2 * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/malloc.h>
68 #include <sys/domain.h>
69 #include <sys/protosw.h>
70 #include <sys/socket.h>
71 #include <sys/socketvar.h>
72 #include <sys/sysctl.h>
73 #include <sys/syslog.h>
74 #include <sys/mcache.h>
75 #include <net/ntstat.h>
77 #include <kern/zalloc.h>
78 #include <mach/boolean.h>
81 #include <net/if_types.h>
82 #include <net/route.h>
84 #include <net/net_api_stats.h>
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/in_tclass.h>
89 #include <netinet/ip.h>
90 #include <netinet/ip6.h>
91 #include <netinet/in_pcb.h>
92 #include <netinet/in_var.h>
93 #include <netinet/ip_var.h>
94 #include <netinet6/in6_pcb.h>
95 #include <netinet6/ip6_var.h>
96 #include <netinet6/udp6_var.h>
97 #include <netinet/ip_icmp.h>
98 #include <netinet/icmp_var.h>
99 #include <netinet/udp.h>
100 #include <netinet/udp_var.h>
101 #include <sys/kdebug.h>
104 #include <netinet6/ipsec.h>
105 #include <netinet6/esp.h>
106 #include <netkey/key.h>
107 extern int ipsec_bypass
;
108 extern int esp_udp_encap_port
;
112 #include <net/necp.h>
116 #include <netinet/flow_divert.h>
117 #endif /* FLOW_DIVERT */
120 #include <net/content_filter.h>
121 #endif /* CONTENT_FILTER */
123 #define DBG_LAYER_IN_BEG NETDBG_CODE(DBG_NETUDP, 0)
124 #define DBG_LAYER_IN_END NETDBG_CODE(DBG_NETUDP, 2)
125 #define DBG_LAYER_OUT_BEG NETDBG_CODE(DBG_NETUDP, 1)
126 #define DBG_LAYER_OUT_END NETDBG_CODE(DBG_NETUDP, 3)
127 #define DBG_FNC_UDP_INPUT NETDBG_CODE(DBG_NETUDP, (5 << 8))
128 #define DBG_FNC_UDP_OUTPUT NETDBG_CODE(DBG_NETUDP, (6 << 8) | 1)
131 * UDP protocol implementation.
132 * Per RFC 768, August, 1980.
135 static int udpcksum
= 1;
137 static int udpcksum
= 0; /* XXX */
139 SYSCTL_INT(_net_inet_udp
, UDPCTL_CHECKSUM
, checksum
,
140 CTLFLAG_RW
| CTLFLAG_LOCKED
, &udpcksum
, 0, "");
142 int udp_log_in_vain
= 0;
143 SYSCTL_INT(_net_inet_udp
, OID_AUTO
, log_in_vain
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
144 &udp_log_in_vain
, 0, "Log all incoming UDP packets");
146 static int blackhole
= 0;
147 SYSCTL_INT(_net_inet_udp
, OID_AUTO
, blackhole
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
148 &blackhole
, 0, "Do not send port unreachables for refused connects");
150 struct inpcbhead udb
; /* from udp_var.h */
151 #define udb6 udb /* for KAME src sync over BSD*'s */
152 struct inpcbinfo udbinfo
;
155 #define UDBHASHSIZE 16
158 /* Garbage collection performed during most recent udp_gc() run */
159 static boolean_t udp_gc_done
= FALSE
;
161 #define log_in_vain_log(a) { log a; }
163 static int udp_getstat SYSCTL_HANDLER_ARGS
;
164 struct udpstat udpstat
; /* from udp_var.h */
165 SYSCTL_PROC(_net_inet_udp
, UDPCTL_STATS
, stats
,
166 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
167 0, 0, udp_getstat
, "S,udpstat",
168 "UDP statistics (struct udpstat, netinet/udp_var.h)");
170 SYSCTL_INT(_net_inet_udp
, OID_AUTO
, pcbcount
,
171 CTLFLAG_RD
| CTLFLAG_LOCKED
, &udbinfo
.ipi_count
, 0,
172 "Number of active PCBs");
174 __private_extern__
int udp_use_randomport
= 1;
175 SYSCTL_INT(_net_inet_udp
, OID_AUTO
, randomize_ports
,
176 CTLFLAG_RW
| CTLFLAG_LOCKED
, &udp_use_randomport
, 0,
177 "Randomize UDP port numbers");
180 struct sockaddr_in6 uin6_sin
;
181 u_char uin6_init_done
: 1;
184 struct ip6_hdr uip6_ip6
;
185 u_char uip6_init_done
: 1;
188 int udp_abort(struct socket
*);
189 int udp_attach(struct socket
*, int, struct proc
*);
190 int udp_bind(struct socket
*, struct sockaddr
*, struct proc
*);
191 int udp_connect(struct socket
*, struct sockaddr
*, struct proc
*);
192 int udp_connectx(struct socket
*, struct sockaddr
*,
193 struct sockaddr
*, struct proc
*, uint32_t, sae_associd_t
,
194 sae_connid_t
*, uint32_t, void *, uint32_t, struct uio
*, user_ssize_t
*);
195 int udp_detach(struct socket
*);
196 int udp_disconnect(struct socket
*);
197 int udp_disconnectx(struct socket
*, sae_associd_t
, sae_connid_t
);
198 int udp_send(struct socket
*, int, struct mbuf
*, struct sockaddr
*,
199 struct mbuf
*, struct proc
*);
200 static void udp_append(struct inpcb
*, struct ip
*, struct mbuf
*, int,
201 struct sockaddr_in
*, struct udp_in6
*, struct udp_ip6
*, struct ifnet
*);
202 static int udp_input_checksum(struct mbuf
*, struct udphdr
*, int, int);
203 int udp_output(struct inpcb
*, struct mbuf
*, struct sockaddr
*,
204 struct mbuf
*, struct proc
*);
205 static void ip_2_ip6_hdr(struct ip6_hdr
*ip6
, struct ip
*ip
);
206 static void udp_gc(struct inpcbinfo
*);
208 struct pr_usrreqs udp_usrreqs
= {
209 .pru_abort
= udp_abort
,
210 .pru_attach
= udp_attach
,
211 .pru_bind
= udp_bind
,
212 .pru_connect
= udp_connect
,
213 .pru_connectx
= udp_connectx
,
214 .pru_control
= in_control
,
215 .pru_detach
= udp_detach
,
216 .pru_disconnect
= udp_disconnect
,
217 .pru_disconnectx
= udp_disconnectx
,
218 .pru_peeraddr
= in_getpeeraddr
,
219 .pru_send
= udp_send
,
220 .pru_shutdown
= udp_shutdown
,
221 .pru_sockaddr
= in_getsockaddr
,
222 .pru_sosend
= sosend
,
223 .pru_soreceive
= soreceive
,
224 .pru_soreceive_list
= soreceive_list
,
228 udp_init(struct protosw
*pp
, struct domain
*dp
)
231 static int udp_initialized
= 0;
232 struct inpcbinfo
*pcbinfo
;
234 VERIFY((pp
->pr_flags
& (PR_INITIALIZED
| PR_ATTACHED
)) == PR_ATTACHED
);
236 if (udp_initialized
) {
240 uint32_t pool_size
= (nmbclusters
<< MCLSHIFT
) >> MBSHIFT
;
241 if (pool_size
>= 96) {
242 /* Improves 10GbE UDP performance. */
243 udp_recvspace
= 786896;
246 udbinfo
.ipi_listhead
= &udb
;
247 udbinfo
.ipi_hashbase
= hashinit(UDBHASHSIZE
, M_PCB
,
248 &udbinfo
.ipi_hashmask
);
249 udbinfo
.ipi_porthashbase
= hashinit(UDBHASHSIZE
, M_PCB
,
250 &udbinfo
.ipi_porthashmask
);
251 udbinfo
.ipi_zone
= zone_create("udpcb", sizeof(struct inpcb
), ZC_NONE
);
255 * allocate lock group attribute and group for udp pcb mutexes
257 pcbinfo
->ipi_lock_grp_attr
= lck_grp_attr_alloc_init();
258 pcbinfo
->ipi_lock_grp
= lck_grp_alloc_init("udppcb",
259 pcbinfo
->ipi_lock_grp_attr
);
260 pcbinfo
->ipi_lock_attr
= lck_attr_alloc_init();
261 if ((pcbinfo
->ipi_lock
= lck_rw_alloc_init(pcbinfo
->ipi_lock_grp
,
262 pcbinfo
->ipi_lock_attr
)) == NULL
) {
263 panic("%s: unable to allocate PCB lock\n", __func__
);
267 udbinfo
.ipi_gc
= udp_gc
;
268 in_pcbinfo_attach(&udbinfo
);
272 udp_input(struct mbuf
*m
, int iphlen
)
277 struct mbuf
*opts
= NULL
;
278 int len
, isbroadcast
;
280 struct sockaddr
*append_sa
;
281 struct inpcbinfo
*pcbinfo
= &udbinfo
;
282 struct sockaddr_in udp_in
;
283 struct ip_moptions
*imo
= NULL
;
284 int foundmembership
= 0, ret
= 0;
285 struct udp_in6 udp_in6
;
286 struct udp_ip6 udp_ip6
;
287 struct ifnet
*ifp
= m
->m_pkthdr
.rcvif
;
288 boolean_t cell
= IFNET_IS_CELLULAR(ifp
);
289 boolean_t wifi
= (!cell
&& IFNET_IS_WIFI(ifp
));
290 boolean_t wired
= (!wifi
&& IFNET_IS_WIRED(ifp
));
291 u_int16_t pf_tag
= 0;
293 bzero(&udp_in
, sizeof(udp_in
));
294 udp_in
.sin_len
= sizeof(struct sockaddr_in
);
295 udp_in
.sin_family
= AF_INET
;
296 bzero(&udp_in6
, sizeof(udp_in6
));
297 udp_in6
.uin6_sin
.sin6_len
= sizeof(struct sockaddr_in6
);
298 udp_in6
.uin6_sin
.sin6_family
= AF_INET6
;
300 if (m
->m_flags
& M_PKTHDR
) {
301 pf_tag
= m_pftag(m
)->pftag_tag
;
304 udpstat
.udps_ipackets
++;
306 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
308 /* Expect 32-bit aligned data pointer on strict-align platforms */
309 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m
);
312 * Strip IP options, if any; should skip this,
313 * make available to user, and use on returned packets,
314 * but we don't yet have a way to check the checksum
315 * with options still present.
317 if (iphlen
> sizeof(struct ip
)) {
319 iphlen
= sizeof(struct ip
);
323 * Get IP and UDP header together in first mbuf.
325 ip
= mtod(m
, struct ip
*);
326 if (m
->m_len
< iphlen
+ sizeof(struct udphdr
)) {
327 m
= m_pullup(m
, iphlen
+ sizeof(struct udphdr
));
329 udpstat
.udps_hdrops
++;
330 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
,
334 ip
= mtod(m
, struct ip
*);
336 uh
= (struct udphdr
*)(void *)((caddr_t
)ip
+ iphlen
);
338 /* destination port of 0 is illegal, based on RFC768. */
339 if (uh
->uh_dport
== 0) {
340 IF_UDP_STATINC(ifp
, port0
);
344 KERNEL_DEBUG(DBG_LAYER_IN_BEG
, uh
->uh_dport
, uh
->uh_sport
,
345 ip
->ip_src
.s_addr
, ip
->ip_dst
.s_addr
, uh
->uh_ulen
);
348 * Make mbuf data length reflect UDP length.
349 * If not enough data to reflect UDP length, drop.
351 len
= ntohs((u_short
)uh
->uh_ulen
);
352 if (ip
->ip_len
!= len
) {
353 if (len
> ip
->ip_len
|| len
< sizeof(struct udphdr
)) {
354 udpstat
.udps_badlen
++;
355 IF_UDP_STATINC(ifp
, badlength
);
358 m_adj(m
, len
- ip
->ip_len
);
359 /* ip->ip_len = len; */
362 * Save a copy of the IP header in case we want restore it
363 * for sending an ICMP error message in response.
368 * Checksum extended UDP header and data.
370 if (udp_input_checksum(m
, uh
, iphlen
, len
)) {
374 isbroadcast
= in_broadcast(ip
->ip_dst
, ifp
);
376 if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
)) || isbroadcast
) {
377 int reuse_sock
= 0, mcast_delivered
= 0;
379 lck_rw_lock_shared(pcbinfo
->ipi_lock
);
381 * Deliver a multicast or broadcast datagram to *all* sockets
382 * for which the local and remote addresses and ports match
383 * those of the incoming datagram. This allows more than
384 * one process to receive multi/broadcasts on the same port.
