4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
26 * Portions Copyright (c) 2012 by Delphix. All rights reserved.
27 * Portions Copyright (c) 2016 by Joyent, Inc.
30 #ifndef _SYS_DTRACE_IMPL_H
31 #define _SYS_DTRACE_IMPL_H
38 * DTrace Dynamic Tracing Software: Kernel Implementation Interfaces
40 * Note: The contents of this file are private to the implementation of the
41 * Solaris system and DTrace subsystem and are subject to change at any time
42 * without notice. Applications and drivers using these interfaces will fail
43 * to run on future releases. These interfaces should not be used for any
44 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
45 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
48 #include <sys/dtrace.h>
51 * DTrace Implementation Locks
53 extern lck_attr_t dtrace_lck_attr
;
54 extern lck_grp_t dtrace_lck_grp
;
55 extern lck_mtx_t dtrace_procwaitfor_lock
;
58 * DTrace Implementation Constants and Typedefs
60 #define DTRACE_MAXPROPLEN 128
61 #define DTRACE_DYNVAR_CHUNKSIZE 256
65 struct dtrace_predicate
;
67 struct dtrace_provider
;
70 typedef struct dtrace_probe dtrace_probe_t
;
71 typedef struct dtrace_ecb dtrace_ecb_t
;
72 typedef struct dtrace_predicate dtrace_predicate_t
;
73 typedef struct dtrace_action dtrace_action_t
;
74 typedef struct dtrace_provider dtrace_provider_t
;
75 typedef struct dtrace_meta dtrace_meta_t
;
76 typedef struct dtrace_state dtrace_state_t
;
77 typedef uint32_t dtrace_optid_t
;
78 typedef uint32_t dtrace_specid_t
;
79 typedef uint64_t dtrace_genid_t
;
84 * The probe is the fundamental unit of the DTrace architecture. Probes are
85 * created by DTrace providers, and managed by the DTrace framework. A probe
86 * is identified by a unique <provider, module, function, name> tuple, and has
87 * a unique probe identifier assigned to it. (Some probes are not associated
88 * with a specific point in text; these are called _unanchored probes_ and have
89 * no module or function associated with them.) Probes are represented as a
90 * dtrace_probe structure. To allow quick lookups based on each element of the
91 * probe tuple, probes are hashed by each of provider, module, function and
92 * name. (If a lookup is performed based on a regular expression, a
93 * dtrace_probekey is prepared, and a linear search is performed.) Each probe
94 * is additionally pointed to by a linear array indexed by its identifier. The
95 * identifier is the provider's mechanism for indicating to the DTrace
96 * framework that a probe has fired: the identifier is passed as the first
97 * argument to dtrace_probe(), where it is then mapped into the corresponding
98 * dtrace_probe structure. From the dtrace_probe structure, dtrace_probe() can
99 * iterate over the probe's list of enabling control blocks; see "DTrace
100 * Enabling Control Blocks", below.)
102 struct dtrace_probe
{
103 dtrace_id_t dtpr_id
; /* probe identifier */
104 dtrace_ecb_t
*dtpr_ecb
; /* ECB list; see below */
105 dtrace_ecb_t
*dtpr_ecb_last
; /* last ECB in list */
106 void *dtpr_arg
; /* provider argument */
107 dtrace_cacheid_t dtpr_predcache
; /* predicate cache ID */
108 int dtpr_aframes
; /* artificial frames */
109 dtrace_provider_t
*dtpr_provider
; /* pointer to provider */
110 char *dtpr_mod
; /* probe's module name */
111 char *dtpr_func
; /* probe's function name */
112 char *dtpr_name
; /* probe's name */
113 dtrace_probe_t
*dtpr_nextprov
; /* next in provider hash */
114 dtrace_probe_t
*dtpr_prevprov
; /* previous in provider hash */
115 dtrace_probe_t
*dtpr_nextmod
; /* next in module hash */
116 dtrace_probe_t
*dtpr_prevmod
; /* previous in module hash */
117 dtrace_probe_t
*dtpr_nextfunc
; /* next in function hash */
118 dtrace_probe_t
*dtpr_prevfunc
; /* previous in function hash */
119 dtrace_probe_t
*dtpr_nextname
; /* next in name hash */
120 dtrace_probe_t
*dtpr_prevname
; /* previous in name hash */
121 dtrace_genid_t dtpr_gen
; /* probe generation ID */
124 typedef int dtrace_probekey_f(const char *, const char *, int);
126 typedef struct dtrace_probekey
{
127 const char *dtpk_prov
; /* provider name to match */
128 dtrace_probekey_f
*dtpk_pmatch
; /* provider matching function */
129 const char *dtpk_mod
; /* module name to match */
130 dtrace_probekey_f
*dtpk_mmatch
; /* module matching function */
131 const char *dtpk_func
; /* func name to match */
132 dtrace_probekey_f
*dtpk_fmatch
; /* func matching function */
133 const char *dtpk_name
; /* name to match */
134 dtrace_probekey_f
*dtpk_nmatch
; /* name matching function */
135 dtrace_id_t dtpk_id
; /* identifier to match */
138 typedef struct dtrace_hashbucket
{
139 struct dtrace_hashbucket
*dthb_next
; /* next on hash chain */
140 void *dthb_chain
; /* chain of elements */
141 int dthb_len
; /* number of probes here */
142 } dtrace_hashbucket_t
;
144 typedef const char* dtrace_strkey_f(void*, uintptr_t);
146 typedef struct dtrace_hash
{
147 dtrace_hashbucket_t
**dth_tab
; /* hash table */
148 int dth_size
; /* size of hash table */
149 int dth_mask
; /* mask to index into table */
150 int dth_nbuckets
; /* total number of buckets */
151 uintptr_t dth_nextoffs
; /* offset of next in element */
152 uintptr_t dth_prevoffs
; /* offset of prev in element */
153 dtrace_strkey_f
*dth_getstr
; /* func to retrieve str in element */
154 uintptr_t dth_stroffs
; /* offset of str in element */
158 * DTrace Enabling Control Blocks
160 * When a provider wishes to fire a probe, it calls into dtrace_probe(),
161 * passing the probe identifier as the first argument. As described above,
162 * dtrace_probe() maps the identifier into a pointer to a dtrace_probe_t
163 * structure. This structure contains information about the probe, and a
164 * pointer to the list of Enabling Control Blocks (ECBs). Each ECB points to
165 * DTrace consumer state, and contains an optional predicate, and a list of
166 * actions. (Shown schematically below.) The ECB abstraction allows a single
167 * probe to be multiplexed across disjoint consumers, or across disjoint
168 * enablings of a single probe within one consumer.
170 * Enabling Control Block
172 * +------------------------+
173 * | dtrace_epid_t ---------+--------------> Enabled Probe ID (EPID)
174 * | dtrace_state_t * ------+--------------> State associated with this ECB
175 * | dtrace_predicate_t * --+---------+
176 * | dtrace_action_t * -----+----+ |
177 * | dtrace_ecb_t * ---+ | | | Predicate (if any)
178 * +-------------------+----+ | | dtrace_predicate_t
179 * | | +---> +--------------------+
180 * | | | dtrace_difo_t * ---+----> DIFO
181 * | | +--------------------+
183 * Next ECB | | Action
184 * (if any) | | dtrace_action_t
185 * : +--> +-------------------+
186 * : | dtrace_actkind_t -+------> kind
187 * v | dtrace_difo_t * --+------> DIFO (if any)
188 * | dtrace_recdesc_t -+------> record descr.
189 * | dtrace_action_t * +------+
190 * +-------------------+ |
192 * +-------------------------------+ (if any)
196 * +--> +-------------------+
197 * | dtrace_actkind_t -+------> kind
198 * | dtrace_difo_t * --+------> DIFO (if any)
199 * | dtrace_action_t * +------+
200 * +-------------------+ |
202 * +-------------------------------+ (if any)
208 * dtrace_probe() iterates over the ECB list. If the ECB needs less space
209 * than is available in the principal buffer, the ECB is processed: if the
210 * predicate is non-NULL, the DIF object is executed. If the result is
211 * non-zero, the action list is processed, with each action being executed
212 * accordingly. When the action list has been completely executed, processing
213 * advances to the next ECB. The ECB abstraction allows disjoint consumers
214 * to multiplex on single probes.
