]> git.saurik.com Git - apple/xnu.git/blob - osfmk/vm/vm_fault.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / osfmk / vm / vm_fault.c
1 /*
2 * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58 /*
59 * File: vm_fault.c
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
61 *
62 * Page fault handling module.
63 */
64
65 #include <mach_cluster_stats.h>
66 #include <mach_pagemap.h>
67 #include <libkern/OSAtomic.h>
68
69 #include <mach/mach_types.h>
70 #include <mach/kern_return.h>
71 #include <mach/message.h> /* for error codes */
72 #include <mach/vm_param.h>
73 #include <mach/vm_behavior.h>
74 #include <mach/memory_object.h>
75 /* For memory_object_data_{request,unlock} */
76 #include <mach/sdt.h>
77
78 #include <kern/kern_types.h>
79 #include <kern/host_statistics.h>
80 #include <kern/counter.h>
81 #include <kern/task.h>
82 #include <kern/thread.h>
83 #include <kern/sched_prim.h>
84 #include <kern/host.h>
85 #include <kern/mach_param.h>
86 #include <kern/macro_help.h>
87 #include <kern/zalloc.h>
88 #include <kern/misc_protos.h>
89 #include <kern/policy_internal.h>
90
91 #include <vm/vm_compressor.h>
92 #include <vm/vm_compressor_pager.h>
93 #include <vm/vm_fault.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_kern.h>
98 #include <vm/pmap.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/vm_protos.h>
101 #include <vm/vm_external.h>
102 #include <vm/memory_object.h>
103 #include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */
104 #include <vm/vm_shared_region.h>
105
106 #include <sys/codesign.h>
107 #include <sys/reason.h>
108 #include <sys/signalvar.h>
109
110 #include <san/kasan.h>
111
112 #define VM_FAULT_CLASSIFY 0
113
114 #define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */
115
116 int vm_protect_privileged_from_untrusted = 1;
117
118 unsigned int vm_object_pagein_throttle = 16;
119
120 /*
121 * We apply a hard throttle to the demand zero rate of tasks that we believe are running out of control which
122 * kicks in when swap space runs out. 64-bit programs have massive address spaces and can leak enormous amounts
123 * of memory if they're buggy and can run the system completely out of swap space. If this happens, we
124 * impose a hard throttle on them to prevent them from taking the last bit of memory left. This helps
125 * keep the UI active so that the user has a chance to kill the offending task before the system
126 * completely hangs.
127 *
128 * The hard throttle is only applied when the system is nearly completely out of swap space and is only applied
129 * to tasks that appear to be bloated. When swap runs out, any task using more than vm_hard_throttle_threshold
130 * will be throttled. The throttling is done by giving the thread that's trying to demand zero a page a
131 * delay of HARD_THROTTLE_DELAY microseconds before being allowed to try the page fault again.
132 */
133
134 extern void throttle_lowpri_io(int);
135
136 extern struct vnode *vnode_pager_lookup_vnode(memory_object_t);
137
138 uint64_t vm_hard_throttle_threshold;
139
140 #if DEBUG || DEVELOPMENT
141 static bool vmtc_panic_instead = false;
142 #endif /* DEBUG || DEVELOPMENT */
143
144 OS_ALWAYS_INLINE
145 boolean_t
146 NEED_TO_HARD_THROTTLE_THIS_TASK(void)
147 {
148 return vm_wants_task_throttled(current_task()) ||
149 ((vm_page_free_count < vm_page_throttle_limit ||
150 HARD_THROTTLE_LIMIT_REACHED()) &&
151 proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO) >= THROTTLE_LEVEL_THROTTLED);
152 }
153
154 #define HARD_THROTTLE_DELAY 10000 /* 10000 us == 10 ms */
155 #define SOFT_THROTTLE_DELAY 200 /* 200 us == .2 ms */
156
157 #define VM_PAGE_CREATION_THROTTLE_PERIOD_SECS 6
158 #define VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC 20000
159
160
161 #define VM_STAT_DECOMPRESSIONS() \
162 MACRO_BEGIN \
163 counter_inc(&vm_statistics_decompressions); \
164 current_thread()->decompressions++; \
165 MACRO_END
166
167 boolean_t current_thread_aborted(void);
168
169 /* Forward declarations of internal routines. */
170 static kern_return_t vm_fault_wire_fast(
171 vm_map_t map,
172 vm_map_offset_t va,
173 vm_prot_t prot,
174 vm_tag_t wire_tag,
175 vm_map_entry_t entry,
176 pmap_t pmap,
177 vm_map_offset_t pmap_addr,
178 ppnum_t *physpage_p);
179
180 static kern_return_t vm_fault_internal(
181 vm_map_t map,
182 vm_map_offset_t vaddr,
183 vm_prot_t caller_prot,
184 boolean_t change_wiring,
185 vm_tag_t wire_tag,
186 int interruptible,
187 pmap_t pmap,
188 vm_map_offset_t pmap_addr,
189 ppnum_t *physpage_p);
190
191 static void vm_fault_copy_cleanup(
192 vm_page_t page,
193 vm_page_t top_page);
194
195 static void vm_fault_copy_dst_cleanup(
196 vm_page_t page);
197
198 #if VM_FAULT_CLASSIFY
199 extern void vm_fault_classify(vm_object_t object,
200 vm_object_offset_t offset,
201 vm_prot_t fault_type);
202
203 extern void vm_fault_classify_init(void);
204 #endif
205
206 unsigned long vm_pmap_enter_blocked = 0;
207 unsigned long vm_pmap_enter_retried = 0;
208
209 unsigned long vm_cs_validates = 0;
210 unsigned long vm_cs_revalidates = 0;
211 unsigned long vm_cs_query_modified = 0;
212 unsigned long vm_cs_validated_dirtied = 0;
213 unsigned long vm_cs_bitmap_validated = 0;
214
215 void vm_pre_fault(vm_map_offset_t, vm_prot_t);
216
217 extern char *kdp_compressor_decompressed_page;
218 extern addr64_t kdp_compressor_decompressed_page_paddr;
219 extern ppnum_t kdp_compressor_decompressed_page_ppnum;
220
221 struct vmrtfr {
222 int vmrtfr_maxi;
223 int vmrtfr_curi;
224 int64_t vmrtf_total;
225 vm_rtfault_record_t *vm_rtf_records;
226 } vmrtfrs;
227 #define VMRTF_DEFAULT_BUFSIZE (4096)
228 #define VMRTF_NUM_RECORDS_DEFAULT (VMRTF_DEFAULT_BUFSIZE / sizeof(vm_rtfault_record_t))
229 TUNABLE(int, vmrtf_num_records, "vm_rtfault_records", VMRTF_NUM_RECORDS_DEFAULT);
230
231 static void vm_rtfrecord_lock(void);
232 static void vm_rtfrecord_unlock(void);
233 static void vm_record_rtfault(thread_t, uint64_t, vm_map_offset_t, int);
234
235 extern lck_grp_t vm_page_lck_grp_bucket;
236 extern lck_attr_t vm_page_lck_attr;
237 LCK_SPIN_DECLARE_ATTR(vm_rtfr_slock, &vm_page_lck_grp_bucket, &vm_page_lck_attr);
238
239 /*
240 * Routine: vm_fault_init
241 * Purpose:
242 * Initialize our private data structures.
243 */
244 __startup_func
245 void
246 vm_fault_init(void)
247 {
248 int i, vm_compressor_temp;
249 boolean_t need_default_val = TRUE;
250 /*
251 * Choose a value for the hard throttle threshold based on the amount of ram. The threshold is
252 * computed as a percentage of available memory, and the percentage used is scaled inversely with
253 * the amount of memory. The percentage runs between 10% and 35%. We use 35% for small memory systems
254 * and reduce the value down to 10% for very large memory configurations. This helps give us a
255 * definition of a memory hog that makes more sense relative to the amount of ram in the machine.
256 * The formula here simply uses the number of gigabytes of ram to adjust the percentage.
257 */
258
259 vm_hard_throttle_threshold = sane_size * (35 - MIN((int)(sane_size / (1024 * 1024 * 1024)), 25)) / 100;
260
261 /*
262 * Configure compressed pager behavior. A boot arg takes precedence over a device tree entry.
263 */
264
265 if (PE_parse_boot_argn("vm_compressor", &vm_compressor_temp, sizeof(vm_compressor_temp))) {
266 for (i = 0; i < VM_PAGER_MAX_MODES; i++) {
267 if (((vm_compressor_temp & (1 << i)) == vm_compressor_temp)) {
268 need_default_val = FALSE;
269 vm_compressor_mode = vm_compressor_temp;
270 break;
271 }
272 }
273 if (need_default_val) {
274 printf("Ignoring \"vm_compressor\" boot arg %d\n", vm_compressor_temp);
275 }
276 }
277 if (need_default_val) {
278 /* If no boot arg or incorrect boot arg, try device tree. */
279 PE_get_default("kern.vm_compressor", &vm_compressor_mode, sizeof(vm_compressor_mode));
280 }
281 printf("\"vm_compressor_mode\" is %d\n", vm_compressor_mode);
282
283 PE_parse_boot_argn("vm_protect_privileged_from_untrusted",
284 &vm_protect_privileged_from_untrusted,
285 sizeof(vm_protect_privileged_from_untrusted));
286
287 #if DEBUG || DEVELOPMENT
288 (void)PE_parse_boot_argn("text_corruption_panic", &vmtc_panic_instead, sizeof(vmtc_panic_instead));
289 #endif /* DEBUG || DEVELOPMENT */
290 }
291
292 __startup_func
293 static void
294 vm_rtfault_record_init(void)
295 {
296 size_t size;
297
298 vmrtf_num_records = MAX(vmrtf_num_records, 1);
299 size = vmrtf_num_records * sizeof(vm_rtfault_record_t);
300 vmrtfrs.vm_rtf_records = zalloc_permanent(size,
301 ZALIGN(vm_rtfault_record_t));
302 vmrtfrs.vmrtfr_maxi = vmrtf_num_records - 1;
303 }
304 STARTUP(ZALLOC, STARTUP_RANK_MIDDLE, vm_rtfault_record_init);
305
306 /*
307 * Routine: vm_fault_cleanup
308 * Purpose:
309 * Clean up the result of vm_fault_page.
310 * Results:
311 * The paging reference for "object" is released.
312 * "object" is unlocked.
313 * If "top_page" is not null, "top_page" is
314 * freed and the paging reference for the object
315 * containing it is released.
316 *
317 * In/out conditions:
318 * "object" must be locked.
319 */
320 void
321 vm_fault_cleanup(
322 vm_object_t object,
323 vm_page_t top_page)
324 {
325 vm_object_paging_end(object);
326 vm_object_unlock(object);
327
328 if (top_page != VM_PAGE_NULL) {
329 object = VM_PAGE_OBJECT(top_page);
330
331 vm_object_lock(object);
332 VM_PAGE_FREE(top_page);
333 vm_object_paging_end(object);
334 vm_object_unlock(object);
335 }
336 }
337
338 #define ALIGNED(x) (((x) & (PAGE_SIZE_64 - 1)) == 0)
339
340
341 boolean_t vm_page_deactivate_behind = TRUE;
342 /*
343 * default sizes given VM_BEHAVIOR_DEFAULT reference behavior
344 */
345 #define VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW 128
346 #define VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER 16 /* don't make this too big... */
347 /* we use it to size an array on the stack */
348
349 int vm_default_behind = VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW;
350
351 #define MAX_SEQUENTIAL_RUN (1024 * 1024 * 1024)
352
353 /*
354 * vm_page_is_sequential
355 *
356 * Determine if sequential access is in progress
357 * in accordance with the behavior specified.
358 * Update state to indicate current access pattern.
359 *
360 * object must have at least the shared lock held
361 */
362 static
363 void
364 vm_fault_is_sequential(
365 vm_object_t object,
366 vm_object_offset_t offset,
367 vm_behavior_t behavior)
368 {
369 vm_object_offset_t last_alloc;
370 int sequential;
371 int orig_sequential;
372
373 last_alloc = object->last_alloc;
374 sequential = object->sequential;
375 orig_sequential = sequential;
376
377 offset = vm_object_trunc_page(offset);
378 if (offset == last_alloc && behavior != VM_BEHAVIOR_RANDOM) {
379 /* re-faulting in the same page: no change in behavior */
380 return;
381 }
382
383 switch (behavior) {
384 case VM_BEHAVIOR_RANDOM:
385 /*
386 * reset indicator of sequential behavior
387 */
388 sequential = 0;
389 break;
390
391 case VM_BEHAVIOR_SEQUENTIAL:
392 if (offset && last_alloc == offset - PAGE_SIZE_64) {
393 /*
394 * advance indicator of sequential behavior
395 */
396 if (sequential < MAX_SEQUENTIAL_RUN) {
397 sequential += PAGE_SIZE;
398 }
399 } else {
400 /*
401 * reset indicator of sequential behavior
402 */
403 sequential = 0;
404 }
405 break;
406
407 case VM_BEHAVIOR_RSEQNTL:
408 if (last_alloc && last_alloc == offset + PAGE_SIZE_64) {
409 /*
410 * advance indicator of sequential behavior
411 */
412 if (sequential > -MAX_SEQUENTIAL_RUN) {
413 sequential -= PAGE_SIZE;
414 }
415 } else {
416 /*
417 * reset indicator of sequential behavior
418 */
419 sequential = 0;
420 }
421 break;
422
423 case VM_BEHAVIOR_DEFAULT:
424 default:
425 if (offset && last_alloc == (offset - PAGE_SIZE_64)) {
426 /*
427 * advance indicator of sequential behavior
428 */
429 if (sequential < 0) {
430 sequential = 0;
431 }
432 if (sequential < MAX_SEQUENTIAL_RUN) {
433 sequential += PAGE_SIZE;
434 }
435 } else if (last_alloc && last_alloc == (offset + PAGE_SIZE_64)) {
436 /*
437 * advance indicator of sequential behavior
438 */
439 if (sequential > 0) {
440 sequential = 0;
441 }
442 if (sequential > -MAX_SEQUENTIAL_RUN) {
443 sequential -= PAGE_SIZE;
444 }
445 } else {
446 /*
447 * reset indicator of sequential behavior
448 */
449 sequential = 0;
450 }
451 break;
452 }
453 if (sequential != orig_sequential) {
454 if (!OSCompareAndSwap(orig_sequential, sequential, (UInt32 *)&object->sequential)) {
455 /*
456 * if someone else has already updated object->sequential
457 * don't bother trying to update it or object->last_alloc
458 */
459 return;
460 }
461 }
462 /*
463 * I'd like to do this with a OSCompareAndSwap64, but that
464 * doesn't exist for PPC... however, it shouldn't matter
465 * that much... last_alloc is maintained so that we can determine
466 * if a sequential access pattern is taking place... if only
467 * one thread is banging on this object, no problem with the unprotected
468 * update... if 2 or more threads are banging away, we run the risk of
469 * someone seeing a mangled update... however, in the face of multiple
470 * accesses, no sequential access pattern can develop anyway, so we
471 * haven't lost any real info.
472 */
473 object->last_alloc = offset;
474 }
475
476
477 int vm_page_deactivate_behind_count = 0;
478
479 /*
480 * vm_page_deactivate_behind
481 *
482 * Determine if sequential access is in progress
483 * in accordance with the behavior specified. If
484 * so, compute a potential page to deactivate and
485 * deactivate it.
486 *
487 * object must be locked.
488 *
489 * return TRUE if we actually deactivate a page
490 */
491 static
492 boolean_t
493 vm_fault_deactivate_behind(
494 vm_object_t object,
495 vm_object_offset_t offset,
496 vm_behavior_t behavior)
497 {
498 int n;
499 int pages_in_run = 0;
500 int max_pages_in_run = 0;
501 int sequential_run;
502 int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
503 vm_object_offset_t run_offset = 0;
504 vm_object_offset_t pg_offset = 0;
505 vm_page_t m;
506 vm_page_t page_run[VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER];
507
508 pages_in_run = 0;
509 #if TRACEFAULTPAGE
510 dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_fault_deactivate_behind); /* (TEST/DEBUG) */
511 #endif
512 if (object == kernel_object || vm_page_deactivate_behind == FALSE || (vm_object_trunc_page(offset) != offset)) {
513 /*
514 * Do not deactivate pages from the kernel object: they
515 * are not intended to become pageable.
516 * or we've disabled the deactivate behind mechanism
517 * or we are dealing with an offset that is not aligned to
518 * the system's PAGE_SIZE because in that case we will
519 * handle the deactivation on the aligned offset and, thus,
520 * the full PAGE_SIZE page once. This helps us avoid the redundant
521 * deactivates and the extra faults.
522 */
523 return FALSE;
524 }
525 if ((sequential_run = object->sequential)) {
526 if (sequential_run < 0) {
527 sequential_behavior = VM_BEHAVIOR_RSEQNTL;
528 sequential_run = 0 - sequential_run;
529 } else {
530 sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
531 }
532 }
533 switch (behavior) {
534 case VM_BEHAVIOR_RANDOM:
535 break;
536 case VM_BEHAVIOR_SEQUENTIAL:
537 if (sequential_run >= (int)PAGE_SIZE) {
538 run_offset = 0 - PAGE_SIZE_64;
539 max_pages_in_run = 1;
540 }
541 break;
542 case VM_BEHAVIOR_RSEQNTL:
543 if (sequential_run >= (int)PAGE_SIZE) {
544 run_offset = PAGE_SIZE_64;
545 max_pages_in_run = 1;
546 }
547 break;
548 case VM_BEHAVIOR_DEFAULT:
549 default:
550 { vm_object_offset_t behind = vm_default_behind * PAGE_SIZE_64;
551
552 /*
553 * determine if the run of sequential accesss has been
554 * long enough on an object with default access behavior
555 * to consider it for deactivation
556 */
557 if ((uint64_t)sequential_run >= behind && (sequential_run % (VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER * PAGE_SIZE)) == 0) {
558 /*
559 * the comparisons between offset and behind are done
560 * in this kind of odd fashion in order to prevent wrap around
561 * at the end points
562 */
563 if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) {
564 if (offset >= behind) {
565 run_offset = 0 - behind;
566 pg_offset = PAGE_SIZE_64;
567 max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER;
568 }
569 } else {
570 if (offset < -behind) {
571 run_offset = behind;
572 pg_offset = 0 - PAGE_SIZE_64;
573 max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER;
574 }
575 }
576 }
577 break;}
578 }
579 for (n = 0; n < max_pages_in_run; n++) {
580 m = vm_page_lookup(object, offset + run_offset + (n * pg_offset));
581
582 if (m && !m->vmp_laundry && !m->vmp_busy && !m->vmp_no_cache && (m->vmp_q_state != VM_PAGE_ON_THROTTLED_Q) && !m->vmp_fictitious && !m->vmp_absent) {
583 page_run[pages_in_run++] = m;
584
585 /*
586 * by not passing in a pmap_flush_context we will forgo any TLB flushing, local or otherwise...
587 *
588 * a TLB flush isn't really needed here since at worst we'll miss the reference bit being
589 * updated in the PTE if a remote processor still has this mapping cached in its TLB when the
590 * new reference happens. If no futher references happen on the page after that remote TLB flushes
591 * we'll see a clean, non-referenced page when it eventually gets pulled out of the inactive queue
592 * by pageout_scan, which is just fine since the last reference would have happened quite far
593 * in the past (TLB caches don't hang around for very long), and of course could just as easily
594 * have happened before we did the deactivate_behind.
595 */
596 pmap_clear_refmod_options(VM_PAGE_GET_PHYS_PAGE(m), VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void *)NULL);
597 }
598 }
599 if (pages_in_run) {
600 vm_page_lockspin_queues();
601
602 for (n = 0; n < pages_in_run; n++) {
603 m = page_run[n];
604
605 vm_page_deactivate_internal(m, FALSE);
606
607 vm_page_deactivate_behind_count++;
608 #if TRACEFAULTPAGE
609 dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
610 #endif
611 }
612 vm_page_unlock_queues();
613
614 return TRUE;
615 }
616 return FALSE;
617 }
618
619
620 #if (DEVELOPMENT || DEBUG)
621 uint32_t vm_page_creation_throttled_hard = 0;
622 uint32_t vm_page_creation_throttled_soft = 0;
623 uint64_t vm_page_creation_throttle_avoided = 0;
624 #endif /* DEVELOPMENT || DEBUG */
625
626 static int
627 vm_page_throttled(boolean_t page_kept)
628 {
629 clock_sec_t elapsed_sec;
630 clock_sec_t tv_sec;
631 clock_usec_t tv_usec;
632
633 thread_t thread = current_thread();
634
635 if (thread->options & TH_OPT_VMPRIV) {
636 return 0;
637 }
638
639 if (thread->t_page_creation_throttled) {
640 thread->t_page_creation_throttled = 0;
641
642 if (page_kept == FALSE) {
643 goto no_throttle;
644 }
645 }
646 if (NEED_TO_HARD_THROTTLE_THIS_TASK()) {
647 #if (DEVELOPMENT || DEBUG)
648 thread->t_page_creation_throttled_hard++;
649 OSAddAtomic(1, &vm_page_creation_throttled_hard);
650 #endif /* DEVELOPMENT || DEBUG */
651 return HARD_THROTTLE_DELAY;
652 }
653
654 if ((vm_page_free_count < vm_page_throttle_limit || (VM_CONFIG_COMPRESSOR_IS_PRESENT && SWAPPER_NEEDS_TO_UNTHROTTLE())) &&
655 thread->t_page_creation_count > (VM_PAGE_CREATION_THROTTLE_PERIOD_SECS * VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC)) {
656 if (vm_page_free_wanted == 0 && vm_page_free_wanted_privileged == 0) {
657 #if (DEVELOPMENT || DEBUG)
658 OSAddAtomic64(1, &vm_page_creation_throttle_avoided);
659 #endif
660 goto no_throttle;
661 }
662 clock_get_system_microtime(&tv_sec, &tv_usec);
663
664 elapsed_sec = tv_sec - thread->t_page_creation_time;
665
666 if (elapsed_sec <= VM_PAGE_CREATION_THROTTLE_PERIOD_SECS ||
667 (thread->t_page_creation_count / elapsed_sec) >= VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC) {
668 if (elapsed_sec >= (3 * VM_PAGE_CREATION_THROTTLE_PERIOD_SECS)) {
669 /*
670 * we'll reset our stats to give a well behaved app
671 * that was unlucky enough to accumulate a bunch of pages
672 * over a long period of time a chance to get out of
673 * the throttled state... we reset the counter and timestamp
674 * so that if it stays under the rate limit for the next second
675 * it will be back in our good graces... if it exceeds it, it
676 * will remain in the throttled state
677 */
678 thread->t_page_creation_time = tv_sec;
679 thread->t_page_creation_count = VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC * (VM_PAGE_CREATION_THROTTLE_PERIOD_SECS - 1);
680 }
681 VM_PAGEOUT_DEBUG(vm_page_throttle_count, 1);
682
683 thread->t_page_creation_throttled = 1;
684
685 if (VM_CONFIG_COMPRESSOR_IS_PRESENT && HARD_THROTTLE_LIMIT_REACHED()) {
686 #if (DEVELOPMENT || DEBUG)
687 thread->t_page_creation_throttled_hard++;
688 OSAddAtomic(1, &vm_page_creation_throttled_hard);
689 #endif /* DEVELOPMENT || DEBUG */
690 return HARD_THROTTLE_DELAY;
691 } else {
692 #if (DEVELOPMENT || DEBUG)
693 thread->t_page_creation_throttled_soft++;
694 OSAddAtomic(1, &vm_page_creation_throttled_soft);
695 #endif /* DEVELOPMENT || DEBUG */
696 return SOFT_THROTTLE_DELAY;
697 }
698 }
699 thread->t_page_creation_time = tv_sec;
700 thread->t_page_creation_count = 0;
701 }
702 no_throttle:
703 thread->t_page_creation_count++;
704
705 return 0;
706 }
707
708
709 /*
710 * check for various conditions that would
711 * prevent us from creating a ZF page...
712 * cleanup is based on being called from vm_fault_page
713 *
714 * object must be locked
715 * object == m->vmp_object
716 */
717 static vm_fault_return_t
718 vm_fault_check(vm_object_t object, vm_page_t m, vm_page_t first_m, wait_interrupt_t interruptible_state, boolean_t page_throttle)
719 {
720 int throttle_delay;
721
722 if (object->shadow_severed ||
723 VM_OBJECT_PURGEABLE_FAULT_ERROR(object)) {
724 /*
725 * Either:
726 * 1. the shadow chain was severed,
727 * 2. the purgeable object is volatile or empty and is marked
728 * to fault on access while volatile.
729 * Just have to return an error at this point
730 */
731 if (m != VM_PAGE_NULL) {
732 VM_PAGE_FREE(m);
733 }
734 vm_fault_cleanup(object, first_m);
735
736 thread_interrupt_level(interruptible_state);
737
738 return VM_FAULT_MEMORY_ERROR;
739 }
740 if (page_throttle == TRUE) {
741 if ((throttle_delay = vm_page_throttled(FALSE))) {
742 /*
743 * we're throttling zero-fills...
744 * treat this as if we couldn't grab a page
745 */
746 if (m != VM_PAGE_NULL) {
747 VM_PAGE_FREE(m);
748 }
749 vm_fault_cleanup(object, first_m);
750
751 VM_DEBUG_EVENT(vmf_check_zfdelay, VMF_CHECK_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
752
753 delay(throttle_delay);
754
755 if (current_thread_aborted()) {
756 thread_interrupt_level(interruptible_state);
757 return VM_FAULT_INTERRUPTED;
758 }
759 thread_interrupt_level(interruptible_state);
760
761 return VM_FAULT_MEMORY_SHORTAGE;
762 }
763 }
764 return VM_FAULT_SUCCESS;
765 }
766
767 /*
768 * Clear the code signing bits on the given page_t
769 */
770 static void
771 vm_fault_cs_clear(vm_page_t m)
772 {
773 m->vmp_cs_validated = VMP_CS_ALL_FALSE;
774 m->vmp_cs_tainted = VMP_CS_ALL_FALSE;
775 m->vmp_cs_nx = VMP_CS_ALL_FALSE;
776 }
777
778 /*
779 * Enqueues the given page on the throttled queue.
780 * The caller must hold the vm_page_queue_lock and it will be held on return.
781 */
782 static void
783 vm_fault_enqueue_throttled_locked(vm_page_t m)
784 {
785 LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
786 assert(!VM_PAGE_WIRED(m));
787
788 /*
789 * can't be on the pageout queue since we don't
790 * have a pager to try and clean to
791 */
792 vm_page_queues_remove(m, TRUE);
793 vm_page_check_pageable_safe(m);
794 vm_page_queue_enter(&vm_page_queue_throttled, m, vmp_pageq);
795 m->vmp_q_state = VM_PAGE_ON_THROTTLED_Q;
796 vm_page_throttled_count++;
797 }
798
799 /*
800 * do the work to zero fill a page and
801 * inject it into the correct paging queue
802 *
803 * m->vmp_object must be locked
804 * page queue lock must NOT be held
805 */
806 static int
807 vm_fault_zero_page(vm_page_t m, boolean_t no_zero_fill)
808 {
809 int my_fault = DBG_ZERO_FILL_FAULT;
810 vm_object_t object;
811
812 object = VM_PAGE_OBJECT(m);
813
814 /*
815 * This is is a zero-fill page fault...
816 *
817 * Checking the page lock is a waste of
818 * time; this page was absent, so
819 * it can't be page locked by a pager.
820 *
821 * we also consider it undefined
822 * with respect to instruction
823 * execution. i.e. it is the responsibility
824 * of higher layers to call for an instruction
825 * sync after changing the contents and before
826 * sending a program into this area. We
827 * choose this approach for performance
828 */
829 vm_fault_cs_clear(m);
830 m->vmp_pmapped = TRUE;
831
832 if (no_zero_fill == TRUE) {
833 my_fault = DBG_NZF_PAGE_FAULT;
834
835 if (m->vmp_absent && m->vmp_busy) {
836 return my_fault;
837 }
838 } else {
839 vm_page_zero_fill(m);
840
841 counter_inc(&vm_statistics_zero_fill_count);
842 DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL);
843 }
844 assert(!m->vmp_laundry);
845 assert(object != kernel_object);
846 //assert(m->vmp_pageq.next == 0 && m->vmp_pageq.prev == 0);
847 if (!VM_DYNAMIC_PAGING_ENABLED() &&
848 (object->purgable == VM_PURGABLE_DENY ||
849 object->purgable == VM_PURGABLE_NONVOLATILE ||
850 object->purgable == VM_PURGABLE_VOLATILE)) {
851 vm_page_lockspin_queues();
852 if (!VM_DYNAMIC_PAGING_ENABLED()) {
853 vm_fault_enqueue_throttled_locked(m);
854 }
855 vm_page_unlock_queues();
856 }
857 return my_fault;
858 }
859
860
861 /*
862 * Routine: vm_fault_page
863 * Purpose:
864 * Find the resident page for the virtual memory
865 * specified by the given virtual memory object
866 * and offset.
867 * Additional arguments:
868 * The required permissions for the page is given
869 * in "fault_type". Desired permissions are included
870 * in "protection".
871 * fault_info is passed along to determine pagein cluster
872 * limits... it contains the expected reference pattern,
873 * cluster size if available, etc...
874 *
875 * If the desired page is known to be resident (for
876 * example, because it was previously wired down), asserting
877 * the "unwiring" parameter will speed the search.
878 *
879 * If the operation can be interrupted (by thread_abort
880 * or thread_terminate), then the "interruptible"
881 * parameter should be asserted.
882 *
883 * Results:
884 * The page containing the proper data is returned
885 * in "result_page".
886 *
887 * In/out conditions:
888 * The source object must be locked and referenced,
889 * and must donate one paging reference. The reference
890 * is not affected. The paging reference and lock are
891 * consumed.
892 *
893 * If the call succeeds, the object in which "result_page"
894 * resides is left locked and holding a paging reference.
895 * If this is not the original object, a busy page in the
896 * original object is returned in "top_page", to prevent other
897 * callers from pursuing this same data, along with a paging
898 * reference for the original object. The "top_page" should
899 * be destroyed when this guarantee is no longer required.
900 * The "result_page" is also left busy. It is not removed
901 * from the pageout queues.
902 * Special Case:
903 * A return value of VM_FAULT_SUCCESS_NO_PAGE means that the
904 * fault succeeded but there's no VM page (i.e. the VM object
905 * does not actually hold VM pages, but device memory or
906 * large pages). The object is still locked and we still hold a
907 * paging_in_progress reference.
908 */
909 unsigned int vm_fault_page_blocked_access = 0;
910 unsigned int vm_fault_page_forced_retry = 0;
911
912 vm_fault_return_t
913 vm_fault_page(
914 /* Arguments: */
915 vm_object_t first_object, /* Object to begin search */
916 vm_object_offset_t first_offset, /* Offset into object */
917 vm_prot_t fault_type, /* What access is requested */
918 boolean_t must_be_resident,/* Must page be resident? */
919 boolean_t caller_lookup, /* caller looked up page */
920 /* Modifies in place: */
921 vm_prot_t *protection, /* Protection for mapping */
922 vm_page_t *result_page, /* Page found, if successful */
923 /* Returns: */
924 vm_page_t *top_page, /* Page in top object, if
925 * not result_page. */
926 int *type_of_fault, /* if non-null, fill in with type of fault
927 * COW, zero-fill, etc... returned in trace point */
928 /* More arguments: */
929 kern_return_t *error_code, /* code if page is in error */
930 boolean_t no_zero_fill, /* don't zero fill absent pages */
931 boolean_t data_supply, /* treat as data_supply if
932 * it is a write fault and a full
933 * page is provided */
934 vm_object_fault_info_t fault_info)
935 {
936 vm_page_t m;
937 vm_object_t object;
938 vm_object_offset_t offset;
939 vm_page_t first_m;
940 vm_object_t next_object;
941 vm_object_t copy_object;
942 boolean_t look_for_page;
943 boolean_t force_fault_retry = FALSE;
944 vm_prot_t access_required = fault_type;
945 vm_prot_t wants_copy_flag;
946 kern_return_t wait_result;
947 wait_interrupt_t interruptible_state;
948 boolean_t data_already_requested = FALSE;
949 vm_behavior_t orig_behavior;
950 vm_size_t orig_cluster_size;
951 vm_fault_return_t error;
952 int my_fault;
953 uint32_t try_failed_count;
954 int interruptible; /* how may fault be interrupted? */
955 int external_state = VM_EXTERNAL_STATE_UNKNOWN;
956 memory_object_t pager;
957 vm_fault_return_t retval;
958 int grab_options;
959
960 /*
961 * MUST_ASK_PAGER() evaluates to TRUE if the page specified by object/offset is
962 * marked as paged out in the compressor pager or the pager doesn't exist.
963 * Note also that if the pager for an internal object
964 * has not been created, the pager is not invoked regardless of the value
965 * of MUST_ASK_PAGER().
966 *
967 * PAGED_OUT() evaluates to TRUE if the page specified by the object/offset
968 * is marked as paged out in the compressor pager.
969 * PAGED_OUT() is used to determine if a page has already been pushed
970 * into a copy object in order to avoid a redundant page out operation.
971 */
972 #define MUST_ASK_PAGER(o, f, s) \
973 ((s = VM_COMPRESSOR_PAGER_STATE_GET((o), (f))) != VM_EXTERNAL_STATE_ABSENT)
974
975 #define PAGED_OUT(o, f) \
976 (VM_COMPRESSOR_PAGER_STATE_GET((o), (f)) == VM_EXTERNAL_STATE_EXISTS)
977
978 /*
979 * Recovery actions
980 */
981 #define RELEASE_PAGE(m) \
982 MACRO_BEGIN \
983 PAGE_WAKEUP_DONE(m); \
984 if ( !VM_PAGE_PAGEABLE(m)) { \
985 vm_page_lockspin_queues(); \
986 if ( !VM_PAGE_PAGEABLE(m)) { \
987 if (VM_CONFIG_COMPRESSOR_IS_ACTIVE) \
988 vm_page_deactivate(m); \
989 else \
990 vm_page_activate(m); \
991 } \
992 vm_page_unlock_queues(); \
993 } \
994 MACRO_END
995
996 #if TRACEFAULTPAGE
997 dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */
998 #endif
999
1000 interruptible = fault_info->interruptible;
1001 interruptible_state = thread_interrupt_level(interruptible);
1002
1003 /*
1004 * INVARIANTS (through entire routine):
1005 *
1006 * 1) At all times, we must either have the object
1007 * lock or a busy page in some object to prevent
1008 * some other thread from trying to bring in
1009 * the same page.
1010 *
1011 * Note that we cannot hold any locks during the
1012 * pager access or when waiting for memory, so
1013 * we use a busy page then.
1014 *
1015 * 2) To prevent another thread from racing us down the
1016 * shadow chain and entering a new page in the top
1017 * object before we do, we must keep a busy page in
1018 * the top object while following the shadow chain.
1019 *
1020 * 3) We must increment paging_in_progress on any object
1021 * for which we have a busy page before dropping
1022 * the object lock
1023 *
1024 * 4) We leave busy pages on the pageout queues.
1025 * If the pageout daemon comes across a busy page,
1026 * it will remove the page from the pageout queues.