385 * (This really ought to be done for unicast datagrams as
386 * well, but that would cause problems with existing
387 * applications that open both address-specific sockets and
388 * a wildcard socket listening to the same port -- they would
389 * end up receiving duplicates of every unicast datagram.
390 * Those applications open the multiple sockets to overcome an
391 * inadequacy of the UDP socket interface, but for backwards
392 * compatibility we avoid the problem here rather than
393 * fixing the interface. Maybe 4.5BSD will remedy this?)
397 * Construct sockaddr format source address.
399 udp_in
.sin_port
= uh
->uh_sport
;
400 udp_in
.sin_addr
= ip
->ip_src
;
402 * Locate pcb(s) for datagram.
403 * (Algorithm copied from raw_intr().)
405 udp_in6
.uin6_init_done
= udp_ip6
.uip6_init_done
= 0;
406 LIST_FOREACH(inp
, &udb
, inp_list
) {
411 if (inp
->inp_socket
== NULL
) {
414 if (inp
!= sotoinpcb(inp
->inp_socket
)) {
415 panic("%s: bad so back ptr inp=%p\n",
419 if ((inp
->inp_vflag
& INP_IPV4
) == 0) {
422 if (inp_restricted_recv(inp
, ifp
)) {
426 if ((inp
->inp_moptions
== NULL
) &&
427 (ntohl(ip
->ip_dst
.s_addr
) !=
428 INADDR_ALLHOSTS_GROUP
) && (isbroadcast
== 0)) {
432 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) ==
437 udp_lock(inp
->inp_socket
, 1, 0);
439 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) ==
441 udp_unlock(inp
->inp_socket
, 1, 0);
445 if (inp
->inp_lport
!= uh
->uh_dport
) {
446 udp_unlock(inp
->inp_socket
, 1, 0);
449 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
) {
450 if (inp
->inp_laddr
.s_addr
!=
452 udp_unlock(inp
->inp_socket
, 1, 0);
456 if (inp
->inp_faddr
.s_addr
!= INADDR_ANY
) {
457 if (inp
->inp_faddr
.s_addr
!=
459 inp
->inp_fport
!= uh
->uh_sport
) {
460 udp_unlock(inp
->inp_socket
, 1, 0);
465 if (isbroadcast
== 0 && (ntohl(ip
->ip_dst
.s_addr
) !=
466 INADDR_ALLHOSTS_GROUP
)) {
467 struct sockaddr_in group
;
470 if ((imo
= inp
->inp_moptions
) == NULL
) {
471 udp_unlock(inp
->inp_socket
, 1, 0);
476 bzero(&group
, sizeof(struct sockaddr_in
));
477 group
.sin_len
= sizeof(struct sockaddr_in
);
478 group
.sin_family
= AF_INET
;
479 group
.sin_addr
= ip
->ip_dst
;
481 blocked
= imo_multi_filter(imo
, ifp
,
483 if (blocked
== MCAST_PASS
) {
488 if (!foundmembership
) {
489 udp_unlock(inp
->inp_socket
, 1, 0);
490 if (blocked
== MCAST_NOTSMEMBER
||
491 blocked
== MCAST_MUTED
) {
492 udpstat
.udps_filtermcast
++;
499 reuse_sock
= (inp
->inp_socket
->so_options
&
500 (SO_REUSEPORT
| SO_REUSEADDR
));
504 if (!necp_socket_is_allowed_to_send_recv_v4(inp
,
505 uh
->uh_dport
, uh
->uh_sport
, &ip
->ip_dst
,
506 &ip
->ip_src
, ifp
, pf_tag
, NULL
, NULL
, NULL
, NULL
)) {
507 /* do not inject data to pcb */
513 struct mbuf
*n
= NULL
;
516 n
= m_copy(m
, 0, M_COPYALL
);
518 udp_append(inp
, ip
, m
,
519 iphlen
+ sizeof(struct udphdr
),
520 &udp_in
, &udp_in6
, &udp_ip6
, ifp
);
525 udp_unlock(inp
->inp_socket
, 1, 0);
528 * Don't look for additional matches if this one does
529 * not have either the SO_REUSEPORT or SO_REUSEADDR
530 * socket options set. This heuristic avoids searching
531 * through all pcbs in the common case of a non-shared
532 * port. It assumes that an application will never
533 * clear these options after setting them.
535 if (reuse_sock
== 0 || m
== NULL
) {
540 * Expect 32-bit aligned data pointer on strict-align
543 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m
);
545 * Recompute IP and UDP header pointers for new mbuf
547 ip
= mtod(m
, struct ip
*);
548 uh
= (struct udphdr
*)(void *)((caddr_t
)ip
+ iphlen
);
550 lck_rw_done(pcbinfo
->ipi_lock
);
552 if (mcast_delivered
== 0) {
554 * No matching pcb found; discard datagram.
555 * (No need to send an ICMP Port Unreachable
556 * for a broadcast or multicast datgram.)
558 udpstat
.udps_noportbcast
++;
559 IF_UDP_STATINC(ifp
, port_unreach
);
563 /* free the extra copy of mbuf or skipped by IPsec */
567 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
573 * UDP to port 4500 with a payload where the first four bytes are
574 * not zero is a UDP encapsulated IPsec packet. Packets where
575 * the payload is one byte and that byte is 0xFF are NAT keepalive
576 * packets. Decapsulate the ESP packet and carry on with IPsec input
577 * or discard the NAT keep-alive.
579 if (ipsec_bypass
== 0 && (esp_udp_encap_port
& 0xFFFF) != 0 &&
580 (uh
->uh_dport
== ntohs((u_short
)esp_udp_encap_port
) ||
581 uh
->uh_sport
== ntohs((u_short
)esp_udp_encap_port
))) {
583 * Check if ESP or keepalive:
584 * 1. If the destination port of the incoming packet is 4500.
585 * 2. If the source port of the incoming packet is 4500,
586 * then check the SADB to match IP address and port.
588 bool check_esp
= true;
589 if (uh
->uh_dport
!= ntohs((u_short
)esp_udp_encap_port
)) {
590 check_esp
= key_checksa_present(AF_INET
, (caddr_t
)&ip
->ip_dst
,
591 (caddr_t
)&ip
->ip_src
, uh
->uh_dport
,
596 int payload_len
= len
- sizeof(struct udphdr
) > 4 ? 4 :
597 len
- sizeof(struct udphdr
);
599 if (m
->m_len
< iphlen
+ sizeof(struct udphdr
) + payload_len
) {
600 if ((m
= m_pullup(m
, iphlen
+ sizeof(struct udphdr
) +
601 payload_len
)) == NULL
) {
602 udpstat
.udps_hdrops
++;
603 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
,
608 * Expect 32-bit aligned data pointer on strict-align
611 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m
);
613 ip
= mtod(m
, struct ip
*);
614 uh
= (struct udphdr
*)(void *)((caddr_t
)ip
+ iphlen
);
616 /* Check for NAT keepalive packet */
617 if (payload_len
== 1 && *(u_int8_t
*)
618 ((caddr_t
)uh
+ sizeof(struct udphdr
)) == 0xFF) {
620 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
,
623 } else if (payload_len
== 4 && *(u_int32_t
*)(void *)
624 ((caddr_t
)uh
+ sizeof(struct udphdr
)) != 0) {
625 /* UDP encapsulated IPsec packet to pass through NAT */
626 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
,
628 /* preserve the udp header */
629 esp4_input(m
, iphlen
+ sizeof(struct udphdr
));
637 * Locate pcb for datagram.
639 inp
= in_pcblookup_hash(&udbinfo
, ip
->ip_src
, uh
->uh_sport
,
640 ip
->ip_dst
, uh
->uh_dport
, 1, ifp
);
642 IF_UDP_STATINC(ifp
, port_unreach
);
644 if (udp_log_in_vain
) {
645 char buf
[MAX_IPv4_STR_LEN
];
646 char buf2
[MAX_IPv4_STR_LEN
];
648 /* check src and dst address */
649 if (udp_log_in_vain
< 3) {
650 log(LOG_INFO
, "Connection attempt to "
651 "UDP %s:%d from %s:%d\n", inet_ntop(AF_INET
,
652 &ip
->ip_dst
, buf
, sizeof(buf
)),
653 ntohs(uh
->uh_dport
), inet_ntop(AF_INET
,
654 &ip
->ip_src
, buf2
, sizeof(buf2
)),
655 ntohs(uh
->uh_sport
));
656 } else if (!(m
->m_flags
& (M_BCAST
| M_MCAST
)) &&
657 ip
->ip_dst
.s_addr
!= ip
->ip_src
.s_addr
) {
658 log_in_vain_log((LOG_INFO
,
659 "Stealth Mode connection attempt to "
660 "UDP %s:%d from %s:%d\n", inet_ntop(AF_INET
,
661 &ip
->ip_dst
, buf
, sizeof(buf
)),
662 ntohs(uh
->uh_dport
), inet_ntop(AF_INET
,
663 &ip
->ip_src
, buf2
, sizeof(buf2
)),
664 ntohs(uh
->uh_sport
)))
667 udpstat
.udps_noport
++;
668 if (m
->m_flags
& (M_BCAST
| M_MCAST
)) {
669 udpstat
.udps_noportbcast
++;
673 if (badport_bandlim(BANDLIM_ICMP_UNREACH
)) {
676 #endif /* ICMP_BANDLIM */
678 if (ifp
&& ifp
->if_type
!= IFT_LOOP
) {
683 ip
->ip_len
+= iphlen
;
684 icmp_error(m
, ICMP_UNREACH
, ICMP_UNREACH_PORT
, 0, 0);
685 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
688 udp_lock(inp
->inp_socket
, 1, 0);
690 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
691 udp_unlock(inp
->inp_socket
, 1, 0);
692 IF_UDP_STATINC(ifp
, cleanup
);
696 if (!necp_socket_is_allowed_to_send_recv_v4(inp
, uh
->uh_dport
,
697 uh
->uh_sport
, &ip
->ip_dst
, &ip
->ip_src
, ifp
, pf_tag
, NULL
, NULL
, NULL
, NULL
)) {
698 udp_unlock(inp
->inp_socket
, 1, 0);
699 IF_UDP_STATINC(ifp
, badipsec
);
705 * Construct sockaddr format source address.
706 * Stuff source address and datagram in user buffer.
708 udp_in
.sin_port
= uh
->uh_sport
;
709 udp_in
.sin_addr
= ip
->ip_src
;
710 if ((inp
->inp_flags
& INP_CONTROLOPTS
) != 0 ||
712 /* Content Filter needs to see local address */
713 (inp
->inp_socket
->so_cfil_db
!= NULL
) ||
715 (inp
->inp_socket
->so_options
& SO_TIMESTAMP
) != 0 ||
716 (inp
->inp_socket
->so_options
& SO_TIMESTAMP_MONOTONIC
) != 0 ||
717 (inp
->inp_socket
->so_options
& SO_TIMESTAMP_CONTINUOUS
) != 0) {
718 if (inp
->inp_vflag
& INP_IPV6
) {
721 ip_2_ip6_hdr(&udp_ip6
.uip6_ip6
, ip
);
722 savedflags
= inp
->inp_flags
;
723 inp
->inp_flags
&= ~INP_UNMAPPABLEOPTS
;
724 ret
= ip6_savecontrol(inp
, m
, &opts
);
725 inp
->inp_flags
= savedflags
;
727 ret
= ip_savecontrol(inp
, &opts
, ip
, m
);
730 udp_unlock(inp
->inp_socket
, 1, 0);
734 m_adj(m
, iphlen
+ sizeof(struct udphdr
));
736 KERNEL_DEBUG(DBG_LAYER_IN_END
, uh
->uh_dport
, uh
->uh_sport
,
737 save_ip
.ip_src
.s_addr
, save_ip
.ip_dst
.s_addr
, uh
->uh_ulen
);
739 if (inp
->inp_vflag
& INP_IPV6
) {
740 in6_sin_2_v4mapsin6(&udp_in
, &udp_in6
.uin6_sin
);
741 append_sa
= (struct sockaddr
*)&udp_in6
.uin6_sin
;
743 append_sa
= (struct sockaddr
*)&udp_in
;
746 INP_ADD_STAT(inp
, cell
, wifi
, wired
, rxpackets
, 1);
747 INP_ADD_STAT(inp
, cell
, wifi
, wired
, rxbytes
, m
->m_pkthdr
.len
);
748 inp_set_activity_bitmap(inp
);
750 so_recv_data_stat(inp
->inp_socket
, m
, 0);
751 if (sbappendaddr(&inp
->inp_socket
->so_rcv
, append_sa
,
752 m
, opts
, NULL
) == 0) {
753 udpstat
.udps_fullsock
++;
755 sorwakeup(inp
->inp_socket
);
757 udp_unlock(inp
->inp_socket
, 1, 0);
758 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
765 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
769 ip_2_ip6_hdr(struct ip6_hdr
*ip6
, struct ip
*ip
)
771 bzero(ip6
, sizeof(*ip6
));
773 ip6
->ip6_vfc
= IPV6_VERSION
;
774 ip6
->ip6_plen
= ip
->ip_len
;
775 ip6
->ip6_nxt
= ip
->ip_p
;
776 ip6
->ip6_hlim
= ip
->ip_ttl
;
777 if (ip
->ip_src
.s_addr
) {
778 ip6
->ip6_src
.s6_addr32
[2] = IPV6_ADDR_INT32_SMP
;
779 ip6
->ip6_src
.s6_addr32
[3] = ip
->ip_src
.s_addr
;
781 if (ip
->ip_dst
.s_addr
) {
782 ip6
->ip6_dst
.s6_addr32
[2] = IPV6_ADDR_INT32_SMP
;
783 ip6
->ip6_dst
.s6_addr32
[3] = ip
->ip_dst
.s_addr
;
788 * subroutine of udp_input(), mainly for source code readability.
