2 * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
63 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
64 * support for mandatory and extensible security protections. This notice
65 * is included in support of clause 2.2 (b) of the Apple Public License,
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/sysctl.h>
73 #include <sys/malloc.h>
75 #include <sys/domain.h>
77 #include <sys/kauth.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/protosw.h>
81 #include <sys/random.h>
82 #include <sys/syslog.h>
83 #include <sys/mcache.h>
84 #include <kern/locks.h>
85 #include <kern/zalloc.h>
87 #include <dev/random/randomdev.h>
89 #include <net/route.h>
91 #include <net/content_filter.h>
92 #include <net/ntstat.h>
93 #include <net/multi_layer_pkt_log.h>
95 #define tcp_minmssoverload fring
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip_icmp.h>
101 #include <netinet/ip6.h>
102 #include <netinet/icmp6.h>
103 #include <netinet/in_pcb.h>
104 #include <netinet6/in6_pcb.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip_var.h>
107 #include <netinet/icmp_var.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet/mptcp_var.h>
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_var.h>
115 #include <netinet/tcp_cc.h>
116 #include <netinet/tcp_cache.h>
117 #include <kern/thread_call.h>
119 #include <netinet6/tcp6_var.h>
120 #include <netinet/tcpip.h>
122 #include <netinet/tcp_debug.h>
124 #include <netinet/tcp_log.h>
126 #include <netinet6/ip6protosw.h>
129 #include <netinet6/ipsec.h>
130 #include <netinet6/ipsec6.h>
134 #include <net/necp.h>
137 #undef tcp_minmssoverload
139 #include <corecrypto/ccaes.h>
140 #include <libkern/crypto/aes.h>
141 #include <libkern/crypto/md5.h>
142 #include <sys/kdebug.h>
143 #include <mach/sdt.h>
144 #include <atm/atm_internal.h>
145 #include <pexpert/pexpert.h>
147 #define DBG_FNC_TCP_CLOSE NETDBG_CODE(DBG_NETTCP, ((5 << 8) | 2))
149 static tcp_cc tcp_ccgen
;
151 extern struct tcptimerlist tcp_timer_list
;
152 extern struct tcptailq tcp_tw_tailq
;
154 SYSCTL_SKMEM_TCP_INT(TCPCTL_MSSDFLT
, mssdflt
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
155 int, tcp_mssdflt
, TCP_MSS
, "Default TCP Maximum Segment Size");
157 SYSCTL_SKMEM_TCP_INT(TCPCTL_V6MSSDFLT
, v6mssdflt
,
158 CTLFLAG_RW
| CTLFLAG_LOCKED
, int, tcp_v6mssdflt
, TCP6_MSS
,
159 "Default TCP Maximum Segment Size for IPv6");
161 int tcp_sysctl_fastopenkey(struct sysctl_oid
*, void *, int,
162 struct sysctl_req
*);
163 SYSCTL_PROC(_net_inet_tcp
, OID_AUTO
, fastopen_key
, CTLTYPE_STRING
| CTLFLAG_WR
,
164 0, 0, tcp_sysctl_fastopenkey
, "S", "TCP Fastopen key");
166 /* Current count of half-open TFO connections */
167 int tcp_tfo_halfcnt
= 0;
169 /* Maximum of half-open TFO connection backlog */
170 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, fastopen_backlog
,
171 CTLFLAG_RW
| CTLFLAG_LOCKED
, int, tcp_tfo_backlog
, 10,
172 "Backlog queue for half-open TFO connections");
174 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, fastopen
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
175 int, tcp_fastopen
, TCP_FASTOPEN_CLIENT
| TCP_FASTOPEN_SERVER
,
176 "Enable TCP Fastopen (RFC 7413)");
178 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, now_init
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
179 uint32_t, tcp_now_init
, 0, "Initial tcp now value");
181 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, microuptime_init
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
182 uint32_t, tcp_microuptime_init
, 0, "Initial tcp uptime value in micro seconds");
185 * Minimum MSS we accept and use. This prevents DoS attacks where
186 * we are forced to a ridiculous low MSS like 20 and send hundreds
187 * of packets instead of one. The effect scales with the available
188 * bandwidth and quickly saturates the CPU and network interface
189 * with packet generation and sending. Set to zero to disable MINMSS
190 * checking. This setting prevents us from sending too small packets.