1027 */
1028
1029 object = first_object;
1030 offset = first_offset;
1031 first_m = VM_PAGE_NULL;
1032 access_required = fault_type;
1033
1034 /*
1035 * default type of fault
1036 */
1037 my_fault = DBG_CACHE_HIT_FAULT;
1038
1039 while (TRUE) {
1040 #if TRACEFAULTPAGE
1041 dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */
1042 #endif
1043
1044 grab_options = 0;
1045 #if CONFIG_SECLUDED_MEMORY
1046 if (object->can_grab_secluded) {
1047 grab_options |= VM_PAGE_GRAB_SECLUDED;
1048 }
1049 #endif /* CONFIG_SECLUDED_MEMORY */
1050
1051 if (!object->alive) {
1052 /*
1053 * object is no longer valid
1054 * clean up and return error
1055 */
1056 vm_fault_cleanup(object, first_m);
1057 thread_interrupt_level(interruptible_state);
1058
1059 return VM_FAULT_MEMORY_ERROR;
1060 }
1061
1062 if (!object->pager_created && object->phys_contiguous) {
1063 /*
1064 * A physically-contiguous object without a pager:
1065 * must be a "large page" object. We do not deal
1066 * with VM pages for this object.
1067 */
1068 caller_lookup = FALSE;
1069 m = VM_PAGE_NULL;
1070 goto phys_contig_object;
1071 }
1072
1073 if (object->blocked_access) {
1074 /*
1075 * Access to this VM object has been blocked.
1076 * Replace our "paging_in_progress" reference with
1077 * a "activity_in_progress" reference and wait for
1078 * access to be unblocked.
1079 */
1080 caller_lookup = FALSE; /* no longer valid after sleep */
1081 vm_object_activity_begin(object);
1082 vm_object_paging_end(object);
1083 while (object->blocked_access) {
1084 vm_object_sleep(object,
1085 VM_OBJECT_EVENT_UNBLOCKED,
1086 THREAD_UNINT);
1087 }
1088 vm_fault_page_blocked_access++;
1089 vm_object_paging_begin(object);
1090 vm_object_activity_end(object);
1091 }
1092
1093 /*
1094 * See whether the page at 'offset' is resident
1095 */
1096 if (caller_lookup == TRUE) {
1097 /*
1098 * The caller has already looked up the page
1099 * and gave us the result in "result_page".
1100 * We can use this for the first lookup but
1101 * it loses its validity as soon as we unlock
1102 * the object.
1103 */
1104 m = *result_page;
1105 caller_lookup = FALSE; /* no longer valid after that */
1106 } else {
1107 m = vm_page_lookup(object, vm_object_trunc_page(offset));
1108 }
1109 #if TRACEFAULTPAGE
1110 dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
1111 #endif
1112 if (m != VM_PAGE_NULL) {
1113 if (m->vmp_busy) {
1114 /*
1115 * The page is being brought in,
1116 * wait for it and then retry.
1117 */
1118 #if TRACEFAULTPAGE
1119 dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
1120 #endif
1121 wait_result = PAGE_SLEEP(object, m, interruptible);
1122
1123 if (wait_result != THREAD_AWAKENED) {
1124 vm_fault_cleanup(object, first_m);
1125 thread_interrupt_level(interruptible_state);
1126
1127 if (wait_result == THREAD_RESTART) {
1128 return VM_FAULT_RETRY;
1129 } else {
1130 return VM_FAULT_INTERRUPTED;
1131 }
1132 }
1133 continue;
1134 }
1135 if (m->vmp_laundry) {
1136 m->vmp_free_when_done = FALSE;
1137
1138 if (!m->vmp_cleaning) {
1139 vm_pageout_steal_laundry(m, FALSE);
1140 }
1141 }
1142 if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) {
1143 /*
1144 * Guard page: off limits !
1145 */
1146 if (fault_type == VM_PROT_NONE) {
1147 /*
1148 * The fault is not requesting any
1149 * access to the guard page, so it must
1150 * be just to wire or unwire it.
1151 * Let's pretend it succeeded...
1152 */
1153 m->vmp_busy = TRUE;
1154 *result_page = m;
1155 assert(first_m == VM_PAGE_NULL);
1156 *top_page = first_m;
1157 if (type_of_fault) {
1158 *type_of_fault = DBG_GUARD_FAULT;
1159 }
1160 thread_interrupt_level(interruptible_state);
1161 return VM_FAULT_SUCCESS;
1162 } else {
1163 /*
1164 * The fault requests access to the
1165 * guard page: let's deny that !
1166 */
1167 vm_fault_cleanup(object, first_m);
1168 thread_interrupt_level(interruptible_state);
1169 return VM_FAULT_MEMORY_ERROR;
1170 }
1171 }
1172
1173 if (m->vmp_error) {
1174 /*
1175 * The page is in error, give up now.
1176 */
1177 #if TRACEFAULTPAGE
1178 dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */
1179 #endif
1180 if (error_code) {
1181 *error_code = KERN_MEMORY_ERROR;
1182 }
1183 VM_PAGE_FREE(m);
1184
1185 vm_fault_cleanup(object, first_m);
1186 thread_interrupt_level(interruptible_state);
1187
1188 return VM_FAULT_MEMORY_ERROR;
1189 }
1190 if (m->vmp_restart) {
1191 /*
1192 * The pager wants us to restart
1193 * at the top of the chain,
1194 * typically because it has moved the
1195 * page to another pager, then do so.
1196 */
1197 #if TRACEFAULTPAGE
1198 dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
1199 #endif
1200 VM_PAGE_FREE(m);
1201
1202 vm_fault_cleanup(object, first_m);
1203 thread_interrupt_level(interruptible_state);
1204
1205 return VM_FAULT_RETRY;
1206 }
1207 if (m->vmp_absent) {
1208 /*
1209 * The page isn't busy, but is absent,
1210 * therefore it's deemed "unavailable".
1211 *
1212 * Remove the non-existent page (unless it's
1213 * in the top object) and move on down to the
1214 * next object (if there is one).
1215 */
1216 #if TRACEFAULTPAGE
1217 dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */
1218 #endif
1219 next_object = object->shadow;
1220
1221 if (next_object == VM_OBJECT_NULL) {
1222 /*
1223 * Absent page at bottom of shadow
1224 * chain; zero fill the page we left
1225 * busy in the first object, and free
1226 * the absent page.
1227 */
1228 assert(!must_be_resident);
1229
1230 /*
1231 * check for any conditions that prevent
1232 * us from creating a new zero-fill page
1233 * vm_fault_check will do all of the
1234 * fault cleanup in the case of an error condition
1235 * including resetting the thread_interrupt_level
1236 */
1237 error = vm_fault_check(object, m, first_m, interruptible_state, (type_of_fault == NULL) ? TRUE : FALSE);
1238
1239 if (error != VM_FAULT_SUCCESS) {
1240 return error;
1241 }
1242
1243 if (object != first_object) {
1244 /*
1245 * free the absent page we just found
1246 */
1247 VM_PAGE_FREE(m);
1248
1249 /*
1250 * drop reference and lock on current object
1251 */
1252 vm_object_paging_end(object);
1253 vm_object_unlock(object);
1254
1255 /*
1256 * grab the original page we
1257 * 'soldered' in place and
1258 * retake lock on 'first_object'
1259 */
1260 m = first_m;
1261 first_m = VM_PAGE_NULL;
1262
1263 object = first_object;
1264 offset = first_offset;
1265
1266 vm_object_lock(object);
1267 } else {
1268 /*
1269 * we're going to use the absent page we just found
1270 * so convert it to a 'busy' page
1271 */
1272 m->vmp_absent = FALSE;
1273 m->vmp_busy = TRUE;
1274 }
1275 if (fault_info->mark_zf_absent && no_zero_fill == TRUE) {
1276 m->vmp_absent = TRUE;
1277 }
1278 /*
1279 * zero-fill the page and put it on
1280 * the correct paging queue
1281 */
1282 my_fault = vm_fault_zero_page(m, no_zero_fill);
1283
1284 break;
1285 } else {
1286 if (must_be_resident) {
1287 vm_object_paging_end(object);
1288 } else if (object != first_object) {
1289 vm_object_paging_end(object);
1290 VM_PAGE_FREE(m);
1291 } else {
1292 first_m = m;
1293 m->vmp_absent = FALSE;
1294 m->vmp_busy = TRUE;
1295
1296 vm_page_lockspin_queues();
1297 vm_page_queues_remove(m, FALSE);
1298 vm_page_unlock_queues();
1299 }
1300
1301 offset += object->vo_shadow_offset;
1302 fault_info->lo_offset += object->vo_shadow_offset;
1303 fault_info->hi_offset += object->vo_shadow_offset;
1304 access_required = VM_PROT_READ;
1305
1306 vm_object_lock(next_object);
1307 vm_object_unlock(object);
1308 object = next_object;
1309 vm_object_paging_begin(object);
1310
1311 /*
1312 * reset to default type of fault
1313 */
1314 my_fault = DBG_CACHE_HIT_FAULT;
1315
1316 continue;
1317 }
1318 }
1319 if ((m->vmp_cleaning)
1320 && ((object != first_object) || (object->copy != VM_OBJECT_NULL))
1321 && (fault_type & VM_PROT_WRITE)) {
1322 /*
1323 * This is a copy-on-write fault that will
1324 * cause us to revoke access to this page, but
1325 * this page is in the process of being cleaned
1326 * in a clustered pageout. We must wait until
1327 * the cleaning operation completes before
1328 * revoking access to the original page,
1329 * otherwise we might attempt to remove a
1330 * wired mapping.
1331 */
1332 #if TRACEFAULTPAGE
1333 dbgTrace(0xBEEF0009, (unsigned int) m, (unsigned int) offset); /* (TEST/DEBUG) */
1334 #endif
1335 /*
1336 * take an extra ref so that object won't die
1337 */
1338 vm_object_reference_locked(object);
1339
1340 vm_fault_cleanup(object, first_m);
1341
1342 vm_object_lock(object);
1343 assert(object->ref_count > 0);
1344
1345 m = vm_page_lookup(object, vm_object_trunc_page(offset));
1346
1347 if (m != VM_PAGE_NULL && m->vmp_cleaning) {
1348 PAGE_ASSERT_WAIT(m, interruptible);
1349
1350 vm_object_unlock(object);
1351 wait_result = thread_block(THREAD_CONTINUE_NULL);
1352 vm_object_deallocate(object);
1353
1354 goto backoff;
1355 } else {
1356 vm_object_unlock(object);
1357
1358 vm_object_deallocate(object);
1359 thread_interrupt_level(interruptible_state);
1360
1361 return VM_FAULT_RETRY;
1362 }
1363 }
1364 if (type_of_fault == NULL && (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) &&
1365 !(fault_info != NULL && fault_info->stealth)) {
1366 /*
1367 * If we were passed a non-NULL pointer for
1368 * "type_of_fault", than we came from
1369 * vm_fault... we'll let it deal with
1370 * this condition, since it
1371 * needs to see m->vmp_speculative to correctly
1372 * account the pageins, otherwise...
1373 * take it off the speculative queue, we'll
1374 * let the caller of vm_fault_page deal
1375 * with getting it onto the correct queue
1376 *
1377 * If the caller specified in fault_info that
1378 * it wants a "stealth" fault, we also leave
1379 * the page in the speculative queue.
1380 */
1381 vm_page_lockspin_queues();
1382 if (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) {
1383 vm_page_queues_remove(m, FALSE);
1384 }
1385 vm_page_unlock_queues();
1386 }
1387 assert(object == VM_PAGE_OBJECT(m));
1388
1389 if (object->code_signed) {
1390 /*
1391 * CODE SIGNING:
1392 * We just paged in a page from a signed
1393 * memory object but we don't need to
1394 * validate it now. We'll validate it if
1395 * when it gets mapped into a user address
1396 * space for the first time or when the page
1397 * gets copied to another object as a result
1398 * of a copy-on-write.
1399 */
1400 }
1401
1402 /*
1403 * We mark the page busy and leave it on
1404 * the pageout queues. If the pageout
1405 * deamon comes across it, then it will
1406 * remove the page from the queue, but not the object
1407 */
1408 #if TRACEFAULTPAGE
1409 dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
1410 #endif
1411 assert(!m->vmp_busy);
1412 assert(!m->vmp_absent);
1413
1414 m->vmp_busy = TRUE;
1415 break;
1416 }
1417
1418
1419 /*
1420 * we get here when there is no page present in the object at
1421 * the offset we're interested in... we'll allocate a page
1422 * at this point if the pager associated with
1423 * this object can provide the data or we're the top object...
1424 * object is locked; m == NULL
1425 */
1426
1427 if (must_be_resident) {
1428 if (fault_type == VM_PROT_NONE &&
1429 object == kernel_object) {
1430 /*
1431 * We've been called from vm_fault_unwire()
1432 * while removing a map entry that was allocated
1433 * with KMA_KOBJECT and KMA_VAONLY. This page
1434 * is not present and there's nothing more to
1435 * do here (nothing to unwire).
1436 */
1437 vm_fault_cleanup(object, first_m);
1438 thread_interrupt_level(interruptible_state);
1439
1440 return VM_FAULT_MEMORY_ERROR;
1441 }
1442
1443 goto dont_look_for_page;
1444 }
1445
1446 /* Don't expect to fault pages into the kernel object. */
1447 assert(object != kernel_object);
1448
1449 data_supply = FALSE;
1450
1451 look_for_page = (object->pager_created && (MUST_ASK_PAGER(object, offset, external_state) == TRUE) && !data_supply);
1452
1453 #if TRACEFAULTPAGE
1454 dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */
1455 #endif
1456 if (!look_for_page && object == first_object && !object->phys_contiguous) {
1457 /*
1458 * Allocate a new page for this object/offset pair as a placeholder
1459 */
1460 m = vm_page_grab_options(grab_options);
1461 #if TRACEFAULTPAGE
1462 dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
1463 #endif
1464 if (m == VM_PAGE_NULL) {
1465 vm_fault_cleanup(object, first_m);
1466 thread_interrupt_level(interruptible_state);
1467
1468 return VM_FAULT_MEMORY_SHORTAGE;
1469 }
1470
1471 if (fault_info && fault_info->batch_pmap_op == TRUE) {
1472 vm_page_insert_internal(m, object,
1473 vm_object_trunc_page(offset),
1474 VM_KERN_MEMORY_NONE, FALSE, TRUE, TRUE, FALSE, NULL);
1475 } else {
1476 vm_page_insert(m, object, vm_object_trunc_page(offset));
1477 }
1478 }
1479 if (look_for_page) {
1480 kern_return_t rc;
1481 int my_fault_type;
1482
1483 /*
1484 * If the memory manager is not ready, we
1485 * cannot make requests.
1486 */
1487 if (!object->pager_ready) {
1488 #if TRACEFAULTPAGE
1489 dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */
1490 #endif
1491 if (m != VM_PAGE_NULL) {
1492 VM_PAGE_FREE(m);
1493 }
1494
1495 /*
1496 * take an extra ref so object won't die
1497 */
1498 vm_object_reference_locked(object);
1499 vm_fault_cleanup(object, first_m);
1500
1501 vm_object_lock(object);
1502 assert(object->ref_count > 0);
1503
1504 if (!object->pager_ready) {
1505 wait_result = vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGER_READY, interruptible);
1506
1507 vm_object_unlock(object);
1508 if (wait_result == THREAD_WAITING) {
1509 wait_result = thread_block(THREAD_CONTINUE_NULL);
1510 }
1511 vm_object_deallocate(object);
1512
1513 goto backoff;
1514 } else {
1515 vm_object_unlock(object);
1516 vm_object_deallocate(object);
1517 thread_interrupt_level(interruptible_state);
1518
1519 return VM_FAULT_RETRY;
1520 }
1521 }
1522 if (!object->internal && !object->phys_contiguous && object->paging_in_progress > vm_object_pagein_throttle) {
1523 /*
1524 * If there are too many outstanding page
1525 * requests pending on this external object, we
1526 * wait for them to be resolved now.
1527 */
1528 #if TRACEFAULTPAGE
1529 dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
1530 #endif
1531 if (m != VM_PAGE_NULL) {
1532 VM_PAGE_FREE(m);
1533 }
1534 /*
1535 * take an extra ref so object won't die
1536 */
1537 vm_object_reference_locked(object);
1538
1539 vm_fault_cleanup(object, first_m);
1540
1541 vm_object_lock(object);
1542 assert(object->ref_count > 0);
1543
1544 if (object->paging_in_progress >= vm_object_pagein_throttle) {
1545 vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGING_ONLY_IN_PROGRESS, interruptible);
1546
1547 vm_object_unlock(object);
1548 wait_result = thread_block(THREAD_CONTINUE_NULL);
1549 vm_object_deallocate(object);
1550
1551 goto backoff;
1552 } else {
1553 vm_object_unlock(object);
1554 vm_object_deallocate(object);
1555 thread_interrupt_level(interruptible_state);
1556
1557 return VM_FAULT_RETRY;
1558 }
1559 }
1560 if (object->internal) {
1561 int compressed_count_delta;
1562
1563 assert(VM_CONFIG_COMPRESSOR_IS_PRESENT);
1564
1565 if (m == VM_PAGE_NULL) {
1566 /*
1567 * Allocate a new page for this object/offset pair as a placeholder
1568 */
1569 m = vm_page_grab_options(grab_options);
1570 #if TRACEFAULTPAGE
1571 dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
1572 #endif
1573 if (m == VM_PAGE_NULL) {
1574 vm_fault_cleanup(object, first_m);
1575 thread_interrupt_level(interruptible_state);
1576
1577 return VM_FAULT_MEMORY_SHORTAGE;
1578 }
1579
1580 m->vmp_absent = TRUE;
1581 if (fault_info && fault_info->batch_pmap_op == TRUE) {
1582 vm_page_insert_internal(m, object, vm_object_trunc_page(offset), VM_KERN_MEMORY_NONE, FALSE, TRUE, TRUE, FALSE, NULL);
1583 } else {
1584 vm_page_insert(m, object, vm_object_trunc_page(offset));
1585 }
1586 }
1587 assert(m->vmp_busy);
1588
1589 m->vmp_absent = TRUE;
1590 pager = object->pager;
1591
1592 assert(object->paging_in_progress > 0);
1593 vm_object_unlock(object);
1594
1595 rc = vm_compressor_pager_get(
1596 pager,
1597 offset + object->paging_offset,
1598 VM_PAGE_GET_PHYS_PAGE(m),
1599 &my_fault_type,
1600 0,
1601 &compressed_count_delta);
1602
1603 if (type_of_fault == NULL) {
1604 int throttle_delay;
1605
1606 /*
1607 * we weren't called from vm_fault, so we
1608 * need to apply page creation throttling
1609 * do it before we re-acquire any locks
1610 */
1611 if (my_fault_type == DBG_COMPRESSOR_FAULT) {
1612 if ((throttle_delay = vm_page_throttled(TRUE))) {
1613 VM_DEBUG_EVENT(vmf_compressordelay, VMF_COMPRESSORDELAY, DBG_FUNC_NONE, throttle_delay, 0, 1, 0);
1614 delay(throttle_delay);
1615 }
1616 }
1617 }
1618 vm_object_lock(object);
1619 assert(object->paging_in_progress > 0);
1620
1621 vm_compressor_pager_count(
1622 pager,
1623 compressed_count_delta,
1624 FALSE, /* shared_lock */
1625 object);
1626
1627 switch (rc) {
1628 case KERN_SUCCESS:
1629 m->vmp_absent = FALSE;
1630 m->vmp_dirty = TRUE;
1631 if ((object->wimg_bits &
1632 VM_WIMG_MASK) !=
1633 VM_WIMG_USE_DEFAULT) {
1634 /*
1635 * If the page is not cacheable,
1636 * we can't let its contents
1637 * linger in the data cache
1638 * after the decompression.
1639 */
1640 pmap_sync_page_attributes_phys(
1641 VM_PAGE_GET_PHYS_PAGE(m));
1642 } else {
1643 m->vmp_written_by_kernel = TRUE;
1644 }
1645
1646 /*
1647 * If the object is purgeable, its
1648 * owner's purgeable ledgers have been
1649 * updated in vm_page_insert() but the
1650 * page was also accounted for in a
1651 * "compressed purgeable" ledger, so
1652 * update that now.
1653 */
1654 if (((object->purgable !=
1655 VM_PURGABLE_DENY) ||
1656 object->vo_ledger_tag) &&
1657 (object->vo_owner !=
1658 NULL)) {
1659 /*
1660 * One less compressed
1661 * purgeable/tagged page.
1662 */
1663 vm_object_owner_compressed_update(
1664 object,
1665 -1);
1666 }
1667
1668 break;
1669 case KERN_MEMORY_FAILURE:
1670 m->vmp_unusual = TRUE;
1671 m->vmp_error = TRUE;
1672 m->vmp_absent = FALSE;
1673 break;
1674 case KERN_MEMORY_ERROR:
1675 assert(m->vmp_absent);
1676 break;
1677 default:
1678 panic("vm_fault_page(): unexpected "
1679 "error %d from "
1680 "vm_compressor_pager_get()\n",
1681 rc);
1682 }
1683 PAGE_WAKEUP_DONE(m);
1684
1685 rc = KERN_SUCCESS;
1686 goto data_requested;
1687 }
1688 my_fault_type = DBG_PAGEIN_FAULT;
1689
1690 if (m != VM_PAGE_NULL) {
1691 VM_PAGE_FREE(m);
1692 m = VM_PAGE_NULL;
1693 }
1694
1695 #if TRACEFAULTPAGE
1696 dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */
1697 #endif
1698
1699 /*
1700 * It's possible someone called vm_object_destroy while we weren't
1701 * holding the object lock. If that has happened, then bail out
1702 * here.
1703 */
1704
1705 pager = object->pager;
1706
1707 if (pager == MEMORY_OBJECT_NULL) {
1708 vm_fault_cleanup(object, first_m);
1709 thread_interrupt_level(interruptible_state);
1710 return VM_FAULT_MEMORY_ERROR;
1711 }
1712
1713 /*
1714 * We have an absent page in place for the faulting offset,
1715 * so we can release the object lock.
1716 */
1717
1718 if (object->object_is_shared_cache) {
1719 set_thread_rwlock_boost();
1720 }
1721
1722 vm_object_unlock(object);
1723
1724 /*
1725 * If this object uses a copy_call strategy,
1726 * and we are interested in a copy of this object
1727 * (having gotten here only by following a
1728 * shadow chain), then tell the memory manager
1729 * via a flag added to the desired_access
1730 * parameter, so that it can detect a race
1731 * between our walking down the shadow chain
1732 * and its pushing pages up into a copy of
1733 * the object that it manages.
1734 */
1735 if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL && object != first_object) {
1736 wants_copy_flag = VM_PROT_WANTS_COPY;
1737 } else {
1738 wants_copy_flag = VM_PROT_NONE;
1739 }
1740
1741 if (object->copy == first_object) {
1742 /*
1743 * if we issue the memory_object_data_request in
1744 * this state, we are subject to a deadlock with
1745 * the underlying filesystem if it is trying to
1746 * shrink the file resulting in a push of pages
1747 * into the copy object... that push will stall
1748 * on the placeholder page, and if the pushing thread
1749 * is holding a lock that is required on the pagein
1750 * path (such as a truncate lock), we'll deadlock...
1751 * to avoid this potential deadlock, we throw away
1752 * our placeholder page before calling memory_object_data_request
1753 * and force this thread to retry the vm_fault_page after
1754 * we have issued the I/O. the second time through this path
1755 * we will find the page already in the cache (presumably still
1756 * busy waiting for the I/O to complete) and then complete
1757 * the fault w/o having to go through memory_object_data_request again
1758 */
1759 assert(first_m != VM_PAGE_NULL);
1760 assert(VM_PAGE_OBJECT(first_m) == first_object);
1761
1762 vm_object_lock(first_object);
1763 VM_PAGE_FREE(first_m);
1764 vm_object_paging_end(first_object);
1765 vm_object_unlock(first_object);
1766
1767 first_m = VM_PAGE_NULL;
1768 force_fault_retry = TRUE;
1769
1770 vm_fault_page_forced_retry++;
1771 }
1772
1773 if (data_already_requested == TRUE) {
1774 orig_behavior = fault_info->behavior;
1775 orig_cluster_size = fault_info->cluster_size;
1776
1777 fault_info->behavior = VM_BEHAVIOR_RANDOM;
1778 fault_info->cluster_size = PAGE_SIZE;
1779 }
1780 /*
1781 * Call the memory manager to retrieve the data.
1782 */
1783 rc = memory_object_data_request(
1784 pager,
1785 vm_object_trunc_page(offset) + object->paging_offset,
1786 PAGE_SIZE,
1787 access_required | wants_copy_flag,
1788 (memory_object_fault_info_t)fault_info);
1789
1790 if (data_already_requested == TRUE) {
1791 fault_info->behavior = orig_behavior;
1792 fault_info->cluster_size = orig_cluster_size;
1793 } else {
1794 data_already_requested = TRUE;
1795 }
1796
1797 DTRACE_VM2(maj_fault, int, 1, (uint64_t *), NULL);
1798 #if TRACEFAULTPAGE
1799 dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */
1800 #endif
1801 vm_object_lock(object);
1802
1803 if (object->object_is_shared_cache) {
1804 clear_thread_rwlock_boost();
1805 }
1806
1807 data_requested:
1808 if (rc != KERN_SUCCESS) {
1809 vm_fault_cleanup(object, first_m);
1810 thread_interrupt_level(interruptible_state);
1811
1812 return (rc == MACH_SEND_INTERRUPTED) ?
1813 VM_FAULT_INTERRUPTED :
1814 VM_FAULT_MEMORY_ERROR;
1815 } else {
1816 clock_sec_t tv_sec;
1817 clock_usec_t tv_usec;
1818
1819 if (my_fault_type == DBG_PAGEIN_FAULT) {
1820 clock_get_system_microtime(&tv_sec, &tv_usec);
1821 current_thread()->t_page_creation_time = tv_sec;
1822 current_thread()->t_page_creation_count = 0;
1823 }
1824 }
1825 if ((interruptible != THREAD_UNINT) && (current_thread()->sched_flags & TH_SFLAG_ABORT)) {
1826 vm_fault_cleanup(object, first_m);
1827 thread_interrupt_level(interruptible_state);
1828
1829 return VM_FAULT_INTERRUPTED;
1830 }
1831 if (force_fault_retry == TRUE) {
1832 vm_fault_cleanup(object, first_m);
1833 thread_interrupt_level(interruptible_state);
1834
1835 return VM_FAULT_RETRY;
1836 }
1837 if (m == VM_PAGE_NULL && object->phys_contiguous) {
1838 /*
1839 * No page here means that the object we
1840 * initially looked up was "physically
1841 * contiguous" (i.e. device memory). However,
1842 * with Virtual VRAM, the object might not
1843 * be backed by that device memory anymore,
1844 * so we're done here only if the object is
1845 * still "phys_contiguous".
1846 * Otherwise, if the object is no longer
1847 * "phys_contiguous", we need to retry the
1848 * page fault against the object's new backing
1849 * store (different memory object).
1850 */
1851 phys_contig_object:
1852 goto done;
1853 }
1854 /*
1855 * potentially a pagein fault
1856 * if we make it through the state checks
1857 * above, than we'll count it as such
1858 */
1859 my_fault = my_fault_type;
1860
1861 /*
1862 * Retry with same object/offset, since new data may
1863 * be in a different page (i.e., m is meaningless at
1864 * this point).
1865 */
1866 continue;
1867 }
1868 dont_look_for_page:
1869 /*
1870 * We get here if the object has no pager, or an existence map
1871 * exists and indicates the page isn't present on the pager
1872 * or we're unwiring a page. If a pager exists, but there
1873 * is no existence map, then the m->vmp_absent case above handles
1874 * the ZF case when the pager can't provide the page
1875 */
1876 #if TRACEFAULTPAGE
1877 dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
1878 #endif
1879 if (object == first_object) {
1880 first_m = m;
1881 } else {
1882 assert(m == VM_PAGE_NULL);
1883 }
1884
1885 next_object = object->shadow;
1886
1887 if (next_object == VM_OBJECT_NULL) {
1888 /*
1889 * we've hit the bottom of the shadown chain,
1890 * fill the page in the top object with zeros.
1891 */
1892 assert(!must_be_resident);
1893
1894 if (object != first_object) {
1895 vm_object_paging_end(object);
1896 vm_object_unlock(object);
1897
1898 object = first_object;
1899 offset = first_offset;
1900 vm_object_lock(object);
1901 }
1902 m = first_m;
1903 assert(VM_PAGE_OBJECT(m) == object);
1904 first_m = VM_PAGE_NULL;
1905
1906 /*
1907 * check for any conditions that prevent
1908 * us from creating a new zero-fill page
1909 * vm_fault_check will do all of the
1910 * fault cleanup in the case of an error condition
1911 * including resetting the thread_interrupt_level
1912 */
1913 error = vm_fault_check(object, m, first_m, interruptible_state, (type_of_fault == NULL) ? TRUE : FALSE);
1914
1915 if (error != VM_FAULT_SUCCESS) {
1916 return error;
1917 }
1918
1919 if (m == VM_PAGE_NULL) {
1920 m = vm_page_grab_options(grab_options);
1921
1922 if (m == VM_PAGE_NULL) {
1923 vm_fault_cleanup(object, VM_PAGE_NULL);
1924 thread_interrupt_level(interruptible_state);
1925
1926 return VM_FAULT_MEMORY_SHORTAGE;
1927 }
1928 vm_page_insert(m, object, vm_object_trunc_page(offset));
1929 }
1930 if (fault_info->mark_zf_absent && no_zero_fill == TRUE) {
1931 m->vmp_absent = TRUE;
1932 }
1933
1934 my_fault = vm_fault_zero_page(m, no_zero_fill);
1935
1936 break;
1937 } else {
1938 /*
1939 * Move on to the next object. Lock the next
1940 * object before unlocking the current one.
1941 */
1942 if ((object != first_object) || must_be_resident) {
1943 vm_object_paging_end(object);
1944 }
1945
1946 offset += object->vo_shadow_offset;
1947 fault_info->lo_offset += object->vo_shadow_offset;
1948 fault_info->hi_offset += object->vo_shadow_offset;
1949 access_required = VM_PROT_READ;
1950
1951 vm_object_lock(next_object);
1952 vm_object_unlock(object);
1953
1954 object = next_object;
1955 vm_object_paging_begin(object);
1956 }
1957 }
1958
1959 /*
1960 * PAGE HAS BEEN FOUND.
1961 *
1962 * This page (m) is:
1963 * busy, so that we can play with it;
1964 * not absent, so that nobody else will fill it;
1965 * possibly eligible for pageout;
1966 *
1967 * The top-level page (first_m) is:
1968 * VM_PAGE_NULL if the page was found in the
1969 * top-level object;
1970 * busy, not absent, and ineligible for pageout.
1971 *
1972 * The current object (object) is locked. A paging
1973 * reference is held for the current and top-level
1974 * objects.
1975 */
1976
1977 #if TRACEFAULTPAGE
1978 dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
1979 #endif
1980 #if EXTRA_ASSERTIONS
1981 assert(m->vmp_busy && !m->vmp_absent);
1982 assert((first_m == VM_PAGE_NULL) ||
1983 (first_m->vmp_busy && !first_m->vmp_absent &&
1984 !first_m->vmp_active && !first_m->vmp_inactive && !first_m->vmp_secluded));
1985 #endif /* EXTRA_ASSERTIONS */
1986
1987 /*
1988 * If the page is being written, but isn't
1989 * already owned by the top-level object,
1990 * we have to copy it into a new page owned
1991 * by the top-level object.
1992 */
1993 if (object != first_object) {
1994 #if TRACEFAULTPAGE
1995 dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */
1996 #endif
1997 if (fault_type & VM_PROT_WRITE) {
1998 vm_page_t copy_m;
1999
2000 /*
2001 * We only really need to copy if we
2002 * want to write it.
2003 */
2004 assert(!must_be_resident);
2005
2006 /*
2007 * If we try to collapse first_object at this
2008 * point, we may deadlock when we try to get
2009 * the lock on an intermediate object (since we
2010 * have the bottom object locked). We can't
2011 * unlock the bottom object, because the page
2012 * we found may move (by collapse) if we do.
2013 *
2014 * Instead, we first copy the page. Then, when
2015 * we have no more use for the bottom object,
2016 * we unlock it and try to collapse.
2017 *
2018 * Note that we copy the page even if we didn't
2019 * need to... that's the breaks.
2020 */
2021
2022 /*
2023 * Allocate a page for the copy
2024 */
2025 copy_m = vm_page_grab_options(grab_options);
2026
2027 if (copy_m == VM_PAGE_NULL) {
2028 RELEASE_PAGE(m);
2029
2030 vm_fault_cleanup(object, first_m);
2031 thread_interrupt_level(interruptible_state);
2032
2033 return VM_FAULT_MEMORY_SHORTAGE;
2034 }
2035
2036 vm_page_copy(m, copy_m);
2037
2038 /*
2039 * If another map is truly sharing this
2040 * page with us, we have to flush all
2041 * uses of the original page, since we
2042 * can't distinguish those which want the
2043 * original from those which need the
2044 * new copy.
2045 *
2046 * XXXO If we know that only one map has
2047 * access to this page, then we could
2048 * avoid the pmap_disconnect() call.
2049 */
2050 if (m->vmp_pmapped) {
2051 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
2052 }
2053
2054 if (m->vmp_clustered) {
2055 VM_PAGE_COUNT_AS_PAGEIN(m);
2056 VM_PAGE_CONSUME_CLUSTERED(m);
2057 }
2058 assert(!m->vmp_cleaning);
2059
2060 /*
2061 * We no longer need the old page or object.
2062 */
2063 RELEASE_PAGE(m);
2064
2065 /*
2066 * This check helps with marking the object as having a sequential pattern
2067 * Normally we'll miss doing this below because this fault is about COW to
2068 * the first_object i.e. bring page in from disk, push to object above but
2069 * don't update the file object's sequential pattern.
2070 */
2071 if (object->internal == FALSE) {
2072 vm_fault_is_sequential(object, offset, fault_info->behavior);
2073 }
2074
2075 vm_object_paging_end(object);
2076 vm_object_unlock(object);
2077
2078 my_fault = DBG_COW_FAULT;
2079 counter_inc(&vm_statistics_cow_faults);
2080 DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL);
2081 current_task()->cow_faults++;
2082
2083 object = first_object;
2084 offset = first_offset;
2085
2086 vm_object_lock(object);
2087 /*
2088 * get rid of the place holder
2089 * page that we soldered in earlier
2090 */
2091 VM_PAGE_FREE(first_m);
2092 first_m = VM_PAGE_NULL;
2093
2094 /*
2095 * and replace it with the
2096 * page we just copied into
2097 */
2098 assert(copy_m->vmp_busy);
2099 vm_page_insert(copy_m, object, vm_object_trunc_page(offset));
2100 SET_PAGE_DIRTY(copy_m, TRUE);
2101
2102 m = copy_m;
2103 /*
2104 * Now that we've gotten the copy out of the
2105 * way, let's try to collapse the top object.
2106 * But we have to play ugly games with
2107 * paging_in_progress to do that...
2108 */
2109 vm_object_paging_end(object);
2110 vm_object_collapse(object, vm_object_trunc_page(offset), TRUE);
2111 vm_object_paging_begin(object);
2112 } else {
2113 *protection &= (~VM_PROT_WRITE);
2114 }
2115 }
2116 /*
2117 * Now check whether the page needs to be pushed into the
2118 * copy object. The use of asymmetric copy on write for
2119 * shared temporary objects means that we may do two copies to
2120 * satisfy the fault; one above to get the page from a
2121 * shadowed object, and one here to push it into the copy.
2122 */
2123 try_failed_count = 0;
2124
2125 while ((copy_object = first_object->copy) != VM_OBJECT_NULL) {
2126 vm_object_offset_t copy_offset;
2127 vm_page_t copy_m;
2128
2129 #if TRACEFAULTPAGE
2130 dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */
2131 #endif
2132 /*
2133 * If the page is being written, but hasn't been
2134 * copied to the copy-object, we have to copy it there.