791 udp_append(struct inpcb
*last
, struct ip
*ip
, struct mbuf
*n
, int off
,
792 struct sockaddr_in
*pudp_in
, struct udp_in6
*pudp_in6
,
793 struct udp_ip6
*pudp_ip6
, struct ifnet
*ifp
)
795 struct sockaddr
*append_sa
;
796 struct mbuf
*opts
= 0;
797 boolean_t cell
= IFNET_IS_CELLULAR(ifp
);
798 boolean_t wifi
= (!cell
&& IFNET_IS_WIFI(ifp
));
799 boolean_t wired
= (!wifi
&& IFNET_IS_WIRED(ifp
));
802 if ((last
->inp_flags
& INP_CONTROLOPTS
) != 0 ||
804 /* Content Filter needs to see local address */
805 (last
->inp_socket
->so_cfil_db
!= NULL
) ||
807 (last
->inp_socket
->so_options
& SO_TIMESTAMP
) != 0 ||
808 (last
->inp_socket
->so_options
& SO_TIMESTAMP_MONOTONIC
) != 0 ||
809 (last
->inp_socket
->so_options
& SO_TIMESTAMP_CONTINUOUS
) != 0) {
810 if (last
->inp_vflag
& INP_IPV6
) {
813 if (pudp_ip6
->uip6_init_done
== 0) {
814 ip_2_ip6_hdr(&pudp_ip6
->uip6_ip6
, ip
);
815 pudp_ip6
->uip6_init_done
= 1;
817 savedflags
= last
->inp_flags
;
818 last
->inp_flags
&= ~INP_UNMAPPABLEOPTS
;
819 ret
= ip6_savecontrol(last
, n
, &opts
);
821 last
->inp_flags
= savedflags
;
824 last
->inp_flags
= savedflags
;
826 ret
= ip_savecontrol(last
, &opts
, ip
, n
);
832 if (last
->inp_vflag
& INP_IPV6
) {
833 if (pudp_in6
->uin6_init_done
== 0) {
834 in6_sin_2_v4mapsin6(pudp_in
, &pudp_in6
->uin6_sin
);
835 pudp_in6
->uin6_init_done
= 1;
837 append_sa
= (struct sockaddr
*)&pudp_in6
->uin6_sin
;
839 append_sa
= (struct sockaddr
*)pudp_in
;
842 INP_ADD_STAT(last
, cell
, wifi
, wired
, rxpackets
, 1);
843 INP_ADD_STAT(last
, cell
, wifi
, wired
, rxbytes
,
845 inp_set_activity_bitmap(last
);
847 so_recv_data_stat(last
->inp_socket
, n
, 0);
849 if (sbappendaddr(&last
->inp_socket
->so_rcv
, append_sa
,
850 n
, opts
, NULL
) == 0) {
851 udpstat
.udps_fullsock
++;
853 sorwakeup(last
->inp_socket
);
862 * Notify a udp user of an asynchronous error;
863 * just wake up so that he can collect error status.
866 udp_notify(struct inpcb
*inp
, int errno
)
868 inp
->inp_socket
->so_error
= (u_short
)errno
;
869 sorwakeup(inp
->inp_socket
);
870 sowwakeup(inp
->inp_socket
);
874 udp_ctlinput(int cmd
, struct sockaddr
*sa
, void *vip
, __unused
struct ifnet
* ifp
)
877 void (*notify
)(struct inpcb
*, int) = udp_notify
;
878 struct in_addr faddr
;
879 struct inpcb
*inp
= NULL
;
881 faddr
= ((struct sockaddr_in
*)(void *)sa
)->sin_addr
;
882 if (sa
->sa_family
!= AF_INET
|| faddr
.s_addr
== INADDR_ANY
) {
886 if (PRC_IS_REDIRECT(cmd
)) {
888 notify
= in_rtchange
;
889 } else if (cmd
== PRC_HOSTDEAD
) {
891 } else if ((unsigned)cmd
>= PRC_NCMDS
|| inetctlerrmap
[cmd
] == 0) {
896 struct icmp
*icp
= NULL
;
898 bcopy(((caddr_t
)ip
+ (ip
->ip_hl
<< 2)), &uh
, sizeof(uh
));
899 inp
= in_pcblookup_hash(&udbinfo
, faddr
, uh
.uh_dport
,
900 ip
->ip_src
, uh
.uh_sport
, 0, NULL
);
901 icp
= (struct icmp
*)(void *)((caddr_t
)ip
- offsetof(struct icmp
, icmp_ip
));
903 if (inp
!= NULL
&& inp
->inp_socket
!= NULL
) {
904 udp_lock(inp
->inp_socket
, 1, 0);
905 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) ==
907 udp_unlock(inp
->inp_socket
, 1, 0);
910 if (cmd
== PRC_MSGSIZE
&& !uuid_is_null(inp
->necp_client_uuid
)) {
912 uuid_clear(null_uuid
);
913 necp_update_flow_protoctl_event(null_uuid
, inp
->necp_client_uuid
,
914 PRC_MSGSIZE
, ntohs(icp
->icmp_nextmtu
), 0);
916 (*notify
)(inp
, inetctlerrmap
[cmd
]);
918 udp_unlock(inp
->inp_socket
, 1, 0);
921 in_pcbnotifyall(&udbinfo
, faddr
, inetctlerrmap
[cmd
], notify
);
926 udp_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
928 int error
= 0, optval
= 0;
931 /* Allow <SOL_SOCKET,SO_FLUSH> at this level */
932 if (sopt
->sopt_level
!= IPPROTO_UDP
&&
933 !(sopt
->sopt_level
== SOL_SOCKET
&& sopt
->sopt_name
== SO_FLUSH
)) {
934 return ip_ctloutput(so
, sopt
);
939 switch (sopt
->sopt_dir
) {
941 switch (sopt
->sopt_name
) {
943 /* This option is settable only for UDP over IPv4 */
944 if (!(inp
->inp_vflag
& INP_IPV4
)) {
949 if ((error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
950 sizeof(optval
))) != 0) {
955 inp
->inp_flags
|= INP_UDP_NOCKSUM
;
957 inp
->inp_flags
&= ~INP_UDP_NOCKSUM
;
960 case UDP_KEEPALIVE_OFFLOAD
:
962 struct udp_keepalive_offload ka
;
964 * If the socket is not connected, the stack will
965 * not know the destination address to put in the
966 * keepalive datagram. Return an error now instead
969 if (!(so
->so_state
& SS_ISCONNECTED
)) {
973 if (sopt
->sopt_valsize
!= sizeof(ka
)) {
977 if ((error
= sooptcopyin(sopt
, &ka
, sizeof(ka
),
982 /* application should specify the type */
983 if (ka
.ka_type
== 0) {
987 if (ka
.ka_interval
== 0) {
989 * if interval is 0, disable the offload
992 if (inp
->inp_keepalive_data
!= NULL
) {
993 FREE(inp
->inp_keepalive_data
,
996 inp
->inp_keepalive_data
= NULL
;
997 inp
->inp_keepalive_datalen
= 0;
998 inp
->inp_keepalive_interval
= 0;
999 inp
->inp_keepalive_type
= 0;
1000 inp
->inp_flags2
&= ~INP2_KEEPALIVE_OFFLOAD
;
1002 if (inp
->inp_keepalive_data
!= NULL
) {
1003 FREE(inp
->inp_keepalive_data
,
1005 inp
->inp_keepalive_data
= NULL
;
1008 inp
->inp_keepalive_datalen
= (uint8_t)min(
1010 UDP_KEEPALIVE_OFFLOAD_DATA_SIZE
);
1011 if (inp
->inp_keepalive_datalen
> 0) {
1012 MALLOC(inp
->inp_keepalive_data
,
1014 inp
->inp_keepalive_datalen
,
1016 if (inp
->inp_keepalive_data
== NULL
) {
1017 inp
->inp_keepalive_datalen
= 0;
1022 inp
->inp_keepalive_data
,
1023 inp
->inp_keepalive_datalen
);
1025 inp
->inp_keepalive_datalen
= 0;
1027 inp
->inp_keepalive_interval
= (uint8_t)
1028 min(UDP_KEEPALIVE_INTERVAL_MAX_SECONDS
,
1030 inp
->inp_keepalive_type
= ka
.ka_type
;
1031 inp
->inp_flags2
|= INP2_KEEPALIVE_OFFLOAD
;
1036 if ((error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
1037 sizeof(optval
))) != 0) {
1041 error
= inp_flush(inp
, optval
);
1045 error
= ENOPROTOOPT
;
1051 switch (sopt
->sopt_name
) {
1053 optval
= inp
->inp_flags
& INP_UDP_NOCKSUM
;
1057 error
= ENOPROTOOPT
;
1061 error
= sooptcopyout(sopt
, &optval
, sizeof(optval
));
1069 udp_pcblist SYSCTL_HANDLER_ARGS
1071 #pragma unused(oidp, arg1, arg2)
1073 struct inpcb
*inp
, **inp_list
;
1078 * The process of preparing the TCB list is too time-consuming and
1079 * resource-intensive to repeat twice on every request.
1081 lck_rw_lock_exclusive(udbinfo
.ipi_lock
);
1082 if (req
->oldptr
== USER_ADDR_NULL
) {
1083 n
= udbinfo
.ipi_count
;
1084 req
->oldidx
= 2 * (sizeof(xig
))
1085 + (n
+ n
/ 8) * sizeof(struct xinpcb
);
1086 lck_rw_done(udbinfo
.ipi_lock
);
1090 if (req
->newptr
!= USER_ADDR_NULL
) {
1091 lck_rw_done(udbinfo
.ipi_lock
);
1096 * OK, now we're committed to doing something.
1098 gencnt
= udbinfo
.ipi_gencnt
;
1099 n
= udbinfo
.ipi_count
;
1101 bzero(&xig
, sizeof(xig
));
1102 xig
.xig_len
= sizeof(xig
);
1104 xig
.xig_gen
= gencnt
;
1105 xig
.xig_sogen
= so_gencnt
;
1106 error
= SYSCTL_OUT(req
, &xig
, sizeof(xig
));
1108 lck_rw_done(udbinfo
.ipi_lock
);
1112 * We are done if there is no pcb
1115 lck_rw_done(udbinfo
.ipi_lock
);
1119 inp_list
= _MALLOC(n
* sizeof(*inp_list
), M_TEMP
, M_WAITOK
);
1120 if (inp_list
== 0) {
1121 lck_rw_done(udbinfo
.ipi_lock
);
1125 for (inp
= LIST_FIRST(udbinfo
.ipi_listhead
), i
= 0; inp
&& i
< n
;
1126 inp
= LIST_NEXT(inp
, inp_list
)) {
1127 if (inp
->inp_gencnt
<= gencnt
&&
1128 inp
->inp_state
!= INPCB_STATE_DEAD
) {
1129 inp_list
[i
++] = inp
;
1135 for (i
= 0; i
< n
; i
++) {
1140 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) == WNT_STOPUSING
) {
1143 udp_lock(inp
->inp_socket
, 1, 0);
1144 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
1145 udp_unlock(inp
->inp_socket
, 1, 0);
1148 if (inp
->inp_gencnt
> gencnt
) {
1149 udp_unlock(inp
->inp_socket
, 1, 0);
1153 bzero(&xi
, sizeof(xi
));
1154 xi
.xi_len
= sizeof(xi
);
1155 /* XXX should avoid extra copy */
1156 inpcb_to_compat(inp
, &xi
.xi_inp
);
1157 if (inp
->inp_socket
) {
1158 sotoxsocket(inp
->inp_socket
, &xi
.xi_socket
);
1161 udp_unlock(inp
->inp_socket
, 1, 0);
1163 error
= SYSCTL_OUT(req
, &xi
, sizeof(xi
));
1167 * Give the user an updated idea of our state.
