLED(eq
)) {
2448 if (vm_page_pageable_external_count
>
2449 vm_pageout_state
.vm_page_filecache_min
) {
2450 if ((vm_page_pageable_external_count
*
2451 vm_pageout_memorystatus_fb_factor_dr
) >
2452 (memorystatus_available_pages_critical
*
2453 vm_pageout_memorystatus_fb_factor_nr
)) {
2454 *grab_anonymous
= FALSE
;
2456 VM_PAGEOUT_DEBUG(vm_grab_anon_overrides
, 1);
2459 if (*grab_anonymous
) {
2460 VM_PAGEOUT_DEBUG(vm_grab_anon_nops
, 1);
2463 #endif /* CONFIG_JETSAM */
2466 if (*grab_anonymous
== FALSE
|| *anons_grabbed
>= ANONS_GRABBED_LIMIT
|| vm_page_queue_empty(&vm_page_queue_anonymous
)) {
2467 if (!vm_page_queue_empty(&vm_page_queue_inactive
)) {
2468 m
= (vm_page_t
) vm_page_queue_first(&vm_page_queue_inactive
);
2470 assert(m
->vmp_q_state
== VM_PAGE_ON_INACTIVE_EXTERNAL_Q
);
2473 if (vm_page_pageable_external_count
< vm_pageout_state
.vm_page_filecache_min
) {
2474 if (!vm_page_queue_empty(&vm_page_queue_anonymous
)) {
2475 if ((++(*reactivated_this_call
) % 100)) {
2476 vm_pageout_vminfo
.vm_pageout_filecache_min_reactivated
++;
2478 vm_page_activate(m
);
2479 counter_inc(&vm_statistics_reactivations
);
2480 #if CONFIG_BACKGROUND_QUEUE
2481 #if DEVELOPMENT || DEBUG
2482 if (*is_page_from_bg_q
== TRUE
) {
2483 if (m_object
->internal
) {
2484 vm_pageout_rejected_bq_internal
++;
2486 vm_pageout_rejected_bq_external
++;
2489 #endif /* DEVELOPMENT || DEBUG */
2490 #endif /* CONFIG_BACKGROUND_QUEUE */
2491 vm_pageout_state
.vm_pageout_inactive_used
++;
2494 retval
= VM_PAGEOUT_SCAN_NEXT_ITERATION
;
2500 * steal 1 of the file backed pages even if
2501 * we are under the limit that has been set
2502 * for a healthy filecache
2509 if (!vm_page_queue_empty(&vm_page_queue_anonymous
)) {
2510 m
= (vm_page_t
) vm_page_queue_first(&vm_page_queue_anonymous
);
2512 assert(m
->vmp_q_state
== VM_PAGE_ON_INACTIVE_INTERNAL_Q
);
2513 *anons_grabbed
+= 1;
2527 * This function is called only from vm_pageout_scan and
2528 * it will put a page back on the active/inactive queue
2529 * if we can't reclaim it for some reason.
2532 vps_requeue_page(vm_page_t m
, int page_prev_q_state
, __unused boolean_t page_from_bg_q
)
2534 if (page_prev_q_state
== VM_PAGE_ON_SPECULATIVE_Q
) {
2535 vm_page_enqueue_inactive(m
, FALSE
);
2537 vm_page_activate(m
);
2540 #if CONFIG_BACKGROUND_QUEUE
2541 #if DEVELOPMENT || DEBUG
2542 vm_object_t m_object
= VM_PAGE_OBJECT(m
);
2544 if (page_from_bg_q
== TRUE
) {
2545 if (m_object
->internal
) {
2546 vm_pageout_rejected_bq_internal
++;
2548 vm_pageout_rejected_bq_external
++;
2551 #endif /* DEVELOPMENT || DEBUG */
2552 #endif /* CONFIG_BACKGROUND_QUEUE */
2556 * This function is called only from vm_pageout_scan and
2557 * it will try to grab the victim page's VM object (m_object)
2558 * which differs from the previous victim page's object (object).
2561 vps_switch_object(vm_page_t m
, vm_object_t m_object
, vm_object_t
*object
, int page_prev_q_state
, boolean_t avoid_anon_pages
, boolean_t page_from_bg_q
)
2563 struct vm_speculative_age_q
*sq
;
2565 sq
= &vm_page_queue_speculative
[VM_PAGE_SPECULATIVE_AGED_Q
];
2568 * the object associated with candidate page is
2569 * different from the one we were just working
2570 * with... dump the lock if we still own it
2572 if (*object
!= NULL
) {
2573 vm_object_unlock(*object
);
2577 * Try to lock object; since we've alread got the
2578 * page queues lock, we can only 'try' for this one.
2579 * if the 'try' fails, we need to do a mutex_pause
2580 * to allow the owner of the object lock a chance to
2581 * run... otherwise, we're likely to trip over this
2582 * object in the same state as we work our way through
2583 * the queue... clumps of pages associated with the same
2584 * object are fairly typical on the inactive and active queues
2586 if (!vm_object_lock_try_scan(m_object
)) {
2587 vm_page_t m_want
= NULL
;
2589 vm_pageout_vminfo
.vm_pageout_inactive_nolock
++;
2591 if (page_prev_q_state
== VM_PAGE_ON_INACTIVE_CLEANED_Q
) {
2592 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_nolock
, 1);
2595 pmap_clear_reference(VM_PAGE_GET_PHYS_PAGE(m
));
2597 m
->vmp_reference
= FALSE
;
2599 if (!m_object
->object_is_shared_cache
) {
2601 * don't apply this optimization if this is the shared cache
2602 * object, it's too easy to get rid of very hot and important
2604 * m->vmp_object must be stable since we hold the page queues lock...
2605 * we can update the scan_collisions field sans the object lock
2606 * since it is a separate field and this is the only spot that does
2607 * a read-modify-write operation and it is never executed concurrently...
2608 * we can asynchronously set this field to 0 when creating a UPL, so it
2609 * is possible for the value to be a bit non-determistic, but that's ok
2610 * since it's only used as a hint
2612 m_object
->scan_collisions
= 1;
2614 if (!vm_page_queue_empty(&vm_page_queue_cleaned
)) {
2615 m_want
= (vm_page_t
) vm_page_queue_first(&vm_page_queue_cleaned
);
2616 } else if (!vm_page_queue_empty(&sq
->age_q
)) {
2617 m_want
= (vm_page_t
) vm_page_queue_first(&sq
->age_q
);
2618 } else if ((avoid_anon_pages
|| vm_page_queue_empty(&vm_page_queue_anonymous
)) &&
2619 !vm_page_queue_empty(&vm_page_queue_inactive
)) {
2620 m_want
= (vm_page_t
) vm_page_queue_first(&vm_page_queue_inactive
);
2621 } else if (!vm_page_queue_empty(&vm_page_queue_anonymous
)) {
2622 m_want
= (vm_page_t
) vm_page_queue_first(&vm_page_queue_anonymous
);
2626 * this is the next object we're going to be interested in
2627 * try to make sure its available after the mutex_pause
2631 vm_pageout_scan_wants_object
= VM_PAGE_OBJECT(m_want
);
2634 vps_requeue_page(m
, page_prev_q_state
, page_from_bg_q
);
2636 return VM_PAGEOUT_SCAN_NEXT_ITERATION
;
2639 vm_pageout_scan_wants_object
= VM_OBJECT_NULL
;
2642 return VM_PAGEOUT_SCAN_PROCEED
;
2646 * This function is called only from vm_pageout_scan and
2647 * it notices that pageout scan may be rendered ineffective
2648 * due to a FS deadlock and will jetsam a process if possible.
2649 * If jetsam isn't supported, it'll move the page to the active
2650 * queue to try and get some different pages pushed onwards so
2651 * we can try to get out of this scenario.
2654 vps_deal_with_throttled_queues(vm_page_t m
, vm_object_t
*object
, uint32_t *vm_pageout_inactive_external_forced_reactivate_limit
,
2655 int *delayed_unlock
, boolean_t
*force_anonymous
, __unused boolean_t is_page_from_bg_q
)
2657 struct vm_pageout_queue
*eq
;
2658 vm_object_t cur_object
= VM_OBJECT_NULL
;
2660 cur_object
= *object
;
2662 eq
= &vm_pageout_queue_external
;
2664 if (cur_object
->internal
== FALSE
) {
2666 * we need to break up the following potential deadlock case...
2667 * a) The external pageout thread is stuck on the truncate lock for a file that is being extended i.e. written.
2668 * b) The thread doing the writing is waiting for pages while holding the truncate lock
2669 * c) Most of the pages in the inactive queue belong to this file.
2671 * we are potentially in this deadlock because...
2672 * a) the external pageout queue is throttled
2673 * b) we're done with the active queue and moved on to the inactive queue
2674 * c) we've got a dirty external page
2676 * since we don't know the reason for the external pageout queue being throttled we
2677 * must suspect that we are deadlocked, so move the current page onto the active queue
2678 * in an effort to cause a page from the active queue to 'age' to the inactive queue
2680 * if we don't have jetsam configured (i.e. we have a dynamic pager), set
2681 * 'force_anonymous' to TRUE to cause us to grab a page from the cleaned/anonymous
2682 * pool the next time we select a victim page... if we can make enough new free pages,
2683 * the deadlock will break, the external pageout queue will empty and it will no longer
2686 * if we have jetsam configured, keep a count of the pages reactivated this way so
2687 * that we can try to find clean pages in the active/inactive queues before
2688 * deciding to jetsam a process
2690 vm_pageout_vminfo
.vm_pageout_scan_inactive_throttled_external
++;
2692 vm_page_check_pageable_safe(m
);
2693 assert(m
->vmp_q_state
== VM_PAGE_NOT_ON_Q
);
2694 vm_page_queue_enter(&vm_page_queue_active
, m
, vmp_pageq
);
2695 m
->vmp_q_state
= VM_PAGE_ON_ACTIVE_Q
;
2696 vm_page_active_count
++;
2697 vm_page_pageable_external_count
++;
2699 vm_pageout_adjust_eq_iothrottle(eq
, FALSE
);
2701 #if CONFIG_MEMORYSTATUS && CONFIG_JETSAM
2703 #pragma unused(force_anonymous)
2705 *vm_pageout_inactive_external_forced_reactivate_limit
-= 1;
2707 if (*vm_pageout_inactive_external_forced_reactivate_limit
<= 0) {
2708 *vm_pageout_inactive_external_forced_reactivate_limit
= vm_page_active_count
+ vm_page_inactive_count
;
2710 * Possible deadlock scenario so request jetsam action
2714 vm_object_unlock(cur_object
);
2716 cur_object
= VM_OBJECT_NULL
;
2719 * VM pageout scan needs to know we have dropped this lock and so set the
2720 * object variable we got passed in to NULL.
2722 *object
= VM_OBJECT_NULL
;
2724 vm_page_unlock_queues();
2726 VM_DEBUG_CONSTANT_EVENT(vm_pageout_jetsam
, VM_PAGEOUT_JETSAM
, DBG_FUNC_START
,
2727 vm_page_active_count
, vm_page_inactive_count
, vm_page_free_count
, vm_page_free_count
);
2729 /* Kill first suitable process. If this call returned FALSE, we might have simply purged a process instead. */
2730 if (memorystatus_kill_on_VM_page_shortage(FALSE
) == TRUE
) {
2731 VM_PAGEOUT_DEBUG(vm_pageout_inactive_external_forced_jetsam_count
, 1);
2734 VM_DEBUG_CONSTANT_EVENT(vm_pageout_jetsam
, VM_PAGEOUT_JETSAM
, DBG_FUNC_END
,
2735 vm_page_active_count
, vm_page_inactive_count
, vm_page_free_count
, vm_page_free_count
);
2737 vm_page_lock_queues();
2738 *delayed_unlock
= 1;
2740 #else /* CONFIG_MEMORYSTATUS && CONFIG_JETSAM */
2742 #pragma unused(vm_pageout_inactive_external_forced_reactivate_limit)
2743 #pragma unused(delayed_unlock)
2745 *force_anonymous
= TRUE
;
2746 #endif /* CONFIG_MEMORYSTATUS && CONFIG_JETSAM */
2748 vm_page_activate(m
);
2749 counter_inc(&vm_statistics_reactivations
);
2751 #if CONFIG_BACKGROUND_QUEUE
2752 #if DEVELOPMENT || DEBUG
2753 if (is_page_from_bg_q
== TRUE
) {
2754 if (cur_object
->internal
) {
2755 vm_pageout_rejected_bq_internal
++;
2757 vm_pageout_rejected_bq_external
++;
2760 #endif /* DEVELOPMENT || DEBUG */
2761 #endif /* CONFIG_BACKGROUND_QUEUE */
2763 vm_pageout_state
.vm_pageout_inactive_used
++;
2769 vm_page_balance_inactive(int max_to_move
)
2773 LCK_MTX_ASSERT(&vm_page_queue_lock
, LCK_MTX_ASSERT_OWNED
);
2775 if (hibernation_vmqueues_inspection
|| hibernate_cleaning_in_progress
) {
2777 * It is likely that the hibernation code path is
2778 * dealing with these very queues as we are about
2779 * to move pages around in/from them and completely
2780 * change the linkage of the pages.
2782 * And so we skip the rebalancing of these queues.
2786 vm_page_inactive_target
= VM_PAGE_INACTIVE_TARGET(vm_page_active_count
+
2787 vm_page_inactive_count
+
2788 vm_page_speculative_count
);
2790 while (max_to_move
-- && (vm_page_inactive_count
+ vm_page_speculative_count
) < vm_page_inactive_target
) {
2791 VM_PAGEOUT_DEBUG(vm_pageout_balanced
, 1);
2793 m
= (vm_page_t
) vm_page_queue_first(&vm_page_queue_active
);
2795 assert(m
->vmp_q_state
== VM_PAGE_ON_ACTIVE_Q
);
2796 assert(!m
->vmp_laundry
);
2797 assert(VM_PAGE_OBJECT(m
) != kernel_object
);
2798 assert(VM_PAGE_GET_PHYS_PAGE(m
) != vm_page_guard_addr
);
2800 DTRACE_VM2(scan
, int, 1, (uint64_t *), NULL
);
2803 * by not passing in a pmap_flush_context we will forgo any TLB flushing, local or otherwise...
2805 * a TLB flush isn't really needed here since at worst we'll miss the reference bit being
2806 * updated in the PTE if a remote processor still has this mapping cached in its TLB when the
2807 * new reference happens. If no futher references happen on the page after that remote TLB flushes
2808 * we'll see a clean, non-referenced page when it eventually gets pulled out of the inactive queue
2809 * by pageout_scan, which is just fine since the last reference would have happened quite far
2810 * in the past (TLB caches don't hang around for very long), and of course could just as easily
2811 * have happened before we moved the page
2813 if (m
->vmp_pmapped
== TRUE
) {
2814 pmap_clear_refmod_options(VM_PAGE_GET_PHYS_PAGE(m
), VM_MEM_REFERENCED
, PMAP_OPTIONS_NOFLUSH
, (void *)NULL
);
2818 * The page might be absent or busy,
2819 * but vm_page_deactivate can handle that.
2820 * FALSE indicates that we don't want a H/W clear reference
2822 vm_page_deactivate_internal(m
, FALSE
);
2828 * vm_pageout_scan does the dirty work for the pageout daemon.
2829 * It returns with both vm_page_queue_free_lock and vm_page_queue_lock
2830 * held and vm_page_free_wanted == 0.
2833 vm_pageout_scan(void)
2835 unsigned int loop_count
= 0;
2836 unsigned int inactive_burst_count
= 0;
2837 unsigned int reactivated_this_call
;
2838 unsigned int reactivate_limit
;
2839 vm_page_t local_freeq
= NULL
;
2840 int local_freed
= 0;
2842 int delayed_unlock_limit
= 0;
2843 int refmod_state
= 0;
2844 int vm_pageout_deadlock_target
= 0;
2845 struct vm_pageout_queue
*iq
;
2846 struct vm_pageout_queue
*eq
;
2847 struct vm_speculative_age_q
*sq
;
2848 struct flow_control flow_control
= { .state
= 0, .ts
= { .tv_sec
= 0, .tv_nsec
= 0 } };
2849 boolean_t inactive_throttled
= FALSE
;
2850 vm_object_t object
= NULL
;
2851 uint32_t inactive_reclaim_run
;
2852 boolean_t grab_anonymous
= FALSE
;
2853 boolean_t force_anonymous
= FALSE
;
2854 boolean_t force_speculative_aging
= FALSE
;
2855 int anons_grabbed
= 0;
2856 int page_prev_q_state
= 0;
2857 boolean_t page_from_bg_q
= FALSE
;
2858 uint32_t vm_pageout_inactive_external_forced_reactivate_limit
= 0;
2859 vm_object_t m_object
= VM_OBJECT_NULL
;
2861 boolean_t lock_yield_check
= FALSE
;
2864 VM_DEBUG_CONSTANT_EVENT(vm_pageout_scan
, VM_PAGEOUT_SCAN
, DBG_FUNC_START
,
2865 vm_pageout_vminfo
.vm_pageout_freed_speculative
,
2866 vm_pageout_state
.vm_pageout_inactive_clean
,
2867 vm_pageout_vminfo
.vm_pageout_inactive_dirty_internal
,
2868 vm_pageout_vminfo
.vm_pageout_inactive_dirty_external
);
2870 flow_control
.state
= FCS_IDLE
;
2871 iq
= &vm_pageout_queue_internal
;
2872 eq
= &vm_pageout_queue_external
;
2873 sq
= &vm_page_queue_speculative
[VM_PAGE_SPECULATIVE_AGED_Q
];
2875 /* Ask the pmap layer to return any pages it no longer needs. */
2876 uint64_t pmap_wired_pages_freed
= pmap_release_pages_fast();
2878 vm_page_lock_queues();
2880 vm_page_wire_count
-= pmap_wired_pages_freed
;
2885 * Calculate the max number of referenced pages on the inactive
2886 * queue that we will reactivate.
2888 reactivated_this_call
= 0;
2889 reactivate_limit
= VM_PAGE_REACTIVATE_LIMIT(vm_page_active_count
+
2890 vm_page_inactive_count
);
2891 inactive_reclaim_run
= 0;
2893 vm_pageout_inactive_external_forced_reactivate_limit
= vm_page_active_count
+ vm_page_inactive_count
;
2896 * We must limit the rate at which we send pages to the pagers
2897 * so that we don't tie up too many pages in the I/O queues.
2898 * We implement a throttling mechanism using the laundry count
2899 * to limit the number of pages outstanding to the default
2900 * and external pagers. We can bypass the throttles and look
2901 * for clean pages if the pageout queues don't drain in a timely
2902 * fashion since this may indicate that the pageout paths are
2903 * stalled waiting for memory, which only we can provide.
2906 vps_init_page_targets();
2907 assert(object
== NULL
);
2908 assert(delayed_unlock
!= 0);
2913 DTRACE_VM2(rev
, int, 1, (uint64_t *), NULL
);
2915 if (lock_yield_check
) {
2916 lock_yield_check
= FALSE
;
2918 if (delayed_unlock
++ > delayed_unlock_limit
) {
2919 int freed
= local_freed
;
2921 vm_pageout_prepare_to_block(&object
, &delayed_unlock
, &local_freeq
, &local_freed
,
2922 VM_PAGEOUT_PB_CONSIDER_WAKING_COMPACTOR_SWAPPER
);
2924 lck_mtx_yield(&vm_page_queue_lock
);
2926 } else if (vm_pageout_scan_wants_object
) {
2927 vm_page_unlock_queues();
2929 vm_page_lock_queues();
2933 if (vm_upl_wait_for_pages
< 0) {
2934 vm_upl_wait_for_pages
= 0;
2937 delayed_unlock_limit
= VM_PAGEOUT_DELAYED_UNLOCK_LIMIT
+ vm_upl_wait_for_pages
;
2939 if (delayed_unlock_limit
> VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX
) {
2940 delayed_unlock_limit
= VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX
;
2943 vps_deal_with_secluded_page_overflow(&local_freeq
, &local_freed
);
2945 assert(delayed_unlock
);
2948 * maintain our balance
2950 vm_page_balance_inactive(1);
2953 /**********************************************************************
2954 * above this point we're playing with the active and secluded queues
2955 * below this point we're playing with the throttling mechanisms
2956 * and the inactive queue
2957 **********************************************************************/
2959 if (vm_page_free_count
+ local_freed
>= vm_page_free_target
) {
2960 vm_pageout_scan_wants_object
= VM_OBJECT_NULL
;
2962 vm_pageout_prepare_to_block(&object
, &delayed_unlock
, &local_freeq
, &local_freed
,
2963 VM_PAGEOUT_PB_CONSIDER_WAKING_COMPACTOR_SWAPPER
);
2965 * make sure the pageout I/O threads are running
2966 * throttled in case there are still requests
2967 * in the laundry... since we have met our targets
2968 * we don't need the laundry to be cleaned in a timely
2969 * fashion... so let's avoid interfering with foreground
2972 vm_pageout_adjust_eq_iothrottle(eq
, TRUE
);
2974 lck_mtx_lock(&vm_page_queue_free_lock
);
2976 if ((vm_page_free_count
>= vm_page_free_target
) &&
2977 (vm_page_free_wanted
== 0) && (vm_page_free_wanted_privileged
== 0)) {
2979 * done - we have met our target *and*
2980 * there is no one waiting for a page.
2983 assert(vm_pageout_scan_wants_object
== VM_OBJECT_NULL
);
2985 VM_DEBUG_CONSTANT_EVENT(vm_pageout_scan
, VM_PAGEOUT_SCAN
, DBG_FUNC_NONE
,
2986 vm_pageout_state
.vm_pageout_inactive
,
2987 vm_pageout_state
.vm_pageout_inactive_used
, 0, 0);
2988 VM_DEBUG_CONSTANT_EVENT(vm_pageout_scan
, VM_PAGEOUT_SCAN
, DBG_FUNC_END
,
2989 vm_pageout_vminfo
.vm_pageout_freed_speculative
,
2990 vm_pageout_state
.vm_pageout_inactive_clean
,
2991 vm_pageout_vminfo
.vm_pageout_inactive_dirty_internal
,
2992 vm_pageout_vminfo
.vm_pageout_inactive_dirty_external
);
2996 lck_mtx_unlock(&vm_page_queue_free_lock
);
3000 * Before anything, we check if we have any ripe volatile
3001 * objects around. If so, try to purge the first object.
3002 * If the purge fails, fall through to reclaim a page instead.
3003 * If the purge succeeds, go back to the top and reevalute
3004 * the new memory situation.
3006 retval
= vps_purge_object();
3008 if (retval
== VM_PAGEOUT_SCAN_NEXT_ITERATION
) {
3012 if (object
!= NULL
) {
3013 vm_object_unlock(object
);
3017 lock_yield_check
= FALSE
;
3022 * If our 'aged' queue is empty and we have some speculative pages
3023 * in the other queues, let's go through and see if we need to age
3026 * If we succeeded in aging a speculative Q or just that everything
3027 * looks normal w.r.t queue age and queue counts, we keep going onward.
3029 * If, for some reason, we seem to have a mismatch between the spec.
3030 * page count and the page queues, we reset those variables and
3031 * restart the loop (LD TODO: Track this better?).
3033 if (vm_page_queue_empty(&sq
->age_q
) && vm_page_speculative_count
) {
3034 retval
= vps_age_speculative_queue(force_speculative_aging
);
3036 if (retval
== VM_PAGEOUT_SCAN_NEXT_ITERATION
) {
3037 lock_yield_check
= FALSE
;
3041 force_speculative_aging
= FALSE
;
3044 * Check to see if we need to evict objects from the cache.
3046 * Note: 'object' here doesn't have anything to do with
3047 * the eviction part. We just need to make sure we have dropped
3048 * any object lock we might be holding if we need to go down
3049 * into the eviction logic.
3051 retval
= vps_object_cache_evict(&object
);
3053 if (retval
== VM_PAGEOUT_SCAN_NEXT_ITERATION
) {
3054 lock_yield_check
= FALSE
;
3060 * Calculate our filecache_min that will affect the loop
3063 vps_calculate_filecache_min();
3066 * LD TODO: Use a structure to hold all state variables for a single
3067 * vm_pageout_scan iteration and pass that structure to this function instead.
3069 retval
= vps_flow_control(&flow_control
, &anons_grabbed
, &object
,
3070 &delayed_unlock
, &local_freeq
, &local_freed
,
3071 &vm_pageout_deadlock_target
, inactive_burst_count
);
3073 if (retval
== VM_PAGEOUT_SCAN_NEXT_ITERATION
) {
3074 if (loop_count
>= vm_page_inactive_count
) {
3078 inactive_burst_count
= 0;
3080 assert(object
== NULL
);
3081 assert(delayed_unlock
!= 0);
3083 lock_yield_check
= FALSE
;
3085 } else if (retval
== VM_PAGEOUT_SCAN_DONE_RETURN
) {
3086 goto return_from_scan
;
3089 flow_control
.state
= FCS_IDLE
;
3091 vm_pageout_inactive_external_forced_reactivate_limit
= MIN((vm_page_active_count
+ vm_page_inactive_count
),
3092 vm_pageout_inactive_external_forced_reactivate_limit
);
3094 inactive_burst_count
++;
3095 vm_pageout_state
.vm_pageout_inactive
++;
3102 retval
= vps_choose_victim_page(&m
, &anons_grabbed
, &grab_anonymous
, force_anonymous
, &page_from_bg_q
, &reactivated_this_call
);
3105 if (retval
== VM_PAGEOUT_SCAN_NEXT_ITERATION
) {
3106 inactive_burst_count
= 0;
3108 if (page_prev_q_state
== VM_PAGE_ON_INACTIVE_CLEANED_Q
) {
3109 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated
, 1);
3112 lock_yield_check
= TRUE
;
3117 * if we've gotten here, we have no victim page.
3118 * check to see if we've not finished balancing the queues
3119 * or we have a page on the aged speculative queue that we
3120 * skipped due to force_anonymous == TRUE.. or we have
3121 * speculative pages that we can prematurely age... if
3122 * one of these cases we'll keep going, else panic
3124 force_anonymous
= FALSE
;
3125 VM_PAGEOUT_DEBUG(vm_pageout_no_victim
, 1);
3127 if (!vm_page_queue_empty(&sq
->age_q
)) {
3128 lock_yield_check
= TRUE
;
3132 if (vm_page_speculative_count
) {
3133 force_speculative_aging
= TRUE
;
3134 lock_yield_check
= TRUE
;
3137 panic("vm_pageout: no victim");
3142 assert(VM_PAGE_PAGEABLE(m
));
3143 m_object
= VM_PAGE_OBJECT(m
);
3144 force_anonymous
= FALSE
;
3146 page_prev_q_state
= m
->vmp_q_state
;
3148 * we just found this page on one of our queues...
3149 * it can't also be on the pageout queue, so safe
3150 * to call vm_page_queues_remove
3152 vm_page_queues_remove(m
, TRUE
);
3154 assert(!m
->vmp_laundry
);
3155 assert(!m
->vmp_private
);
3156 assert(!m
->vmp_fictitious
);
3157 assert(m_object
!= kernel_object
);
3158 assert(VM_PAGE_GET_PHYS_PAGE(m
) != vm_page_guard_addr
);
3160 vm_pageout_vminfo
.vm_pageout_considered_page
++;
3162 DTRACE_VM2(scan
, int, 1, (uint64_t *), NULL
);
3165 * check to see if we currently are working
3166 * with the same object... if so, we've
3167 * already got the lock
3169 if (m_object
!= object
) {
3170 boolean_t avoid_anon_pages
= (grab_anonymous
== FALSE
|| anons_grabbed
>= ANONS_GRABBED_LIMIT
);
3173 * vps_switch_object() will always drop the 'object' lock first
3174 * and then try to acquire the 'm_object' lock. So 'object' has to point to
3175 * either 'm_object' or NULL.
3177 retval
= vps_switch_object(m
, m_object
, &object
, page_prev_q_state
, avoid_anon_pages
, page_from_bg_q
);
3179 if (retval
== VM_PAGEOUT_SCAN_NEXT_ITERATION
) {
3180 lock_yield_check
= TRUE
;
3184 assert(m_object
== object
);
3185 assert(VM_PAGE_OBJECT(m
) == m_object
);
3189 * Somebody is already playing with this page.
3190 * Put it back on the appropriate queue
3193 VM_PAGEOUT_DEBUG(vm_pageout_inactive_busy
, 1);
3195 if (page_prev_q_state
== VM_PAGE_ON_INACTIVE_CLEANED_Q
) {
3196 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_busy
, 1);
3199 vps_requeue_page(m
, page_prev_q_state
, page_from_bg_q
);
3201 lock_yield_check
= TRUE
;
3206 * if (m->vmp_cleaning && !m->vmp_free_when_done)
3207 * If already cleaning this page in place
3208 * just leave if off the paging queues.
3209 * We can leave the page mapped, and upl_commit_range
3210 * will put it on the clean queue.
3212 * if (m->vmp_free_when_done && !m->vmp_cleaning)
3213 * an msync INVALIDATE is in progress...
3214 * this page has been marked for destruction
3215 * after it has been cleaned,
3216 * but not yet gathered into a UPL
3217 * where 'cleaning' will be set...
3218 * just leave it off the paging queues
3220 * if (m->vmp_free_when_done && m->vmp_clenaing)
3221 * an msync INVALIDATE is in progress
3222 * and the UPL has already gathered this page...
3223 * just leave it off the paging queues
3225 if (m
->vmp_free_when_done
|| m
->vmp_cleaning
) {
3226 lock_yield_check
= TRUE
;
3232 * If it's absent, in error or the object is no longer alive,
3233 * we can reclaim the page... in the no longer alive case,
3234 * there are 2 states the page can be in that preclude us
3235 * from reclaiming it - busy or cleaning - that we've already
3238 if (m
->vmp_absent
|| m
->vmp_error
|| !object
->alive
) {
3239 if (m
->vmp_absent
) {
3240 VM_PAGEOUT_DEBUG(vm_pageout_inactive_absent
, 1);
3241 } else if (!object
->alive
) {
3242 VM_PAGEOUT_DEBUG(vm_pageout_inactive_notalive
, 1);
3244 VM_PAGEOUT_DEBUG(vm_pageout_inactive_error
, 1);
3247 if (vm_pageout_deadlock_target
) {
3248 VM_PAGEOUT_DEBUG(vm_pageout_scan_inactive_throttle_success
, 1);
3249 vm_pageout_deadlock_target
--;
3252 DTRACE_VM2(dfree
, int, 1, (uint64_t *), NULL
);
3254 if (object
->internal
) {
3255 DTRACE_VM2(anonfree
, int, 1, (uint64_t *), NULL
);
3257 DTRACE_VM2(fsfree
, int, 1, (uint64_t *), NULL
);
3259 assert(!m
->vmp_cleaning
);
3260 assert(!m
->vmp_laundry
);
3262 if (!object
->internal
&&
3263 object
->pager
!= NULL
&&
3264 object
->pager
->mo_pager_ops
== &shared_region_pager_ops
) {
3265 shared_region_pager_reclaimed
++;
3271 * remove page from object here since we're already
3272 * behind the object lock... defer the rest of the work
3273 * we'd normally do in vm_page_free_prepare_object
3274 * until 'vm_page_free_list' is called
3276 if (m
->vmp_tabled
) {
3277 vm_page_remove(m
, TRUE
);
3280 assert(m
->vmp_pageq
.next
== 0 && m
->vmp_pageq
.prev
== 0);
3281 m
->vmp_snext
= local_freeq
;
3285 if (page_prev_q_state
== VM_PAGE_ON_SPECULATIVE_Q
) {
3286 vm_pageout_vminfo
.vm_pageout_freed_speculative
++;
3287 } else if (page_prev_q_state
== VM_PAGE_ON_INACTIVE_CLEANED_Q
) {
3288 vm_pageout_vminfo
.vm_pageout_freed_cleaned
++;
3289 } else if (page_prev_q_state
== VM_PAGE_ON_INACTIVE_INTERNAL_Q
) {
3290 vm_pageout_vminfo
.vm_pageout_freed_internal
++;
3292 vm_pageout_vminfo
.vm_pageout_freed_external
++;
3295 inactive_burst_count
= 0;
3297 lock_yield_check
= TRUE
;
3300 if (object
->copy
== VM_OBJECT_NULL
) {
3302 * No one else can have any interest in this page.
3303 * If this is an empty purgable object, the page can be
3304 * reclaimed even if dirty.
3305 * If the page belongs to a volatile purgable object, we
3306 * reactivate it if the compressor isn't active.
3308 if (object
->purgable
== VM_PURGABLE_EMPTY
) {
3309 if (m
->vmp_pmapped
== TRUE
) {
3310 /* unmap the page */
3311 refmod_state
= pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m
));
3312 if (refmod_state
& VM_MEM_MODIFIED
) {
3313 SET_PAGE_DIRTY(m
, FALSE
);
3316 if (m
->vmp_dirty
|| m
->vmp_precious
) {
3317 /* we saved the cost of cleaning this page ! */
3318 vm_page_purged_count
++;
3323 if (VM_CONFIG_COMPRESSOR_IS_ACTIVE
) {
3325 * With the VM compressor, the cost of
3326 * reclaiming a page is much lower (no I/O),
3327 * so if we find a "volatile" page, it's better
3328 * to let it get compressed rather than letting
3329 * it occupy a full page until it gets purged.
3330 * So no need to check for "volatile" here.
3332 } else if (object
->purgable
== VM_PURGABLE_VOLATILE
) {
3334 * Avoid cleaning a "volatile" page which might
3338 /* if it's wired, we can't put it on our queue */
3339 assert(!VM_PAGE_WIRED(m
));
3341 /* just stick it back on! */
3342 reactivated_this_call
++;
3344 if (page_prev_q_state
== VM_PAGE_ON_INACTIVE_CLEANED_Q
) {
3345 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_volatile_reactivated
, 1);
3348 goto reactivate_page
;
3352 * If it's being used, reactivate.
3353 * (Fictitious pages are either busy or absent.)
3354 * First, update the reference and dirty bits
3355 * to make sure the page is unreferenced.
3359 if (m
->vmp_reference
== FALSE
&& m
->vmp_pmapped
== TRUE
) {
3360 refmod_state
= pmap_get_refmod(VM_PAGE_GET_PHYS_PAGE(m
));
3362 if (refmod_state
& VM_MEM_REFERENCED
) {
3363 m
->vmp_reference
= TRUE
;
3365 if (refmod_state
& VM_MEM_MODIFIED
) {
3366 SET_PAGE_DIRTY(m
, FALSE
);
3370 if (m
->vmp_reference
|| m
->vmp_dirty
) {
3371 /* deal with a rogue "reusable" page */
3372 VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m
, m_object
);
3375 if (vm_pageout_state
.vm_page_xpmapped_min_divisor
== 0) {
3376 vm_pageout_state
.vm_page_xpmapped_min
= 0;
3378 vm_pageout_state
.vm_page_xpmapped_min
= (vm_page_external_count
* 10) / vm_pageout_state
.vm_page_xpmapped_min_divisor
;
3381 if (!m
->vmp_no_cache
&&
3382 page_from_bg_q
== FALSE
&&
3383 (m
->vmp_reference
|| (m
->vmp_xpmapped
&& !object
->internal
&&
3384 (vm_page_xpmapped_external_count
< vm_pageout_state
.vm_page_xpmapped_min
)))) {
3386 * The page we pulled off the inactive list has
3387 * been referenced. It is possible for other
3388 * processors to be touching pages faster than we
3389 * can clear the referenced bit and traverse the
3390 * inactive queue, so we limit the number of
3393 if (++reactivated_this_call
>= reactivate_limit
) {
3394 vm_pageout_vminfo
.vm_pageout_reactivation_limit_exceeded
++;
3395 } else if (++inactive_reclaim_run
>= VM_PAGEOUT_INACTIVE_FORCE_RECLAIM
) {
3396 vm_pageout_vminfo
.vm_pageout_inactive_force_reclaim
++;
3400 if (page_prev_q_state
== VM_PAGE_ON_INACTIVE_CLEANED_Q
) {
3401 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reference_reactivated
, 1);
3404 vm_pageout_vminfo
.vm_pageout_inactive_referenced
++;
3406 if (!object
->internal
&& object
->pager
!= MEMORY_OBJECT_NULL
&&
3407 vnode_pager_get_isinuse(object
->pager
, &isinuse
) == KERN_SUCCESS
&& !isinuse
) {
3409 * no explict mappings of this object exist
3410 * and it's not open via the filesystem
3412 vm_page_deactivate(m
);
3413 VM_PAGEOUT_DEBUG(vm_pageout_inactive_deactivated
, 1);
3416 * The page was/is being used, so put back on active list.
