2 * Copyright (c) 2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <libkern/crypto/sha2.h>
30 #include <libkern/crypto/crypto_internal.h>
31 #include <os/atomic_private.h>
32 #include <kern/assert.h>
33 #include <kern/percpu.h>
34 #include <kern/zalloc.h>
35 #include <kern/lock_group.h>
36 #include <kern/locks.h>
37 #include <kern/misc_protos.h>
38 #include <pexpert/pexpert.h>
39 #include <prng/entropy.h>
40 #include <machine/machine_routines.h>
41 #include <libkern/section_keywords.h>
42 #include <sys/cdefs.h>
44 // The number of samples we can hold in an entropy buffer.
45 #define ENTROPY_MAX_SAMPLE_COUNT (2048)
47 // The state for a per-CPU entropy buffer.
48 typedef struct entropy_cpu_data
{
49 // A buffer to hold entropy samples.
50 entropy_sample_t samples
[ENTROPY_MAX_SAMPLE_COUNT
];
52 // A count of samples resident in the buffer. It also functions as
53 // an index to the buffer. All entries at indices less than the
54 // sample count are considered valid for consumption by the
55 // reader. The reader resets this to zero after consuming the
57 uint32_t _Atomic sample_count
;
60 // This structure holds the state for an instance of a FIPS continuous
61 // health test. In practice, we do not expect these tests to fail.
62 typedef struct entropy_health_test
{
63 // The initial sample observed in this test instance. Tests look
64 // for some repetition of the sample, either consecutively or
66 entropy_sample_t init_observation
;
68 // The count of times the initial observation has recurred within
69 // the span of the current test.
70 uint64_t observation_count
;
72 // The statistics are only relevant for telemetry and parameter
73 // tuning. They do not drive any actual logic in the module.
74 entropy_health_stats_t
*stats
;
75 } entropy_health_test_t
;
77 typedef enum health_test_result
{
80 } health_test_result_t
;
82 // Along with various counters and the buffer itself, this includes
83 // the state for two FIPS continuous health tests.
84 typedef struct entropy_data
{
85 // State for a SHA256 computation. This is used to accumulate
86 // entropy samples from across all CPUs. It is finalized when
87 // entropy is provided to the consumer of this module.
88 SHA256_CTX sha256_ctx
;
90 // Since the corecrypto kext is not loaded when this module is
91 // initialized, we cannot initialize the SHA256 state at that
92 // time. Instead, we initialize it lazily during entropy
93 // consumption. This flag tracks whether initialization is
97 // A total count of entropy samples that have passed through this
98 // structure. It is incremented as new samples are accumulated
99 // from the various per-CPU structures. The "current" count of
100 // samples is the difference between this field and the "read"
101 // sample count below (which see).
102 uint64_t total_sample_count
;
104 // Initially zero, this flag is reset to the current sample count
105 // if and when we fail a health test. We consider the startup
106 // health tests to be complete when the difference between the
107 // total sample count and this field is at least 1024. In other
108 // words, we must accumulate 1024 good samples to demonstrate
109 // viability. We refuse to provide any entropy before that
110 // threshold is reached.
111 uint64_t startup_sample_count
;
113 // The count of samples from the last time we provided entropy to
114 // the kernel RNG. We use this to compute how many new samples we
115 // have to contribute. This value is also reset to the current
116 // sample count in case of health test failure.
117 uint64_t read_sample_count
;
119 // The lock group for this structure; see below.
120 lck_grp_t lock_group
;
122 // This structure accumulates entropy samples from across all CPUs
123 // for a single point of consumption protected by a mutex.
126 // State for the Repetition Count Test.
127 entropy_health_test_t repetition_count_test
;
129 // State for the Adaptive Proportion Test.