216 * Execution of the ECB results in consuming dte_size bytes in the buffer
217 * to record data. During execution, dte_needed bytes must be available in
218 * the buffer. This space is used for both recorded data and tuple data.
221 dtrace_epid_t dte_epid
; /* enabled probe ID */
222 uint32_t dte_alignment
; /* required alignment */
223 size_t dte_needed
; /* space needed for execution */
224 size_t dte_size
; /* size of recorded payload */
225 dtrace_predicate_t
*dte_predicate
; /* predicate, if any */
226 dtrace_action_t
*dte_action
; /* actions, if any */
227 dtrace_ecb_t
*dte_next
; /* next ECB on probe */
228 dtrace_state_t
*dte_state
; /* pointer to state */
229 uint32_t dte_cond
; /* security condition */
230 dtrace_probe_t
*dte_probe
; /* pointer to probe */
231 dtrace_action_t
*dte_action_last
; /* last action on ECB */
232 uint64_t dte_uarg
; /* library argument */
235 struct dtrace_predicate
{
236 dtrace_difo_t
*dtp_difo
; /* DIF object */
237 dtrace_cacheid_t dtp_cacheid
; /* cache identifier */
238 int dtp_refcnt
; /* reference count */
241 struct dtrace_action
{
242 dtrace_actkind_t dta_kind
; /* kind of action */
243 uint16_t dta_intuple
; /* boolean: in aggregation */
244 uint32_t dta_refcnt
; /* reference count */
245 dtrace_difo_t
*dta_difo
; /* pointer to DIFO */
246 dtrace_recdesc_t dta_rec
; /* record description */
247 dtrace_action_t
*dta_prev
; /* previous action */
248 dtrace_action_t
*dta_next
; /* next action */
251 typedef struct dtrace_aggregation
{
252 dtrace_action_t dtag_action
; /* action; must be first */
253 dtrace_aggid_t dtag_id
; /* identifier */
254 dtrace_ecb_t
*dtag_ecb
; /* corresponding ECB */
255 dtrace_action_t
*dtag_first
; /* first action in tuple */
256 uint32_t dtag_base
; /* base of aggregation */
257 uint8_t dtag_hasarg
; /* boolean: has argument */
258 uint64_t dtag_initial
; /* initial value */
259 void (*dtag_aggregate
)(uint64_t *, uint64_t, uint64_t);
260 } dtrace_aggregation_t
;
265 * Principal buffers, aggregation buffers, and speculative buffers are all
266 * managed with the dtrace_buffer structure. By default, this structure
267 * includes twin data buffers -- dtb_tomax and dtb_xamot -- that serve as the
268 * active and passive buffers, respectively. For speculative buffers,
269 * dtb_xamot will be NULL; for "ring" and "fill" buffers, dtb_xamot will point
270 * to a scratch buffer. For all buffer types, the dtrace_buffer structure is
271 * always allocated on a per-CPU basis; a single dtrace_buffer structure is
272 * never shared among CPUs. (That is, there is never true sharing of the
273 * dtrace_buffer structure; to prevent false sharing of the structure, it must
274 * always be aligned to the coherence granularity -- generally 64 bytes.)
276 * One of the critical design decisions of DTrace is that a given ECB always
277 * stores the same quantity and type of data. This is done to assure that the
278 * only metadata required for an ECB's traced data is the EPID. That is, from
279 * the EPID, the consumer can determine the data layout. (The data buffer
280 * layout is shown schematically below.) By assuring that one can determine
281 * data layout from the EPID, the metadata stream can be separated from the
282 * data stream -- simplifying the data stream enormously. The ECB always
283 * proceeds the recorded data as part of the dtrace_rechdr_t structure that
284 * includes the EPID and a high-resolution timestamp used for output ordering
287 * base of data buffer ---> +--------+--------------------+--------+
288 * | rechdr | data | rechdr |
289 * +--------+------+--------+----+--------+
290 * | data | rechdr | data |
291 * +---------------+--------+-------------+
293 * +--------+--------------------+--------+
294 * | rechdr | data | |
295 * +--------+--------------------+ |
305 * limit of data buffer ---> +--------------------------------------+
307 * When evaluating an ECB, dtrace_probe() determines if the ECB's needs of the
308 * principal buffer (both scratch and payload) exceed the available space. If
309 * the ECB's needs exceed available space (and if the principal buffer policy
310 * is the default "switch" policy), the ECB is dropped, the buffer's drop count
311 * is incremented, and processing advances to the next ECB. If the ECB's needs
312 * can be met with the available space, the ECB is processed, but the offset in
313 * the principal buffer is only advanced if the ECB completes processing
316 * When a buffer is to be switched (either because the buffer is the principal
317 * buffer with a "switch" policy or because it is an aggregation buffer), a
318 * cross call is issued to the CPU associated with the buffer. In the cross
319 * call context, interrupts are disabled, and the active and the inactive
320 * buffers are atomically switched. This involves switching the data pointers,
321 * copying the various state fields (offset, drops, errors, etc.) into their
322 * inactive equivalents, and clearing the state fields. Because interrupts are
323 * disabled during this procedure, the switch is guaranteed to appear atomic to
326 * DTrace Ring Buffering
328 * To process a ring buffer correctly, one must know the oldest valid record.
329 * Processing starts at the oldest record in the buffer and continues until
330 * the end of the buffer is reached. Processing then resumes starting with
331 * the record stored at offset 0 in the buffer, and continues until the
332 * youngest record is processed. If trace records are of a fixed-length,
333 * determining the oldest record is trivial:
335 * - If the ring buffer has not wrapped, the oldest record is the record
336 * stored at offset 0.
338 * - If the ring buffer has wrapped, the oldest record is the record stored
339 * at the current offset.
341 * With variable length records, however, just knowing the current offset
342 * doesn't suffice for determining the oldest valid record: assuming that one
343 * allows for arbitrary data, one has no way of searching forward from the
344 * current offset to find the oldest valid record. (That is, one has no way
345 * of separating data from metadata.) It would be possible to simply refuse to
346 * process any data in the ring buffer between the current offset and the
347 * limit, but this leaves (potentially) an enormous amount of otherwise valid
350 * To effect ring buffering, we track two offsets in the buffer: the current
351 * offset and the _wrapped_ offset. If a request is made to reserve some
352 * amount of data, and the buffer has wrapped, the wrapped offset is
353 * incremented until the wrapped offset minus the current offset is greater
354 * than or equal to the reserve request. This is done by repeatedly looking
355 * up the ECB corresponding to the EPID at the current wrapped offset, and
356 * incrementing the wrapped offset by the size of the data payload
357 * corresponding to that ECB. If this offset is greater than or equal to the
358 * limit of the data buffer, the wrapped offset is set to 0. Thus, the
359 * current offset effectively "chases" the wrapped offset around the buffer.
362 * base of data buffer ---> +------+--------------------+------+
363 * | EPID | data | EPID |
364 * +------+--------+------+----+------+
365 * | data | EPID | data |
366 * +---------------+------+-----------+
368 * +------+---------------------------+
370 * current offset ---> +------+---------------------------+
372 * wrapped offset ---> +------+--------------------+------+
373 * | EPID | data | EPID |
374 * +------+--------+------+----+------+
375 * | data | EPID | data |
376 * +---------------+------+-----------+
379 * . ... valid data ... .
382 * +------+-------------+------+------+
383 * | EPID | data | EPID | data |
384 * +------+------------++------+------+
385 * | data, cont. | leftover |
386 * limit of data buffer ---> +-------------------+--------------+
388 * If the amount of requested buffer space exceeds the amount of space
389 * available between the current offset and the end of the buffer:
391 * (1) all words in the data buffer between the current offset and the limit
392 * of the data buffer (marked "leftover", above) are set to
395 * (2) the wrapped offset is set to zero
397 * (3) the iteration process described above occurs until the wrapped offset
398 * is greater than the amount of desired space.
400 * The wrapped offset is implemented by (re-)using the inactive offset.
401 * In a "switch" buffer policy, the inactive offset stores the offset in
402 * the inactive buffer; in a "ring" buffer policy, it stores the wrapped
405 * DTrace Scratch Buffering
407 * Some ECBs may wish to allocate dynamically-sized temporary scratch memory.
