]> git.saurik.com Git - apple/xnu.git/blob - bsd/sys/mbuf.h
xnu-7195.101.1.tar.gz
[apple/xnu.git] / bsd / sys / mbuf.h
1 /*
2 * Copyright (c) 1999-2020 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1998, 1999 Apple Computer, Inc. All Rights Reserved */
29 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
30 /*
31 * Mach Operating System
32 * Copyright (c) 1987 Carnegie-Mellon University
33 * All rights reserved. The CMU software License Agreement specifies
34 * the terms and conditions for use and redistribution.
35 */
36 /*
37 * Copyright (c) 1994 NeXT Computer, Inc. All rights reserved.
38 *
39 * Copyright (c) 1982, 1986, 1988 Regents of the University of California.
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)mbuf.h 8.3 (Berkeley) 1/21/94
71 */
72 /*
73 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
74 * support for mandatory and extensible security protections. This notice
75 * is included in support of clause 2.2 (b) of the Apple Public License,
76 * Version 2.0.
77 */
78
79 #ifndef _SYS_MBUF_H_
80 #define _SYS_MBUF_H_
81
82 #include <sys/appleapiopts.h>
83 #include <sys/cdefs.h>
84 #include <sys/_types/_u_int32_t.h> /* u_int32_t */
85 #include <sys/_types/_u_int64_t.h> /* u_int64_t */
86 #include <sys/_types/_u_short.h> /* u_short */
87
88 #ifdef KERNEL
89 #include <sys/kpi_mbuf.h>
90 #endif
91
92 #ifdef XNU_KERNEL_PRIVATE
93 #include <sys/lock.h>
94 #include <sys/queue.h>
95 #include <machine/endian.h>
96 /*
97 * Mbufs are of a single size, MSIZE (machine/param.h), which
98 * includes overhead. An mbuf may add a single "mbuf cluster" of size
99 * MCLBYTES/MBIGCLBYTES/M16KCLBYTES (also in machine/param.h), which has
100 * no additional overhead and is used instead of the internal data area;
101 * this is done when at least MINCLSIZE of data must be stored.
102 */
103
104 /*
105 * The following _MLEN and _MHLEN macros are private to xnu. Private code
106 * that are outside of xnu must use the mbuf_get_{mlen,mhlen} routines since
107 * the sizes of the structures are dependent upon specific xnu configs.
108 */
109 #define _MLEN (MSIZE - sizeof(struct m_hdr)) /* normal data len */
110 #define _MHLEN (_MLEN - sizeof(struct pkthdr)) /* data len w/pkthdr */
111
112 #define NMBPGSHIFT (PAGE_SHIFT - MSIZESHIFT)
113 #define NMBPG (1 << NMBPGSHIFT) /* # of mbufs per page */
114
115 #define NCLPGSHIFT (PAGE_SHIFT - MCLSHIFT)
116 #define NCLPG (1 << NCLPGSHIFT) /* # of cl per page */
117
118 #define NBCLPGSHIFT (PAGE_SHIFT - MBIGCLSHIFT)
119 #define NBCLPG (1 << NBCLPGSHIFT) /* # of big cl per page */
120
121 #define NMBPCLSHIFT (MCLSHIFT - MSIZESHIFT)
122 #define NMBPCL (1 << NMBPCLSHIFT) /* # of mbufs per cl */
123
124 #define NCLPJCLSHIFT (M16KCLSHIFT - MCLSHIFT)
125 #define NCLPJCL (1 << NCLPJCLSHIFT) /* # of cl per jumbo cl */
126
127 #define NCLPBGSHIFT (MBIGCLSHIFT - MCLSHIFT)
128 #define NCLPBG (1 << NCLPBGSHIFT) /* # of cl per big cl */
129
130 #define NMBPBGSHIFT (MBIGCLSHIFT - MSIZESHIFT)
131 #define NMBPBG (1 << NMBPBGSHIFT) /* # of mbufs per big cl */
132
133 /*
134 * Macros for type conversion
135 * mtod(m,t) - convert mbuf pointer to data pointer of correct type
136 * mtodo(m, o) -- Same as above but with offset 'o' into data.
137 * dtom(x) - convert data pointer within mbuf to mbuf pointer (XXX)
138 */
139 #define mtod(m, t) ((t)m_mtod(m))
140 #define mtodo(m, o) ((void *)(mtod(m, uint8_t *) + (o)))
141 #define dtom(x) m_dtom(x)
142
143 /* header at beginning of each mbuf: */
144 struct m_hdr {
145 struct mbuf *mh_next; /* next buffer in chain */
146 struct mbuf *mh_nextpkt; /* next chain in queue/record */
147 caddr_t mh_data; /* location of data */
148 int32_t mh_len; /* amount of data in this mbuf */
149 u_int16_t mh_type; /* type of data in this mbuf */
150 u_int16_t mh_flags; /* flags; see below */
151 #if __arm__ && (__BIGGEST_ALIGNMENT__ > 4)
152 /* This is needed because of how _MLEN is defined and used. Ideally, _MLEN
153 * should be defined using the offsetof(struct mbuf, M_dat), since there is
154 * no guarantee that mbuf.M_dat will start where mbuf.m_hdr ends. The compiler
155 * may (and does in the armv7k case) insert padding between m_hdr and M_dat in
156 * mbuf. We cannot easily use offsetof, however, since _MLEN is referenced
157 * in the definition of mbuf.
158 */
159 } __attribute__((aligned(8)));
160 #else
161 };
162 #endif
163
164 /*
165 * Packet tag structure (see below for details).
166 */
167 struct m_tag {
168 uint64_t m_tag_cookie; /* Error checking */
169 #ifndef __LP64__
170 uint32_t pad; /* For structure alignment */
171 #endif /* !__LP64__ */
172 SLIST_ENTRY(m_tag) m_tag_link; /* List of packet tags */
173 uint16_t m_tag_type; /* Module specific type */
174 uint16_t m_tag_len; /* Length of data */
175 uint32_t m_tag_id; /* Module ID */
176 };
177
178 #define M_TAG_ALIGN(len) \
179 (P2ROUNDUP(len, sizeof (u_int64_t)) + sizeof (struct m_tag))
180
181 #define M_TAG_VALID_PATTERN 0xfeedfacefeedfaceULL
182 #define M_TAG_FREE_PATTERN 0xdeadbeefdeadbeefULL
183
184 /*
185 * Packet tag header structure (at the top of mbuf). Pointers are
186 * 32-bit in ILP32; m_tag needs 64-bit alignment, hence padded.
187 */
188 struct m_taghdr {
189 #ifndef __LP64__
190 u_int32_t pad; /* For structure alignment */
191 #endif /* !__LP64__ */
192 u_int64_t refcnt; /* Number of tags in this mbuf */
193 };
194
195 /*
196 * Driver auxiliary metadata tag (KERNEL_TAG_TYPE_DRVAUX).
197 */
198 struct m_drvaux_tag {
199 u_int32_t da_family; /* IFNET_FAMILY values */
200 u_int32_t da_subfamily; /* IFNET_SUBFAMILY values */
201 u_int32_t da_reserved; /* for future */
202 u_int32_t da_length; /* length of following data */
203 };
204
205 /* Values for pftag_flags (16-bit wide) */
206 #define PF_TAG_GENERATED 0x1 /* pkt generated by PF */
207 #define PF_TAG_FRAGCACHE 0x2
208 #define PF_TAG_TRANSLATE_LOCALHOST 0x4
209 #if PF_ECN
210 #define PF_TAG_HDR_INET 0x8 /* hdr points to IPv4 */
211 #define PF_TAG_HDR_INET6 0x10 /* hdr points to IPv6 */
212 #endif /* PF_ECN */
213 #define PF_TAG_REASSEMBLED 0x20 /* pkt reassembled by PF */
214 #define PF_TAG_REFRAGMENTED 0x40 /* pkt refragmented by PF */
215 /*
216 * PF mbuf tag
217 */
218 struct pf_mtag {
219 u_int16_t pftag_flags; /* PF_TAG flags */
220 u_int16_t pftag_rtableid; /* alternate routing table id */
221 u_int16_t pftag_tag;
222 u_int16_t pftag_routed;
223 #if PF_ECN
224 void *pftag_hdr; /* saved hdr pos in mbuf, for ECN */
225 #endif /* PF_ECN */
226 };
227
228 /* System reserved PF tags */
229 #define PF_TAG_ID_SYSTEM_SERVICE 0xff00
230 #define PF_TAG_ID_STACK_DROP 0xff01
231
232 /*
233 * PF fragment tag
234 */
235 struct pf_fragment_tag {
236 uint32_t ft_id; /* fragment id */
237 uint16_t ft_hdrlen; /* header length of reassembled pkt */
238 uint16_t ft_unfragpartlen; /* length of the per-fragment headers */
239 uint16_t ft_extoff; /* last extension header offset or 0 */
240 uint16_t ft_maxlen; /* maximum fragment payload length */
241 };
242
243 /*
244 * TCP mbuf tag
245 */
246 struct tcp_pktinfo {
247 union {
248 struct {
249 uint32_t segsz; /* segment size (actual MSS) */
250 uint32_t start_seq; /* start seq of this packet */
251 pid_t pid;
252 pid_t e_pid;
253 } __tx;
254 struct {
255 uint8_t seg_cnt; /* # of coalesced TCP pkts */
256 } __rx;
257 } __offload;
258 #define tso_segsz proto_mtag.__pr_u.tcp.tm_tcp.__offload.__tx.segsz
259 #define tx_start_seq proto_mtag.__pr_u.tcp.tm_tcp.__offload.__tx.start_seq
260 #define tx_tcp_pid proto_mtag.__pr_u.tcp.tm_tcp.__offload.__tx.pid
261 #define tx_tcp_e_pid proto_mtag.__pr_u.tcp.tm_tcp.__offload.__tx.e_pid
262 #define seg_cnt proto_mtag.__pr_u.tcp.tm_tcp.__offload.__rx.seg_cnt
263 };
264
265 /*
266 * MPTCP mbuf tag
267 */
268 struct mptcp_pktinfo {
269 uint64_t mtpi_dsn; /* MPTCP Data Sequence Number */
270 uint32_t mtpi_rel_seq; /* Relative Seq Number */
271 uint16_t mtpi_length; /* Length of mapping */
272 uint16_t mtpi_csum;
273 #define mp_dsn proto_mtag.__pr_u.tcp.tm_mptcp.mtpi_dsn
274 #define mp_rseq proto_mtag.__pr_u.tcp.tm_mptcp.mtpi_rel_seq
275 #define mp_rlen proto_mtag.__pr_u.tcp.tm_mptcp.mtpi_length
276 #define mp_csum proto_mtag.__pr_u.tcp.tm_mptcp.mtpi_csum
277 };
278
279 /*
280 * TCP specific mbuf tag. Note that the current implementation uses
281 * MPTCP metadata strictly between MPTCP and the TCP subflow layers,
282 * hence tm_tcp and tm_mptcp are mutually exclusive. This also means
283 * that TCP messages functionality is currently incompatible with MPTCP.