130 entropy_health_test_t adaptive_proportion_test
;
133 static entropy_cpu_data_t
PERCPU_DATA(entropy_cpu_data
);
135 int entropy_health_startup_done
;
136 entropy_health_stats_t entropy_health_rct_stats
;
137 entropy_health_stats_t entropy_health_apt_stats
;
139 static entropy_data_t entropy_data
= {
140 .repetition_count_test
= {
141 .init_observation
= -1,
142 .stats
= &entropy_health_rct_stats
,
144 .adaptive_proportion_test
= {
145 .init_observation
= -1,
146 .stats
= &entropy_health_apt_stats
,
150 __security_const_late entropy_sample_t
*entropy_analysis_buffer
;
151 __security_const_late
uint32_t entropy_analysis_buffer_size
;
152 static __security_const_late
uint32_t entropy_analysis_max_sample_count
;
153 static uint32_t entropy_analysis_sample_count
;
157 entropy_analysis_init(uint32_t sample_count
)
159 entropy_analysis_max_sample_count
= sample_count
;
160 entropy_analysis_buffer_size
= sample_count
* sizeof(entropy_sample_t
);
161 entropy_analysis_buffer
= zalloc_permanent(entropy_analysis_buffer_size
, ZALIGN(entropy_sample_t
));
168 lck_grp_init(&entropy_data
.lock_group
, "entropy-data", LCK_GRP_ATTR_NULL
);
169 lck_mtx_init(&entropy_data
.mutex
, &entropy_data
.lock_group
, LCK_ATTR_NULL
);
171 // The below path is used only for testing. This boot arg is used
172 // to collect raw entropy samples for offline analysis. The "ebsz"
173 // name is supported only until dependent tools can be updated to
174 // use the more descriptive "entropy-analysis-sample-count".
175 uint32_t sample_count
= 0;
176 if (__improbable(PE_parse_boot_argn("entropy-analysis-sample-count", &sample_count
, sizeof(sample_count
)))) {
177 entropy_analysis_init(sample_count
);
178 } else if (__improbable(PE_parse_boot_argn("ebsz", &sample_count
, sizeof(sample_count
)))) {
179 entropy_analysis_init(sample_count
);
184 entropy_collect(void)
186 // This function is called from within the interrupt handler, so
187 // we do not need to disable interrupts.
189 entropy_cpu_data_t
*e
= PERCPU_GET(entropy_cpu_data
);
191 uint32_t sample_count
= os_atomic_load(&e
->sample_count
, relaxed
);
193 assert(sample_count
<= ENTROPY_MAX_SAMPLE_COUNT
);
195 // If the buffer is full, we return early without collecting
197 if (sample_count
== ENTROPY_MAX_SAMPLE_COUNT
) {
201 e
->samples
[sample_count
] = (entropy_sample_t
)ml_get_timebase_entropy();
203 // If the consumer has reset the sample count on us, the only
204 // consequence is a dropped sample. We effectively abort the
205 // entropy collection in this case.
206 (void)os_atomic_cmpxchg(&e
->sample_count
, sample_count
, sample_count
+ 1, release
);
209 // For information on the following tests, see NIST SP 800-90B 4
210 // Health Tests. These tests are intended to detect catastrophic
211 // degradations in entropy. As noted in that document:
213 // > Health tests are expected to raise an alarm in three cases:
214 // > 1. When there is a significant decrease in the entropy of the
216 // > 2. When noise source failures occur, or
217 // > 3. When hardware fails, and implementations do not work
220 // Each entropy accumulator declines to release entropy until the
221 // startup tests required by NIST are complete. In the event that a
222 // health test does fail, all entropy accumulators are reset and
223 // decline to release further entropy until their startup tests can be
226 static health_test_result_t
227 add_observation(entropy_health_test_t
*t
, uint64_t bound
)
229 t
->observation_count
+= 1;
230 t
->stats
->max_observation_count
= MAX(t
->stats
->max_observation_count
, (uint32_t)t
->observation_count
);
231 if (__improbable(t
->observation_count
>= bound
)) {
232 t
->stats
->failure_count
+= 1;
233 return health_test_failure
;
236 return health_test_success
;
240 reset_test(entropy_health_test_t
*t
, entropy_sample_t observation
)
242 t
->stats
->reset_count
+= 1;
243 t
->init_observation
= observation
;
244 t
->observation_count
= 1;
245 t
->stats
->max_observation_count
= MAX(t
->stats
->max_observation_count
, (uint32_t)t
->observation_count
);
248 // 4.4.1 Repetition Count Test
250 // Like the name implies, this test counts consecutive occurrences of
253 // We compute the bound C as:
257 // C = 1 + ceil(-log(A, 2) / H) = 129
259 // With A the acceptable chance of false positive and H a conservative
260 // estimate for the entropy (in bits) of each sample.