3418 vm_page_activate(m
);
3419 counter_inc(&vm_statistics_reactivations
);
3420 inactive_burst_count
= 0;
3422 #if CONFIG_BACKGROUND_QUEUE
3423 #if DEVELOPMENT || DEBUG
3424 if (page_from_bg_q
== TRUE
) {
3425 if (m_object
->internal
) {
3426 vm_pageout_rejected_bq_internal
++;
3428 vm_pageout_rejected_bq_external
++;
3431 #endif /* DEVELOPMENT || DEBUG */
3432 #endif /* CONFIG_BACKGROUND_QUEUE */
3434 if (page_prev_q_state
== VM_PAGE_ON_INACTIVE_CLEANED_Q
) {
3435 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated
, 1);
3437 vm_pageout_state
.vm_pageout_inactive_used
++;
3439 lock_yield_check
= TRUE
;
3443 * Make sure we call pmap_get_refmod() if it
3444 * wasn't already called just above, to update
3447 if ((refmod_state
== -1) && !m
->vmp_dirty
&& m
->vmp_pmapped
) {
3448 refmod_state
= pmap_get_refmod(VM_PAGE_GET_PHYS_PAGE(m
));
3449 if (refmod_state
& VM_MEM_MODIFIED
) {
3450 SET_PAGE_DIRTY(m
, FALSE
);
3456 * we've got a candidate page to steal...
3458 * m->vmp_dirty is up to date courtesy of the
3459 * preceding check for m->vmp_reference... if
3460 * we get here, then m->vmp_reference had to be
3461 * FALSE (or possibly "reactivate_limit" was
3462 * exceeded), but in either case we called
3463 * pmap_get_refmod() and updated both
3464 * m->vmp_reference and m->vmp_dirty
3466 * if it's dirty or precious we need to
3467 * see if the target queue is throtttled
3468 * it if is, we need to skip over it by moving it back
3469 * to the end of the inactive queue
3472 inactive_throttled
= FALSE
;
3474 if (m
->vmp_dirty
|| m
->vmp_precious
) {
3475 if (object
->internal
) {
3476 if (VM_PAGE_Q_THROTTLED(iq
)) {
3477 inactive_throttled
= TRUE
;
3479 } else if (VM_PAGE_Q_THROTTLED(eq
)) {
3480 inactive_throttled
= TRUE
;
3484 if (!VM_DYNAMIC_PAGING_ENABLED() &&
3485 object
->internal
&& m
->vmp_dirty
&&
3486 (object
->purgable
== VM_PURGABLE_DENY
||
3487 object
->purgable
== VM_PURGABLE_NONVOLATILE
||
3488 object
->purgable
== VM_PURGABLE_VOLATILE
)) {
3489 vm_page_check_pageable_safe(m
);
3490 assert(m
->vmp_q_state
== VM_PAGE_NOT_ON_Q
);
3491 vm_page_queue_enter(&vm_page_queue_throttled
, m
, vmp_pageq
);
3492 m
->vmp_q_state
= VM_PAGE_ON_THROTTLED_Q
;
3493 vm_page_throttled_count
++;
3495 VM_PAGEOUT_DEBUG(vm_pageout_scan_reclaimed_throttled
, 1);
3497 inactive_burst_count
= 0;
3499 lock_yield_check
= TRUE
;
3502 if (inactive_throttled
== TRUE
) {
3503 vps_deal_with_throttled_queues(m
, &object
, &vm_pageout_inactive_external_forced_reactivate_limit
,
3504 &delayed_unlock
, &force_anonymous
, page_from_bg_q
);
3506 inactive_burst_count
= 0;
3508 if (page_prev_q_state
== VM_PAGE_ON_INACTIVE_CLEANED_Q
) {
3509 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated
, 1);
3512 lock_yield_check
= TRUE
;
3517 * we've got a page that we can steal...
3518 * eliminate all mappings and make sure
3519 * we have the up-to-date modified state
3521 * if we need to do a pmap_disconnect then we
3522 * need to re-evaluate m->vmp_dirty since the pmap_disconnect
3523 * provides the true state atomically... the
3524 * page was still mapped up to the pmap_disconnect
3525 * and may have been dirtied at the last microsecond
3527 * Note that if 'pmapped' is FALSE then the page is not
3528 * and has not been in any map, so there is no point calling
3529 * pmap_disconnect(). m->vmp_dirty could have been set in anticipation
3530 * of likely usage of the page.
3532 if (m
->vmp_pmapped
== TRUE
) {
3536 * Don't count this page as going into the compressor
3537 * if any of these are true:
3538 * 1) compressed pager isn't enabled
3539 * 2) Freezer enabled device with compressed pager
3540 * backend (exclusive use) i.e. most of the VM system
3541 * (including vm_pageout_scan) has no knowledge of
3543 * 3) This page belongs to a file and hence will not be
3544 * sent into the compressor
3546 if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE
||
3547 object
->internal
== FALSE
) {
3549 } else if (m
->vmp_dirty
|| m
->vmp_precious
) {
3551 * VM knows that this page is dirty (or
3552 * precious) and needs to be compressed
3553 * rather than freed.
3554 * Tell the pmap layer to count this page
3557 pmap_options
= PMAP_OPTIONS_COMPRESSOR
;
3560 * VM does not know if the page needs to
3561 * be preserved but the pmap layer might tell
3562 * us if any mapping has "modified" it.
3563 * Let's the pmap layer to count this page
3564 * as compressed if and only if it has been
3568 PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED
;
3570 refmod_state
= pmap_disconnect_options(VM_PAGE_GET_PHYS_PAGE(m
),
3573 if (refmod_state
& VM_MEM_MODIFIED
) {
3574 SET_PAGE_DIRTY(m
, FALSE
);
3579 * reset our count of pages that have been reclaimed
3580 * since the last page was 'stolen'
3582 inactive_reclaim_run
= 0;
3585 * If it's clean and not precious, we can free the page.
3587 if (!m
->vmp_dirty
&& !m
->vmp_precious
) {
3588 vm_pageout_state
.vm_pageout_inactive_clean
++;
3591 * OK, at this point we have found a page we are going to free.
3593 #if CONFIG_PHANTOM_CACHE
3594 if (!object
->internal
) {
3595 vm_phantom_cache_add_ghost(m
);
3602 * The page may have been dirtied since the last check
3603 * for a throttled target queue (which may have been skipped
3604 * if the page was clean then). With the dirty page
3605 * disconnected here, we can make one final check.
3607 if (object
->internal
) {
3608 if (VM_PAGE_Q_THROTTLED(iq
)) {
3609 inactive_throttled
= TRUE
;
3611 } else if (VM_PAGE_Q_THROTTLED(eq
)) {
3612 inactive_throttled
= TRUE
;
3615 if (inactive_throttled
== TRUE
) {
3616 goto throttle_inactive
;
3619 #if VM_PRESSURE_EVENTS
3623 * If Jetsam is enabled, then the sending
3624 * of memory pressure notifications is handled
3625 * from the same thread that takes care of high-water
3626 * and other jetsams i.e. the memorystatus_thread.
3629 #else /* CONFIG_JETSAM */
3631 vm_pressure_response();
3633 #endif /* CONFIG_JETSAM */
3634 #endif /* VM_PRESSURE_EVENTS */
3636 if (page_prev_q_state
== VM_PAGE_ON_SPECULATIVE_Q
) {
3637 VM_PAGEOUT_DEBUG(vm_pageout_speculative_dirty
, 1);
3640 if (object
->internal
) {
3641 vm_pageout_vminfo
.vm_pageout_inactive_dirty_internal
++;
3643 vm_pageout_vminfo
.vm_pageout_inactive_dirty_external
++;
3647 * internal pages will go to the compressor...
3648 * external pages will go to the appropriate pager to be cleaned
3649 * and upon completion will end up on 'vm_page_queue_cleaned' which
3650 * is a preferred queue to steal from
3652 vm_pageout_cluster(m
);
3653 inactive_burst_count
= 0;
3656 * back to top of pageout scan loop
3663 vm_page_free_reserve(
3666 int free_after_reserve
;
3668 if (VM_CONFIG_COMPRESSOR_IS_PRESENT
) {
3669 if ((vm_page_free_reserved
+ pages
+ COMPRESSOR_FREE_RESERVED_LIMIT
) >= (VM_PAGE_FREE_RESERVED_LIMIT
+ COMPRESSOR_FREE_RESERVED_LIMIT
)) {
3670 vm_page_free_reserved
= VM_PAGE_FREE_RESERVED_LIMIT
+ COMPRESSOR_FREE_RESERVED_LIMIT
;
3672 vm_page_free_reserved
+= (pages
+ COMPRESSOR_FREE_RESERVED_LIMIT
);
3675 if ((vm_page_free_reserved
+ pages
) >= VM_PAGE_FREE_RESERVED_LIMIT
) {
3676 vm_page_free_reserved
= VM_PAGE_FREE_RESERVED_LIMIT
;
3678 vm_page_free_reserved
+= pages
;
3681 free_after_reserve
= vm_pageout_state
.vm_page_free_count_init
- vm_page_free_reserved
;
3683 vm_page_free_min
= vm_page_free_reserved
+
3684 VM_PAGE_FREE_MIN(free_after_reserve
);
3686 if (vm_page_free_min
> VM_PAGE_FREE_MIN_LIMIT
) {
3687 vm_page_free_min
= VM_PAGE_FREE_MIN_LIMIT
;
3690 vm_page_free_target
= vm_page_free_reserved
+
3691 VM_PAGE_FREE_TARGET(free_after_reserve
);
3693 if (vm_page_free_target
> VM_PAGE_FREE_TARGET_LIMIT
) {
3694 vm_page_free_target
= VM_PAGE_FREE_TARGET_LIMIT
;
3697 if (vm_page_free_target
< vm_page_free_min
+ 5) {
3698 vm_page_free_target
= vm_page_free_min
+ 5;
3701 vm_page_throttle_limit
= vm_page_free_target
- (vm_page_free_target
/ 2);
3705 * vm_pageout is the high level pageout daemon.
3709 vm_pageout_continue(void)
3711 DTRACE_VM2(pgrrun
, int, 1, (uint64_t *), NULL
);
3712 VM_PAGEOUT_DEBUG(vm_pageout_scan_event_counter
, 1);
3714 lck_mtx_lock(&vm_page_queue_free_lock
);
3715 vm_pageout_running
= TRUE
;
3716 lck_mtx_unlock(&vm_page_queue_free_lock
);
3720 * we hold both the vm_page_queue_free_lock
3721 * and the vm_page_queues_lock at this point
3723 assert(vm_page_free_wanted
== 0);
3724 assert(vm_page_free_wanted_privileged
== 0);
3725 assert_wait((event_t
) &vm_page_free_wanted
, THREAD_UNINT
);
3727 vm_pageout_running
= FALSE
;
3728 #if XNU_TARGET_OS_OSX
3729 if (vm_pageout_waiter
) {
3730 vm_pageout_waiter
= FALSE
;
3731 thread_wakeup((event_t
)&vm_pageout_waiter
);
3733 #endif /* XNU_TARGET_OS_OSX */
3735 lck_mtx_unlock(&vm_page_queue_free_lock
);
3736 vm_page_unlock_queues();
3738 thread_block((thread_continue_t
)vm_pageout_continue
);
3742 #if XNU_TARGET_OS_OSX
3744 vm_pageout_wait(uint64_t deadline
)
3748 lck_mtx_lock(&vm_page_queue_free_lock
);
3749 for (kr
= KERN_SUCCESS
; vm_pageout_running
&& (KERN_SUCCESS
== kr
);) {
3750 vm_pageout_waiter
= TRUE
;
3751 if (THREAD_AWAKENED
!= lck_mtx_sleep_deadline(
3752 &vm_page_queue_free_lock
, LCK_SLEEP_DEFAULT
,
3753 (event_t
) &vm_pageout_waiter
, THREAD_UNINT
, deadline
)) {
3754 kr
= KERN_OPERATION_TIMED_OUT
;
3757 lck_mtx_unlock(&vm_page_queue_free_lock
);
3761 #endif /* XNU_TARGET_OS_OSX */
3765 vm_pageout_iothread_external_continue(struct vm_pageout_queue
*q
)
3769 vm_object_offset_t offset
;
3770 memory_object_t pager
;
3772 /* On systems with a compressor, the external IO thread clears its
3773 * VM privileged bit to accommodate large allocations (e.g. bulk UPL
3776 if (vm_pageout_state
.vm_pageout_internal_iothread
!= THREAD_NULL
) {
3777 current_thread()->options
&= ~TH_OPT_VMPRIV
;
3780 vm_page_lockspin_queues();
3782 while (!vm_page_queue_empty(&q
->pgo_pending
)) {
3784 vm_page_queue_remove_first(&q
->pgo_pending
, m
, vmp_pageq
);
3786 assert(m
->vmp_q_state
== VM_PAGE_ON_PAGEOUT_Q
);
3789 * grab a snapshot of the object and offset this
3790 * page is tabled in so that we can relookup this
3791 * page after we've taken the object lock - these
3792 * fields are stable while we hold the page queues lock
3793 * but as soon as we drop it, there is nothing to keep
3794 * this page in this object... we hold an activity_in_progress
3795 * on this object which will keep it from terminating
3797 object
= VM_PAGE_OBJECT(m
);
3798 offset
= m
->vmp_offset
;
3800 m
->vmp_q_state
= VM_PAGE_NOT_ON_Q
;
3801 VM_PAGE_ZERO_PAGEQ_ENTRY(m
);
3803 vm_page_unlock_queues();
3805 vm_object_lock(object
);
3807 m
= vm_page_lookup(object
, offset
);
3809 if (m
== NULL
|| m
->vmp_busy
|| m
->vmp_cleaning
||
3810 !m
->vmp_laundry
|| (m
->vmp_q_state
!= VM_PAGE_NOT_ON_Q
)) {
3812 * it's either the same page that someone else has
3813 * started cleaning (or it's finished cleaning or
3814 * been put back on the pageout queue), or
3815 * the page has been freed or we have found a
3816 * new page at this offset... in all of these cases
3817 * we merely need to release the activity_in_progress
3818 * we took when we put the page on the pageout queue
3820 vm_object_activity_end(object
);
3821 vm_object_unlock(object
);
3823 vm_page_lockspin_queues();
3826 pager
= object
->pager
;
3828 if (pager
== MEMORY_OBJECT_NULL
) {
3830 * This pager has been destroyed by either
3831 * memory_object_destroy or vm_object_destroy, and
3832 * so there is nowhere for the page to go.
3834 if (m
->vmp_free_when_done
) {
3836 * Just free the page... VM_PAGE_FREE takes
3837 * care of cleaning up all the state...
3838 * including doing the vm_pageout_throttle_up
3842 vm_page_lockspin_queues();
3844 vm_pageout_throttle_up(m
);
3845 vm_page_activate(m
);
3847 vm_page_unlock_queues();
3850 * And we are done with it.
3853 vm_object_activity_end(object
);
3854 vm_object_unlock(object
);
3856 vm_page_lockspin_queues();
3861 * we don't hold the page queue lock
3862 * so this check isn't safe to make
3867 * give back the activity_in_progress reference we
3868 * took when we queued up this page and replace it
3869 * it with a paging_in_progress reference that will
3870 * also hold the paging offset from changing and
3871 * prevent the object from terminating
3873 vm_object_activity_end(object
);
3874 vm_object_paging_begin(object
);
3875 vm_object_unlock(object
);
3878 * Send the data to the pager.
3879 * any pageout clustering happens there
3881 memory_object_data_return(pager
,
3882 m
->vmp_offset
+ object
->paging_offset
,
3890 vm_object_lock(object
);
3891 vm_object_paging_end(object
);
3892 vm_object_unlock(object
);
3894 vm_pageout_io_throttle();
3896 vm_page_lockspin_queues();
3898 q
->pgo_busy
= FALSE
;
3901 assert_wait((event_t
) &q
->pgo_pending
, THREAD_UNINT
);
3902 vm_page_unlock_queues();
3904 thread_block_parameter((thread_continue_t
)vm_pageout_iothread_external_continue
, (void *) q
);
3909 #define MAX_FREE_BATCH 32
3910 uint32_t vm_compressor_time_thread
; /* Set via sysctl to record time accrued by
3916 vm_pageout_iothread_internal_continue(struct cq
*);
3918 vm_pageout_iothread_internal_continue(struct cq
*cq
)
3920 struct vm_pageout_queue
*q
;
3922 boolean_t pgo_draining
;
3925 vm_page_t local_freeq
= NULL
;
3926 int local_freed
= 0;
3927 int local_batch_size
;
3928 #if DEVELOPMENT || DEBUG
3930 boolean_t marked_active
= FALSE
;
3932 KERNEL_DEBUG(0xe040000c | DBG_FUNC_END
, 0, 0, 0, 0, 0);
3936 if (vm_compressor_ebound
&& (vm_pageout_state
.vm_compressor_thread_count
> 1)) {
3937 local_batch_size
= (q
->pgo_maxlaundry
>> 3);
3938 local_batch_size
= MAX(local_batch_size
, 16);
3940 local_batch_size
= q
->pgo_maxlaundry
/ (vm_pageout_state
.vm_compressor_thread_count
* 2);
3943 local_batch_size
= q
->pgo_maxlaundry
/ (vm_pageout_state
.vm_compressor_thread_count
* 2);
3946 #if RECORD_THE_COMPRESSED_DATA
3947 if (q
->pgo_laundry
) {
3948 c_compressed_record_init();
3952 int pages_left_on_q
= 0;
3957 KERNEL_DEBUG(0xe0400014 | DBG_FUNC_START
, 0, 0, 0, 0, 0);
3959 vm_page_lock_queues();
3960 #if DEVELOPMENT || DEBUG
3961 if (marked_active
== FALSE
) {
3963 vmct_state
[cq
->id
] = VMCT_ACTIVE
;
3964 marked_active
= TRUE
;
3965 if (vmct_active
== 1) {
3966 vm_compressor_epoch_start
= mach_absolute_time();
3970 KERNEL_DEBUG(0xe0400014 | DBG_FUNC_END
, 0, 0, 0, 0, 0);
3972 KERNEL_DEBUG(0xe0400018 | DBG_FUNC_START
, q
->pgo_laundry
, 0, 0, 0, 0);
3974 while (!vm_page_queue_empty(&q
->pgo_pending
) && local_cnt
< local_batch_size
) {
3975 vm_page_queue_remove_first(&q
->pgo_pending
, m
, vmp_pageq
);
3976 assert(m
->vmp_q_state
== VM_PAGE_ON_PAGEOUT_Q
);
3979 m
->vmp_q_state
= VM_PAGE_NOT_ON_Q
;
3980 VM_PAGE_ZERO_PAGEQ_ENTRY(m
);
3981 m
->vmp_laundry
= FALSE
;
3983 m
->vmp_snext
= local_q
;
3987 if (local_q
== NULL
) {
3993 if ((pgo_draining
= q
->pgo_draining
) == FALSE
) {
3994 vm_pageout_throttle_up_batch(q
, local_cnt
);
3995 pages_left_on_q
= q
->pgo_laundry
;
3997 pages_left_on_q
= q
->pgo_laundry
- local_cnt
;
4000 vm_page_unlock_queues();
4002 #if !RECORD_THE_COMPRESSED_DATA
4003 if (pages_left_on_q
>= local_batch_size
&& cq
->id
< (vm_pageout_state
.vm_compressor_thread_count
- 1)) {
4004 thread_wakeup((event_t
) ((uintptr_t)&q
->pgo_pending
+ cq
->id
+ 1));
4007 KERNEL_DEBUG(0xe0400018 | DBG_FUNC_END
, q
->pgo_laundry
, 0, 0, 0, 0);
4010 KERNEL_DEBUG(0xe0400024 | DBG_FUNC_START
, local_cnt
, 0, 0, 0, 0);
4013 local_q
= m
->vmp_snext
;
4014 m
->vmp_snext
= NULL
;
4016 if (vm_pageout_compress_page(&cq
->current_chead
, cq
->scratch_buf
, m
) == KERN_SUCCESS
) {
4017 #if DEVELOPMENT || DEBUG
4020 KERNEL_DEBUG(0xe0400024 | DBG_FUNC_END
, local_cnt
, 0, 0, 0, 0);
4022 m
->vmp_snext
= local_freeq
;
4026 if (local_freed
>= MAX_FREE_BATCH
) {
4027 OSAddAtomic64(local_freed
, &vm_pageout_vminfo
.vm_pageout_compressions
);
4029 vm_page_free_list(local_freeq
, TRUE
);
4036 while (vm_page_free_count
< COMPRESSOR_FREE_RESERVED_LIMIT
) {
4037 kern_return_t wait_result
;
4038 int need_wakeup
= 0;
4041 OSAddAtomic64(local_freed
, &vm_pageout_vminfo
.vm_pageout_compressions
);
4043 vm_page_free_list(local_freeq
, TRUE
);
4049 lck_mtx_lock_spin(&vm_page_queue_free_lock
);
4051 if (vm_page_free_count
< COMPRESSOR_FREE_RESERVED_LIMIT
) {
4052 if (vm_page_free_wanted_privileged
++ == 0) {
4055 wait_result
= assert_wait((event_t
)&vm_page_free_wanted_privileged
, THREAD_UNINT
);
4057 lck_mtx_unlock(&vm_page_queue_free_lock
);
4060 thread_wakeup((event_t
)&vm_page_free_wanted
);
4063 if (wait_result
== THREAD_WAITING
) {
4064 thread_block(THREAD_CONTINUE_NULL
);
4067 lck_mtx_unlock(&vm_page_queue_free_lock
);
4073 OSAddAtomic64(local_freed
, &vm_pageout_vminfo
.vm_pageout_compressions
);
4075 vm_page_free_list(local_freeq
, TRUE
);
4079 if (pgo_draining
== TRUE
) {
4080 vm_page_lockspin_queues();
4081 vm_pageout_throttle_up_batch(q
, local_cnt
);
4082 vm_page_unlock_queues();
4085 KERNEL_DEBUG(0xe040000c | DBG_FUNC_START
, 0, 0, 0, 0, 0);
4088 * queue lock is held and our q is empty
4090 q
->pgo_busy
= FALSE
;
4093 assert_wait((event_t
) ((uintptr_t)&q
->pgo_pending
+ cq
->id
), THREAD_UNINT
);
4094 #if DEVELOPMENT || DEBUG
4095 if (marked_active
== TRUE
) {
4097 vmct_state
[cq
->id
] = VMCT_IDLE
;
4099 if (vmct_active
== 0) {
4100 vm_compressor_epoch_stop
= mach_absolute_time();
4101 assertf(vm_compressor_epoch_stop
>= vm_compressor_epoch_start
,
4102 "Compressor epoch non-monotonic: 0x%llx -> 0x%llx",
4103 vm_compressor_epoch_start
, vm_compressor_epoch_stop
);
4104 /* This interval includes intervals where one or more
4105 * compressor threads were pre-empted
4107 vmct_stats
.vmct_cthreads_total
+= vm_compressor_epoch_stop
- vm_compressor_epoch_start
;
4111 vm_page_unlock_queues();
4112 #if DEVELOPMENT || DEBUG
4113 if (__improbable(vm_compressor_time_thread
)) {
4114 vmct_stats
.vmct_runtimes
[cq
->id
] = thread_get_runtime_self();
4115 vmct_stats
.vmct_pages
[cq
->id
] += ncomps
;
4116 vmct_stats
.vmct_iterations
[cq
->id
]++;
4117 if (ncomps
> vmct_stats
.vmct_maxpages
[cq
->id
]) {
4118 vmct_stats
.vmct_maxpages
[cq
->id
] = ncomps
;
4120 if (ncomps
< vmct_stats
.vmct_minpages
[cq
->id
]) {
4121 vmct_stats
.vmct_minpages
[cq
->id
] = ncomps
;
4126 KERNEL_DEBUG(0xe0400018 | DBG_FUNC_END
, 0, 0, 0, 0, 0);
4128 thread_block_parameter((thread_continue_t
)vm_pageout_iothread_internal_continue
, (void *) cq
);
4134 vm_pageout_compress_page(void **current_chead
, char *scratch_buf
, vm_page_t m
)
4137 memory_object_t pager
;
4138 int compressed_count_delta
;
4139 kern_return_t retval
;
4141 object
= VM_PAGE_OBJECT(m
);
4143 assert(!m
->vmp_free_when_done
);
4144 assert(!m
->vmp_laundry
);
4146 pager
= object
->pager
;
4148 if (!object
->pager_initialized
|| pager
== MEMORY_OBJECT_NULL
) {
4149 KERNEL_DEBUG(0xe0400010 | DBG_FUNC_START
, object
, pager
, 0, 0, 0);
4151 vm_object_lock(object
);
4154 * If there is no memory object for the page, create
4155 * one and hand it to the compression pager.
4158 if (!object
->pager_initialized
) {
4159 vm_object_collapse(object
, (vm_object_offset_t
) 0, TRUE
);
4161 if (!object
->pager_initialized
) {
4162 vm_object_compressor_pager_create(object
);
4165 pager
= object
->pager
;
4167 if (!object
->pager_initialized
|| pager
== MEMORY_OBJECT_NULL
) {
4169 * Still no pager for the object,
4170 * or the pager has been destroyed.
4171 * Reactivate the page.
4173 * Should only happen if there is no
4176 PAGE_WAKEUP_DONE(m
);
4178 vm_page_lockspin_queues();
4179 vm_page_activate(m
);
4180 VM_PAGEOUT_DEBUG(vm_pageout_dirty_no_pager
, 1);
4181 vm_page_unlock_queues();
4184 * And we are done with it.
4186 vm_object_activity_end(object
);
4187 vm_object_unlock(object
);
4189 return KERN_FAILURE
;
4191 vm_object_unlock(object
);
4193 KERNEL_DEBUG(0xe0400010 | DBG_FUNC_END
, object
, pager
, 0, 0, 0);
4195 assert(object
->pager_initialized
&& pager
!= MEMORY_OBJECT_NULL
);
4196 assert(object
->activity_in_progress
> 0);
4198 retval
= vm_compressor_pager_put(
4200 m
->vmp_offset
+ object
->paging_offset
,
4201 VM_PAGE_GET_PHYS_PAGE(m
),
4204 &compressed_count_delta
);
4206 vm_object_lock(object
);
4208 assert(object
->activity_in_progress
> 0);
4209 assert(VM_PAGE_OBJECT(m
) == object
);
4210 assert( !VM_PAGE_WIRED(m
));
4212 vm_compressor_pager_count(pager
,
4213 compressed_count_delta
,
4214 FALSE
, /* shared_lock */
4217 if (retval
== KERN_SUCCESS
) {
4219 * If the object is purgeable, its owner's
4220 * purgeable ledgers will be updated in
4221 * vm_page_remove() but the page still
4222 * contributes to the owner's memory footprint,
4223 * so account for it as such.
4225 if ((object
->purgable
!= VM_PURGABLE_DENY
||
4226 object
->vo_ledger_tag
) &&
4227 object
->vo_owner
!= NULL
) {
4228 /* one more compressed purgeable/tagged page */
4229 vm_object_owner_compressed_update(object
,
4232 counter_inc(&vm_statistics_compressions
);
4234 if (m
->vmp_tabled
) {
4235 vm_page_remove(m
, TRUE
);
4238 PAGE_WAKEUP_DONE(m
);
4240 vm_page_lockspin_queues();
4242 vm_page_activate(m
);
4243 vm_pageout_vminfo
.vm_compressor_failed
++;
4245 vm_page_unlock_queues();
4247 vm_object_activity_end(object
);
4248 vm_object_unlock(object
);
4255 vm_pageout_adjust_eq_iothrottle(struct vm_pageout_queue
*eq
, boolean_t req_lowpriority
)
4259 if (hibernate_cleaning_in_progress
== TRUE
) {
4260 req_lowpriority
= FALSE
;
4263 if (eq
->pgo_inited
== TRUE
&& eq
->pgo_lowpriority
!= req_lowpriority
) {
4264 vm_page_unlock_queues();
4266 if (req_lowpriority
== TRUE
) {
4267 policy
= THROTTLE_LEVEL_PAGEOUT_THROTTLED
;
4268 DTRACE_VM(laundrythrottle
);
4270 policy
= THROTTLE_LEVEL_PAGEOUT_UNTHROTTLED
;
4271 DTRACE_VM(laundryunthrottle
);
4273 proc_set_thread_policy_with_tid(kernel_task
, eq
->pgo_tid
,
4274 TASK_POLICY_EXTERNAL
, TASK_POLICY_IO
, policy
);
4276 vm_page_lock_queues();
4277 eq
->pgo_lowpriority
= req_lowpriority
;
4283 vm_pageout_iothread_external(void)
4285 thread_t self
= current_thread();
4287 self
->options
|= TH_OPT_VMPRIV
;
4289 DTRACE_VM2(laundrythrottle
, int, 1, (uint64_t *), NULL
);
4291 proc_set_thread_policy(self
, TASK_POLICY_EXTERNAL
,
4292 TASK_POLICY_IO
, THROTTLE_LEVEL_PAGEOUT_THROTTLED
);
4294 vm_page_lock_queues();
4296 vm_pageout_queue_external
.pgo_tid
= self
->thread_id
;
4297 vm_pageout_queue_external
.pgo_lowpriority
= TRUE
;
4298 vm_pageout_queue_external
.pgo_inited
= TRUE
;
4300 vm_page_unlock_queues();
4302 vm_pageout_iothread_external_continue(&vm_pageout_queue_external
);
4309 vm_pageout_iothread_internal(struct cq
*cq
)
4311 thread_t self
= current_thread();
4313 self
->options
|= TH_OPT_VMPRIV
;
4315 vm_page_lock_queues();
4317 vm_pageout_queue_internal
.pgo_tid
= self
->thread_id
;
4318 vm_pageout_queue_internal
.pgo_lowpriority
= TRUE
;
4319 vm_pageout_queue_internal
.pgo_inited
= TRUE
;
4321 vm_page_unlock_queues();
4323 if (vm_pageout_state
.vm_restricted_to_single_processor
== TRUE
) {
4324 thread_vm_bind_group_add();
4327 #if CONFIG_THREAD_GROUPS
4328 thread_group_vm_add();
4329 #endif /* CONFIG_THREAD_GROUPS */
4332 if (vm_compressor_ebound
) {
4334 * Use the soft bound option for vm_compressor to allow it to run on
4335 * P-cores if E-cluster is unavailable.
4337 thread_bind_cluster_type(self
, 'E', true);
4339 #endif /* __AMP__ */
4341 thread_set_thread_name(current_thread(), "VM_compressor");
4342 #if DEVELOPMENT || DEBUG
4343 vmct_stats
.vmct_minpages
[cq
->id
] = INT32_MAX
;
4345 vm_pageout_iothread_internal_continue(cq
);
4351 vm_set_buffer_cleanup_callout(boolean_t (*func
)(int))
4353 if (OSCompareAndSwapPtr(NULL
, ptrauth_nop_cast(void *, func
), (void * volatile *) &consider_buffer_cache_collect
)) {
4354 return KERN_SUCCESS
;
4356 return KERN_FAILURE
; /* Already set */
4360 extern boolean_t memorystatus_manual_testing_on
;
4361 extern unsigned int memorystatus_level
;
4364 #if VM_PRESSURE_EVENTS
4366 boolean_t vm_pressure_events_enabled
= FALSE
;
4369 vm_pressure_response(void)
4371 vm_pressure_level_t old_level
= kVMPressureNormal
;
4373 unsigned int total_pages
;
4374 uint64_t available_memory
= 0;
4376 if (vm_pressure_events_enabled
== FALSE
) {
4380 #if !XNU_TARGET_OS_OSX
4382 available_memory
= (uint64_t) memorystatus_available_pages
;
4384 #else /* !XNU_TARGET_OS_OSX */
4386 available_memory
= (uint64_t) AVAILABLE_NON_COMPRESSED_MEMORY
;
4387 memorystatus_available_pages
= (uint64_t) AVAILABLE_NON_COMPRESSED_MEMORY
;
4389 #endif /* !XNU_TARGET_OS_OSX */
4391 total_pages
= (unsigned int) atop_64(max_mem
);
4392 #if CONFIG_SECLUDED_MEMORY
4393 total_pages
-= vm_page_secluded_count
;
4394 #endif /* CONFIG_SECLUDED_MEMORY */
4395 memorystatus_level
= (unsigned int) ((available_memory
* 100) / total_pages
);
4397 if (memorystatus_manual_testing_on
) {
4401 old_level
= memorystatus_vm_pressure_level
;
4403 switch (memorystatus_vm_pressure_level
) {
4404 case kVMPressureNormal
:
4406 if (VM_PRESSURE_WARNING_TO_CRITICAL()) {
4407 new_level
= kVMPressureCritical
;
4408 } else if (VM_PRESSURE_NORMAL_TO_WARNING()) {
4409 new_level
= kVMPressureWarning
;
4414 case kVMPressureWarning
:
4415 case kVMPressureUrgent
:
4417 if (VM_PRESSURE_WARNING_TO_NORMAL()) {
4418 new_level
= kVMPressureNormal
;
4419 } else if (VM_PRESSURE_WARNING_TO_CRITICAL()) {
4420 new_level
= kVMPressureCritical
;
4425 case kVMPressureCritical
:
4427 if (VM_PRESSURE_WARNING_TO_NORMAL()) {
4428 new_level
= kVMPressureNormal
;
4429 } else if (VM_PRESSURE_CRITICAL_TO_WARNING()) {
4430 new_level
= kVMPressureWarning
;
4439 if (new_level
!= -1) {
4440 memorystatus_vm_pressure_level
= (vm_pressure_level_t
) new_level
;
4442 if (new_level
!= (int) old_level
) {
4443 VM_DEBUG_CONSTANT_EVENT(vm_pressure_level_change
, VM_PRESSURE_LEVEL_CHANGE
, DBG_FUNC_NONE
,
4444 new_level
, old_level
, 0, 0);
4447 if ((memorystatus_vm_pressure_level
!= kVMPressureNormal
) || (old_level
!= memorystatus_vm_pressure_level
)) {
4448 if (vm_pageout_state
.vm_pressure_thread_running
== FALSE
) {
4449 thread_wakeup(&vm_pressure_thread
);
4452 if (old_level
!= memorystatus_vm_pressure_level
) {
4453 thread_wakeup(&vm_pageout_state
.vm_pressure_changed
);
4458 #endif /* VM_PRESSURE_EVENTS */
4461 * Function called by a kernel thread to either get the current pressure level or
4462 * wait until memory pressure changes from a given level.
4465 mach_vm_pressure_level_monitor(__unused boolean_t wait_for_pressure
, __unused
unsigned int *pressure_level
)
4467 #if !VM_PRESSURE_EVENTS
4469 return KERN_FAILURE
;
4471 #else /* VM_PRESSURE_EVENTS */
4473 wait_result_t wr
= 0;
4474 vm_pressure_level_t old_level
= memorystatus_vm_pressure_level
;
4476 if (pressure_level
== NULL
) {
4477 return KERN_INVALID_ARGUMENT
;
4480 if (*pressure_level
== kVMPressureJetsam
) {
4481 if (!wait_for_pressure
) {
4482 return KERN_INVALID_ARGUMENT
;
4485 lck_mtx_lock(&memorystatus_jetsam_fg_band_lock
);
4486 wr
= assert_wait((event_t
)&memorystatus_jetsam_fg_band_waiters
,
4487 THREAD_INTERRUPTIBLE
);
4488 if (wr
== THREAD_WAITING
) {
4489 ++memorystatus_jetsam_fg_band_waiters
;
4490 lck_mtx_unlock(&memorystatus_jetsam_fg_band_lock
);
4491 wr
= thread_block(THREAD_CONTINUE_NULL
);
4493 lck_mtx_unlock(&memorystatus_jetsam_fg_band_lock
);
4495 if (wr
!= THREAD_AWAKENED
) {
4496 return KERN_ABORTED
;
4498 *pressure_level
= kVMPressureJetsam
;
4499 return KERN_SUCCESS
;
4502 if (wait_for_pressure
== TRUE
) {
4503 while (old_level
== *pressure_level
) {
4504 wr
= assert_wait((event_t
) &vm_pageout_state
.vm_pressure_changed
,
4505 THREAD_INTERRUPTIBLE
);
4506 if (wr
== THREAD_WAITING
) {
4507 wr
= thread_block(THREAD_CONTINUE_NULL
);
4509 if (wr
== THREAD_INTERRUPTED
) {
4510 return KERN_ABORTED
;
4513 if (wr
== THREAD_AWAKENED
) {
4514 old_level
= memorystatus_vm_pressure_level
;
4519 *pressure_level
= old_level
;
4520 return KERN_SUCCESS
;
4521 #endif /* VM_PRESSURE_EVENTS */
4524 #if VM_PRESSURE_EVENTS
4526 vm_pressure_thread(void)
4528 static boolean_t thread_initialized
= FALSE
;
4530 if (thread_initialized
== TRUE
) {
4531 vm_pageout_state
.vm_pressure_thread_running
= TRUE
;
4532 consider_vm_pressure_events();
4533 vm_pageout_state
.vm_pressure_thread_running
= FALSE
;
4536 thread_set_thread_name(current_thread(), "VM_pressure");
4537 thread_initialized
= TRUE
;
4538 assert_wait((event_t
) &vm_pressure_thread
, THREAD_UNINT
);
4539 thread_block((thread_continue_t
)vm_pressure_thread
);
4541 #endif /* VM_PRESSURE_EVENTS */
4545 * called once per-second via "compute_averages"
4548 compute_pageout_gc_throttle(__unused
void *arg
)
4550 if (vm_pageout_vminfo
.vm_pageout_considered_page
!= vm_pageout_state
.vm_pageout_considered_page_last
) {
4551 vm_pageout_state
.vm_pageout_considered_page_last
= vm_pageout_vminfo
.vm_pageout_considered_page
;
4553 thread_wakeup((event_t
) &vm_pageout_garbage_collect
);
4558 * vm_pageout_garbage_collect can also be called when the zone allocator needs
4559 * to call zone_gc on a different thread in order to trigger zone-map-exhaustion
4560 * jetsams. We need to check if the zone map size is above its jetsam limit to
4561 * decide if this was indeed the case.