284 */
285 struct tcp_mtag {
286 union {
287 struct tcp_pktinfo tm_tcp; /* TCP and below */
288 struct mptcp_pktinfo tm_mptcp; /* MPTCP-TCP only */
289 };
290 };
291
292 struct udp_mtag {
293 pid_t _pid;
294 pid_t _e_pid;
295 #define tx_udp_pid proto_mtag.__pr_u.udp._pid
296 #define tx_udp_e_pid proto_mtag.__pr_u.udp._e_pid
297 };
298
299 struct rawip_mtag {
300 pid_t _pid;
301 pid_t _e_pid;
302 #define tx_rawip_pid proto_mtag.__pr_u.rawip._pid
303 #define tx_rawip_e_pid proto_mtag.__pr_u.rawip._e_pid
304 };
305
306 struct driver_mtag_ {
307 uintptr_t _drv_tx_compl_arg;
308 uintptr_t _drv_tx_compl_data;
309 kern_return_t _drv_tx_status;
310 uint16_t _drv_flowid;
311 #define drv_tx_compl_arg builtin_mtag._drv_mtag._drv_tx_compl_arg
312 #define drv_tx_compl_data builtin_mtag._drv_mtag._drv_tx_compl_data
313 #define drv_tx_status builtin_mtag._drv_mtag._drv_tx_status
314 #define drv_flowid builtin_mtag._drv_mtag._drv_flowid
315 };
316
317 /*
318 * Protocol specific mbuf tag (at most one protocol metadata per mbuf).
319 *
320 * Care must be taken to ensure that they are mutually exclusive, e.g.
321 * IPsec policy ID implies no TCP segment offload (which is fine given
322 * that the former is used on the virtual ipsec interface that does
323 * not advertise the TSO capability.)
324 */
325 struct proto_mtag_ {
326 union {
327 struct tcp_mtag tcp; /* TCP specific */
328 struct udp_mtag udp; /* UDP specific */
329 struct rawip_mtag rawip; /* raw IPv4/IPv6 specific */
330 } __pr_u;
331 };
332
333 /*
334 * NECP specific mbuf tag.
335 */
336 struct necp_mtag_ {
337 u_int32_t necp_policy_id;
338 u_int32_t necp_skip_policy_id;
339 u_int32_t necp_route_rule_id;
340 u_int16_t necp_last_interface_index;
341 u_int16_t necp_app_id;
342 };
343
344 union builtin_mtag {
345 struct {
346 struct proto_mtag_ _proto_mtag; /* built-in protocol-specific tag */
347 struct pf_mtag _pf_mtag; /* built-in PF tag */
348 struct necp_mtag_ _necp_mtag; /* built-in NECP tag */
349 } _net_mtag;
350 struct driver_mtag_ _drv_mtag;
351 #define necp_mtag builtin_mtag._net_mtag._necp_mtag
352 #define proto_mtag builtin_mtag._net_mtag._proto_mtag
353 #define driver_mtag builtin_mtag._drv_mtag
354 };
355
356 /*
357 * Record/packet header in first mbuf of chain; valid only if M_PKTHDR set.
358 */
359 struct pkthdr {
360 struct ifnet *rcvif; /* rcv interface */
361 /* variables for ip and tcp reassembly */
362 void *pkt_hdr; /* pointer to packet header */
363 int32_t len; /* total packet length */
364 /* variables for hardware checksum */
365 /* Note: csum_flags is used for hardware checksum and VLAN */
366 u_int32_t csum_flags; /* flags regarding checksum */
367 union {
368 struct {
369 u_int16_t val; /* checksum value */
370 u_int16_t start; /* checksum start offset */
371 } _csum_rx;
372 #define csum_rx_val _csum_rx.val
373 #define csum_rx_start _csum_rx.start
374 struct {
375 u_int16_t start; /* checksum start offset */
376 u_int16_t stuff; /* checksum stuff offset */
377 } _csum_tx;
378 #define csum_tx_start _csum_tx.start
379 #define csum_tx_stuff _csum_tx.stuff
380 /*
381 * Generic data field used by csum routines.
382 * It gets used differently in different contexts.
383 */
384 u_int32_t csum_data;
385 };
386 u_int16_t vlan_tag; /* VLAN tag, host byte order */
387 /*
388 * Packet classifier info
389 *
390 * PKTF_FLOW_ID set means valid flow ID. A non-zero flow ID value
391 * means the packet has been classified by one of the flow sources.
392 * It is also a prerequisite for flow control advisory, which is
393 * enabled by additionally setting PKTF_FLOW_ADV.
394 *
395 * The protocol value is a best-effort representation of the payload.
396 * It is opportunistically updated and used only for optimization.
397 * It is not a substitute for parsing the protocol header(s); use it
398 * only as a hint.
399 *
400 * If PKTF_IFAINFO is set, pkt_ifainfo contains one or both of the
401 * indices of interfaces which own the source and/or destination
402 * addresses of the packet. For the local/loopback case (PKTF_LOOP),
403 * both should be valid, and thus allows for the receiving end to
404 * quickly determine the actual interfaces used by the the addresses;
405 * they may not necessarily be the same or refer to the loopback
406 * interface. Otherwise, in the non-local/loopback case, the indices
407 * are opportunistically set, and because of that only one may be set
408 * (0 means the index has not been determined.) In addition, the
409 * interface address flags are also recorded. This allows us to avoid
410 * storing the corresponding {in,in6}_ifaddr in an mbuf tag. Ideally
411 * this would be a superset of {ia,ia6}_flags, but the namespaces are
412 * overlapping at present, so we'll need a new set of values in future
413 * to achieve this. For now, we will just rely on the address family
414 * related code paths examining this mbuf to interpret the flags.
415 */
416 u_int8_t pkt_proto; /* IPPROTO value */
417 u_int8_t pkt_flowsrc; /* FLOWSRC values */
418 u_int32_t pkt_flowid; /* flow ID */
419 u_int32_t pkt_flags; /* PKTF flags (see below) */
420 u_int32_t pkt_svc; /* MBUF_SVC value */
421
422 u_int32_t pkt_compl_context; /* Packet completion context */
423
424 union {
425 struct {
426 u_int16_t src; /* ifindex of src addr i/f */
427 u_int16_t src_flags; /* src PKT_IFAIFF flags */
428 u_int16_t dst; /* ifindex of dst addr i/f */
429 u_int16_t dst_flags; /* dst PKT_IFAIFF flags */
430 } _pkt_iaif;
431 #define src_ifindex _pkt_iaif.src
432 #define src_iff _pkt_iaif.src_flags
433 #define dst_ifindex _pkt_iaif.dst
434 #define dst_iff _pkt_iaif.dst_flags
435 u_int64_t pkt_ifainfo; /* data field used by ifainfo */
436 struct {
437 u_int32_t if_data; /* bytes in interface queue */
438 u_int32_t sndbuf_data; /* bytes in socket buffer */
439 } _pkt_bsr; /* Buffer status report used by cellular interface */
440 #define bufstatus_if _pkt_bsr.if_data
441 #define bufstatus_sndbuf _pkt_bsr.sndbuf_data
442 };
443 u_int64_t pkt_timestamp; /* TX: enqueue time, RX: receive timestamp */
444
445 /*
446 * Tags (external and built-in)
447 */
448 SLIST_HEAD(packet_tags, m_tag) tags; /* list of external tags */
449 union builtin_mtag builtin_mtag;
450
451 uint32_t comp_gencnt;
452 uint32_t padding;
453 /*
454 * Module private scratch space (32-bit aligned), currently 16-bytes
455 * large. Anything stored here is not guaranteed to survive across
456 * modules. The AQM layer (outbound) uses all 16-bytes for both
457 * packet scheduling and flow advisory information.
458 */
459 struct {
460 union {
461 u_int8_t __mpriv8[16];
462 u_int16_t __mpriv16[8];
463 struct {
464 union {
465 u_int8_t __val8[4];
466 u_int16_t __val16[2];
467 u_int32_t __val32;
468 } __mpriv32_u;
469 } __mpriv32[4];
470 u_int64_t __mpriv64[2];
471 } __mpriv_u;
472 } pkt_mpriv __attribute__((aligned(4)));
473 #define pkt_mpriv_hash pkt_mpriv.__mpriv_u.__mpriv32[0].__mpriv32_u.__val32
474 #define pkt_mpriv_flags pkt_mpriv.__mpriv_u.__mpriv32[1].__mpriv32_u.__val32
475 #define pkt_mpriv_srcid pkt_mpriv.__mpriv_u.__mpriv32[2].__mpriv32_u.__val32
476 #define pkt_mpriv_fidx pkt_mpriv.__mpriv_u.__mpriv32[3].__mpriv32_u.__val32
477
478 u_int32_t redzone; /* red zone */
479 u_int32_t pkt_compl_callbacks; /* Packet completion callbacks */
480 };
481
482 /*
483 * Flow data source type. A data source module is responsible for generating
484 * a unique flow ID and associating it to each data flow as pkt_flowid.