262 #define REPETITION_COUNT_BOUND (129)
264 static health_test_result_t
265 repetition_count_test(entropy_sample_t observation
)
267 entropy_health_test_t
*t
= &entropy_data
.repetition_count_test
;
269 if (t
->init_observation
== observation
) {
270 return add_observation(t
, REPETITION_COUNT_BOUND
);
272 reset_test(t
, observation
);
275 return health_test_success
;
278 // 4.4.2 Adaptive Proportion Test
280 // This test counts occurrences of a value within a window of samples.
282 // We use a non-binary alphabet, giving us a window size of 512. (In
283 // particular, we consider the least-significant byte of each time
286 // Assuming one bit of entropy, we can compute the binomial cumulative
287 // distribution function over 512 trials in SageMath as:
290 // f(x) = sum(binomial(512, k), k, x, 512) / 2^512
292 // We compute the bound C as the minimal x for which:
298 // Empirically, we have C = 400.
300 #define ADAPTIVE_PROPORTION_BOUND (400)
301 #define ADAPTIVE_PROPORTION_WINDOW (512)
303 // This mask definition requires the window be a power of two.
304 static_assert(__builtin_popcount(ADAPTIVE_PROPORTION_WINDOW
) == 1);
305 #define ADAPTIVE_PROPORTION_INDEX_MASK (ADAPTIVE_PROPORTION_WINDOW - 1)
307 static health_test_result_t
308 adaptive_proportion_test(entropy_sample_t observation
, uint32_t offset
)
310 entropy_health_test_t
*t
= &entropy_data
.adaptive_proportion_test
;
312 // We work in windows of size ADAPTIVE_PROPORTION_WINDOW, so we
313 // can compute our index by taking the entropy buffer's overall
314 // sample count plus the offset of this observation modulo the
316 uint32_t index
= (entropy_data
.total_sample_count
+ offset
) & ADAPTIVE_PROPORTION_INDEX_MASK
;
319 reset_test(t
, observation
);
320 } else if (t
->init_observation
== observation
) {
321 return add_observation(t
, ADAPTIVE_PROPORTION_BOUND
);
324 return health_test_success
;
327 static health_test_result_t
328 entropy_health_test(uint32_t sample_count
, entropy_sample_t
*samples
)
330 health_test_result_t result
= health_test_success
;
332 for (uint32_t i
= 0; i
< sample_count
; i
+= 1) {
333 // We only consider the low bits of each sample, since that is
334 // where we expect the entropy to be concentrated.
335 entropy_sample_t observation
= samples
[i
] & 0xff;
337 if (__improbable(repetition_count_test(observation
) == health_test_failure
)) {
338 result
= health_test_failure
;
341 if (__improbable(adaptive_proportion_test(observation
, i
) == health_test_failure
)) {
342 result
= health_test_failure
;
350 entropy_analysis_store(uint32_t sample_count
, entropy_sample_t
*samples
)
352 lck_mtx_assert(&entropy_data
.mutex
, LCK_MTX_ASSERT_OWNED
);
354 sample_count
= MIN(sample_count
, (entropy_analysis_max_sample_count
- entropy_analysis_sample_count
));
355 if (sample_count
== 0) {
359 size_t size
= sample_count
* sizeof(samples
[0]);
360 memcpy(&entropy_analysis_buffer
[entropy_analysis_sample_count
], samples
, size
);
361 entropy_analysis_sample_count
+= sample_count
;
365 entropy_provide(size_t *entropy_size
, void *entropy
, __unused
void *arg
)
367 #if (DEVELOPMENT || DEBUG)
368 if (*entropy_size
< SHA256_DIGEST_LENGTH
) {
369 panic("[entropy_provide] recipient entropy buffer is too small\n");
373 int32_t sample_count
= 0;
376 // The first call to this function comes while the corecrypto kext
377 // is being loaded. We require SHA256 to accumulate entropy
379 if (__improbable(!g_crypto_funcs
)) {
383 // There is only one consumer (the kernel PRNG), but they could
384 // try to consume entropy from different threads. We simply fail
385 // if a consumption is already in progress.