4563 * We need to do this on a different thread because of the following reasons:
4565 * 1. In the case of synchronous jetsams, the leaking process can try to jetsam
4566 * itself causing the system to hang. We perform synchronous jetsams if we're
4567 * leaking in the VM map entries zone, so the leaking process could be doing a
4568 * zalloc for a VM map entry while holding its vm_map lock, when it decides to
4569 * jetsam itself. We also need the vm_map lock on the process termination path,
4570 * which would now lead the dying process to deadlock against itself.
4572 * 2. The jetsam path might need to allocate zone memory itself. We could try
4573 * using the non-blocking variant of zalloc for this path, but we can still
4574 * end up trying to do a kernel_memory_allocate when the zone maps are almost
4579 vm_pageout_garbage_collect(int collect
)
4582 if (zone_map_nearing_exhaustion()) {
4584 * Woken up by the zone allocator for zone-map-exhaustion jetsams.
4586 * Bail out after calling zone_gc (which triggers the
4587 * zone-map-exhaustion jetsams). If we fall through, the subsequent
4588 * operations that clear out a bunch of caches might allocate zone
4589 * memory themselves (for eg. vm_map operations would need VM map
4590 * entries). Since the zone map is almost full at this point, we
4591 * could end up with a panic. We just need to quickly jetsam a
4592 * process and exit here.
4594 * It could so happen that we were woken up to relieve memory
4595 * pressure and the zone map also happened to be near its limit at
4596 * the time, in which case we'll skip out early. But that should be
4597 * ok; if memory pressure persists, the thread will simply be woken
4600 zone_gc(ZONE_GC_JETSAM
);
4602 /* Woken up by vm_pageout_scan or compute_pageout_gc_throttle. */
4603 boolean_t buf_large_zfree
= FALSE
;
4604 boolean_t first_try
= TRUE
;
4608 consider_machine_collect();
4612 if (consider_buffer_cache_collect
!= NULL
) {
4613 buf_large_zfree
= (*consider_buffer_cache_collect
)(0);
4615 if (first_try
== TRUE
|| buf_large_zfree
== TRUE
) {
4617 * zone_gc should be last, because the other operations
4618 * might return memory to zones.
4620 zone_gc(ZONE_GC_TRIM
);
4623 } while (buf_large_zfree
== TRUE
&& vm_page_free_count
< vm_page_free_target
);
4625 consider_machine_adjust();
4629 assert_wait((event_t
) &vm_pageout_garbage_collect
, THREAD_UNINT
);
4631 thread_block_parameter((thread_continue_t
) vm_pageout_garbage_collect
, (void *)1);
4636 #if VM_PAGE_BUCKETS_CHECK
4637 #if VM_PAGE_FAKE_BUCKETS
4638 extern vm_map_offset_t vm_page_fake_buckets_start
, vm_page_fake_buckets_end
;
4639 #endif /* VM_PAGE_FAKE_BUCKETS */
4640 #endif /* VM_PAGE_BUCKETS_CHECK */
4645 vm_set_restrictions(unsigned int num_cpus
)
4647 int vm_restricted_to_single_processor
= 0;
4649 if (PE_parse_boot_argn("vm_restricted_to_single_processor", &vm_restricted_to_single_processor
, sizeof(vm_restricted_to_single_processor
))) {
4650 kprintf("Overriding vm_restricted_to_single_processor to %d\n", vm_restricted_to_single_processor
);
4651 vm_pageout_state
.vm_restricted_to_single_processor
= (vm_restricted_to_single_processor
? TRUE
: FALSE
);
4653 assert(num_cpus
> 0);
4655 if (num_cpus
<= 3) {
4657 * on systems with a limited number of CPUS, bind the
4658 * 4 major threads that can free memory and that tend to use
4659 * a fair bit of CPU under pressured conditions to a single processor.
4660 * This insures that these threads don't hog all of the available CPUs
4661 * (important for camera launch), while allowing them to run independently
4662 * w/r to locks... the 4 threads are
4663 * vm_pageout_scan, vm_pageout_iothread_internal (compressor),
4664 * vm_compressor_swap_trigger_thread (minor and major compactions),
4665 * memorystatus_thread (jetsams).
4667 * the first time the thread is run, it is responsible for checking the
4668 * state of vm_restricted_to_single_processor, and if TRUE it calls
4669 * thread_bind_master... someday this should be replaced with a group
4670 * scheduling mechanism and KPI.
4672 vm_pageout_state
.vm_restricted_to_single_processor
= TRUE
;
4674 vm_pageout_state
.vm_restricted_to_single_processor
= FALSE
;
4682 thread_t self
= current_thread();
4684 kern_return_t result
;
4688 * Set thread privileges.
4692 vm_pageout_scan_thread
= self
;
4694 #if CONFIG_VPS_DYNAMIC_PRIO
4696 int vps_dynprio_bootarg
= 0;
4698 if (PE_parse_boot_argn("vps_dynamic_priority_enabled", &vps_dynprio_bootarg
, sizeof(vps_dynprio_bootarg
))) {
4699 vps_dynamic_priority_enabled
= (vps_dynprio_bootarg
? TRUE
: FALSE
);
4700 kprintf("Overriding vps_dynamic_priority_enabled to %d\n", vps_dynamic_priority_enabled
);
4702 if (vm_pageout_state
.vm_restricted_to_single_processor
== TRUE
) {
4703 vps_dynamic_priority_enabled
= TRUE
;
4705 vps_dynamic_priority_enabled
= FALSE
;
4709 if (vps_dynamic_priority_enabled
) {
4710 sched_set_kernel_thread_priority(self
, MAXPRI_THROTTLE
);
4711 thread_set_eager_preempt(self
);
4713 sched_set_kernel_thread_priority(self
, BASEPRI_VM
);
4716 #else /* CONFIG_VPS_DYNAMIC_PRIO */
4718 vps_dynamic_priority_enabled
= FALSE
;
4719 sched_set_kernel_thread_priority(self
, BASEPRI_VM
);
4721 #endif /* CONFIG_VPS_DYNAMIC_PRIO */
4724 self
->options
|= TH_OPT_VMPRIV
;
4725 thread_unlock(self
);
4727 if (!self
->reserved_stack
) {
4728 self
->reserved_stack
= self
->kernel_stack
;
4731 if (vm_pageout_state
.vm_restricted_to_single_processor
== TRUE
&&
4732 vps_dynamic_priority_enabled
== FALSE
) {
4733 thread_vm_bind_group_add();
4737 #if CONFIG_THREAD_GROUPS
4738 thread_group_vm_add();
4739 #endif /* CONFIG_THREAD_GROUPS */
4742 PE_parse_boot_argn("vmpgo_pcluster", &vm_pgo_pbound
, sizeof(vm_pgo_pbound
));
4743 if (vm_pgo_pbound
) {
4745 * Use the soft bound option for vm pageout to allow it to run on
4746 * E-cores if P-cluster is unavailable.
4748 thread_bind_cluster_type(self
, 'P', true);
4750 #endif /* __AMP__ */
4754 thread_set_thread_name(current_thread(), "VM_pageout_scan");
4757 * Initialize some paging parameters.
4760 vm_pageout_state
.vm_pressure_thread_running
= FALSE
;
4761 vm_pageout_state
.vm_pressure_changed
= FALSE
;
4762 vm_pageout_state
.memorystatus_purge_on_warning
= 2;
4763 vm_pageout_state
.memorystatus_purge_on_urgent
= 5;
4764 vm_pageout_state
.memorystatus_purge_on_critical
= 8;
4765 vm_pageout_state
.vm_page_speculative_q_age_ms
= VM_PAGE_SPECULATIVE_Q_AGE_MS
;
4766 vm_pageout_state
.vm_page_speculative_percentage
= 5;
4767 vm_pageout_state
.vm_page_speculative_target
= 0;
4769 vm_pageout_state
.vm_pageout_external_iothread
= THREAD_NULL
;
4770 vm_pageout_state
.vm_pageout_internal_iothread
= THREAD_NULL
;
4772 vm_pageout_state
.vm_pageout_swap_wait
= 0;
4773 vm_pageout_state
.vm_pageout_idle_wait
= 0;
4774 vm_pageout_state
.vm_pageout_empty_wait
= 0;
4775 vm_pageout_state
.vm_pageout_burst_wait
= 0;
4776 vm_pageout_state
.vm_pageout_deadlock_wait
= 0;
4777 vm_pageout_state
.vm_pageout_deadlock_relief
= 0;
4778 vm_pageout_state
.vm_pageout_burst_inactive_throttle
= 0;
4780 vm_pageout_state
.vm_pageout_inactive
= 0;
4781 vm_pageout_state
.vm_pageout_inactive_used
= 0;
4782 vm_pageout_state
.vm_pageout_inactive_clean
= 0;
4784 vm_pageout_state
.vm_memory_pressure
= 0;
4785 vm_pageout_state
.vm_page_filecache_min
= 0;
4787 vm_pageout_state
.vm_page_filecache_min_divisor
= 70;
4788 vm_pageout_state
.vm_page_xpmapped_min_divisor
= 40;
4790 vm_pageout_state
.vm_page_filecache_min_divisor
= 27;
4791 vm_pageout_state
.vm_page_xpmapped_min_divisor
= 36;
4793 vm_pageout_state
.vm_page_free_count_init
= vm_page_free_count
;
4795 vm_pageout_state
.vm_pageout_considered_page_last
= 0;
4797 if (vm_pageout_state
.vm_pageout_swap_wait
== 0) {
4798 vm_pageout_state
.vm_pageout_swap_wait
= VM_PAGEOUT_SWAP_WAIT
;
4801 if (vm_pageout_state
.vm_pageout_idle_wait
== 0) {
4802 vm_pageout_state
.vm_pageout_idle_wait
= VM_PAGEOUT_IDLE_WAIT
;
4805 if (vm_pageout_state
.vm_pageout_burst_wait
== 0) {
4806 vm_pageout_state
.vm_pageout_burst_wait
= VM_PAGEOUT_BURST_WAIT
;
4809 if (vm_pageout_state
.vm_pageout_empty_wait
== 0) {
4810 vm_pageout_state
.vm_pageout_empty_wait
= VM_PAGEOUT_EMPTY_WAIT
;
4813 if (vm_pageout_state
.vm_pageout_deadlock_wait
== 0) {
4814 vm_pageout_state
.vm_pageout_deadlock_wait
= VM_PAGEOUT_DEADLOCK_WAIT
;
4817 if (vm_pageout_state
.vm_pageout_deadlock_relief
== 0) {
4818 vm_pageout_state
.vm_pageout_deadlock_relief
= VM_PAGEOUT_DEADLOCK_RELIEF
;
4821 if (vm_pageout_state
.vm_pageout_burst_inactive_throttle
== 0) {
4822 vm_pageout_state
.vm_pageout_burst_inactive_throttle
= VM_PAGEOUT_BURST_INACTIVE_THROTTLE
;
4825 * even if we've already called vm_page_free_reserve
4826 * call it again here to insure that the targets are
4827 * accurately calculated (it uses vm_page_free_count_init)
4828 * calling it with an arg of 0 will not change the reserve
4829 * but will re-calculate free_min and free_target
4831 if (vm_page_free_reserved
< VM_PAGE_FREE_RESERVED(processor_count
)) {
4832 vm_page_free_reserve((VM_PAGE_FREE_RESERVED(processor_count
)) - vm_page_free_reserved
);
4834 vm_page_free_reserve(0);
4838 vm_page_queue_init(&vm_pageout_queue_external
.pgo_pending
);
4839 vm_pageout_queue_external
.pgo_maxlaundry
= VM_PAGE_LAUNDRY_MAX
;
4840 vm_pageout_queue_external
.pgo_laundry
= 0;
4841 vm_pageout_queue_external
.pgo_idle
= FALSE
;
4842 vm_pageout_queue_external
.pgo_busy
= FALSE
;
4843 vm_pageout_queue_external
.pgo_throttled
= FALSE
;
4844 vm_pageout_queue_external
.pgo_draining
= FALSE
;
4845 vm_pageout_queue_external
.pgo_lowpriority
= FALSE
;
4846 vm_pageout_queue_external
.pgo_tid
= -1;
4847 vm_pageout_queue_external
.pgo_inited
= FALSE
;
4849 vm_page_queue_init(&vm_pageout_queue_internal
.pgo_pending
);
4850 vm_pageout_queue_internal
.pgo_maxlaundry
= 0;
4851 vm_pageout_queue_internal
.pgo_laundry
= 0;
4852 vm_pageout_queue_internal
.pgo_idle
= FALSE
;
4853 vm_pageout_queue_internal
.pgo_busy
= FALSE
;
4854 vm_pageout_queue_internal
.pgo_throttled
= FALSE
;
4855 vm_pageout_queue_internal
.pgo_draining
= FALSE
;
4856 vm_pageout_queue_internal
.pgo_lowpriority
= FALSE
;
4857 vm_pageout_queue_internal
.pgo_tid
= -1;
4858 vm_pageout_queue_internal
.pgo_inited
= FALSE
;
4860 /* internal pageout thread started when default pager registered first time */
4861 /* external pageout and garbage collection threads started here */
4863 result
= kernel_thread_start_priority((thread_continue_t
)vm_pageout_iothread_external
, NULL
,
4865 &vm_pageout_state
.vm_pageout_external_iothread
);
4866 if (result
!= KERN_SUCCESS
) {
4867 panic("vm_pageout_iothread_external: create failed");
4869 thread_set_thread_name(vm_pageout_state
.vm_pageout_external_iothread
, "VM_pageout_external_iothread");
4870 thread_deallocate(vm_pageout_state
.vm_pageout_external_iothread
);
4872 result
= kernel_thread_create((thread_continue_t
)vm_pageout_garbage_collect
, NULL
,
4875 if (result
!= KERN_SUCCESS
) {
4876 panic("vm_pageout_garbage_collect: create failed");
4878 thread_set_thread_name(thread
, "VM_pageout_garbage_collect");
4879 if (thread
->reserved_stack
== 0) {
4880 assert(thread
->kernel_stack
);
4881 thread
->reserved_stack
= thread
->kernel_stack
;
4884 thread_mtx_lock(thread
);
4885 thread_start(thread
);
4886 thread_mtx_unlock(thread
);
4888 thread_deallocate(thread
);
4890 #if VM_PRESSURE_EVENTS
4891 result
= kernel_thread_start_priority((thread_continue_t
)vm_pressure_thread
, NULL
,
4895 if (result
!= KERN_SUCCESS
) {
4896 panic("vm_pressure_thread: create failed");
4899 thread_deallocate(thread
);
4902 vm_object_reaper_init();
4905 bzero(&vm_config
, sizeof(vm_config
));
4907 switch (vm_compressor_mode
) {
4908 case VM_PAGER_DEFAULT
:
4909 printf("mapping deprecated VM_PAGER_DEFAULT to VM_PAGER_COMPRESSOR_WITH_SWAP\n");
4912 case VM_PAGER_COMPRESSOR_WITH_SWAP
:
4913 vm_config
.compressor_is_present
= TRUE
;
4914 vm_config
.swap_is_present
= TRUE
;
4915 vm_config
.compressor_is_active
= TRUE
;
4916 vm_config
.swap_is_active
= TRUE
;
4919 case VM_PAGER_COMPRESSOR_NO_SWAP
:
4920 vm_config
.compressor_is_present
= TRUE
;
4921 vm_config
.swap_is_present
= TRUE
;
4922 vm_config
.compressor_is_active
= TRUE
;
4925 case VM_PAGER_FREEZER_DEFAULT
:
4926 printf("mapping deprecated VM_PAGER_FREEZER_DEFAULT to VM_PAGER_FREEZER_COMPRESSOR_NO_SWAP\n");
4929 case VM_PAGER_FREEZER_COMPRESSOR_NO_SWAP
:
4930 vm_config
.compressor_is_present
= TRUE
;
4931 vm_config
.swap_is_present
= TRUE
;
4934 case VM_PAGER_COMPRESSOR_NO_SWAP_PLUS_FREEZER_COMPRESSOR_WITH_SWAP
:
4935 vm_config
.compressor_is_present
= TRUE
;
4936 vm_config
.swap_is_present
= TRUE
;
4937 vm_config
.compressor_is_active
= TRUE
;
4938 vm_config
.freezer_swap_is_active
= TRUE
;
4941 case VM_PAGER_NOT_CONFIGURED
:
4945 printf("unknown compressor mode - %x\n", vm_compressor_mode
);
4948 if (VM_CONFIG_COMPRESSOR_IS_PRESENT
) {
4949 vm_compressor_pager_init();
4952 #if VM_PRESSURE_EVENTS
4953 vm_pressure_events_enabled
= TRUE
;
4954 #endif /* VM_PRESSURE_EVENTS */
4956 #if CONFIG_PHANTOM_CACHE
4957 vm_phantom_cache_init();
4959 #if VM_PAGE_BUCKETS_CHECK
4960 #if VM_PAGE_FAKE_BUCKETS
4961 printf("**** DEBUG: protecting fake buckets [0x%llx:0x%llx]\n",
4962 (uint64_t) vm_page_fake_buckets_start
,
4963 (uint64_t) vm_page_fake_buckets_end
);
4964 pmap_protect(kernel_pmap
,
4965 vm_page_fake_buckets_start
,
4966 vm_page_fake_buckets_end
,
4968 // *(char *) vm_page_fake_buckets_start = 'x'; /* panic! */
4969 #endif /* VM_PAGE_FAKE_BUCKETS */
4970 #endif /* VM_PAGE_BUCKETS_CHECK */
4972 #if VM_OBJECT_TRACKING
4973 vm_object_tracking_init();
4974 #endif /* VM_OBJECT_TRACKING */
4976 vm_pageout_continue();
4981 * The vm_pageout_continue() call above never returns, so the code below is never
4982 * executed. We take advantage of this to declare several DTrace VM related probe
4983 * points that our kernel doesn't have an analog for. These are probe points that
4984 * exist in Solaris and are in the DTrace documentation, so people may have written
4985 * scripts that use them. Declaring the probe points here means their scripts will
4986 * compile and execute which we want for portability of the scripts, but since this
4987 * section of code is never reached, the probe points will simply never fire. Yes,
4988 * this is basically a hack. The problem is the DTrace probe points were chosen with
4989 * Solaris specific VM events in mind, not portability to different VM implementations.
4992 DTRACE_VM2(execfree
, int, 1, (uint64_t *), NULL
);
4993 DTRACE_VM2(execpgin
, int, 1, (uint64_t *), NULL
);
4994 DTRACE_VM2(execpgout
, int, 1, (uint64_t *), NULL
);
4995 DTRACE_VM2(pgswapin
, int, 1, (uint64_t *), NULL
);
4996 DTRACE_VM2(pgswapout
, int, 1, (uint64_t *), NULL
);
4997 DTRACE_VM2(swapin
, int, 1, (uint64_t *), NULL
);
4998 DTRACE_VM2(swapout
, int, 1, (uint64_t *), NULL
);
5005 vm_pageout_internal_start(void)
5007 kern_return_t result
;
5008 host_basic_info_data_t hinfo
;
5009 vm_offset_t buf
, bufsize
;
5011 assert(VM_CONFIG_COMPRESSOR_IS_PRESENT
);
5013 mach_msg_type_number_t count
= HOST_BASIC_INFO_COUNT
;
5015 host_info((host_t
)BSD_HOST
, HOST_BASIC_INFO
, (host_info_t
)&hinfo
, &count
);
5017 assert(hinfo
.max_cpus
> 0);
5019 #if !XNU_TARGET_OS_OSX
5020 vm_pageout_state
.vm_compressor_thread_count
= 1;
5021 #else /* !XNU_TARGET_OS_OSX */
5022 if (hinfo
.max_cpus
> 4) {
5023 vm_pageout_state
.vm_compressor_thread_count
= 2;
5025 vm_pageout_state
.vm_compressor_thread_count
= 1;
5027 #endif /* !XNU_TARGET_OS_OSX */
5028 PE_parse_boot_argn("vmcomp_threads", &vm_pageout_state
.vm_compressor_thread_count
,
5029 sizeof(vm_pageout_state
.vm_compressor_thread_count
));
5032 PE_parse_boot_argn("vmcomp_ecluster", &vm_compressor_ebound
, sizeof(vm_compressor_ebound
));
5033 if (vm_compressor_ebound
) {
5034 vm_pageout_state
.vm_compressor_thread_count
= 2;
5037 if (vm_pageout_state
.vm_compressor_thread_count
>= hinfo
.max_cpus
) {
5038 vm_pageout_state
.vm_compressor_thread_count
= hinfo
.max_cpus
- 1;
5040 if (vm_pageout_state
.vm_compressor_thread_count
<= 0) {
5041 vm_pageout_state
.vm_compressor_thread_count
= 1;
5042 } else if (vm_pageout_state
.vm_compressor_thread_count
> MAX_COMPRESSOR_THREAD_COUNT
) {
5043 vm_pageout_state
.vm_compressor_thread_count
= MAX_COMPRESSOR_THREAD_COUNT
;
5046 vm_pageout_queue_internal
.pgo_maxlaundry
=
5047 (vm_pageout_state
.vm_compressor_thread_count
* 4) * VM_PAGE_LAUNDRY_MAX
;
5049 PE_parse_boot_argn("vmpgoi_maxlaundry",
5050 &vm_pageout_queue_internal
.pgo_maxlaundry
,
5051 sizeof(vm_pageout_queue_internal
.pgo_maxlaundry
));
5053 bufsize
= COMPRESSOR_SCRATCH_BUF_SIZE
;
5054 if (kernel_memory_allocate(kernel_map
, &buf
,
5055 bufsize
* vm_pageout_state
.vm_compressor_thread_count
,
5056 0, KMA_KOBJECT
| KMA_PERMANENT
, VM_KERN_MEMORY_COMPRESSOR
)) {
5057 panic("vm_pageout_internal_start: Unable to allocate %zd bytes",
5058 (size_t)(bufsize
* vm_pageout_state
.vm_compressor_thread_count
));
5061 for (int i
= 0; i
< vm_pageout_state
.vm_compressor_thread_count
; i
++) {
5063 ciq
[i
].q
= &vm_pageout_queue_internal
;
5064 ciq
[i
].current_chead
= NULL
;
5065 ciq
[i
].scratch_buf
= (char *)(buf
+ i
* bufsize
);
5067 result
= kernel_thread_start_priority((thread_continue_t
)vm_pageout_iothread_internal
,
5068 (void *)&ciq
[i
], BASEPRI_VM
,
5069 &vm_pageout_state
.vm_pageout_internal_iothread
);
5071 if (result
== KERN_SUCCESS
) {
5072 thread_deallocate(vm_pageout_state
.vm_pageout_internal_iothread
);
5082 * To support I/O Expedite for compressed files we mark the upls with special flags.
5083 * The way decmpfs works is that we create a big upl which marks all the pages needed to
5084 * represent the compressed file as busy. We tag this upl with the flag UPL_DECMP_REQ. Decmpfs
5085 * then issues smaller I/Os for compressed I/Os, deflates them and puts the data into the pages
5086 * being held in the big original UPL. We mark each of these smaller UPLs with the flag
5087 * UPL_DECMP_REAL_IO. Any outstanding real I/O UPL is tracked by the big req upl using the
5088 * decmp_io_upl field (in the upl structure). This link is protected in the forward direction
5089 * by the req upl lock (the reverse link doesnt need synch. since we never inspect this link
5090 * unless the real I/O upl is being destroyed).
5095 upl_set_decmp_info(upl_t upl
, upl_t src_upl
)
5097 assert((src_upl
->flags
& UPL_DECMP_REQ
) != 0);
5100 if (src_upl
->decmp_io_upl
) {
5102 * If there is already an alive real I/O UPL, ignore this new UPL.
5103 * This case should rarely happen and even if it does, it just means
5104 * that we might issue a spurious expedite which the driver is expected
5107 upl_unlock(src_upl
);
5110 src_upl
->decmp_io_upl
= (void *)upl
;
5111 src_upl
->ref_count
++;
5113 upl
->flags
|= UPL_DECMP_REAL_IO
;
5114 upl
->decmp_io_upl
= (void *)src_upl
;
5115 upl_unlock(src_upl
);
5117 #endif /* CONFIG_IOSCHED */
5120 int upl_debug_enabled
= 1;
5122 int upl_debug_enabled
= 0;
5126 upl_create(int type
, int flags
, upl_size_t size
)
5129 vm_size_t page_field_size
= 0;
5131 vm_size_t upl_size
= sizeof(struct upl
);
5133 assert(page_aligned(size
));
5135 size
= round_page_32(size
);
5137 if (type
& UPL_CREATE_LITE
) {
5138 page_field_size
= (atop(size
) + 7) >> 3;
5139 page_field_size
= (page_field_size
+ 3) & 0xFFFFFFFC;
5141 upl_flags
|= UPL_LITE
;
5143 if (type
& UPL_CREATE_INTERNAL
) {
5144 upl_size
+= sizeof(struct upl_page_info
) * atop(size
);
5146 upl_flags
|= UPL_INTERNAL
;
5148 upl
= (upl_t
)kalloc(upl_size
+ page_field_size
);
5150 if (page_field_size
) {
5151 bzero((char *)upl
+ upl_size
, page_field_size
);
5154 upl
->flags
= upl_flags
| flags
;
5155 upl
->kaddr
= (vm_offset_t
)0;
5158 upl
->map_object
= NULL
;
5160 upl
->ext_ref_count
= 0;
5161 upl
->highest_page
= 0;
5163 upl
->vector_upl
= NULL
;
5164 upl
->associated_upl
= NULL
;
5165 upl
->upl_iodone
= NULL
;
5167 if (type
& UPL_CREATE_IO_TRACKING
) {
5168 upl
->upl_priority
= proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO
);
5171 upl
->upl_reprio_info
= 0;
5172 upl
->decmp_io_upl
= 0;
5173 if ((type
& UPL_CREATE_INTERNAL
) && (type
& UPL_CREATE_EXPEDITE_SUP
)) {
5174 /* Only support expedite on internal UPLs */
5175 thread_t curthread
= current_thread();
5176 upl
->upl_reprio_info
= (uint64_t *)kalloc(sizeof(uint64_t) * atop(size
));
5177 bzero(upl
->upl_reprio_info
, (sizeof(uint64_t) * atop(size
)));
5178 upl
->flags
|= UPL_EXPEDITE_SUPPORTED
;
5179 if (curthread
->decmp_upl
!= NULL
) {
5180 upl_set_decmp_info(upl
, curthread
->decmp_upl
);
5184 #if CONFIG_IOSCHED || UPL_DEBUG
5185 if ((type
& UPL_CREATE_IO_TRACKING
) || upl_debug_enabled
) {
5186 upl
->upl_creator
= current_thread();
5189 upl
->flags
|= UPL_TRACKED_BY_OBJECT
;
5194 upl
->ubc_alias1
= 0;
5195 upl
->ubc_alias2
= 0;
5198 upl
->upl_commit_index
= 0;
5199 bzero(&upl
->upl_commit_records
[0], sizeof(upl
->upl_commit_records
));
5201 (void) OSBacktrace(&upl
->upl_create_retaddr
[0], UPL_DEBUG_STACK_FRAMES
);
5202 #endif /* UPL_DEBUG */
5208 upl_destroy(upl_t upl
)
5210 int page_field_size
; /* bit field in word size buf */
5213 // DEBUG4K_UPL("upl %p (u_offset 0x%llx u_size 0x%llx) object %p\n", upl, (uint64_t)upl->u_offset, (uint64_t)upl->u_size, upl->map_object);
5215 if (upl
->ext_ref_count
) {
5216 panic("upl(%p) ext_ref_count", upl
);
5220 if ((upl
->flags
& UPL_DECMP_REAL_IO
) && upl
->decmp_io_upl
) {
5222 src_upl
= upl
->decmp_io_upl
;
5223 assert((src_upl
->flags
& UPL_DECMP_REQ
) != 0);
5225 src_upl
->decmp_io_upl
= NULL
;
5226 upl_unlock(src_upl
);
5227 upl_deallocate(src_upl
);
5229 #endif /* CONFIG_IOSCHED */
5231 #if CONFIG_IOSCHED || UPL_DEBUG
5232 if (((upl
->flags
& UPL_TRACKED_BY_OBJECT
) || upl_debug_enabled
) &&
5233 !(upl
->flags
& UPL_VECTOR
)) {
5236 if (upl
->flags
& UPL_SHADOWED
) {
5237 object
= upl
->map_object
->shadow
;
5239 object
= upl
->map_object
;
5242 vm_object_lock(object
);
5243 queue_remove(&object
->uplq
, upl
, upl_t
, uplq
);
5244 vm_object_activity_end(object
);
5245 vm_object_collapse(object
, 0, TRUE
);
5246 vm_object_unlock(object
);
5250 * drop a reference on the map_object whether or
5251 * not a pageout object is inserted
5253 if (upl
->flags
& UPL_SHADOWED
) {
5254 vm_object_deallocate(upl
->map_object
);
5257 if (upl
->flags
& UPL_DEVICE_MEMORY
) {
5260 size
= upl_adjusted_size(upl
, PAGE_MASK
);
5262 page_field_size
= 0;
5264 if (upl
->flags
& UPL_LITE
) {
5265 page_field_size
= ((size
/ PAGE_SIZE
) + 7) >> 3;
5266 page_field_size
= (page_field_size
+ 3) & 0xFFFFFFFC;
5268 upl_lock_destroy(upl
);
5269 upl
->vector_upl
= (vector_upl_t
) 0xfeedbeef;
5272 if (upl
->flags
& UPL_EXPEDITE_SUPPORTED
) {
5273 kfree(upl
->upl_reprio_info
, sizeof(uint64_t) * (size
/ PAGE_SIZE
));
5277 if (upl
->flags
& UPL_INTERNAL
) {
5279 sizeof(struct upl
) +
5280 (sizeof(struct upl_page_info
) * (size
/ PAGE_SIZE
))
5283 kfree(upl
, sizeof(struct upl
) + page_field_size
);
5288 upl_deallocate(upl_t upl
)
5292 if (--upl
->ref_count
== 0) {
5293 if (vector_upl_is_valid(upl
)) {
5294 vector_upl_deallocate(upl
);
5298 if (upl
->upl_iodone
) {
5299 upl_callout_iodone(upl
);
5310 upl_mark_decmp(upl_t upl
)
5312 if (upl
->flags
& UPL_TRACKED_BY_OBJECT
) {
5313 upl
->flags
|= UPL_DECMP_REQ
;
5314 upl
->upl_creator
->decmp_upl
= (void *)upl
;
5319 upl_unmark_decmp(upl_t upl
)
5321 if (upl
&& (upl
->flags
& UPL_DECMP_REQ
)) {
5322 upl
->upl_creator
->decmp_upl
= NULL
;
5326 #endif /* CONFIG_IOSCHED */
5328 #define VM_PAGE_Q_BACKING_UP(q) \
5329 ((q)->pgo_laundry >= (((q)->pgo_maxlaundry * 8) / 10))
5331 boolean_t
must_throttle_writes(void);
5334 must_throttle_writes()
5336 if (VM_PAGE_Q_BACKING_UP(&vm_pageout_queue_external
) &&
5337 vm_page_pageable_external_count
> (AVAILABLE_NON_COMPRESSED_MEMORY
* 6) / 10) {
5344 #define MIN_DELAYED_WORK_CTX_ALLOCATED (16)
5345 #define MAX_DELAYED_WORK_CTX_ALLOCATED (512)
5347 int vm_page_delayed_work_ctx_needed
= 0;
5348 SECURITY_READ_ONLY_LATE(zone_t
) dw_ctx_zone
;
5351 vm_page_delayed_work_init_ctx(void)
5353 size_t elem_size
= sizeof(struct vm_page_delayed_work_ctx
);
5355 dw_ctx_zone
= zone_create_ext("delayed-work-ctx", elem_size
,
5356 ZC_NOGC
, ZONE_ID_ANY
, ^(zone_t z
) {
5357 zone_set_exhaustible(z
, MAX_DELAYED_WORK_CTX_ALLOCATED
);
5360 zone_fill_initially(dw_ctx_zone
, MIN_DELAYED_WORK_CTX_ALLOCATED
);
5363 struct vm_page_delayed_work
*
5364 vm_page_delayed_work_get_ctx(void)
5366 struct vm_page_delayed_work_ctx
* dw_ctx
= NULL
;
5368 dw_ctx
= (struct vm_page_delayed_work_ctx
*) zalloc_noblock(dw_ctx_zone
);
5371 dw_ctx
->delayed_owner
= current_thread();
5373 vm_page_delayed_work_ctx_needed
++;
5375 return dw_ctx
? dw_ctx
->dwp
: NULL
;
5379 vm_page_delayed_work_finish_ctx(struct vm_page_delayed_work
* dwp
)
5381 struct vm_page_delayed_work_ctx
*ldw_ctx
;
5383 ldw_ctx
= (struct vm_page_delayed_work_ctx
*)dwp
;
5384 ldw_ctx
->delayed_owner
= NULL
;
5386 zfree(dw_ctx_zone
, ldw_ctx
);
5390 * Routine: vm_object_upl_request
5392 * Cause the population of a portion of a vm_object.
5393 * Depending on the nature of the request, the pages
5394 * returned may be contain valid data or be uninitialized.
5395 * A page list structure, listing the physical pages
5396 * will be returned upon request.
5397 * This function is called by the file system or any other
5398 * supplier of backing store to a pager.
5399 * IMPORTANT NOTE: The caller must still respect the relationship
5400 * between the vm_object and its backing memory object. The
5401 * caller MUST NOT substitute changes in the backing file
5402 * without first doing a memory_object_lock_request on the
5403 * target range unless it is know that the pages are not
5404 * shared with another entity at the pager level.
5406 * if a page list structure is present
5407 * return the mapped physical pages, where a
5408 * page is not present, return a non-initialized
5409 * one. If the no_sync bit is turned on, don't
5410 * call the pager unlock to synchronize with other
5411 * possible copies of the page. Leave pages busy
5412 * in the original object, if a page list structure
5413 * was specified. When a commit of the page list
5414 * pages is done, the dirty bit will be set for each one.
5416 * If a page list structure is present, return
5417 * all mapped pages. Where a page does not exist
5418 * map a zero filled one. Leave pages busy in
5419 * the original object. If a page list structure
5420 * is not specified, this call is a no-op.
5422 * Note: access of default pager objects has a rather interesting
5423 * twist. The caller of this routine, presumably the file system
5424 * page cache handling code, will never actually make a request
5425 * against a default pager backed object. Only the default
5426 * pager will make requests on backing store related vm_objects
5427 * In this way the default pager can maintain the relationship
5428 * between backing store files (abstract memory objects) and
5429 * the vm_objects (cache objects), they support.