1168 * If the generation differs from what we told
1169 * her before, she knows that something happened
1170 * while we were processing this request, and it
1171 * might be necessary to retry.
1173 bzero(&xig
, sizeof(xig
));
1174 xig
.xig_len
= sizeof(xig
);
1175 xig
.xig_gen
= udbinfo
.ipi_gencnt
;
1176 xig
.xig_sogen
= so_gencnt
;
1177 xig
.xig_count
= udbinfo
.ipi_count
;
1178 error
= SYSCTL_OUT(req
, &xig
, sizeof(xig
));
1180 FREE(inp_list
, M_TEMP
);
1181 lck_rw_done(udbinfo
.ipi_lock
);
1185 SYSCTL_PROC(_net_inet_udp
, UDPCTL_PCBLIST
, pcblist
,
1186 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0, udp_pcblist
,
1187 "S,xinpcb", "List of active UDP sockets");
1189 #if XNU_TARGET_OS_OSX
1192 udp_pcblist64 SYSCTL_HANDLER_ARGS
1194 #pragma unused(oidp, arg1, arg2)
1196 struct inpcb
*inp
, **inp_list
;
1201 * The process of preparing the TCB list is too time-consuming and
1202 * resource-intensive to repeat twice on every request.
1204 lck_rw_lock_shared(udbinfo
.ipi_lock
);
1205 if (req
->oldptr
== USER_ADDR_NULL
) {
1206 n
= udbinfo
.ipi_count
;
1208 2 * (sizeof(xig
)) + (n
+ n
/ 8) * sizeof(struct xinpcb64
);
1209 lck_rw_done(udbinfo
.ipi_lock
);
1213 if (req
->newptr
!= USER_ADDR_NULL
) {
1214 lck_rw_done(udbinfo
.ipi_lock
);
1219 * OK, now we're committed to doing something.
1221 gencnt
= udbinfo
.ipi_gencnt
;
1222 n
= udbinfo
.ipi_count
;
1224 bzero(&xig
, sizeof(xig
));
1225 xig
.xig_len
= sizeof(xig
);
1227 xig
.xig_gen
= gencnt
;
1228 xig
.xig_sogen
= so_gencnt
;
1229 error
= SYSCTL_OUT(req
, &xig
, sizeof(xig
));
1231 lck_rw_done(udbinfo
.ipi_lock
);
1235 * We are done if there is no pcb
1238 lck_rw_done(udbinfo
.ipi_lock
);
1242 inp_list
= _MALLOC(n
* sizeof(*inp_list
), M_TEMP
, M_WAITOK
);
1243 if (inp_list
== 0) {
1244 lck_rw_done(udbinfo
.ipi_lock
);
1248 for (inp
= LIST_FIRST(udbinfo
.ipi_listhead
), i
= 0; inp
&& i
< n
;
1249 inp
= LIST_NEXT(inp
, inp_list
)) {
1250 if (inp
->inp_gencnt
<= gencnt
&&
1251 inp
->inp_state
!= INPCB_STATE_DEAD
) {
1252 inp_list
[i
++] = inp
;
1258 for (i
= 0; i
< n
; i
++) {
1263 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) == WNT_STOPUSING
) {
1266 udp_lock(inp
->inp_socket
, 1, 0);
1267 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
1268 udp_unlock(inp
->inp_socket
, 1, 0);
1271 if (inp
->inp_gencnt
> gencnt
) {
1272 udp_unlock(inp
->inp_socket
, 1, 0);
1276 bzero(&xi
, sizeof(xi
));
1277 xi
.xi_len
= sizeof(xi
);
1278 inpcb_to_xinpcb64(inp
, &xi
);
1279 if (inp
->inp_socket
) {
1280 sotoxsocket64(inp
->inp_socket
, &xi
.xi_socket
);
1283 udp_unlock(inp
->inp_socket
, 1, 0);
1285 error
= SYSCTL_OUT(req
, &xi
, sizeof(xi
));
1289 * Give the user an updated idea of our state.
1290 * If the generation differs from what we told
1291 * her before, she knows that something happened
1292 * while we were processing this request, and it
1293 * might be necessary to retry.
1295 bzero(&xig
, sizeof(xig
));
1296 xig
.xig_len
= sizeof(xig
);
1297 xig
.xig_gen
= udbinfo
.ipi_gencnt
;
1298 xig
.xig_sogen
= so_gencnt
;
1299 xig
.xig_count
= udbinfo
.ipi_count
;
1300 error
= SYSCTL_OUT(req
, &xig
, sizeof(xig
));
1302 FREE(inp_list
, M_TEMP
);
1303 lck_rw_done(udbinfo
.ipi_lock
);
1307 SYSCTL_PROC(_net_inet_udp
, OID_AUTO
, pcblist64
,
1308 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0, udp_pcblist64
,
1309 "S,xinpcb64", "List of active UDP sockets");
1311 #endif /* XNU_TARGET_OS_OSX */
1314 udp_pcblist_n SYSCTL_HANDLER_ARGS
1316 #pragma unused(oidp, arg1, arg2)
1317 return get_pcblist_n(IPPROTO_UDP
, req
, &udbinfo
);
1320 SYSCTL_PROC(_net_inet_udp
, OID_AUTO
, pcblist_n
,
1321 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0, udp_pcblist_n
,
1322 "S,xinpcb_n", "List of active UDP sockets");
1324 __private_extern__
void
1325 udp_get_ports_used(uint32_t ifindex
, int protocol
, uint32_t flags
,
1328 inpcb_get_ports_used(ifindex
, protocol
, flags
, bitfield
,
1332 __private_extern__
uint32_t
1333 udp_count_opportunistic(unsigned int ifindex
, u_int32_t flags
)
1335 return inpcb_count_opportunistic(ifindex
, &udbinfo
, flags
);
1338 __private_extern__
uint32_t
1339 udp_find_anypcb_byaddr(struct ifaddr
*ifa
)
1341 return inpcb_find_anypcb_byaddr(ifa
, &udbinfo
);
1345 udp_check_pktinfo(struct mbuf
*control
, struct ifnet
**outif
,
1346 struct in_addr
*laddr
)
1348 struct cmsghdr
*cm
= 0;
1349 struct in_pktinfo
*pktinfo
;
1352 if (outif
!= NULL
) {
1357 * XXX: Currently, we assume all the optional information is stored
1360 if (control
->m_next
) {
1364 if (control
->m_len
< CMSG_LEN(0)) {
1368 for (cm
= M_FIRST_CMSGHDR(control
);
1369 is_cmsg_valid(control
, cm
);
1370 cm
= M_NXT_CMSGHDR(control
, cm
)) {
1371 if (cm
->cmsg_level
!= IPPROTO_IP
||
1372 cm
->cmsg_type
!= IP_PKTINFO
) {
1376 if (cm
->cmsg_len
!= CMSG_LEN(sizeof(struct in_pktinfo
))) {
1380 pktinfo
= (struct in_pktinfo
*)(void *)CMSG_DATA(cm
);
1382 /* Check for a valid ifindex in pktinfo */
1383 ifnet_head_lock_shared();
1385 if (pktinfo
->ipi_ifindex
> if_index
) {
1391 * If ipi_ifindex is specified it takes precedence
1392 * over ipi_spec_dst.
1394 if (pktinfo
->ipi_ifindex
) {
1395 ifp
= ifindex2ifnet
[pktinfo
->ipi_ifindex
];
1400 if (outif
!= NULL
) {
1401 ifnet_reference(ifp
);
1405 laddr
->s_addr
= INADDR_ANY
;
1412 * Use the provided ipi_spec_dst address for temp
1415 *laddr
= pktinfo
->ipi_spec_dst
;
1422 udp_output(struct inpcb
*inp
, struct mbuf
*m
, struct sockaddr
*addr
,
1423 struct mbuf
*control
, struct proc
*p
)
1425 struct udpiphdr
*ui
;
1426 int len
= m
->m_pkthdr
.len
;
1427 struct sockaddr_in
*sin
;
1428 struct in_addr origladdr
, laddr
, faddr
, pi_laddr
;
1429 u_short lport
, fport
;
1430 int error
= 0, udp_dodisconnect
= 0, pktinfo
= 0;
1431 struct socket
*so
= inp
->inp_socket
;
1433 struct mbuf
*inpopts
;
1434 struct ip_moptions
*mopts
;
1436 struct ip_out_args ipoa
;
1437 bool sndinprog_cnt_used
= false;
1439 struct m_tag
*cfil_tag
= NULL
;
1440 bool cfil_faddr_use
= false;
1441 uint32_t cfil_so_state_change_cnt
= 0;
1442 uint32_t cfil_so_options
= 0;
1443 struct sockaddr
*cfil_faddr
= NULL
;
1445 bool check_qos_marking_again
= (so
->so_flags1
& SOF1_QOSMARKING_POLICY_OVERRIDE
) ? FALSE
: TRUE
;
1447 bzero(&ipoa
, sizeof(ipoa
));
1448 ipoa
.ipoa_boundif
= IFSCOPE_NONE
;
1449 ipoa
.ipoa_flags
= IPOAF_SELECT_SRCIF
;
1451 struct ifnet
*outif
= NULL
;
1452 struct flowadv
*adv
= &ipoa
.ipoa_flowadv
;
1453 int sotc
= SO_TC_UNSPEC
;
1454 int netsvctype
= _NET_SERVICE_TYPE_UNSPEC
;
1455 struct ifnet
*origoutifp
= NULL
;
1457 int tos
= IPTOS_UNSPEC
;
1459 /* Enable flow advisory only when connected */
1460 flowadv
= (so
->so_state
& SS_ISCONNECTED
) ? 1 : 0;
1461 pi_laddr
.s_addr
= INADDR_ANY
;
1463 KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
1465 socket_lock_assert_owned(so
);
1469 * If socket is subject to UDP Content Filter and no addr is passed in,
1470 * retrieve CFIL saved state from mbuf and use it if necessary.
1472 if (so
->so_cfil_db
&& !addr
) {
1473 cfil_tag
= cfil_dgram_get_socket_state(m
, &cfil_so_state_change_cnt
, &cfil_so_options
, &cfil_faddr
, NULL
);
1475 sin
= (struct sockaddr_in
*)(void *)cfil_faddr
;
1476 if (inp
&& inp
->inp_faddr
.s_addr
== INADDR_ANY
) {
1478 * Socket is unconnected, simply use the saved faddr as 'addr' to go through
1479 * the connect/disconnect logic.
1481 addr
= (struct sockaddr
*)cfil_faddr
;
1482 } else if ((so
->so_state_change_cnt
!= cfil_so_state_change_cnt
) &&
1483 (inp
->inp_fport
!= sin
->sin_port
||
1484 inp
->inp_faddr
.s_addr
!= sin
->sin_addr
.s_addr
)) {
1486 * Socket is connected but socket state and dest addr/port changed.
1487 * We need to use the saved faddr info.