2135 */
2136 if ((fault_type & VM_PROT_WRITE) == 0) {
2137 *protection &= ~VM_PROT_WRITE;
2138 break;
2139 }
2140
2141 /*
2142 * If the page was guaranteed to be resident,
2143 * we must have already performed the copy.
2144 */
2145 if (must_be_resident) {
2146 break;
2147 }
2148
2149 /*
2150 * Try to get the lock on the copy_object.
2151 */
2152 if (!vm_object_lock_try(copy_object)) {
2153 vm_object_unlock(object);
2154 try_failed_count++;
2155
2156 mutex_pause(try_failed_count); /* wait a bit */
2157 vm_object_lock(object);
2158
2159 continue;
2160 }
2161 try_failed_count = 0;
2162
2163 /*
2164 * Make another reference to the copy-object,
2165 * to keep it from disappearing during the
2166 * copy.
2167 */
2168 vm_object_reference_locked(copy_object);
2169
2170 /*
2171 * Does the page exist in the copy?
2172 */
2173 copy_offset = first_offset - copy_object->vo_shadow_offset;
2174 copy_offset = vm_object_trunc_page(copy_offset);
2175
2176 if (copy_object->vo_size <= copy_offset) {
2177 /*
2178 * Copy object doesn't cover this page -- do nothing.
2179 */
2180 ;
2181 } else if ((copy_m = vm_page_lookup(copy_object, copy_offset)) != VM_PAGE_NULL) {
2182 /*
2183 * Page currently exists in the copy object
2184 */
2185 if (copy_m->vmp_busy) {
2186 /*
2187 * If the page is being brought
2188 * in, wait for it and then retry.
2189 */
2190 RELEASE_PAGE(m);
2191
2192 /*
2193 * take an extra ref so object won't die
2194 */
2195 vm_object_reference_locked(copy_object);
2196 vm_object_unlock(copy_object);
2197 vm_fault_cleanup(object, first_m);
2198
2199 vm_object_lock(copy_object);
2200 assert(copy_object->ref_count > 0);
2201 vm_object_lock_assert_exclusive(copy_object);
2202 copy_object->ref_count--;
2203 assert(copy_object->ref_count > 0);
2204 copy_m = vm_page_lookup(copy_object, copy_offset);
2205
2206 if (copy_m != VM_PAGE_NULL && copy_m->vmp_busy) {
2207 PAGE_ASSERT_WAIT(copy_m, interruptible);
2208
2209 vm_object_unlock(copy_object);
2210 wait_result = thread_block(THREAD_CONTINUE_NULL);
2211 vm_object_deallocate(copy_object);
2212
2213 goto backoff;
2214 } else {
2215 vm_object_unlock(copy_object);
2216 vm_object_deallocate(copy_object);
2217 thread_interrupt_level(interruptible_state);
2218
2219 return VM_FAULT_RETRY;
2220 }
2221 }
2222 } else if (!PAGED_OUT(copy_object, copy_offset)) {
2223 /*
2224 * If PAGED_OUT is TRUE, then the page used to exist
2225 * in the copy-object, and has already been paged out.
2226 * We don't need to repeat this. If PAGED_OUT is
2227 * FALSE, then either we don't know (!pager_created,
2228 * for example) or it hasn't been paged out.
2229 * (VM_EXTERNAL_STATE_UNKNOWN||VM_EXTERNAL_STATE_ABSENT)
2230 * We must copy the page to the copy object.
2231 *
2232 * Allocate a page for the copy
2233 */
2234 copy_m = vm_page_alloc(copy_object, copy_offset);
2235
2236 if (copy_m == VM_PAGE_NULL) {
2237 RELEASE_PAGE(m);
2238
2239 vm_object_lock_assert_exclusive(copy_object);
2240 copy_object->ref_count--;
2241 assert(copy_object->ref_count > 0);
2242
2243 vm_object_unlock(copy_object);
2244 vm_fault_cleanup(object, first_m);
2245 thread_interrupt_level(interruptible_state);
2246
2247 return VM_FAULT_MEMORY_SHORTAGE;
2248 }
2249 /*
2250 * Must copy page into copy-object.
2251 */
2252 vm_page_copy(m, copy_m);
2253
2254 /*
2255 * If the old page was in use by any users
2256 * of the copy-object, it must be removed
2257 * from all pmaps. (We can't know which
2258 * pmaps use it.)
2259 */
2260 if (m->vmp_pmapped) {
2261 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
2262 }
2263
2264 if (m->vmp_clustered) {
2265 VM_PAGE_COUNT_AS_PAGEIN(m);
2266 VM_PAGE_CONSUME_CLUSTERED(m);
2267 }
2268 /*
2269 * If there's a pager, then immediately
2270 * page out this page, using the "initialize"
2271 * option. Else, we use the copy.
2272 */
2273 if ((!copy_object->pager_ready)
2274 || VM_COMPRESSOR_PAGER_STATE_GET(copy_object, copy_offset) == VM_EXTERNAL_STATE_ABSENT
2275 ) {
2276 vm_page_lockspin_queues();
2277 assert(!m->vmp_cleaning);
2278 vm_page_activate(copy_m);
2279 vm_page_unlock_queues();
2280
2281 SET_PAGE_DIRTY(copy_m, TRUE);
2282 PAGE_WAKEUP_DONE(copy_m);
2283 } else {
2284 assert(copy_m->vmp_busy == TRUE);
2285 assert(!m->vmp_cleaning);
2286
2287 /*
2288 * dirty is protected by the object lock
2289 */
2290 SET_PAGE_DIRTY(copy_m, TRUE);
2291
2292 /*
2293 * The page is already ready for pageout:
2294 * not on pageout queues and busy.
2295 * Unlock everything except the
2296 * copy_object itself.
2297 */
2298 vm_object_unlock(object);
2299
2300 /*
2301 * Write the page to the copy-object,
2302 * flushing it from the kernel.
2303 */
2304 vm_pageout_initialize_page(copy_m);
2305
2306 /*
2307 * Since the pageout may have
2308 * temporarily dropped the
2309 * copy_object's lock, we
2310 * check whether we'll have
2311 * to deallocate the hard way.
2312 */
2313 if ((copy_object->shadow != object) || (copy_object->ref_count == 1)) {
2314 vm_object_unlock(copy_object);
2315 vm_object_deallocate(copy_object);
2316 vm_object_lock(object);
2317
2318 continue;
2319 }
2320 /*
2321 * Pick back up the old object's
2322 * lock. [It is safe to do so,
2323 * since it must be deeper in the
2324 * object tree.]
2325 */
2326 vm_object_lock(object);
2327 }
2328
2329 /*
2330 * Because we're pushing a page upward
2331 * in the object tree, we must restart
2332 * any faults that are waiting here.
2333 * [Note that this is an expansion of
2334 * PAGE_WAKEUP that uses the THREAD_RESTART
2335 * wait result]. Can't turn off the page's
2336 * busy bit because we're not done with it.
2337 */
2338 if (m->vmp_wanted) {
2339 m->vmp_wanted = FALSE;
2340 thread_wakeup_with_result((event_t) m, THREAD_RESTART);
2341 }
2342 }
2343 /*
2344 * The reference count on copy_object must be
2345 * at least 2: one for our extra reference,
2346 * and at least one from the outside world
2347 * (we checked that when we last locked
2348 * copy_object).
2349 */
2350 vm_object_lock_assert_exclusive(copy_object);
2351 copy_object->ref_count--;
2352 assert(copy_object->ref_count > 0);
2353
2354 vm_object_unlock(copy_object);
2355
2356 break;
2357 }
2358
2359 done:
2360 *result_page = m;
2361 *top_page = first_m;
2362
2363 if (m != VM_PAGE_NULL) {
2364 assert(VM_PAGE_OBJECT(m) == object);
2365
2366 retval = VM_FAULT_SUCCESS;
2367
2368 if (my_fault == DBG_PAGEIN_FAULT) {
2369 VM_PAGE_COUNT_AS_PAGEIN(m);
2370
2371 if (object->internal) {
2372 my_fault = DBG_PAGEIND_FAULT;
2373 } else {
2374 my_fault = DBG_PAGEINV_FAULT;
2375 }
2376
2377 /*
2378 * evaluate access pattern and update state
2379 * vm_fault_deactivate_behind depends on the
2380 * state being up to date
2381 */
2382 vm_fault_is_sequential(object, offset, fault_info->behavior);
2383 vm_fault_deactivate_behind(object, offset, fault_info->behavior);
2384 } else if (type_of_fault == NULL && my_fault == DBG_CACHE_HIT_FAULT) {
2385 /*
2386 * we weren't called from vm_fault, so handle the
2387 * accounting here for hits in the cache
2388 */
2389 if (m->vmp_clustered) {
2390 VM_PAGE_COUNT_AS_PAGEIN(m);
2391 VM_PAGE_CONSUME_CLUSTERED(m);
2392 }
2393 vm_fault_is_sequential(object, offset, fault_info->behavior);
2394 vm_fault_deactivate_behind(object, offset, fault_info->behavior);
2395 } else if (my_fault == DBG_COMPRESSOR_FAULT || my_fault == DBG_COMPRESSOR_SWAPIN_FAULT) {
2396 VM_STAT_DECOMPRESSIONS();
2397 }
2398 if (type_of_fault) {
2399 *type_of_fault = my_fault;
2400 }
2401 } else {
2402 retval = VM_FAULT_SUCCESS_NO_VM_PAGE;
2403 assert(first_m == VM_PAGE_NULL);
2404 assert(object == first_object);
2405 }
2406
2407 thread_interrupt_level(interruptible_state);
2408
2409 #if TRACEFAULTPAGE
2410 dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */
2411 #endif
2412 return retval;
2413
2414 backoff:
2415 thread_interrupt_level(interruptible_state);
2416
2417 if (wait_result == THREAD_INTERRUPTED) {
2418 return VM_FAULT_INTERRUPTED;
2419 }
2420 return VM_FAULT_RETRY;
2421
2422 #undef RELEASE_PAGE
2423 }
2424
2425
2426 extern int panic_on_cs_killed;
2427 extern int proc_selfpid(void);
2428 extern char *proc_name_address(void *p);
2429 unsigned long cs_enter_tainted_rejected = 0;
2430 unsigned long cs_enter_tainted_accepted = 0;
2431
2432 /*
2433 * CODE SIGNING:
2434 * When soft faulting a page, we have to validate the page if:
2435 * 1. the page is being mapped in user space
2436 * 2. the page hasn't already been found to be "tainted"
2437 * 3. the page belongs to a code-signed object
2438 * 4. the page has not been validated yet or has been mapped for write.
2439 */
2440 static bool
2441 vm_fault_cs_need_validation(
2442 pmap_t pmap,
2443 vm_page_t page,
2444 vm_object_t page_obj,
2445 vm_map_size_t fault_page_size,
2446 vm_map_offset_t fault_phys_offset)
2447 {
2448 if (pmap == kernel_pmap) {
2449 /* 1 - not user space */
2450 return false;
2451 }
2452 if (!page_obj->code_signed) {
2453 /* 3 - page does not belong to a code-signed object */
2454 return false;
2455 }
2456 if (fault_page_size == PAGE_SIZE) {
2457 /* looking at the whole page */
2458 assertf(fault_phys_offset == 0,
2459 "fault_page_size 0x%llx fault_phys_offset 0x%llx\n",
2460 (uint64_t)fault_page_size,
2461 (uint64_t)fault_phys_offset);
2462 if (page->vmp_cs_tainted == VMP_CS_ALL_TRUE) {
2463 /* 2 - page is all tainted */
2464 return false;
2465 }
2466 if (page->vmp_cs_validated == VMP_CS_ALL_TRUE &&
2467 !page->vmp_wpmapped) {
2468 /* 4 - already fully validated and never mapped writable */
2469 return false;
2470 }
2471 } else {
2472 /* looking at a specific sub-page */
2473 if (VMP_CS_TAINTED(page, fault_page_size, fault_phys_offset)) {
2474 /* 2 - sub-page was already marked as tainted */
2475 return false;
2476 }
2477 if (VMP_CS_VALIDATED(page, fault_page_size, fault_phys_offset) &&
2478 !page->vmp_wpmapped) {
2479 /* 4 - already validated and never mapped writable */
2480 return false;
2481 }
2482 }
2483 /* page needs to be validated */
2484 return true;
2485 }
2486
2487
2488 static bool
2489 vm_fault_cs_page_immutable(
2490 vm_page_t m,
2491 vm_map_size_t fault_page_size,
2492 vm_map_offset_t fault_phys_offset,
2493 vm_prot_t prot __unused)
2494 {
2495 if (VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset)
2496 /*&& ((prot) & VM_PROT_EXECUTE)*/) {
2497 return true;
2498 }
2499 return false;
2500 }
2501
2502 static bool
2503 vm_fault_cs_page_nx(
2504 vm_page_t m,
2505 vm_map_size_t fault_page_size,
2506 vm_map_offset_t fault_phys_offset)
2507 {
2508 return VMP_CS_NX(m, fault_page_size, fault_phys_offset);
2509 }
2510
2511 /*
2512 * Check if the page being entered into the pmap violates code signing.
2513 */
2514 static kern_return_t
2515 vm_fault_cs_check_violation(
2516 bool cs_bypass,
2517 vm_object_t object,
2518 vm_page_t m,
2519 pmap_t pmap,
2520 vm_prot_t prot,
2521 vm_prot_t caller_prot,
2522 vm_map_size_t fault_page_size,
2523 vm_map_offset_t fault_phys_offset,
2524 vm_object_fault_info_t fault_info,
2525 bool map_is_switched,
2526 bool map_is_switch_protected,
2527 bool *cs_violation)
2528 {
2529 #if !PMAP_CS
2530 #pragma unused(caller_prot)
2531 #pragma unused(fault_info)
2532 #endif /* !PMAP_CS */
2533 int cs_enforcement_enabled;
2534 if (!cs_bypass &&
2535 vm_fault_cs_need_validation(pmap, m, object,
2536 fault_page_size, fault_phys_offset)) {
2537 vm_object_lock_assert_exclusive(object);
2538
2539 if (VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset)) {
2540 vm_cs_revalidates++;
2541 }
2542
2543 /* VM map is locked, so 1 ref will remain on VM object -
2544 * so no harm if vm_page_validate_cs drops the object lock */
2545
2546 vm_page_validate_cs(m, fault_page_size, fault_phys_offset);
2547 }
2548
2549 /* If the map is switched, and is switch-protected, we must protect
2550 * some pages from being write-faulted: immutable pages because by
2551 * definition they may not be written, and executable pages because that
2552 * would provide a way to inject unsigned code.
2553 * If the page is immutable, we can simply return. However, we can't
2554 * immediately determine whether a page is executable anywhere. But,
2555 * we can disconnect it everywhere and remove the executable protection
2556 * from the current map. We do that below right before we do the
2557 * PMAP_ENTER.
2558 */
2559 if (pmap == kernel_pmap) {
2560 /* kernel fault: cs_enforcement does not apply */
2561 cs_enforcement_enabled = 0;
2562 } else {
2563 cs_enforcement_enabled = pmap_get_vm_map_cs_enforced(pmap);
2564 }
2565
2566 if (cs_enforcement_enabled && map_is_switched &&
2567 map_is_switch_protected &&
2568 vm_fault_cs_page_immutable(m, fault_page_size, fault_phys_offset, prot) &&
2569 (prot & VM_PROT_WRITE)) {
2570 return KERN_CODESIGN_ERROR;
2571 }
2572
2573 if (cs_enforcement_enabled &&
2574 vm_fault_cs_page_nx(m, fault_page_size, fault_phys_offset) &&
2575 (prot & VM_PROT_EXECUTE)) {
2576 if (cs_debug) {
2577 printf("page marked to be NX, not letting it be mapped EXEC\n");
2578 }
2579 return KERN_CODESIGN_ERROR;
2580 }
2581
2582 /* A page could be tainted, or pose a risk of being tainted later.
2583 * Check whether the receiving process wants it, and make it feel
2584 * the consequences (that hapens in cs_invalid_page()).
2585 * For CS Enforcement, two other conditions will
2586 * cause that page to be tainted as well:
2587 * - pmapping an unsigned page executable - this means unsigned code;
2588 * - writeable mapping of a validated page - the content of that page
2589 * can be changed without the kernel noticing, therefore unsigned
2590 * code can be created
2591 */
2592 if (cs_bypass) {
2593 /* code-signing is bypassed */
2594 *cs_violation = FALSE;
2595 } else if (VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset)) {
2596 /* tainted page */
2597 *cs_violation = TRUE;
2598 } else if (!cs_enforcement_enabled) {
2599 /* no further code-signing enforcement */
2600 *cs_violation = FALSE;
2601 } else if (vm_fault_cs_page_immutable(m, fault_page_size, fault_phys_offset, prot) &&
2602 ((prot & VM_PROT_WRITE) ||
2603 m->vmp_wpmapped)) {
2604 /*
2605 * The page should be immutable, but is in danger of being
2606 * modified.
2607 * This is the case where we want policy from the code
2608 * directory - is the page immutable or not? For now we have
2609 * to assume that code pages will be immutable, data pages not.
2610 * We'll assume a page is a code page if it has a code directory
2611 * and we fault for execution.
2612 * That is good enough since if we faulted the code page for
2613 * writing in another map before, it is wpmapped; if we fault
2614 * it for writing in this map later it will also be faulted for
2615 * executing at the same time; and if we fault for writing in
2616 * another map later, we will disconnect it from this pmap so
2617 * we'll notice the change.
2618 */
2619 *cs_violation = TRUE;
2620 } else if (!VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset) &&
2621 (prot & VM_PROT_EXECUTE)
2622 ) {
2623 *cs_violation = TRUE;
2624 } else {
2625 *cs_violation = FALSE;
2626 }
2627 return KERN_SUCCESS;
2628 }
2629
2630 /*
2631 * Handles a code signing violation by either rejecting the page or forcing a disconnect.
2632 * @param must_disconnect This value will be set to true if the caller must disconnect
2633 * this page.
2634 * @return If this function does not return KERN_SUCCESS, the caller must abort the page fault.
2635 */
2636 static kern_return_t
2637 vm_fault_cs_handle_violation(
2638 vm_object_t object,
2639 vm_page_t m,
2640 pmap_t pmap,
2641 vm_prot_t prot,
2642 vm_map_offset_t vaddr,
2643 vm_map_size_t fault_page_size,
2644 vm_map_offset_t fault_phys_offset,
2645 bool map_is_switched,
2646 bool map_is_switch_protected,
2647 bool *must_disconnect)
2648 {
2649 #if !MACH_ASSERT
2650 #pragma unused(pmap)
2651 #pragma unused(map_is_switch_protected)
2652 #endif /* !MACH_ASSERT */
2653 /*
2654 * We will have a tainted page. Have to handle the special case
2655 * of a switched map now. If the map is not switched, standard
2656 * procedure applies - call cs_invalid_page().
2657 * If the map is switched, the real owner is invalid already.
2658 * There is no point in invalidating the switching process since
2659 * it will not be executing from the map. So we don't call
2660 * cs_invalid_page() in that case.
2661 */
2662 boolean_t reject_page, cs_killed;
2663 kern_return_t kr;
2664 if (map_is_switched) {
2665 assert(pmap == vm_map_pmap(current_thread()->map));
2666 assert(!(prot & VM_PROT_WRITE) || (map_is_switch_protected == FALSE));
2667 reject_page = FALSE;
2668 } else {
2669 if (cs_debug > 5) {
2670 printf("vm_fault: signed: %s validate: %s tainted: %s wpmapped: %s prot: 0x%x\n",
2671 object->code_signed ? "yes" : "no",
2672 VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset) ? "yes" : "no",
2673 VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset) ? "yes" : "no",
2674 m->vmp_wpmapped ? "yes" : "no",
2675 (int)prot);
2676 }
2677 reject_page = cs_invalid_page((addr64_t) vaddr, &cs_killed);
2678 }
2679
2680 if (reject_page) {
2681 /* reject the invalid page: abort the page fault */
2682 int pid;
2683 const char *procname;
2684 task_t task;
2685 vm_object_t file_object, shadow;
2686 vm_object_offset_t file_offset;
2687 char *pathname, *filename;
2688 vm_size_t pathname_len, filename_len;
2689 boolean_t truncated_path;
2690 #define __PATH_MAX 1024
2691 struct timespec mtime, cs_mtime;
2692 int shadow_depth;
2693 os_reason_t codesigning_exit_reason = OS_REASON_NULL;
2694
2695 kr = KERN_CODESIGN_ERROR;
2696 cs_enter_tainted_rejected++;
2697
2698 /* get process name and pid */
2699 procname = "?";
2700 task = current_task();
2701 pid = proc_selfpid();
2702 if (task->bsd_info != NULL) {
2703 procname = proc_name_address(task->bsd_info);
2704 }
2705
2706 /* get file's VM object */
2707 file_object = object;
2708 file_offset = m->vmp_offset;
2709 for (shadow = file_object->shadow,
2710 shadow_depth = 0;
2711 shadow != VM_OBJECT_NULL;
2712 shadow = file_object->shadow,
2713 shadow_depth++) {
2714 vm_object_lock_shared(shadow);
2715 if (file_object != object) {
2716 vm_object_unlock(file_object);
2717 }
2718 file_offset += file_object->vo_shadow_offset;
2719 file_object = shadow;
2720 }
2721
2722 mtime.tv_sec = 0;
2723 mtime.tv_nsec = 0;
2724 cs_mtime.tv_sec = 0;
2725 cs_mtime.tv_nsec = 0;
2726
2727 /* get file's pathname and/or filename */
2728 pathname = NULL;
2729 filename = NULL;
2730 pathname_len = 0;
2731 filename_len = 0;
2732 truncated_path = FALSE;
2733 /* no pager -> no file -> no pathname, use "<nil>" in that case */
2734 if (file_object->pager != NULL) {
2735 pathname = kheap_alloc(KHEAP_TEMP, __PATH_MAX * 2, Z_WAITOK);
2736 if (pathname) {
2737 pathname[0] = '\0';
2738 pathname_len = __PATH_MAX;
2739 filename = pathname + pathname_len;
2740 filename_len = __PATH_MAX;
2741
2742 if (vnode_pager_get_object_name(file_object->pager,
2743 pathname,
2744 pathname_len,
2745 filename,
2746 filename_len,
2747 &truncated_path) == KERN_SUCCESS) {
2748 /* safety first... */
2749 pathname[__PATH_MAX - 1] = '\0';
2750 filename[__PATH_MAX - 1] = '\0';
2751
2752 vnode_pager_get_object_mtime(file_object->pager,
2753 &mtime,
2754 &cs_mtime);
2755 } else {
2756 kheap_free(KHEAP_TEMP, pathname, __PATH_MAX * 2);
2757 pathname = NULL;
2758 filename = NULL;
2759 pathname_len = 0;
2760 filename_len = 0;
2761 truncated_path = FALSE;
2762 }
2763 }
2764 }
2765 printf("CODE SIGNING: process %d[%s]: "
2766 "rejecting invalid page at address 0x%llx "
2767 "from offset 0x%llx in file \"%s%s%s\" "
2768 "(cs_mtime:%lu.%ld %s mtime:%lu.%ld) "
2769 "(signed:%d validated:%d tainted:%d nx:%d "
2770 "wpmapped:%d dirty:%d depth:%d)\n",
2771 pid, procname, (addr64_t) vaddr,
2772 file_offset,
2773 (pathname ? pathname : "<nil>"),
2774 (truncated_path ? "/.../" : ""),
2775 (truncated_path ? filename : ""),
2776 cs_mtime.tv_sec, cs_mtime.tv_nsec,
2777 ((cs_mtime.tv_sec == mtime.tv_sec &&
2778 cs_mtime.tv_nsec == mtime.tv_nsec)
2779 ? "=="
2780 : "!="),
2781 mtime.tv_sec, mtime.tv_nsec,
2782 object->code_signed,
2783 VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset),
2784 VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset),
2785 VMP_CS_NX(m, fault_page_size, fault_phys_offset),
2786 m->vmp_wpmapped,
2787 m->vmp_dirty,
2788 shadow_depth);
2789
2790 /*
2791 * We currently only generate an exit reason if cs_invalid_page directly killed a process. If cs_invalid_page
2792 * did not kill the process (more the case on desktop), vm_fault_enter will not satisfy the fault and whether the
2793 * process dies is dependent on whether there is a signal handler registered for SIGSEGV and how that handler
2794 * will deal with the segmentation fault.
2795 */
2796 if (cs_killed) {
2797 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
2798 pid, OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_INVALID_PAGE, 0, 0);
2799
2800 codesigning_exit_reason = os_reason_create(OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_INVALID_PAGE);
2801 if (codesigning_exit_reason == NULL) {
2802 printf("vm_fault_enter: failed to allocate codesigning exit reason\n");
2803 } else {
2804 mach_vm_address_t data_addr = 0;
2805 struct codesigning_exit_reason_info *ceri = NULL;
2806 uint32_t reason_buffer_size_estimate = kcdata_estimate_required_buffer_size(1, sizeof(*ceri));
2807
2808 if (os_reason_alloc_buffer_noblock(codesigning_exit_reason, reason_buffer_size_estimate)) {
2809 printf("vm_fault_enter: failed to allocate buffer for codesigning exit reason\n");
2810 } else {
2811 if (KERN_SUCCESS == kcdata_get_memory_addr(&codesigning_exit_reason->osr_kcd_descriptor,
2812 EXIT_REASON_CODESIGNING_INFO, sizeof(*ceri), &data_addr)) {
2813 ceri = (struct codesigning_exit_reason_info *)data_addr;
2814 static_assert(__PATH_MAX == sizeof(ceri->ceri_pathname));
2815
2816 ceri->ceri_virt_addr = vaddr;
2817 ceri->ceri_file_offset = file_offset;
2818 if (pathname) {
2819 strncpy((char *)&ceri->ceri_pathname, pathname, sizeof(ceri->ceri_pathname));
2820 } else {
2821 ceri->ceri_pathname[0] = '\0';
2822 }
2823 if (filename) {
2824 strncpy((char *)&ceri->ceri_filename, filename, sizeof(ceri->ceri_filename));
2825 } else {
2826 ceri->ceri_filename[0] = '\0';
2827 }
2828 ceri->ceri_path_truncated = (truncated_path ? 1 : 0);
2829 ceri->ceri_codesig_modtime_secs = cs_mtime.tv_sec;
2830 ceri->ceri_codesig_modtime_nsecs = cs_mtime.tv_nsec;
2831 ceri->ceri_page_modtime_secs = mtime.tv_sec;
2832 ceri->ceri_page_modtime_nsecs = mtime.tv_nsec;
2833 ceri->ceri_object_codesigned = (object->code_signed);
2834 ceri->ceri_page_codesig_validated = VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset);
2835 ceri->ceri_page_codesig_tainted = VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset);
2836 ceri->ceri_page_codesig_nx = VMP_CS_NX(m, fault_page_size, fault_phys_offset);
2837 ceri->ceri_page_wpmapped = (m->vmp_wpmapped);
2838 ceri->ceri_page_slid = 0;
2839 ceri->ceri_page_dirty = (m->vmp_dirty);
2840 ceri->ceri_page_shadow_depth = shadow_depth;
2841 } else {
2842 #if DEBUG || DEVELOPMENT
2843 panic("vm_fault_enter: failed to allocate kcdata for codesigning exit reason");
2844 #else
2845 printf("vm_fault_enter: failed to allocate kcdata for codesigning exit reason\n");
2846 #endif /* DEBUG || DEVELOPMENT */
2847 /* Free the buffer */
2848 os_reason_alloc_buffer_noblock(codesigning_exit_reason, 0);
2849 }
2850 }
2851 }
2852
2853 set_thread_exit_reason(current_thread(), codesigning_exit_reason, FALSE);
2854 }
2855 if (panic_on_cs_killed &&
2856 object->object_is_shared_cache) {
2857 char *tainted_contents;
2858 vm_map_offset_t src_vaddr;
2859 src_vaddr = (vm_map_offset_t) phystokv((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m) << PAGE_SHIFT);
2860 tainted_contents = kalloc(PAGE_SIZE);
2861 bcopy((const char *)src_vaddr, tainted_contents, PAGE_SIZE);
2862 printf("CODE SIGNING: tainted page %p phys 0x%x phystokv 0x%llx copied to %p\n", m, VM_PAGE_GET_PHYS_PAGE(m), (uint64_t)src_vaddr, tainted_contents);
2863 panic("CODE SIGNING: process %d[%s]: "
2864 "rejecting invalid page (phys#0x%x) at address 0x%llx "
2865 "from offset 0x%llx in file \"%s%s%s\" "
2866 "(cs_mtime:%lu.%ld %s mtime:%lu.%ld) "
2867 "(signed:%d validated:%d tainted:%d nx:%d"
2868 "wpmapped:%d dirty:%d depth:%d)\n",
2869 pid, procname,
2870 VM_PAGE_GET_PHYS_PAGE(m),
2871 (addr64_t) vaddr,
2872 file_offset,
2873 (pathname ? pathname : "<nil>"),
2874 (truncated_path ? "/.../" : ""),
2875 (truncated_path ? filename : ""),
2876 cs_mtime.tv_sec, cs_mtime.tv_nsec,
2877 ((cs_mtime.tv_sec == mtime.tv_sec &&
2878 cs_mtime.tv_nsec == mtime.tv_nsec)
2879 ? "=="
2880 : "!="),
2881 mtime.tv_sec, mtime.tv_nsec,
2882 object->code_signed,
2883 VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset),
2884 VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset),
2885 VMP_CS_NX(m, fault_page_size, fault_phys_offset),
2886 m->vmp_wpmapped,
2887 m->vmp_dirty,
2888 shadow_depth);
2889 }
2890
2891 if (file_object != object) {
2892 vm_object_unlock(file_object);
2893 }
2894 if (pathname_len != 0) {
2895 kheap_free(KHEAP_TEMP, pathname, __PATH_MAX * 2);
2896 pathname = NULL;
2897 filename = NULL;
2898 }
2899 } else {
2900 /* proceed with the invalid page */
2901 kr = KERN_SUCCESS;
2902 if (!VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset) &&
2903 !object->code_signed) {
2904 /*
2905 * This page has not been (fully) validated but
2906 * does not belong to a code-signed object
2907 * so it should not be forcefully considered
2908 * as tainted.
2909 * We're just concerned about it here because
2910 * we've been asked to "execute" it but that
2911 * does not mean that it should cause other
2912 * accesses to fail.
2913 * This happens when a debugger sets a
2914 * breakpoint and we then execute code in
2915 * that page. Marking the page as "tainted"
2916 * would cause any inspection tool ("leaks",
2917 * "vmmap", "CrashReporter", ...) to get killed
2918 * due to code-signing violation on that page,
2919 * even though they're just reading it and not
2920 * executing from it.
2921 */
2922 } else {
2923 /*
2924 * Page might have been tainted before or not;
2925 * now it definitively is. If the page wasn't
2926 * tainted, we must disconnect it from all
2927 * pmaps later, to force existing mappings
2928 * through that code path for re-consideration
2929 * of the validity of that page.
2930 */
2931 if (!VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset)) {
2932 *must_disconnect = TRUE;
2933 VMP_CS_SET_TAINTED(m, fault_page_size, fault_phys_offset, TRUE);
2934 }
2935 }
2936 cs_enter_tainted_accepted++;
2937 }
2938 if (kr != KERN_SUCCESS) {
2939 if (cs_debug) {
2940 printf("CODESIGNING: vm_fault_enter(0x%llx): "
2941 "*** INVALID PAGE ***\n",
2942 (long long)vaddr);
2943 }
2944 #if !SECURE_KERNEL
2945 if (cs_enforcement_panic) {
2946 panic("CODESIGNING: panicking on invalid page\n");
2947 }
2948 #endif
2949 }
2950 return kr;
2951 }
2952
2953 /*
2954 * Check that the code signature is valid for the given page being inserted into
2955 * the pmap.
2956 *
2957 * @param must_disconnect This value will be set to true if the caller must disconnect
2958 * this page.
2959 * @return If this function does not return KERN_SUCCESS, the caller must abort the page fault.
2960 */
2961 static kern_return_t
2962 vm_fault_validate_cs(
2963 bool cs_bypass,
2964 vm_object_t object,
2965 vm_page_t m,
2966 pmap_t pmap,
2967 vm_map_offset_t vaddr,
2968 vm_prot_t prot,
2969 vm_prot_t caller_prot,
2970 vm_map_size_t fault_page_size,
2971 vm_map_offset_t fault_phys_offset,
2972 vm_object_fault_info_t fault_info,
2973 bool *must_disconnect)
2974 {
2975 bool map_is_switched, map_is_switch_protected, cs_violation;
2976 kern_return_t kr;
2977 /* Validate code signature if necessary. */
2978 map_is_switched = ((pmap != vm_map_pmap(current_task()->map)) &&
2979 (pmap == vm_map_pmap(current_thread()->map)));
2980 map_is_switch_protected = current_thread()->map->switch_protect;
2981 kr = vm_fault_cs_check_violation(cs_bypass, object, m, pmap,
2982 prot, caller_prot, fault_page_size, fault_phys_offset, fault_info,
2983 map_is_switched, map_is_switch_protected, &cs_violation);
2984 if (kr != KERN_SUCCESS) {
2985 return kr;
2986 }
2987 if (cs_violation) {
2988 kr = vm_fault_cs_handle_violation(object, m, pmap, prot, vaddr,
2989 fault_page_size, fault_phys_offset,
2990 map_is_switched, map_is_switch_protected, must_disconnect);
2991 }
2992 return kr;
2993 }
2994
2995 /*
2996 * Enqueue the page on the appropriate paging queue.
2997 */
2998 static void
2999 vm_fault_enqueue_page(
3000 vm_object_t object,
3001 vm_page_t m,
3002 bool wired,
3003 bool change_wiring,
3004 vm_tag_t wire_tag,
3005 bool no_cache,
3006 int *type_of_fault,
3007 kern_return_t kr)
3008 {
3009 assert((m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) || object != compressor_object);
3010 boolean_t page_queues_locked = FALSE;
3011 boolean_t previously_pmapped = m->vmp_pmapped;
3012 #define __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED() \
3013 MACRO_BEGIN \
3014 if (! page_queues_locked) { \
3015 page_queues_locked = TRUE; \
3016 vm_page_lockspin_queues(); \
3017 } \
3018 MACRO_END
3019 #define __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED() \
3020 MACRO_BEGIN \
3021 if (page_queues_locked) { \
3022 page_queues_locked = FALSE; \
3023 vm_page_unlock_queues(); \
3024 } \
3025 MACRO_END
3026
3027 #if CONFIG_BACKGROUND_QUEUE
3028 vm_page_update_background_state(m);
3029 #endif
3030 if (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) {
3031 /*
3032 * Compressor pages are neither wired
3033 * nor pageable and should never change.