485 * This is required for flow control/advisory, as it allows the output queue
486 * to identify the data source object and inform that it can resume its
487 * transmission (in the event it was flow controlled.)
488 */
489 #define FLOWSRC_INPCB 1 /* flow ID generated by INPCB */
490 #define FLOWSRC_IFNET 2 /* flow ID generated by interface */
491 #define FLOWSRC_PF 3 /* flow ID generated by PF */
492 #define FLOWSRC_CHANNEL 4 /* flow ID generated by channel */
493
494 /*
495 * FLOWSRC_MPKL_INPUT is not a true flow data source and is used for
496 * multi-layer packet logging. We're usurping the pkt_flowsrc field because
497 * the mbuf packet header ran out of space and pkt_flowsrc is normally
498 * used on output so we assume we can safely overwrite the normal semantic of
499 * the field.
500 * This value is meant to be used on incoming packet from a lower level protocol
501 * to pass information to some upper level protocol. When FLOWSRC_MPKL_INPUT
502 * is set, the following fields are used:
503 * - pkt_proto: the IP protocol ID of the lower level protocol
504 * - pkt_flowid: the identifier of the packet at the lower protocol.
505 * For example ESP would set pkt_proto to IPPROTO_ESP and pkt_flowid to the SPI.
506 */
507
508 /*
509 * Packet flags. Unlike m_flags, all packet flags are copied along when
510 * copying m_pkthdr, i.e. no equivalent of M_COPYFLAGS here. These flags
511 * (and other classifier info) will be cleared during DLIL input.
512 *
513 * Some notes about M_LOOP and PKTF_LOOP:
514 *
515 * - M_LOOP flag is overloaded, and its use is discouraged. Historically,
516 * that flag was used by the KAME implementation for allowing certain
517 * certain exceptions to be made in the IP6_EXTHDR_CHECK() logic; this
518 * was originally meant to be set as the packet is looped back to the
519 * system, and in some circumstances temporarily set in ip6_output().
520 * Over time, this flag was used by the pre-output routines to indicate
521 * to the DLIL frameout and output routines, that the packet may be
522 * looped back to the system under the right conditions. In addition,
523 * this is an mbuf flag rather than an mbuf packet header flag.
524 *
525 * - PKTF_LOOP is an mbuf packet header flag, which is set if and only
526 * if the packet was looped back to the system. This flag should be
527 * used instead for newer code.
528 */
529 #define PKTF_FLOW_ID 0x1 /* pkt has valid flowid value */
530 #define PKTF_FLOW_ADV 0x2 /* pkt triggers local flow advisory */
531 #define PKTF_FLOW_LOCALSRC 0x4 /* pkt is locally originated */
532 #define PKTF_FLOW_RAWSOCK 0x8 /* pkt locally generated by raw sock */
533 #define PKTF_PRIO_PRIVILEGED 0x10 /* packet priority is privileged */
534 #define PKTF_PROXY_DST 0x20 /* processed but not locally destined */
535 #define PKTF_INET_RESOLVE 0x40 /* IPv4 resolver packet */
536 #define PKTF_INET6_RESOLVE 0x80 /* IPv6 resolver packet */
537 #define PKTF_RESOLVE_RTR 0x100 /* pkt is for resolving router */
538 #define PKTF_SKIP_PKTAP 0x200 /* pkt has already passed through pktap */
539 #define PKTF_MPTCP 0x800 /* TCP with MPTCP metadata */
540 #define PKTF_MPSO 0x1000 /* MPTCP socket meta data */
541 #define PKTF_LOOP 0x2000 /* loopbacked packet */
542 #define PKTF_IFAINFO 0x4000 /* pkt has valid interface addr info */
543 #define PKTF_SO_BACKGROUND 0x8000 /* data is from background source */
544 #define PKTF_FORWARDED 0x10000 /* pkt was forwarded from another i/f */
545 #define PKTF_PRIV_GUARDED 0x20000 /* pkt_mpriv area guard enabled */
546 #define PKTF_KEEPALIVE 0x40000 /* pkt is kernel-generated keepalive */
547 #define PKTF_SO_REALTIME 0x80000 /* data is realtime traffic */
548 #define PKTF_VALID_UNSENT_DATA 0x100000 /* unsent data is valid */
549 #define PKTF_TCP_REXMT 0x200000 /* packet is TCP retransmission */
550 #define PKTF_REASSEMBLED 0x400000 /* Packet was reassembled */
551 #define PKTF_TX_COMPL_TS_REQ 0x800000 /* tx completion timestamp requested */
552 #define PKTF_TS_VALID 0x1000000 /* pkt timestamp is valid */
553 #define PKTF_DRIVER_MTAG 0x2000000 /* driver mbuf tags fields inited */
554 #define PKTF_NEW_FLOW 0x4000000 /* Data from a new flow */
555 #define PKTF_START_SEQ 0x8000000 /* valid start sequence */
556 #define PKTF_LAST_PKT 0x10000000 /* last packet in the flow */
557 #define PKTF_MPTCP_REINJ 0x20000000 /* Packet has been reinjected for MPTCP */
558 #define PKTF_MPTCP_DFIN 0x40000000 /* Packet is a data-fin */
559 #define PKTF_HBH_CHKED 0x80000000 /* HBH option is checked */
560
561 /* flags related to flow control/advisory and identification */
562 #define PKTF_FLOW_MASK \
563 (PKTF_FLOW_ID | PKTF_FLOW_ADV | PKTF_FLOW_LOCALSRC | PKTF_FLOW_RAWSOCK)
564
565 /*
566 * Description of external storage mapped into mbuf, valid only if M_EXT set.
567 */
568 typedef void (*m_ext_free_func_t)(caddr_t, u_int, caddr_t);
569 struct m_ext {
570 caddr_t ext_buf; /* start of buffer */
571 m_ext_free_func_t ext_free; /* free routine if not the usual */
572 u_int ext_size; /* size of buffer, for ext_free */
573 caddr_t ext_arg; /* additional ext_free argument */
574 struct ext_ref {
575 struct mbuf *paired;
576 u_int16_t minref;
577 u_int16_t refcnt;
578 u_int16_t prefcnt;
579 u_int16_t flags;
580 u_int32_t priv;
581 uintptr_t ext_token;
582 } *ext_refflags;
583 };
584
585 /* define m_ext to a type since it gets redefined below */
586 typedef struct m_ext _m_ext_t;
587
588 /*
589 * The mbuf object
590 */
591 struct mbuf {
592 struct m_hdr m_hdr;
593 union {
594 struct {
595 struct pkthdr MH_pkthdr; /* M_PKTHDR set */
596 union {
597 struct m_ext MH_ext; /* M_EXT set */
598 char MH_databuf[_MHLEN];
599 } MH_dat;
600 } MH;
601 char M_databuf[_MLEN]; /* !M_PKTHDR, !M_EXT */
602 } M_dat;
603 };
604
605 #define m_next m_hdr.mh_next
606 #define m_len m_hdr.mh_len
607 #define m_data m_hdr.mh_data
608 #define m_type m_hdr.mh_type
609 #define m_flags m_hdr.mh_flags
610 #define m_nextpkt m_hdr.mh_nextpkt
611 #define m_act m_nextpkt
612 #define m_pkthdr M_dat.MH.MH_pkthdr
613 #define m_ext M_dat.MH.MH_dat.MH_ext
614 #define m_pktdat M_dat.MH.MH_dat.MH_databuf
615 #define m_dat M_dat.M_databuf
616 #define m_pktlen(_m) ((_m)->m_pkthdr.len)
617 #define m_pftag(_m) (&(_m)->m_pkthdr.builtin_mtag._net_mtag._pf_mtag)
618 #define m_necptag(_m) (&(_m)->m_pkthdr.builtin_mtag._net_mtag._necp_mtag)
619
620 /* mbuf flags (private) */
621 #define M_EXT 0x0001 /* has associated external storage */
622 #define M_PKTHDR 0x0002 /* start of record */
623 #define M_EOR 0x0004 /* end of record */
624 #define M_PROTO1 0x0008 /* protocol-specific */
625 #define M_PROTO2 0x0010 /* protocol-specific */
626 #define M_PROTO3 0x0020 /* protocol-specific */
627 #define M_LOOP 0x0040 /* packet is looped back (also see PKTF_LOOP) */
628 #define M_PROTO5 0x0080 /* protocol-specific */
629
630 /* mbuf pkthdr flags, also in m_flags (private) */
631 #define M_BCAST 0x0100 /* send/received as link-level broadcast */
632 #define M_MCAST 0x0200 /* send/received as link-level multicast */
633 #define M_FRAG 0x0400 /* packet is a fragment of a larger packet */
634 #define M_FIRSTFRAG 0x0800 /* packet is first fragment */
635 #define M_LASTFRAG 0x1000 /* packet is last fragment */
636 #define M_PROMISC 0x2000 /* packet is promiscuous (shouldn't go to stack) */
637 #define M_HASFCS 0x4000 /* packet has FCS */
638 #define M_TAGHDR 0x8000 /* m_tag hdr structure at top of mbuf data */
639
640 /*
641 * Flags to purge when crossing layers.