1489 cfil_faddr_use
= true;
1495 if (control
!= NULL
) {
1496 tos
= so_tos_from_control(control
);
1497 sotc
= so_tc_from_control(control
, &netsvctype
);
1498 VERIFY(outif
== NULL
);
1499 error
= udp_check_pktinfo(control
, &outif
, &pi_laddr
);
1506 if (outif
!= NULL
) {
1507 ipoa
.ipoa_boundif
= outif
->if_index
;
1510 if (sotc
== SO_TC_UNSPEC
) {
1511 sotc
= so
->so_traffic_class
;
1512 netsvctype
= so
->so_netsvctype
;
1515 KERNEL_DEBUG(DBG_LAYER_OUT_BEG
, inp
->inp_fport
, inp
->inp_lport
,
1516 inp
->inp_laddr
.s_addr
, inp
->inp_faddr
.s_addr
,
1517 (htons((u_short
)len
+ sizeof(struct udphdr
))));
1519 if (len
+ sizeof(struct udpiphdr
) > IP_MAXPACKET
) {
1524 if (flowadv
&& INP_WAIT_FOR_IF_FEEDBACK(inp
)) {
1526 * The socket is flow-controlled, drop the packets
1527 * until the inp is not flow controlled
1533 * If socket was bound to an ifindex, tell ip_output about it.
1534 * If the ancillary IP_PKTINFO option contains an interface index,
1535 * it takes precedence over the one specified by IP_BOUND_IF.
1537 if (ipoa
.ipoa_boundif
== IFSCOPE_NONE
&&
1538 (inp
->inp_flags
& INP_BOUND_IF
)) {
1539 VERIFY(inp
->inp_boundifp
!= NULL
);
1540 ifnet_reference(inp
->inp_boundifp
); /* for this routine */
1541 if (outif
!= NULL
) {
1542 ifnet_release(outif
);
1544 outif
= inp
->inp_boundifp
;
1545 ipoa
.ipoa_boundif
= outif
->if_index
;
1547 if (INP_NO_CELLULAR(inp
)) {
1548 ipoa
.ipoa_flags
|= IPOAF_NO_CELLULAR
;
1550 if (INP_NO_EXPENSIVE(inp
)) {
1551 ipoa
.ipoa_flags
|= IPOAF_NO_EXPENSIVE
;
1553 if (INP_NO_CONSTRAINED(inp
)) {
1554 ipoa
.ipoa_flags
|= IPOAF_NO_CONSTRAINED
;
1556 if (INP_AWDL_UNRESTRICTED(inp
)) {
1557 ipoa
.ipoa_flags
|= IPOAF_AWDL_UNRESTRICTED
;
1559 ipoa
.ipoa_sotc
= sotc
;
1560 ipoa
.ipoa_netsvctype
= netsvctype
;
1561 soopts
|= IP_OUTARGS
;
1564 * If there was a routing change, discard cached route and check
1565 * that we have a valid source address. Reacquire a new source
1566 * address if INADDR_ANY was specified.
1568 * If we are using cfil saved state, go through this cache cleanup
1569 * so that we can get a new route.
1571 if (ROUTE_UNUSABLE(&inp
->inp_route
)
1576 struct in_ifaddr
*ia
= NULL
;
1578 ROUTE_RELEASE(&inp
->inp_route
);
1580 /* src address is gone? */
1581 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
&&
1582 (ia
= ifa_foraddr(inp
->inp_laddr
.s_addr
)) == NULL
) {
1583 if (!(inp
->inp_flags
& INP_INADDR_ANY
) ||
1584 (so
->so_state
& SS_ISCONNECTED
)) {
1587 * If the source address is gone, return an
1589 * - the source was specified
1590 * - the socket was already connected
1592 soevent(so
, (SO_FILT_HINT_LOCKED
|
1593 SO_FILT_HINT_NOSRCADDR
));
1594 error
= EADDRNOTAVAIL
;
1597 /* new src will be set later */
1598 inp
->inp_laddr
.s_addr
= INADDR_ANY
;
1599 inp
->inp_last_outifp
= NULL
;
1603 IFA_REMREF(&ia
->ia_ifa
);
1608 * IP_PKTINFO option check. If a temporary scope or src address
1609 * is provided, use it for this packet only and make sure we forget
1610 * it after sending this datagram.
1612 if (pi_laddr
.s_addr
!= INADDR_ANY
||
1613 (ipoa
.ipoa_boundif
!= IFSCOPE_NONE
&& pktinfo
)) {
1614 /* temp src address for this datagram only */
1616 origladdr
.s_addr
= INADDR_ANY
;
1617 /* we don't want to keep the laddr or route */
1618 udp_dodisconnect
= 1;
1619 /* remember we don't care about src addr */
1620 inp
->inp_flags
|= INP_INADDR_ANY
;
1622 origladdr
= laddr
= inp
->inp_laddr
;
1625 origoutifp
= inp
->inp_last_outifp
;
1626 faddr
= inp
->inp_faddr
;
1627 lport
= inp
->inp_lport
;
1628 fport
= inp
->inp_fport
;
1631 if (cfil_faddr_use
) {
1632 faddr
= ((struct sockaddr_in
*)(void *)cfil_faddr
)->sin_addr
;
1633 fport
= ((struct sockaddr_in
*)(void *)cfil_faddr
)->sin_port
;
1636 inp
->inp_sndinprog_cnt
++;
1637 sndinprog_cnt_used
= true;
1640 sin
= (struct sockaddr_in
*)(void *)addr
;
1641 if (faddr
.s_addr
!= INADDR_ANY
) {
1647 * In case we don't have a local port set, go through
1648 * the full connect. We don't have a local port yet
1649 * (i.e., we can't be looked up), so it's not an issue
1650 * if the input runs at the same time we do this.
1652 /* if we have a source address specified, use that */
1653 if (pi_laddr
.s_addr
!= INADDR_ANY
) {
1654 inp
->inp_laddr
= pi_laddr
;
1657 * If a scope is specified, use it. Scope from
1658 * IP_PKTINFO takes precendence over the the scope
1659 * set via INP_BOUND_IF.
1661 error
= in_pcbconnect(inp
, addr
, p
, ipoa
.ipoa_boundif
,
1667 laddr
= inp
->inp_laddr
;
1668 lport
= inp
->inp_lport
;
1669 faddr
= inp
->inp_faddr
;
1670 fport
= inp
->inp_fport
;
1671 udp_dodisconnect
= 1;
1673 /* synch up in case in_pcbladdr() overrides */
1674 if (outif
!= NULL
&& ipoa
.ipoa_boundif
!= IFSCOPE_NONE
) {
1675 ipoa
.ipoa_boundif
= outif
->if_index
;
1681 * We have a full address and a local port; use those
1682 * info to build the packet without changing the pcb
1683 * and interfering with the input path. See 3851370.
1685 * Scope from IP_PKTINFO takes precendence over the
1686 * the scope set via INP_BOUND_IF.
1688 if (laddr
.s_addr
== INADDR_ANY
) {
1689 if ((error
= in_pcbladdr(inp
, addr
, &laddr
,
1690 ipoa
.ipoa_boundif
, &outif
, 0)) != 0) {
1694 * from pcbconnect: remember we don't
1695 * care about src addr.
1697 inp
->inp_flags
|= INP_INADDR_ANY
;
1699 /* synch up in case in_pcbladdr() overrides */
1700 if (outif
!= NULL
&&
1701 ipoa
.ipoa_boundif
!= IFSCOPE_NONE
) {
1702 ipoa
.ipoa_boundif
= outif
->if_index
;
1706 faddr
= sin
->sin_addr
;
1707 fport
= sin
->sin_port
;
1710 if (faddr
.s_addr
== INADDR_ANY
) {
1716 if (inp
->inp_flowhash
== 0) {
1717 inp
->inp_flowhash
= inp_calc_flowhash(inp
);
1720 if (fport
== htons(53) && !(so
->so_flags1
& SOF1_DNS_COUNTED
)) {
1721 so
->so_flags1
|= SOF1_DNS_COUNTED
;
1722 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_inet_dgram_dns
);
1726 * Calculate data length and get a mbuf
1727 * for UDP and IP headers.
1729 M_PREPEND(m
, sizeof(struct udpiphdr
), M_DONTWAIT
, 1);
1736 * Fill in mbuf with extended UDP header
1737 * and addresses and length put into network format.
1739 ui
= mtod(m
, struct udpiphdr
*);
1740 bzero(ui
->ui_x1
, sizeof(ui
->ui_x1
)); /* XXX still needed? */
1741 ui
->ui_pr
= IPPROTO_UDP
;
1744 ui
->ui_sport
= lport
;
1745 ui
->ui_dport
= fport
;
1746 ui
->ui_ulen
= htons((u_short
)len
+ sizeof(struct udphdr
));
1749 * Set the Don't Fragment bit in the IP header.
1751 if (inp
->inp_flags2
& INP2_DONTFRAG
) {
1754 ip
= (struct ip
*)&ui
->ui_i
;
1755 ip
->ip_off
|= IP_DF
;
1759 * Set up checksum to pseudo header checksum and output datagram.
1761 * Treat flows to be CLAT46'd as IPv6 flow and compute checksum
1762 * no matter what, as IPv6 mandates checksum for UDP.
1764 * Here we only compute the one's complement sum of the pseudo header.
1765 * The payload computation and final complement is delayed to much later
1766 * in IP processing to decide if remaining computation needs to be done
1769 * That is communicated by setting CSUM_UDP in csum_flags.
1770 * The offset of checksum from the start of ULP header is communicated
1771 * through csum_data.
1773 * Note since this already contains the pseudo checksum header, any
1774 * later operation at IP layer that modify the values used here must
1775 * update the checksum as well (for example NAT etc).