3034 */
3035 assert(object == compressor_object);
3036 } else if (change_wiring) {
3037 __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED();
3038
3039 if (wired) {
3040 if (kr == KERN_SUCCESS) {
3041 vm_page_wire(m, wire_tag, TRUE);
3042 }
3043 } else {
3044 vm_page_unwire(m, TRUE);
3045 }
3046 /* we keep the page queues lock, if we need it later */
3047 } else {
3048 if (object->internal == TRUE) {
3049 /*
3050 * don't allow anonymous pages on
3051 * the speculative queues
3052 */
3053 no_cache = FALSE;
3054 }
3055 if (kr != KERN_SUCCESS) {
3056 __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED();
3057 vm_page_deactivate(m);
3058 /* we keep the page queues lock, if we need it later */
3059 } else if (((m->vmp_q_state == VM_PAGE_NOT_ON_Q) ||
3060 (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) ||
3061 (m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) ||
3062 ((m->vmp_q_state != VM_PAGE_ON_THROTTLED_Q) && no_cache)) &&
3063 !VM_PAGE_WIRED(m)) {
3064 if (vm_page_local_q &&
3065 (*type_of_fault == DBG_COW_FAULT ||
3066 *type_of_fault == DBG_ZERO_FILL_FAULT)) {
3067 struct vpl *lq;
3068 uint32_t lid;
3069
3070 assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q);
3071
3072 __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED();
3073 vm_object_lock_assert_exclusive(object);
3074
3075 /*
3076 * we got a local queue to stuff this
3077 * new page on...
3078 * its safe to manipulate local and
3079 * local_id at this point since we're
3080 * behind an exclusive object lock and
3081 * the page is not on any global queue.
3082 *
3083 * we'll use the current cpu number to
3084 * select the queue note that we don't
3085 * need to disable preemption... we're
3086 * going to be behind the local queue's
3087 * lock to do the real work
3088 */
3089 lid = cpu_number();
3090
3091 lq = zpercpu_get_cpu(vm_page_local_q, lid);
3092
3093 VPL_LOCK(&lq->vpl_lock);
3094
3095 vm_page_check_pageable_safe(m);
3096 vm_page_queue_enter(&lq->vpl_queue, m, vmp_pageq);
3097 m->vmp_q_state = VM_PAGE_ON_ACTIVE_LOCAL_Q;
3098 m->vmp_local_id = lid;
3099 lq->vpl_count++;
3100
3101 if (object->internal) {
3102 lq->vpl_internal_count++;
3103 } else {
3104 lq->vpl_external_count++;
3105 }
3106
3107 VPL_UNLOCK(&lq->vpl_lock);
3108
3109 if (lq->vpl_count > vm_page_local_q_soft_limit) {
3110 /*
3111 * we're beyond the soft limit
3112 * for the local queue
3113 * vm_page_reactivate_local will
3114 * 'try' to take the global page
3115 * queue lock... if it can't
3116 * that's ok... we'll let the
3117 * queue continue to grow up
3118 * to the hard limit... at that
3119 * point we'll wait for the
3120 * lock... once we've got the
3121 * lock, we'll transfer all of
3122 * the pages from the local
3123 * queue to the global active
3124 * queue
3125 */
3126 vm_page_reactivate_local(lid, FALSE, FALSE);
3127 }
3128 } else {
3129 __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED();
3130
3131 /*
3132 * test again now that we hold the
3133 * page queue lock
3134 */
3135 if (!VM_PAGE_WIRED(m)) {
3136 if (m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) {
3137 vm_page_queues_remove(m, FALSE);
3138
3139 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated, 1);
3140 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_fault_reactivated, 1);
3141 }
3142
3143 if (!VM_PAGE_ACTIVE_OR_INACTIVE(m) ||
3144 no_cache) {
3145 /*
3146 * If this is a no_cache mapping
3147 * and the page has never been
3148 * mapped before or was
3149 * previously a no_cache page,
3150 * then we want to leave pages
3151 * in the speculative state so
3152 * that they can be readily
3153 * recycled if free memory runs
3154 * low. Otherwise the page is
3155 * activated as normal.
3156 */
3157
3158 if (no_cache &&
3159 (!previously_pmapped ||
3160 m->vmp_no_cache)) {
3161 m->vmp_no_cache = TRUE;
3162
3163 if (m->vmp_q_state != VM_PAGE_ON_SPECULATIVE_Q) {
3164 vm_page_speculate(m, FALSE);
3165 }
3166 } else if (!VM_PAGE_ACTIVE_OR_INACTIVE(m)) {
3167 vm_page_activate(m);
3168 }
3169 }
3170 }
3171 /* we keep the page queues lock, if we need it later */
3172 }
3173 }
3174 }
3175 /* we're done with the page queues lock, if we ever took it */
3176 __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED();
3177 }
3178
3179 /*
3180 * Sets the pmmpped, xpmapped, and wpmapped bits on the vm_page_t and updates accounting.
3181 * @return true if the page needs to be sync'ed via pmap_sync-page_data_physo
3182 * before being inserted into the pmap.
3183 */
3184 static bool
3185 vm_fault_enter_set_mapped(
3186 vm_object_t object,
3187 vm_page_t m,
3188 vm_prot_t prot,
3189 vm_prot_t fault_type)
3190 {
3191 bool page_needs_sync = false;
3192 /*
3193 * NOTE: we may only hold the vm_object lock SHARED
3194 * at this point, so we need the phys_page lock to
3195 * properly serialize updating the pmapped and
3196 * xpmapped bits
3197 */
3198 if ((prot & VM_PROT_EXECUTE) && !m->vmp_xpmapped) {
3199 ppnum_t phys_page = VM_PAGE_GET_PHYS_PAGE(m);
3200
3201 pmap_lock_phys_page(phys_page);
3202 m->vmp_pmapped = TRUE;
3203
3204 if (!m->vmp_xpmapped) {
3205 m->vmp_xpmapped = TRUE;
3206
3207 pmap_unlock_phys_page(phys_page);
3208
3209 if (!object->internal) {
3210 OSAddAtomic(1, &vm_page_xpmapped_external_count);
3211 }
3212
3213 #if defined(__arm__) || defined(__arm64__)
3214 page_needs_sync = true;
3215 #else
3216 if (object->internal &&
3217 object->pager != NULL) {
3218 /*
3219 * This page could have been
3220 * uncompressed by the
3221 * compressor pager and its
3222 * contents might be only in
3223 * the data cache.
3224 * Since it's being mapped for
3225 * "execute" for the fist time,
3226 * make sure the icache is in
3227 * sync.
3228 */
3229 assert(VM_CONFIG_COMPRESSOR_IS_PRESENT);
3230 page_needs_sync = true;
3231 }
3232 #endif
3233 } else {
3234 pmap_unlock_phys_page(phys_page);
3235 }
3236 } else {
3237 if (m->vmp_pmapped == FALSE) {
3238 ppnum_t phys_page = VM_PAGE_GET_PHYS_PAGE(m);
3239
3240 pmap_lock_phys_page(phys_page);
3241 m->vmp_pmapped = TRUE;
3242 pmap_unlock_phys_page(phys_page);
3243 }
3244 }
3245
3246 if (fault_type & VM_PROT_WRITE) {
3247 if (m->vmp_wpmapped == FALSE) {
3248 vm_object_lock_assert_exclusive(object);
3249 if (!object->internal && object->pager) {
3250 task_update_logical_writes(current_task(), PAGE_SIZE, TASK_WRITE_DEFERRED, vnode_pager_lookup_vnode(object->pager));
3251 }
3252 m->vmp_wpmapped = TRUE;
3253 }
3254 }
3255 return page_needs_sync;
3256 }
3257
3258 /*
3259 * Try to enter the given page into the pmap.
3260 * Will retry without execute permission iff PMAP_CS is enabled and we encounter
3261 * a codesigning failure on a non-execute fault.
3262 */
3263 static kern_return_t
3264 vm_fault_attempt_pmap_enter(
3265 pmap_t pmap,
3266 vm_map_offset_t vaddr,
3267 vm_map_size_t fault_page_size,
3268 vm_map_offset_t fault_phys_offset,
3269 vm_page_t m,
3270 vm_prot_t *prot,
3271 vm_prot_t caller_prot,
3272 vm_prot_t fault_type,
3273 bool wired,
3274 int pmap_options)
3275 {
3276 #if !PMAP_CS
3277 #pragma unused(caller_prot)
3278 #endif /* !PMAP_CS */
3279 kern_return_t kr;
3280 if (fault_page_size != PAGE_SIZE) {
3281 DEBUG4K_FAULT("pmap %p va 0x%llx pa 0x%llx (0x%llx+0x%llx) prot 0x%x fault_type 0x%x\n", pmap, (uint64_t)vaddr, (uint64_t)((((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT) + fault_phys_offset), (uint64_t)(((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT), (uint64_t)fault_phys_offset, *prot, fault_type);
3282 assertf((!(fault_phys_offset & FOURK_PAGE_MASK) &&
3283 fault_phys_offset < PAGE_SIZE),
3284 "0x%llx\n", (uint64_t)fault_phys_offset);
3285 } else {
3286 assertf(fault_phys_offset == 0,
3287 "0x%llx\n", (uint64_t)fault_phys_offset);
3288 }
3289
3290 PMAP_ENTER_OPTIONS(pmap, vaddr,
3291 fault_phys_offset,
3292 m, *prot, fault_type, 0,
3293 wired,
3294 pmap_options,
3295 kr);
3296 return kr;
3297 }
3298
3299 /*
3300 * Enter the given page into the pmap.
3301 * The map must be locked shared.
3302 * The vm object must NOT be locked.
3303 *
3304 * @param need_retry if not null, avoid making a (potentially) blocking call into
3305 * the pmap layer. When such a call would be necessary, return true in this boolean instead.
3306 */
3307 static kern_return_t
3308 vm_fault_pmap_enter(
3309 pmap_t pmap,
3310 vm_map_offset_t vaddr,
3311 vm_map_size_t fault_page_size,
3312 vm_map_offset_t fault_phys_offset,
3313 vm_page_t m,
3314 vm_prot_t *prot,
3315 vm_prot_t caller_prot,
3316 vm_prot_t fault_type,
3317 bool wired,
3318 int pmap_options,
3319 boolean_t *need_retry)
3320 {
3321 kern_return_t kr;
3322 if (need_retry != NULL) {
3323 /*
3324 * Although we don't hold a lock on this object, we hold a lock
3325 * on the top object in the chain. To prevent a deadlock, we
3326 * can't allow the pmap layer to block.
3327 */
3328 pmap_options |= PMAP_OPTIONS_NOWAIT;
3329 }
3330 kr = vm_fault_attempt_pmap_enter(pmap, vaddr,
3331 fault_page_size, fault_phys_offset,
3332 m, prot, caller_prot, fault_type, wired, pmap_options);
3333 if (kr == KERN_RESOURCE_SHORTAGE) {
3334 if (need_retry) {
3335 /*
3336 * There's nothing we can do here since we hold the
3337 * lock on the top object in the chain. The caller
3338 * will need to deal with this by dropping that lock and retrying.
3339 */
3340 *need_retry = TRUE;
3341 vm_pmap_enter_retried++;
3342 }
3343 }
3344 return kr;
3345 }
3346
3347 /*
3348 * Enter the given page into the pmap.
3349 * The vm map must be locked shared.
3350 * The vm object must be locked exclusive, unless this is a soft fault.
3351 * For a soft fault, the object must be locked shared or exclusive.
3352 *
3353 * @param need_retry if not null, avoid making a (potentially) blocking call into
3354 * the pmap layer. When such a call would be necessary, return true in this boolean instead.
3355 */
3356 static kern_return_t
3357 vm_fault_pmap_enter_with_object_lock(
3358 vm_object_t object,
3359 pmap_t pmap,
3360 vm_map_offset_t vaddr,
3361 vm_map_size_t fault_page_size,
3362 vm_map_offset_t fault_phys_offset,
3363 vm_page_t m,
3364 vm_prot_t *prot,
3365 vm_prot_t caller_prot,
3366 vm_prot_t fault_type,
3367 bool wired,
3368 int pmap_options,
3369 boolean_t *need_retry)
3370 {
3371 kern_return_t kr;
3372 /*
3373 * Prevent a deadlock by not
3374 * holding the object lock if we need to wait for a page in
3375 * pmap_enter() - <rdar://problem/7138958>
3376 */
3377 kr = vm_fault_attempt_pmap_enter(pmap, vaddr,
3378 fault_page_size, fault_phys_offset,
3379 m, prot, caller_prot, fault_type, wired, pmap_options | PMAP_OPTIONS_NOWAIT);
3380 #if __x86_64__
3381 if (kr == KERN_INVALID_ARGUMENT &&
3382 pmap == PMAP_NULL &&
3383 wired) {
3384 /*
3385 * Wiring a page in a pmap-less VM map:
3386 * VMware's "vmmon" kernel extension does this
3387 * to grab pages.
3388 * Let it proceed even though the PMAP_ENTER() failed.
3389 */
3390 kr = KERN_SUCCESS;
3391 }
3392 #endif /* __x86_64__ */
3393
3394 if (kr == KERN_RESOURCE_SHORTAGE) {
3395 if (need_retry) {
3396 /*
3397 * this will be non-null in the case where we hold the lock
3398 * on the top-object in this chain... we can't just drop
3399 * the lock on the object we're inserting the page into
3400 * and recall the PMAP_ENTER since we can still cause
3401 * a deadlock if one of the critical paths tries to
3402 * acquire the lock on the top-object and we're blocked
3403 * in PMAP_ENTER waiting for memory... our only recourse
3404 * is to deal with it at a higher level where we can
3405 * drop both locks.
3406 */
3407 *need_retry = TRUE;
3408 vm_pmap_enter_retried++;
3409 goto done;
3410 }
3411 /*
3412 * The nonblocking version of pmap_enter did not succeed.
3413 * and we don't need to drop other locks and retry
3414 * at the level above us, so
3415 * use the blocking version instead. Requires marking
3416 * the page busy and unlocking the object
3417 */
3418 boolean_t was_busy = m->vmp_busy;
3419
3420 vm_object_lock_assert_exclusive(object);
3421
3422 m->vmp_busy = TRUE;
3423 vm_object_unlock(object);
3424
3425 PMAP_ENTER_OPTIONS(pmap, vaddr,
3426 fault_phys_offset,
3427 m, *prot, fault_type,
3428 0, wired,
3429 pmap_options, kr);
3430
3431 assert(VM_PAGE_OBJECT(m) == object);
3432
3433 /* Take the object lock again. */
3434 vm_object_lock(object);
3435
3436 /* If the page was busy, someone else will wake it up.
3437 * Otherwise, we have to do it now. */
3438 assert(m->vmp_busy);
3439 if (!was_busy) {
3440 PAGE_WAKEUP_DONE(m);
3441 }
3442 vm_pmap_enter_blocked++;
3443 }
3444
3445 done:
3446 return kr;
3447 }
3448
3449 /*
3450 * Prepare to enter a page into the pmap by checking CS, protection bits,
3451 * and setting mapped bits on the page_t.
3452 * Does not modify the page's paging queue.
3453 *
3454 * page queue lock must NOT be held
3455 * m->vmp_object must be locked
3456 *
3457 * NOTE: m->vmp_object could be locked "shared" only if we are called
3458 * from vm_fault() as part of a soft fault.
3459 */
3460 static kern_return_t
3461 vm_fault_enter_prepare(
3462 vm_page_t m,
3463 pmap_t pmap,
3464 vm_map_offset_t vaddr,
3465 vm_prot_t *prot,
3466 vm_prot_t caller_prot,
3467 vm_map_size_t fault_page_size,
3468 vm_map_offset_t fault_phys_offset,
3469 boolean_t change_wiring,
3470 vm_prot_t fault_type,
3471 vm_object_fault_info_t fault_info,
3472 int *type_of_fault,
3473 bool *page_needs_data_sync)
3474 {
3475 kern_return_t kr;
3476 bool is_tainted = false;
3477 vm_object_t object;
3478 boolean_t cs_bypass = fault_info->cs_bypass;
3479
3480 object = VM_PAGE_OBJECT(m);
3481
3482 vm_object_lock_assert_held(object);
3483
3484 #if KASAN
3485 if (pmap == kernel_pmap) {
3486 kasan_notify_address(vaddr, PAGE_SIZE);
3487 }
3488 #endif
3489
3490 LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED);
3491
3492 if (*type_of_fault == DBG_ZERO_FILL_FAULT) {
3493 vm_object_lock_assert_exclusive(object);
3494 } else if ((fault_type & VM_PROT_WRITE) == 0 &&
3495 !change_wiring &&
3496 (!m->vmp_wpmapped
3497 #if VM_OBJECT_ACCESS_TRACKING
3498 || object->access_tracking
3499 #endif /* VM_OBJECT_ACCESS_TRACKING */
3500 )) {
3501 /*
3502 * This is not a "write" fault, so we
3503 * might not have taken the object lock
3504 * exclusively and we might not be able
3505 * to update the "wpmapped" bit in
3506 * vm_fault_enter().
3507 * Let's just grant read access to
3508 * the page for now and we'll
3509 * soft-fault again if we need write
3510 * access later...
3511 */
3512
3513 /* This had better not be a JIT page. */
3514 if (!pmap_has_prot_policy(pmap, fault_info->pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, *prot)) {
3515 *prot &= ~VM_PROT_WRITE;
3516 } else {
3517 assert(cs_bypass);
3518 }
3519 }
3520 if (m->vmp_pmapped == FALSE) {
3521 if (m->vmp_clustered) {
3522 if (*type_of_fault == DBG_CACHE_HIT_FAULT) {
3523 /*
3524 * found it in the cache, but this
3525 * is the first fault-in of the page (m->vmp_pmapped == FALSE)
3526 * so it must have come in as part of
3527 * a cluster... account 1 pagein against it
3528 */
3529 if (object->internal) {
3530 *type_of_fault = DBG_PAGEIND_FAULT;
3531 } else {
3532 *type_of_fault = DBG_PAGEINV_FAULT;
3533 }
3534
3535 VM_PAGE_COUNT_AS_PAGEIN(m);
3536 }
3537 VM_PAGE_CONSUME_CLUSTERED(m);
3538 }
3539 }
3540
3541 if (*type_of_fault != DBG_COW_FAULT) {
3542 DTRACE_VM2(as_fault, int, 1, (uint64_t *), NULL);
3543
3544 if (pmap == kernel_pmap) {
3545 DTRACE_VM2(kernel_asflt, int, 1, (uint64_t *), NULL);
3546 }
3547 }
3548
3549 kr = vm_fault_validate_cs(cs_bypass, object, m, pmap, vaddr,
3550 *prot, caller_prot, fault_page_size, fault_phys_offset,
3551 fault_info, &is_tainted);
3552 if (kr == KERN_SUCCESS) {
3553 /*
3554 * We either have a good page, or a tainted page that has been accepted by the process.
3555 * In both cases the page will be entered into the pmap.
3556 */
3557 *page_needs_data_sync = vm_fault_enter_set_mapped(object, m, *prot, fault_type);
3558 if ((fault_type & VM_PROT_WRITE) && is_tainted) {
3559 /*
3560 * This page is tainted but we're inserting it anyways.
3561 * Since it's writeable, we need to disconnect it from other pmaps
3562 * now so those processes can take note.
3563 */
3564
3565 /*
3566 * We can only get here
3567 * because of the CSE logic
3568 */
3569 assert(pmap_get_vm_map_cs_enforced(pmap));
3570 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
3571 /*
3572 * If we are faulting for a write, we can clear
3573 * the execute bit - that will ensure the page is
3574 * checked again before being executable, which
3575 * protects against a map switch.
3576 * This only happens the first time the page
3577 * gets tainted, so we won't get stuck here
3578 * to make an already writeable page executable.
3579 */
3580 if (!cs_bypass) {
3581 assert(!pmap_has_prot_policy(pmap, fault_info->pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, *prot));
3582 *prot &= ~VM_PROT_EXECUTE;
3583 }
3584 }
3585 assert(VM_PAGE_OBJECT(m) == object);
3586
3587 #if VM_OBJECT_ACCESS_TRACKING
3588 if (object->access_tracking) {
3589 DTRACE_VM2(access_tracking, vm_map_offset_t, vaddr, int, fault_type);
3590 if (fault_type & VM_PROT_WRITE) {
3591 object->access_tracking_writes++;
3592 vm_object_access_tracking_writes++;
3593 } else {
3594 object->access_tracking_reads++;
3595 vm_object_access_tracking_reads++;
3596 }
3597 }
3598 #endif /* VM_OBJECT_ACCESS_TRACKING */
3599 }
3600
3601 return kr;
3602 }
3603
3604 /*
3605 * page queue lock must NOT be held
3606 * m->vmp_object must be locked
3607 *
3608 * NOTE: m->vmp_object could be locked "shared" only if we are called
3609 * from vm_fault() as part of a soft fault. If so, we must be
3610 * careful not to modify the VM object in any way that is not
3611 * legal under a shared lock...
3612 */
3613 kern_return_t
3614 vm_fault_enter(
3615 vm_page_t m,
3616 pmap_t pmap,
3617 vm_map_offset_t vaddr,
3618 vm_map_size_t fault_page_size,
3619 vm_map_offset_t fault_phys_offset,
3620 vm_prot_t prot,
3621 vm_prot_t caller_prot,
3622 boolean_t wired,
3623 boolean_t change_wiring,
3624 vm_tag_t wire_tag,
3625 vm_object_fault_info_t fault_info,
3626 boolean_t *need_retry,
3627 int *type_of_fault)
3628 {
3629 kern_return_t kr;
3630 vm_object_t object;
3631 bool page_needs_data_sync;
3632 vm_prot_t fault_type;
3633 int pmap_options = fault_info->pmap_options;
3634
3635 if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) {
3636 assert(m->vmp_fictitious);
3637 return KERN_SUCCESS;
3638 }
3639
3640 fault_type = change_wiring ? VM_PROT_NONE : caller_prot;
3641
3642 kr = vm_fault_enter_prepare(m, pmap, vaddr, &prot, caller_prot,
3643 fault_page_size, fault_phys_offset, change_wiring, fault_type,
3644 fault_info, type_of_fault, &page_needs_data_sync);
3645 object = VM_PAGE_OBJECT(m);
3646
3647 vm_fault_enqueue_page(object, m, wired, change_wiring, wire_tag, fault_info->no_cache, type_of_fault, kr);
3648
3649 if (kr == KERN_SUCCESS) {
3650 if (page_needs_data_sync) {
3651 pmap_sync_page_data_phys(VM_PAGE_GET_PHYS_PAGE(m));
3652 }
3653
3654 kr = vm_fault_pmap_enter_with_object_lock(object, pmap, vaddr,
3655 fault_page_size, fault_phys_offset, m,
3656 &prot, caller_prot, fault_type, wired, pmap_options, need_retry);
3657 }
3658
3659 return kr;
3660 }
3661
3662 void
3663 vm_pre_fault(vm_map_offset_t vaddr, vm_prot_t prot)
3664 {
3665 if (pmap_find_phys(current_map()->pmap, vaddr) == 0) {
3666 vm_fault(current_map(), /* map */
3667 vaddr, /* vaddr */
3668 prot, /* fault_type */
3669 FALSE, /* change_wiring */
3670 VM_KERN_MEMORY_NONE, /* tag - not wiring */
3671 THREAD_UNINT, /* interruptible */
3672 NULL, /* caller_pmap */
3673 0 /* caller_pmap_addr */);
3674 }
3675 }
3676
3677
3678 /*
3679 * Routine: vm_fault
3680 * Purpose:
3681 * Handle page faults, including pseudo-faults
3682 * used to change the wiring status of pages.
3683 * Returns:
3684 * Explicit continuations have been removed.
3685 * Implementation:
3686 * vm_fault and vm_fault_page save mucho state
3687 * in the moral equivalent of a closure. The state
3688 * structure is allocated when first entering vm_fault
3689 * and deallocated when leaving vm_fault.
3690 */
3691
3692 extern uint64_t get_current_unique_pid(void);
3693
3694 unsigned long vm_fault_collapse_total = 0;
3695 unsigned long vm_fault_collapse_skipped = 0;
3696
3697
3698 kern_return_t
3699 vm_fault_external(
3700 vm_map_t map,
3701 vm_map_offset_t vaddr,
3702 vm_prot_t fault_type,
3703 boolean_t change_wiring,
3704 int interruptible,
3705 pmap_t caller_pmap,
3706 vm_map_offset_t caller_pmap_addr)
3707 {
3708 return vm_fault_internal(map, vaddr, fault_type, change_wiring,
3709 change_wiring ? vm_tag_bt() : VM_KERN_MEMORY_NONE,
3710 interruptible, caller_pmap, caller_pmap_addr,
3711 NULL);
3712 }
3713
3714 kern_return_t
3715 vm_fault(
3716 vm_map_t map,
3717 vm_map_offset_t vaddr,
3718 vm_prot_t fault_type,
3719 boolean_t change_wiring,
3720 vm_tag_t wire_tag, /* if wiring must pass tag != VM_KERN_MEMORY_NONE */
3721 int interruptible,
3722 pmap_t caller_pmap,
3723 vm_map_offset_t caller_pmap_addr)
3724 {
3725 return vm_fault_internal(map, vaddr, fault_type, change_wiring, wire_tag,
3726 interruptible, caller_pmap, caller_pmap_addr,
3727 NULL);
3728 }
3729
3730 static boolean_t
3731 current_proc_is_privileged(void)
3732 {
3733 return csproc_get_platform_binary(current_proc());
3734 }
3735
3736 uint64_t vm_copied_on_read = 0;
3737
3738 /*
3739 * Cleanup after a vm_fault_enter.
3740 * At this point, the fault should either have failed (kr != KERN_SUCCESS)
3741 * or the page should be in the pmap and on the correct paging queue.
3742 *
3743 * Precondition:
3744 * map must be locked shared.
3745 * m_object must be locked.
3746 * If top_object != VM_OBJECT_NULL, it must be locked.
3747 * real_map must be locked.
3748 *
3749 * Postcondition:
3750 * map will be unlocked
3751 * m_object will be unlocked
3752 * top_object will be unlocked
3753 * If real_map != map, it will be unlocked
3754 */
3755 static void
3756 vm_fault_complete(
3757 vm_map_t map,
3758 vm_map_t real_map,
3759 vm_object_t object,
3760 vm_object_t m_object,
3761 vm_page_t m,
3762 vm_map_offset_t offset,
3763 vm_map_offset_t trace_real_vaddr,
3764 vm_object_fault_info_t fault_info,
3765 vm_prot_t caller_prot,
3766 #if CONFIG_DTRACE
3767 vm_map_offset_t real_vaddr,
3768 #else
3769 __unused vm_map_offset_t real_vaddr,
3770 #endif /* CONFIG_DTRACE */
3771 int type_of_fault,
3772 boolean_t need_retry,
3773 kern_return_t kr,
3774 ppnum_t *physpage_p,
3775 vm_prot_t prot,
3776 vm_object_t top_object,
3777 boolean_t need_collapse,
3778 vm_map_offset_t cur_offset,
3779 vm_prot_t fault_type,
3780 vm_object_t *written_on_object,
3781 memory_object_t *written_on_pager,
3782 vm_object_offset_t *written_on_offset)
3783 {
3784 int event_code = 0;
3785 vm_map_lock_assert_shared(map);
3786 vm_object_lock_assert_held(m_object);
3787 if (top_object != VM_OBJECT_NULL) {
3788 vm_object_lock_assert_held(top_object);
3789 }
3790 vm_map_lock_assert_held(real_map);
3791
3792 if (m_object->internal) {
3793 event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_INTERNAL));
3794 } else if (m_object->object_is_shared_cache) {
3795 event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_SHAREDCACHE));
3796 } else {
3797 event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_EXTERNAL));
3798 }
3799
3800 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, event_code, trace_real_vaddr, (fault_info->user_tag << 16) | (caller_prot << 8) | type_of_fault, m->vmp_offset, get_current_unique_pid(), 0);
3801 if (need_retry == FALSE) {
3802 KDBG_FILTERED(MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_FAST), get_current_unique_pid(), 0, 0, 0, 0);
3803 }
3804 DTRACE_VM6(real_fault, vm_map_offset_t, real_vaddr, vm_map_offset_t, m->vmp_offset, int, event_code, int, caller_prot, int, type_of_fault, int, fault_info->user_tag);
3805 if (kr == KERN_SUCCESS &&
3806 physpage_p != NULL) {
3807 /* for vm_map_wire_and_extract() */
3808 *physpage_p = VM_PAGE_GET_PHYS_PAGE(m);
3809 if (prot & VM_PROT_WRITE) {
3810 vm_object_lock_assert_exclusive(m_object);
3811 m->vmp_dirty = TRUE;
3812 }
3813 }
3814
3815 if (top_object != VM_OBJECT_NULL) {
3816 /*
3817 * It's safe to drop the top object
3818 * now that we've done our
3819 * vm_fault_enter(). Any other fault
3820 * in progress for that virtual
3821 * address will either find our page
3822 * and translation or put in a new page
3823 * and translation.
3824 */
3825 vm_object_unlock(top_object);
3826 top_object = VM_OBJECT_NULL;
3827 }
3828
3829 if (need_collapse == TRUE) {
3830 vm_object_collapse(object, vm_object_trunc_page(offset), TRUE);
3831 }
3832
3833 if (need_retry == FALSE &&
3834 (type_of_fault == DBG_PAGEIND_FAULT || type_of_fault == DBG_PAGEINV_FAULT || type_of_fault == DBG_CACHE_HIT_FAULT)) {
3835 /*
3836 * evaluate access pattern and update state
3837 * vm_fault_deactivate_behind depends on the
3838 * state being up to date
3839 */
3840 vm_fault_is_sequential(m_object, cur_offset, fault_info->behavior);
3841
3842 vm_fault_deactivate_behind(m_object, cur_offset, fault_info->behavior);
3843 }
3844 /*
3845 * That's it, clean up and return.
3846 */
3847 if (m->vmp_busy) {
3848 vm_object_lock_assert_exclusive(m_object);
3849 PAGE_WAKEUP_DONE(m);
3850 }
3851
3852 if (need_retry == FALSE && !m_object->internal && (fault_type & VM_PROT_WRITE)) {
3853 vm_object_paging_begin(m_object);
3854
3855 assert(*written_on_object == VM_OBJECT_NULL);
3856 *written_on_object = m_object;
3857 *written_on_pager = m_object->pager;
3858 *written_on_offset = m_object->paging_offset + m->vmp_offset;
3859 }
3860 vm_object_unlock(object);
3861
3862 vm_map_unlock_read(map);
3863 if (real_map != map) {
3864 vm_map_unlock(real_map);
3865 }
3866 }
3867
3868 static inline int
3869 vm_fault_type_for_tracing(boolean_t need_copy_on_read, int type_of_fault)
3870 {
3871 if (need_copy_on_read && type_of_fault == DBG_COW_FAULT) {
3872 return DBG_COR_FAULT;
3873 }
3874 return type_of_fault;
3875 }
3876
3877 kern_return_t
3878 vm_fault_internal(
3879 vm_map_t map,
3880 vm_map_offset_t vaddr,
3881 vm_prot_t caller_prot,
3882 boolean_t change_wiring,
3883 vm_tag_t wire_tag, /* if wiring must pass tag != VM_KERN_MEMORY_NONE */
3884 int interruptible,
3885 pmap_t caller_pmap,
3886 vm_map_offset_t caller_pmap_addr,
3887 ppnum_t *physpage_p)
3888 {
3889 vm_map_version_t version; /* Map version for verificiation */
3890 boolean_t wired; /* Should mapping be wired down? */
3891 vm_object_t object; /* Top-level object */
3892 vm_object_offset_t offset; /* Top-level offset */
3893 vm_prot_t prot; /* Protection for mapping */
3894 vm_object_t old_copy_object; /* Saved copy object */
3895 vm_page_t result_page; /* Result of vm_fault_page */
3896 vm_page_t top_page; /* Placeholder page */
3897 kern_return_t kr;
3898
3899 vm_page_t m; /* Fast access to result_page */
3900 kern_return_t error_code;
3901 vm_object_t cur_object;
3902 vm_object_t m_object = NULL;
3903 vm_object_offset_t cur_offset;
3904 vm_page_t cur_m;
3905 vm_object_t new_object;
3906 int type_of_fault;
3907 pmap_t pmap;
3908 wait_interrupt_t interruptible_state;
3909 vm_map_t real_map = map;
3910 vm_map_t original_map = map;
3911 bool object_locks_dropped = FALSE;
3912 vm_prot_t fault_type;
3913 vm_prot_t original_fault_type;
3914 struct vm_object_fault_info fault_info = {};
3915 bool need_collapse = FALSE;
3916 boolean_t need_retry = FALSE;
3917 boolean_t *need_retry_ptr = NULL;
3918 uint8_t object_lock_type = 0;
3919 uint8_t cur_object_lock_type;
3920 vm_object_t top_object = VM_OBJECT_NULL;
3921 vm_object_t written_on_object = VM_OBJECT_NULL;
3922 memory_object_t written_on_pager = NULL;
3923 vm_object_offset_t written_on_offset = 0;
3924 int throttle_delay;
3925 int compressed_count_delta;
3926 uint8_t grab_options;
3927 bool need_copy;
3928 bool need_copy_on_read;
3929 vm_map_offset_t trace_vaddr;
3930 vm_map_offset_t trace_real_vaddr;
3931 vm_map_size_t fault_page_size;
3932 vm_map_size_t fault_page_mask;
3933 vm_map_offset_t fault_phys_offset;
3934 vm_map_offset_t real_vaddr;
3935 bool resilient_media_retry = FALSE;
3936 vm_object_t resilient_media_object = VM_OBJECT_NULL;
3937 vm_object_offset_t resilient_media_offset = (vm_object_offset_t)-1;
3938 bool page_needs_data_sync = false;
3939 /*
3940 * Was the VM object contended when vm_map_lookup_locked locked it?
3941 * If so, the zero fill path will drop the lock
3942 * NB: Ideally we would always drop the lock rather than rely on
3943 * this heuristic, but vm_object_unlock currently takes > 30 cycles.
3944 */
3945 bool object_is_contended = false;
3946
3947 real_vaddr = vaddr;
3948 trace_real_vaddr = vaddr;
3949
3950 if (VM_MAP_PAGE_SIZE(original_map) < PAGE_SIZE) {
3951 fault_phys_offset = (vm_map_offset_t)-1;
3952 fault_page_size = VM_MAP_PAGE_SIZE(original_map);
3953 fault_page_mask = VM_MAP_PAGE_MASK(original_map);
3954 if (fault_page_size < PAGE_SIZE) {
3955 DEBUG4K_FAULT("map %p vaddr 0x%llx caller_prot 0x%x\n", map, (uint64_t)trace_real_vaddr, caller_prot);
3956 vaddr = vm_map_trunc_page(vaddr, fault_page_mask);
3957 }
3958 } else {
3959 fault_phys_offset = 0;
3960 fault_page_size = PAGE_SIZE;
3961 fault_page_mask = PAGE_MASK;
3962 vaddr = vm_map_trunc_page(vaddr, PAGE_MASK);
3963 }
3964
3965 if (map == kernel_map) {
3966 trace_vaddr = VM_KERNEL_ADDRHIDE(vaddr);
3967 trace_real_vaddr = VM_KERNEL_ADDRHIDE(trace_real_vaddr);
3968 } else {
3969 trace_vaddr = vaddr;
3970 }
3971
3972 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
3973 (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_START,
3974 ((uint64_t)trace_vaddr >> 32),
3975 trace_vaddr,
3976 (map == kernel_map),
3977 0,
3978 0);
3979
3980 if (get_preemption_level() != 0) {
3981 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
3982 (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END,
3983 ((uint64_t)trace_vaddr >> 32),
3984 trace_vaddr,
3985 KERN_FAILURE,
3986 0,
3987 0);
3988
3989 return KERN_FAILURE;
3990 }
3991
3992 thread_t cthread = current_thread();
3993 bool rtfault = (cthread->sched_mode == TH_MODE_REALTIME);
3994 uint64_t fstart = 0;
3995
3996 if (rtfault) {
3997 fstart = mach_continuous_time();
3998 }
3999
4000 interruptible_state = thread_interrupt_level(interruptible);
4001
4002 fault_type = (change_wiring ? VM_PROT_NONE : caller_prot);
4003
4004 counter_inc(&vm_statistics_faults);
4005 counter_inc(&current_task()->faults);
4006 original_fault_type = fault_type;
4007
4008 need_copy = FALSE;
4009 if (fault_type & VM_PROT_WRITE) {
4010 need_copy = TRUE;
4011 }
4012
4013 if (need_copy || change_wiring) {
4014 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4015 } else {
4016 object_lock_type = OBJECT_LOCK_SHARED;
4017 }
4018
4019 cur_object_lock_type = OBJECT_LOCK_SHARED;
4020
4021 if ((map == kernel_map) && (caller_prot & VM_PROT_WRITE)) {
4022 if (compressor_map) {
4023 if ((vaddr >= vm_map_min(compressor_map)) && (vaddr < vm_map_max(compressor_map))) {
4024 panic("Write fault on compressor map, va: %p type: %u bounds: %p->%p", (void *) vaddr, caller_prot, (void *) vm_map_min(compressor_map), (void *) vm_map_max(compressor_map));
4025 }
4026 }
4027 }
4028 RetryFault:
4029 assert(written_on_object == VM_OBJECT_NULL);
4030
4031 /*
4032 * assume we will hit a page in the cache
4033 * otherwise, explicitly override with
4034 * the real fault type once we determine it
4035 */
4036 type_of_fault = DBG_CACHE_HIT_FAULT;
4037
4038 /*
4039 * Find the backing store object and offset into
4040 * it to begin the search.