408 * To accommodate such requests easily, scratch memory may be allocated in
409 * the buffer beyond the current offset plus the needed memory of the current
410 * ECB. If there isn't sufficient room in the buffer for the requested amount
411 * of scratch space, the allocation fails and an error is generated. Scratch
412 * memory is tracked in the dtrace_mstate_t and is automatically freed when
413 * the ECB ceases processing. Note that ring buffers cannot allocate their
414 * scratch from the principal buffer -- lest they needlessly overwrite older,
415 * valid data. Ring buffers therefore have their own dedicated scratch buffer
416 * from which scratch is allocated.
418 #define DTRACEBUF_RING 0x0001 /* bufpolicy set to "ring" */
419 #define DTRACEBUF_FILL 0x0002 /* bufpolicy set to "fill" */
420 #define DTRACEBUF_NOSWITCH 0x0004 /* do not switch buffer */
421 #define DTRACEBUF_WRAPPED 0x0008 /* ring buffer has wrapped */
422 #define DTRACEBUF_DROPPED 0x0010 /* drops occurred */
423 #define DTRACEBUF_ERROR 0x0020 /* errors occurred */
424 #define DTRACEBUF_FULL 0x0040 /* "fill" buffer is full */
425 #define DTRACEBUF_CONSUMED 0x0080 /* buffer has been consumed */
426 #define DTRACEBUF_INACTIVE 0x0100 /* buffer is not yet active */
428 typedef struct dtrace_buffer
{
429 uint64_t dtb_offset
; /* current offset in buffer */
430 uint64_t dtb_cur_limit
; /* current limit before signaling/dropping */
431 uint64_t dtb_limit
; /* limit before signaling */
432 uint64_t dtb_size
; /* size of buffer */
433 uint32_t dtb_flags
; /* flags */
434 uint32_t dtb_drops
; /* number of drops */
435 caddr_t dtb_tomax
; /* active buffer */
436 caddr_t dtb_xamot
; /* inactive buffer */
437 uint32_t dtb_xamot_flags
; /* inactive flags */
438 uint32_t dtb_xamot_drops
; /* drops in inactive buffer */
439 uint64_t dtb_xamot_offset
; /* offset in inactive buffer */
440 uint32_t dtb_errors
; /* number of errors */
441 uint32_t dtb_xamot_errors
; /* errors in inactive buffer */
445 uint64_t dtb_switched
; /* time of last switch */
446 uint64_t dtb_interval
; /* observed switch interval */
447 uint64_t dtb_pad2
[4]; /* pad to avoid false sharing */
451 * DTrace Aggregation Buffers
453 * Aggregation buffers use much of the same mechanism as described above
454 * ("DTrace Buffers"). However, because an aggregation is fundamentally a
455 * hash, there exists dynamic metadata associated with an aggregation buffer
456 * that is not associated with other kinds of buffers. This aggregation
457 * metadata is _only_ relevant for the in-kernel implementation of
458 * aggregations; it is not actually relevant to user-level consumers. To do
459 * this, we allocate dynamic aggregation data (hash keys and hash buckets)
460 * starting below the _limit_ of the buffer, and we allocate data from the
461 * _base_ of the buffer. When the aggregation buffer is copied out, _only_ the
462 * data is copied out; the metadata is simply discarded. Schematically,
463 * aggregation buffers look like:
465 * base of data buffer ---> +-------+------+-----------+-------+
466 * | aggid | key | value | aggid |
467 * +-------+------+-----------+-------+
469 * +-------+-------+-----+------------+
470 * | value | aggid | key | value |
471 * +-------+------++-----+------+-----+
472 * | aggid | key | value | |
473 * +-------+------+-------------+ |
483 * | || +------------+
485 * +---------------------+ |
487 * | (dtrace_aggkey structures) |
489 * +----------------------------------+
491 * | (dtrace_aggbuffer structure) |
493 * limit of data buffer ---> +----------------------------------+
496 * As implied above, just as we assure that ECBs always store a constant
497 * amount of data, we assure that a given aggregation -- identified by its
498 * aggregation ID -- always stores data of a constant quantity and type.
499 * As with EPIDs, this allows the aggregation ID to serve as the metadata for a
502 * Note that the size of the dtrace_aggkey structure must be sizeof (uintptr_t)
503 * aligned. (If this the structure changes such that this becomes false, an
504 * assertion will fail in dtrace_aggregate().)
506 typedef struct dtrace_aggkey
{
507 uint32_t dtak_hashval
; /* hash value */
508 uint32_t dtak_action
:4; /* action -- 4 bits */
509 uint32_t dtak_size
:28; /* size -- 28 bits */
510 caddr_t dtak_data
; /* data pointer */
511 struct dtrace_aggkey
*dtak_next
; /* next in hash chain */
514 typedef struct dtrace_aggbuffer
{
515 uintptr_t dtagb_hashsize
; /* number of buckets */
516 uintptr_t dtagb_free
; /* free list of keys */
517 dtrace_aggkey_t
**dtagb_hash
; /* hash table */
518 } dtrace_aggbuffer_t
;
521 * DTrace Speculations
523 * Speculations have a per-CPU buffer and a global state. Once a speculation
524 * buffer has been comitted or discarded, it cannot be reused until all CPUs
525 * have taken the same action (commit or discard) on their respective
526 * speculative buffer. However, because DTrace probes may execute in arbitrary
527 * context, other CPUs cannot simply be cross-called at probe firing time to
528 * perform the necessary commit or discard. The speculation states thus
529 * optimize for the case that a speculative buffer is only active on one CPU at
530 * the time of a commit() or discard() -- for if this is the case, other CPUs
531 * need not take action, and the speculation is immediately available for
532 * reuse. If the speculation is active on multiple CPUs, it must be
533 * asynchronously cleaned -- potentially leading to a higher rate of dirty
534 * speculative drops. The speculation states are as follows:
536 * DTRACESPEC_INACTIVE <= Initial state; inactive speculation
537 * DTRACESPEC_ACTIVE <= Allocated, but not yet speculatively traced to
538 * DTRACESPEC_ACTIVEONE <= Speculatively traced to on one CPU
539 * DTRACESPEC_ACTIVEMANY <= Speculatively traced to on more than one CPU
540 * DTRACESPEC_COMMITTING <= Currently being commited on one CPU
541 * DTRACESPEC_COMMITTINGMANY <= Currently being commited on many CPUs
542 * DTRACESPEC_DISCARDING <= Currently being discarded on many CPUs
544 * The state transition diagram is as follows:
546 * +----------------------------------------------------------+
549 * | +-------------------| COMMITTING |<-----------------+ |
550 * | | +------------+ | |
551 * | | copied spec. ^ commit() on | | discard() on
552 * | | into principal | active CPU | | active CPU
555 * +----------+ +--------+ +-----------+
556 * | INACTIVE |---------------->| ACTIVE |--------------->| ACTIVEONE |
557 * +----------+ speculation() +--------+ speculate() +-----------+
559 * | | | discard() | |
560 * | | asynchronously | discard() on | | speculate()
561 * | | cleaned V inactive CPU | | on inactive
562 * | | +------------+ | | CPU
563 * | +-------------------| DISCARDING |<-----------------+ |
565 * | asynchronously ^ |
566 * | copied spec. | discard() |
567 * | into principal +------------------------+ |
569 * +----------------+ commit() +------------+
570 * | COMMITTINGMANY |<----------------------------------| ACTIVEMANY |
571 * +----------------+ +------------+
573 typedef enum dtrace_speculation_state
{
574 DTRACESPEC_INACTIVE
= 0,
576 DTRACESPEC_ACTIVEONE
,
577 DTRACESPEC_ACTIVEMANY
,
578 DTRACESPEC_COMMITTING
,
579 DTRACESPEC_COMMITTINGMANY
,
580 DTRACESPEC_DISCARDING
581 } dtrace_speculation_state_t
;
583 typedef struct dtrace_speculation
{
584 dtrace_speculation_state_t dtsp_state
; /* current speculation state */
585 int dtsp_cleaning
; /* non-zero if being cleaned */
586 dtrace_buffer_t
*dtsp_buffer
; /* speculative buffer */
587 } dtrace_speculation_t
;
590 * DTrace Dynamic Variables
592 * The dynamic variable problem is obviously decomposed into two subproblems:
593 * allocating new dynamic storage, and freeing old dynamic storage. The
594 * presence of the second problem makes the first much more complicated -- or
595 * rather, the absence of the second renders the first trivial. This is the
596 * case with aggregations, for which there is effectively no deallocation of
597 * dynamic storage. (Or more accurately, all dynamic storage is deallocated
598 * when a snapshot is taken of the aggregation.) As DTrace dynamic variables
599 * allow for both dynamic allocation and dynamic deallocation, the
600 * implementation of dynamic variables is quite a bit more complicated than
601 * that of their aggregation kin.