642 */
643 #define M_PROTOFLAGS \
644 (M_PROTO1|M_PROTO2|M_PROTO3|M_PROTO5)
645
646 /* flags copied when copying m_pkthdr */
647 #define M_COPYFLAGS \
648 (M_PKTHDR|M_EOR|M_PROTO1|M_PROTO2|M_PROTO3 | \
649 M_LOOP|M_PROTO5|M_BCAST|M_MCAST|M_FRAG | \
650 M_FIRSTFRAG|M_LASTFRAG|M_PROMISC|M_HASFCS)
651
652 /* flags indicating hw checksum support and sw checksum requirements */
653 #define CSUM_IP 0x0001 /* will csum IP */
654 #define CSUM_TCP 0x0002 /* will csum TCP */
655 #define CSUM_UDP 0x0004 /* will csum UDP */
656 #define CSUM_IP_FRAGS 0x0008 /* will csum IP fragments */
657 #define CSUM_FRAGMENT 0x0010 /* will do IP fragmentation */
658 #define CSUM_TCPIPV6 0x0020 /* will csum TCP for IPv6 */
659 #define CSUM_UDPIPV6 0x0040 /* will csum UDP for IPv6 */
660 #define CSUM_FRAGMENT_IPV6 0x0080 /* will do IPv6 fragmentation */
661
662 #define CSUM_IP_CHECKED 0x0100 /* did csum IP */
663 #define CSUM_IP_VALID 0x0200 /* ... the csum is valid */
664 #define CSUM_DATA_VALID 0x0400 /* csum_data field is valid */
665 #define CSUM_PSEUDO_HDR 0x0800 /* csum_data has pseudo hdr */
666 #define CSUM_PARTIAL 0x1000 /* simple Sum16 computation */
667 #define CSUM_ZERO_INVERT 0x2000 /* invert 0 to -0 (0xffff) */
668
669 #define CSUM_DELAY_DATA (CSUM_TCP | CSUM_UDP)
670 #define CSUM_DELAY_IP (CSUM_IP) /* IPv4 only: no IPv6 IP cksum */
671 #define CSUM_DELAY_IPV6_DATA (CSUM_TCPIPV6 | CSUM_UDPIPV6)
672 #define CSUM_DATA_IPV6_VALID CSUM_DATA_VALID /* csum_data field is valid */
673
674 #define CSUM_TX_FLAGS \
675 (CSUM_DELAY_IP | CSUM_DELAY_DATA | CSUM_DELAY_IPV6_DATA | \
676 CSUM_DATA_VALID | CSUM_PARTIAL | CSUM_ZERO_INVERT)
677
678 #define CSUM_RX_FULL_FLAGS \
679 (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_PSEUDO_HDR | \
680 CSUM_DATA_VALID)
681
682 #define CSUM_RX_FLAGS \
683 (CSUM_RX_FULL_FLAGS | CSUM_PARTIAL)
684
685
686
687 /*
688 * Note: see also IF_HWASSIST_CSUM defined in <net/if_var.h>
689 */
690
691 /* VLAN tag present */
692 #define CSUM_VLAN_TAG_VALID 0x00010000 /* vlan_tag field is valid */
693
694 /* checksum start adjustment has been done */
695 #define CSUM_ADJUST_DONE 0x00020000
696
697 /* VLAN encapsulation present */
698 #define CSUM_VLAN_ENCAP_PRESENT 0x00040000 /* mbuf has vlan encapsulation */
699
700 /* TCP Segment Offloading requested on this mbuf */
701 #define CSUM_TSO_IPV4 0x00100000 /* This mbuf needs to be segmented by the NIC */
702 #define CSUM_TSO_IPV6 0x00200000 /* This mbuf needs to be segmented by the NIC */
703
704 #define TSO_IPV4_OK(_ifp, _m) \
705 (((_ifp)->if_hwassist & IFNET_TSO_IPV4) && \
706 ((_m)->m_pkthdr.csum_flags & CSUM_TSO_IPV4)) \
707
708 #define TSO_IPV4_NOTOK(_ifp, _m) \
709 (!((_ifp)->if_hwassist & IFNET_TSO_IPV4) && \
710 ((_m)->m_pkthdr.csum_flags & CSUM_TSO_IPV4)) \
711
712 #define TSO_IPV6_OK(_ifp, _m) \
713 (((_ifp)->if_hwassist & IFNET_TSO_IPV6) && \
714 ((_m)->m_pkthdr.csum_flags & CSUM_TSO_IPV6)) \
715
716 #define TSO_IPV6_NOTOK(_ifp, _m) \
717 (!((_ifp)->if_hwassist & IFNET_TSO_IPV6) && \
718 ((_m)->m_pkthdr.csum_flags & CSUM_TSO_IPV6)) \
719
720 #endif /* XNU_KERNEL_PRIVATE */
721
722 /* mbuf types */
723 #define MT_FREE 0 /* should be on free list */
724 #define MT_DATA 1 /* dynamic (data) allocation */
725 #define MT_HEADER 2 /* packet header */
726 #define MT_SOCKET 3 /* socket structure */
727 #define MT_PCB 4 /* protocol control block */
728 #define MT_RTABLE 5 /* routing tables */
729 #define MT_HTABLE 6 /* IMP host tables */
730 #define MT_ATABLE 7 /* address resolution tables */
731 #define MT_SONAME 8 /* socket name */
732 #define MT_SOOPTS 10 /* socket options */
733 #define MT_FTABLE 11 /* fragment reassembly header */
734 #define MT_RIGHTS 12 /* access rights */
735 #define MT_IFADDR 13 /* interface address */
736 #define MT_CONTROL 14 /* extra-data protocol message */
737 #define MT_OOBDATA 15 /* expedited data */
738 #define MT_TAG 16 /* volatile metadata associated to pkts */
739 #define MT_MAX 32 /* enough? */
740
741 #ifdef XNU_KERNEL_PRIVATE
742 /*
743 * mbuf allocation/deallocation macros:
744 *
745 * MGET(struct mbuf *m, int how, int type)
746 * allocates an mbuf and initializes it to contain internal data.
747 *
748 * MGETHDR(struct mbuf *m, int how, int type)
749 * allocates an mbuf and initializes it to contain a packet header
750 * and internal data.
751 */
752
753 #if 1
754 #define MCHECK(m) m_mcheck(m)
755 #else
756 #define MCHECK(m)
757 #endif
758
759 #define MGET(m, how, type) ((m) = m_get((how), (type)))
760
761 #define MGETHDR(m, how, type) ((m) = m_gethdr((how), (type)))
762
763 /*
764 * Mbuf cluster macros.
765 * MCLALLOC(caddr_t p, int how) allocates an mbuf cluster.
766 * MCLGET adds such clusters to a normal mbuf;
767 * the flag M_EXT is set upon success.
768 * MCLFREE releases a reference to a cluster allocated by MCLALLOC,
769 * freeing the cluster if the reference count has reached 0.
770 *
771 * Normal mbuf clusters are normally treated as character arrays
772 * after allocation, but use the first word of the buffer as a free list
773 * pointer while on the free list.
774 */
775 union mcluster {
776 union mcluster *mcl_next;
777 char mcl_buf[MCLBYTES];
778 };
779
780 #define MCLALLOC(p, how) ((p) = m_mclalloc(how))
781
782 #define MCLFREE(p) m_mclfree(p)
783
784 #define MCLGET(m, how) ((m) = m_mclget(m, how))
785
786 /*
787 * Mbuf big cluster
788 */
789 union mbigcluster {
790 union mbigcluster *mbc_next;
791 char mbc_buf[MBIGCLBYTES];
792 };
793
794 /*
795 * Mbuf jumbo cluster
796 */
797 union m16kcluster {
798 union m16kcluster *m16kcl_next;
799 char m16kcl_buf[M16KCLBYTES];
800 };
801
802 #define MCLHASREFERENCE(m) m_mclhasreference(m)
803
804 /*
805 * MFREE(struct mbuf *m, struct mbuf *n)
806 * Free a single mbuf and associated external storage.
807 * Place the successor, if any, in n.
808 */
809
810 #define MFREE(m, n) ((n) = m_free(m))
811
812 /*
813 * Copy mbuf pkthdr from from to to.
814 * from must have M_PKTHDR set, and to must be empty.
815 * aux pointer will be moved to `to'.
816 */
817 #define M_COPY_PKTHDR(to, from) m_copy_pkthdr(to, from)
818
819 #define M_COPY_PFTAG(to, from) m_copy_pftag(to, from)
820
821 #define M_COPY_NECPTAG(to, from) m_copy_necptag(to, from)
822
823 #define M_COPY_CLASSIFIER(to, from) m_copy_classifier(to, from)
824
825 /*
826 * Evaluate TRUE if it's safe to write to the mbuf m's data region (this can
827 * be both the local data payload, or an external buffer area, depending on
828 * whether M_EXT is set).
829 */
830 #define M_WRITABLE(m) (((m)->m_flags & M_EXT) == 0 || !MCLHASREFERENCE(m))
831
832 /*
833 * These macros are mapped to the appropriate KPIs, so that private code
834 * can be simply recompiled in order to be forward-compatible with future
835 * changes toward the struture sizes.
836 */
837 #define MLEN mbuf_get_mlen() /* normal mbuf data len */
838 #define MHLEN mbuf_get_mhlen() /* data len in an mbuf w/pkthdr */
839 #define MINCLSIZE mbuf_get_minclsize() /* cluster usage threshold */
840 /*
841 * Return the address of the start of the buffer associated with an mbuf,
842 * handling external storage, packet-header mbufs, and regular data mbufs.
843 */
844 #define M_START(m) \
845 (((m)->m_flags & M_EXT) ? (m)->m_ext.ext_buf : \
846 ((m)->m_flags & M_PKTHDR) ? &(m)->m_pktdat[0] : \
847 &(m)->m_dat[0])
848
849 /*
850 * Return the size of the buffer associated with an mbuf, handling external
851 * storage, packet-header mbufs, and regular data mbufs.