4041 */
4042 fault_type = original_fault_type;
4043 map = original_map;
4044 vm_map_lock_read(map);
4045
4046 if (resilient_media_retry) {
4047 /*
4048 * If we have to insert a fake zero-filled page to hide
4049 * a media failure to provide the real page, we need to
4050 * resolve any pending copy-on-write on this mapping.
4051 * VM_PROT_COPY tells vm_map_lookup_locked() to deal
4052 * with that even if this is not a "write" fault.
4053 */
4054 need_copy = TRUE;
4055 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4056 }
4057
4058 kr = vm_map_lookup_locked(&map, vaddr,
4059 (fault_type | (need_copy ? VM_PROT_COPY : 0)),
4060 object_lock_type, &version,
4061 &object, &offset, &prot, &wired,
4062 &fault_info,
4063 &real_map,
4064 &object_is_contended);
4065
4066 if (kr != KERN_SUCCESS) {
4067 vm_map_unlock_read(map);
4068 goto done;
4069 }
4070
4071
4072 pmap = real_map->pmap;
4073 fault_info.interruptible = interruptible;
4074 fault_info.stealth = FALSE;
4075 fault_info.io_sync = FALSE;
4076 fault_info.mark_zf_absent = FALSE;
4077 fault_info.batch_pmap_op = FALSE;
4078
4079 if (resilient_media_retry) {
4080 /*
4081 * We're retrying this fault after having detected a media
4082 * failure from a "resilient_media" mapping.
4083 * Check that the mapping is still pointing at the object
4084 * that just failed to provide a page.
4085 */
4086 assert(resilient_media_object != VM_OBJECT_NULL);
4087 assert(resilient_media_offset != (vm_object_offset_t)-1);
4088 if (object != VM_OBJECT_NULL &&
4089 object == resilient_media_object &&
4090 offset == resilient_media_offset &&
4091 fault_info.resilient_media) {
4092 /*
4093 * This mapping still points at the same object
4094 * and is still "resilient_media": proceed in
4095 * "recovery-from-media-failure" mode, where we'll
4096 * insert a zero-filled page in the top object.
4097 */
4098 // printf("RESILIENT_MEDIA %s:%d recovering for object %p offset 0x%llx\n", __FUNCTION__, __LINE__, object, offset);
4099 } else {
4100 /* not recovering: reset state */
4101 // printf("RESILIENT_MEDIA %s:%d no recovery resilient %d object %p/%p offset 0x%llx/0x%llx\n", __FUNCTION__, __LINE__, fault_info.resilient_media, object, resilient_media_object, offset, resilient_media_offset);
4102 resilient_media_retry = FALSE;
4103 /* release our extra reference on failed object */
4104 // printf("FBDP %s:%d resilient_media_object %p deallocate\n", __FUNCTION__, __LINE__, resilient_media_object);
4105 vm_object_deallocate(resilient_media_object);
4106 resilient_media_object = VM_OBJECT_NULL;
4107 resilient_media_offset = (vm_object_offset_t)-1;
4108 }
4109 } else {
4110 assert(resilient_media_object == VM_OBJECT_NULL);
4111 resilient_media_offset = (vm_object_offset_t)-1;
4112 }
4113
4114 /*
4115 * If the page is wired, we must fault for the current protection
4116 * value, to avoid further faults.
4117 */
4118 if (wired) {
4119 fault_type = prot | VM_PROT_WRITE;
4120 }
4121 if (wired || need_copy) {
4122 /*
4123 * since we're treating this fault as a 'write'
4124 * we must hold the top object lock exclusively
4125 */
4126 if (object_lock_type == OBJECT_LOCK_SHARED) {
4127 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4128
4129 if (vm_object_lock_upgrade(object) == FALSE) {
4130 /*
4131 * couldn't upgrade, so explictly
4132 * take the lock exclusively
4133 */
4134 vm_object_lock(object);
4135 }
4136 }
4137 }
4138
4139 #if VM_FAULT_CLASSIFY
4140 /*
4141 * Temporary data gathering code
4142 */
4143 vm_fault_classify(object, offset, fault_type);
4144 #endif
4145 /*
4146 * Fast fault code. The basic idea is to do as much as
4147 * possible while holding the map lock and object locks.
4148 * Busy pages are not used until the object lock has to
4149 * be dropped to do something (copy, zero fill, pmap enter).
4150 * Similarly, paging references aren't acquired until that
4151 * point, and object references aren't used.
4152 *
4153 * If we can figure out what to do
4154 * (zero fill, copy on write, pmap enter) while holding
4155 * the locks, then it gets done. Otherwise, we give up,
4156 * and use the original fault path (which doesn't hold
4157 * the map lock, and relies on busy pages).
4158 * The give up cases include:
4159 * - Have to talk to pager.
4160 * - Page is busy, absent or in error.
4161 * - Pager has locked out desired access.
4162 * - Fault needs to be restarted.
4163 * - Have to push page into copy object.
4164 *
4165 * The code is an infinite loop that moves one level down
4166 * the shadow chain each time. cur_object and cur_offset
4167 * refer to the current object being examined. object and offset
4168 * are the original object from the map. The loop is at the
4169 * top level if and only if object and cur_object are the same.
4170 *
4171 * Invariants: Map lock is held throughout. Lock is held on
4172 * original object and cur_object (if different) when
4173 * continuing or exiting loop.
4174 *
4175 */
4176
4177 #if defined(__arm64__)
4178 /*
4179 * Fail if reading an execute-only page in a
4180 * pmap that enforces execute-only protection.
4181 */
4182 if (fault_type == VM_PROT_READ &&
4183 (prot & VM_PROT_EXECUTE) &&
4184 !(prot & VM_PROT_READ) &&
4185 pmap_enforces_execute_only(pmap)) {
4186 vm_object_unlock(object);
4187 vm_map_unlock_read(map);
4188 if (real_map != map) {
4189 vm_map_unlock(real_map);
4190 }
4191 kr = KERN_PROTECTION_FAILURE;
4192 goto done;
4193 }
4194 #endif
4195
4196 fault_phys_offset = (vm_map_offset_t)offset - vm_map_trunc_page((vm_map_offset_t)offset, PAGE_MASK);
4197
4198 /*
4199 * If this page is to be inserted in a copy delay object
4200 * for writing, and if the object has a copy, then the
4201 * copy delay strategy is implemented in the slow fault page.
4202 */
4203 if (object->copy_strategy == MEMORY_OBJECT_COPY_DELAY &&
4204 object->copy != VM_OBJECT_NULL && (fault_type & VM_PROT_WRITE)) {
4205 goto handle_copy_delay;
4206 }
4207
4208 cur_object = object;
4209 cur_offset = offset;
4210
4211 grab_options = 0;
4212 #if CONFIG_SECLUDED_MEMORY
4213 if (object->can_grab_secluded) {
4214 grab_options |= VM_PAGE_GRAB_SECLUDED;
4215 }
4216 #endif /* CONFIG_SECLUDED_MEMORY */
4217
4218 while (TRUE) {
4219 if (!cur_object->pager_created &&
4220 cur_object->phys_contiguous) { /* superpage */
4221 break;
4222 }
4223
4224 if (cur_object->blocked_access) {
4225 /*
4226 * Access to this VM object has been blocked.
4227 * Let the slow path handle it.
4228 */
4229 break;
4230 }
4231
4232 m = vm_page_lookup(cur_object, vm_object_trunc_page(cur_offset));
4233 m_object = NULL;
4234
4235 if (m != VM_PAGE_NULL) {
4236 m_object = cur_object;
4237
4238 if (m->vmp_busy) {
4239 wait_result_t result;
4240
4241 /*
4242 * in order to do the PAGE_ASSERT_WAIT, we must
4243 * have object that 'm' belongs to locked exclusively
4244 */
4245 if (object != cur_object) {
4246 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
4247 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4248
4249 if (vm_object_lock_upgrade(cur_object) == FALSE) {
4250 /*
4251 * couldn't upgrade so go do a full retry
4252 * immediately since we can no longer be
4253 * certain about cur_object (since we
4254 * don't hold a reference on it)...
4255 * first drop the top object lock
4256 */
4257 vm_object_unlock(object);
4258
4259 vm_map_unlock_read(map);
4260 if (real_map != map) {
4261 vm_map_unlock(real_map);
4262 }
4263
4264 goto RetryFault;
4265 }
4266 }
4267 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
4268 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4269
4270 if (vm_object_lock_upgrade(object) == FALSE) {
4271 /*
4272 * couldn't upgrade, so explictly take the lock
4273 * exclusively and go relookup the page since we
4274 * will have dropped the object lock and
4275 * a different thread could have inserted
4276 * a page at this offset
4277 * no need for a full retry since we're
4278 * at the top level of the object chain
4279 */
4280 vm_object_lock(object);
4281
4282 continue;
4283 }
4284 }
4285 if ((m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) && m_object->internal) {
4286 /*
4287 * m->vmp_busy == TRUE and the object is locked exclusively
4288 * if m->pageout_queue == TRUE after we acquire the
4289 * queues lock, we are guaranteed that it is stable on
4290 * the pageout queue and therefore reclaimable
4291 *
4292 * NOTE: this is only true for the internal pageout queue
4293 * in the compressor world
4294 */
4295 assert(VM_CONFIG_COMPRESSOR_IS_PRESENT);
4296
4297 vm_page_lock_queues();
4298
4299 if (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) {
4300 vm_pageout_throttle_up(m);
4301 vm_page_unlock_queues();
4302
4303 PAGE_WAKEUP_DONE(m);
4304 goto reclaimed_from_pageout;
4305 }
4306 vm_page_unlock_queues();
4307 }
4308 if (object != cur_object) {
4309 vm_object_unlock(object);
4310 }
4311
4312 vm_map_unlock_read(map);
4313 if (real_map != map) {
4314 vm_map_unlock(real_map);
4315 }
4316
4317 result = PAGE_ASSERT_WAIT(m, interruptible);
4318
4319 vm_object_unlock(cur_object);
4320
4321 if (result == THREAD_WAITING) {
4322 result = thread_block(THREAD_CONTINUE_NULL);
4323 }
4324 if (result == THREAD_AWAKENED || result == THREAD_RESTART) {
4325 goto RetryFault;
4326 }
4327
4328 kr = KERN_ABORTED;
4329 goto done;
4330 }
4331 reclaimed_from_pageout:
4332 if (m->vmp_laundry) {
4333 if (object != cur_object) {
4334 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
4335 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4336
4337 vm_object_unlock(object);
4338 vm_object_unlock(cur_object);
4339
4340 vm_map_unlock_read(map);
4341 if (real_map != map) {
4342 vm_map_unlock(real_map);
4343 }
4344
4345 goto RetryFault;
4346 }
4347 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
4348 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4349
4350 if (vm_object_lock_upgrade(object) == FALSE) {
4351 /*
4352 * couldn't upgrade, so explictly take the lock
4353 * exclusively and go relookup the page since we
4354 * will have dropped the object lock and
4355 * a different thread could have inserted
4356 * a page at this offset
4357 * no need for a full retry since we're
4358 * at the top level of the object chain
4359 */
4360 vm_object_lock(object);
4361
4362 continue;
4363 }
4364 }
4365 vm_pageout_steal_laundry(m, FALSE);
4366 }
4367
4368 if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) {
4369 /*
4370 * Guard page: let the slow path deal with it
4371 */
4372 break;
4373 }
4374 if (m->vmp_unusual && (m->vmp_error || m->vmp_restart || m->vmp_private || m->vmp_absent)) {
4375 /*
4376 * Unusual case... let the slow path deal with it
4377 */
4378 break;
4379 }
4380 if (VM_OBJECT_PURGEABLE_FAULT_ERROR(m_object)) {
4381 if (object != cur_object) {
4382 vm_object_unlock(object);
4383 }
4384 vm_map_unlock_read(map);
4385 if (real_map != map) {
4386 vm_map_unlock(real_map);
4387 }
4388 vm_object_unlock(cur_object);
4389 kr = KERN_MEMORY_ERROR;
4390 goto done;
4391 }
4392 assert(m_object == VM_PAGE_OBJECT(m));
4393
4394 if (vm_fault_cs_need_validation(map->pmap, m, m_object,
4395 PAGE_SIZE, 0) ||
4396 (physpage_p != NULL && (prot & VM_PROT_WRITE))) {
4397 upgrade_lock_and_retry:
4398 /*
4399 * We might need to validate this page
4400 * against its code signature, so we
4401 * want to hold the VM object exclusively.
4402 */
4403 if (object != cur_object) {
4404 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
4405 vm_object_unlock(object);
4406 vm_object_unlock(cur_object);
4407
4408 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4409
4410 vm_map_unlock_read(map);
4411 if (real_map != map) {
4412 vm_map_unlock(real_map);
4413 }
4414
4415 goto RetryFault;
4416 }
4417 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
4418 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4419
4420 if (vm_object_lock_upgrade(object) == FALSE) {
4421 /*
4422 * couldn't upgrade, so explictly take the lock
4423 * exclusively and go relookup the page since we
4424 * will have dropped the object lock and
4425 * a different thread could have inserted
4426 * a page at this offset
4427 * no need for a full retry since we're
4428 * at the top level of the object chain
4429 */
4430 vm_object_lock(object);
4431
4432 continue;
4433 }
4434 }
4435 }
4436 /*
4437 * Two cases of map in faults:
4438 * - At top level w/o copy object.
4439 * - Read fault anywhere.
4440 * --> must disallow write.
4441 */
4442
4443 if (object == cur_object && object->copy == VM_OBJECT_NULL) {
4444 goto FastPmapEnter;
4445 }
4446
4447 if (!need_copy &&
4448 !fault_info.no_copy_on_read &&
4449 cur_object != object &&
4450 !cur_object->internal &&
4451 !cur_object->pager_trusted &&
4452 vm_protect_privileged_from_untrusted &&
4453 !((prot & VM_PROT_EXECUTE) &&
4454 cur_object->code_signed &&
4455 pmap_get_vm_map_cs_enforced(caller_pmap ? caller_pmap : pmap)) &&
4456 current_proc_is_privileged()) {
4457 /*
4458 * We're faulting on a page in "object" and
4459 * went down the shadow chain to "cur_object"
4460 * to find out that "cur_object"'s pager
4461 * is not "trusted", i.e. we can not trust it
4462 * to always return the same contents.
4463 * Since the target is a "privileged" process,
4464 * let's treat this as a copy-on-read fault, as
4465 * if it was a copy-on-write fault.
4466 * Once "object" gets a copy of this page, it
4467 * won't have to rely on "cur_object" to
4468 * provide the contents again.
4469 *
4470 * This is done by setting "need_copy" and
4471 * retrying the fault from the top with the
4472 * appropriate locking.
4473 *
4474 * Special case: if the mapping is executable
4475 * and the untrusted object is code-signed and
4476 * the process is "cs_enforced", we do not
4477 * copy-on-read because that would break
4478 * code-signing enforcement expectations (an
4479 * executable page must belong to a code-signed
4480 * object) and we can rely on code-signing
4481 * to re-validate the page if it gets evicted
4482 * and paged back in.
4483 */
4484 // printf("COPY-ON-READ %s:%d map %p va 0x%llx page %p object %p offset 0x%llx UNTRUSTED: need copy-on-read!\n", __FUNCTION__, __LINE__, map, (uint64_t)vaddr, m, VM_PAGE_OBJECT(m), m->vmp_offset);
4485 vm_copied_on_read++;
4486 need_copy = TRUE;
4487
4488 vm_object_unlock(object);
4489 vm_object_unlock(cur_object);
4490 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4491 vm_map_unlock_read(map);
4492 if (real_map != map) {
4493 vm_map_unlock(real_map);
4494 }
4495 goto RetryFault;
4496 }
4497
4498 if (!(fault_type & VM_PROT_WRITE) && !need_copy) {
4499 if (!pmap_has_prot_policy(pmap, fault_info.pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, prot)) {
4500 prot &= ~VM_PROT_WRITE;
4501 } else {
4502 /*
4503 * For a protection that the pmap cares
4504 * about, we must hand over the full
4505 * set of protections (so that the pmap
4506 * layer can apply any desired policy).
4507 * This means that cs_bypass must be
4508 * set, as this can force us to pass
4509 * RWX.
4510 */
4511 assert(fault_info.cs_bypass);
4512 }
4513
4514 if (object != cur_object) {
4515 /*
4516 * We still need to hold the top object
4517 * lock here to prevent a race between
4518 * a read fault (taking only "shared"
4519 * locks) and a write fault (taking
4520 * an "exclusive" lock on the top
4521 * object.
4522 * Otherwise, as soon as we release the
4523 * top lock, the write fault could
4524 * proceed and actually complete before
4525 * the read fault, and the copied page's
4526 * translation could then be overwritten
4527 * by the read fault's translation for
4528 * the original page.
4529 *
4530 * Let's just record what the top object
4531 * is and we'll release it later.
4532 */
4533 top_object = object;
4534
4535 /*
4536 * switch to the object that has the new page
4537 */
4538 object = cur_object;
4539 object_lock_type = cur_object_lock_type;
4540 }
4541 FastPmapEnter:
4542 assert(m_object == VM_PAGE_OBJECT(m));
4543
4544 /*
4545 * prepare for the pmap_enter...
4546 * object and map are both locked
4547 * m contains valid data
4548 * object == m->vmp_object
4549 * cur_object == NULL or it's been unlocked
4550 * no paging references on either object or cur_object
4551 */
4552 if (top_object != VM_OBJECT_NULL || object_lock_type != OBJECT_LOCK_EXCLUSIVE) {
4553 need_retry_ptr = &need_retry;
4554 } else {
4555 need_retry_ptr = NULL;
4556 }
4557
4558 if (fault_page_size < PAGE_SIZE) {
4559 DEBUG4K_FAULT("map %p original %p pmap %p va 0x%llx caller pmap %p va 0x%llx pa 0x%llx (0x%llx+0x%llx) prot 0x%x caller_prot 0x%x\n", map, original_map, pmap, (uint64_t)vaddr, caller_pmap, (uint64_t)caller_pmap_addr, (uint64_t)((((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT) + fault_phys_offset), (uint64_t)(((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT), (uint64_t)fault_phys_offset, prot, caller_prot);
4560 assertf((!(fault_phys_offset & FOURK_PAGE_MASK) &&
4561 fault_phys_offset < PAGE_SIZE),
4562 "0x%llx\n", (uint64_t)fault_phys_offset);
4563 } else {
4564 assertf(fault_phys_offset == 0,
4565 "0x%llx\n", (uint64_t)fault_phys_offset);
4566 }
4567
4568 if (caller_pmap) {
4569 kr = vm_fault_enter(m,
4570 caller_pmap,
4571 caller_pmap_addr,
4572 fault_page_size,
4573 fault_phys_offset,
4574 prot,
4575 caller_prot,
4576 wired,
4577 change_wiring,
4578 wire_tag,
4579 &fault_info,
4580 need_retry_ptr,
4581 &type_of_fault);
4582 } else {
4583 kr = vm_fault_enter(m,
4584 pmap,
4585 vaddr,
4586 fault_page_size,
4587 fault_phys_offset,
4588 prot,
4589 caller_prot,
4590 wired,
4591 change_wiring,
4592 wire_tag,
4593 &fault_info,
4594 need_retry_ptr,
4595 &type_of_fault);
4596 }
4597
4598 vm_fault_complete(
4599 map,
4600 real_map,
4601 object,
4602 m_object,
4603 m,
4604 offset,
4605 trace_real_vaddr,
4606 &fault_info,
4607 caller_prot,
4608 real_vaddr,
4609 vm_fault_type_for_tracing(need_copy_on_read, type_of_fault),
4610 need_retry,
4611 kr,
4612 physpage_p,
4613 prot,
4614 top_object,
4615 need_collapse,
4616 cur_offset,
4617 fault_type,
4618 &written_on_object,
4619 &written_on_pager,
4620 &written_on_offset);
4621 top_object = VM_OBJECT_NULL;
4622 if (need_retry == TRUE) {
4623 /*
4624 * vm_fault_enter couldn't complete the PMAP_ENTER...
4625 * at this point we don't hold any locks so it's safe
4626 * to ask the pmap layer to expand the page table to
4627 * accommodate this mapping... once expanded, we'll
4628 * re-drive the fault which should result in vm_fault_enter
4629 * being able to successfully enter the mapping this time around
4630 */
4631 (void)pmap_enter_options(
4632 pmap, vaddr, 0, 0, 0, 0, 0,
4633 PMAP_OPTIONS_NOENTER, NULL);
4634
4635 need_retry = FALSE;
4636 goto RetryFault;
4637 }
4638 goto done;
4639 }
4640 /*
4641 * COPY ON WRITE FAULT
4642 */
4643 assert(object_lock_type == OBJECT_LOCK_EXCLUSIVE);
4644
4645 /*
4646 * If objects match, then
4647 * object->copy must not be NULL (else control
4648 * would be in previous code block), and we
4649 * have a potential push into the copy object
4650 * with which we can't cope with here.
4651 */
4652 if (cur_object == object) {
4653 /*
4654 * must take the slow path to
4655 * deal with the copy push
4656 */
4657 break;
4658 }
4659
4660 /*
4661 * This is now a shadow based copy on write
4662 * fault -- it requires a copy up the shadow
4663 * chain.
4664 */
4665 assert(m_object == VM_PAGE_OBJECT(m));
4666
4667 if ((cur_object_lock_type == OBJECT_LOCK_SHARED) &&
4668 vm_fault_cs_need_validation(NULL, m, m_object,
4669 PAGE_SIZE, 0)) {
4670 goto upgrade_lock_and_retry;
4671 }
4672
4673 /*
4674 * Allocate a page in the original top level
4675 * object. Give up if allocate fails. Also
4676 * need to remember current page, as it's the
4677 * source of the copy.
4678 *
4679 * at this point we hold locks on both
4680 * object and cur_object... no need to take
4681 * paging refs or mark pages BUSY since
4682 * we don't drop either object lock until
4683 * the page has been copied and inserted
4684 */
4685 cur_m = m;
4686 m = vm_page_grab_options(grab_options);
4687 m_object = NULL;
4688
4689 if (m == VM_PAGE_NULL) {
4690 /*
4691 * no free page currently available...
4692 * must take the slow path
4693 */
4694 break;
4695 }
4696 /*
4697 * Now do the copy. Mark the source page busy...
4698 *
4699 * NOTE: This code holds the map lock across
4700 * the page copy.
4701 */
4702 vm_page_copy(cur_m, m);
4703 vm_page_insert(m, object, vm_object_trunc_page(offset));
4704 if (VM_MAP_PAGE_MASK(map) != PAGE_MASK) {
4705 DEBUG4K_FAULT("map %p vaddr 0x%llx page %p [%p 0x%llx] copied to %p [%p 0x%llx]\n", map, (uint64_t)vaddr, cur_m, VM_PAGE_OBJECT(cur_m), cur_m->vmp_offset, m, VM_PAGE_OBJECT(m), m->vmp_offset);
4706 }
4707 m_object = object;
4708 SET_PAGE_DIRTY(m, FALSE);
4709
4710 /*
4711 * Now cope with the source page and object
4712 */
4713 if (object->ref_count > 1 && cur_m->vmp_pmapped) {
4714 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(cur_m));
4715 } else if (VM_MAP_PAGE_SIZE(map) < PAGE_SIZE) {
4716 /*
4717 * We've copied the full 16K page but we're
4718 * about to call vm_fault_enter() only for
4719 * the 4K chunk we're faulting on. The other
4720 * three 4K chunks in that page could still
4721 * be pmapped in this pmap.
4722 * Since the VM object layer thinks that the
4723 * entire page has been dealt with and the
4724 * original page might no longer be needed,
4725 * it might collapse/bypass the original VM
4726 * object and free its pages, which would be
4727 * bad (and would trigger pmap_verify_free()
4728 * assertions) if the other 4K chunks are still
4729 * pmapped.
4730 */
4731 /*
4732 * XXX FBDP TODO4K: to be revisisted
4733 * Technically, we need to pmap_disconnect()
4734 * only the target pmap's mappings for the 4K
4735 * chunks of this 16K VM page. If other pmaps
4736 * have PTEs on these chunks, that means that
4737 * the associated VM map must have a reference
4738 * on the VM object, so no need to worry about
4739 * those.
4740 * pmap_protect() for each 4K chunk would be
4741 * better but we'd have to check which chunks
4742 * are actually mapped before and after this
4743 * one.
4744 * A full-blown pmap_disconnect() is easier
4745 * for now but not efficient.
4746 */
4747 DEBUG4K_FAULT("pmap_disconnect() page %p object %p offset 0x%llx phys 0x%x\n", cur_m, VM_PAGE_OBJECT(cur_m), cur_m->vmp_offset, VM_PAGE_GET_PHYS_PAGE(cur_m));
4748 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(cur_m));
4749 }
4750
4751 if (cur_m->vmp_clustered) {
4752 VM_PAGE_COUNT_AS_PAGEIN(cur_m);
4753 VM_PAGE_CONSUME_CLUSTERED(cur_m);
4754 vm_fault_is_sequential(cur_object, cur_offset, fault_info.behavior);
4755 }
4756 need_collapse = TRUE;
4757
4758 if (!cur_object->internal &&
4759 cur_object->copy_strategy == MEMORY_OBJECT_COPY_DELAY) {
4760 /*
4761 * The object from which we've just
4762 * copied a page is most probably backed
4763 * by a vnode. We don't want to waste too
4764 * much time trying to collapse the VM objects
4765 * and create a bottleneck when several tasks
4766 * map the same file.
4767 */
4768 if (cur_object->copy == object) {
4769 /*
4770 * Shared mapping or no COW yet.
4771 * We can never collapse a copy
4772 * object into its backing object.
4773 */
4774 need_collapse = FALSE;
4775 } else if (cur_object->copy == object->shadow &&
4776 object->shadow->resident_page_count == 0) {
4777 /*
4778 * Shared mapping after a COW occurred.
4779 */
4780 need_collapse = FALSE;
4781 }
4782 }
4783 vm_object_unlock(cur_object);
4784
4785 if (need_collapse == FALSE) {
4786 vm_fault_collapse_skipped++;
4787 }
4788 vm_fault_collapse_total++;
4789
4790 type_of_fault = DBG_COW_FAULT;
4791 counter_inc(&vm_statistics_cow_faults);
4792 DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL);
4793 current_task()->cow_faults++;
4794
4795 goto FastPmapEnter;
4796 } else {
4797 /*
4798 * No page at cur_object, cur_offset... m == NULL
4799 */
4800 if (cur_object->pager_created) {
4801 vm_external_state_t compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN;
4802
4803 if (MUST_ASK_PAGER(cur_object, cur_offset, compressor_external_state) == TRUE) {
4804 int my_fault_type;
4805 uint8_t c_flags = C_DONT_BLOCK;
4806 bool insert_cur_object = FALSE;
4807
4808 /*
4809 * May have to talk to a pager...
4810 * if so, take the slow path by
4811 * doing a 'break' from the while (TRUE) loop
4812 *
4813 * external_state will only be set to VM_EXTERNAL_STATE_EXISTS
4814 * if the compressor is active and the page exists there
4815 */
4816 if (compressor_external_state != VM_EXTERNAL_STATE_EXISTS) {
4817 break;
4818 }
4819
4820 if (map == kernel_map || real_map == kernel_map) {
4821 /*
4822 * can't call into the compressor with the kernel_map
4823 * lock held, since the compressor may try to operate
4824 * on the kernel map in order to return an empty c_segment
4825 */
4826 break;
4827 }
4828 if (object != cur_object) {
4829 if (fault_type & VM_PROT_WRITE) {
4830 c_flags |= C_KEEP;
4831 } else {
4832 insert_cur_object = TRUE;
4833 }
4834 }
4835 if (insert_cur_object == TRUE) {
4836 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
4837 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4838
4839 if (vm_object_lock_upgrade(cur_object) == FALSE) {
4840 /*
4841 * couldn't upgrade so go do a full retry
4842 * immediately since we can no longer be
4843 * certain about cur_object (since we
4844 * don't hold a reference on it)...
4845 * first drop the top object lock
4846 */
4847 vm_object_unlock(object);
4848
4849 vm_map_unlock_read(map);
4850 if (real_map != map) {
4851 vm_map_unlock(real_map);
4852 }
4853
4854 goto RetryFault;
4855 }
4856 }
4857 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
4858 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4859
4860 if (object != cur_object) {
4861 /*
4862 * we can't go for the upgrade on the top
4863 * lock since the upgrade may block waiting
4864 * for readers to drain... since we hold
4865 * cur_object locked at this point, waiting
4866 * for the readers to drain would represent
4867 * a lock order inversion since the lock order
4868 * for objects is the reference order in the
4869 * shadown chain
4870 */
4871 vm_object_unlock(object);
4872 vm_object_unlock(cur_object);
4873
4874 vm_map_unlock_read(map);
4875 if (real_map != map) {
4876 vm_map_unlock(real_map);
4877 }
4878
4879 goto RetryFault;
4880 }
4881 if (vm_object_lock_upgrade(object) == FALSE) {
4882 /*
4883 * couldn't upgrade, so explictly take the lock
4884 * exclusively and go relookup the page since we
4885 * will have dropped the object lock and
4886 * a different thread could have inserted
4887 * a page at this offset
4888 * no need for a full retry since we're
4889 * at the top level of the object chain
4890 */
4891 vm_object_lock(object);
4892
4893 continue;
4894 }
4895 }
4896 m = vm_page_grab_options(grab_options);
4897 m_object = NULL;
4898
4899 if (m == VM_PAGE_NULL) {
4900 /*
4901 * no free page currently available...
4902 * must take the slow path
4903 */
4904 break;
4905 }
4906
4907 /*
4908 * The object is and remains locked
4909 * so no need to take a
4910 * "paging_in_progress" reference.
4911 */
4912 bool shared_lock;
4913 if ((object == cur_object &&
4914 object_lock_type == OBJECT_LOCK_EXCLUSIVE) ||
4915 (object != cur_object &&
4916 cur_object_lock_type == OBJECT_LOCK_EXCLUSIVE)) {
4917 shared_lock = FALSE;
4918 } else {
4919 shared_lock = TRUE;
4920 }
4921
4922 kr = vm_compressor_pager_get(
4923 cur_object->pager,
4924 (vm_object_trunc_page(cur_offset)
4925 + cur_object->paging_offset),
4926 VM_PAGE_GET_PHYS_PAGE(m),
4927 &my_fault_type,
4928 c_flags,
4929 &compressed_count_delta);
4930
4931 vm_compressor_pager_count(
4932 cur_object->pager,
4933 compressed_count_delta,
4934 shared_lock,
4935 cur_object);
4936
4937 if (kr != KERN_SUCCESS) {
4938 vm_page_release(m, FALSE);
4939 m = VM_PAGE_NULL;
4940 }
4941 /*
4942 * If vm_compressor_pager_get() returns
4943 * KERN_MEMORY_FAILURE, then the
4944 * compressed data is permanently lost,
4945 * so return this error immediately.
4946 */
4947 if (kr == KERN_MEMORY_FAILURE) {
4948 if (object != cur_object) {
4949 vm_object_unlock(cur_object);
4950 }
4951 vm_object_unlock(object);
4952 vm_map_unlock_read(map);
4953 if (real_map != map) {
4954 vm_map_unlock(real_map);
4955 }
4956 goto done;
4957 } else if (kr != KERN_SUCCESS) {
4958 break;
4959 }
4960 m->vmp_dirty = TRUE;
4961
4962 /*
4963 * If the object is purgeable, its
4964 * owner's purgeable ledgers will be
4965 * updated in vm_page_insert() but the
4966 * page was also accounted for in a
4967 * "compressed purgeable" ledger, so
4968 * update that now.
4969 */
4970 if (object != cur_object &&
4971 !insert_cur_object) {
4972 /*
4973 * We're not going to insert
4974 * the decompressed page into
4975 * the object it came from.
4976 *
4977 * We're dealing with a
4978 * copy-on-write fault on
4979 * "object".
4980 * We're going to decompress
4981 * the page directly into the
4982 * target "object" while
4983 * keepin the compressed
4984 * page for "cur_object", so
4985 * no ledger update in that
4986 * case.
4987 */
4988 } else if (((cur_object->purgable ==
4989 VM_PURGABLE_DENY) &&
4990 (!cur_object->vo_ledger_tag)) ||
4991 (cur_object->vo_owner ==
4992 NULL)) {
4993 /*
4994 * "cur_object" is not purgeable
4995 * and is not ledger-taged, or
4996 * there's no owner for it,
4997 * so no owner's ledgers to
4998 * update.
4999 */
5000 } else {
5001 /*
5002 * One less compressed
5003 * purgeable/tagged page for
5004 * cur_object's owner.
5005 */
5006 vm_object_owner_compressed_update(
5007 cur_object,
5008 -1);
5009 }
5010
5011 if (insert_cur_object) {
5012 vm_page_insert(m, cur_object, vm_object_trunc_page(cur_offset));
5013 m_object = cur_object;
5014 } else {
5015 vm_page_insert(m, object, vm_object_trunc_page(offset));
5016 m_object = object;
5017 }
5018
5019 if ((m_object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_USE_DEFAULT) {
5020 /*
5021 * If the page is not cacheable,
5022 * we can't let its contents
5023 * linger in the data cache
5024 * after the decompression.
5025 */
5026 pmap_sync_page_attributes_phys(VM_PAGE_GET_PHYS_PAGE(m));
5027 }
5028
5029 type_of_fault = my_fault_type;
5030
5031 VM_STAT_DECOMPRESSIONS();
5032
5033 if (cur_object != object) {
5034 if (insert_cur_object) {
5035 top_object = object;
5036 /*
5037 * switch to the object that has the new page
5038 */
5039 object = cur_object;
5040 object_lock_type = cur_object_lock_type;
5041 } else {
5042 vm_object_unlock(cur_object);
5043 cur_object = object;
5044 }
5045 }
5046 goto FastPmapEnter;
5047 }
5048 /*
5049 * existence map present and indicates
5050 * that the pager doesn't have this page
5051 */
5052 }
5053 if (cur_object->shadow == VM_OBJECT_NULL ||
5054 resilient_media_retry) {
5055 /*
5056 * Zero fill fault. Page gets
5057 * inserted into the original object.