5433 __private_extern__ kern_return_t
5434 vm_object_upl_request(
5436 vm_object_offset_t offset
,
5439 upl_page_info_array_t user_page_list
,
5440 unsigned int *page_list_count
,
5441 upl_control_flags_t cntrl_flags
,
5444 vm_page_t dst_page
= VM_PAGE_NULL
;
5445 vm_object_offset_t dst_offset
;
5446 upl_size_t xfer_size
;
5447 unsigned int size_in_pages
;
5452 vm_page_t alias_page
= NULL
;
5453 int refmod_state
= 0;
5454 wpl_array_t lite_list
= NULL
;
5455 vm_object_t last_copy_object
;
5456 struct vm_page_delayed_work dw_array
;
5457 struct vm_page_delayed_work
*dwp
, *dwp_start
;
5458 bool dwp_finish_ctx
= TRUE
;
5461 int io_tracking_flag
= 0;
5463 int page_grab_count
= 0;
5465 pmap_flush_context pmap_flush_context_storage
;
5466 boolean_t pmap_flushes_delayed
= FALSE
;
5467 #if DEVELOPMENT || DEBUG
5468 task_t task
= current_task();
5469 #endif /* DEVELOPMENT || DEBUG */
5471 dwp_start
= dwp
= NULL
;
5473 if (cntrl_flags
& ~UPL_VALID_FLAGS
) {
5475 * For forward compatibility's sake,
5476 * reject any unknown flag.
5478 return KERN_INVALID_VALUE
;
5480 if ((!object
->internal
) && (object
->paging_offset
!= 0)) {
5481 panic("vm_object_upl_request: external object with non-zero paging offset\n");
5483 if (object
->phys_contiguous
) {
5484 panic("vm_object_upl_request: contiguous object specified\n");
5487 assertf(page_aligned(offset
) && page_aligned(size
),
5488 "offset 0x%llx size 0x%x",
5491 VM_DEBUG_CONSTANT_EVENT(vm_object_upl_request
, VM_UPL_REQUEST
, DBG_FUNC_START
, size
, cntrl_flags
, 0, 0);
5494 dw_limit
= DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT
);
5495 dwp_start
= vm_page_delayed_work_get_ctx();
5496 if (dwp_start
== NULL
) {
5497 dwp_start
= &dw_array
;
5499 dwp_finish_ctx
= FALSE
;
5504 if (size
> MAX_UPL_SIZE_BYTES
) {
5505 size
= MAX_UPL_SIZE_BYTES
;
5508 if ((cntrl_flags
& UPL_SET_INTERNAL
) && page_list_count
!= NULL
) {
5509 *page_list_count
= MAX_UPL_SIZE_BYTES
>> PAGE_SHIFT
;
5512 #if CONFIG_IOSCHED || UPL_DEBUG
5513 if (object
->io_tracking
|| upl_debug_enabled
) {
5514 io_tracking_flag
|= UPL_CREATE_IO_TRACKING
;
5518 if (object
->io_tracking
) {
5519 io_tracking_flag
|= UPL_CREATE_EXPEDITE_SUP
;
5523 if (cntrl_flags
& UPL_SET_INTERNAL
) {
5524 if (cntrl_flags
& UPL_SET_LITE
) {
5525 upl
= upl_create(UPL_CREATE_INTERNAL
| UPL_CREATE_LITE
| io_tracking_flag
, 0, size
);
5527 user_page_list
= (upl_page_info_t
*) (((uintptr_t)upl
) + sizeof(struct upl
));
5528 lite_list
= (wpl_array_t
)
5529 (((uintptr_t)user_page_list
) +
5530 ((size
/ PAGE_SIZE
) * sizeof(upl_page_info_t
)));
5532 user_page_list
= NULL
;
5536 upl
= upl_create(UPL_CREATE_INTERNAL
| io_tracking_flag
, 0, size
);
5538 user_page_list
= (upl_page_info_t
*) (((uintptr_t)upl
) + sizeof(struct upl
));
5540 user_page_list
= NULL
;
5544 if (cntrl_flags
& UPL_SET_LITE
) {
5545 upl
= upl_create(UPL_CREATE_EXTERNAL
| UPL_CREATE_LITE
| io_tracking_flag
, 0, size
);
5547 lite_list
= (wpl_array_t
) (((uintptr_t)upl
) + sizeof(struct upl
));
5552 upl
= upl_create(UPL_CREATE_EXTERNAL
| io_tracking_flag
, 0, size
);
5557 if (user_page_list
) {
5558 user_page_list
[0].device
= FALSE
;
5561 if (cntrl_flags
& UPL_SET_LITE
) {
5562 upl
->map_object
= object
;
5564 upl
->map_object
= vm_object_allocate(size
);
5566 * No neeed to lock the new object: nobody else knows
5567 * about it yet, so it's all ours so far.
5569 upl
->map_object
->shadow
= object
;
5570 upl
->map_object
->pageout
= TRUE
;
5571 upl
->map_object
->can_persist
= FALSE
;
5572 upl
->map_object
->copy_strategy
= MEMORY_OBJECT_COPY_NONE
;
5573 upl
->map_object
->vo_shadow_offset
= offset
;
5574 upl
->map_object
->wimg_bits
= object
->wimg_bits
;
5575 assertf(page_aligned(upl
->map_object
->vo_shadow_offset
),
5576 "object %p shadow_offset 0x%llx",
5577 upl
->map_object
, upl
->map_object
->vo_shadow_offset
);
5579 alias_page
= vm_page_grab_fictitious(TRUE
);
5581 upl
->flags
|= UPL_SHADOWED
;
5583 if (cntrl_flags
& UPL_FOR_PAGEOUT
) {
5584 upl
->flags
|= UPL_PAGEOUT
;
5587 vm_object_lock(object
);
5588 vm_object_activity_begin(object
);
5591 #if CONFIG_SECLUDED_MEMORY
5592 if (object
->can_grab_secluded
) {
5593 grab_options
|= VM_PAGE_GRAB_SECLUDED
;
5595 #endif /* CONFIG_SECLUDED_MEMORY */
5598 * we can lock in the paging_offset once paging_in_progress is set
5601 upl
->u_offset
= offset
+ object
->paging_offset
;
5603 #if CONFIG_IOSCHED || UPL_DEBUG
5604 if (object
->io_tracking
|| upl_debug_enabled
) {
5605 vm_object_activity_begin(object
);
5606 queue_enter(&object
->uplq
, upl
, upl_t
, uplq
);
5609 if ((cntrl_flags
& UPL_WILL_MODIFY
) && object
->copy
!= VM_OBJECT_NULL
) {
5611 * Honor copy-on-write obligations
5613 * The caller is gathering these pages and
5614 * might modify their contents. We need to
5615 * make sure that the copy object has its own
5616 * private copies of these pages before we let
5617 * the caller modify them.
5619 vm_object_update(object
,
5624 FALSE
, /* should_return */
5625 MEMORY_OBJECT_COPY_SYNC
,
5628 VM_PAGEOUT_DEBUG(upl_cow
, 1);
5629 VM_PAGEOUT_DEBUG(upl_cow_pages
, (size
>> PAGE_SHIFT
));
5632 * remember which copy object we synchronized with
5634 last_copy_object
= object
->copy
;
5638 dst_offset
= offset
;
5639 size_in_pages
= size
/ PAGE_SIZE
;
5641 if (vm_page_free_count
> (vm_page_free_target
+ size_in_pages
) ||
5642 object
->resident_page_count
< ((MAX_UPL_SIZE_BYTES
* 2) >> PAGE_SHIFT
)) {
5643 object
->scan_collisions
= 0;
5646 if ((cntrl_flags
& UPL_WILL_MODIFY
) && must_throttle_writes() == TRUE
) {
5647 boolean_t isSSD
= FALSE
;
5649 #if !XNU_TARGET_OS_OSX
5651 #else /* !XNU_TARGET_OS_OSX */
5652 vnode_pager_get_isSSD(object
->pager
, &isSSD
);
5653 #endif /* !XNU_TARGET_OS_OSX */
5654 vm_object_unlock(object
);
5656 OSAddAtomic(size_in_pages
, &vm_upl_wait_for_pages
);
5658 if (isSSD
== TRUE
) {
5659 delay(1000 * size_in_pages
);
5661 delay(5000 * size_in_pages
);
5663 OSAddAtomic(-size_in_pages
, &vm_upl_wait_for_pages
);
5665 vm_object_lock(object
);
5671 if ((alias_page
== NULL
) && !(cntrl_flags
& UPL_SET_LITE
)) {
5672 vm_object_unlock(object
);
5673 alias_page
= vm_page_grab_fictitious(TRUE
);
5674 vm_object_lock(object
);
5676 if (cntrl_flags
& UPL_COPYOUT_FROM
) {
5677 upl
->flags
|= UPL_PAGE_SYNC_DONE
;
5679 if (((dst_page
= vm_page_lookup(object
, dst_offset
)) == VM_PAGE_NULL
) ||
5680 dst_page
->vmp_fictitious
||
5681 dst_page
->vmp_absent
||
5682 dst_page
->vmp_error
||
5683 dst_page
->vmp_cleaning
||
5684 (VM_PAGE_WIRED(dst_page
))) {
5685 if (user_page_list
) {
5686 user_page_list
[entry
].phys_addr
= 0;
5691 phys_page
= VM_PAGE_GET_PHYS_PAGE(dst_page
);
5694 * grab this up front...
5695 * a high percentange of the time we're going to
5696 * need the hardware modification state a bit later
5697 * anyway... so we can eliminate an extra call into
5698 * the pmap layer by grabbing it here and recording it
5700 if (dst_page
->vmp_pmapped
) {
5701 refmod_state
= pmap_get_refmod(phys_page
);
5706 if ((refmod_state
& VM_MEM_REFERENCED
) && VM_PAGE_INACTIVE(dst_page
)) {
5708 * page is on inactive list and referenced...
5709 * reactivate it now... this gets it out of the
5710 * way of vm_pageout_scan which would have to
5711 * reactivate it upon tripping over it
5713 dwp
->dw_mask
|= DW_vm_page_activate
;
5715 if (cntrl_flags
& UPL_RET_ONLY_DIRTY
) {
5717 * we're only asking for DIRTY pages to be returned
5719 if (dst_page
->vmp_laundry
|| !(cntrl_flags
& UPL_FOR_PAGEOUT
)) {
5721 * if we were the page stolen by vm_pageout_scan to be
5722 * cleaned (as opposed to a buddy being clustered in
5723 * or this request is not being driven by a PAGEOUT cluster
5724 * then we only need to check for the page being dirty or
5725 * precious to decide whether to return it
5727 if (dst_page
->vmp_dirty
|| dst_page
->vmp_precious
|| (refmod_state
& VM_MEM_MODIFIED
)) {
5733 * this is a request for a PAGEOUT cluster and this page
5734 * is merely along for the ride as a 'buddy'... not only
5735 * does it have to be dirty to be returned, but it also
5736 * can't have been referenced recently...
5738 if ((hibernate_cleaning_in_progress
== TRUE
||
5739 (!((refmod_state
& VM_MEM_REFERENCED
) || dst_page
->vmp_reference
) ||
5740 (dst_page
->vmp_q_state
== VM_PAGE_ON_THROTTLED_Q
))) &&
5741 ((refmod_state
& VM_MEM_MODIFIED
) || dst_page
->vmp_dirty
|| dst_page
->vmp_precious
)) {
5746 * if we reach here, we're not to return
5747 * the page... go on to the next one
5749 if (dst_page
->vmp_laundry
== TRUE
) {
5751 * if we get here, the page is not 'cleaning' (filtered out above).
5752 * since it has been referenced, remove it from the laundry
5753 * so we don't pay the cost of an I/O to clean a page
5754 * we're just going to take back
5756 vm_page_lockspin_queues();
5758 vm_pageout_steal_laundry(dst_page
, TRUE
);
5759 vm_page_activate(dst_page
);
5761 vm_page_unlock_queues();
5763 if (user_page_list
) {
5764 user_page_list
[entry
].phys_addr
= 0;
5770 if (dst_page
->vmp_busy
) {
5771 if (cntrl_flags
& UPL_NOBLOCK
) {
5772 if (user_page_list
) {
5773 user_page_list
[entry
].phys_addr
= 0;
5780 * someone else is playing with the
5781 * page. We will have to wait.
5783 PAGE_SLEEP(object
, dst_page
, THREAD_UNINT
);
5787 if (dst_page
->vmp_q_state
== VM_PAGE_ON_PAGEOUT_Q
) {
5788 vm_page_lockspin_queues();
5790 if (dst_page
->vmp_q_state
== VM_PAGE_ON_PAGEOUT_Q
) {
5792 * we've buddied up a page for a clustered pageout
5793 * that has already been moved to the pageout
5794 * queue by pageout_scan... we need to remove
5795 * it from the queue and drop the laundry count
5798 vm_pageout_throttle_up(dst_page
);
5800 vm_page_unlock_queues();
5802 hw_dirty
= refmod_state
& VM_MEM_MODIFIED
;
5803 dirty
= hw_dirty
? TRUE
: dst_page
->vmp_dirty
;
5805 if (phys_page
> upl
->highest_page
) {
5806 upl
->highest_page
= phys_page
;
5809 assert(!pmap_is_noencrypt(phys_page
));
5811 if (cntrl_flags
& UPL_SET_LITE
) {
5812 unsigned int pg_num
;
5814 pg_num
= (unsigned int) ((dst_offset
- offset
) / PAGE_SIZE
);
5815 assert(pg_num
== (dst_offset
- offset
) / PAGE_SIZE
);
5816 lite_list
[pg_num
>> 5] |= 1U << (pg_num
& 31);
5819 if (pmap_flushes_delayed
== FALSE
) {
5820 pmap_flush_context_init(&pmap_flush_context_storage
);
5821 pmap_flushes_delayed
= TRUE
;
5823 pmap_clear_refmod_options(phys_page
,
5825 PMAP_OPTIONS_NOFLUSH
| PMAP_OPTIONS_CLEAR_WRITE
,
5826 &pmap_flush_context_storage
);
5830 * Mark original page as cleaning
5833 dst_page
->vmp_cleaning
= TRUE
;
5834 dst_page
->vmp_precious
= FALSE
;
5837 * use pageclean setup, it is more
5838 * convenient even for the pageout
5841 vm_object_lock(upl
->map_object
);
5842 vm_pageclean_setup(dst_page
, alias_page
, upl
->map_object
, size
- xfer_size
);
5843 vm_object_unlock(upl
->map_object
);
5845 alias_page
->vmp_absent
= FALSE
;
5849 SET_PAGE_DIRTY(dst_page
, FALSE
);
5851 dst_page
->vmp_dirty
= FALSE
;
5855 dst_page
->vmp_precious
= TRUE
;
5858 if (!(cntrl_flags
& UPL_CLEAN_IN_PLACE
)) {
5859 if (!VM_PAGE_WIRED(dst_page
)) {
5860 dst_page
->vmp_free_when_done
= TRUE
;
5864 if ((cntrl_flags
& UPL_WILL_MODIFY
) && object
->copy
!= last_copy_object
) {
5866 * Honor copy-on-write obligations
5868 * The copy object has changed since we
5869 * last synchronized for copy-on-write.
5870 * Another copy object might have been
5871 * inserted while we released the object's
5872 * lock. Since someone could have seen the
5873 * original contents of the remaining pages
5874 * through that new object, we have to
5875 * synchronize with it again for the remaining
5876 * pages only. The previous pages are "busy"
5877 * so they can not be seen through the new
5878 * mapping. The new mapping will see our
5879 * upcoming changes for those previous pages,
5880 * but that's OK since they couldn't see what
5881 * was there before. It's just a race anyway
5882 * and there's no guarantee of consistency or
5883 * atomicity. We just don't want new mappings
5884 * to see both the *before* and *after* pages.
5886 if (object
->copy
!= VM_OBJECT_NULL
) {
5889 dst_offset
,/* current offset */
5890 xfer_size
, /* remaining size */
5893 FALSE
, /* should_return */
5894 MEMORY_OBJECT_COPY_SYNC
,
5897 VM_PAGEOUT_DEBUG(upl_cow_again
, 1);
5898 VM_PAGEOUT_DEBUG(upl_cow_again_pages
, (xfer_size
>> PAGE_SHIFT
));
5901 * remember the copy object we synced with
5903 last_copy_object
= object
->copy
;
5905 dst_page
= vm_page_lookup(object
, dst_offset
);
5907 if (dst_page
!= VM_PAGE_NULL
) {
5908 if ((cntrl_flags
& UPL_RET_ONLY_ABSENT
)) {
5910 * skip over pages already present in the cache
5912 if (user_page_list
) {
5913 user_page_list
[entry
].phys_addr
= 0;
5918 if (dst_page
->vmp_fictitious
) {
5919 panic("need corner case for fictitious page");
5922 if (dst_page
->vmp_busy
|| dst_page
->vmp_cleaning
) {
5924 * someone else is playing with the
5925 * page. We will have to wait.
5927 PAGE_SLEEP(object
, dst_page
, THREAD_UNINT
);
5931 if (dst_page
->vmp_laundry
) {
5932 vm_pageout_steal_laundry(dst_page
, FALSE
);
5935 if (object
->private) {
5937 * This is a nasty wrinkle for users
5938 * of upl who encounter device or
5939 * private memory however, it is
5940 * unavoidable, only a fault can
5941 * resolve the actual backing
5942 * physical page by asking the
5945 if (user_page_list
) {
5946 user_page_list
[entry
].phys_addr
= 0;
5951 if (object
->scan_collisions
) {
5953 * the pageout_scan thread is trying to steal
5954 * pages from this object, but has run into our
5955 * lock... grab 2 pages from the head of the object...
5956 * the first is freed on behalf of pageout_scan, the
5957 * 2nd is for our own use... we use vm_object_page_grab
5958 * in both cases to avoid taking pages from the free
5959 * list since we are under memory pressure and our
5960 * lock on this object is getting in the way of
5963 dst_page
= vm_object_page_grab(object
);
5965 if (dst_page
!= VM_PAGE_NULL
) {
5966 vm_page_release(dst_page
,
5970 dst_page
= vm_object_page_grab(object
);
5972 if (dst_page
== VM_PAGE_NULL
) {
5974 * need to allocate a page
5976 dst_page
= vm_page_grab_options(grab_options
);
5977 if (dst_page
!= VM_PAGE_NULL
) {
5981 if (dst_page
== VM_PAGE_NULL
) {
5982 if ((cntrl_flags
& (UPL_RET_ONLY_ABSENT
| UPL_NOBLOCK
)) == (UPL_RET_ONLY_ABSENT
| UPL_NOBLOCK
)) {
5984 * we don't want to stall waiting for pages to come onto the free list
5985 * while we're already holding absent pages in this UPL
5986 * the caller will deal with the empty slots
5988 if (user_page_list
) {
5989 user_page_list
[entry
].phys_addr
= 0;
5995 * no pages available... wait
5996 * then try again for the same
5999 vm_object_unlock(object
);
6001 OSAddAtomic(size_in_pages
, &vm_upl_wait_for_pages
);
6003 VM_DEBUG_EVENT(vm_upl_page_wait
, VM_UPL_PAGE_WAIT
, DBG_FUNC_START
, vm_upl_wait_for_pages
, 0, 0, 0);
6006 OSAddAtomic(-size_in_pages
, &vm_upl_wait_for_pages
);
6008 VM_DEBUG_EVENT(vm_upl_page_wait
, VM_UPL_PAGE_WAIT
, DBG_FUNC_END
, vm_upl_wait_for_pages
, 0, 0, 0);
6010 vm_object_lock(object
);
6014 vm_page_insert(dst_page
, object
, dst_offset
);
6016 dst_page
->vmp_absent
= TRUE
;
6017 dst_page
->vmp_busy
= FALSE
;
6019 if (cntrl_flags
& UPL_RET_ONLY_ABSENT
) {
6021 * if UPL_RET_ONLY_ABSENT was specified,
6022 * than we're definitely setting up a
6023 * upl for a clustered read/pagein
6024 * operation... mark the pages as clustered
6025 * so upl_commit_range can put them on the
6028 dst_page
->vmp_clustered
= TRUE
;
6030 if (!(cntrl_flags
& UPL_FILE_IO
)) {
6031 counter_inc(&vm_statistics_pageins
);
6035 phys_page
= VM_PAGE_GET_PHYS_PAGE(dst_page
);
6037 dst_page
->vmp_overwriting
= TRUE
;
6039 if (dst_page
->vmp_pmapped
) {
6040 if (!(cntrl_flags
& UPL_FILE_IO
)) {
6042 * eliminate all mappings from the
6043 * original object and its prodigy
6045 refmod_state
= pmap_disconnect(phys_page
);
6047 refmod_state
= pmap_get_refmod(phys_page
);
6053 hw_dirty
= refmod_state
& VM_MEM_MODIFIED
;
6054 dirty
= hw_dirty
? TRUE
: dst_page
->vmp_dirty
;
6056 if (cntrl_flags
& UPL_SET_LITE
) {
6057 unsigned int pg_num
;
6059 pg_num
= (unsigned int) ((dst_offset
- offset
) / PAGE_SIZE
);
6060 assert(pg_num
== (dst_offset
- offset
) / PAGE_SIZE
);
6061 lite_list
[pg_num
>> 5] |= 1U << (pg_num
& 31);
6064 pmap_clear_modify(phys_page
);
6068 * Mark original page as cleaning
6071 dst_page
->vmp_cleaning
= TRUE
;
6072 dst_page
->vmp_precious
= FALSE
;
6075 * use pageclean setup, it is more
6076 * convenient even for the pageout
6079 vm_object_lock(upl
->map_object
);
6080 vm_pageclean_setup(dst_page
, alias_page
, upl
->map_object
, size
- xfer_size
);
6081 vm_object_unlock(upl
->map_object
);
6083 alias_page
->vmp_absent
= FALSE
;
6087 if (cntrl_flags
& UPL_REQUEST_SET_DIRTY
) {
6088 upl
->flags
&= ~UPL_CLEAR_DIRTY
;
6089 upl
->flags
|= UPL_SET_DIRTY
;
6092 * Page belonging to a code-signed object is about to
6093 * be written. Mark it tainted and disconnect it from
6094 * all pmaps so processes have to fault it back in and
6095 * deal with the tainted bit.
6097 if (object
->code_signed
&& dst_page
->vmp_cs_tainted
!= VMP_CS_ALL_TRUE
) {
6098 dst_page
->vmp_cs_tainted
= VMP_CS_ALL_TRUE
;
6099 vm_page_upl_tainted
++;
6100 if (dst_page
->vmp_pmapped
) {
6101 refmod_state
= pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(dst_page
));
6102 if (refmod_state
& VM_MEM_REFERENCED
) {
6103 dst_page
->vmp_reference
= TRUE
;
6107 } else if (cntrl_flags
& UPL_CLEAN_IN_PLACE
) {
6109 * clean in place for read implies
6110 * that a write will be done on all
6111 * the pages that are dirty before
6112 * a upl commit is done. The caller
6113 * is obligated to preserve the
6114 * contents of all pages marked dirty
6116 upl
->flags
|= UPL_CLEAR_DIRTY
;
6118 dst_page
->vmp_dirty
= dirty
;
6121 dst_page
->vmp_precious
= TRUE
;
6124 if (!VM_PAGE_WIRED(dst_page
)) {
6126 * deny access to the target page while
6127 * it is being worked on
6129 dst_page
->vmp_busy
= TRUE
;
6131 dwp
->dw_mask
|= DW_vm_page_wire
;
6135 * We might be about to satisfy a fault which has been
6136 * requested. So no need for the "restart" bit.
6138 dst_page
->vmp_restart
= FALSE
;
6139 if (!dst_page
->vmp_absent
&& !(cntrl_flags
& UPL_WILL_MODIFY
)) {
6141 * expect the page to be used
6143 dwp
->dw_mask
|= DW_set_reference
;
6145 if (cntrl_flags
& UPL_PRECIOUS
) {
6146 if (object
->internal
) {
6147 SET_PAGE_DIRTY(dst_page
, FALSE
);
6148 dst_page
->vmp_precious
= FALSE
;
6150 dst_page
->vmp_precious
= TRUE
;
6153 dst_page
->vmp_precious
= FALSE
;
6156 if (dst_page
->vmp_busy
) {
6157 upl
->flags
|= UPL_HAS_BUSY
;
6160 if (phys_page
> upl
->highest_page
) {
6161 upl
->highest_page
= phys_page
;
6163 assert(!pmap_is_noencrypt(phys_page
));
6164 if (user_page_list
) {
6165 user_page_list
[entry
].phys_addr
= phys_page
;
6166 user_page_list
[entry
].free_when_done
= dst_page
->vmp_free_when_done
;
6167 user_page_list
[entry
].absent
= dst_page
->vmp_absent
;
6168 user_page_list
[entry
].dirty
= dst_page
->vmp_dirty
;
6169 user_page_list
[entry
].precious
= dst_page
->vmp_precious
;
6170 user_page_list
[entry
].device
= FALSE
;
6171 user_page_list
[entry
].needed
= FALSE
;
6172 if (dst_page
->vmp_clustered
== TRUE
) {
6173 user_page_list
[entry
].speculative
= (dst_page
->vmp_q_state
== VM_PAGE_ON_SPECULATIVE_Q
) ? TRUE
: FALSE
;
6175 user_page_list
[entry
].speculative
= FALSE
;
6177 user_page_list
[entry
].cs_validated
= dst_page
->vmp_cs_validated
;
6178 user_page_list
[entry
].cs_tainted
= dst_page
->vmp_cs_tainted
;
6179 user_page_list
[entry
].cs_nx
= dst_page
->vmp_cs_nx
;
6180 user_page_list
[entry
].mark
= FALSE
;
6183 * if UPL_RET_ONLY_ABSENT is set, then
6184 * we are working with a fresh page and we've
6185 * just set the clustered flag on it to
6186 * indicate that it was drug in as part of a
6187 * speculative cluster... so leave it alone
6189 if (!(cntrl_flags
& UPL_RET_ONLY_ABSENT
)) {
6191 * someone is explicitly grabbing this page...
6192 * update clustered and speculative state
6195 if (dst_page
->vmp_clustered
) {
6196 VM_PAGE_CONSUME_CLUSTERED(dst_page
);
6201 if (dwp
->dw_mask
& DW_vm_page_activate
) {
6202 counter_inc(&vm_statistics_reactivations
);
6205 VM_PAGE_ADD_DELAYED_WORK(dwp
, dst_page
, dw_count
);
6207 if (dw_count
>= dw_limit
) {
6208 vm_page_do_delayed_work(object
, tag
, dwp_start
, dw_count
);
6215 dst_offset
+= PAGE_SIZE_64
;
6216 xfer_size
-= PAGE_SIZE
;
6219 vm_page_do_delayed_work(object
, tag
, dwp_start
, dw_count
);
6224 if (alias_page
!= NULL
) {
6225 VM_PAGE_FREE(alias_page
);
6227 if (pmap_flushes_delayed
== TRUE
) {
6228 pmap_flush(&pmap_flush_context_storage
);
6231 if (page_list_count
!= NULL
) {
6232 if (upl
->flags
& UPL_INTERNAL
) {
6233 *page_list_count
= 0;
6234 } else if (*page_list_count
> entry
) {
6235 *page_list_count
= entry
;
6241 vm_object_unlock(object
);
6243 VM_DEBUG_CONSTANT_EVENT(vm_object_upl_request
, VM_UPL_REQUEST
, DBG_FUNC_END
, page_grab_count
, 0, 0, 0);
6244 #if DEVELOPMENT || DEBUG
6246 ledger_credit(task
->ledger
, task_ledgers
.pages_grabbed_upl
, page_grab_count
);
6248 #endif /* DEVELOPMENT || DEBUG */
6250 if (dwp_start
&& dwp_finish_ctx
) {
6251 vm_page_delayed_work_finish_ctx(dwp_start
);
6252 dwp_start
= dwp
= NULL
;
6255 return KERN_SUCCESS
;
6259 * Routine: vm_object_super_upl_request
6261 * Cause the population of a portion of a vm_object
6262 * in much the same way as memory_object_upl_request.
6263 * Depending on the nature of the request, the pages
6264 * returned may be contain valid data or be uninitialized.
6265 * However, the region may be expanded up to the super
6266 * cluster size provided.
6269 __private_extern__ kern_return_t
6270 vm_object_super_upl_request(
6272 vm_object_offset_t offset
,
6274 upl_size_t super_cluster
,
6276 upl_page_info_t
*user_page_list
,
6277 unsigned int *page_list_count
,
6278 upl_control_flags_t cntrl_flags
,
6281 if (object
->paging_offset
> offset
|| ((cntrl_flags
& UPL_VECTOR
) == UPL_VECTOR
)) {
6282 return KERN_FAILURE
;
6285 assert(object
->paging_in_progress
);
6286 offset
= offset
- object
->paging_offset
;
6288 if (super_cluster
> size
) {
6289 vm_object_offset_t base_offset
;
6290 upl_size_t super_size
;
6291 vm_object_size_t super_size_64
;
6293 base_offset
= (offset
& ~((vm_object_offset_t
) super_cluster
- 1));
6294 super_size
= (offset
+ size
) > (base_offset
+ super_cluster
) ? super_cluster
<< 1 : super_cluster
;
6295 super_size_64
= ((base_offset
+ super_size
) > object
->vo_size
) ? (object
->vo_size
- base_offset
) : super_size
;
6296 super_size
= (upl_size_t
) super_size_64
;
6297 assert(super_size
== super_size_64
);
6299 if (offset
> (base_offset
+ super_size
)) {
6300 panic("vm_object_super_upl_request: Missed target pageout"
6301 " %#llx,%#llx, %#x, %#x, %#x, %#llx\n",
6302 offset
, base_offset
, super_size
, super_cluster
,
6303 size
, object
->paging_offset
);
6306 * apparently there is a case where the vm requests a
6307 * page to be written out who's offset is beyond the
6310 if ((offset
+ size
) > (base_offset
+ super_size
)) {
6311 super_size_64
= (offset
+ size
) - base_offset
;
6312 super_size
= (upl_size_t
) super_size_64
;
6313 assert(super_size
== super_size_64
);
6316 offset
= base_offset
;
6319 return vm_object_upl_request(object
, offset
, size
, upl
, user_page_list
, page_list_count
, cntrl_flags
, tag
);
6322 int cs_executable_create_upl
= 0;
6323 extern int proc_selfpid(void);
6324 extern char *proc_name_address(void *p
);
6329 vm_map_address_t offset
,
6330 upl_size_t
*upl_size
,
6332 upl_page_info_array_t page_list
,
6333 unsigned int *count
,
6334 upl_control_flags_t
*flags
,
6337 vm_map_entry_t entry
;
6338 upl_control_flags_t caller_flags
;
6339 int force_data_sync
;
6341 vm_object_t local_object
;
6342 vm_map_offset_t local_offset
;
6343 vm_map_offset_t local_start
;
6345 vm_map_address_t original_offset
;
6346 vm_map_size_t original_size
, adjusted_size
;
6347 vm_map_offset_t local_entry_start
;
6348 vm_object_offset_t local_entry_offset
;
6349 vm_object_offset_t offset_in_mapped_page
;
6350 boolean_t release_map
= FALSE
;
6354 original_offset
= offset
;
6355 original_size
= *upl_size
;
6356 adjusted_size
= original_size
;
6358 caller_flags
= *flags
;
6360 if (caller_flags
& ~UPL_VALID_FLAGS
) {
6362 * For forward compatibility's sake,
6363 * reject any unknown flag.
6365 ret
= KERN_INVALID_VALUE
;
6368 force_data_sync
= (caller_flags
& UPL_FORCE_DATA_SYNC
);
6369 sync_cow_data
= !(caller_flags
& UPL_COPYOUT_FROM
);
6372 ret
= KERN_INVALID_ARGUMENT
;
6377 vm_map_lock_read(map
);
6379 if (!vm_map_lookup_entry(map
, offset
, &entry
)) {
6380 vm_map_unlock_read(map
);
6385 local_entry_start
= entry
->vme_start
;
6386 local_entry_offset
= VME_OFFSET(entry
);
6388 if (VM_MAP_PAGE_SHIFT(map
) < PAGE_SHIFT
) {
6389 DEBUG4K_UPL("map %p (%d) offset 0x%llx size 0x%x flags 0x%llx\n", map
, VM_MAP_PAGE_SHIFT(map
), (uint64_t)offset
, *upl_size
, *flags
);
6392 if (entry
->vme_end
- original_offset
< adjusted_size
) {
6393 adjusted_size
= entry
->vme_end
- original_offset
;
6394 assert(adjusted_size
> 0);
6395 *upl_size
= (upl_size_t
) adjusted_size
;
6396 assert(*upl_size
== adjusted_size
);
6399 if (caller_flags
& UPL_QUERY_OBJECT_TYPE
) {
6402 if (!entry
->is_sub_map
&&
6403 VME_OBJECT(entry
) != VM_OBJECT_NULL
) {
6404 if (VME_OBJECT(entry
)->private) {
6405 *flags
= UPL_DEV_MEMORY
;
6408 if (VME_OBJECT(entry
)->phys_contiguous
) {
6409 *flags
|= UPL_PHYS_CONTIG
;
6412 vm_map_unlock_read(map
);
6417 offset_in_mapped_page
= 0;
6418 if (VM_MAP_PAGE_SIZE(map
) < PAGE_SIZE
) {
6419 offset
= vm_map_trunc_page(original_offset
, VM_MAP_PAGE_MASK(map
));
6420 *upl_size
= (upl_size_t
)
6421 (vm_map_round_page(original_offset
+ adjusted_size
,
6422 VM_MAP_PAGE_MASK(map
))
6425 offset_in_mapped_page
= original_offset
- offset
;
6426 assert(offset_in_mapped_page
< VM_MAP_PAGE_SIZE(map
));
6428 DEBUG4K_UPL("map %p (%d) offset 0x%llx size 0x%llx flags 0x%llx -> offset 0x%llx adjusted_size 0x%llx *upl_size 0x%x offset_in_mapped_page 0x%llx\n", map
, VM_MAP_PAGE_SHIFT(map
), (uint64_t)original_offset
, (uint64_t)original_size
, *flags
, (uint64_t)offset
, (uint64_t)adjusted_size
, *upl_size
, offset_in_mapped_page
);
6431 if (VME_OBJECT(entry
) == VM_OBJECT_NULL
||
6432 !VME_OBJECT(entry
)->phys_contiguous
) {
6433 if (*upl_size
> MAX_UPL_SIZE_BYTES
) {
6434 *upl_size
= MAX_UPL_SIZE_BYTES
;
6439 * Create an object if necessary.
6441 if (VME_OBJECT(entry
) == VM_OBJECT_NULL
) {
6442 if (vm_map_lock_read_to_write(map
)) {
6443 goto REDISCOVER_ENTRY
;
6446 VME_OBJECT_SET(entry
,
6447 vm_object_allocate((vm_size_t
)
6448 vm_object_round_page((entry
->vme_end
- entry
->vme_start
))));
6449 VME_OFFSET_SET(entry
, 0);
6450 assert(entry
->use_pmap
);
6452 vm_map_lock_write_to_read(map
);
6455 if (!(caller_flags
& UPL_COPYOUT_FROM
) &&
6456 !entry
->is_sub_map
&&
6457 !(entry
->protection
& VM_PROT_WRITE
)) {
6458 vm_map_unlock_read(map
);
6459 ret
= KERN_PROTECTION_FAILURE
;
6463 #if !XNU_TARGET_OS_OSX
6464 if (map
->pmap
!= kernel_pmap
&&
6465 (caller_flags
& UPL_COPYOUT_FROM
) &&
6466 (entry
->protection
& VM_PROT_EXECUTE
) &&
6467 !(entry
->protection
& VM_PROT_WRITE
)) {
6472 * We're about to create a read-only UPL backed by
6473 * memory from an executable mapping.
6474 * Wiring the pages would result in the pages being copied
6475 * (due to the "MAP_PRIVATE" mapping) and no longer
6476 * code-signed, so no longer eligible for execution.
6477 * Instead, let's copy the data into a kernel buffer and
6478 * create the UPL from this kernel buffer.
6479 * The kernel buffer is then freed, leaving the UPL holding
6480 * the last reference on the VM object, so the memory will
6481 * be released when the UPL is committed.