852 */
853 #define M_SIZE(m) \
854 (((m)->m_flags & M_EXT) ? (m)->m_ext.ext_size : \
855 ((m)->m_flags & M_PKTHDR) ? MHLEN : \
856 MLEN)
857
858 #define M_ALIGN(m, len) m_align(m, len)
859 #define MH_ALIGN(m, len) m_align(m, len)
860 #define MEXT_ALIGN(m, len) m_align(m, len)
861
862 /*
863 * Compute the amount of space available before the current start of data in
864 * an mbuf.
865 *
866 * The M_WRITABLE() is a temporary, conservative safety measure: the burden
867 * of checking writability of the mbuf data area rests solely with the caller.
868 */
869 #define M_LEADINGSPACE(m) \
870 (M_WRITABLE(m) ? ((m)->m_data - M_START(m)) : 0)
871
872 /*
873 * Compute the amount of space available after the end of data in an mbuf.
874 *
875 * The M_WRITABLE() is a temporary, conservative safety measure: the burden
876 * of checking writability of the mbuf data area rests solely with the caller.
877 */
878 #define M_TRAILINGSPACE(m) \
879 (M_WRITABLE(m) ? \
880 ((M_START(m) + M_SIZE(m)) - ((m)->m_data + (m)->m_len)) : 0)
881
882 /*
883 * Arrange to prepend space of size plen to mbuf m.
884 * If a new mbuf must be allocated, how specifies whether to wait.
885 * If how is M_DONTWAIT and allocation fails, the original mbuf chain
886 * is freed and m is set to NULL.
887 */
888 #define M_PREPEND(m, plen, how, align) \
889 ((m) = m_prepend_2((m), (plen), (how), (align)))
890
891 /* change mbuf to new type */
892 #define MCHTYPE(m, t) m_mchtype(m, t)
893
894 /* compatiblity with 4.3 */
895 #define m_copy(m, o, l) m_copym((m), (o), (l), M_DONTWAIT)
896
897 #define MBSHIFT 20 /* 1MB */
898 #define MBSIZE (1 << MBSHIFT)
899 #define GBSHIFT 30 /* 1GB */
900 #define GBSIZE (1 << GBSHIFT)
901
902 /*
903 * M_STRUCT_GET ensures that intermediate protocol header (from "off" to
904 * "off+len") is located in single mbuf, on contiguous memory region.
905 * The pointer to the region will be returned to pointer variable "val",
906 * with type "typ".
907 *
908 * M_STRUCT_GET0 does the same, except that it aligns the structure at
909 * very top of mbuf. GET0 is likely to make memory copy than GET.
910 */
911 #define M_STRUCT_GET(val, typ, m, off, len) \
912 do { \
913 struct mbuf *t; \
914 int tmp; \
915 \
916 if ((m)->m_len >= (off) + (len)) { \
917 (val) = (typ)(mtod((m), caddr_t) + (off)); \
918 } else { \
919 t = m_pulldown((m), (off), (len), &tmp); \
920 if (t != NULL) { \
921 if (t->m_len < tmp + (len)) \
922 panic("m_pulldown malfunction"); \
923 (val) = (typ)(mtod(t, caddr_t) + tmp); \
924 } else { \
925 (val) = (typ)NULL; \
926 (m) = NULL; \
927 } \
928 } \
929 } while (0)
930
931 #define M_STRUCT_GET0(val, typ, m, off, len) \
932 do { \
933 struct mbuf *t; \
934 \
935 if ((off) == 0 && ((m)->m_len >= (len))) { \
936 (val) = (typ)(void *)mtod(m, caddr_t); \
937 } else { \
938 t = m_pulldown((m), (off), (len), NULL); \
939 if (t != NULL) { \
940 if (t->m_len < (len)) \
941 panic("m_pulldown malfunction"); \
942 (val) = (typ)(void *)mtod(t, caddr_t); \
943 } else { \
944 (val) = (typ)NULL; \
945 (m) = NULL; \
946 } \
947 } \
948 } while (0)
949
950 #define MBUF_INPUT_CHECK(m, rcvif) \
951 do { \
952 if (!(m->m_flags & MBUF_PKTHDR) || \
953 m->m_len < 0 || \
954 m->m_len > ((njcl > 0) ? njclbytes : MBIGCLBYTES) || \
955 m->m_type == MT_FREE || \
956 ((m->m_flags & M_EXT) != 0 && m->m_ext.ext_buf == NULL)) { \
957 panic_plain("Failed mbuf validity check: mbuf %p len %d " \
958 "type %d flags 0x%x data %p rcvif %s ifflags 0x%x", \
959 m, m->m_len, m->m_type, m->m_flags, \
960 ((m->m_flags & M_EXT) ? m->m_ext.ext_buf : m->m_data), \
961 if_name(rcvif), \
962 (rcvif->if_flags & 0xffff)); \
963 } \
964 } while (0)
965
966 /*
967 * Simple mbuf queueing system
968 *
969 * This is basically a SIMPLEQ adapted to mbuf use (i.e. using
970 * m_nextpkt instead of field.sqe_next).
971 *
972 * m_next is ignored, so queueing chains of mbufs is possible
973 */
974 #define MBUFQ_HEAD(name) \
975 struct name { \
976 struct mbuf *mq_first; /* first packet */ \
977 struct mbuf **mq_last; /* addr of last next packet */ \
978 }
979
980 #define MBUFQ_INIT(q) do { \
981 MBUFQ_FIRST(q) = NULL; \
982 (q)->mq_last = &MBUFQ_FIRST(q); \
983 } while (0)
984
985 #define MBUFQ_PREPEND(q, m) do { \
986 if ((MBUFQ_NEXT(m) = MBUFQ_FIRST(q)) == NULL) \
987 (q)->mq_last = &MBUFQ_NEXT(m); \
988 MBUFQ_FIRST(q) = (m); \
989 } while (0)
990
991 #define MBUFQ_ENQUEUE(q, m) do { \
992 MBUFQ_NEXT(m) = NULL; \
993 *(q)->mq_last = (m); \
994 (q)->mq_last = &MBUFQ_NEXT(m); \
995 } while (0)
996
997 #define MBUFQ_ENQUEUE_MULTI(q, m, n) do { \
998 MBUFQ_NEXT(n) = NULL; \
999 *(q)->mq_last = (m); \
1000 (q)->mq_last = &MBUFQ_NEXT(n); \
1001 } while (0)
1002
1003 #define MBUFQ_DEQUEUE(q, m) do { \
1004 if (((m) = MBUFQ_FIRST(q)) != NULL) { \
1005 if ((MBUFQ_FIRST(q) = MBUFQ_NEXT(m)) == NULL) \
1006 (q)->mq_last = &MBUFQ_FIRST(q); \
1007 else \
1008 MBUFQ_NEXT(m) = NULL; \
1009 } \
1010 } while (0)
1011
1012 #define MBUFQ_REMOVE(q, m) do { \
1013 if (MBUFQ_FIRST(q) == (m)) { \
1014 MBUFQ_DEQUEUE(q, m); \
1015 } else { \
1016 struct mbuf *_m = MBUFQ_FIRST(q); \
1017 while (MBUFQ_NEXT(_m) != (m)) \
1018 _m = MBUFQ_NEXT(_m); \
1019 if ((MBUFQ_NEXT(_m) = \
1020 MBUFQ_NEXT(MBUFQ_NEXT(_m))) == NULL) \
1021 (q)->mq_last = &MBUFQ_NEXT(_m); \
1022 } \
1023 } while (0)
1024
1025 #define MBUFQ_DRAIN(q) do { \
1026 struct mbuf *__m0; \
1027 while ((__m0 = MBUFQ_FIRST(q)) != NULL) { \
1028 MBUFQ_FIRST(q) = MBUFQ_NEXT(__m0); \
1029 MBUFQ_NEXT(__m0) = NULL; \
1030 m_freem(__m0); \
1031 } \
1032 (q)->mq_last = &MBUFQ_FIRST(q); \
1033 } while (0)
1034
1035 #define MBUFQ_FOREACH(m, q) \
1036 for ((m) = MBUFQ_FIRST(q); \
1037 (m); \
1038 (m) = MBUFQ_NEXT(m))
1039
1040 #define MBUFQ_FOREACH_SAFE(m, q, tvar) \
1041 for ((m) = MBUFQ_FIRST(q); \
1042 (m) && ((tvar) = MBUFQ_NEXT(m), 1); \
1043 (m) = (tvar))
1044
1045 #define MBUFQ_EMPTY(q) ((q)->mq_first == NULL)
1046 #define MBUFQ_FIRST(q) ((q)->mq_first)
1047 #define MBUFQ_NEXT(m) ((m)->m_nextpkt)
1048 /*
1049 * mq_last is initialized to point to mq_first, so check if they're
1050 * equal and return NULL when the list is empty. Otherwise, we need
1051 * to subtract the offset of MBUQ_NEXT (i.e. m_nextpkt field) to get
1052 * to the base mbuf address to return to caller.
1053 */
1054 #define MBUFQ_LAST(head) \
1055 (((head)->mq_last == &MBUFQ_FIRST(head)) ? NULL : \
1056 ((struct mbuf *)(void *)((char *)(head)->mq_last - \
1057 __builtin_offsetof(struct mbuf, m_nextpkt))))
1058
1059 #define max_linkhdr (int)P2ROUNDUP(_max_linkhdr, sizeof (uint32_t))
1060 #define max_protohdr (int)P2ROUNDUP(_max_protohdr, sizeof (uint32_t))
1061 #endif /* XNU_KERNEL_PRIVATE */
1062
1063 /*
1064 * Mbuf statistics (legacy).