603 * We observe that allocating new dynamic storage is tricky only because the
604 * size can vary -- the allocation problem is much easier if allocation sizes
605 * are uniform. We further observe that in D, the size of dynamic variables is
606 * actually _not_ dynamic -- dynamic variable sizes may be determined by static
607 * analysis of DIF text. (This is true even of putatively dynamically-sized
608 * objects like strings and stacks, the sizes of which are dictated by the
609 * "stringsize" and "stackframes" variables, respectively.) We exploit this by
610 * performing this analysis on all DIF before enabling any probes. For each
611 * dynamic load or store, we calculate the dynamically-allocated size plus the
612 * size of the dtrace_dynvar structure plus the storage required to key the
613 * data. For all DIF, we take the largest value and dub it the _chunksize_.
614 * We then divide dynamic memory into two parts: a hash table that is wide
615 * enough to have every chunk in its own bucket, and a larger region of equal
616 * chunksize units. Whenever we wish to dynamically allocate a variable, we
617 * always allocate a single chunk of memory. Depending on the uniformity of
618 * allocation, this will waste some amount of memory -- but it eliminates the
619 * non-determinism inherent in traditional heap fragmentation.
621 * Dynamic objects are allocated by storing a non-zero value to them; they are
622 * deallocated by storing a zero value to them. Dynamic variables are
623 * complicated enormously by being shared between CPUs. In particular,
624 * consider the following scenario:
627 * +---------------------------------+ +---------------------------------+
629 * | allocates dynamic object a[123] | | |
630 * | by storing the value 345 to it | | |
632 * | | | wishing to load from object |
633 * | | | a[123], performs lookup in |
634 * | | | dynamic variable space |
636 * | deallocates object a[123] by | | |
637 * | storing 0 to it | | |
639 * | allocates dynamic object b[567] | | performs load from a[123] |
640 * | by storing the value 789 to it | | |
644 * This is obviously a race in the D program, but there are nonetheless only
645 * two valid values for CPU B's load from a[123]: 345 or 0. Most importantly,
646 * CPU B may _not_ see the value 789 for a[123].
648 * There are essentially two ways to deal with this:
650 * (1) Explicitly spin-lock variables. That is, if CPU B wishes to load
651 * from a[123], it needs to lock a[123] and hold the lock for the
652 * duration that it wishes to manipulate it.
654 * (2) Avoid reusing freed chunks until it is known that no CPU is referring
657 * The implementation of (1) is rife with complexity, because it requires the
658 * user of a dynamic variable to explicitly decree when they are done using it.
659 * Were all variables by value, this perhaps wouldn't be debilitating -- but
660 * dynamic variables of non-scalar types are tracked by reference. That is, if
661 * a dynamic variable is, say, a string, and that variable is to be traced to,
662 * say, the principal buffer, the DIF emulation code returns to the main
663 * dtrace_probe() loop a pointer to the underlying storage, not the contents of
664 * the storage. Further, code calling on DIF emulation would have to be aware
665 * that the DIF emulation has returned a reference to a dynamic variable that
666 * has been potentially locked. The variable would have to be unlocked after
667 * the main dtrace_probe() loop is finished with the variable, and the main
668 * dtrace_probe() loop would have to be careful to not call any further DIF
669 * emulation while the variable is locked to avoid deadlock. More generally,
670 * if one were to implement (1), DIF emulation code dealing with dynamic
671 * variables could only deal with one dynamic variable at a time (lest deadlock
672 * result). To sum, (1) exports too much subtlety to the users of dynamic
673 * variables -- increasing maintenance burden and imposing serious constraints
674 * on future DTrace development.
676 * The implementation of (2) is also complex, but the complexity is more
677 * manageable. We need to be sure that when a variable is deallocated, it is
678 * not placed on a traditional free list, but rather on a _dirty_ list. Once a
679 * variable is on a dirty list, it cannot be found by CPUs performing a
680 * subsequent lookup of the variable -- but it may still be in use by other
681 * CPUs. To assure that all CPUs that may be seeing the old variable have
682 * cleared out of probe context, a dtrace_sync() can be issued. Once the
683 * dtrace_sync() has completed, it can be known that all CPUs are done
684 * manipulating the dynamic variable -- the dirty list can be atomically
685 * appended to the free list. Unfortunately, there's a slight hiccup in this
686 * mechanism: dtrace_sync() may not be issued from probe context. The
687 * dtrace_sync() must be therefore issued asynchronously from non-probe
688 * context. For this we rely on the DTrace cleaner, a cyclic that runs at the
689 * "cleanrate" frequency. To ease this implementation, we define several chunk
692 * - Dirty. Deallocated chunks, not yet cleaned. Not available.
694 * - Rinsing. Formerly dirty chunks that are currently being asynchronously
695 * cleaned. Not available, but will be shortly. Dynamic variable
696 * allocation may not spin or block for availability, however.
698 * - Clean. Clean chunks, ready for allocation -- but not on the free list.
700 * - Free. Available for allocation.
702 * Moreover, to avoid absurd contention, _each_ of these lists is implemented
703 * on a per-CPU basis. This is only for performance, not correctness; chunks
704 * may be allocated from another CPU's free list. The algorithm for allocation
707 * (1) Attempt to atomically allocate from current CPU's free list. If list
708 * is non-empty and allocation is successful, allocation is complete.
710 * (2) If the clean list is non-empty, atomically move it to the free list,
713 * (3) If the dynamic variable space is in the CLEAN state, look for free
714 * and clean lists on other CPUs by setting the current CPU to the next
715 * CPU, and reattempting (1). If the next CPU is the current CPU (that
716 * is, if all CPUs have been checked), atomically switch the state of
717 * the dynamic variable space based on the following:
719 * - If no free chunks were found and no dirty chunks were found,
720 * atomically set the state to EMPTY.
722 * - If dirty chunks were found, atomically set the state to DIRTY.
724 * - If rinsing chunks were found, atomically set the state to RINSING.
726 * (4) Based on state of dynamic variable space state, increment appropriate
727 * counter to indicate dynamic drops (if in EMPTY state) vs. dynamic
728 * dirty drops (if in DIRTY state) vs. dynamic rinsing drops (if in
729 * RINSING state). Fail the allocation.
731 * The cleaning cyclic operates with the following algorithm: for all CPUs
732 * with a non-empty dirty list, atomically move the dirty list to the rinsing
733 * list. Perform a dtrace_sync(). For all CPUs with a non-empty rinsing list,
734 * atomically move the rinsing list to the clean list. Perform another
735 * dtrace_sync(). By this point, all CPUs have seen the new clean list; the
736 * state of the dynamic variable space can be restored to CLEAN.
738 * There exist two final races that merit explanation. The first is a simple
742 * +---------------------------------+ +---------------------------------+
744 * | allocates dynamic object a[123] | | allocates dynamic object a[123] |
745 * | by storing the value 345 to it | | by storing the value 567 to it |
750 * Again, this is a race in the D program. It can be resolved by having a[123]
751 * hold the value 345 or a[123] hold the value 567 -- but it must be true that
752 * a[123] have only _one_ of these values. (That is, the racing CPUs may not
753 * put the same element twice on the same hash chain.) This is resolved
754 * simply: before the allocation is undertaken, the start of the new chunk's
755 * hash chain is noted. Later, after the allocation is complete, the hash
756 * chain is atomically switched to point to the new element. If this fails
757 * (because of either concurrent allocations or an allocation concurrent with a
758 * deletion), the newly allocated chunk is deallocated to the dirty list, and
759 * the whole process of looking up (and potentially allocating) the dynamic
760 * variable is reattempted.