1777 if ((inp
->inp_flags2
& INP2_CLAT46_FLOW
) ||
1778 (udpcksum
&& !(inp
->inp_flags
& INP_UDP_NOCKSUM
))) {
1779 ui
->ui_sum
= in_pseudo(ui
->ui_src
.s_addr
, ui
->ui_dst
.s_addr
,
1780 htons((u_short
)len
+ sizeof(struct udphdr
) + IPPROTO_UDP
));
1781 m
->m_pkthdr
.csum_flags
= (CSUM_UDP
| CSUM_ZERO_INVERT
);
1782 m
->m_pkthdr
.csum_data
= offsetof(struct udphdr
, uh_sum
);
1786 ((struct ip
*)ui
)->ip_len
= (uint16_t)(sizeof(struct udpiphdr
) + len
);
1787 ((struct ip
*)ui
)->ip_ttl
= inp
->inp_ip_ttl
; /* XXX */
1788 if (tos
!= IPTOS_UNSPEC
) {
1789 ((struct ip
*)ui
)->ip_tos
= (uint8_t)(tos
& IPTOS_MASK
);
1791 ((struct ip
*)ui
)->ip_tos
= inp
->inp_ip_tos
; /* XXX */
1793 udpstat
.udps_opackets
++;
1795 KERNEL_DEBUG(DBG_LAYER_OUT_END
, ui
->ui_dport
, ui
->ui_sport
,
1796 ui
->ui_src
.s_addr
, ui
->ui_dst
.s_addr
, ui
->ui_ulen
);
1800 necp_kernel_policy_id policy_id
;
1801 necp_kernel_policy_id skip_policy_id
;
1802 u_int32_t route_rule_id
;
1803 u_int32_t pass_flags
;
1806 * We need a route to perform NECP route rule checks
1808 if (net_qos_policy_restricted
!= 0 &&
1809 ROUTE_UNUSABLE(&inp
->inp_route
)) {
1810 struct sockaddr_in to
;
1811 struct sockaddr_in from
;
1813 ROUTE_RELEASE(&inp
->inp_route
);
1815 bzero(&from
, sizeof(struct sockaddr_in
));
1816 from
.sin_family
= AF_INET
;
1817 from
.sin_len
= sizeof(struct sockaddr_in
);
1818 from
.sin_addr
= laddr
;
1820 bzero(&to
, sizeof(struct sockaddr_in
));
1821 to
.sin_family
= AF_INET
;
1822 to
.sin_len
= sizeof(struct sockaddr_in
);
1823 to
.sin_addr
= faddr
;
1825 inp
->inp_route
.ro_dst
.sa_family
= AF_INET
;
1826 inp
->inp_route
.ro_dst
.sa_len
= sizeof(struct sockaddr_in
);
1827 ((struct sockaddr_in
*)(void *)&inp
->inp_route
.ro_dst
)->sin_addr
=
1830 rtalloc_scoped(&inp
->inp_route
, ipoa
.ipoa_boundif
);
1832 inp_update_necp_policy(inp
, (struct sockaddr
*)&from
,
1833 (struct sockaddr
*)&to
, ipoa
.ipoa_boundif
);
1834 inp
->inp_policyresult
.results
.qos_marking_gencount
= 0;
1837 if (!necp_socket_is_allowed_to_send_recv_v4(inp
, lport
, fport
,
1838 &laddr
, &faddr
, NULL
, 0, &policy_id
, &route_rule_id
, &skip_policy_id
, &pass_flags
)) {
1839 error
= EHOSTUNREACH
;
1843 necp_mark_packet_from_socket(m
, inp
, policy_id
, route_rule_id
, skip_policy_id
, pass_flags
);
1845 if (net_qos_policy_restricted
!= 0) {
1846 necp_socket_update_qos_marking(inp
, inp
->inp_route
.ro_rt
, route_rule_id
);
1850 if ((so
->so_flags1
& SOF1_QOSMARKING_ALLOWED
)) {
1851 ipoa
.ipoa_flags
|= IPOAF_QOSMARKING_ALLOWED
;
1853 if (check_qos_marking_again
) {
1854 ipoa
.ipoa_flags
|= IPOAF_REDO_QOSMARKING_POLICY
;
1856 ipoa
.qos_marking_gencount
= inp
->inp_policyresult
.results
.qos_marking_gencount
;
1859 if (inp
->inp_sp
!= NULL
&& ipsec_setsocket(m
, inp
->inp_socket
) != 0) {
1865 inpopts
= inp
->inp_options
;
1867 if (cfil_tag
&& (inp
->inp_socket
->so_options
!= cfil_so_options
)) {
1868 soopts
|= (cfil_so_options
& (SO_DONTROUTE
| SO_BROADCAST
));
1871 soopts
|= (inp
->inp_socket
->so_options
& (SO_DONTROUTE
| SO_BROADCAST
));
1873 mopts
= inp
->inp_moptions
;
1874 if (mopts
!= NULL
) {
1876 IMO_ADDREF_LOCKED(mopts
);
1877 if (IN_MULTICAST(ntohl(ui
->ui_dst
.s_addr
)) &&
1878 mopts
->imo_multicast_ifp
!= NULL
) {
1879 /* no reference needed */
1880 inp
->inp_last_outifp
= mopts
->imo_multicast_ifp
;
1885 /* Copy the cached route and take an extra reference */
1886 inp_route_copyout(inp
, &ro
);
1888 set_packet_service_class(m
, so
, sotc
, 0);
1889 m
->m_pkthdr
.pkt_flowsrc
= FLOWSRC_INPCB
;
1890 m
->m_pkthdr
.pkt_flowid
= inp
->inp_flowhash
;
1891 m
->m_pkthdr
.pkt_proto
= IPPROTO_UDP
;
1892 m
->m_pkthdr
.pkt_flags
|= (PKTF_FLOW_ID
| PKTF_FLOW_LOCALSRC
);
1894 m
->m_pkthdr
.pkt_flags
|= PKTF_FLOW_ADV
;
1896 m
->m_pkthdr
.tx_udp_pid
= so
->last_pid
;
1897 if (so
->so_flags
& SOF_DELEGATED
) {
1898 m
->m_pkthdr
.tx_udp_e_pid
= so
->e_pid
;
1900 m
->m_pkthdr
.tx_udp_e_pid
= 0;
1903 if (ipoa
.ipoa_boundif
!= IFSCOPE_NONE
) {
1904 ipoa
.ipoa_flags
|= IPOAF_BOUND_IF
;
1907 if (laddr
.s_addr
!= INADDR_ANY
) {
1908 ipoa
.ipoa_flags
|= IPOAF_BOUND_SRCADDR
;
1911 socket_unlock(so
, 0);
1912 error
= ip_output(m
, inpopts
, &ro
, soopts
, mopts
, &ipoa
);
1915 if (mopts
!= NULL
) {
1919 if (check_qos_marking_again
) {
1920 inp
->inp_policyresult
.results
.qos_marking_gencount
= ipoa
.qos_marking_gencount
;
1922 if (ipoa
.ipoa_flags
& IPOAF_QOSMARKING_ALLOWED
) {
1923 inp
->inp_socket
->so_flags1
|= SOF1_QOSMARKING_ALLOWED
;
1925 inp
->inp_socket
->so_flags1
&= ~SOF1_QOSMARKING_ALLOWED
;
1929 if (error
== 0 && nstat_collect
) {
1930 boolean_t cell
, wifi
, wired
;
1932 if (ro
.ro_rt
!= NULL
) {
1933 cell
= IFNET_IS_CELLULAR(ro
.ro_rt
->rt_ifp
);
1934 wifi
= (!cell
&& IFNET_IS_WIFI(ro
.ro_rt
->rt_ifp
));
1935 wired
= (!wifi
&& IFNET_IS_WIRED(ro
.ro_rt
->rt_ifp
));
1937 cell
= wifi
= wired
= FALSE
;
1939 INP_ADD_STAT(inp
, cell
, wifi
, wired
, txpackets
, 1);
1940 INP_ADD_STAT(inp
, cell
, wifi
, wired
, txbytes
, len
);
1941 inp_set_activity_bitmap(inp
);
1944 if (flowadv
&& (adv
->code
== FADV_FLOW_CONTROLLED
||
1945 adv
->code
== FADV_SUSPENDED
)) {
1947 * return a hint to the application that
1948 * the packet has been dropped
1951 inp_set_fc_state(inp
, adv
->code
);
1954 /* Synchronize PCB cached route */
1955 inp_route_copyin(inp
, &ro
);
1958 if (udp_dodisconnect
) {
1959 /* Always discard the cached route for unconnected socket */
1960 ROUTE_RELEASE(&inp
->inp_route
);
1961 in_pcbdisconnect(inp
);
1962 inp
->inp_laddr
= origladdr
; /* XXX rehash? */
1963 /* no reference needed */
1964 inp
->inp_last_outifp
= origoutifp
;
1965 } else if (inp
->inp_route
.ro_rt
!= NULL
) {
1966 struct rtentry
*rt
= inp
->inp_route
.ro_rt
;
1967 struct ifnet
*outifp
;
1969 if (rt
->rt_flags
& (RTF_MULTICAST
| RTF_BROADCAST
)) {
1970 rt
= NULL
; /* unusable */
1974 * Discard temporary route for cfil case
1976 if (cfil_faddr_use
) {
1977 rt
= NULL
; /* unusable */
1982 * Always discard if it is a multicast or broadcast route.
1985 ROUTE_RELEASE(&inp
->inp_route
);
1989 * If the destination route is unicast, update outifp with
1990 * that of the route interface used by IP.
1993 (outifp
= rt
->rt_ifp
) != inp
->inp_last_outifp
) {
1994 inp
->inp_last_outifp
= outifp
; /* no reference needed */
1996 so
->so_pktheadroom
= (uint16_t)P2ROUNDUP(
1997 sizeof(struct udphdr
) +
1999 ifnet_hdrlen(outifp
) +
2000 ifnet_mbuf_packetpreamblelen(outifp
),
2004 ROUTE_RELEASE(&inp
->inp_route
);
2008 * If output interface was cellular/expensive, and this socket is
2009 * denied access to it, generate an event.
2011 if (error
!= 0 && (ipoa
.ipoa_retflags
& IPOARF_IFDENIED
) &&
2012 (INP_NO_CELLULAR(inp
) || INP_NO_EXPENSIVE(inp
) || INP_NO_CONSTRAINED(inp
))) {
2013 soevent(so
, (SO_FILT_HINT_LOCKED
| SO_FILT_HINT_IFDENIED
));
2017 KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT
| DBG_FUNC_END
, error
, 0, 0, 0, 0);
2023 if (outif
!= NULL
) {
2024 ifnet_release(outif
);
2029 m_tag_free(cfil_tag
);
2032 if (sndinprog_cnt_used
) {
2033 VERIFY(inp
->inp_sndinprog_cnt
> 0);
2034 if (--inp
->inp_sndinprog_cnt
== 0) {
2035 inp
->inp_flags
&= ~(INP_FC_FEEDBACK
);
2036 if (inp
->inp_sndingprog_waiters
> 0) {
2037 wakeup(&inp
->inp_sndinprog_cnt
);
2040 sndinprog_cnt_used
= false;
2046 u_int32_t udp_sendspace
= 9216; /* really max datagram size */
2047 /* 187 1K datagrams (approx 192 KB) */
2048 u_int32_t udp_recvspace
= 187 * (1024 + sizeof(struct sockaddr_in6
));
2050 /* Check that the values of udp send and recv space do not exceed sb_max */
2052 sysctl_udp_sospace(struct sysctl_oid
*oidp
, void *arg1
, int arg2
,
2053 struct sysctl_req
*req
)
2055 #pragma unused(arg1, arg2)
2056 u_int32_t new_value
= 0, *space_p
= NULL
;
2057 int changed
= 0, error
= 0;
2058 u_quad_t sb_effective_max
= (sb_max
/ (MSIZE
+ MCLBYTES
)) * MCLBYTES
;
2060 switch (oidp
->oid_number
) {
2061 case UDPCTL_RECVSPACE
:
2062 space_p
= &udp_recvspace
;
2064 case UDPCTL_MAXDGRAM
:
2065 space_p
= &udp_sendspace
;
2070 error
= sysctl_io_number(req
, *space_p
, sizeof(u_int32_t
),
2071 &new_value
, &changed
);
2073 if (new_value
> 0 && new_value
<= sb_effective_max
) {
2074 *space_p
= new_value
;
2082 SYSCTL_PROC(_net_inet_udp
, UDPCTL_RECVSPACE
, recvspace
,
2083 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &udp_recvspace
, 0,
2084 &sysctl_udp_sospace
, "IU", "Maximum incoming UDP datagram size");
2086 SYSCTL_PROC(_net_inet_udp
, UDPCTL_MAXDGRAM
, maxdgram
,
2087 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &udp_sendspace
, 0,
2088 &sysctl_udp_sospace
, "IU", "Maximum outgoing UDP datagram size");
2091 udp_abort(struct socket
*so
)
2095 inp
= sotoinpcb(so
);
2097 panic("%s: so=%p null inp\n", __func__
, so
);
2100 soisdisconnected(so
);
2106 udp_attach(struct socket
*so
, int proto
, struct proc
*p
)
2108 #pragma unused(proto)
2112 inp
= sotoinpcb(so
);
2114 panic("%s so=%p inp=%p\n", __func__
, so
, inp
);
2117 error
= in_pcballoc(so
, &udbinfo
, p
);
2121 error
= soreserve(so
, udp_sendspace
, udp_recvspace
);
2125 inp
= (struct inpcb
*)so
->so_pcb
;
2126 inp
->inp_vflag
|= INP_IPV4
;
2127 inp
->inp_ip_ttl
= (uint8_t)ip_defttl
;
2128 if (nstat_collect
) {
2129 nstat_udp_new_pcb(inp
);
2135 udp_bind(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
2140 if (nam
->sa_family
!= 0 && nam
->sa_family
!= AF_INET
&&
2141 nam
->sa_family
!= AF_INET6
) {
2142 return EAFNOSUPPORT
;
2145 inp
= sotoinpcb(so
);
2149 error
= in_pcbbind(inp
, nam
, p
);
2152 /* Update NECP client with bind result if not in middle of connect */
2154 (inp
->inp_flags2
& INP2_CONNECT_IN_PROGRESS
) &&
2155 !uuid_is_null(inp
->necp_client_uuid
)) {
2156 socket_unlock(so
, 0);
2157 necp_client_assign_from_socket(so
->last_pid
, inp
->necp_client_uuid
, inp
);
2166 udp_connect(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
2171 inp
= sotoinpcb(so
);
2175 if (inp
->inp_faddr
.s_addr
!= INADDR_ANY
) {
2179 if (!(so
->so_flags1
& SOF1_CONNECT_COUNTED
)) {
2180 so
->so_flags1
|= SOF1_CONNECT_COUNTED
;
2181 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_inet_dgram_connected
);
2186 if (necp_socket_should_use_flow_divert(inp
)) {
2187 error
= flow_divert_pcb_init(so
);
2189 error
= flow_divert_connect_out(so
, nam
, p
);
2193 #endif /* FLOW_DIVERT */
2196 error
= in_pcbconnect(inp
, nam
, p
, IFSCOPE_NONE
, NULL
);
2199 /* Update NECP client with connected five-tuple */
2200 if (!uuid_is_null(inp
->necp_client_uuid
)) {
2201 socket_unlock(so
, 0);
2202 necp_client_assign_from_socket(so
->last_pid
, inp
->necp_client_uuid
, inp
);
2208 if (inp
->inp_flowhash
== 0) {
2209 inp
->inp_flowhash
= inp_calc_flowhash(inp
);
2216 udp_connectx_common(struct socket
*so
, int af
, struct sockaddr
*src
, struct sockaddr
*dst
,
2217 struct proc
*p
, uint32_t ifscope
, sae_associd_t aid
, sae_connid_t
*pcid
,
2218 uint32_t flags
, void *arg
, uint32_t arglen
,
2219 struct uio
*uio
, user_ssize_t
*bytes_written
)
2221 #pragma unused(aid, flags, arg, arglen)
2222 struct inpcb
*inp
= sotoinpcb(so
);
2224 user_ssize_t datalen
= 0;
2230 VERIFY(dst
!= NULL
);
2232 ASSERT(!(inp
->inp_flags2
& INP2_CONNECT_IN_PROGRESS
));
2233 inp
->inp_flags2
|= INP2_CONNECT_IN_PROGRESS
;
2236 inp_update_necp_policy(inp
, src
, dst
, ifscope
);
2239 /* bind socket to the specified interface, if requested */
2240 if (ifscope
!= IFSCOPE_NONE
&&
2241 (error
= inp_bindif(inp
, ifscope
, NULL
)) != 0) {
2245 /* if source address and/or port is specified, bind to it */
2247 error
= sobindlock(so
, src
, 0); /* already locked */
2255 error
= udp_connect(so
, dst
, p
);
2258 error
= udp6_connect(so
, dst
, p
);
2270 * If there is data, copy it. DATA_IDEMPOTENT is ignored.