386 if (!lck_mtx_try_lock(&entropy_data
.mutex
)) {
390 // This only happens on the first call to this function. We cannot
391 // perform this initialization in entropy_init because the
392 // corecrypto kext is not loaded yet.
393 if (__improbable(!entropy_data
.sha256_ctx_init
)) {
394 SHA256_Init(&entropy_data
.sha256_ctx
);
395 entropy_data
.sha256_ctx_init
= true;
398 health_test_result_t health_test_result
= health_test_success
;
400 // We accumulate entropy from all CPUs.
401 percpu_foreach(e
, entropy_cpu_data
) {
402 // On each CPU, the sample count functions as an index into
403 // the entropy buffer. All samples before that index are valid
405 uint32_t cpu_sample_count
= os_atomic_load(&e
->sample_count
, acquire
);
407 assert(cpu_sample_count
<= ENTROPY_MAX_SAMPLE_COUNT
);
409 // The health test depends in part on the current state of
410 // the entropy data, so we test the new sample before
412 if (__improbable(entropy_health_test(cpu_sample_count
, e
->samples
) == health_test_failure
)) {
413 health_test_result
= health_test_failure
;
416 // We accumulate the samples regardless of whether the test
417 // failed. It cannot hurt.
418 entropy_data
.total_sample_count
+= cpu_sample_count
;
419 SHA256_Update(&entropy_data
.sha256_ctx
, e
->samples
, cpu_sample_count
* sizeof(e
->samples
[0]));
421 // This code path is only used for testing. Its use is governed by
422 // a boot arg; see its initialization above.
423 if (__improbable(entropy_analysis_buffer
)) {
424 entropy_analysis_store(cpu_sample_count
, e
->samples
);
427 // "Drain" the per-CPU buffer by resetting its sample count.
428 os_atomic_store(&e
->sample_count
, 0, relaxed
);
431 // We expect this never to happen.
433 // But if it does happen, we need to return negative to signal the
434 // consumer (i.e. the kernel PRNG) that there has been a failure.
435 if (__improbable(health_test_result
== health_test_failure
)) {
436 entropy_health_startup_done
= 0;
437 entropy_data
.startup_sample_count
= entropy_data
.total_sample_count
;
438 entropy_data
.read_sample_count
= entropy_data
.total_sample_count
;
443 // FIPS requires we pass our startup health tests before providing
444 // any entropy. This condition is only true during startup and in
445 // case of reset due to test failure.
446 if (__improbable((entropy_data
.total_sample_count
- entropy_data
.startup_sample_count
) < 1024)) {
450 entropy_health_startup_done
= 1;
452 // The count of new samples from the consumer's perspective.
453 int32_t n
= (int32_t)(entropy_data
.total_sample_count
- entropy_data
.read_sample_count
);
455 // For performance reasons, we require a small threshold of
456 // samples to have built up before we provide any to the PRNG.
461 SHA256_Final(entropy
, &entropy_data
.sha256_ctx
);
462 SHA256_Init(&entropy_data
.sha256_ctx
);
463 entropy_data
.read_sample_count
= entropy_data
.total_sample_count
;
466 *entropy_size
= SHA256_DIGEST_LENGTH
;
469 lck_mtx_unlock(&entropy_data
.mutex
);