762 * The final race is a simple deallocation race:
765 * +---------------------------------+ +---------------------------------+
767 * | deallocates dynamic object | | deallocates dynamic object |
768 * | a[123] by storing the value 0 | | a[123] by storing the value 0 |
769 * | to it | | to it |
774 * Once again, this is a race in the D program, but it is one that we must
775 * handle without corrupting the underlying data structures. Because
776 * deallocations require the deletion of a chunk from the middle of a hash
777 * chain, we cannot use a single-word atomic operation to remove it. For this,
778 * we add a spin lock to the hash buckets that is _only_ used for deallocations
779 * (allocation races are handled as above). Further, this spin lock is _only_
780 * held for the duration of the delete; before control is returned to the DIF
781 * emulation code, the hash bucket is unlocked.
783 typedef struct dtrace_key
{
784 uint64_t dttk_value
; /* data value or data pointer */
785 uint64_t dttk_size
; /* 0 if by-val, >0 if by-ref */
788 typedef struct dtrace_tuple
{
789 uint32_t dtt_nkeys
; /* number of keys in tuple */
790 uint32_t dtt_pad
; /* padding */
791 dtrace_key_t dtt_key
[1]; /* array of tuple keys */
794 typedef struct dtrace_dynvar
{
795 uint64_t dtdv_hashval
; /* hash value -- 0 if free */
796 struct dtrace_dynvar
*dtdv_next
; /* next on list or hash chain */
797 void *dtdv_data
; /* pointer to data */
798 dtrace_tuple_t dtdv_tuple
; /* tuple key */
801 typedef enum dtrace_dynvar_op
{
803 DTRACE_DYNVAR_NOALLOC
,
804 DTRACE_DYNVAR_DEALLOC
805 } dtrace_dynvar_op_t
;
807 typedef struct dtrace_dynhash
{
808 dtrace_dynvar_t
*dtdh_chain
; /* hash chain for this bucket */
809 uintptr_t dtdh_lock
; /* deallocation lock */
811 uintptr_t dtdh_pad
[6]; /* pad to avoid false sharing */
813 uintptr_t dtdh_pad
[14]; /* pad to avoid false sharing */
817 typedef struct dtrace_dstate_percpu
{
818 dtrace_dynvar_t
*dtdsc_free
; /* free list for this CPU */
819 dtrace_dynvar_t
*dtdsc_dirty
; /* dirty list for this CPU */
820 dtrace_dynvar_t
*dtdsc_rinsing
; /* rinsing list for this CPU */
821 dtrace_dynvar_t
*dtdsc_clean
; /* clean list for this CPU */
822 uint64_t dtdsc_drops
; /* number of capacity drops */
823 uint64_t dtdsc_dirty_drops
; /* number of dirty drops */
824 uint64_t dtdsc_rinsing_drops
; /* number of rinsing drops */
826 uint64_t dtdsc_pad
; /* pad to avoid false sharing */
828 uint64_t dtdsc_pad
[2]; /* pad to avoid false sharing */
830 } dtrace_dstate_percpu_t
;
832 typedef enum dtrace_dstate_state
{
833 DTRACE_DSTATE_CLEAN
= 0,
836 DTRACE_DSTATE_RINSING
837 } dtrace_dstate_state_t
;
839 typedef struct dtrace_dstate
{
840 void *dtds_base
; /* base of dynamic var. space */
841 size_t dtds_size
; /* size of dynamic var. space */
842 size_t dtds_hashsize
; /* number of buckets in hash */
843 size_t dtds_chunksize
; /* size of each chunk */
844 dtrace_dynhash_t
*dtds_hash
; /* pointer to hash table */
845 dtrace_dstate_state_t dtds_state
; /* current dynamic var. state */
846 dtrace_dstate_percpu_t
*dtds_percpu
; /* per-CPU dyn. var. state */
850 * DTrace Variable State
852 * The DTrace variable state tracks user-defined variables in its dtrace_vstate
853 * structure. Each DTrace consumer has exactly one dtrace_vstate structure,
854 * but some dtrace_vstate structures may exist without a corresponding DTrace
855 * consumer (see "DTrace Helpers", below). As described in <sys/dtrace.h>,
856 * user-defined variables can have one of three scopes:
858 * DIFV_SCOPE_GLOBAL => global scope
859 * DIFV_SCOPE_THREAD => thread-local scope (i.e. "self->" variables)
860 * DIFV_SCOPE_LOCAL => clause-local scope (i.e. "this->" variables)
862 * The variable state tracks variables by both their scope and their allocation
865 * - The dtvs_globals and dtvs_locals members each point to an array of
866 * dtrace_statvar structures. These structures contain both the variable
867 * metadata (dtrace_difv structures) and the underlying storage for all
868 * statically allocated variables, including statically allocated
869 * DIFV_SCOPE_GLOBAL variables and all DIFV_SCOPE_LOCAL variables.
871 * - The dtvs_tlocals member points to an array of dtrace_difv structures for
872 * DIFV_SCOPE_THREAD variables. As such, this array tracks _only_ the
873 * variable metadata for DIFV_SCOPE_THREAD variables; the underlying storage
874 * is allocated out of the dynamic variable space.
876 * - The dtvs_dynvars member is the dynamic variable state associated with the
877 * variable state. The dynamic variable state (described in "DTrace Dynamic
878 * Variables", above) tracks all DIFV_SCOPE_THREAD variables and all
879 * dynamically-allocated DIFV_SCOPE_GLOBAL variables.
881 typedef struct dtrace_statvar
{
882 uint64_t dtsv_data
; /* data or pointer to it */
883 size_t dtsv_size
; /* size of pointed-to data */
884 int dtsv_refcnt
; /* reference count */
885 dtrace_difv_t dtsv_var
; /* variable metadata */
888 typedef struct dtrace_vstate
{
889 dtrace_state_t
*dtvs_state
; /* back pointer to state */
890 dtrace_statvar_t
**dtvs_globals
; /* statically-allocated glbls */
891 int dtvs_nglobals
; /* number of globals */
892 dtrace_difv_t
*dtvs_tlocals
; /* thread-local metadata */
893 int dtvs_ntlocals
; /* number of thread-locals */
894 dtrace_statvar_t
**dtvs_locals
; /* clause-local data */
895 int dtvs_nlocals
; /* number of clause-locals */
896 dtrace_dstate_t dtvs_dynvars
; /* dynamic variable state */
900 * DTrace Machine State
902 * In the process of processing a fired probe, DTrace needs to track and/or
903 * cache some per-CPU state associated with that particular firing. This is
904 * state that is always discarded after the probe firing has completed, and
905 * much of it is not specific to any DTrace consumer, remaining valid across
906 * all ECBs. This state is tracked in the dtrace_mstate structure.
908 #define DTRACE_MSTATE_ARGS 0x00000001
909 #define DTRACE_MSTATE_PROBE 0x00000002
910 #define DTRACE_MSTATE_EPID 0x00000004
911 #define DTRACE_MSTATE_TIMESTAMP 0x00000008
912 #define DTRACE_MSTATE_STACKDEPTH 0x00000010
913 #define DTRACE_MSTATE_CALLER 0x00000020
914 #define DTRACE_MSTATE_IPL 0x00000040
915 #define DTRACE_MSTATE_FLTOFFS 0x00000080
916 #define DTRACE_MSTATE_WALLTIMESTAMP 0x00000100
917 #define DTRACE_MSTATE_USTACKDEPTH 0x00000200
918 #define DTRACE_MSTATE_UCALLER 0x00000400
919 #define DTRACE_MSTATE_MACHTIMESTAMP 0x00000800
920 #define DTRACE_MSTATE_MACHCTIMESTAMP 0x00001000
922 typedef struct dtrace_mstate
{
923 uintptr_t dtms_scratch_base
; /* base of scratch space */
924 uintptr_t dtms_scratch_ptr
; /* current scratch pointer */
925 size_t dtms_scratch_size
; /* scratch size */
926 uint32_t dtms_present
; /* variables that are present */
927 uint64_t dtms_arg
[5]; /* cached arguments */
928 dtrace_epid_t dtms_epid
; /* current EPID */
929 uint64_t dtms_timestamp
; /* cached timestamp */
930 hrtime_t dtms_walltimestamp
; /* cached wall timestamp */
931 uint64_t dtms_machtimestamp
; /* cached mach absolute timestamp */
932 uint64_t dtms_machctimestamp
; /* cached mach continuous timestamp */
933 int dtms_stackdepth
; /* cached stackdepth */
934 int dtms_ustackdepth
; /* cached ustackdepth */
935 struct dtrace_probe
*dtms_probe
; /* current probe */
936 uintptr_t dtms_caller
; /* cached caller */
937 uint64_t dtms_ucaller
; /* cached user-level caller */
938 int dtms_ipl
; /* cached interrupt pri lev */
939 int dtms_fltoffs
; /* faulting DIFO offset */
940 uintptr_t dtms_strtok
; /* saved strtok() pointer */
941 uintptr_t dtms_strtok_limit
; /* upper bound of strtok ptr */
942 uint32_t dtms_access
; /* memory access rights */
943 dtrace_difo_t
*dtms_difo
; /* current dif object */
946 #define DTRACE_COND_OWNER 0x1
947 #define DTRACE_COND_USERMODE 0x2
948 #define DTRACE_COND_ZONEOWNER 0x4
950 #define DTRACE_PROBEKEY_MAXDEPTH 8 /* max glob recursion depth */
953 * Access flag used by dtrace_mstate.dtms_access.