6484 vm_map_unlock_read(map
);
6485 entry
= VM_MAP_ENTRY_NULL
;
6486 /* allocate kernel buffer */
6487 ksize
= round_page(*upl_size
);
6489 ret
= kmem_alloc_pageable(kernel_map
,
6493 if (ret
== KERN_SUCCESS
) {
6494 /* copyin the user data */
6495 ret
= copyinmap(map
, offset
, (void *)kaddr
, *upl_size
);
6497 if (ret
== KERN_SUCCESS
) {
6498 if (ksize
> *upl_size
) {
6499 /* zero out the extra space in kernel buffer */
6500 memset((void *)(kaddr
+ *upl_size
),
6504 /* create the UPL from the kernel buffer */
6505 vm_object_offset_t offset_in_object
;
6506 vm_object_offset_t offset_in_object_page
;
6508 offset_in_object
= offset
- local_entry_start
+ local_entry_offset
;
6509 offset_in_object_page
= offset_in_object
- vm_object_trunc_page(offset_in_object
);
6510 assert(offset_in_object_page
< PAGE_SIZE
);
6511 assert(offset_in_object_page
+ offset_in_mapped_page
< PAGE_SIZE
);
6512 *upl_size
-= offset_in_object_page
+ offset_in_mapped_page
;
6513 ret
= vm_map_create_upl(kernel_map
,
6514 (vm_map_address_t
)(kaddr
+ offset_in_object_page
+ offset_in_mapped_page
),
6515 upl_size
, upl
, page_list
, count
, flags
, tag
);
6518 /* free the kernel buffer */
6519 kmem_free(kernel_map
, kaddr
, ksize
);
6523 #if DEVELOPMENT || DEBUG
6524 DTRACE_VM4(create_upl_from_executable
,
6526 vm_map_address_t
, offset
,
6527 upl_size_t
, *upl_size
,
6528 kern_return_t
, ret
);
6529 #endif /* DEVELOPMENT || DEBUG */
6532 #endif /* !XNU_TARGET_OS_OSX */
6534 local_object
= VME_OBJECT(entry
);
6535 assert(local_object
!= VM_OBJECT_NULL
);
6537 if (!entry
->is_sub_map
&&
6538 !entry
->needs_copy
&&
6540 local_object
->vo_size
> *upl_size
&& /* partial UPL */
6541 entry
->wired_count
== 0 && /* No COW for entries that are wired */
6542 (map
->pmap
!= kernel_pmap
) && /* alias checks */
6543 (vm_map_entry_should_cow_for_true_share(entry
) /* case 1 */
6546 local_object
->internal
&&
6547 (local_object
->copy_strategy
== MEMORY_OBJECT_COPY_SYMMETRIC
) &&
6548 local_object
->ref_count
> 1))) {
6553 * Set up the targeted range for copy-on-write to avoid
6554 * applying true_share/copy_delay to the entire object.
6557 * This map entry covers only part of an internal
6558 * object. There could be other map entries covering
6559 * other areas of this object and some of these map
6560 * entries could be marked as "needs_copy", which
6561 * assumes that the object is COPY_SYMMETRIC.
6562 * To avoid marking this object as COPY_DELAY and
6563 * "true_share", let's shadow it and mark the new
6564 * (smaller) object as "true_share" and COPY_DELAY.
6567 if (vm_map_lock_read_to_write(map
)) {
6568 goto REDISCOVER_ENTRY
;
6570 vm_map_lock_assert_exclusive(map
);
6571 assert(VME_OBJECT(entry
) == local_object
);
6573 vm_map_clip_start(map
,
6575 vm_map_trunc_page(offset
,
6576 VM_MAP_PAGE_MASK(map
)));
6577 vm_map_clip_end(map
,
6579 vm_map_round_page(offset
+ *upl_size
,
6580 VM_MAP_PAGE_MASK(map
)));
6581 if ((entry
->vme_end
- offset
) < *upl_size
) {
6582 *upl_size
= (upl_size_t
) (entry
->vme_end
- offset
);
6583 assert(*upl_size
== entry
->vme_end
- offset
);
6586 prot
= entry
->protection
& ~VM_PROT_WRITE
;
6587 if (override_nx(map
, VME_ALIAS(entry
)) && prot
) {
6588 prot
|= VM_PROT_EXECUTE
;
6590 vm_object_pmap_protect(local_object
,
6592 entry
->vme_end
- entry
->vme_start
,
6593 ((entry
->is_shared
||
6594 map
->mapped_in_other_pmaps
)
6597 VM_MAP_PAGE_SIZE(map
),
6601 assert(entry
->wired_count
== 0);
6604 * Lock the VM object and re-check its status: if it's mapped
6605 * in another address space, we could still be racing with
6606 * another thread holding that other VM map exclusively.
6608 vm_object_lock(local_object
);
6609 if (local_object
->true_share
) {
6610 /* object is already in proper state: no COW needed */
6611 assert(local_object
->copy_strategy
!=
6612 MEMORY_OBJECT_COPY_SYMMETRIC
);
6614 /* not true_share: ask for copy-on-write below */
6615 assert(local_object
->copy_strategy
==
6616 MEMORY_OBJECT_COPY_SYMMETRIC
);
6617 entry
->needs_copy
= TRUE
;
6619 vm_object_unlock(local_object
);
6621 vm_map_lock_write_to_read(map
);
6624 if (entry
->needs_copy
) {
6626 * Honor copy-on-write for COPY_SYMMETRIC
6631 vm_object_offset_t new_offset
;
6634 vm_map_version_t version
;
6636 vm_prot_t fault_type
;
6640 if (caller_flags
& UPL_COPYOUT_FROM
) {
6641 fault_type
= VM_PROT_READ
| VM_PROT_COPY
;
6642 vm_counters
.create_upl_extra_cow
++;
6643 vm_counters
.create_upl_extra_cow_pages
+=
6644 (entry
->vme_end
- entry
->vme_start
) / PAGE_SIZE
;
6646 fault_type
= VM_PROT_WRITE
;
6648 if (vm_map_lookup_locked(&local_map
,
6650 OBJECT_LOCK_EXCLUSIVE
,
6652 &new_offset
, &prot
, &wired
,
6654 &real_map
, NULL
) != KERN_SUCCESS
) {
6655 if (fault_type
== VM_PROT_WRITE
) {
6656 vm_counters
.create_upl_lookup_failure_write
++;
6658 vm_counters
.create_upl_lookup_failure_copy
++;
6660 vm_map_unlock_read(local_map
);
6664 if (real_map
!= local_map
) {
6665 vm_map_unlock(real_map
);
6667 vm_map_unlock_read(local_map
);
6669 vm_object_unlock(object
);
6671 goto REDISCOVER_ENTRY
;
6674 if (entry
->is_sub_map
) {
6677 submap
= VME_SUBMAP(entry
);
6678 local_start
= entry
->vme_start
;
6679 local_offset
= (vm_map_offset_t
)VME_OFFSET(entry
);
6681 vm_map_reference(submap
);
6682 vm_map_unlock_read(map
);
6684 DEBUG4K_UPL("map %p offset 0x%llx (0x%llx) size 0x%x (adjusted 0x%llx original 0x%llx) offset_in_mapped_page 0x%llx submap %p\n", map
, (uint64_t)offset
, (uint64_t)original_offset
, *upl_size
, (uint64_t)adjusted_size
, (uint64_t)original_size
, offset_in_mapped_page
, submap
);
6685 offset
+= offset_in_mapped_page
;
6686 *upl_size
-= offset_in_mapped_page
;
6689 vm_map_deallocate(map
);
6693 offset
= local_offset
+ (offset
- local_start
);
6694 goto start_with_map
;
6697 if (sync_cow_data
&&
6698 (VME_OBJECT(entry
)->shadow
||
6699 VME_OBJECT(entry
)->copy
)) {
6700 local_object
= VME_OBJECT(entry
);
6701 local_start
= entry
->vme_start
;
6702 local_offset
= (vm_map_offset_t
)VME_OFFSET(entry
);
6704 vm_object_reference(local_object
);
6705 vm_map_unlock_read(map
);
6707 if (local_object
->shadow
&& local_object
->copy
) {
6708 vm_object_lock_request(local_object
->shadow
,
6709 ((vm_object_offset_t
)
6710 ((offset
- local_start
) +
6712 local_object
->vo_shadow_offset
),
6714 MEMORY_OBJECT_DATA_SYNC
,
6717 sync_cow_data
= FALSE
;
6718 vm_object_deallocate(local_object
);
6720 goto REDISCOVER_ENTRY
;
6722 if (force_data_sync
) {
6723 local_object
= VME_OBJECT(entry
);
6724 local_start
= entry
->vme_start
;
6725 local_offset
= (vm_map_offset_t
)VME_OFFSET(entry
);
6727 vm_object_reference(local_object
);
6728 vm_map_unlock_read(map
);
6730 vm_object_lock_request(local_object
,
6731 ((vm_object_offset_t
)
6732 ((offset
- local_start
) +
6734 (vm_object_size_t
)*upl_size
,
6736 MEMORY_OBJECT_DATA_SYNC
,
6739 force_data_sync
= FALSE
;
6740 vm_object_deallocate(local_object
);
6742 goto REDISCOVER_ENTRY
;
6744 if (VME_OBJECT(entry
)->private) {
6745 *flags
= UPL_DEV_MEMORY
;
6750 if (VME_OBJECT(entry
)->phys_contiguous
) {
6751 *flags
|= UPL_PHYS_CONTIG
;
6754 local_object
= VME_OBJECT(entry
);
6755 local_offset
= (vm_map_offset_t
)VME_OFFSET(entry
);
6756 local_start
= entry
->vme_start
;
6759 * Wiring will copy the pages to the shadow object.
6760 * The shadow object will not be code-signed so
6761 * attempting to execute code from these copied pages
6762 * would trigger a code-signing violation.
6764 if (entry
->protection
& VM_PROT_EXECUTE
) {
6766 printf("pid %d[%s] create_upl out of executable range from "
6767 "0x%llx to 0x%llx: side effects may include "
6768 "code-signing violations later on\n",
6770 (current_task()->bsd_info
6771 ? proc_name_address(current_task()->bsd_info
)
6773 (uint64_t) entry
->vme_start
,
6774 (uint64_t) entry
->vme_end
);
6775 #endif /* MACH_ASSERT */
6776 DTRACE_VM2(cs_executable_create_upl
,
6777 uint64_t, (uint64_t)entry
->vme_start
,
6778 uint64_t, (uint64_t)entry
->vme_end
);
6779 cs_executable_create_upl
++;
6782 vm_object_lock(local_object
);
6785 * Ensure that this object is "true_share" and "copy_delay" now,
6786 * while we're still holding the VM map lock. After we unlock the map,
6787 * anything could happen to that mapping, including some copy-on-write
6788 * activity. We need to make sure that the IOPL will point at the
6789 * same memory as the mapping.
6791 if (local_object
->true_share
) {
6792 assert(local_object
->copy_strategy
!=
6793 MEMORY_OBJECT_COPY_SYMMETRIC
);
6794 } else if (local_object
!= kernel_object
&&
6795 local_object
!= compressor_object
&&
6796 !local_object
->phys_contiguous
) {
6797 #if VM_OBJECT_TRACKING_OP_TRUESHARE
6798 if (!local_object
->true_share
&&
6799 vm_object_tracking_inited
) {
6800 void *bt
[VM_OBJECT_TRACKING_BTDEPTH
];
6802 num
= OSBacktrace(bt
,
6803 VM_OBJECT_TRACKING_BTDEPTH
);
6804 btlog_add_entry(vm_object_tracking_btlog
,
6806 VM_OBJECT_TRACKING_OP_TRUESHARE
,
6810 #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */
6811 local_object
->true_share
= TRUE
;
6812 if (local_object
->copy_strategy
==
6813 MEMORY_OBJECT_COPY_SYMMETRIC
) {
6814 local_object
->copy_strategy
= MEMORY_OBJECT_COPY_DELAY
;
6818 vm_object_reference_locked(local_object
);
6819 vm_object_unlock(local_object
);
6821 vm_map_unlock_read(map
);
6823 offset
+= offset_in_mapped_page
;
6824 assert(*upl_size
> offset_in_mapped_page
);
6825 *upl_size
-= offset_in_mapped_page
;
6827 ret
= vm_object_iopl_request(local_object
,
6828 ((vm_object_offset_t
)
6829 ((offset
- local_start
) + local_offset
)),
6836 vm_object_deallocate(local_object
);
6840 vm_map_deallocate(map
);
6847 * Internal routine to enter a UPL into a VM map.
6849 * JMM - This should just be doable through the standard
6850 * vm_map_enter() API.
6856 vm_map_offset_t
*dst_addr
)
6859 vm_object_offset_t offset
;
6860 vm_map_offset_t addr
;
6863 int isVectorUPL
= 0, curr_upl
= 0;
6864 upl_t vector_upl
= NULL
;
6865 vm_offset_t vector_upl_dst_addr
= 0;
6866 vm_map_t vector_upl_submap
= NULL
;
6867 upl_offset_t subupl_offset
= 0;
6868 upl_size_t subupl_size
= 0;
6870 if (upl
== UPL_NULL
) {
6871 return KERN_INVALID_ARGUMENT
;
6874 DEBUG4K_UPL("map %p upl %p flags 0x%x object %p offset 0x%llx size 0x%x \n", map
, upl
, upl
->flags
, upl
->map_object
, upl
->u_offset
, upl
->u_size
);
6875 assert(map
== kernel_map
);
6877 if ((isVectorUPL
= vector_upl_is_valid(upl
))) {
6878 int mapped
= 0, valid_upls
= 0;
6881 upl_lock(vector_upl
);
6882 for (curr_upl
= 0; curr_upl
< MAX_VECTOR_UPL_ELEMENTS
; curr_upl
++) {
6883 upl
= vector_upl_subupl_byindex(vector_upl
, curr_upl
);
6888 if (UPL_PAGE_LIST_MAPPED
& upl
->flags
) {
6894 if (mapped
!= valid_upls
) {
6895 panic("Only %d of the %d sub-upls within the Vector UPL are alread mapped\n", mapped
, valid_upls
);
6897 upl_unlock(vector_upl
);
6898 return KERN_FAILURE
;
6902 if (VM_MAP_PAGE_MASK(map
) < PAGE_MASK
) {
6903 panic("TODO4K: vector UPL not implemented");
6906 kr
= kmem_suballoc(map
, &vector_upl_dst_addr
,
6909 VM_FLAGS_ANYWHERE
, VM_MAP_KERNEL_FLAGS_NONE
, VM_KERN_MEMORY_NONE
,
6910 &vector_upl_submap
);
6911 if (kr
!= KERN_SUCCESS
) {
6912 panic("Vector UPL submap allocation failed\n");
6914 map
= vector_upl_submap
;
6915 vector_upl_set_submap(vector_upl
, vector_upl_submap
, vector_upl_dst_addr
);
6921 process_upl_to_enter
:
6923 if (curr_upl
== MAX_VECTOR_UPL_ELEMENTS
) {
6924 *dst_addr
= vector_upl_dst_addr
;
6925 upl_unlock(vector_upl
);
6926 return KERN_SUCCESS
;
6928 upl
= vector_upl_subupl_byindex(vector_upl
, curr_upl
++ );
6930 goto process_upl_to_enter
;
6933 vector_upl_get_iostate(vector_upl
, upl
, &subupl_offset
, &subupl_size
);
6934 *dst_addr
= (vm_map_offset_t
)(vector_upl_dst_addr
+ (vm_map_offset_t
)subupl_offset
);
6937 * check to see if already mapped
6939 if (UPL_PAGE_LIST_MAPPED
& upl
->flags
) {
6941 return KERN_FAILURE
;
6945 size
= upl_adjusted_size(upl
, VM_MAP_PAGE_MASK(map
));
6947 if ((!(upl
->flags
& UPL_SHADOWED
)) &&
6948 ((upl
->flags
& UPL_HAS_BUSY
) ||
6949 !((upl
->flags
& (UPL_DEVICE_MEMORY
| UPL_IO_WIRE
)) || (upl
->map_object
->phys_contiguous
)))) {
6951 vm_page_t alias_page
;
6952 vm_object_offset_t new_offset
;
6953 unsigned int pg_num
;
6954 wpl_array_t lite_list
;
6956 if (upl
->flags
& UPL_INTERNAL
) {
6957 lite_list
= (wpl_array_t
)
6958 ((((uintptr_t)upl
) + sizeof(struct upl
))
6959 + ((size
/ PAGE_SIZE
) * sizeof(upl_page_info_t
)));
6961 lite_list
= (wpl_array_t
)(((uintptr_t)upl
) + sizeof(struct upl
));
6963 object
= upl
->map_object
;
6964 upl
->map_object
= vm_object_allocate(vm_object_round_page(size
));
6966 vm_object_lock(upl
->map_object
);
6968 upl
->map_object
->shadow
= object
;
6969 upl
->map_object
->pageout
= TRUE
;
6970 upl
->map_object
->can_persist
= FALSE
;
6971 upl
->map_object
->copy_strategy
= MEMORY_OBJECT_COPY_NONE
;
6972 upl
->map_object
->vo_shadow_offset
= upl_adjusted_offset(upl
, PAGE_MASK
) - object
->paging_offset
;
6973 assertf(page_aligned(upl
->map_object
->vo_shadow_offset
),
6974 "object %p shadow_offset 0x%llx",
6976 (uint64_t)upl
->map_object
->vo_shadow_offset
);
6977 upl
->map_object
->wimg_bits
= object
->wimg_bits
;
6978 assertf(page_aligned(upl
->map_object
->vo_shadow_offset
),
6979 "object %p shadow_offset 0x%llx",
6980 upl
->map_object
, upl
->map_object
->vo_shadow_offset
);
6981 offset
= upl
->map_object
->vo_shadow_offset
;
6983 size
= upl_adjusted_size(upl
, VM_MAP_PAGE_MASK(map
));
6985 upl
->flags
|= UPL_SHADOWED
;
6988 pg_num
= (unsigned int) (new_offset
/ PAGE_SIZE
);
6989 assert(pg_num
== new_offset
/ PAGE_SIZE
);
6991 if (lite_list
[pg_num
>> 5] & (1U << (pg_num
& 31))) {
6992 alias_page
= vm_page_grab_fictitious(TRUE
);
6994 vm_object_lock(object
);
6996 m
= vm_page_lookup(object
, offset
);
6997 if (m
== VM_PAGE_NULL
) {
6998 panic("vm_upl_map: page missing\n");
7002 * Convert the fictitious page to a private
7003 * shadow of the real page.
7005 assert(alias_page
->vmp_fictitious
);
7006 alias_page
->vmp_fictitious
= FALSE
;
7007 alias_page
->vmp_private
= TRUE
;
7008 alias_page
->vmp_free_when_done
= TRUE
;
7010 * since m is a page in the upl it must
7011 * already be wired or BUSY, so it's
7012 * safe to assign the underlying physical
7015 VM_PAGE_SET_PHYS_PAGE(alias_page
, VM_PAGE_GET_PHYS_PAGE(m
));
7017 vm_object_unlock(object
);
7019 vm_page_lockspin_queues();
7020 vm_page_wire(alias_page
, VM_KERN_MEMORY_NONE
, TRUE
);
7021 vm_page_unlock_queues();
7023 vm_page_insert_wired(alias_page
, upl
->map_object
, new_offset
, VM_KERN_MEMORY_NONE
);
7025 assert(!alias_page
->vmp_wanted
);
7026 alias_page
->vmp_busy
= FALSE
;
7027 alias_page
->vmp_absent
= FALSE
;
7030 offset
+= PAGE_SIZE_64
;
7031 new_offset
+= PAGE_SIZE_64
;
7033 vm_object_unlock(upl
->map_object
);
7035 if (upl
->flags
& UPL_SHADOWED
) {
7038 offset
= upl_adjusted_offset(upl
, VM_MAP_PAGE_MASK(map
)) - upl
->map_object
->paging_offset
;
7041 size
= upl_adjusted_size(upl
, VM_MAP_PAGE_MASK(map
));
7043 vm_object_reference(upl
->map_object
);
7048 * NEED A UPL_MAP ALIAS
7050 kr
= vm_map_enter(map
, dst_addr
, (vm_map_size_t
)size
, (vm_map_offset_t
) 0,
7051 VM_FLAGS_ANYWHERE
, VM_MAP_KERNEL_FLAGS_NONE
, VM_KERN_MEMORY_OSFMK
,
7052 upl
->map_object
, offset
, FALSE
,
7053 VM_PROT_DEFAULT
, VM_PROT_ALL
, VM_INHERIT_DEFAULT
);
7055 if (kr
!= KERN_SUCCESS
) {
7056 vm_object_deallocate(upl
->map_object
);
7061 kr
= vm_map_enter(map
, dst_addr
, (vm_map_size_t
)size
, (vm_map_offset_t
) 0,
7062 VM_FLAGS_FIXED
, VM_MAP_KERNEL_FLAGS_NONE
, VM_KERN_MEMORY_OSFMK
,
7063 upl
->map_object
, offset
, FALSE
,
7064 VM_PROT_DEFAULT
, VM_PROT_ALL
, VM_INHERIT_DEFAULT
);
7066 panic("vm_map_enter failed for a Vector UPL\n");
7069 vm_object_lock(upl
->map_object
);
7071 for (addr
= *dst_addr
; size
> 0; size
-= PAGE_SIZE
, addr
+= PAGE_SIZE
) {
7072 m
= vm_page_lookup(upl
->map_object
, offset
);
7075 m
->vmp_pmapped
= TRUE
;
7077 /* CODE SIGNING ENFORCEMENT: page has been wpmapped,
7078 * but only in kernel space. If this was on a user map,
7079 * we'd have to set the wpmapped bit. */
7080 /* m->vmp_wpmapped = TRUE; */
7081 assert(map
->pmap
== kernel_pmap
);
7083 PMAP_ENTER(map
->pmap
, addr
, m
, VM_PROT_DEFAULT
, VM_PROT_NONE
, 0, TRUE
, kr
);
7085 assert(kr
== KERN_SUCCESS
);
7087 kasan_notify_address(addr
, PAGE_SIZE_64
);
7090 offset
+= PAGE_SIZE_64
;
7092 vm_object_unlock(upl
->map_object
);
7095 * hold a reference for the mapping
7098 upl
->flags
|= UPL_PAGE_LIST_MAPPED
;
7099 upl
->kaddr
= (vm_offset_t
) *dst_addr
;
7100 assert(upl
->kaddr
== *dst_addr
);
7103 goto process_upl_to_enter
;
7107 vm_map_offset_t addr_adjustment
;
7109 addr_adjustment
= (vm_map_offset_t
)(upl
->u_offset
- upl_adjusted_offset(upl
, VM_MAP_PAGE_MASK(map
)));
7110 if (addr_adjustment
) {
7111 assert(VM_MAP_PAGE_MASK(map
) != PAGE_MASK
);
7112 DEBUG4K_UPL("dst_addr 0x%llx (+ 0x%llx) -> 0x%llx\n", (uint64_t)*dst_addr
, (uint64_t)addr_adjustment
, (uint64_t)(*dst_addr
+ addr_adjustment
));
7113 *dst_addr
+= addr_adjustment
;
7119 return KERN_SUCCESS
;
7123 * Internal routine to remove a UPL mapping from a VM map.
7125 * XXX - This should just be doable through a standard
7126 * vm_map_remove() operation. Otherwise, implicit clean-up
7127 * of the target map won't be able to correctly remove
7128 * these (and release the reference on the UPL). Having
7129 * to do this means we can't map these into user-space
7139 int isVectorUPL
= 0, curr_upl
= 0;
7140 upl_t vector_upl
= NULL
;
7142 if (upl
== UPL_NULL
) {
7143 return KERN_INVALID_ARGUMENT
;
7146 if ((isVectorUPL
= vector_upl_is_valid(upl
))) {
7147 int unmapped
= 0, valid_upls
= 0;
7149 upl_lock(vector_upl
);
7150 for (curr_upl
= 0; curr_upl
< MAX_VECTOR_UPL_ELEMENTS
; curr_upl
++) {
7151 upl
= vector_upl_subupl_byindex(vector_upl
, curr_upl
);
7156 if (!(UPL_PAGE_LIST_MAPPED
& upl
->flags
)) {
7162 if (unmapped
!= valid_upls
) {
7163 panic("%d of the %d sub-upls within the Vector UPL is/are not mapped\n", unmapped
, valid_upls
);
7165 upl_unlock(vector_upl
);
7166 return KERN_FAILURE
;
7174 process_upl_to_remove
:
7176 if (curr_upl
== MAX_VECTOR_UPL_ELEMENTS
) {
7177 vm_map_t v_upl_submap
;
7178 vm_offset_t v_upl_submap_dst_addr
;
7179 vector_upl_get_submap(vector_upl
, &v_upl_submap
, &v_upl_submap_dst_addr
);
7181 vm_map_remove(map
, v_upl_submap_dst_addr
,
7182 v_upl_submap_dst_addr
+ vector_upl
->u_size
,
7183 VM_MAP_REMOVE_NO_FLAGS
);
7184 vm_map_deallocate(v_upl_submap
);
7185 upl_unlock(vector_upl
);
7186 return KERN_SUCCESS
;
7189 upl
= vector_upl_subupl_byindex(vector_upl
, curr_upl
++ );
7191 goto process_upl_to_remove
;
7195 if (upl
->flags
& UPL_PAGE_LIST_MAPPED
) {
7197 size
= upl_adjusted_size(upl
, VM_MAP_PAGE_MASK(map
));
7199 assert(upl
->ref_count
> 1);
7200 upl
->ref_count
--; /* removing mapping ref */
7202 upl
->flags
&= ~UPL_PAGE_LIST_MAPPED
;
7203 upl
->kaddr
= (vm_offset_t
) 0;
7210 vm_map_trunc_page(addr
,
7211 VM_MAP_PAGE_MASK(map
)),
7212 vm_map_round_page(addr
+ size
,
7213 VM_MAP_PAGE_MASK(map
)),
7214 VM_MAP_REMOVE_NO_FLAGS
);
7215 return KERN_SUCCESS
;
7218 * If it's a Vectored UPL, we'll be removing the entire
7219 * submap anyways, so no need to remove individual UPL
7220 * element mappings from within the submap
7222 goto process_upl_to_remove
;
7227 return KERN_FAILURE
;
7234 upl_offset_t offset
,
7237 upl_page_info_t
*page_list
,
7238 mach_msg_type_number_t count
,
7241 upl_size_t xfer_size
, subupl_size
;
7242 vm_object_t shadow_object
;
7244 vm_object_t m_object
;
7245 vm_object_offset_t target_offset
;
7246 upl_offset_t subupl_offset
= offset
;
7248 wpl_array_t lite_list
;
7250 int clear_refmod
= 0;
7251 int pgpgout_count
= 0;
7252 struct vm_page_delayed_work dw_array
;
7253 struct vm_page_delayed_work
*dwp
, *dwp_start
;
7254 bool dwp_finish_ctx
= TRUE
;
7257 int isVectorUPL
= 0;
7258 upl_t vector_upl
= NULL
;
7259 boolean_t should_be_throttled
= FALSE
;
7261 vm_page_t nxt_page
= VM_PAGE_NULL
;
7262 int fast_path_possible
= 0;
7263 int fast_path_full_commit
= 0;
7264 int throttle_page
= 0;
7265 int unwired_count
= 0;
7266 int local_queue_count
= 0;
7267 vm_page_t first_local
, last_local
;
7268 vm_object_offset_t obj_start
, obj_end
, obj_offset
;
7269 kern_return_t kr
= KERN_SUCCESS
;
7271 // DEBUG4K_UPL("upl %p (u_offset 0x%llx u_size 0x%llx) object %p offset 0x%llx size 0x%llx flags 0x%x\n", upl, (uint64_t)upl->u_offset, (uint64_t)upl->u_size, upl->map_object, (uint64_t)offset, (uint64_t)size, flags);
7273 dwp_start
= dwp
= NULL
;
7278 if (upl
== UPL_NULL
) {
7279 return KERN_INVALID_ARGUMENT
;
7283 dw_limit
= DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT
);
7284 dwp_start
= vm_page_delayed_work_get_ctx();
7285 if (dwp_start
== NULL
) {
7286 dwp_start
= &dw_array
;
7288 dwp_finish_ctx
= FALSE
;
7297 if ((isVectorUPL
= vector_upl_is_valid(upl
))) {
7299 upl_lock(vector_upl
);
7304 process_upl_to_commit
:
7308 offset
= subupl_offset
;
7310 upl_unlock(vector_upl
);
7314 upl
= vector_upl_subupl_byoffset(vector_upl
, &offset
, &size
);
7316 upl_unlock(vector_upl
);
7320 page_list
= UPL_GET_INTERNAL_PAGE_LIST_SIMPLE(upl
);
7321 subupl_size
-= size
;
7322 subupl_offset
+= size
;
7326 if (upl
->upl_commit_index
< UPL_DEBUG_COMMIT_RECORDS
) {
7327 (void) OSBacktrace(&upl
->upl_commit_records
[upl
->upl_commit_index
].c_retaddr
[0], UPL_DEBUG_STACK_FRAMES
);
7329 upl
->upl_commit_records
[upl
->upl_commit_index
].c_beg
= offset
;
7330 upl
->upl_commit_records
[upl
->upl_commit_index
].c_end
= (offset
+ size
);
7332 upl
->upl_commit_index
++;
7335 if (upl
->flags
& UPL_DEVICE_MEMORY
) {
7337 } else if ((offset
+ size
) <= upl_adjusted_size(upl
, PAGE_MASK
)) {
7343 upl_unlock(vector_upl
);
7345 DEBUG4K_ERROR("upl %p (u_offset 0x%llx u_size 0x%x) offset 0x%x size 0x%x\n", upl
, upl
->u_offset
, upl
->u_size
, offset
, size
);
7349 if (upl
->flags
& UPL_SET_DIRTY
) {
7350 flags
|= UPL_COMMIT_SET_DIRTY
;
7352 if (upl
->flags
& UPL_CLEAR_DIRTY
) {
7353 flags
|= UPL_COMMIT_CLEAR_DIRTY
;
7356 if (upl
->flags
& UPL_INTERNAL
) {
7357 lite_list
= (wpl_array_t
) ((((uintptr_t)upl
) + sizeof(struct upl
))
7358 + ((upl_adjusted_size(upl
, PAGE_MASK
) / PAGE_SIZE
) * sizeof(upl_page_info_t
)));
7360 lite_list
= (wpl_array_t
) (((uintptr_t)upl
) + sizeof(struct upl
));
7363 object
= upl
->map_object
;
7365 if (upl
->flags
& UPL_SHADOWED
) {
7366 vm_object_lock(object
);
7367 shadow_object
= object
->shadow
;
7369 shadow_object
= object
;
7371 entry
= offset
/ PAGE_SIZE
;
7372 target_offset
= (vm_object_offset_t
)offset
;
7374 if (upl
->flags
& UPL_KERNEL_OBJECT
) {
7375 vm_object_lock_shared(shadow_object
);
7377 vm_object_lock(shadow_object
);
7380 VM_OBJECT_WIRED_PAGE_UPDATE_START(shadow_object
);
7382 if (upl
->flags
& UPL_ACCESS_BLOCKED
) {
7383 assert(shadow_object
->blocked_access
);
7384 shadow_object
->blocked_access
= FALSE
;
7385 vm_object_wakeup(object
, VM_OBJECT_EVENT_UNBLOCKED
);
7388 if (shadow_object
->code_signed
) {
7391 * If the object is code-signed, do not let this UPL tell
7392 * us if the pages are valid or not. Let the pages be
7393 * validated by VM the normal way (when they get mapped or
7396 flags
&= ~UPL_COMMIT_CS_VALIDATED
;
7400 * No page list to get the code-signing info from !?
7402 flags
&= ~UPL_COMMIT_CS_VALIDATED
;
7404 if (!VM_DYNAMIC_PAGING_ENABLED() && shadow_object
->internal
) {
7405 should_be_throttled
= TRUE
;
7408 if ((upl
->flags
& UPL_IO_WIRE
) &&
7409 !(flags
& UPL_COMMIT_FREE_ABSENT
) &&
7411 shadow_object
->purgable
!= VM_PURGABLE_VOLATILE
&&
7412 shadow_object
->purgable
!= VM_PURGABLE_EMPTY
) {
7413 if (!vm_page_queue_empty(&shadow_object
->memq
)) {
7414 if (size
== shadow_object
->vo_size
) {
7415 nxt_page
= (vm_page_t
)vm_page_queue_first(&shadow_object
->memq
);
7416 fast_path_full_commit
= 1;
7418 fast_path_possible
= 1;
7420 if (!VM_DYNAMIC_PAGING_ENABLED() && shadow_object
->internal
&&
7421 (shadow_object
->purgable
== VM_PURGABLE_DENY
||
7422 shadow_object
->purgable
== VM_PURGABLE_NONVOLATILE
||
7423 shadow_object
->purgable
== VM_PURGABLE_VOLATILE
)) {
7428 first_local
= VM_PAGE_NULL
;
7429 last_local
= VM_PAGE_NULL
;
7431 obj_start
= target_offset
+ upl
->u_offset
- shadow_object
->paging_offset
;
7432 obj_end
= obj_start
+ xfer_size
;
7433 obj_start
= vm_object_trunc_page(obj_start
);
7434 obj_end
= vm_object_round_page(obj_end
);
7435 for (obj_offset
= obj_start
;
7436 obj_offset
< obj_end
;
7437 obj_offset
+= PAGE_SIZE
) {
7445 if (upl
->flags
& UPL_LITE
) {
7446 unsigned int pg_num
;
7448 if (nxt_page
!= VM_PAGE_NULL
) {
7450 nxt_page
= (vm_page_t
)vm_page_queue_next(&nxt_page
->vmp_listq
);
7451 target_offset
= m
->vmp_offset
;
7453 pg_num
= (unsigned int) (target_offset
/ PAGE_SIZE
);
7454 assert(pg_num
== target_offset
/ PAGE_SIZE
);
7456 if (lite_list
[pg_num
>> 5] & (1U << (pg_num
& 31))) {
7457 lite_list
[pg_num
>> 5] &= ~(1U << (pg_num
& 31));
7459 if (!(upl
->flags
& UPL_KERNEL_OBJECT
) && m
== VM_PAGE_NULL
) {
7460 m
= vm_page_lookup(shadow_object
, obj_offset
);
7466 if (upl
->flags
& UPL_SHADOWED
) {
7467 if ((t
= vm_page_lookup(object
, target_offset
)) != VM_PAGE_NULL
) {
7468 t
->vmp_free_when_done
= FALSE
;
7472 if (!(upl
->flags
& UPL_KERNEL_OBJECT
) && m
== VM_PAGE_NULL
) {
7473 m
= vm_page_lookup(shadow_object
, target_offset
+ object
->vo_shadow_offset
);
7477 if (m
== VM_PAGE_NULL
) {
7478 goto commit_next_page
;
7481 m_object
= VM_PAGE_OBJECT(m
);
7483 if (m
->vmp_q_state
== VM_PAGE_USED_BY_COMPRESSOR
) {
7484 assert(m
->vmp_busy
);
7486 dwp
->dw_mask
|= (DW_clear_busy
| DW_PAGE_WAKEUP
);
7487 goto commit_next_page
;
7490 if (flags
& UPL_COMMIT_CS_VALIDATED
) {
7493 * Set the code signing bits according to
7494 * what the UPL says they should be.
7496 m
->vmp_cs_validated
|= page_list
[entry
].cs_validated
;
7497 m
->vmp_cs_tainted
|= page_list
[entry
].cs_tainted
;
7498 m
->vmp_cs_nx
|= page_list
[entry
].cs_nx
;
7500 if (flags
& UPL_COMMIT_WRITTEN_BY_KERNEL
) {
7501 m
->vmp_written_by_kernel
= TRUE
;
7504 if (upl
->flags
& UPL_IO_WIRE
) {
7506 page_list
[entry
].phys_addr
= 0;
7509 if (flags
& UPL_COMMIT_SET_DIRTY
) {
7510 SET_PAGE_DIRTY(m
, FALSE
);
7511 } else if (flags
& UPL_COMMIT_CLEAR_DIRTY
) {
7512 m
->vmp_dirty
= FALSE
;
7514 if (!(flags
& UPL_COMMIT_CS_VALIDATED
) &&
7515 m
->vmp_cs_validated
&&
7516 m
->vmp_cs_tainted
!= VMP_CS_ALL_TRUE
) {
7519 * This page is no longer dirty
7520 * but could have been modified,
7521 * so it will need to be
7524 m
->vmp_cs_validated
= VMP_CS_ALL_FALSE
;
7526 VM_PAGEOUT_DEBUG(vm_cs_validated_resets
, 1);
7528 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m
));
7530 clear_refmod
|= VM_MEM_MODIFIED
;
7532 if (upl
->flags
& UPL_ACCESS_BLOCKED
) {
7534 * We blocked access to the pages in this UPL.