5058 */
5059 if (cur_object->shadow_severed ||
5060 VM_OBJECT_PURGEABLE_FAULT_ERROR(cur_object) ||
5061 cur_object == compressor_object ||
5062 cur_object == kernel_object ||
5063 cur_object == vm_submap_object) {
5064 if (object != cur_object) {
5065 vm_object_unlock(cur_object);
5066 }
5067 vm_object_unlock(object);
5068
5069 vm_map_unlock_read(map);
5070 if (real_map != map) {
5071 vm_map_unlock(real_map);
5072 }
5073
5074 kr = KERN_MEMORY_ERROR;
5075 goto done;
5076 }
5077 if (cur_object != object) {
5078 vm_object_unlock(cur_object);
5079
5080 cur_object = object;
5081 }
5082 if (object_lock_type == OBJECT_LOCK_SHARED) {
5083 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
5084
5085 if (vm_object_lock_upgrade(object) == FALSE) {
5086 /*
5087 * couldn't upgrade so do a full retry on the fault
5088 * since we dropped the object lock which
5089 * could allow another thread to insert
5090 * a page at this offset
5091 */
5092 vm_map_unlock_read(map);
5093 if (real_map != map) {
5094 vm_map_unlock(real_map);
5095 }
5096
5097 goto RetryFault;
5098 }
5099 }
5100 if (!object->internal) {
5101 panic("%s:%d should not zero-fill page at offset 0x%llx in external object %p", __FUNCTION__, __LINE__, (uint64_t)offset, object);
5102 }
5103 m = vm_page_alloc(object, vm_object_trunc_page(offset));
5104 m_object = NULL;
5105
5106 if (m == VM_PAGE_NULL) {
5107 /*
5108 * no free page currently available...
5109 * must take the slow path
5110 */
5111 break;
5112 }
5113 m_object = object;
5114
5115 /*
5116 * Zeroing the page and entering into it into the pmap
5117 * represents a significant amount of the zero fill fault handler's work.
5118 *
5119 * To improve fault scalability, we'll drop the object lock, if it appears contended,
5120 * now that we've inserted the page into the vm object.
5121 * Before dropping the lock, we need to check protection bits and set the
5122 * mapped bits on the page. Then we can mark the page busy, drop the lock,
5123 * zero it, and do the pmap enter. We'll need to reacquire the lock
5124 * to clear the busy bit and wake up any waiters.
5125 */
5126 vm_fault_cs_clear(m);
5127 m->vmp_pmapped = TRUE;
5128 if (map->no_zero_fill) {
5129 type_of_fault = DBG_NZF_PAGE_FAULT;
5130 } else {
5131 type_of_fault = DBG_ZERO_FILL_FAULT;
5132 }
5133 {
5134 pmap_t destination_pmap;
5135 vm_map_offset_t destination_pmap_vaddr;
5136 vm_prot_t enter_fault_type;
5137 if (caller_pmap) {
5138 destination_pmap = caller_pmap;
5139 destination_pmap_vaddr = caller_pmap_addr;
5140 } else {
5141 destination_pmap = pmap;
5142 destination_pmap_vaddr = vaddr;
5143 }
5144 if (change_wiring) {
5145 enter_fault_type = VM_PROT_NONE;
5146 } else {
5147 enter_fault_type = caller_prot;
5148 }
5149 kr = vm_fault_enter_prepare(m,
5150 destination_pmap,
5151 destination_pmap_vaddr,
5152 &prot,
5153 caller_prot,
5154 fault_page_size,
5155 fault_phys_offset,
5156 change_wiring,
5157 enter_fault_type,
5158 &fault_info,
5159 &type_of_fault,
5160 &page_needs_data_sync);
5161 if (kr != KERN_SUCCESS) {
5162 goto zero_fill_cleanup;
5163 }
5164
5165 if (object_is_contended) {
5166 /*
5167 * At this point the page is in the vm object, but not on a paging queue.
5168 * Since it's accessible to another thread but its contents are invalid
5169 * (it hasn't been zeroed) mark it busy before dropping the object lock.
5170 */
5171 m->vmp_busy = TRUE;
5172 vm_object_unlock(object);
5173 }
5174 if (type_of_fault == DBG_ZERO_FILL_FAULT) {
5175 /*
5176 * Now zero fill page...
5177 * the page is probably going to
5178 * be written soon, so don't bother
5179 * to clear the modified bit
5180 *
5181 * NOTE: This code holds the map
5182 * lock across the zero fill.
5183 */
5184 vm_page_zero_fill(m);
5185 counter_inc(&vm_statistics_zero_fill_count);
5186 DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL);
5187 }
5188 if (page_needs_data_sync) {
5189 pmap_sync_page_data_phys(VM_PAGE_GET_PHYS_PAGE(m));
5190 }
5191
5192 if (top_object != VM_OBJECT_NULL) {
5193 need_retry_ptr = &need_retry;
5194 } else {
5195 need_retry_ptr = NULL;
5196 }
5197 if (object_is_contended) {
5198 kr = vm_fault_pmap_enter(destination_pmap, destination_pmap_vaddr,
5199 fault_page_size, fault_phys_offset,
5200 m, &prot, caller_prot, enter_fault_type, wired,
5201 fault_info.pmap_options, need_retry_ptr);
5202 vm_object_lock(object);
5203 } else {
5204 kr = vm_fault_pmap_enter_with_object_lock(object, destination_pmap, destination_pmap_vaddr,
5205 fault_page_size, fault_phys_offset,
5206 m, &prot, caller_prot, enter_fault_type, wired,
5207 fault_info.pmap_options, need_retry_ptr);
5208 }
5209 }
5210 zero_fill_cleanup:
5211 if (!VM_DYNAMIC_PAGING_ENABLED() &&
5212 (object->purgable == VM_PURGABLE_DENY ||
5213 object->purgable == VM_PURGABLE_NONVOLATILE ||
5214 object->purgable == VM_PURGABLE_VOLATILE)) {
5215 vm_page_lockspin_queues();
5216 if (!VM_DYNAMIC_PAGING_ENABLED()) {
5217 vm_fault_enqueue_throttled_locked(m);
5218 }
5219 vm_page_unlock_queues();
5220 }
5221 vm_fault_enqueue_page(object, m, wired, change_wiring, wire_tag, fault_info.no_cache, &type_of_fault, kr);
5222
5223 vm_fault_complete(
5224 map,
5225 real_map,
5226 object,
5227 m_object,
5228 m,
5229 offset,
5230 trace_real_vaddr,
5231 &fault_info,
5232 caller_prot,
5233 real_vaddr,
5234 type_of_fault,
5235 need_retry,
5236 kr,
5237 physpage_p,
5238 prot,
5239 top_object,
5240 need_collapse,
5241 cur_offset,
5242 fault_type,
5243 &written_on_object,
5244 &written_on_pager,
5245 &written_on_offset);
5246 top_object = VM_OBJECT_NULL;
5247 if (need_retry == TRUE) {
5248 /*
5249 * vm_fault_enter couldn't complete the PMAP_ENTER...
5250 * at this point we don't hold any locks so it's safe
5251 * to ask the pmap layer to expand the page table to
5252 * accommodate this mapping... once expanded, we'll
5253 * re-drive the fault which should result in vm_fault_enter
5254 * being able to successfully enter the mapping this time around
5255 */
5256 (void)pmap_enter_options(
5257 pmap, vaddr, 0, 0, 0, 0, 0,
5258 PMAP_OPTIONS_NOENTER, NULL);
5259
5260 need_retry = FALSE;
5261 goto RetryFault;
5262 }
5263 goto done;
5264 }
5265 /*
5266 * On to the next level in the shadow chain
5267 */
5268 cur_offset += cur_object->vo_shadow_offset;
5269 new_object = cur_object->shadow;
5270 fault_phys_offset = cur_offset - vm_object_trunc_page(cur_offset);
5271
5272 /*
5273 * take the new_object's lock with the indicated state
5274 */
5275 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
5276 vm_object_lock_shared(new_object);
5277 } else {
5278 vm_object_lock(new_object);
5279 }
5280
5281 if (cur_object != object) {
5282 vm_object_unlock(cur_object);
5283 }
5284
5285 cur_object = new_object;
5286
5287 continue;
5288 }
5289 }
5290 /*
5291 * Cleanup from fast fault failure. Drop any object
5292 * lock other than original and drop map lock.
5293 */
5294 if (object != cur_object) {
5295 vm_object_unlock(cur_object);
5296 }
5297
5298 /*
5299 * must own the object lock exclusively at this point
5300 */
5301 if (object_lock_type == OBJECT_LOCK_SHARED) {
5302 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
5303
5304 if (vm_object_lock_upgrade(object) == FALSE) {
5305 /*
5306 * couldn't upgrade, so explictly
5307 * take the lock exclusively
5308 * no need to retry the fault at this
5309 * point since "vm_fault_page" will
5310 * completely re-evaluate the state
5311 */
5312 vm_object_lock(object);
5313 }
5314 }
5315
5316 handle_copy_delay:
5317 vm_map_unlock_read(map);
5318 if (real_map != map) {
5319 vm_map_unlock(real_map);
5320 }
5321
5322 if (__improbable(object == compressor_object ||
5323 object == kernel_object ||
5324 object == vm_submap_object)) {
5325 /*
5326 * These objects are explicitly managed and populated by the
5327 * kernel. The virtual ranges backed by these objects should
5328 * either have wired pages or "holes" that are not supposed to
5329 * be accessed at all until they get explicitly populated.
5330 * We should never have to resolve a fault on a mapping backed
5331 * by one of these VM objects and providing a zero-filled page
5332 * would be wrong here, so let's fail the fault and let the
5333 * caller crash or recover.
5334 */
5335 vm_object_unlock(object);
5336 kr = KERN_MEMORY_ERROR;
5337 goto done;
5338 }
5339
5340 assert(object != compressor_object);
5341 assert(object != kernel_object);
5342 assert(object != vm_submap_object);
5343
5344 if (resilient_media_retry) {
5345 /*
5346 * We could get here if we failed to get a free page
5347 * to zero-fill and had to take the slow path again.
5348 * Reset our "recovery-from-failed-media" state.
5349 */
5350 assert(resilient_media_object != VM_OBJECT_NULL);
5351 assert(resilient_media_offset != (vm_object_offset_t)-1);
5352 /* release our extra reference on failed object */
5353 // printf("FBDP %s:%d resilient_media_object %p deallocate\n", __FUNCTION__, __LINE__, resilient_media_object);
5354 vm_object_deallocate(resilient_media_object);
5355 resilient_media_object = VM_OBJECT_NULL;
5356 resilient_media_offset = (vm_object_offset_t)-1;
5357 resilient_media_retry = FALSE;
5358 }
5359
5360 /*
5361 * Make a reference to this object to
5362 * prevent its disposal while we are messing with
5363 * it. Once we have the reference, the map is free
5364 * to be diddled. Since objects reference their
5365 * shadows (and copies), they will stay around as well.
5366 */
5367 vm_object_reference_locked(object);
5368 vm_object_paging_begin(object);
5369
5370 set_thread_pagein_error(cthread, 0);
5371 error_code = 0;
5372
5373 result_page = VM_PAGE_NULL;
5374 kr = vm_fault_page(object, offset, fault_type,
5375 (change_wiring && !wired),
5376 FALSE, /* page not looked up */
5377 &prot, &result_page, &top_page,
5378 &type_of_fault,
5379 &error_code, map->no_zero_fill,
5380 FALSE, &fault_info);
5381
5382 /*
5383 * if kr != VM_FAULT_SUCCESS, then the paging reference
5384 * has been dropped and the object unlocked... the ref_count
5385 * is still held
5386 *
5387 * if kr == VM_FAULT_SUCCESS, then the paging reference
5388 * is still held along with the ref_count on the original object
5389 *
5390 * the object is returned locked with a paging reference
5391 *
5392 * if top_page != NULL, then it's BUSY and the
5393 * object it belongs to has a paging reference
5394 * but is returned unlocked
5395 */
5396 if (kr != VM_FAULT_SUCCESS &&
5397 kr != VM_FAULT_SUCCESS_NO_VM_PAGE) {
5398 if (kr == VM_FAULT_MEMORY_ERROR &&
5399 fault_info.resilient_media) {
5400 assertf(object->internal, "object %p", object);
5401 /*
5402 * This fault failed but the mapping was
5403 * "media resilient", so we'll retry the fault in
5404 * recovery mode to get a zero-filled page in the
5405 * top object.
5406 * Keep the reference on the failing object so
5407 * that we can check that the mapping is still
5408 * pointing to it when we retry the fault.
5409 */
5410 // printf("RESILIENT_MEDIA %s:%d: object %p offset 0x%llx recover from media error 0x%x kr 0x%x top_page %p result_page %p\n", __FUNCTION__, __LINE__, object, offset, error_code, kr, top_page, result_page);
5411 assert(!resilient_media_retry); /* no double retry */
5412 assert(resilient_media_object == VM_OBJECT_NULL);
5413 assert(resilient_media_offset == (vm_object_offset_t)-1);
5414 resilient_media_retry = TRUE;
5415 resilient_media_object = object;
5416 resilient_media_offset = offset;
5417 // printf("FBDP %s:%d resilient_media_object %p offset 0x%llx kept reference\n", __FUNCTION__, __LINE__, resilient_media_object, resilient_mmedia_offset);
5418 goto RetryFault;
5419 } else {
5420 /*
5421 * we didn't succeed, lose the object reference
5422 * immediately.
5423 */
5424 vm_object_deallocate(object);
5425 object = VM_OBJECT_NULL; /* no longer valid */
5426 }
5427
5428 /*
5429 * See why we failed, and take corrective action.
5430 */
5431 switch (kr) {
5432 case VM_FAULT_MEMORY_SHORTAGE:
5433 if (vm_page_wait((change_wiring) ?
5434 THREAD_UNINT :
5435 THREAD_ABORTSAFE)) {
5436 goto RetryFault;
5437 }
5438 OS_FALLTHROUGH;
5439 case VM_FAULT_INTERRUPTED:
5440 kr = KERN_ABORTED;
5441 goto done;
5442 case VM_FAULT_RETRY:
5443 goto RetryFault;
5444 case VM_FAULT_MEMORY_ERROR:
5445 if (error_code) {
5446 kr = error_code;
5447 } else {
5448 kr = KERN_MEMORY_ERROR;
5449 }
5450 goto done;
5451 default:
5452 panic("vm_fault: unexpected error 0x%x from "
5453 "vm_fault_page()\n", kr);
5454 }
5455 }
5456 m = result_page;
5457 m_object = NULL;
5458
5459 if (m != VM_PAGE_NULL) {
5460 m_object = VM_PAGE_OBJECT(m);
5461 assert((change_wiring && !wired) ?
5462 (top_page == VM_PAGE_NULL) :
5463 ((top_page == VM_PAGE_NULL) == (m_object == object)));
5464 }
5465
5466 /*
5467 * What to do with the resulting page from vm_fault_page
5468 * if it doesn't get entered into the physical map:
5469 */
5470 #define RELEASE_PAGE(m) \
5471 MACRO_BEGIN \
5472 PAGE_WAKEUP_DONE(m); \
5473 if ( !VM_PAGE_PAGEABLE(m)) { \
5474 vm_page_lockspin_queues(); \
5475 if ( !VM_PAGE_PAGEABLE(m)) \
5476 vm_page_activate(m); \
5477 vm_page_unlock_queues(); \
5478 } \
5479 MACRO_END
5480
5481
5482 object_locks_dropped = FALSE;
5483 /*
5484 * We must verify that the maps have not changed
5485 * since our last lookup. vm_map_verify() needs the
5486 * map lock (shared) but we are holding object locks.
5487 * So we do a try_lock() first and, if that fails, we
5488 * drop the object locks and go in for the map lock again.
5489 */
5490 if (!vm_map_try_lock_read(original_map)) {
5491 if (m != VM_PAGE_NULL) {
5492 old_copy_object = m_object->copy;
5493 vm_object_unlock(m_object);
5494 } else {
5495 old_copy_object = VM_OBJECT_NULL;
5496 vm_object_unlock(object);
5497 }
5498
5499 object_locks_dropped = TRUE;
5500
5501 vm_map_lock_read(original_map);
5502 }
5503
5504 if ((map != original_map) || !vm_map_verify(map, &version)) {
5505 if (object_locks_dropped == FALSE) {
5506 if (m != VM_PAGE_NULL) {
5507 old_copy_object = m_object->copy;
5508 vm_object_unlock(m_object);
5509 } else {
5510 old_copy_object = VM_OBJECT_NULL;
5511 vm_object_unlock(object);
5512 }
5513
5514 object_locks_dropped = TRUE;
5515 }
5516
5517 /*
5518 * no object locks are held at this point
5519 */
5520 vm_object_t retry_object;
5521 vm_object_offset_t retry_offset;
5522 vm_prot_t retry_prot;
5523
5524 /*
5525 * To avoid trying to write_lock the map while another
5526 * thread has it read_locked (in vm_map_pageable), we
5527 * do not try for write permission. If the page is
5528 * still writable, we will get write permission. If it
5529 * is not, or has been marked needs_copy, we enter the
5530 * mapping without write permission, and will merely
5531 * take another fault.
5532 */
5533 map = original_map;
5534
5535 kr = vm_map_lookup_locked(&map, vaddr,
5536 fault_type & ~VM_PROT_WRITE,
5537 OBJECT_LOCK_EXCLUSIVE, &version,
5538 &retry_object, &retry_offset, &retry_prot,
5539 &wired,
5540 &fault_info,
5541 &real_map,
5542 NULL);
5543 pmap = real_map->pmap;
5544
5545 if (kr != KERN_SUCCESS) {
5546 vm_map_unlock_read(map);
5547
5548 if (m != VM_PAGE_NULL) {
5549 assert(VM_PAGE_OBJECT(m) == m_object);
5550
5551 /*
5552 * retake the lock so that
5553 * we can drop the paging reference
5554 * in vm_fault_cleanup and do the
5555 * PAGE_WAKEUP_DONE in RELEASE_PAGE
5556 */
5557 vm_object_lock(m_object);
5558
5559 RELEASE_PAGE(m);
5560
5561 vm_fault_cleanup(m_object, top_page);
5562 } else {
5563 /*
5564 * retake the lock so that
5565 * we can drop the paging reference
5566 * in vm_fault_cleanup
5567 */
5568 vm_object_lock(object);
5569
5570 vm_fault_cleanup(object, top_page);
5571 }
5572 vm_object_deallocate(object);
5573
5574 goto done;
5575 }
5576 vm_object_unlock(retry_object);
5577
5578 if ((retry_object != object) || (retry_offset != offset)) {
5579 vm_map_unlock_read(map);
5580 if (real_map != map) {
5581 vm_map_unlock(real_map);
5582 }
5583
5584 if (m != VM_PAGE_NULL) {
5585 assert(VM_PAGE_OBJECT(m) == m_object);
5586
5587 /*
5588 * retake the lock so that
5589 * we can drop the paging reference
5590 * in vm_fault_cleanup and do the
5591 * PAGE_WAKEUP_DONE in RELEASE_PAGE
5592 */
5593 vm_object_lock(m_object);
5594
5595 RELEASE_PAGE(m);
5596
5597 vm_fault_cleanup(m_object, top_page);
5598 } else {
5599 /*
5600 * retake the lock so that
5601 * we can drop the paging reference
5602 * in vm_fault_cleanup
5603 */
5604 vm_object_lock(object);
5605
5606 vm_fault_cleanup(object, top_page);
5607 }
5608 vm_object_deallocate(object);
5609
5610 goto RetryFault;
5611 }
5612 /*
5613 * Check whether the protection has changed or the object
5614 * has been copied while we left the map unlocked.
5615 */
5616 if (pmap_has_prot_policy(pmap, fault_info.pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, retry_prot)) {
5617 /* If the pmap layer cares, pass the full set. */
5618 prot = retry_prot;
5619 } else {
5620 prot &= retry_prot;
5621 }
5622 }
5623
5624 if (object_locks_dropped == TRUE) {
5625 if (m != VM_PAGE_NULL) {
5626 vm_object_lock(m_object);
5627
5628 if (m_object->copy != old_copy_object) {
5629 /*
5630 * The copy object changed while the top-level object
5631 * was unlocked, so take away write permission.
5632 */
5633 assert(!pmap_has_prot_policy(pmap, fault_info.pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, prot));
5634 prot &= ~VM_PROT_WRITE;
5635 }
5636 } else {
5637 vm_object_lock(object);
5638 }
5639
5640 object_locks_dropped = FALSE;
5641 }
5642
5643 if (!need_copy &&
5644 !fault_info.no_copy_on_read &&
5645 m != VM_PAGE_NULL &&
5646 VM_PAGE_OBJECT(m) != object &&
5647 !VM_PAGE_OBJECT(m)->pager_trusted &&
5648 vm_protect_privileged_from_untrusted &&
5649 !((prot & VM_PROT_EXECUTE) &&
5650 VM_PAGE_OBJECT(m)->code_signed &&
5651 pmap_get_vm_map_cs_enforced(caller_pmap ? caller_pmap : pmap)) &&
5652 current_proc_is_privileged()) {
5653 /*
5654 * We found the page we want in an "untrusted" VM object
5655 * down the shadow chain. Since the target is "privileged"
5656 * we want to perform a copy-on-read of that page, so that the
5657 * mapped object gets a stable copy and does not have to
5658 * rely on the "untrusted" object to provide the same
5659 * contents if the page gets reclaimed and has to be paged
5660 * in again later on.
5661 *
5662 * Special case: if the mapping is executable and the untrusted
5663 * object is code-signed and the process is "cs_enforced", we
5664 * do not copy-on-read because that would break code-signing
5665 * enforcement expectations (an executable page must belong
5666 * to a code-signed object) and we can rely on code-signing
5667 * to re-validate the page if it gets evicted and paged back in.
5668 */
5669 // printf("COPY-ON-READ %s:%d map %p vaddr 0x%llx obj %p offset 0x%llx found page %p (obj %p offset 0x%llx) UNTRUSTED -> need copy-on-read\n", __FUNCTION__, __LINE__, map, (uint64_t)vaddr, object, offset, m, VM_PAGE_OBJECT(m), m->vmp_offset);
5670 vm_copied_on_read++;
5671 need_copy_on_read = TRUE;
5672 need_copy = TRUE;
5673 } else {
5674 need_copy_on_read = FALSE;
5675 }
5676
5677 /*
5678 * If we want to wire down this page, but no longer have
5679 * adequate permissions, we must start all over.
5680 * If we decided to copy-on-read, we must also start all over.
5681 */
5682 if ((wired && (fault_type != (prot | VM_PROT_WRITE))) ||
5683 need_copy_on_read) {
5684 vm_map_unlock_read(map);
5685 if (real_map != map) {
5686 vm_map_unlock(real_map);
5687 }
5688
5689 if (m != VM_PAGE_NULL) {
5690 assert(VM_PAGE_OBJECT(m) == m_object);
5691
5692 RELEASE_PAGE(m);
5693
5694 vm_fault_cleanup(m_object, top_page);
5695 } else {
5696 vm_fault_cleanup(object, top_page);
5697 }
5698
5699 vm_object_deallocate(object);
5700
5701 goto RetryFault;
5702 }
5703 if (m != VM_PAGE_NULL) {
5704 /*
5705 * Put this page into the physical map.
5706 * We had to do the unlock above because pmap_enter
5707 * may cause other faults. The page may be on
5708 * the pageout queues. If the pageout daemon comes
5709 * across the page, it will remove it from the queues.
5710 */
5711 if (fault_page_size < PAGE_SIZE) {
5712 DEBUG4K_FAULT("map %p original %p pmap %p va 0x%llx pa 0x%llx(0x%llx+0x%llx) prot 0x%x caller_prot 0x%x\n", map, original_map, pmap, (uint64_t)vaddr, (uint64_t)((((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT) + fault_phys_offset), (uint64_t)(((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT), (uint64_t)fault_phys_offset, prot, caller_prot);
5713 assertf((!(fault_phys_offset & FOURK_PAGE_MASK) &&
5714 fault_phys_offset < PAGE_SIZE),
5715 "0x%llx\n", (uint64_t)fault_phys_offset);
5716 } else {
5717 assertf(fault_phys_offset == 0,
5718 "0x%llx\n", (uint64_t)fault_phys_offset);
5719 }
5720 if (caller_pmap) {
5721 kr = vm_fault_enter(m,
5722 caller_pmap,
5723 caller_pmap_addr,
5724 fault_page_size,
5725 fault_phys_offset,
5726 prot,
5727 caller_prot,
5728 wired,
5729 change_wiring,
5730 wire_tag,
5731 &fault_info,
5732 NULL,
5733 &type_of_fault);
5734 } else {
5735 kr = vm_fault_enter(m,
5736 pmap,
5737 vaddr,
5738 fault_page_size,
5739 fault_phys_offset,
5740 prot,
5741 caller_prot,
5742 wired,
5743 change_wiring,
5744 wire_tag,
5745 &fault_info,
5746 NULL,
5747 &type_of_fault);
5748 }
5749 assert(VM_PAGE_OBJECT(m) == m_object);
5750
5751 {
5752 int event_code = 0;
5753
5754 if (m_object->internal) {
5755 event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_INTERNAL));
5756 } else if (m_object->object_is_shared_cache) {
5757 event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_SHAREDCACHE));
5758 } else {
5759 event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_EXTERNAL));
5760 }
5761
5762 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, event_code, trace_real_vaddr, (fault_info.user_tag << 16) | (caller_prot << 8) | vm_fault_type_for_tracing(need_copy_on_read, type_of_fault), m->vmp_offset, get_current_unique_pid(), 0);
5763 KDBG_FILTERED(MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_SLOW), get_current_unique_pid(), 0, 0, 0, 0);
5764
5765 DTRACE_VM6(real_fault, vm_map_offset_t, real_vaddr, vm_map_offset_t, m->vmp_offset, int, event_code, int, caller_prot, int, type_of_fault, int, fault_info.user_tag);
5766 }
5767 if (kr != KERN_SUCCESS) {
5768 /* abort this page fault */
5769 vm_map_unlock_read(map);
5770 if (real_map != map) {
5771 vm_map_unlock(real_map);
5772 }
5773 PAGE_WAKEUP_DONE(m);
5774 vm_fault_cleanup(m_object, top_page);
5775 vm_object_deallocate(object);
5776 goto done;
5777 }
5778 if (physpage_p != NULL) {
5779 /* for vm_map_wire_and_extract() */
5780 *physpage_p = VM_PAGE_GET_PHYS_PAGE(m);
5781 if (prot & VM_PROT_WRITE) {
5782 vm_object_lock_assert_exclusive(m_object);
5783 m->vmp_dirty = TRUE;
5784 }
5785 }
5786 } else {
5787 vm_map_entry_t entry;
5788 vm_map_offset_t laddr;
5789 vm_map_offset_t ldelta, hdelta;
5790
5791 /*
5792 * do a pmap block mapping from the physical address
5793 * in the object
5794 */
5795
5796 if (real_map != map) {
5797 vm_map_unlock(real_map);
5798 }
5799
5800 if (original_map != map) {
5801 vm_map_unlock_read(map);
5802 vm_map_lock_read(original_map);
5803 map = original_map;
5804 }
5805 real_map = map;
5806
5807 laddr = vaddr;
5808 hdelta = 0xFFFFF000;
5809 ldelta = 0xFFFFF000;
5810
5811 while (vm_map_lookup_entry(map, laddr, &entry)) {
5812 if (ldelta > (laddr - entry->vme_start)) {
5813 ldelta = laddr - entry->vme_start;
5814 }
5815 if (hdelta > (entry->vme_end - laddr)) {
5816 hdelta = entry->vme_end - laddr;
5817 }
5818 if (entry->is_sub_map) {
5819 laddr = ((laddr - entry->vme_start)
5820 + VME_OFFSET(entry));
5821 vm_map_lock_read(VME_SUBMAP(entry));
5822
5823 if (map != real_map) {
5824 vm_map_unlock_read(map);
5825 }
5826 if (entry->use_pmap) {
5827 vm_map_unlock_read(real_map);
5828 real_map = VME_SUBMAP(entry);
5829 }
5830 map = VME_SUBMAP(entry);
5831 } else {
5832 break;
5833 }
5834 }
5835
5836 if (vm_map_lookup_entry(map, laddr, &entry) &&
5837 (VME_OBJECT(entry) != NULL) &&
5838 (VME_OBJECT(entry) == object)) {
5839 uint16_t superpage;
5840
5841 if (!object->pager_created &&
5842 object->phys_contiguous &&
5843 VME_OFFSET(entry) == 0 &&
5844 (entry->vme_end - entry->vme_start == object->vo_size) &&
5845 VM_MAP_PAGE_ALIGNED(entry->vme_start, (object->vo_size - 1))) {
5846 superpage = VM_MEM_SUPERPAGE;
5847 } else {
5848 superpage = 0;
5849 }
5850
5851 if (superpage && physpage_p) {
5852 /* for vm_map_wire_and_extract() */
5853 *physpage_p = (ppnum_t)
5854 ((((vm_map_offset_t)
5855 object->vo_shadow_offset)
5856 + VME_OFFSET(entry)
5857 + (laddr - entry->vme_start))
5858 >> PAGE_SHIFT);
5859 }
5860
5861 if (caller_pmap) {
5862 /*
5863 * Set up a block mapped area
5864 */
5865 assert((uint32_t)((ldelta + hdelta) >> PAGE_SHIFT) == ((ldelta + hdelta) >> PAGE_SHIFT));
5866 kr = pmap_map_block(caller_pmap,
5867 (addr64_t)(caller_pmap_addr - ldelta),
5868 (ppnum_t)((((vm_map_offset_t) (VME_OBJECT(entry)->vo_shadow_offset)) +
5869 VME_OFFSET(entry) + (laddr - entry->vme_start) - ldelta) >> PAGE_SHIFT),
5870 (uint32_t)((ldelta + hdelta) >> PAGE_SHIFT), prot,
5871 (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0);
5872
5873 if (kr != KERN_SUCCESS) {
5874 goto cleanup;
5875 }
5876 } else {
5877 /*
5878 * Set up a block mapped area
5879 */
5880 assert((uint32_t)((ldelta + hdelta) >> PAGE_SHIFT) == ((ldelta + hdelta) >> PAGE_SHIFT));
5881 kr = pmap_map_block(real_map->pmap,
5882 (addr64_t)(vaddr - ldelta),
5883 (ppnum_t)((((vm_map_offset_t)(VME_OBJECT(entry)->vo_shadow_offset)) +
5884 VME_OFFSET(entry) + (laddr - entry->vme_start) - ldelta) >> PAGE_SHIFT),
5885 (uint32_t)((ldelta + hdelta) >> PAGE_SHIFT), prot,
5886 (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0);
5887
5888 if (kr != KERN_SUCCESS) {
5889 goto cleanup;
5890 }
5891 }
5892 }
5893 }
5894
5895 /*
5896 * Success
5897 */
5898 kr = KERN_SUCCESS;
5899
5900 /*
5901 * TODO: could most of the done cases just use cleanup?
5902 */
5903 cleanup:
5904 /*
5905 * Unlock everything, and return
5906 */
5907 vm_map_unlock_read(map);
5908 if (real_map != map) {
5909 vm_map_unlock(real_map);
5910 }
5911
5912 if (m != VM_PAGE_NULL) {
5913 assert(VM_PAGE_OBJECT(m) == m_object);
5914
5915 if (!m_object->internal && (fault_type & VM_PROT_WRITE)) {
5916 vm_object_paging_begin(m_object);
5917
5918 assert(written_on_object == VM_OBJECT_NULL);
5919 written_on_object = m_object;
5920 written_on_pager = m_object->pager;
5921 written_on_offset = m_object->paging_offset + m->vmp_offset;
5922 }
5923 PAGE_WAKEUP_DONE(m);
5924
5925 vm_fault_cleanup(m_object, top_page);
5926 } else {
5927 vm_fault_cleanup(object, top_page);
5928 }
5929
5930 vm_object_deallocate(object);
5931
5932 #undef RELEASE_PAGE
5933
5934 done:
5935 thread_interrupt_level(interruptible_state);
5936
5937 if (resilient_media_object != VM_OBJECT_NULL) {
5938 assert(resilient_media_retry);
5939 assert(resilient_media_offset != (vm_object_offset_t)-1);
5940 /* release extra reference on failed object */
5941 // printf("FBDP %s:%d resilient_media_object %p deallocate\n", __FUNCTION__, __LINE__, resilient_media_object);
5942 vm_object_deallocate(resilient_media_object);
5943 resilient_media_object = VM_OBJECT_NULL;
5944 resilient_media_offset = (vm_object_offset_t)-1;
5945 resilient_media_retry = FALSE;
5946 }
5947 assert(!resilient_media_retry);
5948
5949 /*
5950 * Only I/O throttle on faults which cause a pagein/swapin.
5951 */
5952 if ((type_of_fault == DBG_PAGEIND_FAULT) || (type_of_fault == DBG_PAGEINV_FAULT) || (type_of_fault == DBG_COMPRESSOR_SWAPIN_FAULT)) {
5953 throttle_lowpri_io(1);
5954 } else {
5955 if (kr == KERN_SUCCESS && type_of_fault != DBG_CACHE_HIT_FAULT && type_of_fault != DBG_GUARD_FAULT) {
5956 if ((throttle_delay = vm_page_throttled(TRUE))) {
5957 if (vm_debug_events) {
5958 if (type_of_fault == DBG_COMPRESSOR_FAULT) {
5959 VM_DEBUG_EVENT(vmf_compressordelay, VMF_COMPRESSORDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
5960 } else if (type_of_fault == DBG_COW_FAULT) {
5961 VM_DEBUG_EVENT(vmf_cowdelay, VMF_COWDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
5962 } else {
5963 VM_DEBUG_EVENT(vmf_zfdelay, VMF_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
5964 }
5965 }
5966 delay(throttle_delay);
5967 }
5968 }
5969 }
5970
5971 if (written_on_object) {
5972 vnode_pager_dirtied(written_on_pager, written_on_offset, written_on_offset + PAGE_SIZE_64);
5973
5974 vm_object_lock(written_on_object);
5975 vm_object_paging_end(written_on_object);
5976 vm_object_unlock(written_on_object);
5977
5978 written_on_object = VM_OBJECT_NULL;
5979 }
5980
5981 if (rtfault) {
5982 vm_record_rtfault(cthread, fstart, trace_vaddr, type_of_fault);
5983 }
5984
5985 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
5986 (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END,
5987 ((uint64_t)trace_vaddr >> 32),
5988 trace_vaddr,
5989 kr,
5990 vm_fault_type_for_tracing(need_copy_on_read, type_of_fault),
5991 0);
5992
5993 if (fault_page_size < PAGE_SIZE && kr != KERN_SUCCESS) {
5994 DEBUG4K_FAULT("map %p original %p vaddr 0x%llx -> 0x%x\n", map, original_map, (uint64_t)trace_real_vaddr, kr);
5995 }
5996
5997 return kr;
5998 }
5999
6000 /*
6001 * vm_fault_wire:
6002 *
6003 * Wire down a range of virtual addresses in a map.
6004 */
6005 kern_return_t
6006 vm_fault_wire(
6007 vm_map_t map,
6008 vm_map_entry_t entry,
6009 vm_prot_t prot,
6010 vm_tag_t wire_tag,
6011 pmap_t pmap,
6012 vm_map_offset_t pmap_addr,
6013 ppnum_t *physpage_p)
6014 {
6015 vm_map_offset_t va;
6016 vm_map_offset_t end_addr = entry->vme_end;
6017 kern_return_t rc;
6018 vm_map_size_t effective_page_size;
6019
6020 assert(entry->in_transition);
6021
6022 if ((VME_OBJECT(entry) != NULL) &&
6023 !entry->is_sub_map &&
6024 VME_OBJECT(entry)->phys_contiguous) {
6025 return KERN_SUCCESS;
6026 }
6027
6028 /*
6029 * Inform the physical mapping system that the
6030 * range of addresses may not fault, so that
6031 * page tables and such can be locked down as well.