192 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, minmss
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
193 int, tcp_minmss
, TCP_MINMSS
, "Minmum TCP Maximum Segment Size");
195 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, pcbcount
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
196 &tcbinfo
.ipi_count
, 0, "Number of active PCBs");
198 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, tw_pcbcount
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
199 &tcbinfo
.ipi_twcount
, 0, "Number of pcbs in time-wait state");
201 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, icmp_may_rst
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
202 static int, icmp_may_rst
, 1,
203 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
205 static int tcp_strict_rfc1948
= 0;
206 static int tcp_isn_reseed_interval
= 0;
207 #if (DEVELOPMENT || DEBUG)
208 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, strict_rfc1948
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
209 &tcp_strict_rfc1948
, 0, "Determines if RFC1948 is followed exactly");
211 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, isn_reseed_interval
,
212 CTLFLAG_RW
| CTLFLAG_LOCKED
,
213 &tcp_isn_reseed_interval
, 0, "Seconds between reseeding of ISN secret");
214 #endif /* (DEVELOPMENT || DEBUG) */
216 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, rtt_min
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
217 int, tcp_TCPTV_MIN
, 100, "min rtt value allowed");
219 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, rexmt_slop
, CTLFLAG_RW
,
220 int, tcp_rexmt_slop
, TCPTV_REXMTSLOP
, "Slop added to retransmit timeout");
222 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, randomize_ports
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
223 __private_extern__
int, tcp_use_randomport
, 0,
224 "Randomize TCP port numbers");
226 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, win_scale_factor
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
227 __private_extern__
int, tcp_win_scale
, 3, "Window scaling factor");
229 #if (DEVELOPMENT || DEBUG)
230 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, init_rtt_from_cache
,
231 CTLFLAG_RW
| CTLFLAG_LOCKED
, static int, tcp_init_rtt_from_cache
, 1,
232 "Initalize RTT from route cache");
234 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, init_rtt_from_cache
,
235 CTLFLAG_RD
| CTLFLAG_LOCKED
, static int, tcp_init_rtt_from_cache
, 1,
236 "Initalize RTT from route cache");
237 #endif /* (DEVELOPMENT || DEBUG) */
239 static int tso_debug
= 0;
240 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, tso_debug
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
241 &tso_debug
, 0, "TSO verbosity");
243 static void tcp_notify(struct inpcb
*, int);
245 struct zone
*sack_hole_zone
;
246 struct zone
*tcp_reass_zone
;
247 struct zone
*tcp_bwmeas_zone
;
248 struct zone
*tcp_rxt_seg_zone
;
250 extern int slowlink_wsize
; /* window correction for slow links */
251 extern int path_mtu_discovery
;
253 static void tcp_sbrcv_grow_rwin(struct tcpcb
*tp
, struct sockbuf
*sb
);
255 #define TCP_BWMEAS_BURST_MINSIZE 6
256 #define TCP_BWMEAS_BURST_MAXSIZE 25
259 * Target size of TCP PCB hash tables. Must be a power of two.
261 * Note that this can be overridden by the kernel environment
262 * variable net.inet.tcp.tcbhashsize
265 #define TCBHASHSIZE CONFIG_TCBHASHSIZE
268 __private_extern__
int tcp_tcbhashsize
= TCBHASHSIZE
;
269 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, tcbhashsize
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
270 &tcp_tcbhashsize
, 0, "Size of TCP control-block hashtable");
273 * This is the actual shape of what we allocate using the zone
274 * allocator. Doing it this way allows us to protect both structures
275 * using the same generation count, and also eliminates the overhead
276 * of allocating tcpcbs separately. By hiding the structure here,
277 * we avoid changing most of the rest of the code (although it needs
278 * to be changed, eventually, for greater efficiency).