2271 * CONNECT_RESUME_ON_READ_WRITE is ignored.
2274 socket_unlock(so
, 0);
2276 VERIFY(bytes_written
!= NULL
);
2278 datalen
= uio_resid(uio
);
2279 error
= so
->so_proto
->pr_usrreqs
->pru_sosend(so
, NULL
,
2280 (uio_t
)uio
, NULL
, NULL
, 0);
2283 /* If error returned is EMSGSIZE, for example, disconnect */
2284 if (error
== 0 || error
== EWOULDBLOCK
) {
2285 *bytes_written
= datalen
- uio_resid(uio
);
2287 (void) so
->so_proto
->pr_usrreqs
->pru_disconnectx(so
,
2288 SAE_ASSOCID_ANY
, SAE_CONNID_ANY
);
2291 * mask the EWOULDBLOCK error so that the caller
2292 * knows that atleast the connect was successful.
2294 if (error
== EWOULDBLOCK
) {
2299 if (error
== 0 && pcid
!= NULL
) {
2300 *pcid
= 1; /* there is only 1 connection for UDP */
2303 inp
->inp_flags2
&= ~INP2_CONNECT_IN_PROGRESS
;
2308 udp_connectx(struct socket
*so
, struct sockaddr
*src
,
2309 struct sockaddr
*dst
, struct proc
*p
, uint32_t ifscope
,
2310 sae_associd_t aid
, sae_connid_t
*pcid
, uint32_t flags
, void *arg
,
2311 uint32_t arglen
, struct uio
*uio
, user_ssize_t
*bytes_written
)
2313 return udp_connectx_common(so
, AF_INET
, src
, dst
,
2314 p
, ifscope
, aid
, pcid
, flags
, arg
, arglen
, uio
, bytes_written
);
2318 udp_detach(struct socket
*so
)
2322 inp
= sotoinpcb(so
);
2324 panic("%s: so=%p null inp\n", __func__
, so
);
2329 * If this is a socket that does not want to wakeup the device
2330 * for it's traffic, the application might be waiting for
2331 * close to complete before going to sleep. Send a notification
2332 * for this kind of sockets
2334 if (so
->so_options
& SO_NOWAKEFROMSLEEP
) {
2335 socket_post_kev_msg_closed(so
);
2339 inp
->inp_state
= INPCB_STATE_DEAD
;
2344 udp_disconnect(struct socket
*so
)
2348 inp
= sotoinpcb(so
);
2352 if (inp
->inp_faddr
.s_addr
== INADDR_ANY
) {
2356 in_pcbdisconnect(inp
);
2358 /* reset flow controlled state, just in case */
2359 inp_reset_fc_state(inp
);
2361 inp
->inp_laddr
.s_addr
= INADDR_ANY
;
2362 so
->so_state
&= ~SS_ISCONNECTED
; /* XXX */
2363 inp
->inp_last_outifp
= NULL
;
2369 udp_disconnectx(struct socket
*so
, sae_associd_t aid
, sae_connid_t cid
)
2372 if (aid
!= SAE_ASSOCID_ANY
&& aid
!= SAE_ASSOCID_ALL
) {
2376 return udp_disconnect(so
);
2380 udp_send(struct socket
*so
, int flags
, struct mbuf
*m
,
2381 struct sockaddr
*addr
, struct mbuf
*control
, struct proc
*p
)
2384 #pragma unused(flags)
2385 #endif /* !(FLOW_DIVERT) */
2388 inp
= sotoinpcb(so
);
2393 if (control
!= NULL
) {
2401 if (necp_socket_should_use_flow_divert(inp
)) {
2402 /* Implicit connect */
2403 return flow_divert_implicit_data_out(so
, flags
, m
, addr
,
2406 #endif /* FLOW_DIVERT */
2409 return udp_output(inp
, m
, addr
, control
, p
);
2413 udp_shutdown(struct socket
*so
)
2417 inp
= sotoinpcb(so
);
2426 udp_lock(struct socket
*so
, int refcount
, void *debug
)
2430 if (debug
== NULL
) {
2431 lr_saved
= __builtin_return_address(0);
2436 if (so
->so_pcb
!= NULL
) {
2437 LCK_MTX_ASSERT(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
,
2438 LCK_MTX_ASSERT_NOTOWNED
);
2439 lck_mtx_lock(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
);
2441 panic("%s: so=%p NO PCB! lr=%p lrh= %s\n", __func__
,
2442 so
, lr_saved
, solockhistory_nr(so
));
2449 so
->lock_lr
[so
->next_lock_lr
] = lr_saved
;
2450 so
->next_lock_lr
= (so
->next_lock_lr
+ 1) % SO_LCKDBG_MAX
;
2455 udp_unlock(struct socket
*so
, int refcount
, void *debug
)
2459 if (debug
== NULL
) {
2460 lr_saved
= __builtin_return_address(0);
2466 VERIFY(so
->so_usecount
> 0);
2469 if (so
->so_pcb
== NULL
) {
2470 panic("%s: so=%p NO PCB! lr=%p lrh= %s\n", __func__
,
2471 so
, lr_saved
, solockhistory_nr(so
));
2474 LCK_MTX_ASSERT(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
,
2475 LCK_MTX_ASSERT_OWNED
);
2476 so
->unlock_lr
[so
->next_unlock_lr
] = lr_saved
;
2477 so
->next_unlock_lr
= (so
->next_unlock_lr
+ 1) % SO_LCKDBG_MAX
;
2478 lck_mtx_unlock(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
);
2484 udp_getlock(struct socket
*so
, int flags
)
2486 #pragma unused(flags)
2487 struct inpcb
*inp
= sotoinpcb(so
);
2489 if (so
->so_pcb
== NULL
) {
2490 panic("%s: so=%p NULL so_pcb lrh= %s\n", __func__
,
2491 so
, solockhistory_nr(so
));
2494 return &inp
->inpcb_mtx
;
2498 * UDP garbage collector callback (inpcb_timer_func_t).
2500 * Returns > 0 to keep timer active.
2503 udp_gc(struct inpcbinfo
*ipi
)
2505 struct inpcb
*inp
, *inpnxt
;
2508 if (lck_rw_try_lock_exclusive(ipi
->ipi_lock
) == FALSE
) {
2509 if (udp_gc_done
== TRUE
) {
2510 udp_gc_done
= FALSE
;
2511 /* couldn't get the lock, must lock next time */
2512 atomic_add_32(&ipi
->ipi_gc_req
.intimer_fast
, 1);
2515 lck_rw_lock_exclusive(ipi
->ipi_lock
);
2520 for (inp
= udb
.lh_first
; inp
!= NULL
; inp
= inpnxt
) {
2521 inpnxt
= inp
->inp_list
.le_next
;
2524 * Skip unless it's STOPUSING; garbage collector will
2525 * be triggered by in_pcb_checkstate() upon setting
2526 * wantcnt to that value. If the PCB is already dead,
2527 * keep gc active to anticipate wantcnt changing.
2529 if (inp
->inp_wantcnt
!= WNT_STOPUSING
) {
2534 * Skip if busy, no hurry for cleanup. Keep gc active
2535 * and try the lock again during next round.
2537 if (!socket_try_lock(inp
->inp_socket
)) {
2538 atomic_add_32(&ipi
->ipi_gc_req
.intimer_fast
, 1);
2543 * Keep gc active unless usecount is 0.
2545 so
= inp
->inp_socket
;
2546 if (so
->so_usecount
== 0) {
2547 if (inp
->inp_state
!= INPCB_STATE_DEAD
) {
2548 if (SOCK_CHECK_DOM(so
, PF_INET6
)) {
2556 socket_unlock(so
, 0);
2557 atomic_add_32(&ipi
->ipi_gc_req
.intimer_fast
, 1);
2560 lck_rw_done(ipi
->ipi_lock
);
2564 udp_getstat SYSCTL_HANDLER_ARGS
2566 #pragma unused(oidp, arg1, arg2)
2567 if (req
->oldptr
== USER_ADDR_NULL
) {
2568 req
->oldlen
= (size_t)sizeof(struct udpstat
);
2571 return SYSCTL_OUT(req
, &udpstat
, MIN(sizeof(udpstat
), req
->oldlen
));
2575 udp_in_cksum_stats(u_int32_t len
)
2577 udpstat
.udps_rcv_swcsum
++;
2578 udpstat
.udps_rcv_swcsum_bytes
+= len
;
2582 udp_out_cksum_stats(u_int32_t len
)
2584 udpstat
.udps_snd_swcsum
++;
2585 udpstat
.udps_snd_swcsum_bytes
+= len
;
2589 udp_in6_cksum_stats(u_int32_t len
)
2591 udpstat
.udps_rcv6_swcsum
++;
2592 udpstat
.udps_rcv6_swcsum_bytes
+= len
;
2596 udp_out6_cksum_stats(u_int32_t len
)
2598 udpstat
.udps_snd6_swcsum
++;
2599 udpstat
.udps_snd6_swcsum_bytes
+= len
;
2603 * Checksum extended UDP header and data.
2606 udp_input_checksum(struct mbuf
*m
, struct udphdr
*uh
, int off
, int ulen
)
2608 struct ifnet
*ifp
= m
->m_pkthdr
.rcvif
;
2609 struct ip
*ip
= mtod(m
, struct ip
*);
2610 struct ipovly
*ipov
= (struct ipovly
*)ip
;
2612 if (uh
->uh_sum
== 0) {
2613 udpstat
.udps_nosum
++;
2617 /* ip_stripoptions() must have been called before we get here */
2618 ASSERT((ip
->ip_hl
<< 2) == sizeof(*ip
));
2620 if ((hwcksum_rx
|| (ifp
->if_flags
& IFF_LOOPBACK
) ||
2621 (m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
)) &&
2622 (m
->m_pkthdr
.csum_flags
& CSUM_DATA_VALID
)) {
2623 if (m
->m_pkthdr
.csum_flags
& CSUM_PSEUDO_HDR
) {
2624 uh
->uh_sum
= m
->m_pkthdr
.csum_rx_val
;
2626 uint32_t sum
= m
->m_pkthdr
.csum_rx_val
;
2627 uint32_t start
= m
->m_pkthdr
.csum_rx_start
;
2628 int32_t trailer
= (m_pktlen(m
) - (off
+ ulen
));
2631 * Perform 1's complement adjustment of octets
2632 * that got included/excluded in the hardware-
2633 * calculated checksum value. Ignore cases
2634 * where the value already includes the entire
2635 * IP header span, as the sum for those octets
2636 * would already be 0 by the time we get here;
2637 * IP has already performed its header checksum
2638 * checks. If we do need to adjust, restore
2639 * the original fields in the IP header when
2640 * computing the adjustment value. Also take
2641 * care of any trailing bytes and subtract out
2642 * their partial sum.