6032 */
6033
6034 pmap_pageable(pmap, pmap_addr,
6035 pmap_addr + (end_addr - entry->vme_start), FALSE);
6036
6037 /*
6038 * We simulate a fault to get the page and enter it
6039 * in the physical map.
6040 */
6041
6042 effective_page_size = MIN(VM_MAP_PAGE_SIZE(map), PAGE_SIZE);
6043 for (va = entry->vme_start;
6044 va < end_addr;
6045 va += effective_page_size) {
6046 rc = vm_fault_wire_fast(map, va, prot, wire_tag, entry, pmap,
6047 pmap_addr + (va - entry->vme_start),
6048 physpage_p);
6049 if (rc != KERN_SUCCESS) {
6050 rc = vm_fault_internal(map, va, prot, TRUE, wire_tag,
6051 ((pmap == kernel_pmap)
6052 ? THREAD_UNINT
6053 : THREAD_ABORTSAFE),
6054 pmap,
6055 (pmap_addr +
6056 (va - entry->vme_start)),
6057 physpage_p);
6058 DTRACE_VM2(softlock, int, 1, (uint64_t *), NULL);
6059 }
6060
6061 if (rc != KERN_SUCCESS) {
6062 struct vm_map_entry tmp_entry = *entry;
6063
6064 /* unwire wired pages */
6065 tmp_entry.vme_end = va;
6066 vm_fault_unwire(map,
6067 &tmp_entry, FALSE, pmap, pmap_addr);
6068
6069 return rc;
6070 }
6071 }
6072 return KERN_SUCCESS;
6073 }
6074
6075 /*
6076 * vm_fault_unwire:
6077 *
6078 * Unwire a range of virtual addresses in a map.
6079 */
6080 void
6081 vm_fault_unwire(
6082 vm_map_t map,
6083 vm_map_entry_t entry,
6084 boolean_t deallocate,
6085 pmap_t pmap,
6086 vm_map_offset_t pmap_addr)
6087 {
6088 vm_map_offset_t va;
6089 vm_map_offset_t end_addr = entry->vme_end;
6090 vm_object_t object;
6091 struct vm_object_fault_info fault_info = {};
6092 unsigned int unwired_pages;
6093 vm_map_size_t effective_page_size;
6094
6095 object = (entry->is_sub_map) ? VM_OBJECT_NULL : VME_OBJECT(entry);
6096
6097 /*
6098 * If it's marked phys_contiguous, then vm_fault_wire() didn't actually
6099 * do anything since such memory is wired by default. So we don't have
6100 * anything to undo here.
6101 */
6102
6103 if (object != VM_OBJECT_NULL && object->phys_contiguous) {
6104 return;
6105 }
6106
6107 fault_info.interruptible = THREAD_UNINT;
6108 fault_info.behavior = entry->behavior;
6109 fault_info.user_tag = VME_ALIAS(entry);
6110 if (entry->iokit_acct ||
6111 (!entry->is_sub_map && !entry->use_pmap)) {
6112 fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT;
6113 }
6114 fault_info.lo_offset = VME_OFFSET(entry);
6115 fault_info.hi_offset = (entry->vme_end - entry->vme_start) + VME_OFFSET(entry);
6116 fault_info.no_cache = entry->no_cache;
6117 fault_info.stealth = TRUE;
6118
6119 unwired_pages = 0;
6120
6121 /*
6122 * Since the pages are wired down, we must be able to
6123 * get their mappings from the physical map system.
6124 */
6125
6126 effective_page_size = MIN(VM_MAP_PAGE_SIZE(map), PAGE_SIZE);
6127 for (va = entry->vme_start;
6128 va < end_addr;
6129 va += effective_page_size) {
6130 if (object == VM_OBJECT_NULL) {
6131 if (pmap) {
6132 pmap_change_wiring(pmap,
6133 pmap_addr + (va - entry->vme_start), FALSE);
6134 }
6135 (void) vm_fault(map, va, VM_PROT_NONE,
6136 TRUE, VM_KERN_MEMORY_NONE, THREAD_UNINT, pmap, pmap_addr);
6137 } else {
6138 vm_prot_t prot;
6139 vm_page_t result_page;
6140 vm_page_t top_page;
6141 vm_object_t result_object;
6142 vm_fault_return_t result;
6143
6144 /* cap cluster size at maximum UPL size */
6145 upl_size_t cluster_size;
6146 if (os_sub_overflow(end_addr, va, &cluster_size)) {
6147 cluster_size = 0 - (upl_size_t)PAGE_SIZE;
6148 }
6149 fault_info.cluster_size = cluster_size;
6150
6151 do {
6152 prot = VM_PROT_NONE;
6153
6154 vm_object_lock(object);
6155 vm_object_paging_begin(object);
6156 result_page = VM_PAGE_NULL;
6157 result = vm_fault_page(
6158 object,
6159 (VME_OFFSET(entry) +
6160 (va - entry->vme_start)),
6161 VM_PROT_NONE, TRUE,
6162 FALSE, /* page not looked up */
6163 &prot, &result_page, &top_page,
6164 (int *)0,
6165 NULL, map->no_zero_fill,
6166 FALSE, &fault_info);
6167 } while (result == VM_FAULT_RETRY);
6168
6169 /*
6170 * If this was a mapping to a file on a device that has been forcibly
6171 * unmounted, then we won't get a page back from vm_fault_page(). Just
6172 * move on to the next one in case the remaining pages are mapped from
6173 * different objects. During a forced unmount, the object is terminated
6174 * so the alive flag will be false if this happens. A forced unmount will
6175 * will occur when an external disk is unplugged before the user does an
6176 * eject, so we don't want to panic in that situation.
6177 */
6178
6179 if (result == VM_FAULT_MEMORY_ERROR && !object->alive) {
6180 continue;
6181 }
6182
6183 if (result == VM_FAULT_MEMORY_ERROR &&
6184 object == kernel_object) {
6185 /*
6186 * This must have been allocated with
6187 * KMA_KOBJECT and KMA_VAONLY and there's
6188 * no physical page at this offset.
6189 * We're done (no page to free).
6190 */
6191 assert(deallocate);
6192 continue;
6193 }
6194
6195 if (result != VM_FAULT_SUCCESS) {
6196 panic("vm_fault_unwire: failure");
6197 }
6198
6199 result_object = VM_PAGE_OBJECT(result_page);
6200
6201 if (deallocate) {
6202 assert(VM_PAGE_GET_PHYS_PAGE(result_page) !=
6203 vm_page_fictitious_addr);
6204 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(result_page));
6205 if (VM_PAGE_WIRED(result_page)) {
6206 unwired_pages++;
6207 }
6208 VM_PAGE_FREE(result_page);
6209 } else {
6210 if ((pmap) && (VM_PAGE_GET_PHYS_PAGE(result_page) != vm_page_guard_addr)) {
6211 pmap_change_wiring(pmap,
6212 pmap_addr + (va - entry->vme_start), FALSE);
6213 }
6214
6215
6216 if (VM_PAGE_WIRED(result_page)) {
6217 vm_page_lockspin_queues();
6218 vm_page_unwire(result_page, TRUE);
6219 vm_page_unlock_queues();
6220 unwired_pages++;
6221 }
6222 if (entry->zero_wired_pages) {
6223 pmap_zero_page(VM_PAGE_GET_PHYS_PAGE(result_page));
6224 entry->zero_wired_pages = FALSE;
6225 }
6226
6227 PAGE_WAKEUP_DONE(result_page);
6228 }
6229 vm_fault_cleanup(result_object, top_page);
6230 }
6231 }
6232
6233 /*
6234 * Inform the physical mapping system that the range
6235 * of addresses may fault, so that page tables and
6236 * such may be unwired themselves.
6237 */
6238
6239 pmap_pageable(pmap, pmap_addr,
6240 pmap_addr + (end_addr - entry->vme_start), TRUE);
6241
6242 if (kernel_object == object) {
6243 /*
6244 * Would like to make user_tag in vm_object_fault_info
6245 * vm_tag_t (unsigned short) but user_tag derives its value from
6246 * VME_ALIAS(entry) at a few places and VME_ALIAS, in turn, casts
6247 * to an _unsigned int_ which is used by non-fault_info paths throughout the
6248 * code at many places.
6249 *
6250 * So, for now, an explicit truncation to unsigned short (vm_tag_t).
6251 */
6252 assertf((fault_info.user_tag & VME_ALIAS_MASK) == fault_info.user_tag,
6253 "VM Tag truncated from 0x%x to 0x%x\n", fault_info.user_tag, (fault_info.user_tag & VME_ALIAS_MASK));
6254 vm_tag_update_size((vm_tag_t) fault_info.user_tag, -ptoa_64(unwired_pages));
6255 }
6256 }
6257
6258 /*
6259 * vm_fault_wire_fast:
6260 *
6261 * Handle common case of a wire down page fault at the given address.
6262 * If successful, the page is inserted into the associated physical map.
6263 * The map entry is passed in to avoid the overhead of a map lookup.
6264 *
6265 * NOTE: the given address should be truncated to the
6266 * proper page address.
6267 *
6268 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
6269 * a standard error specifying why the fault is fatal is returned.
6270 *
6271 * The map in question must be referenced, and remains so.
6272 * Caller has a read lock on the map.
6273 *
6274 * This is a stripped version of vm_fault() for wiring pages. Anything
6275 * other than the common case will return KERN_FAILURE, and the caller
6276 * is expected to call vm_fault().
6277 */
6278 static kern_return_t
6279 vm_fault_wire_fast(
6280 __unused vm_map_t map,
6281 vm_map_offset_t va,
6282 __unused vm_prot_t caller_prot,
6283 vm_tag_t wire_tag,
6284 vm_map_entry_t entry,
6285 pmap_t pmap,
6286 vm_map_offset_t pmap_addr,
6287 ppnum_t *physpage_p)
6288 {
6289 vm_object_t object;
6290 vm_object_offset_t offset;
6291 vm_page_t m;
6292 vm_prot_t prot;
6293 thread_t thread = current_thread();
6294 int type_of_fault;
6295 kern_return_t kr;
6296 vm_map_size_t fault_page_size;
6297 vm_map_offset_t fault_phys_offset;
6298 struct vm_object_fault_info fault_info = {};
6299
6300 counter_inc(&vm_statistics_faults);
6301
6302 if (thread != THREAD_NULL && thread->task != TASK_NULL) {
6303 counter_inc(&thread->task->faults);
6304 }
6305
6306 /*
6307 * Recovery actions
6308 */
6309
6310 #undef RELEASE_PAGE
6311 #define RELEASE_PAGE(m) { \
6312 PAGE_WAKEUP_DONE(m); \
6313 vm_page_lockspin_queues(); \
6314 vm_page_unwire(m, TRUE); \
6315 vm_page_unlock_queues(); \
6316 }
6317
6318
6319 #undef UNLOCK_THINGS
6320 #define UNLOCK_THINGS { \
6321 vm_object_paging_end(object); \
6322 vm_object_unlock(object); \
6323 }
6324
6325 #undef UNLOCK_AND_DEALLOCATE
6326 #define UNLOCK_AND_DEALLOCATE { \
6327 UNLOCK_THINGS; \
6328 vm_object_deallocate(object); \
6329 }
6330 /*
6331 * Give up and have caller do things the hard way.
6332 */
6333
6334 #define GIVE_UP { \
6335 UNLOCK_AND_DEALLOCATE; \
6336 return(KERN_FAILURE); \
6337 }
6338
6339
6340 /*
6341 * If this entry is not directly to a vm_object, bail out.
6342 */
6343 if (entry->is_sub_map) {
6344 assert(physpage_p == NULL);
6345 return KERN_FAILURE;
6346 }
6347
6348 /*
6349 * Find the backing store object and offset into it.
6350 */
6351
6352 object = VME_OBJECT(entry);
6353 offset = (va - entry->vme_start) + VME_OFFSET(entry);
6354 prot = entry->protection;
6355
6356 /*
6357 * Make a reference to this object to prevent its
6358 * disposal while we are messing with it.
6359 */
6360
6361 vm_object_lock(object);
6362 vm_object_reference_locked(object);
6363 vm_object_paging_begin(object);
6364
6365 /*
6366 * INVARIANTS (through entire routine):
6367 *
6368 * 1) At all times, we must either have the object
6369 * lock or a busy page in some object to prevent
6370 * some other thread from trying to bring in
6371 * the same page.
6372 *
6373 * 2) Once we have a busy page, we must remove it from
6374 * the pageout queues, so that the pageout daemon
6375 * will not grab it away.
6376 *
6377 */
6378
6379 /*
6380 * Look for page in top-level object. If it's not there or
6381 * there's something going on, give up.
6382 */
6383 m = vm_page_lookup(object, vm_object_trunc_page(offset));
6384 if ((m == VM_PAGE_NULL) || (m->vmp_busy) ||
6385 (m->vmp_unusual && (m->vmp_error || m->vmp_restart || m->vmp_absent))) {
6386 GIVE_UP;
6387 }
6388 if (m->vmp_fictitious &&
6389 VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) {
6390 /*
6391 * Guard pages are fictitious pages and are never
6392 * entered into a pmap, so let's say it's been wired...
6393 */
6394 kr = KERN_SUCCESS;
6395 goto done;
6396 }
6397
6398 /*
6399 * Wire the page down now. All bail outs beyond this
6400 * point must unwire the page.
6401 */
6402
6403 vm_page_lockspin_queues();
6404 vm_page_wire(m, wire_tag, TRUE);
6405 vm_page_unlock_queues();
6406
6407 /*
6408 * Mark page busy for other threads.
6409 */
6410 assert(!m->vmp_busy);
6411 m->vmp_busy = TRUE;
6412 assert(!m->vmp_absent);
6413
6414 /*
6415 * Give up if the page is being written and there's a copy object
6416 */
6417 if ((object->copy != VM_OBJECT_NULL) && (prot & VM_PROT_WRITE)) {
6418 RELEASE_PAGE(m);
6419 GIVE_UP;
6420 }
6421
6422 fault_info.user_tag = VME_ALIAS(entry);
6423 fault_info.pmap_options = 0;
6424 if (entry->iokit_acct ||
6425 (!entry->is_sub_map && !entry->use_pmap)) {
6426 fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT;
6427 }
6428
6429 fault_page_size = MIN(VM_MAP_PAGE_SIZE(map), PAGE_SIZE);
6430 fault_phys_offset = offset - vm_object_trunc_page(offset);
6431
6432 /*
6433 * Put this page into the physical map.
6434 */
6435 type_of_fault = DBG_CACHE_HIT_FAULT;
6436 kr = vm_fault_enter(m,
6437 pmap,
6438 pmap_addr,
6439 fault_page_size,
6440 fault_phys_offset,
6441 prot,
6442 prot,
6443 TRUE, /* wired */
6444 FALSE, /* change_wiring */
6445 wire_tag,
6446 &fault_info,
6447 NULL,
6448 &type_of_fault);
6449 if (kr != KERN_SUCCESS) {
6450 RELEASE_PAGE(m);
6451 GIVE_UP;
6452 }
6453
6454 done:
6455 /*
6456 * Unlock everything, and return
6457 */
6458
6459 if (physpage_p) {
6460 /* for vm_map_wire_and_extract() */
6461 if (kr == KERN_SUCCESS) {
6462 assert(object == VM_PAGE_OBJECT(m));
6463 *physpage_p = VM_PAGE_GET_PHYS_PAGE(m);
6464 if (prot & VM_PROT_WRITE) {
6465 vm_object_lock_assert_exclusive(object);
6466 m->vmp_dirty = TRUE;
6467 }
6468 } else {
6469 *physpage_p = 0;
6470 }
6471 }
6472
6473 PAGE_WAKEUP_DONE(m);
6474 UNLOCK_AND_DEALLOCATE;
6475
6476 return kr;
6477 }
6478
6479 /*
6480 * Routine: vm_fault_copy_cleanup
6481 * Purpose:
6482 * Release a page used by vm_fault_copy.
6483 */
6484
6485 static void
6486 vm_fault_copy_cleanup(
6487 vm_page_t page,
6488 vm_page_t top_page)
6489 {
6490 vm_object_t object = VM_PAGE_OBJECT(page);
6491
6492 vm_object_lock(object);
6493 PAGE_WAKEUP_DONE(page);
6494 if (!VM_PAGE_PAGEABLE(page)) {
6495 vm_page_lockspin_queues();
6496 if (!VM_PAGE_PAGEABLE(page)) {
6497 vm_page_activate(page);
6498 }
6499 vm_page_unlock_queues();
6500 }
6501 vm_fault_cleanup(object, top_page);
6502 }
6503
6504 static void
6505 vm_fault_copy_dst_cleanup(
6506 vm_page_t page)
6507 {
6508 vm_object_t object;
6509
6510 if (page != VM_PAGE_NULL) {
6511 object = VM_PAGE_OBJECT(page);
6512 vm_object_lock(object);
6513 vm_page_lockspin_queues();
6514 vm_page_unwire(page, TRUE);
6515 vm_page_unlock_queues();
6516 vm_object_paging_end(object);
6517 vm_object_unlock(object);
6518 }
6519 }
6520
6521 /*
6522 * Routine: vm_fault_copy
6523 *
6524 * Purpose:
6525 * Copy pages from one virtual memory object to another --
6526 * neither the source nor destination pages need be resident.
6527 *
6528 * Before actually copying a page, the version associated with
6529 * the destination address map wil be verified.
6530 *
6531 * In/out conditions:
6532 * The caller must hold a reference, but not a lock, to
6533 * each of the source and destination objects and to the
6534 * destination map.
6535 *
6536 * Results:
6537 * Returns KERN_SUCCESS if no errors were encountered in
6538 * reading or writing the data. Returns KERN_INTERRUPTED if
6539 * the operation was interrupted (only possible if the
6540 * "interruptible" argument is asserted). Other return values
6541 * indicate a permanent error in copying the data.
6542 *
6543 * The actual amount of data copied will be returned in the
6544 * "copy_size" argument. In the event that the destination map
6545 * verification failed, this amount may be less than the amount
6546 * requested.
6547 */
6548 kern_return_t
6549 vm_fault_copy(
6550 vm_object_t src_object,
6551 vm_object_offset_t src_offset,
6552 vm_map_size_t *copy_size, /* INOUT */
6553 vm_object_t dst_object,
6554 vm_object_offset_t dst_offset,
6555 vm_map_t dst_map,
6556 vm_map_version_t *dst_version,
6557 int interruptible)
6558 {
6559 vm_page_t result_page;
6560
6561 vm_page_t src_page;
6562 vm_page_t src_top_page;
6563 vm_prot_t src_prot;
6564
6565 vm_page_t dst_page;
6566 vm_page_t dst_top_page;
6567 vm_prot_t dst_prot;
6568
6569 vm_map_size_t amount_left;
6570 vm_object_t old_copy_object;
6571 vm_object_t result_page_object = NULL;
6572 kern_return_t error = 0;
6573 vm_fault_return_t result;
6574
6575 vm_map_size_t part_size;
6576 struct vm_object_fault_info fault_info_src = {};
6577 struct vm_object_fault_info fault_info_dst = {};
6578
6579 /*
6580 * In order not to confuse the clustered pageins, align
6581 * the different offsets on a page boundary.
6582 */
6583
6584 #define RETURN(x) \
6585 MACRO_BEGIN \
6586 *copy_size -= amount_left; \
6587 MACRO_RETURN(x); \
6588 MACRO_END
6589
6590 amount_left = *copy_size;
6591
6592 fault_info_src.interruptible = interruptible;
6593 fault_info_src.behavior = VM_BEHAVIOR_SEQUENTIAL;
6594 fault_info_src.lo_offset = vm_object_trunc_page(src_offset);
6595 fault_info_src.hi_offset = fault_info_src.lo_offset + amount_left;
6596 fault_info_src.stealth = TRUE;
6597
6598 fault_info_dst.interruptible = interruptible;
6599 fault_info_dst.behavior = VM_BEHAVIOR_SEQUENTIAL;
6600 fault_info_dst.lo_offset = vm_object_trunc_page(dst_offset);
6601 fault_info_dst.hi_offset = fault_info_dst.lo_offset + amount_left;
6602 fault_info_dst.stealth = TRUE;
6603
6604 do { /* while (amount_left > 0) */
6605 /*
6606 * There may be a deadlock if both source and destination
6607 * pages are the same. To avoid this deadlock, the copy must
6608 * start by getting the destination page in order to apply
6609 * COW semantics if any.
6610 */
6611
6612 RetryDestinationFault:;
6613
6614 dst_prot = VM_PROT_WRITE | VM_PROT_READ;
6615
6616 vm_object_lock(dst_object);
6617 vm_object_paging_begin(dst_object);
6618
6619 /* cap cluster size at maximum UPL size */
6620 upl_size_t cluster_size;
6621 if (os_convert_overflow(amount_left, &cluster_size)) {
6622 cluster_size = 0 - (upl_size_t)PAGE_SIZE;
6623 }
6624 fault_info_dst.cluster_size = cluster_size;
6625
6626 dst_page = VM_PAGE_NULL;
6627 result = vm_fault_page(dst_object,
6628 vm_object_trunc_page(dst_offset),
6629 VM_PROT_WRITE | VM_PROT_READ,
6630 FALSE,
6631 FALSE, /* page not looked up */
6632 &dst_prot, &dst_page, &dst_top_page,
6633 (int *)0,
6634 &error,
6635 dst_map->no_zero_fill,
6636 FALSE, &fault_info_dst);
6637 switch (result) {
6638 case VM_FAULT_SUCCESS:
6639 break;
6640 case VM_FAULT_RETRY:
6641 goto RetryDestinationFault;
6642 case VM_FAULT_MEMORY_SHORTAGE:
6643 if (vm_page_wait(interruptible)) {
6644 goto RetryDestinationFault;
6645 }
6646 OS_FALLTHROUGH;
6647 case VM_FAULT_INTERRUPTED:
6648 RETURN(MACH_SEND_INTERRUPTED);
6649 case VM_FAULT_SUCCESS_NO_VM_PAGE:
6650 /* success but no VM page: fail the copy */
6651 vm_object_paging_end(dst_object);
6652 vm_object_unlock(dst_object);
6653 OS_FALLTHROUGH;
6654 case VM_FAULT_MEMORY_ERROR:
6655 if (error) {
6656 return error;
6657 } else {
6658 return KERN_MEMORY_ERROR;
6659 }
6660 default:
6661 panic("vm_fault_copy: unexpected error 0x%x from "
6662 "vm_fault_page()\n", result);
6663 }
6664 assert((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE);
6665
6666 assert(dst_object == VM_PAGE_OBJECT(dst_page));
6667 old_copy_object = dst_object->copy;
6668
6669 /*
6670 * There exists the possiblity that the source and
6671 * destination page are the same. But we can't
6672 * easily determine that now. If they are the
6673 * same, the call to vm_fault_page() for the
6674 * destination page will deadlock. To prevent this we
6675 * wire the page so we can drop busy without having
6676 * the page daemon steal the page. We clean up the
6677 * top page but keep the paging reference on the object
6678 * holding the dest page so it doesn't go away.
6679 */
6680
6681 vm_page_lockspin_queues();
6682 vm_page_wire(dst_page, VM_KERN_MEMORY_OSFMK, TRUE);
6683 vm_page_unlock_queues();
6684 PAGE_WAKEUP_DONE(dst_page);
6685 vm_object_unlock(dst_object);
6686
6687 if (dst_top_page != VM_PAGE_NULL) {
6688 vm_object_lock(dst_object);
6689 VM_PAGE_FREE(dst_top_page);
6690 vm_object_paging_end(dst_object);
6691 vm_object_unlock(dst_object);
6692 }
6693
6694 RetrySourceFault:;
6695
6696 if (src_object == VM_OBJECT_NULL) {
6697 /*
6698 * No source object. We will just
6699 * zero-fill the page in dst_object.
6700 */
6701 src_page = VM_PAGE_NULL;
6702 result_page = VM_PAGE_NULL;
6703 } else {
6704 vm_object_lock(src_object);
6705 src_page = vm_page_lookup(src_object,
6706 vm_object_trunc_page(src_offset));
6707 if (src_page == dst_page) {
6708 src_prot = dst_prot;
6709 result_page = VM_PAGE_NULL;
6710 } else {
6711 src_prot = VM_PROT_READ;
6712 vm_object_paging_begin(src_object);
6713
6714 /* cap cluster size at maximum UPL size */
6715 if (os_convert_overflow(amount_left, &cluster_size)) {
6716 cluster_size = 0 - (upl_size_t)PAGE_SIZE;
6717 }
6718 fault_info_src.cluster_size = cluster_size;
6719
6720 result_page = VM_PAGE_NULL;
6721 result = vm_fault_page(
6722 src_object,
6723 vm_object_trunc_page(src_offset),
6724 VM_PROT_READ, FALSE,
6725 FALSE, /* page not looked up */
6726 &src_prot,
6727 &result_page, &src_top_page,
6728 (int *)0, &error, FALSE,
6729 FALSE, &fault_info_src);
6730
6731 switch (result) {
6732 case VM_FAULT_SUCCESS:
6733 break;
6734 case VM_FAULT_RETRY:
6735 goto RetrySourceFault;
6736 case VM_FAULT_MEMORY_SHORTAGE:
6737 if (vm_page_wait(interruptible)) {
6738 goto RetrySourceFault;
6739 }
6740 OS_FALLTHROUGH;
6741 case VM_FAULT_INTERRUPTED:
6742 vm_fault_copy_dst_cleanup(dst_page);
6743 RETURN(MACH_SEND_INTERRUPTED);
6744 case VM_FAULT_SUCCESS_NO_VM_PAGE:
6745 /* success but no VM page: fail */
6746 vm_object_paging_end(src_object);
6747 vm_object_unlock(src_object);
6748 OS_FALLTHROUGH;
6749 case VM_FAULT_MEMORY_ERROR:
6750 vm_fault_copy_dst_cleanup(dst_page);
6751 if (error) {
6752 return error;
6753 } else {
6754 return KERN_MEMORY_ERROR;
6755 }
6756 default:
6757 panic("vm_fault_copy(2): unexpected "
6758 "error 0x%x from "
6759 "vm_fault_page()\n", result);
6760 }
6761
6762 result_page_object = VM_PAGE_OBJECT(result_page);
6763 assert((src_top_page == VM_PAGE_NULL) ==
6764 (result_page_object == src_object));
6765 }
6766 assert((src_prot & VM_PROT_READ) != VM_PROT_NONE);
6767 vm_object_unlock(result_page_object);
6768 }
6769
6770 vm_map_lock_read(dst_map);
6771
6772 if (!vm_map_verify(dst_map, dst_version)) {
6773 vm_map_unlock_read(dst_map);
6774 if (result_page != VM_PAGE_NULL && src_page != dst_page) {
6775 vm_fault_copy_cleanup(result_page, src_top_page);
6776 }
6777 vm_fault_copy_dst_cleanup(dst_page);
6778 break;
6779 }
6780 assert(dst_object == VM_PAGE_OBJECT(dst_page));
6781
6782 vm_object_lock(dst_object);
6783
6784 if (dst_object->copy != old_copy_object) {
6785 vm_object_unlock(dst_object);
6786 vm_map_unlock_read(dst_map);
6787 if (result_page != VM_PAGE_NULL && src_page != dst_page) {
6788 vm_fault_copy_cleanup(result_page, src_top_page);
6789 }
6790 vm_fault_copy_dst_cleanup(dst_page);
6791 break;
6792 }
6793 vm_object_unlock(dst_object);
6794
6795 /*
6796 * Copy the page, and note that it is dirty
6797 * immediately.
6798 */
6799
6800 if (!page_aligned(src_offset) ||
6801 !page_aligned(dst_offset) ||
6802 !page_aligned(amount_left)) {
6803 vm_object_offset_t src_po,
6804 dst_po;
6805
6806 src_po = src_offset - vm_object_trunc_page(src_offset);
6807 dst_po = dst_offset - vm_object_trunc_page(dst_offset);
6808
6809 if (dst_po > src_po) {
6810 part_size = PAGE_SIZE - dst_po;
6811 } else {
6812 part_size = PAGE_SIZE - src_po;
6813 }
6814 if (part_size > (amount_left)) {
6815 part_size = amount_left;
6816 }
6817
6818 if (result_page == VM_PAGE_NULL) {
6819 assert((vm_offset_t) dst_po == dst_po);
6820 assert((vm_size_t) part_size == part_size);
6821 vm_page_part_zero_fill(dst_page,
6822 (vm_offset_t) dst_po,
6823 (vm_size_t) part_size);
6824 } else {
6825 assert((vm_offset_t) src_po == src_po);
6826 assert((vm_offset_t) dst_po == dst_po);
6827 assert((vm_size_t) part_size == part_size);
6828 vm_page_part_copy(result_page,
6829 (vm_offset_t) src_po,
6830 dst_page,
6831 (vm_offset_t) dst_po,
6832 (vm_size_t)part_size);
6833 if (!dst_page->vmp_dirty) {
6834 vm_object_lock(dst_object);
6835 SET_PAGE_DIRTY(dst_page, TRUE);
6836 vm_object_unlock(dst_object);
6837 }
6838 }
6839 } else {
6840 part_size = PAGE_SIZE;
6841
6842 if (result_page == VM_PAGE_NULL) {
6843 vm_page_zero_fill(dst_page);
6844 } else {
6845 vm_object_lock(result_page_object);
6846 vm_page_copy(result_page, dst_page);
6847 vm_object_unlock(result_page_object);
6848
6849 if (!dst_page->vmp_dirty) {
6850 vm_object_lock(dst_object);
6851 SET_PAGE_DIRTY(dst_page, TRUE);
6852 vm_object_unlock(dst_object);
6853 }
6854 }
6855 }
6856
6857 /*
6858 * Unlock everything, and return
6859 */
6860
6861 vm_map_unlock_read(dst_map);
6862
6863 if (result_page != VM_PAGE_NULL && src_page != dst_page) {
6864 vm_fault_copy_cleanup(result_page, src_top_page);
6865 }
6866 vm_fault_copy_dst_cleanup(dst_page);
6867
6868 amount_left -= part_size;
6869 src_offset += part_size;
6870 dst_offset += part_size;
6871 } while (amount_left > 0);
6872
6873 RETURN(KERN_SUCCESS);
6874 #undef RETURN
6875
6876 /*NOTREACHED*/
6877 }
6878
6879 #if VM_FAULT_CLASSIFY
6880 /*
6881 * Temporary statistics gathering support.
6882 */
6883
6884 /*
6885 * Statistics arrays:
6886 */
6887 #define VM_FAULT_TYPES_MAX 5
6888 #define VM_FAULT_LEVEL_MAX 8
6889
6890 int vm_fault_stats[VM_FAULT_TYPES_MAX][VM_FAULT_LEVEL_MAX];
6891
6892 #define VM_FAULT_TYPE_ZERO_FILL 0
6893 #define VM_FAULT_TYPE_MAP_IN 1
6894 #define VM_FAULT_TYPE_PAGER 2
6895 #define VM_FAULT_TYPE_COPY 3
6896 #define VM_FAULT_TYPE_OTHER 4
6897
6898
6899 void
6900 vm_fault_classify(vm_object_t object,
6901 vm_object_offset_t offset,
6902 vm_prot_t fault_type)
6903 {
6904 int type, level = 0;
6905 vm_page_t m;
6906
6907 while (TRUE) {
6908 m = vm_page_lookup(object, offset);
6909 if (m != VM_PAGE_NULL) {
6910 if (m->vmp_busy || m->vmp_error || m->vmp_restart || m->vmp_absent) {
6911 type = VM_FAULT_TYPE_OTHER;
6912 break;
6913 }
6914 if (((fault_type & VM_PROT_WRITE) == 0) ||
6915 ((level == 0) && object->copy == VM_OBJECT_NULL)) {
6916 type = VM_FAULT_TYPE_MAP_IN;
6917 break;
6918 }
6919 type = VM_FAULT_TYPE_COPY;
6920 break;
6921 } else {
6922 if (object->pager_created) {
6923 type = VM_FAULT_TYPE_PAGER;
6924 break;
6925 }
6926 if (object->shadow == VM_OBJECT_NULL) {
6927 type = VM_FAULT_TYPE_ZERO_FILL;
6928 break;
6929 }
6930
6931 offset += object->vo_shadow_offset;
6932 object = object->shadow;
6933 level++;
6934 continue;
6935 }
6936 }
6937
6938 if (level > VM_FAULT_LEVEL_MAX) {
6939 level = VM_FAULT_LEVEL_MAX;
6940 }
6941
6942 vm_fault_stats[type][level] += 1;
6943
6944 return;
6945 }
6946
6947 /* cleanup routine to call from debugger */
6948
6949 void
6950 vm_fault_classify_init(void)
6951 {
6952 int type, level;
6953
6954 for (type = 0; type < VM_FAULT_TYPES_MAX; type++) {
6955 for (level = 0; level < VM_FAULT_LEVEL_MAX; level++) {
6956 vm_fault_stats[type][level] = 0;
6957 }
6958 }
6959
6960 return;
6961 }
6962 #endif /* VM_FAULT_CLASSIFY */
6963
6964 vm_offset_t
6965 kdp_lightweight_fault(vm_map_t map, vm_offset_t cur_target_addr)
6966 {
6967 vm_map_entry_t entry;
6968 vm_object_t object;
6969 vm_offset_t object_offset;
6970 vm_page_t m;
6971 int compressor_external_state, compressed_count_delta;
6972 int compressor_flags = (C_DONT_BLOCK | C_KEEP | C_KDP);
6973 int my_fault_type = VM_PROT_READ;
6974 kern_return_t kr;
6975 int effective_page_mask, effective_page_size;
6976
6977 if (VM_MAP_PAGE_SHIFT(map) < PAGE_SHIFT) {
6978 effective_page_mask = VM_MAP_PAGE_MASK(map);
6979 effective_page_size = VM_MAP_PAGE_SIZE(map);
6980 } else {
6981 effective_page_mask = PAGE_MASK;
6982 effective_page_size = PAGE_SIZE;
6983 }
6984
6985 if (not_in_kdp) {
6986 panic("kdp_lightweight_fault called from outside of debugger context");
6987 }
6988
6989 assert(map != VM_MAP_NULL);
6990
6991 assert((cur_target_addr & effective_page_mask) == 0);
6992 if ((cur_target_addr & effective_page_mask) != 0) {
6993 return 0;
6994 }
6995
6996 if (kdp_lck_rw_lock_is_acquired_exclusive(&map->lock)) {
6997 return 0;
6998 }
6999
7000 if (!vm_map_lookup_entry(map, cur_target_addr, &entry)) {
7001 return 0;
7002 }
7003
7004 if (entry->is_sub_map) {
7005 return 0;
7006 }
7007
7008 object = VME_OBJECT(entry);
7009 if (object == VM_OBJECT_NULL) {
7010 return 0;
7011 }
7012
7013 object_offset = cur_target_addr - entry->vme_start + VME_OFFSET(entry);
7014
7015 while (TRUE) {
7016 if (kdp_lck_rw_lock_is_acquired_exclusive(&object->Lock)) {
7017 return 0;
7018 }
7019
7020 if (object->pager_created && (object->paging_in_progress ||
7021 object->activity_in_progress)) {
7022 return 0;
7023 }
7024
7025 m = kdp_vm_page_lookup(object, vm_object_trunc_page(object_offset));
7026
7027 if (m != VM_PAGE_NULL) {
7028 if ((object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_DEFAULT) {
7029 return 0;
7030 }
7031
7032 if (m->vmp_laundry || m->vmp_busy || m->vmp_free_when_done || m->vmp_absent || m->vmp_error || m->vmp_cleaning ||
7033 m->vmp_overwriting || m->vmp_restart || m->vmp_unusual) {
7034 return 0;
7035 }
7036
7037 assert(!m->vmp_private);
7038 if (m->vmp_private) {
7039 return 0;
7040 }
7041
7042 assert(!m->vmp_fictitious);
7043 if (m->vmp_fictitious) {
7044 return 0;
7045 }
7046
7047 assert(m->vmp_q_state != VM_PAGE_USED_BY_COMPRESSOR);
7048 if (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) {
7049 return 0;
7050 }
7051
7052 return ptoa(VM_PAGE_GET_PHYS_PAGE(m));
7053 }
7054
7055 compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN;
7056
7057 if (object->pager_created && MUST_ASK_PAGER(object, object_offset, compressor_external_state)) {
7058 if (compressor_external_state == VM_EXTERNAL_STATE_EXISTS) {
7059 kr = vm_compressor_pager_get(object->pager,
7060 vm_object_trunc_page(object_offset + object->paging_offset),
7061 kdp_compressor_decompressed_page_ppnum, &my_fault_type,
7062 compressor_flags, &compressed_count_delta);
7063 if (kr == KERN_SUCCESS) {
7064 return kdp_compressor_decompressed_page_paddr;
7065 } else {
7066 return 0;
7067 }
7068 }
7069 }
7070
7071 if (object->shadow == VM_OBJECT_NULL) {
7072 return 0;
7073 }
7074
7075 object_offset += object->vo_shadow_offset;
7076 object = object->shadow;
7077 }
7078 }
7079
7080 /*
7081 * vm_page_validate_cs_fast():
7082 * Performs a few quick checks to determine if the page's code signature
7083 * really needs to be fully validated. It could:
7084 * 1. have been modified (i.e. automatically tainted),
7085 * 2. have already been validated,
7086 * 3. have already been found to be tainted,
7087 * 4. no longer have a backing store.