283 struct tcpcb tcb
__attribute__((aligned(ALIGNMENT
)));
287 int get_inpcb_str_size(void);
288 int get_tcp_str_size(void);
290 os_log_t tcp_mpkl_log_object
= NULL
;
292 static void tcpcb_to_otcpcb(struct tcpcb
*, struct otcpcb
*);
294 static lck_attr_t
*tcp_uptime_mtx_attr
= NULL
;
295 static lck_grp_t
*tcp_uptime_mtx_grp
= NULL
;
296 static lck_grp_attr_t
*tcp_uptime_mtx_grp_attr
= NULL
;
297 int tcp_notsent_lowat_check(struct socket
*so
);
298 static void tcp_flow_lim_stats(struct ifnet_stats_per_flow
*ifs
,
299 struct if_lim_perf_stat
*stat
);
300 static void tcp_flow_ecn_perf_stats(struct ifnet_stats_per_flow
*ifs
,
301 struct if_tcp_ecn_perf_stat
*stat
);
303 static aes_encrypt_ctx tfo_ctx
; /* Crypto-context for TFO */
306 tcp_tfo_gen_cookie(struct inpcb
*inp
, u_char
*out
, size_t blk_size
)
308 u_char in
[CCAES_BLOCK_SIZE
];
309 int isipv6
= inp
->inp_vflag
& INP_IPV6
;
311 VERIFY(blk_size
== CCAES_BLOCK_SIZE
);
313 bzero(&in
[0], CCAES_BLOCK_SIZE
);
314 bzero(&out
[0], CCAES_BLOCK_SIZE
);
317 memcpy(in
, &inp
->in6p_faddr
, sizeof(struct in6_addr
));
319 memcpy(in
, &inp
->inp_faddr
, sizeof(struct in_addr
));
322 aes_encrypt_cbc(in
, NULL
, 1, out
, &tfo_ctx
);
325 __private_extern__
int
326 tcp_sysctl_fastopenkey(__unused
struct sysctl_oid
*oidp
, __unused
void *arg1
,
327 __unused
int arg2
, struct sysctl_req
*req
)
331 * TFO-key is expressed as a string in hex format
332 * (+1 to account for \0 char)
334 char keystring
[TCP_FASTOPEN_KEYLEN
* 2 + 1];
335 u_int32_t key
[TCP_FASTOPEN_KEYLEN
/ sizeof(u_int32_t
)];
338 /* -1, because newlen is len without the terminating \0 character */
339 if (req
->newlen
!= (sizeof(keystring
) - 1)) {
345 * sysctl_io_string copies keystring into the oldptr of the sysctl_req.
346 * Make sure everything is zero, to avoid putting garbage in there or
349 bzero(keystring
, sizeof(keystring
));
351 error
= sysctl_io_string(req
, keystring
, sizeof(keystring
), 0, NULL
);
356 for (i
= 0; i
< (TCP_FASTOPEN_KEYLEN
/ sizeof(u_int32_t
)); i
++) {
358 * We jump over the keystring in 8-character (4 byte in hex)
361 if (sscanf(&keystring
[i
* 8], "%8x", &key
[i
]) != 1) {
367 aes_encrypt_key128((u_char
*)key
, &tfo_ctx
);
374 get_inpcb_str_size(void)
376 return sizeof(struct inpcb
);
380 get_tcp_str_size(void)
382 return sizeof(struct tcpcb
);
385 static int scale_to_powerof2(int size
);
388 * This helper routine returns one of the following scaled value of size:
389 * 1. Rounded down power of two value of size if the size value passed as
390 * argument is not a power of two and the rounded up value overflows.
392 * 2. Rounded up power of two value of size if the size value passed as
393 * argument is not a power of two and the rounded up value does not overflow
395 * 3. Same value as argument size if it is already a power of two.
398 scale_to_powerof2(int size
)
400 /* Handle special case of size = 0 */
401 int ret
= size
? size
: 1;
403 if (!powerof2(ret
)) {
404 while (!powerof2(size
)) {
406 * Clear out least significant
407 * set bit till size is left with
408 * its highest set bit at which point
409 * it is rounded down power of two.