7535 * Clear the "busy" bit and wake up any waiter
7538 dwp
->dw_mask
|= (DW_clear_busy
| DW_PAGE_WAKEUP
);
7540 if (fast_path_possible
) {
7541 assert(m_object
->purgable
!= VM_PURGABLE_EMPTY
);
7542 assert(m_object
->purgable
!= VM_PURGABLE_VOLATILE
);
7543 if (m
->vmp_absent
) {
7544 assert(m
->vmp_q_state
== VM_PAGE_NOT_ON_Q
);
7545 assert(m
->vmp_wire_count
== 0);
7546 assert(m
->vmp_busy
);
7548 m
->vmp_absent
= FALSE
;
7549 dwp
->dw_mask
|= (DW_clear_busy
| DW_PAGE_WAKEUP
);
7551 if (m
->vmp_wire_count
== 0) {
7552 panic("wire_count == 0, m = %p, obj = %p\n", m
, shadow_object
);
7554 assert(m
->vmp_q_state
== VM_PAGE_IS_WIRED
);
7557 * XXX FBDP need to update some other
7558 * counters here (purgeable_wired_count)
7561 assert(m
->vmp_wire_count
> 0);
7562 m
->vmp_wire_count
--;
7564 if (m
->vmp_wire_count
== 0) {
7565 m
->vmp_q_state
= VM_PAGE_NOT_ON_Q
;
7569 if (m
->vmp_wire_count
== 0) {
7570 assert(m
->vmp_pageq
.next
== 0 && m
->vmp_pageq
.prev
== 0);
7572 if (last_local
== VM_PAGE_NULL
) {
7573 assert(first_local
== VM_PAGE_NULL
);
7578 assert(first_local
!= VM_PAGE_NULL
);
7580 m
->vmp_pageq
.next
= VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_local
);
7581 first_local
->vmp_pageq
.prev
= VM_PAGE_CONVERT_TO_QUEUE_ENTRY(m
);
7584 local_queue_count
++;
7586 if (throttle_page
) {
7587 m
->vmp_q_state
= VM_PAGE_ON_THROTTLED_Q
;
7589 if (flags
& UPL_COMMIT_INACTIVATE
) {
7590 if (shadow_object
->internal
) {
7591 m
->vmp_q_state
= VM_PAGE_ON_INACTIVE_INTERNAL_Q
;
7593 m
->vmp_q_state
= VM_PAGE_ON_INACTIVE_EXTERNAL_Q
;
7596 m
->vmp_q_state
= VM_PAGE_ON_ACTIVE_Q
;
7601 if (flags
& UPL_COMMIT_INACTIVATE
) {
7602 dwp
->dw_mask
|= DW_vm_page_deactivate_internal
;
7603 clear_refmod
|= VM_MEM_REFERENCED
;
7605 if (m
->vmp_absent
) {
7606 if (flags
& UPL_COMMIT_FREE_ABSENT
) {
7607 dwp
->dw_mask
|= DW_vm_page_free
;
7609 m
->vmp_absent
= FALSE
;
7610 dwp
->dw_mask
|= (DW_clear_busy
| DW_PAGE_WAKEUP
);
7612 if (!(dwp
->dw_mask
& DW_vm_page_deactivate_internal
)) {
7613 dwp
->dw_mask
|= DW_vm_page_activate
;
7617 dwp
->dw_mask
|= DW_vm_page_unwire
;
7620 goto commit_next_page
;
7622 assert(m
->vmp_q_state
!= VM_PAGE_USED_BY_COMPRESSOR
);
7625 page_list
[entry
].phys_addr
= 0;
7629 * make sure to clear the hardware
7630 * modify or reference bits before
7631 * releasing the BUSY bit on this page
7632 * otherwise we risk losing a legitimate
7635 if (flags
& UPL_COMMIT_CLEAR_DIRTY
) {
7636 m
->vmp_dirty
= FALSE
;
7638 clear_refmod
|= VM_MEM_MODIFIED
;
7640 if (m
->vmp_laundry
) {
7641 dwp
->dw_mask
|= DW_vm_pageout_throttle_up
;
7644 if (VM_PAGE_WIRED(m
)) {
7645 m
->vmp_free_when_done
= FALSE
;
7648 if (!(flags
& UPL_COMMIT_CS_VALIDATED
) &&
7649 m
->vmp_cs_validated
&&
7650 m
->vmp_cs_tainted
!= VMP_CS_ALL_TRUE
) {
7653 * This page is no longer dirty
7654 * but could have been modified,
7655 * so it will need to be
7658 m
->vmp_cs_validated
= VMP_CS_ALL_FALSE
;
7660 VM_PAGEOUT_DEBUG(vm_cs_validated_resets
, 1);
7662 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m
));
7664 if (m
->vmp_overwriting
) {
7666 * the (COPY_OUT_FROM == FALSE) request_page_list case
7669 #if CONFIG_PHANTOM_CACHE
7670 if (m
->vmp_absent
&& !m_object
->internal
) {
7671 dwp
->dw_mask
|= DW_vm_phantom_cache_update
;
7674 m
->vmp_absent
= FALSE
;
7676 dwp
->dw_mask
|= DW_clear_busy
;
7679 * alternate (COPY_OUT_FROM == FALSE) page_list case
7680 * Occurs when the original page was wired
7681 * at the time of the list request
7683 assert(VM_PAGE_WIRED(m
));
7685 dwp
->dw_mask
|= DW_vm_page_unwire
; /* reactivates */
7687 m
->vmp_overwriting
= FALSE
;
7689 m
->vmp_cleaning
= FALSE
;
7691 if (m
->vmp_free_when_done
) {
7693 * With the clean queue enabled, UPL_PAGEOUT should
7694 * no longer set the pageout bit. Its pages now go
7695 * to the clean queue.
7697 * We don't use the cleaned Q anymore and so this
7698 * assert isn't correct. The code for the clean Q
7699 * still exists and might be used in the future. If we
7700 * go back to the cleaned Q, we will re-enable this
7703 * assert(!(upl->flags & UPL_PAGEOUT));
7705 assert(!m_object
->internal
);
7707 m
->vmp_free_when_done
= FALSE
;
7709 if ((flags
& UPL_COMMIT_SET_DIRTY
) ||
7710 (m
->vmp_pmapped
&& (pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m
)) & VM_MEM_MODIFIED
))) {
7712 * page was re-dirtied after we started
7713 * the pageout... reactivate it since
7714 * we don't know whether the on-disk
7715 * copy matches what is now in memory
7717 SET_PAGE_DIRTY(m
, FALSE
);
7719 dwp
->dw_mask
|= DW_vm_page_activate
| DW_PAGE_WAKEUP
;
7721 if (upl
->flags
& UPL_PAGEOUT
) {
7722 counter_inc(&vm_statistics_reactivations
);
7723 DTRACE_VM2(pgrec
, int, 1, (uint64_t *), NULL
);
7727 * page has been successfully cleaned
7728 * go ahead and free it for other use
7730 if (m_object
->internal
) {
7731 DTRACE_VM2(anonpgout
, int, 1, (uint64_t *), NULL
);
7733 DTRACE_VM2(fspgout
, int, 1, (uint64_t *), NULL
);
7735 m
->vmp_dirty
= FALSE
;
7738 dwp
->dw_mask
|= DW_vm_page_free
;
7740 goto commit_next_page
;
7743 * It is a part of the semantic of COPYOUT_FROM
7744 * UPLs that a commit implies cache sync
7745 * between the vm page and the backing store
7746 * this can be used to strip the precious bit
7749 if ((upl
->flags
& UPL_PAGE_SYNC_DONE
) || (flags
& UPL_COMMIT_CLEAR_PRECIOUS
)) {
7750 m
->vmp_precious
= FALSE
;
7753 if (flags
& UPL_COMMIT_SET_DIRTY
) {
7754 SET_PAGE_DIRTY(m
, FALSE
);
7756 m
->vmp_dirty
= FALSE
;
7759 /* with the clean queue on, move *all* cleaned pages to the clean queue */
7760 if (hibernate_cleaning_in_progress
== FALSE
&& !m
->vmp_dirty
&& (upl
->flags
& UPL_PAGEOUT
)) {
7763 counter_inc(&vm_statistics_pageouts
);
7764 DTRACE_VM2(pgout
, int, 1, (uint64_t *), NULL
);
7766 dwp
->dw_mask
|= DW_enqueue_cleaned
;
7767 } else if (should_be_throttled
== TRUE
&& (m
->vmp_q_state
== VM_PAGE_NOT_ON_Q
)) {
7769 * page coming back in from being 'frozen'...
7770 * it was dirty before it was frozen, so keep it so
7771 * the vm_page_activate will notice that it really belongs
7772 * on the throttle queue and put it there
7774 SET_PAGE_DIRTY(m
, FALSE
);
7775 dwp
->dw_mask
|= DW_vm_page_activate
;
7777 if ((flags
& UPL_COMMIT_INACTIVATE
) && !m
->vmp_clustered
&& (m
->vmp_q_state
!= VM_PAGE_ON_SPECULATIVE_Q
)) {
7778 dwp
->dw_mask
|= DW_vm_page_deactivate_internal
;
7779 clear_refmod
|= VM_MEM_REFERENCED
;
7780 } else if (!VM_PAGE_PAGEABLE(m
)) {
7781 if (m
->vmp_clustered
|| (flags
& UPL_COMMIT_SPECULATE
)) {
7782 dwp
->dw_mask
|= DW_vm_page_speculate
;
7783 } else if (m
->vmp_reference
) {
7784 dwp
->dw_mask
|= DW_vm_page_activate
;
7786 dwp
->dw_mask
|= DW_vm_page_deactivate_internal
;
7787 clear_refmod
|= VM_MEM_REFERENCED
;
7791 if (upl
->flags
& UPL_ACCESS_BLOCKED
) {
7793 * We blocked access to the pages in this URL.
7794 * Clear the "busy" bit on this page before we
7795 * wake up any waiter.
7797 dwp
->dw_mask
|= DW_clear_busy
;
7800 * Wakeup any thread waiting for the page to be un-cleaning.
7802 dwp
->dw_mask
|= DW_PAGE_WAKEUP
;
7806 pmap_clear_refmod(VM_PAGE_GET_PHYS_PAGE(m
), clear_refmod
);
7809 target_offset
+= PAGE_SIZE_64
;
7810 xfer_size
-= PAGE_SIZE
;
7814 if (dwp
->dw_mask
& ~(DW_clear_busy
| DW_PAGE_WAKEUP
)) {
7815 VM_PAGE_ADD_DELAYED_WORK(dwp
, m
, dw_count
);
7817 if (dw_count
>= dw_limit
) {
7818 vm_page_do_delayed_work(shadow_object
, VM_KERN_MEMORY_NONE
, dwp_start
, dw_count
);
7824 if (dwp
->dw_mask
& DW_clear_busy
) {
7825 m
->vmp_busy
= FALSE
;
7828 if (dwp
->dw_mask
& DW_PAGE_WAKEUP
) {
7835 vm_page_do_delayed_work(shadow_object
, VM_KERN_MEMORY_NONE
, dwp_start
, dw_count
);
7840 if (fast_path_possible
) {
7841 assert(shadow_object
->purgable
!= VM_PURGABLE_VOLATILE
);
7842 assert(shadow_object
->purgable
!= VM_PURGABLE_EMPTY
);
7844 if (local_queue_count
|| unwired_count
) {
7845 if (local_queue_count
) {
7846 vm_page_t first_target
;
7847 vm_page_queue_head_t
*target_queue
;
7849 if (throttle_page
) {
7850 target_queue
= &vm_page_queue_throttled
;
7852 if (flags
& UPL_COMMIT_INACTIVATE
) {
7853 if (shadow_object
->internal
) {
7854 target_queue
= &vm_page_queue_anonymous
;
7856 target_queue
= &vm_page_queue_inactive
;
7859 target_queue
= &vm_page_queue_active
;
7863 * Transfer the entire local queue to a regular LRU page queues.
7865 vm_page_lockspin_queues();
7867 first_target
= (vm_page_t
) vm_page_queue_first(target_queue
);
7869 if (vm_page_queue_empty(target_queue
)) {
7870 target_queue
->prev
= VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_local
);
7872 first_target
->vmp_pageq
.prev
= VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_local
);
7875 target_queue
->next
= VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_local
);
7876 first_local
->vmp_pageq
.prev
= VM_PAGE_CONVERT_TO_QUEUE_ENTRY(target_queue
);
7877 last_local
->vmp_pageq
.next
= VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_target
);
7880 * Adjust the global page counts.
7882 if (throttle_page
) {
7883 vm_page_throttled_count
+= local_queue_count
;
7885 if (flags
& UPL_COMMIT_INACTIVATE
) {
7886 if (shadow_object
->internal
) {
7887 vm_page_anonymous_count
+= local_queue_count
;
7889 vm_page_inactive_count
+= local_queue_count
;
7891 token_new_pagecount
+= local_queue_count
;
7893 vm_page_active_count
+= local_queue_count
;
7896 if (shadow_object
->internal
) {
7897 vm_page_pageable_internal_count
+= local_queue_count
;
7899 vm_page_pageable_external_count
+= local_queue_count
;
7903 vm_page_lockspin_queues();
7905 if (unwired_count
) {
7906 vm_page_wire_count
-= unwired_count
;
7907 VM_CHECK_MEMORYSTATUS
;
7909 vm_page_unlock_queues();
7911 VM_OBJECT_WIRED_PAGE_COUNT(shadow_object
, -unwired_count
);
7916 if (upl
->flags
& UPL_DEVICE_MEMORY
) {
7918 } else if (upl
->flags
& UPL_LITE
) {
7924 if (!fast_path_full_commit
) {
7925 pg_num
= upl_adjusted_size(upl
, PAGE_MASK
) / PAGE_SIZE
;
7926 pg_num
= (pg_num
+ 31) >> 5;
7928 for (i
= 0; i
< pg_num
; i
++) {
7929 if (lite_list
[i
] != 0) {
7936 if (vm_page_queue_empty(&upl
->map_object
->memq
)) {
7940 if (occupied
== 0) {
7942 * If this UPL element belongs to a Vector UPL and is
7943 * empty, then this is the right function to deallocate
7944 * it. So go ahead set the *empty variable. The flag
7945 * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view
7946 * should be considered relevant for the Vector UPL and not
7947 * the internal UPLs.
7949 if ((upl
->flags
& UPL_COMMIT_NOTIFY_EMPTY
) || isVectorUPL
) {
7953 if (object
== shadow_object
&& !(upl
->flags
& UPL_KERNEL_OBJECT
)) {
7955 * this is not a paging object
7956 * so we need to drop the paging reference
7957 * that was taken when we created the UPL
7958 * against this object
7960 vm_object_activity_end(shadow_object
);
7961 vm_object_collapse(shadow_object
, 0, TRUE
);
7964 * we dontated the paging reference to
7965 * the map object... vm_pageout_object_terminate
7966 * will drop this reference
7970 VM_OBJECT_WIRED_PAGE_UPDATE_END(shadow_object
, shadow_object
->wire_tag
);
7971 vm_object_unlock(shadow_object
);
7972 if (object
!= shadow_object
) {
7973 vm_object_unlock(object
);
7980 * If we completed our operations on an UPL that is
7981 * part of a Vectored UPL and if empty is TRUE, then
7982 * we should go ahead and deallocate this UPL element.
7983 * Then we check if this was the last of the UPL elements
7984 * within that Vectored UPL. If so, set empty to TRUE
7985 * so that in ubc_upl_commit_range or ubc_upl_commit, we
7986 * can go ahead and deallocate the Vector UPL too.
7988 if (*empty
== TRUE
) {
7989 *empty
= vector_upl_set_subupl(vector_upl
, upl
, 0);
7990 upl_deallocate(upl
);
7992 goto process_upl_to_commit
;
7994 if (pgpgout_count
) {
7995 DTRACE_VM2(pgpgout
, int, pgpgout_count
, (uint64_t *), NULL
);
8000 if (dwp_start
&& dwp_finish_ctx
) {
8001 vm_page_delayed_work_finish_ctx(dwp_start
);
8002 dwp_start
= dwp
= NULL
;
8011 upl_offset_t offset
,
8016 upl_page_info_t
*user_page_list
= NULL
;
8017 upl_size_t xfer_size
, subupl_size
;
8018 vm_object_t shadow_object
;
8020 vm_object_offset_t target_offset
;
8021 upl_offset_t subupl_offset
= offset
;
8023 wpl_array_t lite_list
;
8025 struct vm_page_delayed_work dw_array
;
8026 struct vm_page_delayed_work
*dwp
, *dwp_start
;
8027 bool dwp_finish_ctx
= TRUE
;
8030 int isVectorUPL
= 0;
8031 upl_t vector_upl
= NULL
;
8032 vm_object_offset_t obj_start
, obj_end
, obj_offset
;
8033 kern_return_t kr
= KERN_SUCCESS
;
8035 // DEBUG4K_UPL("upl %p (u_offset 0x%llx u_size 0x%llx) object %p offset 0x%llx size 0x%llx error 0x%x\n", upl, (uint64_t)upl->u_offset, (uint64_t)upl->u_size, upl->map_object, (uint64_t)offset, (uint64_t)size, error);
8037 dwp_start
= dwp
= NULL
;
8042 if (upl
== UPL_NULL
) {
8043 return KERN_INVALID_ARGUMENT
;
8046 if ((upl
->flags
& UPL_IO_WIRE
) && !(error
& UPL_ABORT_DUMP_PAGES
)) {
8047 return upl_commit_range(upl
, offset
, size
, UPL_COMMIT_FREE_ABSENT
, NULL
, 0, empty
);
8051 dw_limit
= DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT
);
8052 dwp_start
= vm_page_delayed_work_get_ctx();
8053 if (dwp_start
== NULL
) {
8054 dwp_start
= &dw_array
;
8056 dwp_finish_ctx
= FALSE
;
8061 if ((isVectorUPL
= vector_upl_is_valid(upl
))) {
8063 upl_lock(vector_upl
);
8068 process_upl_to_abort
:
8071 offset
= subupl_offset
;
8073 upl_unlock(vector_upl
);
8077 upl
= vector_upl_subupl_byoffset(vector_upl
, &offset
, &size
);
8079 upl_unlock(vector_upl
);
8083 subupl_size
-= size
;
8084 subupl_offset
+= size
;
8090 if (upl
->upl_commit_index
< UPL_DEBUG_COMMIT_RECORDS
) {
8091 (void) OSBacktrace(&upl
->upl_commit_records
[upl
->upl_commit_index
].c_retaddr
[0], UPL_DEBUG_STACK_FRAMES
);
8093 upl
->upl_commit_records
[upl
->upl_commit_index
].c_beg
= offset
;
8094 upl
->upl_commit_records
[upl
->upl_commit_index
].c_end
= (offset
+ size
);
8095 upl
->upl_commit_records
[upl
->upl_commit_index
].c_aborted
= 1;
8097 upl
->upl_commit_index
++;
8100 if (upl
->flags
& UPL_DEVICE_MEMORY
) {
8102 } else if ((offset
+ size
) <= upl_adjusted_size(upl
, PAGE_MASK
)) {
8108 upl_unlock(vector_upl
);
8110 DEBUG4K_ERROR("upl %p (u_offset 0x%llx u_size 0x%x) offset 0x%x size 0x%x\n", upl
, upl
->u_offset
, upl
->u_size
, offset
, size
);
8114 if (upl
->flags
& UPL_INTERNAL
) {
8115 lite_list
= (wpl_array_t
)
8116 ((((uintptr_t)upl
) + sizeof(struct upl
))
8117 + ((upl_adjusted_size(upl
, PAGE_MASK
) / PAGE_SIZE
) * sizeof(upl_page_info_t
)));
8119 user_page_list
= (upl_page_info_t
*) (((uintptr_t)upl
) + sizeof(struct upl
));
8121 lite_list
= (wpl_array_t
)
8122 (((uintptr_t)upl
) + sizeof(struct upl
));
8124 object
= upl
->map_object
;
8126 if (upl
->flags
& UPL_SHADOWED
) {
8127 vm_object_lock(object
);
8128 shadow_object
= object
->shadow
;
8130 shadow_object
= object
;
8133 entry
= offset
/ PAGE_SIZE
;
8134 target_offset
= (vm_object_offset_t
)offset
;
8136 if (upl
->flags
& UPL_KERNEL_OBJECT
) {
8137 vm_object_lock_shared(shadow_object
);
8139 vm_object_lock(shadow_object
);
8142 if (upl
->flags
& UPL_ACCESS_BLOCKED
) {
8143 assert(shadow_object
->blocked_access
);
8144 shadow_object
->blocked_access
= FALSE
;
8145 vm_object_wakeup(object
, VM_OBJECT_EVENT_UNBLOCKED
);
8148 if ((error
& UPL_ABORT_DUMP_PAGES
) && (upl
->flags
& UPL_KERNEL_OBJECT
)) {
8149 panic("upl_abort_range: kernel_object being DUMPED");
8152 obj_start
= target_offset
+ upl
->u_offset
- shadow_object
->paging_offset
;
8153 obj_end
= obj_start
+ xfer_size
;
8154 obj_start
= vm_object_trunc_page(obj_start
);
8155 obj_end
= vm_object_round_page(obj_end
);
8156 for (obj_offset
= obj_start
;
8157 obj_offset
< obj_end
;
8158 obj_offset
+= PAGE_SIZE
) {
8160 unsigned int pg_num
;
8163 pg_num
= (unsigned int) (target_offset
/ PAGE_SIZE
);
8164 assert(pg_num
== target_offset
/ PAGE_SIZE
);
8168 if (user_page_list
) {
8169 needed
= user_page_list
[pg_num
].needed
;
8175 if (upl
->flags
& UPL_LITE
) {
8176 if (lite_list
[pg_num
>> 5] & (1U << (pg_num
& 31))) {
8177 lite_list
[pg_num
>> 5] &= ~(1U << (pg_num
& 31));
8179 if (!(upl
->flags
& UPL_KERNEL_OBJECT
)) {
8180 m
= vm_page_lookup(shadow_object
, obj_offset
);
8184 if (upl
->flags
& UPL_SHADOWED
) {
8185 if ((t
= vm_page_lookup(object
, target_offset
)) != VM_PAGE_NULL
) {
8186 t
->vmp_free_when_done
= FALSE
;
8190 if (m
== VM_PAGE_NULL
) {
8191 m
= vm_page_lookup(shadow_object
, target_offset
+ object
->vo_shadow_offset
);
8195 if ((upl
->flags
& UPL_KERNEL_OBJECT
)) {
8196 goto abort_next_page
;
8199 if (m
!= VM_PAGE_NULL
) {
8200 assert(m
->vmp_q_state
!= VM_PAGE_USED_BY_COMPRESSOR
);
8202 if (m
->vmp_absent
) {
8203 boolean_t must_free
= TRUE
;
8206 * COPYOUT = FALSE case
8207 * check for error conditions which must
8208 * be passed back to the pages customer
8210 if (error
& UPL_ABORT_RESTART
) {
8211 m
->vmp_restart
= TRUE
;
8212 m
->vmp_absent
= FALSE
;
8213 m
->vmp_unusual
= TRUE
;
8215 } else if (error
& UPL_ABORT_UNAVAILABLE
) {
8216 m
->vmp_restart
= FALSE
;
8217 m
->vmp_unusual
= TRUE
;
8219 } else if (error
& UPL_ABORT_ERROR
) {
8220 m
->vmp_restart
= FALSE
;
8221 m
->vmp_absent
= FALSE
;
8222 m
->vmp_error
= TRUE
;
8223 m
->vmp_unusual
= TRUE
;
8226 if (m
->vmp_clustered
&& needed
== FALSE
) {
8228 * This page was a part of a speculative
8229 * read-ahead initiated by the kernel
8230 * itself. No one is expecting this
8231 * page and no one will clean up its
8232 * error state if it ever becomes valid
8234 * We have to free it here.
8238 m
->vmp_cleaning
= FALSE
;
8240 if (m
->vmp_overwriting
&& !m
->vmp_busy
) {
8242 * this shouldn't happen since
8243 * this is an 'absent' page, but
8244 * it doesn't hurt to check for
8245 * the 'alternate' method of
8246 * stabilizing the page...
8247 * we will mark 'busy' to be cleared
8248 * in the following code which will
8249 * take care of the primary stabilzation
8250 * method (i.e. setting 'busy' to TRUE)
8252 dwp
->dw_mask
|= DW_vm_page_unwire
;
8254 m
->vmp_overwriting
= FALSE
;
8256 dwp
->dw_mask
|= (DW_clear_busy
| DW_PAGE_WAKEUP
);
8258 if (must_free
== TRUE
) {
8259 dwp
->dw_mask
|= DW_vm_page_free
;
8261 dwp
->dw_mask
|= DW_vm_page_activate
;
8265 * Handle the trusted pager throttle.
8267 if (m
->vmp_laundry
) {
8268 dwp
->dw_mask
|= DW_vm_pageout_throttle_up
;
8271 if (upl
->flags
& UPL_ACCESS_BLOCKED
) {
8273 * We blocked access to the pages in this UPL.
8274 * Clear the "busy" bit and wake up any waiter
8277 dwp
->dw_mask
|= DW_clear_busy
;
8279 if (m
->vmp_overwriting
) {
8281 dwp
->dw_mask
|= DW_clear_busy
;
8284 * deal with the 'alternate' method
8285 * of stabilizing the page...
8286 * we will either free the page
8287 * or mark 'busy' to be cleared
8288 * in the following code which will
8289 * take care of the primary stabilzation
8290 * method (i.e. setting 'busy' to TRUE)
8292 dwp
->dw_mask
|= DW_vm_page_unwire
;
8294 m
->vmp_overwriting
= FALSE
;
8296 m
->vmp_free_when_done
= FALSE
;
8297 m
->vmp_cleaning
= FALSE
;
8299 if (error
& UPL_ABORT_DUMP_PAGES
) {
8300 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m
));
8302 dwp
->dw_mask
|= DW_vm_page_free
;
8304 if (!(dwp
->dw_mask
& DW_vm_page_unwire
)) {
8305 if (error
& UPL_ABORT_REFERENCE
) {
8307 * we've been told to explictly
8308 * reference this page... for
8309 * file I/O, this is done by
8310 * implementing an LRU on the inactive q
8312 dwp
->dw_mask
|= DW_vm_page_lru
;
8313 } else if (!VM_PAGE_PAGEABLE(m
)) {
8314 dwp
->dw_mask
|= DW_vm_page_deactivate_internal
;
8317 dwp
->dw_mask
|= DW_PAGE_WAKEUP
;
8322 target_offset
+= PAGE_SIZE_64
;
8323 xfer_size
-= PAGE_SIZE
;
8327 if (dwp
->dw_mask
& ~(DW_clear_busy
| DW_PAGE_WAKEUP
)) {
8328 VM_PAGE_ADD_DELAYED_WORK(dwp
, m
, dw_count
);
8330 if (dw_count
>= dw_limit
) {
8331 vm_page_do_delayed_work(shadow_object
, VM_KERN_MEMORY_NONE
, dwp_start
, dw_count
);
8337 if (dwp
->dw_mask
& DW_clear_busy
) {
8338 m
->vmp_busy
= FALSE
;
8341 if (dwp
->dw_mask
& DW_PAGE_WAKEUP
) {
8348 vm_page_do_delayed_work(shadow_object
, VM_KERN_MEMORY_NONE
, dwp_start
, dw_count
);
8355 if (upl
->flags
& UPL_DEVICE_MEMORY
) {
8357 } else if (upl
->flags
& UPL_LITE
) {
8361 pg_num
= upl_adjusted_size(upl
, PAGE_MASK
) / PAGE_SIZE
;
8362 pg_num
= (pg_num
+ 31) >> 5;
8365 for (i
= 0; i
< pg_num
; i
++) {
8366 if (lite_list
[i
] != 0) {
8372 if (vm_page_queue_empty(&upl
->map_object
->memq
)) {
8376 if (occupied
== 0) {
8378 * If this UPL element belongs to a Vector UPL and is
8379 * empty, then this is the right function to deallocate
8380 * it. So go ahead set the *empty variable. The flag
8381 * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view
8382 * should be considered relevant for the Vector UPL and
8383 * not the internal UPLs.
8385 if ((upl
->flags
& UPL_COMMIT_NOTIFY_EMPTY
) || isVectorUPL
) {
8389 if (object
== shadow_object
&& !(upl
->flags
& UPL_KERNEL_OBJECT
)) {
8391 * this is not a paging object
8392 * so we need to drop the paging reference
8393 * that was taken when we created the UPL
8394 * against this object
8396 vm_object_activity_end(shadow_object
);
8397 vm_object_collapse(shadow_object
, 0, TRUE
);
8400 * we dontated the paging reference to
8401 * the map object... vm_pageout_object_terminate
8402 * will drop this reference
8406 vm_object_unlock(shadow_object
);
8407 if (object
!= shadow_object
) {
8408 vm_object_unlock(object
);
8415 * If we completed our operations on an UPL that is
8416 * part of a Vectored UPL and if empty is TRUE, then
8417 * we should go ahead and deallocate this UPL element.
8418 * Then we check if this was the last of the UPL elements
8419 * within that Vectored UPL. If so, set empty to TRUE
8420 * so that in ubc_upl_abort_range or ubc_upl_abort, we
8421 * can go ahead and deallocate the Vector UPL too.