7088 * Returns FALSE if the page needs to be fully validated.
7089 */
7090 static boolean_t
7091 vm_page_validate_cs_fast(
7092 vm_page_t page,
7093 vm_map_size_t fault_page_size,
7094 vm_map_offset_t fault_phys_offset)
7095 {
7096 vm_object_t object;
7097
7098 object = VM_PAGE_OBJECT(page);
7099 vm_object_lock_assert_held(object);
7100
7101 if (page->vmp_wpmapped &&
7102 !VMP_CS_TAINTED(page, fault_page_size, fault_phys_offset)) {
7103 /*
7104 * This page was mapped for "write" access sometime in the
7105 * past and could still be modifiable in the future.
7106 * Consider it tainted.
7107 * [ If the page was already found to be "tainted", no
7108 * need to re-validate. ]
7109 */
7110 vm_object_lock_assert_exclusive(object);
7111 VMP_CS_SET_VALIDATED(page, fault_page_size, fault_phys_offset, TRUE);
7112 VMP_CS_SET_TAINTED(page, fault_page_size, fault_phys_offset, TRUE);
7113 if (cs_debug) {
7114 printf("CODESIGNING: %s: "
7115 "page %p obj %p off 0x%llx "
7116 "was modified\n",
7117 __FUNCTION__,
7118 page, object, page->vmp_offset);
7119 }
7120 vm_cs_validated_dirtied++;
7121 }
7122
7123 if (VMP_CS_VALIDATED(page, fault_page_size, fault_phys_offset) ||
7124 VMP_CS_TAINTED(page, fault_page_size, fault_phys_offset)) {
7125 return TRUE;
7126 }
7127 vm_object_lock_assert_exclusive(object);
7128
7129 #if CHECK_CS_VALIDATION_BITMAP
7130 kern_return_t kr;
7131
7132 kr = vnode_pager_cs_check_validation_bitmap(
7133 object->pager,
7134 page->vmp_offset + object->paging_offset,
7135 CS_BITMAP_CHECK);
7136 if (kr == KERN_SUCCESS) {
7137 page->vmp_cs_validated = VMP_CS_ALL_TRUE;
7138 page->vmp_cs_tainted = VMP_CS_ALL_FALSE;
7139 vm_cs_bitmap_validated++;
7140 return TRUE;
7141 }
7142 #endif /* CHECK_CS_VALIDATION_BITMAP */
7143
7144 if (!object->alive || object->terminating || object->pager == NULL) {
7145 /*
7146 * The object is terminating and we don't have its pager
7147 * so we can't validate the data...
7148 */
7149 return TRUE;
7150 }
7151
7152 /* we need to really validate this page */
7153 vm_object_lock_assert_exclusive(object);
7154 return FALSE;
7155 }
7156
7157 void
7158 vm_page_validate_cs_mapped_slow(
7159 vm_page_t page,
7160 const void *kaddr)
7161 {
7162 vm_object_t object;
7163 memory_object_offset_t mo_offset;
7164 memory_object_t pager;
7165 struct vnode *vnode;
7166 int validated, tainted, nx;
7167
7168 assert(page->vmp_busy);
7169 object = VM_PAGE_OBJECT(page);
7170 vm_object_lock_assert_exclusive(object);
7171
7172 vm_cs_validates++;
7173
7174 /*
7175 * Since we get here to validate a page that was brought in by
7176 * the pager, we know that this pager is all setup and ready
7177 * by now.
7178 */
7179 assert(object->code_signed);
7180 assert(!object->internal);
7181 assert(object->pager != NULL);
7182 assert(object->pager_ready);
7183
7184 pager = object->pager;
7185 assert(object->paging_in_progress);
7186 vnode = vnode_pager_lookup_vnode(pager);
7187 mo_offset = page->vmp_offset + object->paging_offset;
7188
7189 /* verify the SHA1 hash for this page */
7190 validated = 0;
7191 tainted = 0;
7192 nx = 0;
7193 cs_validate_page(vnode,
7194 pager,
7195 mo_offset,
7196 (const void *)((const char *)kaddr),
7197 &validated,
7198 &tainted,
7199 &nx);
7200
7201 page->vmp_cs_validated |= validated;
7202 page->vmp_cs_tainted |= tainted;
7203 page->vmp_cs_nx |= nx;
7204
7205 #if CHECK_CS_VALIDATION_BITMAP
7206 if (page->vmp_cs_validated == VMP_CS_ALL_TRUE &&
7207 page->vmp_cs_tainted == VMP_CS_ALL_FALSE) {
7208 vnode_pager_cs_check_validation_bitmap(object->pager,
7209 mo_offset,
7210 CS_BITMAP_SET);
7211 }
7212 #endif /* CHECK_CS_VALIDATION_BITMAP */
7213 }
7214
7215 void
7216 vm_page_validate_cs_mapped(
7217 vm_page_t page,
7218 vm_map_size_t fault_page_size,
7219 vm_map_offset_t fault_phys_offset,
7220 const void *kaddr)
7221 {
7222 if (!vm_page_validate_cs_fast(page, fault_page_size, fault_phys_offset)) {
7223 vm_page_validate_cs_mapped_slow(page, kaddr);
7224 }
7225 }
7226
7227 static void
7228 vm_page_map_and_validate_cs(
7229 vm_object_t object,
7230 vm_page_t page)
7231 {
7232 vm_object_offset_t offset;
7233 vm_map_offset_t koffset;
7234 vm_map_size_t ksize;
7235 vm_offset_t kaddr;
7236 kern_return_t kr;
7237 boolean_t busy_page;
7238 boolean_t need_unmap;
7239
7240 vm_object_lock_assert_exclusive(object);
7241
7242 assert(object->code_signed);
7243 offset = page->vmp_offset;
7244
7245 busy_page = page->vmp_busy;
7246 if (!busy_page) {
7247 /* keep page busy while we map (and unlock) the VM object */
7248 page->vmp_busy = TRUE;
7249 }
7250
7251 /*
7252 * Take a paging reference on the VM object
7253 * to protect it from collapse or bypass,
7254 * and keep it from disappearing too.
7255 */
7256 vm_object_paging_begin(object);
7257
7258 /* map the page in the kernel address space */
7259 ksize = PAGE_SIZE_64;
7260 koffset = 0;
7261 need_unmap = FALSE;
7262 kr = vm_paging_map_object(page,
7263 object,
7264 offset,
7265 VM_PROT_READ,
7266 FALSE, /* can't unlock object ! */
7267 &ksize,
7268 &koffset,
7269 &need_unmap);
7270 if (kr != KERN_SUCCESS) {
7271 panic("%s: could not map page: 0x%x\n", __FUNCTION__, kr);
7272 }
7273 kaddr = CAST_DOWN(vm_offset_t, koffset);
7274
7275 /* validate the mapped page */
7276 vm_page_validate_cs_mapped_slow(page, (const void *) kaddr);
7277
7278 assert(page->vmp_busy);
7279 assert(object == VM_PAGE_OBJECT(page));
7280 vm_object_lock_assert_exclusive(object);
7281
7282 if (!busy_page) {
7283 PAGE_WAKEUP_DONE(page);
7284 }
7285 if (need_unmap) {
7286 /* unmap the map from the kernel address space */
7287 vm_paging_unmap_object(object, koffset, koffset + ksize);
7288 koffset = 0;
7289 ksize = 0;
7290 kaddr = 0;
7291 }
7292 vm_object_paging_end(object);
7293 }
7294
7295 void
7296 vm_page_validate_cs(
7297 vm_page_t page,
7298 vm_map_size_t fault_page_size,
7299 vm_map_offset_t fault_phys_offset)
7300 {
7301 vm_object_t object;
7302
7303 object = VM_PAGE_OBJECT(page);
7304 vm_object_lock_assert_held(object);
7305
7306 if (vm_page_validate_cs_fast(page, fault_page_size, fault_phys_offset)) {
7307 return;
7308 }
7309 vm_page_map_and_validate_cs(object, page);
7310 }
7311
7312 void
7313 vm_page_validate_cs_mapped_chunk(
7314 vm_page_t page,
7315 const void *kaddr,
7316 vm_offset_t chunk_offset,
7317 vm_size_t chunk_size,
7318 boolean_t *validated_p,
7319 unsigned *tainted_p)
7320 {
7321 vm_object_t object;
7322 vm_object_offset_t offset, offset_in_page;
7323 memory_object_t pager;
7324 struct vnode *vnode;
7325 boolean_t validated;
7326 unsigned tainted;
7327
7328 *validated_p = FALSE;
7329 *tainted_p = 0;
7330
7331 assert(page->vmp_busy);
7332 object = VM_PAGE_OBJECT(page);
7333 vm_object_lock_assert_exclusive(object);
7334
7335 assert(object->code_signed);
7336 offset = page->vmp_offset;
7337
7338 if (!object->alive || object->terminating || object->pager == NULL) {
7339 /*
7340 * The object is terminating and we don't have its pager
7341 * so we can't validate the data...
7342 */
7343 return;
7344 }
7345 /*
7346 * Since we get here to validate a page that was brought in by
7347 * the pager, we know that this pager is all setup and ready
7348 * by now.
7349 */
7350 assert(!object->internal);
7351 assert(object->pager != NULL);
7352 assert(object->pager_ready);
7353
7354 pager = object->pager;
7355 assert(object->paging_in_progress);
7356 vnode = vnode_pager_lookup_vnode(pager);
7357
7358 /* verify the signature for this chunk */
7359 offset_in_page = chunk_offset;
7360 assert(offset_in_page < PAGE_SIZE);
7361
7362 tainted = 0;
7363 validated = cs_validate_range(vnode,
7364 pager,
7365 (object->paging_offset +
7366 offset +
7367 offset_in_page),
7368 (const void *)((const char *)kaddr
7369 + offset_in_page),
7370 chunk_size,
7371 &tainted);
7372 if (validated) {
7373 *validated_p = TRUE;
7374 }
7375 if (tainted) {
7376 *tainted_p = tainted;
7377 }
7378 }
7379
7380 static void
7381 vm_rtfrecord_lock(void)
7382 {
7383 lck_spin_lock(&vm_rtfr_slock);
7384 }
7385
7386 static void
7387 vm_rtfrecord_unlock(void)
7388 {
7389 lck_spin_unlock(&vm_rtfr_slock);
7390 }
7391
7392 unsigned int
7393 vmrtfaultinfo_bufsz(void)
7394 {
7395 return vmrtf_num_records * sizeof(vm_rtfault_record_t);
7396 }
7397
7398 #include <kern/backtrace.h>
7399
7400 __attribute__((noinline))
7401 static void
7402 vm_record_rtfault(thread_t cthread, uint64_t fstart, vm_map_offset_t fault_vaddr, int type_of_fault)
7403 {
7404 uint64_t fend = mach_continuous_time();
7405
7406 uint64_t cfpc = 0;
7407 uint64_t ctid = cthread->thread_id;
7408 uint64_t cupid = get_current_unique_pid();
7409
7410 uintptr_t bpc = 0;
7411 int btr = 0;
7412 bool u64 = false;
7413
7414 /* Capture a single-frame backtrace; this extracts just the program
7415 * counter at the point of the fault into "bpc", and should perform no
7416 * further user stack traversals, thus avoiding copyin()s and further
7417 * faults.
7418 */
7419 unsigned int bfrs = backtrace_thread_user(cthread, &bpc, 1U, &btr, &u64, NULL, false);
7420
7421 if ((btr == 0) && (bfrs > 0)) {
7422 cfpc = bpc;
7423 }
7424
7425 assert((fstart != 0) && fend >= fstart);
7426 vm_rtfrecord_lock();
7427 assert(vmrtfrs.vmrtfr_curi <= vmrtfrs.vmrtfr_maxi);
7428
7429 vmrtfrs.vmrtf_total++;
7430 vm_rtfault_record_t *cvmr = &vmrtfrs.vm_rtf_records[vmrtfrs.vmrtfr_curi++];
7431
7432 cvmr->rtfabstime = fstart;
7433 cvmr->rtfduration = fend - fstart;
7434 cvmr->rtfaddr = fault_vaddr;
7435 cvmr->rtfpc = cfpc;
7436 cvmr->rtftype = type_of_fault;
7437 cvmr->rtfupid = cupid;
7438 cvmr->rtftid = ctid;
7439
7440 if (vmrtfrs.vmrtfr_curi > vmrtfrs.vmrtfr_maxi) {
7441 vmrtfrs.vmrtfr_curi = 0;
7442 }
7443
7444 vm_rtfrecord_unlock();
7445 }
7446
7447 int
7448 vmrtf_extract(uint64_t cupid, __unused boolean_t isroot, unsigned long vrecordsz, void *vrecords, unsigned long *vmrtfrv)
7449 {
7450 vm_rtfault_record_t *cvmrd = vrecords;
7451 size_t residue = vrecordsz;
7452 size_t numextracted = 0;
7453 boolean_t early_exit = FALSE;
7454
7455 vm_rtfrecord_lock();
7456
7457 for (int vmfi = 0; vmfi <= vmrtfrs.vmrtfr_maxi; vmfi++) {
7458 if (residue < sizeof(vm_rtfault_record_t)) {
7459 early_exit = TRUE;
7460 break;
7461 }
7462
7463 if (vmrtfrs.vm_rtf_records[vmfi].rtfupid != cupid) {
7464 #if DEVELOPMENT || DEBUG
7465 if (isroot == FALSE) {
7466 continue;
7467 }
7468 #else
7469 continue;
7470 #endif /* DEVDEBUG */
7471 }
7472
7473 *cvmrd = vmrtfrs.vm_rtf_records[vmfi];
7474 cvmrd++;
7475 residue -= sizeof(vm_rtfault_record_t);
7476 numextracted++;
7477 }
7478
7479 vm_rtfrecord_unlock();
7480
7481 *vmrtfrv = numextracted;
7482 return early_exit;
7483 }
7484
7485 /*
7486 * Only allow one diagnosis to be in flight at a time, to avoid
7487 * creating too much additional memory usage.
7488 */
7489 static volatile uint_t vmtc_diagnosing;
7490 unsigned int vmtc_total;
7491 unsigned int vmtc_undiagnosed;
7492 unsigned int vmtc_not_eligible;
7493 unsigned int vmtc_copyin_fail;
7494 unsigned int vmtc_not_found;
7495 unsigned int vmtc_one_bit_flip;
7496 unsigned int vmtc_byte_counts[MAX_TRACK_POWER2 + 1];
7497
7498 #if DEVELOPMENT || DEBUG
7499 /*
7500 * Keep around the last diagnosed corruption buffers to aid in debugging.
7501 */
7502 static size_t vmtc_last_buffer_size;
7503 static uint64_t *vmtc_last_before_buffer = NULL;
7504 static uint64_t *vmtc_last_after_buffer = NULL;
7505 #endif /* DEVELOPMENT || DEBUG */
7506
7507 /*
7508 * Set things up so we can diagnose a potential text page corruption.
7509 */
7510 static uint64_t *
7511 vmtc_text_page_diagnose_setup(
7512 vm_map_offset_t code_addr)
7513 {
7514 uint64_t *buffer;
7515 size_t size = MIN(vm_map_page_size(current_map()), PAGE_SIZE);
7516
7517 (void)OSAddAtomic(1, &vmtc_total);
7518
7519 /*
7520 * If another is being diagnosed, skip this one.
7521 */
7522 if (!OSCompareAndSwap(0, 1, &vmtc_diagnosing)) {
7523 (void)OSAddAtomic(1, &vmtc_undiagnosed);
7524 return NULL;
7525 }
7526
7527 /*
7528 * Get the contents of the corrupt page.
7529 */
7530 buffer = kheap_alloc(KHEAP_DEFAULT, size, Z_WAITOK);
7531 if (copyin((user_addr_t)vm_map_trunc_page(code_addr, size - 1), buffer, size) != 0) {
7532 /* copyin error, so undo things */
7533 kheap_free(KHEAP_DEFAULT, buffer, size);
7534 (void)OSAddAtomic(1, &vmtc_undiagnosed);
7535 ++vmtc_copyin_fail;
7536 if (!OSCompareAndSwap(1, 0, &vmtc_diagnosing)) {
7537 panic("Bad compare and swap in setup!");
7538 }
7539 return NULL;
7540 }
7541 return buffer;
7542 }
7543
7544 /*
7545 * Diagnose the text page by comparing its contents with
7546 * the one we've previously saved.
7547 */
7548 static void
7549 vmtc_text_page_diagnose(
7550 vm_map_offset_t code_addr,
7551 uint64_t *old_code_buffer)
7552 {
7553 uint64_t *new_code_buffer;
7554 size_t size = MIN(vm_map_page_size(current_map()), PAGE_SIZE);
7555 uint_t count = (uint_t)size / sizeof(uint64_t);
7556 uint_t diff_count = 0;
7557 bool bit_flip = false;
7558 uint_t b;
7559 uint64_t *new;
7560 uint64_t *old;
7561
7562 new_code_buffer = kheap_alloc(KHEAP_DEFAULT, size, Z_WAITOK);
7563 if (copyin((user_addr_t)vm_map_trunc_page(code_addr, size - 1), new_code_buffer, size) != 0) {
7564 /* copyin error, so undo things */
7565 (void)OSAddAtomic(1, &vmtc_undiagnosed);
7566 ++vmtc_copyin_fail;
7567 goto done;
7568 }
7569
7570 new = new_code_buffer;
7571 old = old_code_buffer;
7572 for (; count-- > 0; ++new, ++old) {
7573 if (*new == *old) {
7574 continue;
7575 }
7576
7577 /*
7578 * On first diff, check for a single bit flip
7579 */
7580 if (diff_count == 0) {
7581 uint64_t x = (*new ^ *old);
7582 assert(x != 0);
7583 if ((x & (x - 1)) == 0) {
7584 bit_flip = true;
7585 ++diff_count;
7586 continue;
7587 }
7588 }
7589
7590 /*
7591 * count up the number of different bytes.
7592 */
7593 for (b = 0; b < sizeof(uint64_t); ++b) {
7594 char *n = (char *)new;
7595 char *o = (char *)old;
7596 if (n[b] != o[b]) {
7597 ++diff_count;
7598 }
7599 }
7600
7601 /* quit counting when too many */
7602 if (diff_count > (1 << MAX_TRACK_POWER2)) {
7603 break;
7604 }
7605 }
7606
7607 if (diff_count > 1) {
7608 bit_flip = false;
7609 }
7610
7611 if (diff_count == 0) {
7612 ++vmtc_not_found;
7613 } else if (bit_flip) {
7614 ++vmtc_one_bit_flip;
7615 ++vmtc_byte_counts[0];
7616 } else {
7617 for (b = 0; b <= MAX_TRACK_POWER2; ++b) {
7618 if (diff_count <= (1 << b)) {
7619 ++vmtc_byte_counts[b];
7620 break;
7621 }
7622 }
7623 if (diff_count > (1 << MAX_TRACK_POWER2)) {
7624 ++vmtc_byte_counts[MAX_TRACK_POWER2];
7625 }
7626 }
7627
7628 done:
7629 /*
7630 * Free up the code copy buffers, but save the last
7631 * set on development / debug kernels in case they
7632 * can provide evidence for debugging memory stomps.
7633 */
7634 #if DEVELOPMENT || DEBUG
7635 if (vmtc_last_before_buffer != NULL) {
7636 kheap_free(KHEAP_DEFAULT, vmtc_last_before_buffer, vmtc_last_buffer_size);
7637 }
7638 if (vmtc_last_after_buffer != NULL) {
7639 kheap_free(KHEAP_DEFAULT, vmtc_last_after_buffer, vmtc_last_buffer_size);
7640 }
7641 vmtc_last_before_buffer = old_code_buffer;
7642 vmtc_last_after_buffer = new_code_buffer;
7643 vmtc_last_buffer_size = size;
7644 #else /* DEVELOPMENT || DEBUG */
7645 kheap_free(KHEAP_DEFAULT, new_code_buffer, size);
7646 kheap_free(KHEAP_DEFAULT, old_code_buffer, size);
7647 #endif /* DEVELOPMENT || DEBUG */
7648
7649 /*
7650 * We're finished, so clear the diagnosing flag.
7651 */
7652 if (!OSCompareAndSwap(1, 0, &vmtc_diagnosing)) {
7653 panic("Bad compare and swap in diagnose!");
7654 }
7655 }
7656
7657 /*
7658 * For the given map, virt address, find the object, offset, and page.
7659 * This has to lookup the map entry, verify protections, walk any shadow chains.
7660 * If found, returns with the object locked.
7661 */
7662 static kern_return_t
7663 vmtc_revalidate_lookup(
7664 vm_map_t map,
7665 vm_map_offset_t vaddr,
7666 vm_object_t *ret_object,
7667 vm_object_offset_t *ret_offset,
7668 vm_page_t *ret_page)
7669 {
7670 vm_object_t object;
7671 vm_object_offset_t offset;
7672 vm_page_t page;
7673 kern_return_t kr = KERN_SUCCESS;
7674 uint8_t object_lock_type = OBJECT_LOCK_EXCLUSIVE;
7675 vm_map_version_t version;
7676 boolean_t wired;
7677 struct vm_object_fault_info fault_info = {};
7678 vm_map_t real_map = NULL;
7679 vm_prot_t prot;
7680 vm_object_t shadow;
7681
7682 /*
7683 * Find the object/offset for the given location/map.
7684 * Note this returns with the object locked.
7685 */
7686 restart:
7687 vm_map_lock_read(map);
7688 object = VM_OBJECT_NULL; /* in case we come around the restart path */
7689 kr = vm_map_lookup_locked(&map, vaddr, VM_PROT_READ,
7690 object_lock_type, &version, &object, &offset, &prot, &wired,
7691 &fault_info, &real_map, NULL);
7692 vm_map_unlock_read(map);
7693 if (real_map != NULL && real_map != map) {
7694 vm_map_unlock(real_map);
7695 }
7696
7697 /*
7698 * If there's no mapping here, or if we fail because the page
7699 * wasn't mapped executable, we can ignore this.
7700 */
7701 if (kr != KERN_SUCCESS ||
7702 object == NULL ||
7703 !(prot & VM_PROT_EXECUTE)) {
7704 kr = KERN_FAILURE;
7705 goto done;
7706 }
7707
7708 /*
7709 * Chase down any shadow chains to find the actual page.
7710 */
7711 for (;;) {
7712 /*
7713 * See if the page is on the current object.
7714 */
7715 page = vm_page_lookup(object, vm_object_trunc_page(offset));
7716 if (page != NULL) {
7717 /* restart the lookup */
7718 if (page->vmp_restart) {
7719 vm_object_unlock(object);
7720 goto restart;
7721 }
7722
7723 /*
7724 * If this page is busy, we need to wait for it.
7725 */
7726 if (page->vmp_busy) {
7727 PAGE_SLEEP(object, page, TRUE);
7728 vm_object_unlock(object);
7729 goto restart;
7730 }
7731 break;
7732 }
7733
7734 /*
7735 * If the object doesn't have the page and
7736 * has no shadow, then we can quit.
7737 */
7738 shadow = object->shadow;
7739 if (shadow == NULL) {
7740 kr = KERN_FAILURE;
7741 goto done;
7742 }
7743
7744 /*
7745 * Move to the next object
7746 */
7747 offset += object->vo_shadow_offset;
7748 vm_object_lock(shadow);
7749 vm_object_unlock(object);
7750 object = shadow;
7751 shadow = VM_OBJECT_NULL;
7752 }
7753 *ret_object = object;
7754 *ret_offset = vm_object_trunc_page(offset);
7755 *ret_page = page;
7756
7757 done:
7758 if (kr != KERN_SUCCESS && object != NULL) {
7759 vm_object_unlock(object);
7760 }
7761 return kr;
7762 }
7763
7764 /*
7765 * Check if a page is wired, needs extra locking.
7766 */
7767 static bool
7768 is_page_wired(vm_page_t page)
7769 {
7770 bool result;
7771 vm_page_lock_queues();
7772 result = VM_PAGE_WIRED(page);
7773 vm_page_unlock_queues();
7774 return result;
7775 }
7776
7777 /*
7778 * A fatal process error has occurred in the given task.
7779 * Recheck the code signing of the text page at the given
7780 * address to check for a text page corruption.
7781 *
7782 * Returns KERN_FAILURE if a page was found to be corrupt
7783 * by failing to match its code signature. KERN_SUCCESS
7784 * means the page is either valid or we don't have the
7785 * information to say it's corrupt.
7786 */
7787 kern_return_t
7788 revalidate_text_page(task_t task, vm_map_offset_t code_addr)
7789 {
7790 kern_return_t kr;
7791 vm_map_t map;
7792 vm_object_t object = NULL;
7793 vm_object_offset_t offset;
7794 vm_page_t page = NULL;
7795 struct vnode *vnode;
7796 bool do_invalidate = false;
7797 uint64_t *diagnose_buffer = NULL;
7798
7799 map = task->map;
7800 if (task->map == NULL) {
7801 return KERN_SUCCESS;
7802 }
7803
7804 kr = vmtc_revalidate_lookup(map, code_addr, &object, &offset, &page);
7805 if (kr != KERN_SUCCESS) {
7806 goto done;
7807 }
7808
7809 /*
7810 * The object needs to have a pager.
7811 */
7812 if (object->pager == NULL) {
7813 goto done;
7814 }
7815
7816 /*
7817 * Needs to be a vnode backed page to have a signature.
7818 */
7819 vnode = vnode_pager_lookup_vnode(object->pager);
7820 if (vnode == NULL) {
7821 goto done;
7822 }
7823
7824 /*
7825 * Object checks to see if we should proceed.
7826 */
7827 if (!object->code_signed || /* no code signature to check */
7828 object->internal || /* internal objects aren't signed */
7829 object->terminating || /* the object and its pages are already going away */
7830 !object->pager_ready) { /* this should happen, but check shouldn't hurt */
7831 goto done;
7832 }
7833
7834 /*
7835 * Check the code signature of the page in question.
7836 */
7837 vm_page_map_and_validate_cs(object, page);
7838
7839 /*
7840 * At this point:
7841 * vmp_cs_validated |= validated (set if a code signature exists)
7842 * vmp_cs_tainted |= tainted (set if code signature violation)
7843 * vmp_cs_nx |= nx; ??
7844 *
7845 * if vmp_pmapped then have to pmap_disconnect..
7846 * other flags to check on object or page?
7847 */
7848 if (page->vmp_cs_tainted != VMP_CS_ALL_FALSE) {
7849 #if DEBUG || DEVELOPMENT
7850 /*
7851 * On development builds, a boot-arg can be used to cause
7852 * a panic, instead of a quiet repair.
7853 */
7854 if (vmtc_panic_instead) {
7855 panic("Text page corruption detected: vm_page_t 0x%llx\n", (long long)(uintptr_t)page);
7856 }
7857 #endif /* DEBUG || DEVELOPMENT */
7858
7859 /*
7860 * We're going to invalidate this page. Mark it as busy so we can
7861 * drop the object lock and use copyin() to save its contents.
7862 */
7863 do_invalidate = true;
7864 assert(!page->vmp_busy);
7865 page->vmp_busy = TRUE;
7866 vm_object_unlock(object);
7867 diagnose_buffer = vmtc_text_page_diagnose_setup(code_addr);
7868 }
7869
7870 done:
7871 if (do_invalidate) {
7872 vm_object_lock(object);
7873 assert(page->vmp_busy);
7874 assert(VM_PAGE_OBJECT(page) == object); /* Since the page was busy, this shouldn't change */
7875 assert(page->vmp_offset == offset);
7876 PAGE_WAKEUP_DONE(page); /* make no longer busy */
7877
7878 /*
7879 * Invalidate, i.e. toss, the corrupted page.
7880 */
7881 if (!page->vmp_cleaning &&
7882 !page->vmp_laundry &&
7883 !page->vmp_fictitious &&
7884 !page->vmp_precious &&
7885 !page->vmp_absent &&
7886 !page->vmp_error &&
7887 !page->vmp_dirty &&
7888 !is_page_wired(page)) {
7889 if (page->vmp_pmapped) {
7890 int refmod = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(page));
7891 if (refmod & VM_MEM_MODIFIED) {
7892 SET_PAGE_DIRTY(page, FALSE);
7893 }
7894 if (refmod & VM_MEM_REFERENCED) {
7895 page->vmp_reference = TRUE;
7896 }
7897 }
7898 /* If the page seems intentionally modified, don't trash it. */
7899 if (!page->vmp_dirty) {
7900 VM_PAGE_FREE(page);
7901 } else {
7902 (void)OSAddAtomic(1, &vmtc_not_eligible);
7903 }
7904 } else {
7905 (void)OSAddAtomic(1, &vmtc_not_eligible);
7906 }
7907 vm_object_unlock(object);
7908
7909 /*
7910 * Now try to diagnose the type of failure by faulting
7911 * in a new copy and diff'ing it with what we saved.
7912 */
7913 if (diagnose_buffer) {
7914 vmtc_text_page_diagnose(code_addr, diagnose_buffer);
7915 }
7916 return KERN_FAILURE;
7917 }
7918
7919 if (object != NULL) {
7920 vm_object_unlock(object);
7921 }
7922 return KERN_SUCCESS;
7923 }
7924
7925 #if DEBUG || DEVELOPMENT
7926 /*
7927 * For implementing unit tests - ask the pmap to corrupt a text page.
7928 * We have to find the page, to get the physical address, then invoke
7929 * the pmap.
7930 */
7931 extern kern_return_t vm_corrupt_text_addr(uintptr_t);
7932
7933 kern_return_t
7934 vm_corrupt_text_addr(uintptr_t va)
7935 {
7936 task_t task = current_task();
7937 vm_map_t map;
7938 kern_return_t kr = KERN_SUCCESS;
7939 vm_object_t object = VM_OBJECT_NULL;
7940 vm_object_offset_t offset;
7941 vm_page_t page = NULL;
7942 pmap_paddr_t pa;
7943
7944 map = task->map;
7945 if (task->map == NULL) {
7946 printf("corrupt_text_addr: no map\n");
7947 return KERN_FAILURE;
7948 }
7949
7950 kr = vmtc_revalidate_lookup(map, (vm_map_offset_t)va, &object, &offset, &page);
7951 if (kr != KERN_SUCCESS) {
7952 printf("corrupt_text_addr: page lookup failed\n");
7953 return kr;
7954 }
7955 /* get the physical address to use */
7956 pa = ptoa(VM_PAGE_GET_PHYS_PAGE(page)) + (va - vm_object_trunc_page(va));
7957
7958 /*
7959 * Check we have something we can work with.
7960 * Due to racing with pageout as we enter the sysctl,
7961 * it's theoretically possible to have the page disappear, just
7962 * before the lookup.
7963 *
7964 * That's highly likely to happen often. I've filed a radar 72857482
7965 * to bubble up the error here to the sysctl result and have the
7966 * test not FAIL in that case.
7967 */
7968 if (page->vmp_busy) {
7969 printf("corrupt_text_addr: vmp_busy\n");
7970 kr = KERN_FAILURE;
7971 }
7972 if (page->vmp_cleaning) {
7973 printf("corrupt_text_addr: vmp_cleaning\n");
7974 kr = KERN_FAILURE;
7975 }
7976 if (page->vmp_laundry) {
7977 printf("corrupt_text_addr: vmp_cleaning\n");
7978 kr = KERN_FAILURE;
7979 }
7980 if (page->vmp_fictitious) {
7981 printf("corrupt_text_addr: vmp_fictitious\n");
7982 kr = KERN_FAILURE;
7983 }
7984 if (page->vmp_precious) {
7985 printf("corrupt_text_addr: vmp_precious\n");
7986 kr = KERN_FAILURE;
7987 }
7988 if (page->vmp_absent) {
7989 printf("corrupt_text_addr: vmp_absent\n");
7990 kr = KERN_FAILURE;
7991 }
7992 if (page->vmp_error) {
7993 printf("corrupt_text_addr: vmp_error\n");
7994 kr = KERN_FAILURE;
7995 }
7996 if (page->vmp_dirty) {
7997 printf("corrupt_text_addr: vmp_dirty\n");
7998 kr = KERN_FAILURE;
7999 }
8000 if (is_page_wired(page)) {
8001 printf("corrupt_text_addr: wired\n");
8002 kr = KERN_FAILURE;
8003 }
8004 if (!page->vmp_pmapped) {
8005 printf("corrupt_text_addr: !vmp_pmapped\n");
8006 kr = KERN_FAILURE;
8007 }
8008
8009 if (kr == KERN_SUCCESS) {
8010 printf("corrupt_text_addr: using physaddr 0x%llx\n", (long long)pa);
8011 kr = pmap_test_text_corruption(pa);
8012 if (kr != KERN_SUCCESS) {
8013 printf("corrupt_text_addr: pmap error %d\n", kr);
8014 }
8015 } else {
8016 printf("corrupt_text_addr: object %p\n", object);
8017 printf("corrupt_text_addr: offset 0x%llx\n", (uint64_t)offset);
8018 printf("corrupt_text_addr: va 0x%llx\n", (uint64_t)va);
8019 printf("corrupt_text_addr: vm_object_trunc_page(va) 0x%llx\n", (uint64_t)vm_object_trunc_page(va));
8020 printf("corrupt_text_addr: vm_page_t %p\n", page);
8021 printf("corrupt_text_addr: ptoa(PHYS_PAGE) 0x%llx\n", (uint64_t)ptoa(VM_PAGE_GET_PHYS_PAGE(page)));
8022 printf("corrupt_text_addr: using physaddr 0x%llx\n", (uint64_t)pa);
8023 }
8024
8025 if (object != VM_OBJECT_NULL) {
8026 vm_object_unlock(object);
8027 }
8028 return kr;
8029 }
8030 #endif /* DEBUG || DEVELOPMENT */