411 size
= size
& (size
- 1);
414 /* Check for overflow when rounding up */
415 if (0 == (size
<< 1)) {
428 u_char key
[TCP_FASTOPEN_KEYLEN
];
430 read_frandom(key
, sizeof(key
));
431 aes_encrypt_key128(key
, &tfo_ctx
);
438 tcp_init(struct protosw
*pp
, struct domain
*dp
)
441 static int tcp_initialized
= 0;
443 struct inpcbinfo
*pcbinfo
;
444 uint32_t logging_config
;
446 VERIFY((pp
->pr_flags
& (PR_INITIALIZED
| PR_ATTACHED
)) == PR_ATTACHED
);
448 if (tcp_initialized
) {
454 tcp_keepinit
= TCPTV_KEEP_INIT
;
455 tcp_keepidle
= TCPTV_KEEP_IDLE
;
456 tcp_keepintvl
= TCPTV_KEEPINTVL
;
457 tcp_keepcnt
= TCPTV_KEEPCNT
;
458 tcp_maxpersistidle
= TCPTV_KEEP_IDLE
;
461 microuptime(&tcp_uptime
);
462 read_frandom(&tcp_now
, sizeof(tcp_now
));
464 /* Starts tcp internal clock at a random value */
465 tcp_now
= tcp_now
& 0x3fffffff;
467 /* expose initial uptime/now via systcl for utcp to keep time sync */
468 tcp_now_init
= tcp_now
;
469 tcp_microuptime_init
=
470 (uint32_t)(tcp_uptime
.tv_usec
+ (tcp_uptime
.tv_sec
* USEC_PER_SEC
));
471 SYSCTL_SKMEM_UPDATE_FIELD(tcp
.microuptime_init
, tcp_microuptime_init
);
472 SYSCTL_SKMEM_UPDATE_FIELD(tcp
.now_init
, tcp_now_init
);
477 tcbinfo
.ipi_listhead
= &tcb
;
481 * allocate lock group attribute and group for tcp pcb mutexes
483 pcbinfo
->ipi_lock_grp_attr
= lck_grp_attr_alloc_init();
484 pcbinfo
->ipi_lock_grp
= lck_grp_alloc_init("tcppcb",
485 pcbinfo
->ipi_lock_grp_attr
);
488 * allocate the lock attribute for tcp pcb mutexes
490 pcbinfo
->ipi_lock_attr
= lck_attr_alloc_init();
492 if ((pcbinfo
->ipi_lock
= lck_rw_alloc_init(pcbinfo
->ipi_lock_grp
,
493 pcbinfo
->ipi_lock_attr
)) == NULL
) {
494 panic("%s: unable to allocate PCB lock\n", __func__
);
498 if (tcp_tcbhashsize
== 0) {
500 tcp_tcbhashsize
= 512;
503 if (!powerof2(tcp_tcbhashsize
)) {
504 int old_hash_size
= tcp_tcbhashsize
;
505 tcp_tcbhashsize
= scale_to_powerof2(tcp_tcbhashsize
);
506 /* Lower limit of 16 */
507 if (tcp_tcbhashsize
< 16) {
508 tcp_tcbhashsize
= 16;
510 printf("WARNING: TCB hash size not a power of 2, "
511 "scaled from %d to %d.\n",
516 tcbinfo
.ipi_hashbase
= hashinit(tcp_tcbhashsize
, M_PCB
,
517 &tcbinfo
.ipi_hashmask
);
518 tcbinfo
.ipi_porthashbase
= hashinit(tcp_tcbhashsize
, M_PCB
,
519 &tcbinfo
.ipi_porthashmask
);
520 str_size
= (vm_size_t
)P2ROUNDUP(sizeof(struct inp_tp
), sizeof(u_int64_t
));
521 tcbinfo
.ipi_zone
= zone_create("tcpcb", str_size
, ZC_NONE
);
523 tcbinfo
.ipi_gc
= tcp_gc
;
524 tcbinfo
.ipi_timer
= tcp_itimer
;
525 in_pcbinfo_attach(&tcbinfo
);
527 str_size
= (vm_size_t
)P2ROUNDUP(sizeof(struct sackhole
), sizeof(u_int64_t
));
528 sack_hole_zone
= zone_create("sack_hole zone", str_size
, ZC_NONE
);
530 str_size
= (vm_size_t
)P2ROUNDUP(sizeof(struct tseg_qent
), sizeof(u_int64_t
));
531 tcp_reass_zone
= zone_create("tcp_reass_zone", str_size
, ZC_NONE
);
533 str_size
= (vm_size_t
)P2ROUNDUP(sizeof(struct bwmeas
), sizeof(u_int64_t
));
534 tcp_bwmeas_zone
= zone_create("tcp_bwmeas_zone", str_size
, ZC_ZFREE_CLEARMEM
);
536 str_size
= (vm_size_t
)P2ROUNDUP(sizeof(struct tcp_ccstate
), sizeof(u_int64_t
));
537 tcp_cc_zone
= zone_create("tcp_cc_zone", str_size
, ZC_NONE
);
539 str_size
= (vm_size_t
)P2ROUNDUP(sizeof(struct tcp_rxt_seg
), sizeof(u_int64_t
));
540 tcp_rxt_seg_zone
= zone_create("tcp_rxt_seg_zone", str_size
, ZC_NONE
);
542 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
543 if (max_protohdr
< TCP_MINPROTOHDR
) {
544 _max_protohdr
= TCP_MINPROTOHDR