955 #define DTRACE_ACCESS_KERNEL 0x1 /* the priv to read kmem */
961 * Each DTrace consumer is in one of several states, which (for purposes of
962 * avoiding yet-another overloading of the noun "state") we call the current
963 * _activity_. The activity transitions on dtrace_go() (from DTRACIOCGO), on
964 * dtrace_stop() (from DTRACIOCSTOP) and on the exit() action. Activities may
965 * only transition in one direction; the activity transition diagram is a
966 * directed acyclic graph. The activity transition diagram is as follows:
970 * +----------+ +--------+ +--------+
971 * | INACTIVE |------------------>| WARMUP |------------------>| ACTIVE |
972 * +----------+ dtrace_go(), +--------+ dtrace_go(), +--------+
973 * before BEGIN | after BEGIN | | |
975 * exit() action | | | |
976 * from BEGIN ECB | | | |
979 * +----------+ exit() action | | |
980 * +-----------------------------| DRAINING |<-------------------+ | |
983 * | dtrace_stop(), | | |
987 * | +---------+ +----------+ | |
988 * | | STOPPED |<----------------| COOLDOWN |<----------------------+ |
989 * | +---------+ dtrace_stop(), +----------+ dtrace_stop(), |
990 * | after END before END |
993 * +----------------------------->| KILLED |<--------------------------+
994 * deadman timeout or +--------+ deadman timeout or
995 * killed consumer killed consumer
997 * Note that once a DTrace consumer has stopped tracing, there is no way to
998 * restart it; if a DTrace consumer wishes to restart tracing, it must reopen
999 * the DTrace pseudodevice.
1001 typedef enum dtrace_activity
{
1002 DTRACE_ACTIVITY_INACTIVE
= 0, /* not yet running */
1003 DTRACE_ACTIVITY_WARMUP
, /* while starting */
1004 DTRACE_ACTIVITY_ACTIVE
, /* running */
1005 DTRACE_ACTIVITY_DRAINING
, /* before stopping */
1006 DTRACE_ACTIVITY_COOLDOWN
, /* while stopping */
1007 DTRACE_ACTIVITY_STOPPED
, /* after stopping */
1008 DTRACE_ACTIVITY_KILLED
/* killed */
1009 } dtrace_activity_t
;
1013 * APPLE NOTE: DTrace dof modes implementation
1015 * DTrace has four "dof modes". They are:
1017 * DTRACE_DOF_MODE_NEVER Never load any dof, period.
1018 * DTRACE_DOF_MODE_LAZY_ON Defer loading dof until later
1019 * DTRACE_DOF_MODE_LAZY_OFF Load all deferred dof now, and any new dof
1020 * DTRACE_DOF_MODE_NON_LAZY Load all dof immediately.
1022 * It is legal to transition between the two lazy modes. The NEVER and
1023 * NON_LAZY modes are permanent, and must not change once set.
1025 * The current dof mode is kept in dtrace_dof_mode, which is protected by the
1026 * dtrace_dof_mode_lock. This is a RW lock, reads require shared access, writes
1027 * require exclusive access. Because NEVER and NON_LAZY are permanent states,
1028 * it is legal to test for those modes without holding the dof mode lock.
1030 * Lock ordering is dof mode lock before any dtrace lock, and before the
1031 * process p_dtrace_sprlock. In general, other locks should not be held when
1032 * taking the dof mode lock. Acquiring the dof mode lock in exclusive mode
1033 * will block process fork, exec, and exit, so it should be held exclusive
1034 * for as short a time as possible.
1037 #define DTRACE_DOF_MODE_NEVER 0
1038 #define DTRACE_DOF_MODE_LAZY_ON 1
1039 #define DTRACE_DOF_MODE_LAZY_OFF 2
1040 #define DTRACE_DOF_MODE_NON_LAZY 3
1043 * dtrace kernel symbol modes are used to control when the kernel may dispose of
1044 * symbol information used by the fbt/sdt provider. The kernel itself, as well as
1045 * every kext, has symbol table/nlist info that has historically been preserved
1046 * for dtrace's use. This allowed dtrace to be lazy about allocating fbt/sdt probes,
1047 * at the expense of keeping the symbol info in the kernel permanently.
1049 * Starting in 10.7+, fbt probes may be created from userspace, in the same
1050 * fashion as pid probes. The kernel allows dtrace "first right of refusal"
1051 * whenever symbol data becomes available (such as a kext load). If dtrace is
1052 * active, it will immediately read/copy the needed data, and then the kernel
1053 * may free it. If dtrace is not active, it returns immediately, having done
1054 * no work or allocations, and the symbol data is freed. Should dtrace need
1055 * this data later, it is expected that the userspace client will push the
1056 * data into the kernel via ioctl calls.
1058 * The kernel symbol modes are used to control what dtrace does with symbol data:
1060 * DTRACE_KERNEL_SYMBOLS_NEVER Effectively disables fbt/sdt
1061 * DTRACE_KERNEL_SYMBOLS_FROM_KERNEL Immediately read/copy symbol data
1062 * DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE Wait for symbols from userspace
1063 * DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL Immediately read/copy symbol data
1065 * It is legal to transition between DTRACE_KERNEL_SYMBOLS_FROM_KERNEL and
1066 * DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE. The DTRACE_KERNEL_SYMBOLS_NEVER and
1067 * DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL are permanent modes, intended to
1068 * disable fbt probes entirely, or prevent any symbols being loaded from
1071 * The kernel symbol mode is kept in dtrace_kernel_symbol_mode, which is protected
1072 * by the dtrace_lock.
1075 #define DTRACE_KERNEL_SYMBOLS_NEVER 0
1076 #define DTRACE_KERNEL_SYMBOLS_FROM_KERNEL 1
1077 #define DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE 2
1078 #define DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL 3
1082 * DTrace Helper Implementation
1084 * A description of the helper architecture may be found in <sys/dtrace.h>.
1085 * Each process contains a pointer to its helpers in its p_dtrace_helpers
1086 * member. This is a pointer to a dtrace_helpers structure, which contains an
1087 * array of pointers to dtrace_helper structures, helper variable state (shared
1088 * among a process's helpers) and a generation count. (The generation count is
1089 * used to provide an identifier when a helper is added so that it may be
1090 * subsequently removed.) The dtrace_helper structure is self-explanatory,
1091 * containing pointers to the objects needed to execute the helper. Note that
1092 * helpers are _duplicated_ across fork(2), and destroyed on exec(2). No more
1093 * than dtrace_helpers_max are allowed per-process.