1065 */
1066 struct mbstat {
1067 u_int32_t m_mbufs; /* mbufs obtained from page pool */
1068 u_int32_t m_clusters; /* clusters obtained from page pool */
1069 u_int32_t m_spare; /* spare field */
1070 u_int32_t m_clfree; /* free clusters */
1071 u_int32_t m_drops; /* times failed to find space */
1072 u_int32_t m_wait; /* times waited for space */
1073 u_int32_t m_drain; /* times drained protocols for space */
1074 u_short m_mtypes[256]; /* type specific mbuf allocations */
1075 u_int32_t m_mcfail; /* times m_copym failed */
1076 u_int32_t m_mpfail; /* times m_pullup failed */
1077 u_int32_t m_msize; /* length of an mbuf */
1078 u_int32_t m_mclbytes; /* length of an mbuf cluster */
1079 u_int32_t m_minclsize; /* min length of data to allocate a cluster */
1080 u_int32_t m_mlen; /* length of data in an mbuf */
1081 u_int32_t m_mhlen; /* length of data in a header mbuf */
1082 u_int32_t m_bigclusters; /* clusters obtained from page pool */
1083 u_int32_t m_bigclfree; /* free clusters */
1084 u_int32_t m_bigmclbytes; /* length of an mbuf cluster */
1085 u_int32_t m_forcedefunct; /* times we force defunct'ed an app's sockets */
1086 };
1087
1088 /* Compatibillity with 10.3 */
1089 struct ombstat {
1090 u_int32_t m_mbufs; /* mbufs obtained from page pool */
1091 u_int32_t m_clusters; /* clusters obtained from page pool */
1092 u_int32_t m_spare; /* spare field */
1093 u_int32_t m_clfree; /* free clusters */
1094 u_int32_t m_drops; /* times failed to find space */
1095 u_int32_t m_wait; /* times waited for space */
1096 u_int32_t m_drain; /* times drained protocols for space */
1097 u_short m_mtypes[256]; /* type specific mbuf allocations */
1098 u_int32_t m_mcfail; /* times m_copym failed */
1099 u_int32_t m_mpfail; /* times m_pullup failed */
1100 u_int32_t m_msize; /* length of an mbuf */
1101 u_int32_t m_mclbytes; /* length of an mbuf cluster */
1102 u_int32_t m_minclsize; /* min length of data to allocate a cluster */
1103 u_int32_t m_mlen; /* length of data in an mbuf */
1104 u_int32_t m_mhlen; /* length of data in a header mbuf */
1105 };
1106
1107 /*
1108 * mbuf class statistics.
1109 */
1110 #define MAX_MBUF_CNAME 15
1111
1112 #if defined(XNU_KERNEL_PRIVATE)
1113 /* For backwards compatibility with 32-bit userland process */
1114 struct omb_class_stat {
1115 char mbcl_cname[MAX_MBUF_CNAME + 1]; /* class name */
1116 u_int32_t mbcl_size; /* buffer size */
1117 u_int32_t mbcl_total; /* # of buffers created */
1118 u_int32_t mbcl_active; /* # of active buffers */
1119 u_int32_t mbcl_infree; /* # of available buffers */
1120 u_int32_t mbcl_slab_cnt; /* # of available slabs */
1121 u_int64_t mbcl_alloc_cnt; /* # of times alloc is called */
1122 u_int64_t mbcl_free_cnt; /* # of times free is called */
1123 u_int64_t mbcl_notified; /* # of notified wakeups */
1124 u_int64_t mbcl_purge_cnt; /* # of purges so far */
1125 u_int64_t mbcl_fail_cnt; /* # of allocation failures */
1126 u_int32_t mbcl_ctotal; /* total only for this class */
1127 u_int32_t mbcl_release_cnt; /* amount of memory returned */
1128 /*
1129 * Cache layer statistics
1130 */
1131 u_int32_t mbcl_mc_state; /* cache state (see below) */
1132 u_int32_t mbcl_mc_cached; /* # of cached buffers */
1133 u_int32_t mbcl_mc_waiter_cnt; /* # waiters on the cache */
1134 u_int32_t mbcl_mc_wretry_cnt; /* # of wait retries */
1135 u_int32_t mbcl_mc_nwretry_cnt; /* # of no-wait retry attempts */
1136 u_int64_t mbcl_reserved[4]; /* for future use */
1137 } __attribute__((__packed__));
1138 #endif /* XNU_KERNEL_PRIVATE */
1139
1140 typedef struct mb_class_stat {
1141 char mbcl_cname[MAX_MBUF_CNAME + 1]; /* class name */
1142 u_int32_t mbcl_size; /* buffer size */
1143 u_int32_t mbcl_total; /* # of buffers created */
1144 u_int32_t mbcl_active; /* # of active buffers */
1145 u_int32_t mbcl_infree; /* # of available buffers */
1146 u_int32_t mbcl_slab_cnt; /* # of available slabs */
1147 #if defined(KERNEL) || defined(__LP64__)
1148 u_int32_t mbcl_pad; /* padding */
1149 #endif /* KERNEL || __LP64__ */
1150 u_int64_t mbcl_alloc_cnt; /* # of times alloc is called */
1151 u_int64_t mbcl_free_cnt; /* # of times free is called */
1152 u_int64_t mbcl_notified; /* # of notified wakeups */
1153 u_int64_t mbcl_purge_cnt; /* # of purges so far */
1154 u_int64_t mbcl_fail_cnt; /* # of allocation failures */
1155 u_int32_t mbcl_ctotal; /* total only for this class */
1156 u_int32_t mbcl_release_cnt; /* amount of memory returned */
1157 /*
1158 * Cache layer statistics
1159 */
1160 u_int32_t mbcl_mc_state; /* cache state (see below) */
1161 u_int32_t mbcl_mc_cached; /* # of cached buffers */
1162 u_int32_t mbcl_mc_waiter_cnt; /* # waiters on the cache */
1163 u_int32_t mbcl_mc_wretry_cnt; /* # of wait retries */
1164 u_int32_t mbcl_mc_nwretry_cnt; /* # of no-wait retry attempts */
1165 u_int32_t mbcl_peak_reported; /* last usage peak reported */
1166 u_int32_t mbcl_reserved[7]; /* for future use */
1167 } mb_class_stat_t;
1168
1169 #define MCS_DISABLED 0 /* cache is permanently disabled */
1170 #define MCS_ONLINE 1 /* cache is online */
1171 #define MCS_PURGING 2 /* cache is being purged */
1172 #define MCS_OFFLINE 3 /* cache is offline (resizing) */
1173
1174 #if defined(XNU_KERNEL_PRIVATE)
1175 /* For backwards compatibility with 32-bit userland process */
1176 struct omb_stat {
1177 u_int32_t mbs_cnt; /* number of classes */
1178 struct omb_class_stat mbs_class[1]; /* class array */
1179 } __attribute__((__packed__));
1180 #endif /* XNU_KERNEL_PRIVATE */
1181
1182 typedef struct mb_stat {
1183 u_int32_t mbs_cnt; /* number of classes */
1184 #if defined(KERNEL) || defined(__LP64__)
1185 u_int32_t mbs_pad; /* padding */
1186 #endif /* KERNEL || __LP64__ */
1187 mb_class_stat_t mbs_class[1]; /* class array */
1188 } mb_stat_t;
1189
1190 #ifdef PRIVATE
1191 #define MLEAK_STACK_DEPTH 16 /* Max PC stack depth */
1192
1193 typedef struct mleak_trace_stat {
1194 u_int64_t mltr_collisions;
1195 u_int64_t mltr_hitcount;
1196 u_int64_t mltr_allocs;
1197 u_int64_t mltr_depth;
1198 u_int64_t mltr_addr[MLEAK_STACK_DEPTH];
1199 } mleak_trace_stat_t;
1200
1201 typedef struct mleak_stat {
1202 u_int32_t ml_isaddr64; /* 64-bit KVA? */
1203 u_int32_t ml_cnt; /* number of traces */
1204 mleak_trace_stat_t ml_trace[1]; /* trace array */
1205 } mleak_stat_t;
1206
1207 struct mleak_table {
1208 u_int32_t mleak_capture; /* sampling capture counter */
1209 u_int32_t mleak_sample_factor; /* sample factor */
1210
1211 /* Times two active records want to occupy the same spot */
1212 u_int64_t alloc_collisions;
1213 u_int64_t trace_collisions;
1214
1215 /* Times new record lands on spot previously occupied by freed alloc */
1216 u_int64_t alloc_overwrites;
1217 u_int64_t trace_overwrites;
1218
1219 /* Times a new alloc or trace is put into the hash table */
1220 u_int64_t alloc_recorded;
1221 u_int64_t trace_recorded;
1222
1223 /* Total number of outstanding allocs */
1224 u_int64_t outstanding_allocs;
1225
1226 /* Times mleak_log returned false because couldn't acquire the lock */
1227 u_int64_t total_conflicts;
1228 };
1229 #endif /* PRIVATE */
1230
1231 #ifdef KERNEL_PRIVATE
1232 __BEGIN_DECLS
1233
1234 /*
1235 * Exported (private)
1236 */
1237
1238 extern struct mbstat mbstat; /* statistics */
1239
1240 __END_DECLS
1241 #endif /* KERNEL_PRIVATE */
1242
1243 #ifdef XNU_KERNEL_PRIVATE
1244 __BEGIN_DECLS
1245
1246 /*
1247 * Not exported (xnu private)
1248 */
1249
1250 /* flags to m_get/MGET */
1251 /* Need to include malloc.h to get right options for malloc */
1252 #include <sys/malloc.h>
1253
1254 struct mbuf;
1255
1256 /* length to m_copy to copy all */
1257 #define M_COPYALL 1000000000
1258
1259 #define M_DONTWAIT M_NOWAIT
1260 #define M_WAIT M_WAITOK
1261
1262 /* modes for m_copym and variants */
1263 #define M_COPYM_NOOP_HDR 0 /* don't copy/move pkthdr contents */
1264 #define M_COPYM_COPY_HDR 1 /* copy pkthdr from old to new */
1265 #define M_COPYM_MOVE_HDR 2 /* move pkthdr from old to new */
1266 #define M_COPYM_MUST_COPY_HDR 3 /* MUST copy pkthdr from old to new */
1267 #define M_COPYM_MUST_MOVE_HDR 4 /* MUST move pkthdr from old to new */
1268
1269 extern void m_freem(struct mbuf *) __XNU_INTERNAL(m_freem);
1270 extern u_int64_t mcl_to_paddr(char *);
1271 extern void m_adj(struct mbuf *, int);
1272 extern void m_cat(struct mbuf *, struct mbuf *);
1273 extern void m_copydata(struct mbuf *, int, int, void *);
1274 extern struct mbuf *m_copym(struct mbuf *, int, int, int);
1275 extern struct mbuf *m_copym_mode(struct mbuf *, int, int, int, uint32_t);
1276 extern struct mbuf *m_get(int, int);
1277 extern struct mbuf *m_gethdr(int, int);
1278 extern struct mbuf *m_getpacket(void);
1279 extern struct mbuf *m_getpackets(int, int, int);
1280 extern struct mbuf *m_mclget(struct mbuf *, int);
1281 extern void *m_mtod(struct mbuf *);
1282 extern struct mbuf *m_prepend_2(struct mbuf *, int, int, int);
1283 extern struct mbuf *m_pullup(struct mbuf *, int);
1284 extern struct mbuf *m_split(struct mbuf *, int, int);
1285 extern void m_mclfree(caddr_t p);
1286 extern int mbuf_get_class(struct mbuf *m);
1287 extern bool mbuf_class_under_pressure(struct mbuf *m);
1288
1289 /*
1290 * On platforms which require strict alignment (currently for anything but
1291 * i386 or x86_64), this macro checks whether the data pointer of an mbuf
1292 * is 32-bit aligned (this is the expected minimum alignment for protocol
1293 * headers), and assert otherwise.