;
545 _max_protohdr
= (int)max_protohdr
; /* round it up */
547 if (max_linkhdr
+ max_protohdr
> MCLBYTES
) {
550 #undef TCP_MINPROTOHDR
552 /* Initialize time wait and timer lists */
553 TAILQ_INIT(&tcp_tw_tailq
);
555 bzero(&tcp_timer_list
, sizeof(tcp_timer_list
));
556 LIST_INIT(&tcp_timer_list
.lhead
);
558 * allocate lock group attribute, group and attribute for
561 tcp_timer_list
.mtx_grp_attr
= lck_grp_attr_alloc_init();
562 tcp_timer_list
.mtx_grp
= lck_grp_alloc_init("tcptimerlist",
563 tcp_timer_list
.mtx_grp_attr
);
564 tcp_timer_list
.mtx_attr
= lck_attr_alloc_init();
565 if ((tcp_timer_list
.mtx
= lck_mtx_alloc_init(tcp_timer_list
.mtx_grp
,
566 tcp_timer_list
.mtx_attr
)) == NULL
) {
567 panic("failed to allocate memory for tcp_timer_list.mtx\n");
570 tcp_timer_list
.call
= thread_call_allocate(tcp_run_timerlist
, NULL
);
571 if (tcp_timer_list
.call
== NULL
) {
572 panic("failed to allocate call entry 1 in tcp_init\n");
576 * allocate lock group attribute, group and attribute for
579 tcp_uptime_mtx_grp_attr
= lck_grp_attr_alloc_init();
580 tcp_uptime_mtx_grp
= lck_grp_alloc_init("tcpuptime",
581 tcp_uptime_mtx_grp_attr
);
582 tcp_uptime_mtx_attr
= lck_attr_alloc_init();
583 tcp_uptime_lock
= lck_spin_alloc_init(tcp_uptime_mtx_grp
,
584 tcp_uptime_mtx_attr
);
586 /* Initialize TCP Cache */
589 tcp_mpkl_log_object
= MPKL_CREATE_LOGOBJECT("com.apple.xnu.tcp");
590 if (tcp_mpkl_log_object
== NULL
) {
591 panic("MPKL_CREATE_LOGOBJECT failed");
594 logging_config
= atm_get_diagnostic_config();
595 if (logging_config
& 0x80000000) {
599 PE_parse_boot_argn("tcp_log", &tcp_log_enable_flags
, sizeof(tcp_log_enable_flags
));
602 * If more than 4GB of actual memory is available, increase the
603 * maximum allowed receive and send socket buffer size.
605 if (mem_actual
>= (1ULL << (GBSHIFT
+ 2))) {
606 tcp_autorcvbuf_max
= 4 * 1024 * 1024;
607 tcp_autosndbuf_max
= 4 * 1024 * 1024;
609 SYSCTL_SKMEM_UPDATE_FIELD(tcp
.autorcvbufmax
, tcp_autorcvbuf_max
);
610 SYSCTL_SKMEM_UPDATE_FIELD(tcp
.autosndbufmax
, tcp_autosndbuf_max
);
615 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
616 * tcp_template used to store this data in mbufs, but we now recopy it out
617 * of the tcpcb each time to conserve mbufs.
620 tcp_fillheaders(struct tcpcb
*tp
, void *ip_ptr
, void *tcp_ptr
)
622 struct inpcb
*inp
= tp
->t_inpcb
;
623 struct tcphdr
*tcp_hdr
= (struct tcphdr
*)tcp_ptr
;
625 if ((inp
->inp_vflag
& INP_IPV6
) != 0) {
628 ip6
= (struct ip6_hdr
*)ip_ptr
;
629 ip6
->ip6_flow
= (ip6
->ip6_flow
& ~IPV6_FLOWINFO_MASK
) |
630 (inp
->inp_flow
& IPV6_FLOWINFO_MASK
);
631 ip6
->ip6_vfc
= (ip6
->ip6_vfc
& ~IPV6_VERSION_MASK
) |
632 (IPV6_VERSION
& IPV6_VERSION_MASK
);
633 ip6
->ip6_plen
= htons(sizeof(struct tcphdr
));
634 ip6
->ip6_nxt
= IPPROTO_TCP
;
636 ip6
->ip6_src
= inp
->in6p_laddr
;
637 ip6
->ip6_dst
= inp
->in6p_faddr
;
638 tcp_hdr
->th_sum
= in6_pseudo(&inp
->in6p_laddr
, &inp
->in6p_faddr
,
639 htonl(sizeof(struct tcphdr
) + IPPROTO_TCP
));
641 struct ip
*ip
= (struct ip
*) ip_ptr
;
643 ip
->ip_vhl
= IP_VHL_BORING
;
650 ip
->ip_p
= IPPROTO_TCP
;
651 ip
->ip_src
= inp
->inp_laddr
;
652 ip
->ip_dst
= inp
->inp_faddr
;
654 in_pseudo(ip
->ip_src
.s_addr
, ip
->ip_dst
.s_addr
,
655 htons(sizeof(struct tcphdr
) + IPPROTO_TCP
));
658 tcp_hdr
->th_sport
= inp
->inp_lport
;
659 tcp_hdr
->th_dport
= inp
->inp_fport
;
664 tcp_hdr
->th_flags
= 0;
670 * Create template to be used to send tcp packets on a connection.