8423 if (*empty
== TRUE
) {
8424 *empty
= vector_upl_set_subupl(vector_upl
, upl
, 0);
8425 upl_deallocate(upl
);
8427 goto process_upl_to_abort
;
8433 if (dwp_start
&& dwp_finish_ctx
) {
8434 vm_page_delayed_work_finish_ctx(dwp_start
);
8435 dwp_start
= dwp
= NULL
;
8449 if (upl
== UPL_NULL
) {
8450 return KERN_INVALID_ARGUMENT
;
8453 return upl_abort_range(upl
, 0, upl
->u_size
, error
, &empty
);
8457 /* an option on commit should be wire */
8461 upl_page_info_t
*page_list
,
8462 mach_msg_type_number_t count
)
8466 if (upl
== UPL_NULL
) {
8467 return KERN_INVALID_ARGUMENT
;
8470 return upl_commit_range(upl
, 0, upl
->u_size
, 0,
8471 page_list
, count
, &empty
);
8482 vm_page_t m
, nxt_page
= VM_PAGE_NULL
;
8484 int wired_count
= 0;
8487 panic("iopl_valid_data: NULL upl");
8489 if (vector_upl_is_valid(upl
)) {
8490 panic("iopl_valid_data: vector upl");
8492 if ((upl
->flags
& (UPL_DEVICE_MEMORY
| UPL_SHADOWED
| UPL_ACCESS_BLOCKED
| UPL_IO_WIRE
| UPL_INTERNAL
)) != UPL_IO_WIRE
) {
8493 panic("iopl_valid_data: unsupported upl, flags = %x", upl
->flags
);
8496 object
= upl
->map_object
;
8498 if (object
== kernel_object
|| object
== compressor_object
) {
8499 panic("iopl_valid_data: object == kernel or compressor");
8502 if (object
->purgable
== VM_PURGABLE_VOLATILE
||
8503 object
->purgable
== VM_PURGABLE_EMPTY
) {
8504 panic("iopl_valid_data: object %p purgable %d",
8505 object
, object
->purgable
);
8508 size
= upl_adjusted_size(upl
, PAGE_MASK
);
8510 vm_object_lock(object
);
8511 VM_OBJECT_WIRED_PAGE_UPDATE_START(object
);
8513 if (object
->vo_size
== size
&& object
->resident_page_count
== (size
/ PAGE_SIZE
)) {
8514 nxt_page
= (vm_page_t
)vm_page_queue_first(&object
->memq
);
8516 offset
= (vm_offset_t
)(upl_adjusted_offset(upl
, PAGE_MASK
) - object
->paging_offset
);
8520 if (nxt_page
!= VM_PAGE_NULL
) {
8522 nxt_page
= (vm_page_t
)vm_page_queue_next(&nxt_page
->vmp_listq
);
8524 m
= vm_page_lookup(object
, offset
);
8525 offset
+= PAGE_SIZE
;
8527 if (m
== VM_PAGE_NULL
) {
8528 panic("iopl_valid_data: missing expected page at offset %lx", (long)offset
);
8532 if (!m
->vmp_absent
) {
8533 panic("iopl_valid_data: busy page w/o absent");
8536 if (m
->vmp_pageq
.next
|| m
->vmp_pageq
.prev
) {
8537 panic("iopl_valid_data: busy+absent page on page queue");
8539 if (m
->vmp_reusable
) {
8540 panic("iopl_valid_data: %p is reusable", m
);
8543 m
->vmp_absent
= FALSE
;
8544 m
->vmp_dirty
= TRUE
;
8545 assert(m
->vmp_q_state
== VM_PAGE_NOT_ON_Q
);
8546 assert(m
->vmp_wire_count
== 0);
8547 m
->vmp_wire_count
++;
8548 assert(m
->vmp_wire_count
);
8549 if (m
->vmp_wire_count
== 1) {
8550 m
->vmp_q_state
= VM_PAGE_IS_WIRED
;
8553 panic("iopl_valid_data: %p already wired\n", m
);
8556 PAGE_WAKEUP_DONE(m
);
8561 VM_OBJECT_WIRED_PAGE_COUNT(object
, wired_count
);
8562 assert(object
->resident_page_count
>= object
->wired_page_count
);
8564 /* no need to adjust purgeable accounting for this object: */
8565 assert(object
->purgable
!= VM_PURGABLE_VOLATILE
);
8566 assert(object
->purgable
!= VM_PURGABLE_EMPTY
);
8568 vm_page_lockspin_queues();
8569 vm_page_wire_count
+= wired_count
;
8570 vm_page_unlock_queues();
8572 VM_OBJECT_WIRED_PAGE_UPDATE_END(object
, tag
);
8573 vm_object_unlock(object
);
8578 vm_object_set_pmap_cache_attr(
8580 upl_page_info_array_t user_page_list
,
8581 unsigned int num_pages
,
8582 boolean_t batch_pmap_op
)
8584 unsigned int cache_attr
= 0;
8586 cache_attr
= object
->wimg_bits
& VM_WIMG_MASK
;
8587 assert(user_page_list
);
8588 if (cache_attr
!= VM_WIMG_USE_DEFAULT
) {
8589 PMAP_BATCH_SET_CACHE_ATTR(object
, user_page_list
, cache_attr
, num_pages
, batch_pmap_op
);
8594 boolean_t
vm_object_iopl_wire_full(vm_object_t
, upl_t
, upl_page_info_array_t
, wpl_array_t
, upl_control_flags_t
, vm_tag_t
);
8595 kern_return_t
vm_object_iopl_wire_empty(vm_object_t
, upl_t
, upl_page_info_array_t
, wpl_array_t
, upl_control_flags_t
, vm_tag_t
, vm_object_offset_t
*, int, int*);
8600 vm_object_iopl_wire_full(vm_object_t object
, upl_t upl
, upl_page_info_array_t user_page_list
,
8601 wpl_array_t lite_list
, upl_control_flags_t cntrl_flags
, vm_tag_t tag
)
8606 int delayed_unlock
= 0;
8607 boolean_t retval
= TRUE
;
8610 vm_object_lock_assert_exclusive(object
);
8611 assert(object
->purgable
!= VM_PURGABLE_VOLATILE
);
8612 assert(object
->purgable
!= VM_PURGABLE_EMPTY
);
8613 assert(object
->pager
== NULL
);
8614 assert(object
->copy
== NULL
);
8615 assert(object
->shadow
== NULL
);
8617 page_count
= object
->resident_page_count
;
8618 dst_page
= (vm_page_t
)vm_page_queue_first(&object
->memq
);
8620 vm_page_lock_queues();
8622 while (page_count
--) {
8623 if (dst_page
->vmp_busy
||
8624 dst_page
->vmp_fictitious
||
8625 dst_page
->vmp_absent
||
8626 dst_page
->vmp_error
||
8627 dst_page
->vmp_cleaning
||
8628 dst_page
->vmp_restart
||
8629 dst_page
->vmp_laundry
) {
8633 if ((cntrl_flags
& UPL_REQUEST_FORCE_COHERENCY
) && dst_page
->vmp_written_by_kernel
== TRUE
) {
8637 dst_page
->vmp_reference
= TRUE
;
8639 vm_page_wire(dst_page
, tag
, FALSE
);
8641 if (!(cntrl_flags
& UPL_COPYOUT_FROM
)) {
8642 SET_PAGE_DIRTY(dst_page
, FALSE
);
8644 entry
= (unsigned int)(dst_page
->vmp_offset
/ PAGE_SIZE
);
8645 assert(entry
>= 0 && entry
< object
->resident_page_count
);
8646 lite_list
[entry
>> 5] |= 1U << (entry
& 31);
8648 phys_page
= VM_PAGE_GET_PHYS_PAGE(dst_page
);
8650 if (phys_page
> upl
->highest_page
) {
8651 upl
->highest_page
= phys_page
;
8654 if (user_page_list
) {
8655 user_page_list
[entry
].phys_addr
= phys_page
;
8656 user_page_list
[entry
].absent
= dst_page
->vmp_absent
;
8657 user_page_list
[entry
].dirty
= dst_page
->vmp_dirty
;
8658 user_page_list
[entry
].free_when_done
= dst_page
->vmp_free_when_done
;
8659 user_page_list
[entry
].precious
= dst_page
->vmp_precious
;
8660 user_page_list
[entry
].device
= FALSE
;
8661 user_page_list
[entry
].speculative
= FALSE
;
8662 user_page_list
[entry
].cs_validated
= FALSE
;
8663 user_page_list
[entry
].cs_tainted
= FALSE
;
8664 user_page_list
[entry
].cs_nx
= FALSE
;
8665 user_page_list
[entry
].needed
= FALSE
;
8666 user_page_list
[entry
].mark
= FALSE
;
8668 if (delayed_unlock
++ > 256) {
8670 lck_mtx_yield(&vm_page_queue_lock
);
8672 VM_CHECK_MEMORYSTATUS
;
8674 dst_page
= (vm_page_t
)vm_page_queue_next(&dst_page
->vmp_listq
);
8677 vm_page_unlock_queues();
8679 VM_CHECK_MEMORYSTATUS
;
8686 vm_object_iopl_wire_empty(vm_object_t object
, upl_t upl
, upl_page_info_array_t user_page_list
,
8687 wpl_array_t lite_list
, upl_control_flags_t cntrl_flags
, vm_tag_t tag
, vm_object_offset_t
*dst_offset
,
8688 int page_count
, int* page_grab_count
)
8691 boolean_t no_zero_fill
= FALSE
;
8693 int pages_wired
= 0;
8694 int pages_inserted
= 0;
8696 uint64_t delayed_ledger_update
= 0;
8697 kern_return_t ret
= KERN_SUCCESS
;
8701 vm_object_lock_assert_exclusive(object
);
8702 assert(object
->purgable
!= VM_PURGABLE_VOLATILE
);
8703 assert(object
->purgable
!= VM_PURGABLE_EMPTY
);
8704 assert(object
->pager
== NULL
);
8705 assert(object
->copy
== NULL
);
8706 assert(object
->shadow
== NULL
);
8708 if (cntrl_flags
& UPL_SET_INTERRUPTIBLE
) {
8709 interruptible
= THREAD_ABORTSAFE
;
8711 interruptible
= THREAD_UNINT
;
8714 if (cntrl_flags
& (UPL_NOZEROFILL
| UPL_NOZEROFILLIO
)) {
8715 no_zero_fill
= TRUE
;
8719 #if CONFIG_SECLUDED_MEMORY
8720 if (object
->can_grab_secluded
) {
8721 grab_options
|= VM_PAGE_GRAB_SECLUDED
;
8723 #endif /* CONFIG_SECLUDED_MEMORY */
8725 while (page_count
--) {
8726 while ((dst_page
= vm_page_grab_options(grab_options
))
8728 OSAddAtomic(page_count
, &vm_upl_wait_for_pages
);
8730 VM_DEBUG_EVENT(vm_iopl_page_wait
, VM_IOPL_PAGE_WAIT
, DBG_FUNC_START
, vm_upl_wait_for_pages
, 0, 0, 0);
8732 if (vm_page_wait(interruptible
) == FALSE
) {
8736 OSAddAtomic(-page_count
, &vm_upl_wait_for_pages
);
8738 VM_DEBUG_EVENT(vm_iopl_page_wait
, VM_IOPL_PAGE_WAIT
, DBG_FUNC_END
, vm_upl_wait_for_pages
, 0, 0, -1);
8740 ret
= MACH_SEND_INTERRUPTED
;
8743 OSAddAtomic(-page_count
, &vm_upl_wait_for_pages
);
8745 VM_DEBUG_EVENT(vm_iopl_page_wait
, VM_IOPL_PAGE_WAIT
, DBG_FUNC_END
, vm_upl_wait_for_pages
, 0, 0, 0);
8747 if (no_zero_fill
== FALSE
) {
8748 vm_page_zero_fill(dst_page
);
8750 dst_page
->vmp_absent
= TRUE
;
8753 dst_page
->vmp_reference
= TRUE
;
8755 if (!(cntrl_flags
& UPL_COPYOUT_FROM
)) {
8756 SET_PAGE_DIRTY(dst_page
, FALSE
);
8758 if (dst_page
->vmp_absent
== FALSE
) {
8759 assert(dst_page
->vmp_q_state
== VM_PAGE_NOT_ON_Q
);
8760 assert(dst_page
->vmp_wire_count
== 0);
8761 dst_page
->vmp_wire_count
++;
8762 dst_page
->vmp_q_state
= VM_PAGE_IS_WIRED
;
8763 assert(dst_page
->vmp_wire_count
);
8765 PAGE_WAKEUP_DONE(dst_page
);
8769 vm_page_insert_internal(dst_page
, object
, *dst_offset
, tag
, FALSE
, TRUE
, TRUE
, TRUE
, &delayed_ledger_update
);
8771 lite_list
[entry
>> 5] |= 1U << (entry
& 31);
8773 phys_page
= VM_PAGE_GET_PHYS_PAGE(dst_page
);
8775 if (phys_page
> upl
->highest_page
) {
8776 upl
->highest_page
= phys_page
;
8779 if (user_page_list
) {
8780 user_page_list
[entry
].phys_addr
= phys_page
;
8781 user_page_list
[entry
].absent
= dst_page
->vmp_absent
;
8782 user_page_list
[entry
].dirty
= dst_page
->vmp_dirty
;
8783 user_page_list
[entry
].free_when_done
= FALSE
;
8784 user_page_list
[entry
].precious
= FALSE
;
8785 user_page_list
[entry
].device
= FALSE
;
8786 user_page_list
[entry
].speculative
= FALSE
;
8787 user_page_list
[entry
].cs_validated
= FALSE
;
8788 user_page_list
[entry
].cs_tainted
= FALSE
;
8789 user_page_list
[entry
].cs_nx
= FALSE
;
8790 user_page_list
[entry
].needed
= FALSE
;
8791 user_page_list
[entry
].mark
= FALSE
;
8794 *dst_offset
+= PAGE_SIZE_64
;
8798 vm_page_lockspin_queues();
8799 vm_page_wire_count
+= pages_wired
;
8800 vm_page_unlock_queues();
8802 if (pages_inserted
) {
8803 if (object
->internal
) {
8804 OSAddAtomic(pages_inserted
, &vm_page_internal_count
);
8806 OSAddAtomic(pages_inserted
, &vm_page_external_count
);
8809 if (delayed_ledger_update
) {
8811 int ledger_idx_volatile
;
8812 int ledger_idx_nonvolatile
;
8813 int ledger_idx_volatile_compressed
;
8814 int ledger_idx_nonvolatile_compressed
;
8815 boolean_t do_footprint
;
8817 owner
= VM_OBJECT_OWNER(object
);
8820 vm_object_ledger_tag_ledgers(object
,
8821 &ledger_idx_volatile
,
8822 &ledger_idx_nonvolatile
,
8823 &ledger_idx_volatile_compressed
,
8824 &ledger_idx_nonvolatile_compressed
,
8827 /* more non-volatile bytes */
8828 ledger_credit(owner
->ledger
,
8829 ledger_idx_nonvolatile
,
8830 delayed_ledger_update
);
8832 /* more footprint */
8833 ledger_credit(owner
->ledger
,
8834 task_ledgers
.phys_footprint
,
8835 delayed_ledger_update
);
8839 assert(page_grab_count
);
8840 *page_grab_count
= pages_inserted
;
8848 vm_object_iopl_request(
8850 vm_object_offset_t offset
,
8853 upl_page_info_array_t user_page_list
,
8854 unsigned int *page_list_count
,
8855 upl_control_flags_t cntrl_flags
,
8859 vm_object_offset_t dst_offset
;
8860 upl_size_t xfer_size
;
8863 wpl_array_t lite_list
= NULL
;
8864 int no_zero_fill
= FALSE
;
8865 unsigned int size_in_pages
;
8866 int page_grab_count
= 0;
8870 struct vm_object_fault_info fault_info
= {};
8871 struct vm_page_delayed_work dw_array
;
8872 struct vm_page_delayed_work
*dwp
, *dwp_start
;
8873 bool dwp_finish_ctx
= TRUE
;
8877 boolean_t caller_lookup
;
8878 int io_tracking_flag
= 0;
8882 boolean_t set_cache_attr_needed
= FALSE
;
8883 boolean_t free_wired_pages
= FALSE
;
8884 boolean_t fast_path_empty_req
= FALSE
;
8885 boolean_t fast_path_full_req
= FALSE
;
8887 #if DEVELOPMENT || DEBUG
8888 task_t task
= current_task();
8889 #endif /* DEVELOPMENT || DEBUG */
8891 dwp_start
= dwp
= NULL
;
8893 vm_object_offset_t original_offset
= offset
;
8894 upl_size_t original_size
= size
;
8896 // DEBUG4K_UPL("object %p offset 0x%llx size 0x%llx cntrl_flags 0x%llx\n", object, (uint64_t)offset, (uint64_t)size, cntrl_flags);
8898 size
= (upl_size_t
)(vm_object_round_page(offset
+ size
) - vm_object_trunc_page(offset
));
8899 offset
= vm_object_trunc_page(offset
);
8900 if (size
!= original_size
|| offset
!= original_offset
) {
8901 DEBUG4K_IOKIT("flags 0x%llx object %p offset 0x%llx size 0x%x -> offset 0x%llx size 0x%x\n", cntrl_flags
, object
, original_offset
, original_size
, offset
, size
);
8904 if (cntrl_flags
& ~UPL_VALID_FLAGS
) {
8906 * For forward compatibility's sake,
8907 * reject any unknown flag.
8909 return KERN_INVALID_VALUE
;
8911 if (vm_lopage_needed
== FALSE
) {
8912 cntrl_flags
&= ~UPL_NEED_32BIT_ADDR
;
8915 if (cntrl_flags
& UPL_NEED_32BIT_ADDR
) {
8916 if ((cntrl_flags
& (UPL_SET_IO_WIRE
| UPL_SET_LITE
)) != (UPL_SET_IO_WIRE
| UPL_SET_LITE
)) {
8917 return KERN_INVALID_VALUE
;
8920 if (object
->phys_contiguous
) {
8921 if ((offset
+ object
->vo_shadow_offset
) >= (vm_object_offset_t
)max_valid_dma_address
) {
8922 return KERN_INVALID_ADDRESS
;
8925 if (((offset
+ object
->vo_shadow_offset
) + size
) >= (vm_object_offset_t
)max_valid_dma_address
) {
8926 return KERN_INVALID_ADDRESS
;
8930 if (cntrl_flags
& (UPL_NOZEROFILL
| UPL_NOZEROFILLIO
)) {
8931 no_zero_fill
= TRUE
;
8934 if (cntrl_flags
& UPL_COPYOUT_FROM
) {
8935 prot
= VM_PROT_READ
;
8937 prot
= VM_PROT_READ
| VM_PROT_WRITE
;
8940 if ((!object
->internal
) && (object
->paging_offset
!= 0)) {
8941 panic("vm_object_iopl_request: external object with non-zero paging offset\n");
8945 VM_DEBUG_CONSTANT_EVENT(vm_object_iopl_request
, VM_IOPL_REQUEST
, DBG_FUNC_START
, size
, cntrl_flags
, prot
, 0);
8947 #if CONFIG_IOSCHED || UPL_DEBUG
8948 if ((object
->io_tracking
&& object
!= kernel_object
) || upl_debug_enabled
) {
8949 io_tracking_flag
|= UPL_CREATE_IO_TRACKING
;
8954 if (object
->io_tracking
) {
8955 /* Check if we're dealing with the kernel object. We do not support expedite on kernel object UPLs */
8956 if (object
!= kernel_object
) {
8957 io_tracking_flag
|= UPL_CREATE_EXPEDITE_SUP
;
8962 if (object
->phys_contiguous
) {
8968 dw_limit
= DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT
);
8969 dwp_start
= vm_page_delayed_work_get_ctx();
8970 if (dwp_start
== NULL
) {
8971 dwp_start
= &dw_array
;
8973 dwp_finish_ctx
= FALSE
;
8979 if (cntrl_flags
& UPL_SET_INTERNAL
) {
8980 upl
= upl_create(UPL_CREATE_INTERNAL
| UPL_CREATE_LITE
| io_tracking_flag
, UPL_IO_WIRE
, psize
);
8982 user_page_list
= (upl_page_info_t
*) (((uintptr_t)upl
) + sizeof(struct upl
));
8983 lite_list
= (wpl_array_t
) (((uintptr_t)user_page_list
) +
8984 ((psize
/ PAGE_SIZE
) * sizeof(upl_page_info_t
)));
8986 user_page_list
= NULL
;
8990 upl
= upl_create(UPL_CREATE_LITE
| io_tracking_flag
, UPL_IO_WIRE
, psize
);
8992 lite_list
= (wpl_array_t
) (((uintptr_t)upl
) + sizeof(struct upl
));
8997 if (user_page_list
) {
8998 user_page_list
[0].device
= FALSE
;
9002 if (cntrl_flags
& UPL_NOZEROFILLIO
) {
9003 DTRACE_VM4(upl_nozerofillio
,
9004 vm_object_t
, object
,
9005 vm_object_offset_t
, offset
,
9010 upl
->map_object
= object
;
9011 upl
->u_offset
= original_offset
;
9012 upl
->u_size
= original_size
;
9014 size_in_pages
= size
/ PAGE_SIZE
;
9016 if (object
== kernel_object
&&
9017 !(cntrl_flags
& (UPL_NEED_32BIT_ADDR
| UPL_BLOCK_ACCESS
))) {
9018 upl
->flags
|= UPL_KERNEL_OBJECT
;
9020 vm_object_lock(object
);
9022 vm_object_lock_shared(object
);
9025 vm_object_lock(object
);
9026 vm_object_activity_begin(object
);
9029 * paging in progress also protects the paging_offset
9031 upl
->u_offset
= original_offset
+ object
->paging_offset
;
9033 if (cntrl_flags
& UPL_BLOCK_ACCESS
) {
9035 * The user requested that access to the pages in this UPL
9036 * be blocked until the UPL is commited or aborted.
9038 upl
->flags
|= UPL_ACCESS_BLOCKED
;
9041 #if CONFIG_IOSCHED || UPL_DEBUG
9042 if ((upl
->flags
& UPL_TRACKED_BY_OBJECT
) || upl_debug_enabled
) {
9043 vm_object_activity_begin(object
);
9044 queue_enter(&object
->uplq
, upl
, upl_t
, uplq
);
9048 if (object
->phys_contiguous
) {
9049 if (upl
->flags
& UPL_ACCESS_BLOCKED
) {
9050 assert(!object
->blocked_access
);
9051 object
->blocked_access
= TRUE
;
9054 vm_object_unlock(object
);
9057 * don't need any shadow mappings for this one
9058 * since it is already I/O memory
9060 upl
->flags
|= UPL_DEVICE_MEMORY
;
9062 upl
->highest_page
= (ppnum_t
) ((offset
+ object
->vo_shadow_offset
+ size
- 1) >> PAGE_SHIFT
);
9064 if (user_page_list
) {
9065 user_page_list
[0].phys_addr
= (ppnum_t
) ((offset
+ object
->vo_shadow_offset
) >> PAGE_SHIFT
);
9066 user_page_list
[0].device
= TRUE
;
9068 if (page_list_count
!= NULL
) {
9069 if (upl
->flags
& UPL_INTERNAL
) {
9070 *page_list_count
= 0;
9072 *page_list_count
= 1;
9076 VM_DEBUG_CONSTANT_EVENT(vm_object_iopl_request
, VM_IOPL_REQUEST
, DBG_FUNC_END
, page_grab_count
, KERN_SUCCESS
, 0, 0);
9077 #if DEVELOPMENT || DEBUG
9079 ledger_credit(task
->ledger
, task_ledgers
.pages_grabbed_iopl
, page_grab_count
);
9081 #endif /* DEVELOPMENT || DEBUG */
9082 return KERN_SUCCESS
;
9084 if (object
!= kernel_object
&& object
!= compressor_object
) {
9086 * Protect user space from future COW operations
9088 #if VM_OBJECT_TRACKING_OP_TRUESHARE
9089 if (!object
->true_share
&&
9090 vm_object_tracking_inited
) {
9091 void *bt
[VM_OBJECT_TRACKING_BTDEPTH
];
9094 num
= OSBacktrace(bt
,
9095 VM_OBJECT_TRACKING_BTDEPTH
);
9096 btlog_add_entry(vm_object_tracking_btlog
,
9098 VM_OBJECT_TRACKING_OP_TRUESHARE
,
9102 #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */
9104 vm_object_lock_assert_exclusive(object
);
9105 object
->true_share
= TRUE
;
9107 if (object
->copy_strategy
== MEMORY_OBJECT_COPY_SYMMETRIC
) {
9108 object
->copy_strategy
= MEMORY_OBJECT_COPY_DELAY
;
9112 if (!(cntrl_flags
& UPL_COPYOUT_FROM
) &&
9113 object
->copy
!= VM_OBJECT_NULL
) {
9115 * Honor copy-on-write obligations
9117 * The caller is gathering these pages and
9118 * might modify their contents. We need to
9119 * make sure that the copy object has its own
9120 * private copies of these pages before we let
9121 * the caller modify them.
9123 * NOTE: someone else could map the original object
9124 * after we've done this copy-on-write here, and they
9125 * could then see an inconsistent picture of the memory
9126 * while it's being modified via the UPL. To prevent this,
9127 * we would have to block access to these pages until the
9128 * UPL is released. We could use the UPL_BLOCK_ACCESS
9129 * code path for that...
9131 vm_object_update(object
,
9136 FALSE
, /* should_return */
9137 MEMORY_OBJECT_COPY_SYNC
,
9139 VM_PAGEOUT_DEBUG(iopl_cow
, 1);
9140 VM_PAGEOUT_DEBUG(iopl_cow_pages
, (size
>> PAGE_SHIFT
));
9142 if (!(cntrl_flags
& (UPL_NEED_32BIT_ADDR
| UPL_BLOCK_ACCESS
)) &&
9143 object
->purgable
!= VM_PURGABLE_VOLATILE
&&
9144 object
->purgable
!= VM_PURGABLE_EMPTY
&&
9145 object
->copy
== NULL
&&
9146 size
== object
->vo_size
&&
9148 object
->shadow
== NULL
&&
9149 object
->pager
== NULL
) {
9150 if (object
->resident_page_count
== size_in_pages
) {
9151 assert(object
!= compressor_object
);
9152 assert(object
!= kernel_object
);
9153 fast_path_full_req
= TRUE
;
9154 } else if (object
->resident_page_count
== 0) {
9155 assert(object
!= compressor_object
);
9156 assert(object
!= kernel_object
);
9157 fast_path_empty_req
= TRUE
;
9158 set_cache_attr_needed
= TRUE
;
9162 if (cntrl_flags
& UPL_SET_INTERRUPTIBLE
) {
9163 interruptible
= THREAD_ABORTSAFE
;
9165 interruptible
= THREAD_UNINT
;
9171 dst_offset
= offset
;
9173 if (fast_path_full_req
) {
9174 if (vm_object_iopl_wire_full(object
, upl
, user_page_list
, lite_list
, cntrl_flags
, tag
) == TRUE
) {
9178 * we couldn't complete the processing of this request on the fast path
9179 * so fall through to the slow path and finish up
9181 } else if (fast_path_empty_req
) {
9182 if (cntrl_flags
& UPL_REQUEST_NO_FAULT
) {
9183 ret
= KERN_MEMORY_ERROR
;
9186 ret
= vm_object_iopl_wire_empty(object
, upl
, user_page_list
, lite_list
, cntrl_flags
, tag
, &dst_offset
, size_in_pages
, &page_grab_count
);
9189 free_wired_pages
= TRUE
;
9195 fault_info
.behavior
= VM_BEHAVIOR_SEQUENTIAL
;
9196 fault_info
.lo_offset
= offset
;
9197 fault_info
.hi_offset
= offset
+ xfer_size
;
9198 fault_info
.mark_zf_absent
= TRUE
;
9199 fault_info
.interruptible
= interruptible
;
9200 fault_info
.batch_pmap_op
= TRUE
;
9203 vm_fault_return_t result
;
9207 if (fast_path_full_req
) {
9209 * if we get here, it means that we ran into a page
9210 * state we couldn't handle in the fast path and
9211 * bailed out to the slow path... since the order
9212 * we look at pages is different between the 2 paths,
9213 * the following check is needed to determine whether
9214 * this page was already processed in the fast path
9216 if (lite_list
[entry
>> 5] & (1 << (entry
& 31))) {
9220 dst_page
= vm_page_lookup(object
, dst_offset
);
9222 if (dst_page
== VM_PAGE_NULL
||
9223 dst_page
->vmp_busy
||
9224 dst_page
->vmp_error
||
9225 dst_page
->vmp_restart
||
9226 dst_page
->vmp_absent
||
9227 dst_page
->vmp_fictitious
) {
9228 if (object
== kernel_object
) {
9229 panic("vm_object_iopl_request: missing/bad page in kernel object\n");
9231 if (object
== compressor_object
) {
9232 panic("vm_object_iopl_request: missing/bad page in compressor object\n");
9235 if (cntrl_flags
& UPL_REQUEST_NO_FAULT
) {
9236 ret
= KERN_MEMORY_ERROR
;
9239 set_cache_attr_needed
= TRUE
;
9242 * We just looked up the page and the result remains valid
9243 * until the object lock is release, so send it to
9244 * vm_fault_page() (as "dst_page"), to avoid having to
9245 * look it up again there.
9247 caller_lookup
= TRUE
;
9251 kern_return_t error_code
;
9253 fault_info
.cluster_size
= xfer_size
;
9255 vm_object_paging_begin(object
);
9257 result
= vm_fault_page(object
, dst_offset
,
9258 prot
| VM_PROT_WRITE
, FALSE
,
9260 &prot
, &dst_page
, &top_page
,
9262 &error_code
, no_zero_fill
,
9263 FALSE
, &fault_info
);
9265 /* our lookup is no longer valid at this point */
9266 caller_lookup
= FALSE
;
9269 case VM_FAULT_SUCCESS
:
9272 if (!dst_page
->vmp_absent
) {
9273 PAGE_WAKEUP_DONE(dst_page
);
9276 * we only get back an absent page if we
9277 * requested that it not be zero-filled
9278 * because we are about to fill it via I/O
9280 * absent pages should be left BUSY
9281 * to prevent them from being faulted
9282 * into an address space before we've
9283 * had a chance to complete the I/O on
9284 * them since they may contain info that
9285 * shouldn't be seen by the faulting task
9289 * Release paging references and
9290 * top-level placeholder page, if any.
9292 if (top_page
!= VM_PAGE_NULL
) {
9293 vm_object_t local_object
;
9295 local_object
= VM_PAGE_OBJECT(top_page
);
9298 * comparing 2 packed pointers
9300 if (top_page
->vmp_object
!= dst_page
->vmp_object
) {
9301 vm_object_lock(local_object
);
9302 VM_PAGE_FREE(top_page
);
9303 vm_object_paging_end(local_object
);
9304 vm_object_unlock(local_object
);
9306 VM_PAGE_FREE(top_page
);
9307 vm_object_paging_end(local_object
);
9310 vm_object_paging_end(object
);
9313 case VM_FAULT_RETRY
:
9314 vm_object_lock(object
);
9317 case VM_FAULT_MEMORY_SHORTAGE
:
9318 OSAddAtomic((size_in_pages
- entry
), &vm_upl_wait_for_pages
);
9320 VM_DEBUG_EVENT(vm_iopl_page_wait
, VM_IOPL_PAGE_WAIT
, DBG_FUNC_START
, vm_upl_wait_for_pages
, 0, 0, 0);
9322 if (vm_page_wait(interruptible
)) {
9323 OSAddAtomic(-(size_in_pages
- entry
), &vm_upl_wait_for_pages
);
9325 VM_DEBUG_EVENT(vm_iopl_page_wait
, VM_IOPL_PAGE_WAIT
, DBG_FUNC_END
, vm_upl_wait_for_pages
, 0, 0, 0);
9326 vm_object_lock(object
);
9330 OSAddAtomic(-(size_in_pages
- entry
), &vm_upl_wait_for_pages
);
9332 VM_DEBUG_EVENT(vm_iopl_page_wait
, VM_IOPL_PAGE_WAIT
, DBG_FUNC_END
, vm_upl_wait_for_pages
, 0, 0, -1);
9336 case VM_FAULT_INTERRUPTED
:
9337 error_code
= MACH_SEND_INTERRUPTED
;
9339 case VM_FAULT_MEMORY_ERROR
:
9341 ret
= (error_code
? error_code
: KERN_MEMORY_ERROR
);
9343 vm_object_lock(object
);
9346 case VM_FAULT_SUCCESS_NO_VM_PAGE
:
9347 /* success but no page: fail */
9348 vm_object_paging_end(object
);
9349 vm_object_unlock(object
);
9353 panic("vm_object_iopl_request: unexpected error"
9354 " 0x%x from vm_fault_page()\n", result
);
9356 } while (result
!= VM_FAULT_SUCCESS
);
9358 phys_page
= VM_PAGE_GET_PHYS_PAGE(dst_page
);
9360 if (upl
->flags
& UPL_KERNEL_OBJECT
) {
9361 goto record_phys_addr
;
9364 if (dst_page
->vmp_q_state
== VM_PAGE_USED_BY_COMPRESSOR
) {
9365 dst_page
->vmp_busy
= TRUE
;
9366 goto record_phys_addr
;
9369 if (dst_page
->vmp_cleaning
) {
9371 * Someone else is cleaning this page in place.
9372 * In theory, we should be able to proceed and use this
9373 * page but they'll probably end up clearing the "busy"
9374 * bit on it in upl_commit_range() but they didn't set
9375 * it, so they would clear our "busy" bit and open
9376 * us to race conditions.
9377 * We'd better wait for the cleaning to complete and
9380 VM_PAGEOUT_DEBUG(vm_object_iopl_request_sleep_for_cleaning
, 1);
9381 PAGE_SLEEP(object
, dst_page
, THREAD_UNINT
);
9384 if (dst_page
->vmp_laundry
) {
9385 vm_pageout_steal_laundry(dst_page
, FALSE
);
9388 if ((cntrl_flags
& UPL_NEED_32BIT_ADDR
) &&
9389 phys_page
>= (max_valid_dma_address
>> PAGE_SHIFT
)) {
9394 * support devices that can't DMA above 32 bits
9395 * by substituting pages from a pool of low address
9396 * memory for any pages we find above the 4G mark
9397 * can't substitute if the page is already wired because
9398 * we don't know whether that physical address has been
9399 * handed out to some other 64 bit capable DMA device to use
9401 if (VM_PAGE_WIRED(dst_page
)) {
9402 ret
= KERN_PROTECTION_FAILURE
;
9405 low_page
= vm_page_grablo();
9407 if (low_page
== VM_PAGE_NULL
) {
9408 ret
= KERN_RESOURCE_SHORTAGE
;
9412 * from here until the vm_page_replace completes
9413 * we musn't drop the object lock... we don't
9414 * want anyone refaulting this page in and using
9415 * it after we disconnect it... we want the fault
9416 * to find the new page being substituted.
9418 if (dst_page
->vmp_pmapped
) {
9419 refmod
= pmap_disconnect(phys_page
);
9424 if (!dst_page
->vmp_absent
) {
9425 vm_page_copy(dst_page
, low_page
);
9428 low_page
->vmp_reference
= dst_page
->vmp_reference
;
9429 low_page
->vmp_dirty
= dst_page
->vmp_dirty
;
9430 low_page
->vmp_absent
= dst_page
->vmp_absent
;
9432 if (refmod
& VM_MEM_REFERENCED
) {
9433 low_page
->vmp_reference
= TRUE
;
9435 if (refmod
& VM_MEM_MODIFIED
) {
9436 SET_PAGE_DIRTY(low_page
, FALSE
);
9439 vm_page_replace(low_page
, object
, dst_offset
);
9441 dst_page
= low_page
;
9443 * vm_page_grablo returned the page marked
9444 * BUSY... we don't need a PAGE_WAKEUP_DONE
9445 * here, because we've never dropped the object lock
9447 if (!dst_page
->vmp_absent
) {
9448 dst_page
->vmp_busy
= FALSE
;
9451 phys_page
= VM_PAGE_GET_PHYS_PAGE(dst_page
);
9453 if (!dst_page
->vmp_busy
) {
9454 dwp
->dw_mask
|= DW_vm_page_wire
;
9457 if (cntrl_flags
& UPL_BLOCK_ACCESS
) {
9459 * Mark the page "busy" to block any future page fault
9460 * on this page in addition to wiring it.
9461 * We'll also remove the mapping
9462 * of all these pages before leaving this routine.
9464 assert(!dst_page
->vmp_fictitious
);
9465 dst_page
->vmp_busy
= TRUE
;
9468 * expect the page to be used
9469 * page queues lock must be held to set 'reference'
9471 dwp
->dw_mask
|= DW_set_reference
;
9473 if (!(cntrl_flags
& UPL_COPYOUT_FROM
)) {
9474 SET_PAGE_DIRTY(dst_page
, TRUE
);
9476 * Page belonging to a code-signed object is about to
9477 * be written. Mark it tainted and disconnect it from
9478 * all pmaps so processes have to fault it back in and
9479 * deal with the tainted bit.
9481 if (object
->code_signed
&& dst_page
->vmp_cs_tainted
!= VMP_CS_ALL_TRUE
) {
9482 dst_page
->vmp_cs_tainted
= VMP_CS_ALL_TRUE
;
9483 vm_page_iopl_tainted
++;
9484 if (dst_page
->vmp_pmapped
) {
9485 int refmod
= pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(dst_page
));
9486 if (refmod
& VM_MEM_REFERENCED
) {
9487 dst_page
->vmp_reference
= TRUE
;
9492 if ((cntrl_flags
& UPL_REQUEST_FORCE_COHERENCY
) && dst_page
->vmp_written_by_kernel
== TRUE
) {
9493 pmap_sync_page_attributes_phys(phys_page
);
9494 dst_page
->vmp_written_by_kernel
= FALSE
;
9498 if (dst_page
->vmp_busy
) {
9499 upl
->flags
|= UPL_HAS_BUSY
;
9502 lite_list
[entry
>> 5] |= 1U << (entry
& 31);
9504 if (phys_page
> upl
->highest_page
) {
9505 upl
->highest_page
= phys_page
;
9508 if (user_page_list
) {
9509 user_page_list
[entry
].phys_addr
= phys_page
;
9510 user_page_list
[entry
].free_when_done
= dst_page
->vmp_free_when_done
;
9511 user_page_list
[entry
].absent
= dst_page
->vmp_absent
;
9512 user_page_list
[entry
].dirty
= dst_page
->vmp_dirty
;
9513 user_page_list
[entry
].precious
= dst_page
->vmp_precious
;
9514 user_page_list
[entry
].device
= FALSE
;
9515 user_page_list
[entry
].needed
= FALSE
;
9516 if (dst_page
->vmp_clustered
== TRUE
) {
9517 user_page_list
[entry
].speculative
= (dst_page
->vmp_q_state
== VM_PAGE_ON_SPECULATIVE_Q
) ? TRUE
: FALSE
;
9519 user_page_list
[entry
].speculative
= FALSE
;
9521 user_page_list
[entry
].cs_validated
= dst_page
->vmp_cs_validated
;
9522 user_page_list
[entry
].cs_tainted
= dst_page
->vmp_cs_tainted
;
9523 user_page_list
[entry
].cs_nx
= dst_page
->vmp_cs_nx
;
9524 user_page_list
[entry
].mark
= FALSE
;
9526 if (object
!= kernel_object
&& object
!= compressor_object
) {
9528 * someone is explicitly grabbing this page...
9529 * update clustered and speculative state
9532 if (dst_page
->vmp_clustered
) {
9533 VM_PAGE_CONSUME_CLUSTERED(dst_page
);
9538 dst_offset
+= PAGE_SIZE_64
;
9539 xfer_size
-= PAGE_SIZE
;
9542 VM_PAGE_ADD_DELAYED_WORK(dwp
, dst_page
, dw_count
);
9544 if (dw_count
>= dw_limit
) {
9545 vm_page_do_delayed_work(object
, tag
, dwp_start
, dw_count
);
9552 assert(entry
== size_in_pages
);
9555 vm_page_do_delayed_work(object
, tag
, dwp_start
, dw_count
);
9560 if (user_page_list
&& set_cache_attr_needed
== TRUE
) {
9561 vm_object_set_pmap_cache_attr(object
, user_page_list
, size_in_pages
, TRUE
);
9564 if (page_list_count
!= NULL
) {
9565 if (upl
->flags
& UPL_INTERNAL
) {
9566 *page_list_count
= 0;
9567 } else if (*page_list_count
> size_in_pages
) {
9568 *page_list_count
= size_in_pages
;
9571 vm_object_unlock(object
);
9573 if (cntrl_flags
& UPL_BLOCK_ACCESS
) {
9575 * We've marked all the pages "busy" so that future
9576 * page faults will block.
9577 * Now remove the mapping for these pages, so that they
9578 * can't be accessed without causing a page fault.
9580 vm_object_pmap_protect(object
, offset
, (vm_object_size_t
)size
,
9584 assert(!object
->blocked_access
);
9585 object
->blocked_access
= TRUE
;
9588 VM_DEBUG_CONSTANT_EVENT(vm_object_iopl_request
, VM_IOPL_REQUEST
, DBG_FUNC_END
, page_grab_count
, KERN_SUCCESS
, 0, 0);
9589 #if DEVELOPMENT || DEBUG
9591 ledger_credit(task
->ledger
, task_ledgers
.pages_grabbed_iopl
, page_grab_count
);
9593 #endif /* DEVELOPMENT || DEBUG */
9595 if (dwp_start
&& dwp_finish_ctx
) {
9596 vm_page_delayed_work_finish_ctx(dwp_start
);
9597 dwp_start
= dwp
= NULL
;
9600 return KERN_SUCCESS
;
9605 for (; offset
< dst_offset
; offset
+= PAGE_SIZE
) {
9606 boolean_t need_unwire
;
9608 dst_page
= vm_page_lookup(object
, offset
);
9610 if (dst_page
== VM_PAGE_NULL
) {
9611 panic("vm_object_iopl_request: Wired page missing. \n");
9615 * if we've already processed this page in an earlier
9616 * dw_do_work, we need to undo the wiring... we will
9617 * leave the dirty and reference bits on if they
9618 * were set, since we don't have a good way of knowing
9619 * what the previous state was and we won't get here
9620 * under any normal circumstances... we will always
9621 * clear BUSY and wakeup any waiters via vm_page_free
9622 * or PAGE_WAKEUP_DONE
9627 if ((dwp_start
)[dw_index
].dw_m
== dst_page
) {
9629 * still in the deferred work list
9630 * which means we haven't yet called
9631 * vm_page_wire on this page
9633 need_unwire
= FALSE
;
9639 vm_page_lock_queues();
9641 if (dst_page
->vmp_absent
|| free_wired_pages
== TRUE
) {
9642 vm_page_free(dst_page
);
9644 need_unwire
= FALSE
;
9646 if (need_unwire
== TRUE
) {
9647 vm_page_unwire(dst_page
, TRUE
);
9650 PAGE_WAKEUP_DONE(dst_page
);
9652 vm_page_unlock_queues();
9654 if (need_unwire
== TRUE
) {
9655 counter_inc(&vm_statistics_reactivations
);
9661 if (!(upl
->flags
& UPL_KERNEL_OBJECT
)) {
9662 vm_object_activity_end(object
);
9663 vm_object_collapse(object
, 0, TRUE
);
9665 vm_object_unlock(object
);
9668 VM_DEBUG_CONSTANT_EVENT(vm_object_iopl_request
, VM_IOPL_REQUEST
, DBG_FUNC_END
, page_grab_count
, ret
, 0, 0);
9669 #if DEVELOPMENT || DEBUG
9671 ledger_credit(task
->ledger
, task_ledgers
.pages_grabbed_iopl
, page_grab_count
);
9673 #endif /* DEVELOPMENT || DEBUG */
9675 if (dwp_start
&& dwp_finish_ctx
) {
9676 vm_page_delayed_work_finish_ctx(dwp_start
);
9677 dwp_start
= dwp
= NULL
;
9687 kern_return_t retval
;
9688 boolean_t upls_locked
;
9689 vm_object_t object1
, object2
;
9691 if (upl1
== UPL_NULL
|| upl2
== UPL_NULL
|| upl1
== upl2
|| ((upl1
->flags
& UPL_VECTOR
) == UPL_VECTOR
) || ((upl2
->flags
& UPL_VECTOR
) == UPL_VECTOR
)) {
9692 return KERN_INVALID_ARGUMENT
;
9695 upls_locked
= FALSE
;
9698 * Since we need to lock both UPLs at the same time,
9699 * avoid deadlocks by always taking locks in the same order.