1294 */
1295 #if defined(__i386__) || defined(__x86_64__)
1296 #define MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(_m)
1297 #else /* !__i386__ && !__x86_64__ */
1298 #define MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(_m) do { \
1299 if (!IS_P2ALIGNED((_m)->m_data, sizeof (u_int32_t))) { \
1300 if (((_m)->m_flags & M_PKTHDR) && \
1301 (_m)->m_pkthdr.rcvif != NULL) { \
1302 panic_plain("\n%s: mbuf %p data ptr %p is not " \
1303 "32-bit aligned [%s: alignerrs=%lld]\n", \
1304 __func__, (_m), (_m)->m_data, \
1305 if_name((_m)->m_pkthdr.rcvif), \
1306 (_m)->m_pkthdr.rcvif->if_alignerrs); \
1307 } else { \
1308 panic_plain("\n%s: mbuf %p data ptr %p is not " \
1309 "32-bit aligned\n", \
1310 __func__, (_m), (_m)->m_data); \
1311 } \
1312 } \
1313 } while (0)
1314 #endif /* !__i386__ && !__x86_64__ */
1315
1316 /* Maximum number of MBUF_SC values (excluding MBUF_SC_UNSPEC) */
1317 #define MBUF_SC_MAX_CLASSES 10
1318
1319 /*
1320 * These conversion macros rely on the corresponding MBUF_SC and
1321 * MBUF_TC values in order to establish the following mapping:
1322 *
1323 * MBUF_SC_BK_SYS ] ==> MBUF_TC_BK
1324 * MBUF_SC_BK ]
1325 *
1326 * MBUF_SC_BE ] ==> MBUF_TC_BE
1327 * MBUF_SC_RD ]
1328 * MBUF_SC_OAM ]
1329 *
1330 * MBUF_SC_AV ] ==> MBUF_TC_VI
1331 * MBUF_SC_RV ]
1332 * MBUF_SC_VI ]
1333 * MBUF_SC_SIG ]
1334 *
1335 * MBUF_SC_VO ] ==> MBUF_TC_VO
1336 * MBUF_SC_CTL ]
1337 *
1338 * The values assigned to each service class allows for a fast mapping to
1339 * the corresponding MBUF_TC traffic class values, as well as to retrieve the
1340 * assigned index; therefore care must be taken when comparing against these
1341 * values. Use the corresponding class and index macros to retrieve the
1342 * corresponding portion, and never assume that a higher class corresponds
1343 * to a higher index.
1344 */
1345 #define MBUF_SCVAL(x) ((x) & 0xffff)
1346 #define MBUF_SCIDX(x) ((((x) >> 16) & 0xff) >> 3)
1347 #define MBUF_SC2TC(_sc) (MBUF_SCVAL(_sc) >> 7)
1348 #define MBUF_TC2SCVAL(_tc) ((_tc) << 7)
1349 #define IS_MBUF_SC_BACKGROUND(_sc) (((_sc) == MBUF_SC_BK_SYS) || \
1350 ((_sc) == MBUF_SC_BK))
1351 #define IS_MBUF_SC_REALTIME(_sc) ((_sc) >= MBUF_SC_AV && (_sc) <= MBUF_SC_VO)
1352 #define IS_MBUF_SC_BESTEFFORT(_sc) ((_sc) == MBUF_SC_BE || \
1353 (_sc) == MBUF_SC_RD || (_sc) == MBUF_SC_OAM)
1354
1355 #define SCIDX_BK_SYS MBUF_SCIDX(MBUF_SC_BK_SYS)
1356 #define SCIDX_BK MBUF_SCIDX(MBUF_SC_BK)
1357 #define SCIDX_BE MBUF_SCIDX(MBUF_SC_BE)
1358 #define SCIDX_RD MBUF_SCIDX(MBUF_SC_RD)
1359 #define SCIDX_OAM MBUF_SCIDX(MBUF_SC_OAM)
1360 #define SCIDX_AV MBUF_SCIDX(MBUF_SC_AV)
1361 #define SCIDX_RV MBUF_SCIDX(MBUF_SC_RV)
1362 #define SCIDX_VI MBUF_SCIDX(MBUF_SC_VI)
1363 #define SCIDX_SIG MBUF_SCIDX(MBUF_SC_SIG)
1364 #define SCIDX_VO MBUF_SCIDX(MBUF_SC_VO)
1365 #define SCIDX_CTL MBUF_SCIDX(MBUF_SC_CTL)
1366
1367 #define SCVAL_BK_SYS MBUF_SCVAL(MBUF_SC_BK_SYS)
1368 #define SCVAL_BK MBUF_SCVAL(MBUF_SC_BK)
1369 #define SCVAL_BE MBUF_SCVAL(MBUF_SC_BE)
1370 #define SCVAL_RD MBUF_SCVAL(MBUF_SC_RD)
1371 #define SCVAL_OAM MBUF_SCVAL(MBUF_SC_OAM)
1372 #define SCVAL_AV MBUF_SCVAL(MBUF_SC_AV)
1373 #define SCVAL_RV MBUF_SCVAL(MBUF_SC_RV)
1374 #define SCVAL_VI MBUF_SCVAL(MBUF_SC_VI)
1375 #define SCVAL_SIG MBUF_SCVAL(MBUF_SC_SIG)
1376 #define SCVAL_VO MBUF_SCVAL(MBUF_SC_VO)
1377 #define SCVAL_CTL MBUF_SCVAL(MBUF_SC_CTL)
1378
1379 #define MBUF_VALID_SC(c) \
1380 (c == MBUF_SC_BK_SYS || c == MBUF_SC_BK || c == MBUF_SC_BE || \
1381 c == MBUF_SC_RD || c == MBUF_SC_OAM || c == MBUF_SC_AV || \
1382 c == MBUF_SC_RV || c == MBUF_SC_VI || c == MBUF_SC_SIG || \
1383 c == MBUF_SC_VO || c == MBUF_SC_CTL)
1384
1385 #define MBUF_VALID_SCIDX(c) \
1386 (c == SCIDX_BK_SYS || c == SCIDX_BK || c == SCIDX_BE || \
1387 c == SCIDX_RD || c == SCIDX_OAM || c == SCIDX_AV || \
1388 c == SCIDX_RV || c == SCIDX_VI || c == SCIDX_SIG || \
1389 c == SCIDX_VO || c == SCIDX_CTL)
1390
1391 #define MBUF_VALID_SCVAL(c) \
1392 (c == SCVAL_BK_SYS || c == SCVAL_BK || c == SCVAL_BE || \
1393 c == SCVAL_RD || c == SCVAL_OAM || c == SCVAL_AV || \
1394 c == SCVAL_RV || c == SCVAL_VI || c == SCVAL_SIG || \
1395 c == SCVAL_VO || SCVAL_CTL)
1396
1397 extern unsigned char *mbutl; /* start VA of mbuf pool */
1398 extern unsigned char *embutl; /* end VA of mbuf pool */
1399 extern unsigned int nmbclusters; /* number of mapped clusters */
1400 extern int njcl; /* # of jumbo clusters */
1401 extern int njclbytes; /* size of a jumbo cluster */
1402 extern int max_hdr; /* largest link+protocol header */
1403 extern int max_datalen; /* MHLEN - max_hdr */
1404
1405 /* Use max_linkhdr instead of _max_linkhdr */
1406 extern int _max_linkhdr; /* largest link-level header */
1407
1408 /* Use max_protohdr instead of _max_protohdr */
1409 extern int _max_protohdr; /* largest protocol header */
1410
1411 __private_extern__ unsigned int mbuf_default_ncl(uint64_t);
1412 __private_extern__ void mbinit(void);
1413 __private_extern__ struct mbuf *m_clattach(struct mbuf *, int, caddr_t,
1414 void (*)(caddr_t, u_int, caddr_t), u_int, caddr_t, int, int);
1415 __private_extern__ caddr_t m_bigalloc(int);
1416 __private_extern__ void m_bigfree(caddr_t, u_int, caddr_t);
1417 __private_extern__ struct mbuf *m_mbigget(struct mbuf *, int);
1418 __private_extern__ caddr_t m_16kalloc(int);
1419 __private_extern__ void m_16kfree(caddr_t, u_int, caddr_t);
1420 __private_extern__ struct mbuf *m_m16kget(struct mbuf *, int);
1421 __private_extern__ int m_reinit(struct mbuf *, int);
1422 __private_extern__ struct mbuf *m_free(struct mbuf *) __XNU_INTERNAL(m_free);
1423 __private_extern__ struct mbuf *m_getclr(int, int);
1424 __private_extern__ struct mbuf *m_getptr(struct mbuf *, int, int *);
1425 __private_extern__ unsigned int m_length(struct mbuf *);
1426 __private_extern__ unsigned int m_length2(struct mbuf *, struct mbuf **);
1427 __private_extern__ unsigned int m_fixhdr(struct mbuf *);
1428 __private_extern__ struct mbuf *m_defrag(struct mbuf *, int);
1429 __private_extern__ struct mbuf *m_defrag_offset(struct mbuf *, u_int32_t, int);
1430 __private_extern__ struct mbuf *m_prepend(struct mbuf *, int, int);
1431 __private_extern__ struct mbuf *m_copyup(struct mbuf *, int, int);
1432 __private_extern__ struct mbuf *m_retry(int, int);
1433 __private_extern__ struct mbuf *m_retryhdr(int, int);
1434 __private_extern__ int m_freem_list(struct mbuf *);
1435 __private_extern__ int m_append(struct mbuf *, int, caddr_t);
1436 __private_extern__ struct mbuf *m_last(struct mbuf *);
1437 __private_extern__ struct mbuf *m_devget(char *, int, int, struct ifnet *,