671 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
672 * use for this function is in keepalives, which use tcp_respond.
675 tcp_maketemplate(struct tcpcb
*tp
)
680 m
= m_get(M_DONTWAIT
, MT_HEADER
);
684 m
->m_len
= sizeof(struct tcptemp
);
685 n
= mtod(m
, struct tcptemp
*);
687 tcp_fillheaders(tp
, (void *)&n
->tt_ipgen
, (void *)&n
->tt_t
);
692 * Send a single message to the TCP at address specified by
693 * the given TCP/IP header. If m == 0, then we make a copy
694 * of the tcpiphdr at ti and send directly to the addressed host.
695 * This is used to force keep alive messages out using the TCP
696 * template for a connection. If flags are given then we send
697 * a message back to the TCP which originated the * segment ti,
698 * and discard the mbuf containing it and any other attached mbufs.
700 * In any case the ack and sequence number of the transmitted
701 * segment are as specified by the parameters.
703 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
706 tcp_respond(struct tcpcb
*tp
, void *ipgen
, struct tcphdr
*th
, struct mbuf
*m
,
707 tcp_seq ack
, tcp_seq seq
, uint8_t flags
, struct tcp_respond_args
*tra
)
711 struct route
*ro
= 0;
715 struct route_in6
*ro6
= 0;
716 struct route_in6 sro6
;
720 int sotc
= SO_TC_UNSPEC
;
721 bool check_qos_marking_again
= FALSE
;
723 isipv6
= IP_VHL_V(((struct ip
*)ipgen
)->ip_vhl
) == 6;
728 check_qos_marking_again
= tp
->t_inpcb
->inp_socket
->so_flags1
& SOF1_QOSMARKING_POLICY_OVERRIDE
? FALSE
: TRUE
;
729 if (!(flags
& TH_RST
)) {
730 win
= tcp_sbspace(tp
);
731 if (win
> (int32_t)TCP_MAXWIN
<< tp
->rcv_scale
) {
732 win
= (int32_t)TCP_MAXWIN
<< tp
->rcv_scale
;
736 ro6
= &tp
->t_inpcb
->in6p_route
;
738 ro
= &tp
->t_inpcb
->inp_route
;
743 bzero(ro6
, sizeof(*ro6
));
746 bzero(ro
, sizeof(*ro
));
750 m
= m_gethdr(M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
755 m
->m_data
+= max_linkhdr
;
757 VERIFY((MHLEN
- max_linkhdr
) >=
758 (sizeof(*ip6
) + sizeof(*nth
)));
759 bcopy((caddr_t
)ip6
, mtod(m
, caddr_t
),
760 sizeof(struct ip6_hdr
));
761 ip6
= mtod(m
, struct ip6_hdr
*);
762 nth
= (struct tcphdr
*)(void *)(ip6
+ 1);
764 VERIFY((MHLEN
- max_linkhdr
) >=
765 (sizeof(*ip
) + sizeof(*nth
)));
766 bcopy((caddr_t
)ip
, mtod(m
, caddr_t
), sizeof(struct ip
));
767 ip
= mtod(m
, struct ip
*);
768 nth
= (struct tcphdr
*)(void *)(ip
+ 1);
770 bcopy((caddr_t
)th
, (caddr_t
)nth
, sizeof(struct tcphdr
));
772 if ((tp
) && (tp
->t_mpflags
& TMPF_RESET
)) {
773 flags
= (TH_RST
| TH_ACK
);
780 m
->m_data
= (caddr_t
)ipgen
;
781 /* m_len is set later */
783 #define xchg(a, b, type) { type t; t = a; a = b; b = t; }