9708 upls_locked
= TRUE
; /* the UPLs will need to be unlocked */
9710 object1
= upl1
->map_object
;
9711 object2
= upl2
->map_object
;
9713 if (upl1
->u_offset
!= 0 || upl2
->u_offset
!= 0 ||
9714 upl1
->u_size
!= upl2
->u_size
) {
9716 * We deal only with full objects, not subsets.
9717 * That's because we exchange the entire backing store info
9718 * for the objects: pager, resident pages, etc... We can't do
9721 retval
= KERN_INVALID_VALUE
;
9726 * Tranpose the VM objects' backing store.
9728 retval
= vm_object_transpose(object1
, object2
,
9729 upl_adjusted_size(upl1
, PAGE_MASK
));
9731 if (retval
== KERN_SUCCESS
) {
9733 * Make each UPL point to the correct VM object, i.e. the
9734 * object holding the pages that the UPL refers to...
9736 #if CONFIG_IOSCHED || UPL_DEBUG
9737 if ((upl1
->flags
& UPL_TRACKED_BY_OBJECT
) || (upl2
->flags
& UPL_TRACKED_BY_OBJECT
)) {
9738 vm_object_lock(object1
);
9739 vm_object_lock(object2
);
9741 if ((upl1
->flags
& UPL_TRACKED_BY_OBJECT
) || upl_debug_enabled
) {
9742 queue_remove(&object1
->uplq
, upl1
, upl_t
, uplq
);
9744 if ((upl2
->flags
& UPL_TRACKED_BY_OBJECT
) || upl_debug_enabled
) {
9745 queue_remove(&object2
->uplq
, upl2
, upl_t
, uplq
);
9748 upl1
->map_object
= object2
;
9749 upl2
->map_object
= object1
;
9751 #if CONFIG_IOSCHED || UPL_DEBUG
9752 if ((upl1
->flags
& UPL_TRACKED_BY_OBJECT
) || upl_debug_enabled
) {
9753 queue_enter(&object2
->uplq
, upl1
, upl_t
, uplq
);
9755 if ((upl2
->flags
& UPL_TRACKED_BY_OBJECT
) || upl_debug_enabled
) {
9756 queue_enter(&object1
->uplq
, upl2
, upl_t
, uplq
);
9758 if ((upl1
->flags
& UPL_TRACKED_BY_OBJECT
) || (upl2
->flags
& UPL_TRACKED_BY_OBJECT
)) {
9759 vm_object_unlock(object2
);
9760 vm_object_unlock(object1
);
9772 upls_locked
= FALSE
;
9784 upl_page_info_t
*user_page_list
;
9787 if (!(upl
->flags
& UPL_INTERNAL
) || count
<= 0) {
9791 size_in_pages
= upl_adjusted_size(upl
, PAGE_MASK
) / PAGE_SIZE
;
9793 user_page_list
= (upl_page_info_t
*) (((uintptr_t)upl
) + sizeof(struct upl
));
9795 while (count
-- && index
< size_in_pages
) {
9796 user_page_list
[index
++].needed
= TRUE
;
9802 * Reserve of virtual addresses in the kernel address space.
9803 * We need to map the physical pages in the kernel, so that we
9804 * can call the code-signing or slide routines with a kernel
9805 * virtual address. We keep this pool of pre-allocated kernel
9806 * virtual addresses so that we don't have to scan the kernel's
9807 * virtaul address space each time we need to work with
9810 SIMPLE_LOCK_DECLARE(vm_paging_lock
, 0);
9811 #define VM_PAGING_NUM_PAGES 64
9812 vm_map_offset_t vm_paging_base_address
= 0;
9813 boolean_t vm_paging_page_inuse
[VM_PAGING_NUM_PAGES
] = { FALSE
, };
9814 int vm_paging_max_index
= 0;
9815 int vm_paging_page_waiter
= 0;
9816 int vm_paging_page_waiter_total
= 0;
9818 unsigned long vm_paging_no_kernel_page
= 0;
9819 unsigned long vm_paging_objects_mapped
= 0;
9820 unsigned long vm_paging_pages_mapped
= 0;
9821 unsigned long vm_paging_objects_mapped_slow
= 0;
9822 unsigned long vm_paging_pages_mapped_slow
= 0;
9826 vm_paging_map_init(void)
9829 vm_map_offset_t page_map_offset
;
9830 vm_map_entry_t map_entry
;
9832 assert(vm_paging_base_address
== 0);
9835 * Initialize our pool of pre-allocated kernel
9836 * virtual addresses.
9838 page_map_offset
= 0;
9839 kr
= vm_map_find_space(kernel_map
,
9841 VM_PAGING_NUM_PAGES
* PAGE_SIZE
,
9844 VM_MAP_KERNEL_FLAGS_NONE
,
9845 VM_KERN_MEMORY_NONE
,
9847 if (kr
!= KERN_SUCCESS
) {
9848 panic("vm_paging_map_init: kernel_map full\n");
9850 VME_OBJECT_SET(map_entry
, kernel_object
);
9851 VME_OFFSET_SET(map_entry
, page_map_offset
);
9852 map_entry
->protection
= VM_PROT_NONE
;
9853 map_entry
->max_protection
= VM_PROT_NONE
;
9854 map_entry
->permanent
= TRUE
;
9855 vm_object_reference(kernel_object
);
9856 vm_map_unlock(kernel_map
);
9858 assert(vm_paging_base_address
== 0);
9859 vm_paging_base_address
= page_map_offset
;
9863 * vm_paging_map_object:
9864 * Maps part of a VM object's pages in the kernel
9865 * virtual address space, using the pre-allocated
9866 * kernel virtual addresses, if possible.
9868 * The VM object is locked. This lock will get
9869 * dropped and re-acquired though, so the caller
9870 * must make sure the VM object is kept alive
9871 * (by holding a VM map that has a reference
9872 * on it, for example, or taking an extra reference).
9873 * The page should also be kept busy to prevent
9874 * it from being reclaimed.
9877 vm_paging_map_object(
9880 vm_object_offset_t offset
,
9881 vm_prot_t protection
,
9882 boolean_t can_unlock_object
,
9883 vm_map_size_t
*size
, /* IN/OUT */
9884 vm_map_offset_t
*address
, /* OUT */
9885 boolean_t
*need_unmap
) /* OUT */
9888 vm_map_offset_t page_map_offset
;
9889 vm_map_size_t map_size
;
9890 vm_object_offset_t object_offset
;
9893 if (page
!= VM_PAGE_NULL
&& *size
== PAGE_SIZE
) {
9894 /* use permanent 1-to-1 kernel mapping of physical memory ? */
9895 *address
= (vm_map_offset_t
)
9896 phystokv((pmap_paddr_t
)VM_PAGE_GET_PHYS_PAGE(page
) << PAGE_SHIFT
);
9897 *need_unmap
= FALSE
;
9898 return KERN_SUCCESS
;
9900 assert(page
->vmp_busy
);
9902 * Use one of the pre-allocated kernel virtual addresses
9903 * and just enter the VM page in the kernel address space
9904 * at that virtual address.
9906 simple_lock(&vm_paging_lock
, &vm_pageout_lck_grp
);
9909 * Try and find an available kernel virtual address
9910 * from our pre-allocated pool.
9912 page_map_offset
= 0;
9914 for (i
= 0; i
< VM_PAGING_NUM_PAGES
; i
++) {
9915 if (vm_paging_page_inuse
[i
] == FALSE
) {
9917 vm_paging_base_address
+
9922 if (page_map_offset
!= 0) {
9923 /* found a space to map our page ! */
9927 if (can_unlock_object
) {
9929 * If we can afford to unlock the VM object,
9930 * let's take the slow path now...
9935 * We can't afford to unlock the VM object, so
9936 * let's wait for a space to become available...
9938 vm_paging_page_waiter_total
++;
9939 vm_paging_page_waiter
++;
9940 kr
= assert_wait((event_t
)&vm_paging_page_waiter
, THREAD_UNINT
);
9941 if (kr
== THREAD_WAITING
) {
9942 simple_unlock(&vm_paging_lock
);
9943 kr
= thread_block(THREAD_CONTINUE_NULL
);
9944 simple_lock(&vm_paging_lock
, &vm_pageout_lck_grp
);
9946 vm_paging_page_waiter
--;
9947 /* ... and try again */
9950 if (page_map_offset
!= 0) {
9952 * We found a kernel virtual address;
9953 * map the physical page to that virtual address.
9955 if (i
> vm_paging_max_index
) {
9956 vm_paging_max_index
= i
;
9958 vm_paging_page_inuse
[i
] = TRUE
;
9959 simple_unlock(&vm_paging_lock
);
9961 page
->vmp_pmapped
= TRUE
;
9964 * Keep the VM object locked over the PMAP_ENTER
9965 * and the actual use of the page by the kernel,
9966 * or this pmap mapping might get undone by a
9967 * vm_object_pmap_protect() call...
9969 PMAP_ENTER(kernel_pmap
,
9977 assert(kr
== KERN_SUCCESS
);
9978 vm_paging_objects_mapped
++;
9979 vm_paging_pages_mapped
++;
9980 *address
= page_map_offset
;
9984 kasan_notify_address(page_map_offset
, PAGE_SIZE
);
9987 /* all done and mapped, ready to use ! */
9988 return KERN_SUCCESS
;
9992 * We ran out of pre-allocated kernel virtual
9993 * addresses. Just map the page in the kernel
9994 * the slow and regular way.
9996 vm_paging_no_kernel_page
++;
9997 simple_unlock(&vm_paging_lock
);
10000 if (!can_unlock_object
) {
10003 *need_unmap
= FALSE
;
10004 return KERN_NOT_SUPPORTED
;
10007 object_offset
= vm_object_trunc_page(offset
);
10008 map_size
= vm_map_round_page(*size
,
10009 VM_MAP_PAGE_MASK(kernel_map
));
10012 * Try and map the required range of the object
10013 * in the kernel_map
10016 vm_object_reference_locked(object
); /* for the map entry */
10017 vm_object_unlock(object
);
10019 kr
= vm_map_enter(kernel_map
,
10024 VM_MAP_KERNEL_FLAGS_NONE
,
10025 VM_KERN_MEMORY_NONE
,
10032 if (kr
!= KERN_SUCCESS
) {
10035 *need_unmap
= FALSE
;
10036 vm_object_deallocate(object
); /* for the map entry */
10037 vm_object_lock(object
);
10044 * Enter the mapped pages in the page table now.
10046 vm_object_lock(object
);
10048 * VM object must be kept locked from before PMAP_ENTER()
10049 * until after the kernel is done accessing the page(s).
10050 * Otherwise, the pmap mappings in the kernel could be
10051 * undone by a call to vm_object_pmap_protect().
10054 for (page_map_offset
= 0;
10056 map_size
-= PAGE_SIZE_64
, page_map_offset
+= PAGE_SIZE_64
) {
10057 page
= vm_page_lookup(object
, offset
+ page_map_offset
);
10058 if (page
== VM_PAGE_NULL
) {
10059 printf("vm_paging_map_object: no page !?");
10060 vm_object_unlock(object
);
10061 kr
= vm_map_remove(kernel_map
, *address
, *size
,
10062 VM_MAP_REMOVE_NO_FLAGS
);
10063 assert(kr
== KERN_SUCCESS
);
10066 *need_unmap
= FALSE
;
10067 vm_object_lock(object
);
10068 return KERN_MEMORY_ERROR
;
10070 page
->vmp_pmapped
= TRUE
;
10072 //assert(pmap_verify_free(VM_PAGE_GET_PHYS_PAGE(page)));
10073 PMAP_ENTER(kernel_pmap
,
10074 *address
+ page_map_offset
,
10081 assert(kr
== KERN_SUCCESS
);
10083 kasan_notify_address(*address
+ page_map_offset
, PAGE_SIZE
);
10087 vm_paging_objects_mapped_slow
++;
10088 vm_paging_pages_mapped_slow
+= (unsigned long) (map_size
/ PAGE_SIZE_64
);
10090 *need_unmap
= TRUE
;
10092 return KERN_SUCCESS
;
10096 * vm_paging_unmap_object:
10097 * Unmaps part of a VM object's pages from the kernel
10098 * virtual address space.
10100 * The VM object is locked. This lock will get
10101 * dropped and re-acquired though.
10104 vm_paging_unmap_object(
10105 vm_object_t object
,
10106 vm_map_offset_t start
,
10107 vm_map_offset_t end
)
10112 if ((vm_paging_base_address
== 0) ||
10113 (start
< vm_paging_base_address
) ||
10114 (end
> (vm_paging_base_address
10115 + (VM_PAGING_NUM_PAGES
* PAGE_SIZE
)))) {
10117 * We didn't use our pre-allocated pool of
10118 * kernel virtual address. Deallocate the
10121 if (object
!= VM_OBJECT_NULL
) {
10122 vm_object_unlock(object
);
10124 kr
= vm_map_remove(kernel_map
, start
, end
,
10125 VM_MAP_REMOVE_NO_FLAGS
);
10126 if (object
!= VM_OBJECT_NULL
) {
10127 vm_object_lock(object
);
10129 assert(kr
== KERN_SUCCESS
);
10132 * We used a kernel virtual address from our
10133 * pre-allocated pool. Put it back in the pool
10136 assert(end
- start
== PAGE_SIZE
);
10137 i
= (int) ((start
- vm_paging_base_address
) >> PAGE_SHIFT
);
10138 assert(i
>= 0 && i
< VM_PAGING_NUM_PAGES
);
10140 /* undo the pmap mapping */
10141 pmap_remove(kernel_pmap
, start
, end
);
10143 simple_lock(&vm_paging_lock
, &vm_pageout_lck_grp
);
10144 vm_paging_page_inuse
[i
] = FALSE
;
10145 if (vm_paging_page_waiter
) {
10146 thread_wakeup(&vm_paging_page_waiter
);
10148 simple_unlock(&vm_paging_lock
);
10154 * page->vmp_object must be locked
10157 vm_pageout_steal_laundry(vm_page_t page
, boolean_t queues_locked
)
10159 if (!queues_locked
) {
10160 vm_page_lockspin_queues();
10163 page
->vmp_free_when_done
= FALSE
;
10165 * need to drop the laundry count...
10166 * we may also need to remove it
10167 * from the I/O paging queue...
10168 * vm_pageout_throttle_up handles both cases
10170 * the laundry and pageout_queue flags are cleared...
10172 vm_pageout_throttle_up(page
);
10174 if (!queues_locked
) {
10175 vm_page_unlock_queues();
10180 vector_upl_create(vm_offset_t upl_offset
)
10182 int vector_upl_size
= sizeof(struct _vector_upl
);
10185 vector_upl_t vector_upl
= (vector_upl_t
)kalloc(vector_upl_size
);
10187 upl
= upl_create(0, UPL_VECTOR
, 0);
10188 upl
->vector_upl
= vector_upl
;
10189 upl
->u_offset
= upl_offset
;
10190 vector_upl
->size
= 0;
10191 vector_upl
->offset
= upl_offset
;
10192 vector_upl
->invalid_upls
= 0;
10193 vector_upl
->num_upls
= 0;
10194 vector_upl
->pagelist
= NULL
;
10196 for (i
= 0; i
< MAX_VECTOR_UPL_ELEMENTS
; i
++) {
10197 vector_upl
->upl_iostates
[i
].size
= 0;
10198 vector_upl
->upl_iostates
[i
].offset
= 0;
10204 vector_upl_deallocate(upl_t upl
)
10207 vector_upl_t vector_upl
= upl
->vector_upl
;
10209 if (vector_upl
->invalid_upls
!= vector_upl
->num_upls
) {
10210 panic("Deallocating non-empty Vectored UPL\n");
10212 kfree(vector_upl
->pagelist
, (sizeof(struct upl_page_info
) * (vector_upl
->size
/ PAGE_SIZE
)));
10213 vector_upl
->invalid_upls
= 0;
10214 vector_upl
->num_upls
= 0;
10215 vector_upl
->pagelist
= NULL
;
10216 vector_upl
->size
= 0;
10217 vector_upl
->offset
= 0;
10218 kfree(vector_upl
, sizeof(struct _vector_upl
));
10219 vector_upl
= (vector_upl_t
)0xfeedfeed;
10221 panic("vector_upl_deallocate was passed a non-vectored upl\n");
10224 panic("vector_upl_deallocate was passed a NULL upl\n");
10229 vector_upl_is_valid(upl_t upl
)
10231 if (upl
&& ((upl
->flags
& UPL_VECTOR
) == UPL_VECTOR
)) {
10232 vector_upl_t vector_upl
= upl
->vector_upl
;
10233 if (vector_upl
== NULL
|| vector_upl
== (vector_upl_t
)0xfeedfeed || vector_upl
== (vector_upl_t
)0xfeedbeef) {
10243 vector_upl_set_subupl(upl_t upl
, upl_t subupl
, uint32_t io_size
)
10245 if (vector_upl_is_valid(upl
)) {
10246 vector_upl_t vector_upl
= upl
->vector_upl
;
10251 if (io_size
< PAGE_SIZE
) {
10252 io_size
= PAGE_SIZE
;
10254 subupl
->vector_upl
= (void*)vector_upl
;
10255 vector_upl
->upl_elems
[vector_upl
->num_upls
++] = subupl
;
10256 vector_upl
->size
+= io_size
;
10257 upl
->u_size
+= io_size
;
10259 uint32_t i
= 0, invalid_upls
= 0;
10260 for (i
= 0; i
< vector_upl
->num_upls
; i
++) {
10261 if (vector_upl
->upl_elems
[i
] == subupl
) {
10265 if (i
== vector_upl
->num_upls
) {
10266 panic("Trying to remove sub-upl when none exists");
10269 vector_upl
->upl_elems
[i
] = NULL
;
10270 invalid_upls
= os_atomic_inc(&(vector_upl
)->invalid_upls
,
10272 if (invalid_upls
== vector_upl
->num_upls
) {
10279 panic("vector_upl_set_subupl was passed a NULL upl element\n");
10282 panic("vector_upl_set_subupl was passed a non-vectored upl\n");
10285 panic("vector_upl_set_subupl was passed a NULL upl\n");
10292 vector_upl_set_pagelist(upl_t upl
)
10294 if (vector_upl_is_valid(upl
)) {
10296 vector_upl_t vector_upl
= upl
->vector_upl
;
10299 vm_offset_t pagelist_size
= 0, cur_upl_pagelist_size
= 0;
10301 vector_upl
->pagelist
= (upl_page_info_array_t
)kalloc(sizeof(struct upl_page_info
) * (vector_upl
->size
/ PAGE_SIZE
));
10303 for (i
= 0; i
< vector_upl
->num_upls
; i
++) {
10304 cur_upl_pagelist_size
= sizeof(struct upl_page_info
) * upl_adjusted_size(vector_upl
->upl_elems
[i
], PAGE_MASK
) / PAGE_SIZE
;
10305 bcopy(UPL_GET_INTERNAL_PAGE_LIST_SIMPLE(vector_upl
->upl_elems
[i
]), (char*)vector_upl
->pagelist
+ pagelist_size
, cur_upl_pagelist_size
);
10306 pagelist_size
+= cur_upl_pagelist_size
;
10307 if (vector_upl
->upl_elems
[i
]->highest_page
> upl
->highest_page
) {
10308 upl
->highest_page
= vector_upl
->upl_elems
[i
]->highest_page
;
10311 assert( pagelist_size
== (sizeof(struct upl_page_info
) * (vector_upl
->size
/ PAGE_SIZE
)));
10313 panic("vector_upl_set_pagelist was passed a non-vectored upl\n");
10316 panic("vector_upl_set_pagelist was passed a NULL upl\n");
10321 vector_upl_subupl_byindex(upl_t upl
, uint32_t index
)
10323 if (vector_upl_is_valid(upl
)) {
10324 vector_upl_t vector_upl
= upl
->vector_upl
;
10326 if (index
< vector_upl
->num_upls
) {
10327 return vector_upl
->upl_elems
[index
];
10330 panic("vector_upl_subupl_byindex was passed a non-vectored upl\n");
10337 vector_upl_subupl_byoffset(upl_t upl
, upl_offset_t
*upl_offset
, upl_size_t
*upl_size
)
10339 if (vector_upl_is_valid(upl
)) {
10341 vector_upl_t vector_upl
= upl
->vector_upl
;
10344 upl_t subupl
= NULL
;
10345 vector_upl_iostates_t subupl_state
;
10347 for (i
= 0; i
< vector_upl
->num_upls
; i
++) {
10348 subupl
= vector_upl
->upl_elems
[i
];
10349 subupl_state
= vector_upl
->upl_iostates
[i
];
10350 if (*upl_offset
<= (subupl_state
.offset
+ subupl_state
.size
- 1)) {
10351 /* We could have been passed an offset/size pair that belongs
10352 * to an UPL element that has already been committed/aborted.
10353 * If so, return NULL.
10355 if (subupl
== NULL
) {
10358 if ((subupl_state
.offset
+ subupl_state
.size
) < (*upl_offset
+ *upl_size
)) {
10359 *upl_size
= (subupl_state
.offset
+ subupl_state
.size
) - *upl_offset
;
10360 if (*upl_size
> subupl_state
.size
) {
10361 *upl_size
= subupl_state
.size
;
10364 if (*upl_offset
>= subupl_state
.offset
) {
10365 *upl_offset
-= subupl_state
.offset
;
10367 panic("Vector UPL offset miscalculation\n");
10373 panic("vector_upl_subupl_byoffset was passed a non-vectored UPL\n");
10380 vector_upl_get_submap(upl_t upl
, vm_map_t
*v_upl_submap
, vm_offset_t
*submap_dst_addr
)
10382 *v_upl_submap
= NULL
;
10384 if (vector_upl_is_valid(upl
)) {
10385 vector_upl_t vector_upl
= upl
->vector_upl
;
10387 *v_upl_submap
= vector_upl
->submap
;
10388 *submap_dst_addr
= vector_upl
->submap_dst_addr
;
10390 panic("vector_upl_get_submap was passed a non-vectored UPL\n");
10393 panic("vector_upl_get_submap was passed a null UPL\n");
10398 vector_upl_set_submap(upl_t upl
, vm_map_t submap
, vm_offset_t submap_dst_addr
)
10400 if (vector_upl_is_valid(upl
)) {
10401 vector_upl_t vector_upl
= upl
->vector_upl
;
10403 vector_upl
->submap
= submap
;
10404 vector_upl
->submap_dst_addr
= submap_dst_addr
;
10406 panic("vector_upl_get_submap was passed a non-vectored UPL\n");
10409 panic("vector_upl_get_submap was passed a NULL UPL\n");
10414 vector_upl_set_iostate(upl_t upl
, upl_t subupl
, upl_offset_t offset
, upl_size_t size
)
10416 if (vector_upl_is_valid(upl
)) {
10418 vector_upl_t vector_upl
= upl
->vector_upl
;
10421 for (i
= 0; i
< vector_upl
->num_upls
; i
++) {
10422 if (vector_upl
->upl_elems
[i
] == subupl
) {
10427 if (i
== vector_upl
->num_upls
) {
10428 panic("setting sub-upl iostate when none exists");
10431 vector_upl
->upl_iostates
[i
].offset
= offset
;
10432 if (size
< PAGE_SIZE
) {
10435 vector_upl
->upl_iostates
[i
].size
= size
;
10437 panic("vector_upl_set_iostate was passed a non-vectored UPL\n");
10440 panic("vector_upl_set_iostate was passed a NULL UPL\n");
10445 vector_upl_get_iostate(upl_t upl
, upl_t subupl
, upl_offset_t
*offset
, upl_size_t
*size
)
10447 if (vector_upl_is_valid(upl
)) {
10449 vector_upl_t vector_upl
= upl
->vector_upl
;
10452 for (i
= 0; i
< vector_upl
->num_upls
; i
++) {
10453 if (vector_upl
->upl_elems
[i
] == subupl
) {
10458 if (i
== vector_upl
->num_upls
) {
10459 panic("getting sub-upl iostate when none exists");
10462 *offset
= vector_upl
->upl_iostates
[i
].offset
;
10463 *size
= vector_upl
->upl_iostates
[i
].size
;
10465 panic("vector_upl_get_iostate was passed a non-vectored UPL\n");
10468 panic("vector_upl_get_iostate was passed a NULL UPL\n");
10473 vector_upl_get_iostate_byindex(upl_t upl
, uint32_t index
, upl_offset_t
*offset
, upl_size_t
*size
)
10475 if (vector_upl_is_valid(upl
)) {
10476 vector_upl_t vector_upl
= upl
->vector_upl
;
10478 if (index
< vector_upl
->num_upls
) {
10479 *offset
= vector_upl
->upl_iostates
[index
].offset
;
10480 *size
= vector_upl
->upl_iostates
[index
].size
;
10482 *offset
= *size
= 0;
10485 panic("vector_upl_get_iostate_byindex was passed a non-vectored UPL\n");
10488 panic("vector_upl_get_iostate_byindex was passed a NULL UPL\n");
10493 upl_get_internal_vectorupl_pagelist(upl_t upl
)
10495 return ((vector_upl_t
)(upl
->vector_upl
))->pagelist
;
10499 upl_get_internal_vectorupl(upl_t upl
)
10501 return upl
->vector_upl
;
10505 upl_get_internal_pagelist_offset(void)
10507 return sizeof(struct upl
);
10516 upl
->flags
|= UPL_CLEAR_DIRTY
;
10518 upl
->flags
&= ~UPL_CLEAR_DIRTY
;
10523 upl_set_referenced(
10529 upl
->ext_ref_count
++;
10531 if (!upl
->ext_ref_count
) {
10532 panic("upl_set_referenced not %p\n", upl
);
10534 upl
->ext_ref_count
--;
10543 vm_offset_t upl_offset
,
10548 if ((upl
->flags
& UPL_EXPEDITE_SUPPORTED
) == 0) {
10552 assert(upl
->upl_reprio_info
!= 0);
10553 for (i
= (int)(upl_offset
/ PAGE_SIZE
), j
= 0; j
< io_size
; i
++, j
+= PAGE_SIZE
) {
10554 UPL_SET_REPRIO_INFO(upl
, i
, blkno
, io_size
);
10560 memoryshot(unsigned int event
, unsigned int control
)
10562 if (vm_debug_events
) {
10563 KERNEL_DEBUG_CONSTANT1((MACHDBG_CODE(DBG_MACH_VM_PRESSURE
, event
)) | control
,
10564 vm_page_active_count
, vm_page_inactive_count
,
10565 vm_page_free_count
, vm_page_speculative_count
,
10566 vm_page_throttled_count
);
10576 upl_device_page(upl_page_info_t
*upl
)
10578 return UPL_DEVICE_PAGE(upl
);
10581 upl_page_present(upl_page_info_t
*upl
, int index
)
10583 return UPL_PAGE_PRESENT(upl
, index
);
10586 upl_speculative_page(upl_page_info_t
*upl
, int index
)
10588 return UPL_SPECULATIVE_PAGE(upl
, index
);
10591 upl_dirty_page(upl_page_info_t
*upl
, int index
)
10593 return UPL_DIRTY_PAGE(upl
, index
);
10596 upl_valid_page(upl_page_info_t
*upl
, int index
)
10598 return UPL_VALID_PAGE(upl
, index
);
10601 upl_phys_page(upl_page_info_t
*upl
, int index
)
10603 return UPL_PHYS_PAGE(upl
, index
);
10607 upl_page_set_mark(upl_page_info_t
*upl
, int index
, boolean_t v
)
10609 upl
[index
].mark
= v
;
10613 upl_page_get_mark(upl_page_info_t
*upl
, int index
)
10615 return upl
[index
].mark
;
10619 vm_countdirtypages(void)
10631 vm_page_lock_queues();
10632 m
= (vm_page_t
) vm_page_queue_first(&vm_page_queue_inactive
);
10634 if (m
== (vm_page_t
)0) {
10638 if (m
->vmp_dirty
) {
10641 if (m
->vmp_free_when_done
) {
10644 if (m
->vmp_precious
) {
10648 assert(VM_PAGE_OBJECT(m
) != kernel_object
);
10649 m
= (vm_page_t
) vm_page_queue_next(&m
->vmp_pageq
);
10650 if (m
== (vm_page_t
)0) {
10653 } while (!vm_page_queue_end(&vm_page_queue_inactive
, (vm_page_queue_entry_t
) m
));
10654 vm_page_unlock_queues();
10656 vm_page_lock_queues();
10657 m
= (vm_page_t
) vm_page_queue_first(&vm_page_queue_throttled
);
10659 if (m
== (vm_page_t
)0) {
10664 assert(m
->vmp_dirty
);
10665 assert(!m
->vmp_free_when_done
);
10666 assert(VM_PAGE_OBJECT(m
) != kernel_object
);
10667 m
= (vm_page_t
) vm_page_queue_next(&m
->vmp_pageq
);
10668 if (m
== (vm_page_t
)0) {
10671 } while (!vm_page_queue_end(&vm_page_queue_throttled
, (vm_page_queue_entry_t
) m
));
10672 vm_page_unlock_queues();
10674 vm_page_lock_queues();
10675 m
= (vm_page_t
) vm_page_queue_first(&vm_page_queue_anonymous
);
10677 if (m
== (vm_page_t
)0) {
10681 if (m
->vmp_dirty
) {
10684 if (m
->vmp_free_when_done
) {
10687 if (m
->vmp_precious
) {
10691 assert(VM_PAGE_OBJECT(m
) != kernel_object
);
10692 m
= (vm_page_t
) vm_page_queue_next(&m
->vmp_pageq
);
10693 if (m
== (vm_page_t
)0) {
10696 } while (!vm_page_queue_end(&vm_page_queue_anonymous
, (vm_page_queue_entry_t
) m
));
10697 vm_page_unlock_queues();
10699 printf("IN Q: %d : %d : %d\n", dpages
, pgopages
, precpages
);
10705 vm_page_lock_queues();
10706 m
= (vm_page_t
) vm_page_queue_first(&vm_page_queue_active
);
10709 if (m
== (vm_page_t
)0) {
10712 if (m
->vmp_dirty
) {
10715 if (m
->vmp_free_when_done
) {
10718 if (m
->vmp_precious
) {
10722 assert(VM_PAGE_OBJECT(m
) != kernel_object
);
10723 m
= (vm_page_t
) vm_page_queue_next(&m
->vmp_pageq
);
10724 if (m
== (vm_page_t
)0) {
10727 } while (!vm_page_queue_end(&vm_page_queue_active
, (vm_page_queue_entry_t
) m
));
10728 vm_page_unlock_queues();
10730 printf("AC Q: %d : %d : %d\n", dpages
, pgopages
, precpages
);
10732 #endif /* MACH_BSD */
10737 upl_get_cached_tier(upl_t upl
)
10740 if (upl
->flags
& UPL_TRACKED_BY_OBJECT
) {
10741 return upl
->upl_priority
;
10745 #endif /* CONFIG_IOSCHED */
10749 upl_callout_iodone(upl_t upl
)
10751 struct upl_io_completion
*upl_ctx
= upl
->upl_iodone
;
10754 void (*iodone_func
)(void *, int) = upl_ctx
->io_done
;
10756 assert(upl_ctx
->io_done
);
10758 (*iodone_func
)(upl_ctx
->io_context
, upl_ctx
->io_error
);
10763 upl_set_iodone(upl_t upl
, void *upl_iodone
)
10765 upl
->upl_iodone
= (struct upl_io_completion
*)upl_iodone
;
10769 upl_set_iodone_error(upl_t upl
, int error
)
10771 struct upl_io_completion
*upl_ctx
= upl
->upl_iodone
;
10774 upl_ctx
->io_error
= error
;
10780 upl_get_highest_page(
10783 return upl
->highest_page
;
10790 return upl_adjusted_size(upl
, PAGE_MASK
);
10796 vm_map_offset_t pgmask
)
10798 vm_object_offset_t start_offset
, end_offset
;
10800 start_offset
= trunc_page_mask_64(upl
->u_offset
, pgmask
);
10801 end_offset
= round_page_mask_64(upl
->u_offset
+ upl
->u_size
, pgmask
);
10803 return (upl_size_t
)(end_offset
- start_offset
);
10807 upl_adjusted_offset(
10809 vm_map_offset_t pgmask
)
10811 return trunc_page_mask_64(upl
->u_offset
, pgmask
);
10815 upl_get_data_offset(
10818 return upl
->u_offset
- upl_adjusted_offset(upl
, PAGE_MASK
);
10822 upl_associated_upl(upl_t upl
)
10824 return upl
->associated_upl
;
10828 upl_set_associated_upl(upl_t upl
, upl_t associated_upl
)
10830 upl
->associated_upl
= associated_upl
;
10834 upl_lookup_vnode(upl_t upl
)
10836 if (!upl
->map_object
->internal
) {
10837 return vnode_pager_lookup_vnode(upl
->map_object
->pager
);
10845 upl_ubc_alias_set(upl_t upl
, uintptr_t alias1
, uintptr_t alias2
)
10847 upl
->ubc_alias1
= alias1
;
10848 upl
->ubc_alias2
= alias2
;
10849 return KERN_SUCCESS
;
10852 upl_ubc_alias_get(upl_t upl
, uintptr_t * al
, uintptr_t * al2
)
10855 *al
= upl
->ubc_alias1
;
10858 *al2
= upl
->ubc_alias2
;
10860 return KERN_SUCCESS
;
10862 #endif /* UPL_DEBUG */
10864 #if VM_PRESSURE_EVENTS
10866 * Upward trajectory.
10868 extern boolean_t
vm_compressor_low_on_space(void);
10871 VM_PRESSURE_NORMAL_TO_WARNING(void)
10873 if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE
) {
10874 /* Available pages below our threshold */
10875 if (memorystatus_available_pages
< memorystatus_available_pages_pressure
) {
10876 /* No frozen processes to kill */
10877 if (memorystatus_frozen_count
== 0) {
10878 /* Not enough suspended processes available. */
10879 if (memorystatus_suspended_count
< MEMORYSTATUS_SUSPENDED_THRESHOLD
) {
10886 return (AVAILABLE_NON_COMPRESSED_MEMORY
< VM_PAGE_COMPRESSOR_COMPACT_THRESHOLD
) ? 1 : 0;
10891 VM_PRESSURE_WARNING_TO_CRITICAL(void)
10893 if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE
) {
10894 /* Available pages below our threshold */
10895 if (memorystatus_available_pages
< memorystatus_available_pages_critical
) {
10900 return vm_compressor_low_on_space() || (AVAILABLE_NON_COMPRESSED_MEMORY
< ((12 * VM_PAGE_COMPRESSOR_SWAP_UNTHROTTLE_THRESHOLD
) / 10)) ? 1 : 0;
10905 * Downward trajectory.
10908 VM_PRESSURE_WARNING_TO_NORMAL(void)
10910 if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE
) {
10911 /* Available pages above our threshold */
10912 unsigned int target_threshold
= (unsigned int) (memorystatus_available_pages_pressure
+ ((15 * memorystatus_available_pages_pressure
) / 100));
10913 if (memorystatus_available_pages
> target_threshold
) {
10918 return (AVAILABLE_NON_COMPRESSED_MEMORY
> ((12 * VM_PAGE_COMPRESSOR_COMPACT_THRESHOLD
) / 10)) ? 1 : 0;
10923 VM_PRESSURE_CRITICAL_TO_WARNING(void)
10925 if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE
) {
10926 /* Available pages above our threshold */
10927 unsigned int target_threshold
= (unsigned int)(memorystatus_available_pages_critical
+ ((15 * memorystatus_available_pages_critical
) / 100));
10928 if (memorystatus_available_pages
> target_threshold
) {
10933 return (AVAILABLE_NON_COMPRESSED_MEMORY
> ((14 * VM_PAGE_COMPRESSOR_SWAP_UNTHROTTLE_THRESHOLD
) / 10)) ? 1 : 0;
10936 #endif /* VM_PRESSURE_EVENTS */