1095 #define DTRACE_HELPER_ACTION_USTACK 0
1096 #define DTRACE_NHELPER_ACTIONS 1
1098 typedef struct dtrace_helper_action
{
1099 int dtha_generation
; /* helper action generation */
1100 int dtha_nactions
; /* number of actions */
1101 dtrace_difo_t
*dtha_predicate
; /* helper action predicate */
1102 dtrace_difo_t
**dtha_actions
; /* array of actions */
1103 struct dtrace_helper_action
*dtha_next
; /* next helper action */
1104 } dtrace_helper_action_t
;
1106 typedef struct dtrace_helper_provider
{
1107 int dthp_generation
; /* helper provider generation */
1108 uint32_t dthp_ref
; /* reference count */
1109 dof_helper_t dthp_prov
; /* DOF w/ provider and probes */
1110 } dtrace_helper_provider_t
;
1112 typedef struct dtrace_helpers
{
1113 dtrace_helper_action_t
**dthps_actions
; /* array of helper actions */
1114 dtrace_vstate_t dthps_vstate
; /* helper action var. state */
1115 dtrace_helper_provider_t
**dthps_provs
; /* array of providers */
1116 uint_t dthps_nprovs
; /* count of providers */
1117 uint_t dthps_maxprovs
; /* provider array size */
1118 int dthps_generation
; /* current generation */
1119 pid_t dthps_pid
; /* pid of associated proc */
1120 int dthps_deferred
; /* helper in deferred list */
1121 struct dtrace_helpers
*dthps_next
; /* next pointer */
1122 struct dtrace_helpers
*dthps_prev
; /* prev pointer */
1126 * DTrace Helper Action Tracing
1128 * Debugging helper actions can be arduous. To ease the development and
1129 * debugging of helpers, DTrace contains a tracing-framework-within-a-tracing-
1130 * framework: helper tracing. If dtrace_helptrace_enabled is non-zero (which
1131 * it is by default on DEBUG kernels), all helper activity will be traced to a
1132 * global, in-kernel ring buffer. Each entry includes a pointer to the specific
1133 * helper, the location within the helper, and a trace of all local variables.
1134 * The ring buffer may be displayed in a human-readable format with the
1135 * ::dtrace_helptrace mdb(1) dcmd.
1137 #define DTRACE_HELPTRACE_NEXT (-1)
1138 #define DTRACE_HELPTRACE_DONE (-2)
1139 #define DTRACE_HELPTRACE_ERR (-3)
1142 typedef struct dtrace_helptrace
{
1143 dtrace_helper_action_t
*dtht_helper
; /* helper action */
1144 int dtht_where
; /* where in helper action */
1145 int dtht_nlocals
; /* number of locals */
1146 int dtht_fault
; /* type of fault (if any) */
1147 int dtht_fltoffs
; /* DIF offset */
1148 uint64_t dtht_illval
; /* faulting value */
1149 uint64_t dtht_locals
[1]; /* local variables */
1150 } dtrace_helptrace_t
;
1153 * DTrace Credentials
1155 * In probe context, we have limited flexibility to examine the credentials
1156 * of the DTrace consumer that created a particular enabling. We use
1157 * the Least Privilege interfaces to cache the consumer's cred pointer and
1158 * some facts about that credential in a dtrace_cred_t structure. These
1159 * can limit the consumer's breadth of visibility and what actions the
1160 * consumer may take.
1162 #define DTRACE_CRV_ALLPROC 0x01
1163 #define DTRACE_CRV_KERNEL 0x02
1164 #define DTRACE_CRV_ALLZONE 0x04
1166 #define DTRACE_CRV_ALL (DTRACE_CRV_ALLPROC | DTRACE_CRV_KERNEL | \
1169 #define DTRACE_CRA_PROC 0x0001
1170 #define DTRACE_CRA_PROC_CONTROL 0x0002
1171 #define DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER 0x0004
1172 #define DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE 0x0008
1173 #define DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG 0x0010
1174 #define DTRACE_CRA_KERNEL 0x0020
1175 #define DTRACE_CRA_KERNEL_DESTRUCTIVE 0x0040
1177 #define DTRACE_CRA_ALL (DTRACE_CRA_PROC | \
1178 DTRACE_CRA_PROC_CONTROL | \
1179 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER | \
1180 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE | \
1181 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG | \
1182 DTRACE_CRA_KERNEL | \
1183 DTRACE_CRA_KERNEL_DESTRUCTIVE)
1185 typedef struct dtrace_cred
{
1187 uint8_t dcr_destructive
;
1188 uint8_t dcr_visible
;
1189 uint16_t dcr_action
;
1192 typedef struct dtrace_format
{
1193 uint64_t dtf_refcount
;
1197 #define DTRACE_FORMAT_SIZE(fmt) (strlen(fmt->dtf_str) + 1 + sizeof(dtrace_format_t))
1200 * DTrace Consumer State
1202 * Each DTrace consumer has an associated dtrace_state structure that contains
1203 * its in-kernel DTrace state -- including options, credentials, statistics and
1204 * pointers to ECBs, buffers, speculations and formats. A dtrace_state
1205 * structure is also allocated for anonymous enablings. When anonymous state
1206 * is grabbed, the grabbing consumers dts_anon pointer is set to the grabbed
1207 * dtrace_state structure.
1209 struct dtrace_state
{
1210 dev_t dts_dev
; /* device */
1211 int dts_necbs
; /* total number of ECBs */
1212 dtrace_ecb_t
**dts_ecbs
; /* array of ECBs */
1213 dtrace_epid_t dts_epid
; /* next EPID to allocate */
1214 size_t dts_needed
; /* greatest needed space */
1215 struct dtrace_state
*dts_anon
; /* anon. state, if grabbed */
1216 dtrace_activity_t dts_activity
; /* current activity */
1217 dtrace_vstate_t dts_vstate
; /* variable state */
1218 dtrace_buffer_t
*dts_buffer
; /* principal buffer */
1219 dtrace_buffer_t
*dts_aggbuffer
; /* aggregation buffer */
1220 dtrace_speculation_t
*dts_speculations
; /* speculation array */
1221 int dts_nspeculations
; /* number of speculations */
1222 int dts_naggregations
; /* number of aggregations */
1223 dtrace_aggregation_t
**dts_aggregations
; /* aggregation array */
1224 vmem_t
*dts_aggid_arena
; /* arena for aggregation IDs */
1225 uint64_t dts_errors
; /* total number of errors */
1226 uint32_t dts_speculations_busy
; /* number of spec. busy */
1227 uint32_t dts_speculations_unavail
; /* number of spec unavail */
1228 uint32_t dts_stkstroverflows
; /* stack string tab overflows */
1229 uint32_t dts_dblerrors
; /* errors in ERROR probes */
1230 uint32_t dts_reserve
; /* space reserved for END */
1231 hrtime_t dts_laststatus
; /* time of last status */
1232 cyclic_id_t dts_cleaner
; /* cleaning cyclic */
1233 cyclic_id_t dts_deadman
; /* deadman cyclic */
1234 hrtime_t dts_alive
; /* time last alive */
1235 char dts_speculates
; /* boolean: has speculations */
1236 char dts_destructive
; /* boolean: has dest. actions */
1237 int dts_nformats
; /* number of formats */
1238 dtrace_format_t
**dts_formats
; /* format string array */
1239 dtrace_optval_t dts_options
[DTRACEOPT_MAX
]; /* options */
1240 dtrace_cred_t dts_cred
; /* credentials */
1241 size_t dts_nretained
; /* number of retained enabs */
1242 uint64_t dts_arg_error_illval
;
1243 uint32_t dts_buf_over_limit
; /* number of bufs over dtb_limit */
1244 uint64_t **dts_rstate
; /* per-CPU random state */
1247 struct dtrace_provider
{
1248 dtrace_pattr_t dtpv_attr
; /* provider attributes */
1249 dtrace_ppriv_t dtpv_priv
; /* provider privileges */
1250 dtrace_pops_t dtpv_pops
; /* provider operations */
1251 char *dtpv_name
; /* provider name */
1252 void *dtpv_arg
; /* provider argument */
1253 uint_t dtpv_defunct
; /* boolean: defunct provider */
1254 struct dtrace_provider
*dtpv_next
; /* next provider */
1255 uint64_t dtpv_probe_count
; /* number of associated probes */
1256 uint64_t dtpv_ecb_count
; /* number of associated enabled ECBs */
1259 struct dtrace_meta
{
1260 dtrace_mops_t dtm_mops
; /* meta provider operations */
1261 char *dtm_name
; /* meta provider name */
1262 void *dtm_arg
; /* meta provider user arg */
1263 uint64_t dtm_count
; /* number of associated providers */
1269 * A dtrace_enabling structure is used to track a collection of ECB