2644 ASSERT(trailer
>= 0);
2645 if ((m
->m_pkthdr
.csum_flags
& CSUM_PARTIAL
) &&
2646 ((start
!= 0 && start
!= off
) || trailer
!= 0)) {
2647 uint32_t swbytes
= (uint32_t)trailer
;
2650 ip
->ip_len
+= sizeof(*ip
);
2651 #if BYTE_ORDER != BIG_ENDIAN
2654 #endif /* BYTE_ORDER != BIG_ENDIAN */
2656 /* callee folds in sum */
2657 sum
= m_adj_sum16(m
, start
, off
, ulen
, sum
);
2659 swbytes
+= (off
- start
);
2661 swbytes
+= (start
- off
);
2665 #if BYTE_ORDER != BIG_ENDIAN
2668 #endif /* BYTE_ORDER != BIG_ENDIAN */
2669 ip
->ip_len
-= sizeof(*ip
);
2673 udp_in_cksum_stats(swbytes
);
2680 /* callee folds in sum */
2681 uh
->uh_sum
= in_pseudo(ip
->ip_src
.s_addr
,
2682 ip
->ip_dst
.s_addr
, sum
+ htonl(ulen
+ IPPROTO_UDP
));
2684 uh
->uh_sum
^= 0xffff;
2689 bcopy(ipov
->ih_x1
, b
, sizeof(ipov
->ih_x1
));
2690 bzero(ipov
->ih_x1
, sizeof(ipov
->ih_x1
));
2691 ip_sum
= ipov
->ih_len
;
2692 ipov
->ih_len
= uh
->uh_ulen
;
2693 uh
->uh_sum
= in_cksum(m
, ulen
+ sizeof(struct ip
));
2694 bcopy(b
, ipov
->ih_x1
, sizeof(ipov
->ih_x1
));
2695 ipov
->ih_len
= ip_sum
;
2697 udp_in_cksum_stats(ulen
);
2700 if (uh
->uh_sum
!= 0) {
2701 udpstat
.udps_badsum
++;
2702 IF_UDP_STATINC(ifp
, badchksum
);
2710 udp_fill_keepalive_offload_frames(ifnet_t ifp
,
2711 struct ifnet_keepalive_offload_frame
*frames_array
,
2712 u_int32_t frames_array_count
, size_t frame_data_offset
,
2713 u_int32_t
*used_frames_count
)
2717 u_int32_t frame_index
= *used_frames_count
;
2719 if (ifp
== NULL
|| frames_array
== NULL
||
2720 frames_array_count
== 0 ||
2721 frame_index
>= frames_array_count
||
2722 frame_data_offset
>= IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE
) {
2726 lck_rw_lock_shared(udbinfo
.ipi_lock
);
2727 gencnt
= udbinfo
.ipi_gencnt
;
2728 LIST_FOREACH(inp
, udbinfo
.ipi_listhead
, inp_list
) {
2731 struct ifnet_keepalive_offload_frame
*frame
;
2732 struct mbuf
*m
= NULL
;
2734 if (frame_index
>= frames_array_count
) {
2738 if (inp
->inp_gencnt
> gencnt
||
2739 inp
->inp_state
== INPCB_STATE_DEAD
) {
2743 if ((so
= inp
->inp_socket
) == NULL
||
2744 (so
->so_state
& SS_DEFUNCT
)) {
2748 * check for keepalive offload flag without socket
2749 * lock to avoid a deadlock
2751 if (!(inp
->inp_flags2
& INP2_KEEPALIVE_OFFLOAD
)) {
2756 if (!(inp
->inp_vflag
& (INP_IPV4
| INP_IPV6
))) {
2757 udp_unlock(so
, 1, 0);
2760 if ((inp
->inp_vflag
& INP_IPV4
) &&
2761 (inp
->inp_laddr
.s_addr
== INADDR_ANY
||
2762 inp
->inp_faddr
.s_addr
== INADDR_ANY
)) {
2763 udp_unlock(so
, 1, 0);
2766 if ((inp
->inp_vflag
& INP_IPV6
) &&
2767 (IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_laddr
) ||
2768 IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_faddr
))) {
2769 udp_unlock(so
, 1, 0);
2772 if (inp
->inp_lport
== 0 || inp
->inp_fport
== 0) {
2773 udp_unlock(so
, 1, 0);
2776 if (inp
->inp_last_outifp
== NULL
||
2777 inp
->inp_last_outifp
->if_index
!= ifp
->if_index
) {
2778 udp_unlock(so
, 1, 0);
2781 if ((inp
->inp_vflag
& INP_IPV4
)) {
2782 if ((frame_data_offset
+ sizeof(struct udpiphdr
) +
2783 inp
->inp_keepalive_datalen
) >
2784 IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE
) {
2785 udp_unlock(so
, 1, 0);
2788 if ((sizeof(struct udpiphdr
) +
2789 inp
->inp_keepalive_datalen
) > _MHLEN
) {
2790 udp_unlock(so
, 1, 0);
2794 if ((frame_data_offset
+ sizeof(struct ip6_hdr
) +
2795 sizeof(struct udphdr
) +
2796 inp
->inp_keepalive_datalen
) >
2797 IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE
) {
2798 udp_unlock(so
, 1, 0);
2801 if ((sizeof(struct ip6_hdr
) + sizeof(struct udphdr
) +
2802 inp
->inp_keepalive_datalen
) > _MHLEN
) {
2803 udp_unlock(so
, 1, 0);
2807 MGETHDR(m
, M_WAIT
, MT_HEADER
);
2809 udp_unlock(so
, 1, 0);
2813 * This inp has all the information that is needed to
2814 * generate an offload frame.
2816 if (inp
->inp_vflag
& INP_IPV4
) {
2820 frame
= &frames_array
[frame_index
];
2821 frame
->length
= (uint8_t)(frame_data_offset
+
2822 sizeof(struct udpiphdr
) +
2823 inp
->inp_keepalive_datalen
);
2825 IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV4
;
2826 frame
->interval
= inp
->inp_keepalive_interval
;
2827 switch (inp
->inp_keepalive_type
) {
2828 case UDP_KEEPALIVE_OFFLOAD_TYPE_AIRPLAY
:
2830 IFNET_KEEPALIVE_OFFLOAD_FRAME_AIRPLAY
;
2835 data
= mtod(m
, u_int8_t
*);
2836 bzero(data
, sizeof(struct udpiphdr
));
2837 ip
= (__typeof__(ip
))(void *)data
;
2838 udp
= (__typeof__(udp
))(void *) (data
+
2840 m
->m_len
= sizeof(struct udpiphdr
);
2841 data
= data
+ sizeof(struct udpiphdr
);
2842 if (inp
->inp_keepalive_datalen
> 0 &&
2843 inp
->inp_keepalive_data
!= NULL
) {
2844 bcopy(inp
->inp_keepalive_data
, data
,
2845 inp
->inp_keepalive_datalen
);
2846 m
->m_len
+= inp
->inp_keepalive_datalen
;
2848 m
->m_pkthdr
.len
= m
->m_len
;
2850 ip
->ip_v
= IPVERSION
;
2851 ip
->ip_hl
= (sizeof(struct ip
) >> 2);
2852 ip
->ip_p
= IPPROTO_UDP
;
2853 ip
->ip_len
= htons(sizeof(struct udpiphdr
) +
2854 (u_short
)inp
->inp_keepalive_datalen
);
2855 ip
->ip_ttl
= inp
->inp_ip_ttl
;
2856 ip
->ip_tos
|= (inp
->inp_ip_tos
& ~IPTOS_ECN_MASK
);
2857 ip
->ip_src
= inp
->inp_laddr
;
2858 ip
->ip_dst
= inp
->inp_faddr
;
2859 ip
->ip_sum
= in_cksum_hdr_opt(ip
);
2861 udp
->uh_sport
= inp
->inp_lport
;
2862 udp
->uh_dport
= inp
->inp_fport
;
2863 udp
->uh_ulen
= htons(sizeof(struct udphdr
) +
2864 (u_short
)inp
->inp_keepalive_datalen
);
2866 if (!(inp
->inp_flags
& INP_UDP_NOCKSUM
)) {
2867 udp
->uh_sum
= in_pseudo(ip
->ip_src
.s_addr
,
2869 htons(sizeof(struct udphdr
) +
2870 (u_short
)inp
->inp_keepalive_datalen
+
2872 m
->m_pkthdr
.csum_flags
=
2873 (CSUM_UDP
| CSUM_ZERO_INVERT
);
2874 m
->m_pkthdr
.csum_data
= offsetof(struct udphdr
,
2877 m
->m_pkthdr
.pkt_proto
= IPPROTO_UDP
;
2878 in_delayed_cksum(m
);
2879 bcopy(m
->m_data
, frame
->data
+ frame_data_offset
,
2882 struct ip6_hdr
*ip6
;
2883 struct udphdr
*udp6
;
2885 VERIFY(inp
->inp_vflag
& INP_IPV6
);
2886 frame
= &frames_array
[frame_index
];
2887 frame
->length
= (uint8_t)(frame_data_offset
+
2888 sizeof(struct ip6_hdr
) +
2889 sizeof(struct udphdr
) +
2890 inp
->inp_keepalive_datalen
);
2892 IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV6
;
2893 frame
->interval
= inp
->inp_keepalive_interval
;
2894 switch (inp
->inp_keepalive_type
) {
2895 case UDP_KEEPALIVE_OFFLOAD_TYPE_AIRPLAY
:
2897 IFNET_KEEPALIVE_OFFLOAD_FRAME_AIRPLAY
;
2902 data
= mtod(m
, u_int8_t
*);
2903 bzero(data
, sizeof(struct ip6_hdr
) + sizeof(struct udphdr
));
2904 ip6
= (__typeof__(ip6
))(void *)data
;
2905 udp6
= (__typeof__(udp6
))(void *)(data
+
2906 sizeof(struct ip6_hdr
));
2907 m
->m_len
= sizeof(struct ip6_hdr
) +
2908 sizeof(struct udphdr
);
2909 data
= data
+ (sizeof(struct ip6_hdr
) +
2910 sizeof(struct udphdr
));
2911 if (inp
->inp_keepalive_datalen
> 0 &&
2912 inp
->inp_keepalive_data
!= NULL
) {
2913 bcopy(inp
->inp_keepalive_data
, data
,
2914 inp
->inp_keepalive_datalen
);
2915 m
->m_len
+= inp
->inp_keepalive_datalen
;
2917 m
->m_pkthdr
.len
= m
->m_len
;
2918 ip6
->ip6_flow
= inp
->inp_flow
& IPV6_FLOWINFO_MASK
;
2919 ip6
->ip6_flow
= ip6
->ip6_flow
& ~IPV6_FLOW_ECN_MASK
;
2920 ip6
->ip6_vfc
&= ~IPV6_VERSION_MASK
;
2921 ip6
->ip6_vfc
|= IPV6_VERSION
;
2922 ip6
->ip6_nxt
= IPPROTO_UDP
;
2923 ip6
->ip6_hlim
= (uint8_t)ip6_defhlim
;
2924 ip6
->ip6_plen
= htons(sizeof(struct udphdr
) +
2925 (u_short
)inp
->inp_keepalive_datalen
);
2926 ip6
->ip6_src
= inp
->in6p_laddr
;
2927 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_src
)) {
2928 ip6
->ip6_src
.s6_addr16
[1] = 0;
2931 ip6
->ip6_dst
= inp
->in6p_faddr
;
2932 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_dst
)) {
2933 ip6
->ip6_dst
.s6_addr16
[1] = 0;
2936 udp6
->uh_sport
= inp
->in6p_lport
;
2937 udp6
->uh_dport
= inp
->in6p_fport
;
2938 udp6
->uh_ulen
= htons(sizeof(struct udphdr
) +
2939 (u_short
)inp
->inp_keepalive_datalen
);
2940 if (!(inp
->inp_flags
& INP_UDP_NOCKSUM
)) {
2941 udp6
->uh_sum
= in6_pseudo(&ip6
->ip6_src
,
2943 htonl(sizeof(struct udphdr
) +
2944 (u_short
)inp
->inp_keepalive_datalen
+
2946 m
->m_pkthdr
.csum_flags
=
2947 (CSUM_UDPIPV6
| CSUM_ZERO_INVERT
);
2948 m
->m_pkthdr
.csum_data
= offsetof(struct udphdr
,
2951 m
->m_pkthdr
.pkt_proto
= IPPROTO_UDP
;
2952 in6_delayed_cksum(m
);
2953 bcopy(m
->m_data
, frame
->data
+ frame_data_offset
,
2961 udp_unlock(so
, 1, 0);
2963 lck_rw_done(udbinfo
.ipi_lock
);
2964 *used_frames_count
= frame_index
;