1438 void (*)(const void *, void *, size_t));
1439 __private_extern__ struct mbuf *m_pulldown(struct mbuf *, int, int, int *);
1440
1441 __private_extern__ struct mbuf *m_getcl(int, int, int);
1442 __private_extern__ caddr_t m_mclalloc(int);
1443 __private_extern__ int m_mclhasreference(struct mbuf *);
1444 __private_extern__ void m_copy_pkthdr(struct mbuf *, struct mbuf *);
1445 __private_extern__ void m_copy_pftag(struct mbuf *, struct mbuf *);
1446 __private_extern__ void m_copy_necptag(struct mbuf *, struct mbuf *);
1447 __private_extern__ void m_copy_classifier(struct mbuf *, struct mbuf *);
1448
1449 __private_extern__ struct mbuf *m_dtom(void *);
1450 __private_extern__ int m_mtocl(void *);
1451 __private_extern__ union mcluster *m_cltom(int);
1452
1453 __private_extern__ void m_align(struct mbuf *, int);
1454
1455 __private_extern__ struct mbuf *m_normalize(struct mbuf *m);
1456 __private_extern__ void m_mchtype(struct mbuf *m, int t);
1457 __private_extern__ void m_mcheck(struct mbuf *);
1458
1459 __private_extern__ void m_copyback(struct mbuf *, int, int, const void *);
1460 __private_extern__ struct mbuf *m_copyback_cow(struct mbuf *, int, int,
1461 const void *, int);
1462 __private_extern__ int m_makewritable(struct mbuf **, int, int, int);
1463 __private_extern__ struct mbuf *m_dup(struct mbuf *m, int how);
1464 __private_extern__ struct mbuf *m_copym_with_hdrs(struct mbuf *, int, int, int,
1465 struct mbuf **, int *, uint32_t);
1466 __private_extern__ struct mbuf *m_getpackethdrs(int, int);
1467 __private_extern__ struct mbuf *m_getpacket_how(int);
1468 __private_extern__ struct mbuf *m_getpackets_internal(unsigned int *, int,
1469 int, int, size_t);
1470 __private_extern__ struct mbuf *m_allocpacket_internal(unsigned int *, size_t,
1471 unsigned int *, int, int, size_t);
1472
1473 __private_extern__ int m_ext_set_prop(struct mbuf *, uint32_t, uint32_t);
1474 __private_extern__ uint32_t m_ext_get_prop(struct mbuf *);
1475 __private_extern__ int m_ext_paired_is_active(struct mbuf *);
1476 __private_extern__ void m_ext_paired_activate(struct mbuf *);
1477
1478 __private_extern__ void mbuf_drain(boolean_t);
1479
1480 /*
1481 * Packets may have annotations attached by affixing a list of "packet
1482 * tags" to the pkthdr structure. Packet tags are dynamically allocated
1483 * semi-opaque data structures that have a fixed header (struct m_tag)
1484 * that specifies the size of the memory block and an <id,type> pair that
1485 * identifies it. The id identifies the module and the type identifies the
1486 * type of data for that module. The id of zero is reserved for the kernel.
1487 *
1488 * Note that the packet tag returned by m_tag_allocate has the default
1489 * memory alignment implemented by malloc. To reference private data one
1490 * can use a construct like:
1491 *
1492 * struct m_tag *mtag = m_tag_allocate(...);
1493 * struct foo *p = (struct foo *)(mtag+1);
1494 *
1495 * if the alignment of struct m_tag is sufficient for referencing members
1496 * of struct foo. Otherwise it is necessary to embed struct m_tag within
1497 * the private data structure to insure proper alignment; e.g.
1498 *
1499 * struct foo {
1500 * struct m_tag tag;
1501 * ...
1502 * };
1503 * struct foo *p = (struct foo *) m_tag_allocate(...);
1504 * struct m_tag *mtag = &p->tag;
1505 */
1506
1507 #define KERNEL_MODULE_TAG_ID 0
1508
1509 enum {
1510 KERNEL_TAG_TYPE_NONE = 0,
1511 KERNEL_TAG_TYPE_DUMMYNET = 1,
1512 KERNEL_TAG_TYPE_DIVERT = 2,
1513 KERNEL_TAG_TYPE_IPFORWARD = 3,
1514 KERNEL_TAG_TYPE_IPFILT = 4,
1515 KERNEL_TAG_TYPE_MACLABEL = 5,
1516 KERNEL_TAG_TYPE_MAC_POLICY_LABEL = 6,
1517 KERNEL_TAG_TYPE_ENCAP = 8,
1518 KERNEL_TAG_TYPE_INET6 = 9,
1519 KERNEL_TAG_TYPE_IPSEC = 10,
1520 KERNEL_TAG_TYPE_DRVAUX = 11,
1521 KERNEL_TAG_TYPE_CFIL_UDP = 13,
1522 KERNEL_TAG_TYPE_PF_REASS = 14,
1523 };
1524
1525 /* Packet tag routines */
1526 __private_extern__ struct m_tag *m_tag_alloc(u_int32_t, u_int16_t, int, int);
1527 __private_extern__ struct m_tag *m_tag_create(u_int32_t, u_int16_t, int, int,
1528 struct mbuf *);
1529 __private_extern__ void m_tag_free(struct m_tag *);
1530 __private_extern__ void m_tag_prepend(struct mbuf *, struct m_tag *);
1531 __private_extern__ void m_tag_unlink(struct mbuf *, struct m_tag *);
1532 __private_extern__ void m_tag_delete(struct mbuf *, struct m_tag *);
1533 __private_extern__ void m_tag_delete_chain(struct mbuf *, struct m_tag *);
1534 __private_extern__ struct m_tag *m_tag_locate(struct mbuf *, u_int32_t,
1535 u_int16_t, struct m_tag *);
1536 __private_extern__ struct m_tag *m_tag_copy(struct m_tag *, int);
1537 __private_extern__ int m_tag_copy_chain(struct mbuf *, struct mbuf *, int);
1538 __private_extern__ void m_tag_init(struct mbuf *, int);
1539 __private_extern__ struct m_tag *m_tag_first(struct mbuf *);
1540 __private_extern__ struct m_tag *m_tag_next(struct mbuf *, struct m_tag *);
1541
1542 __private_extern__ void m_scratch_init(struct mbuf *);
1543 __private_extern__ u_int32_t m_scratch_get(struct mbuf *, u_int8_t **);
1544
1545 __private_extern__ void m_classifier_init(struct mbuf *, uint32_t);
1546
1547 __private_extern__ int m_set_service_class(struct mbuf *, mbuf_svc_class_t);
1548 __private_extern__ mbuf_svc_class_t m_get_service_class(struct mbuf *);
1549 __private_extern__ mbuf_svc_class_t m_service_class_from_idx(u_int32_t);
1550 __private_extern__ mbuf_svc_class_t m_service_class_from_val(u_int32_t);
1551 __private_extern__ int m_set_traffic_class(struct mbuf *, mbuf_traffic_class_t);
1552 __private_extern__ mbuf_traffic_class_t m_get_traffic_class(struct mbuf *);
1553
1554 #define ADDCARRY(_x) do { \
1555 while (((_x) >> 16) != 0) \
1556 (_x) = ((_x) >> 16) + ((_x) & 0xffff); \
1557 } while (0)
1558
1559 __private_extern__ u_int16_t m_adj_sum16(struct mbuf *, u_int32_t,
1560 u_int32_t, u_int32_t, u_int32_t);
1561 __private_extern__ u_int16_t m_sum16(struct mbuf *, u_int32_t, u_int32_t);
1562
1563 __private_extern__ void m_set_ext(struct mbuf *, struct ext_ref *,
1564 m_ext_free_func_t, caddr_t);
1565 __private_extern__ struct ext_ref *m_get_rfa(struct mbuf *);
1566 __private_extern__ m_ext_free_func_t m_get_ext_free(struct mbuf *);
1567 __private_extern__ caddr_t m_get_ext_arg(struct mbuf *);
1568
1569 __private_extern__ void m_do_tx_compl_callback(struct mbuf *, struct ifnet *);
1570 __private_extern__ mbuf_tx_compl_func m_get_tx_compl_callback(u_int32_t);
1571
1572 __END_DECLS
1573 #endif /* XNU_KERNEL_PRIVATE */
1574 #endif /* !_SYS_MBUF_H_ */