1270 * descriptions -- before they have been turned into actual ECBs. This is
1271 * created as a result of DOF processing, and is generally used to generate
1272 * ECBs immediately thereafter. However, enablings are also generally
1273 * retained should the probes they describe be created at a later time; as
1274 * each new module or provider registers with the framework, the retained
1275 * enablings are reevaluated, with any new match resulting in new ECBs. To
1276 * prevent probes from being matched more than once, the enabling tracks the
1277 * last probe generation matched, and only matches probes from subsequent
1280 typedef struct dtrace_enabling
{
1281 dtrace_ecbdesc_t
**dten_desc
; /* all ECB descriptions */
1282 int dten_ndesc
; /* number of ECB descriptions */
1283 int dten_maxdesc
; /* size of ECB array */
1284 dtrace_vstate_t
*dten_vstate
; /* associated variable state */
1285 dtrace_genid_t dten_probegen
; /* matched probe generation */
1286 dtrace_ecbdesc_t
*dten_current
; /* current ECB description */
1287 int dten_error
; /* current error value */
1288 int dten_primed
; /* boolean: set if primed */
1289 struct dtrace_enabling
*dten_prev
; /* previous enabling */
1290 struct dtrace_enabling
*dten_next
; /* next enabling */
1291 } dtrace_enabling_t
;
1294 * DTrace Anonymous Enablings
1296 * Anonymous enablings are DTrace enablings that are not associated with a
1297 * controlling process, but rather derive their enabling from DOF stored as
1298 * properties in the dtrace.conf file. If there is an anonymous enabling, a
1299 * DTrace consumer state and enabling are created on attach. The state may be
1300 * subsequently grabbed by the first consumer specifying the "grabanon"
1301 * option. As long as an anonymous DTrace enabling exists, dtrace(7D) will
1304 typedef struct dtrace_anon
{
1305 dtrace_state_t
*dta_state
; /* DTrace consumer state */
1306 dtrace_enabling_t
*dta_enabling
; /* pointer to enabling */
1307 processorid_t dta_beganon
; /* which CPU BEGIN ran on */
1311 * DTrace Error Debugging
1314 #define DTRACE_ERRDEBUG
1317 #ifdef DTRACE_ERRDEBUG
1319 typedef struct dtrace_errhash
{
1320 const char *dter_msg
; /* error message */
1321 int dter_count
; /* number of times seen */
1324 #define DTRACE_ERRHASHSZ 256 /* must be > number of err msgs */
1326 #endif /* DTRACE_ERRDEBUG */
1328 typedef struct dtrace_string dtrace_string_t
;
1330 typedef struct dtrace_string
{
1331 dtrace_string_t
*dtst_next
;
1332 dtrace_string_t
*dtst_prev
;
1333 uint32_t dtst_refcount
;
1338 * DTrace Matching pre-conditions
1340 * Used when matching new probes to discard matching of enablings that
1341 * doesn't match the condition tested by dmc_func
1343 typedef struct dtrace_match_cond
{
1344 int (*dmc_func
)(dtrace_probedesc_t
*, void*);
1346 } dtrace_match_cond_t
;
1350 * DTrace Toxic Ranges
1352 * DTrace supports safe loads from probe context; if the address turns out to
1353 * be invalid, a bit will be set by the kernel indicating that DTrace
1354 * encountered a memory error, and DTrace will propagate the error to the user
1355 * accordingly. However, there may exist some regions of memory in which an
1356 * arbitrary load can change system state, and from which it is impossible to
1357 * recover from such a load after it has been attempted. Examples of this may
1358 * include memory in which programmable I/O registers are mapped (for which a
1359 * read may have some implications for the device) or (in the specific case of
1360 * UltraSPARC-I and -II) the virtual address hole. The platform is required
1361 * to make DTrace aware of these toxic ranges; DTrace will then check that
1362 * target addresses are not in a toxic range before attempting to issue a
1365 typedef struct dtrace_toxrange
{
1366 uintptr_t dtt_base
; /* base of toxic range */
1367 uintptr_t dtt_limit
; /* limit of toxic range */
1368 } dtrace_toxrange_t
;
1370 extern uint64_t dtrace_getarg(int, int, dtrace_mstate_t
*, dtrace_vstate_t
*);
1371 extern int dtrace_getipl(void);
1372 extern uintptr_t dtrace_caller(int);
1373 extern uint32_t dtrace_cas32(uint32_t *, uint32_t, uint32_t);
1374 extern void *dtrace_casptr(void *, void *, void *);
1375 extern void dtrace_copyin(user_addr_t
, uintptr_t, size_t, volatile uint16_t *);
1376 extern void dtrace_copyinstr(user_addr_t
, uintptr_t, size_t, volatile uint16_t *);
1377 extern void dtrace_copyout(uintptr_t, user_addr_t
, size_t, volatile uint16_t *);
1378 extern void dtrace_copyoutstr(uintptr_t, user_addr_t
, size_t, volatile uint16_t *);
1379 extern void dtrace_getpcstack(pc_t
*, int, int, uint32_t *);
1380 extern uint64_t dtrace_load64(uintptr_t);
1381 extern int dtrace_canload(uint64_t, size_t, dtrace_mstate_t
*, dtrace_vstate_t
*);
1383 extern uint64_t dtrace_getreg(struct regs
*, uint_t
);
1384 extern uint64_t dtrace_getvmreg(uint_t
);
1385 extern int dtrace_getstackdepth(int);
1386 extern void dtrace_getupcstack(uint64_t *, int);
1387 extern void dtrace_getufpstack(uint64_t *, uint64_t *, int);
1388 extern int dtrace_getustackdepth(void);
1389 extern uintptr_t dtrace_fulword(void *);
1390 extern uint8_t dtrace_fuword8(user_addr_t
);
1391 extern uint16_t dtrace_fuword16(user_addr_t
);
1392 extern uint32_t dtrace_fuword32(user_addr_t
);
1393 extern uint64_t dtrace_fuword64(user_addr_t
);
1394 extern int dtrace_proc_waitfor(dtrace_procdesc_t
*);
1395 extern void dtrace_probe_error(dtrace_state_t
*, dtrace_epid_t
, int, int,
1397 extern int dtrace_assfail(const char *, const char *, int);
1398 extern int dtrace_attached(void);
1399 extern hrtime_t
dtrace_gethrestime(void);
1401 extern void dtrace_flush_caches(void);
1403 extern void dtrace_copy(uintptr_t, uintptr_t, size_t);
1404 extern void dtrace_copystr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1406 extern void* dtrace_ptrauth_strip(void*, uint64_t);
1407 extern int dtrace_is_valid_ptrauth_key(uint64_t);
1409 extern uint64_t dtrace_physmem_read(uint64_t, size_t);
1410 extern void dtrace_physmem_write(uint64_t, uint64_t, size_t);
1413 * DTrace state handling
1415 extern minor_t
dtrace_state_reserve(void);
1416 extern dtrace_state_t
* dtrace_state_allocate(minor_t minor
);
1417 extern dtrace_state_t
* dtrace_state_get(minor_t minor
);
1418 extern void dtrace_state_free(minor_t minor
);
1421 * DTrace restriction checks
1423 extern void dtrace_restriction_policy_load(void);
1424 extern boolean_t
dtrace_is_restricted(void);
1425 extern boolean_t
dtrace_are_restrictions_relaxed(void);
1426 extern boolean_t
dtrace_fbt_probes_restricted(void);
1427 extern boolean_t
dtrace_sdt_probes_restricted(void);
1428 extern boolean_t
dtrace_can_attach_to_proc(proc_t
);
1433 * DTrace calls ASSERT and VERIFY from probe context. To assure that a failed
1434 * ASSERT or VERIFYdoes not induce a markedly more catastrophic failure (e.g.,
1435 * one from which a dump cannot be gleaned), DTrace must define its own ASSERT
1436 * and VERIFY macros to be ones that may safely be called from probe context.
1437 * This header file must thus be included by any DTrace component that calls
1438 * ASSERT and/or VERIFY from probe context, and _only_ by those components.
1439 * (The only exception to this is kernel debugging infrastructure at user-level
1440 * that doesn't depend on calling ASSERT.)
1445 #define VERIFY(EX) ((void)((EX) || \
1446 dtrace_assfail(#EX, __FILE__, __LINE__)))
1449 #define ASSERT(EX) ((void)((EX) || \
1450 dtrace_assfail(#EX, __FILE__, __LINE__)))
1452 #define ASSERT(X) ((void)0)
1459 #endif /* _SYS_DTRACE_IMPL_H */