785 /* Expect 32-bit aligned IP on strict-align platforms */
786 IP6_HDR_STRICT_ALIGNMENT_CHECK(ip6
);
787 xchg(ip6
->ip6_dst
, ip6
->ip6_src
, struct in6_addr
);
788 nth
= (struct tcphdr
*)(void *)(ip6
+ 1);
790 /* Expect 32-bit aligned IP on strict-align platforms */
791 IP_HDR_STRICT_ALIGNMENT_CHECK(ip
);
792 xchg(ip
->ip_dst
.s_addr
, ip
->ip_src
.s_addr
, n_long
);
793 nth
= (struct tcphdr
*)(void *)(ip
+ 1);
797 * this is usually a case when an extension header
798 * exists between the IPv6 header and the
801 nth
->th_sport
= th
->th_sport
;
802 nth
->th_dport
= th
->th_dport
;
804 xchg(nth
->th_dport
, nth
->th_sport
, n_short
);
808 ip6
->ip6_plen
= htons((u_short
)(sizeof(struct tcphdr
) +
810 tlen
+= sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
);
812 tlen
+= sizeof(struct tcpiphdr
);
814 ip
->ip_ttl
= (uint8_t)ip_defttl
;
817 m
->m_pkthdr
.len
= tlen
;
818 m
->m_pkthdr
.rcvif
= 0;
819 if (tra
->keep_alive
) {
820 m
->m_pkthdr
.pkt_flags
|= PKTF_KEEPALIVE
;
823 nth
->th_seq
= htonl(seq
);
824 nth
->th_ack
= htonl(ack
);
826 nth
->th_off
= sizeof(struct tcphdr
) >> 2;
827 nth
->th_flags
= flags
;
829 nth
->th_win
= htons((u_short
) (win
>> tp
->rcv_scale
));
831 nth
->th_win
= htons((u_short
)win
);
836 nth
->th_sum
= in6_pseudo(&ip6
->ip6_src
, &ip6
->ip6_dst
,
837 htonl((tlen
- sizeof(struct ip6_hdr
)) + IPPROTO_TCP
));
838 m
->m_pkthdr
.csum_flags
= CSUM_TCPIPV6
;
839 m
->m_pkthdr
.csum_data
= offsetof(struct tcphdr
, th_sum
);
840 ip6
->ip6_hlim
= in6_selecthlim(tp
? tp
->t_inpcb
: NULL
,
841 ro6
&& ro6
->ro_rt
? ro6
->ro_rt
->rt_ifp
: NULL
);
843 nth
->th_sum
= in_pseudo(ip
->ip_src
.s_addr
, ip
->ip_dst
.s_addr
,
844 htons((u_short
)(tlen
- sizeof(struct ip
) + ip
->ip_p
)));
845 m
->m_pkthdr
.csum_flags
= CSUM_TCP
;
846 m
->m_pkthdr
.csum_data
= offsetof(struct tcphdr
, th_sum
);
849 if (tp
== NULL
|| (tp
->t_inpcb
->inp_socket
->so_options
& SO_DEBUG
)) {
850 tcp_trace(TA_OUTPUT
, 0, tp
, mtod(m
, void *), th
, 0);
855 necp_mark_packet_from_socket(m
, tp
? tp
->t_inpcb
: NULL
, 0, 0, 0, 0);
859 if (tp
!= NULL
&& tp
->t_inpcb
->inp_sp
!= NULL
&&
860 ipsec_setsocket(m
, tp
? tp
->t_inpcb
->inp_socket
: NULL
) != 0) {
867 u_int32_t svc_flags
= 0;
869 svc_flags
|= PKT_SCF_IPV6
;
871 sotc
= tp
->t_inpcb
->inp_socket
->so_traffic_class
;
872 if ((flags
& TH_RST
) == 0) {
873 set_packet_service_class(m
, tp
->t_inpcb
->inp_socket
,
876 m_set_service_class(m
, MBUF_SC_BK_SYS
);
879 /* Embed flowhash and flow control flags */
880 m
->m_pkthdr
.pkt_flowsrc
= FLOWSRC_INPCB
;
881 m
->m_pkthdr
.pkt_flowid
= tp
->t_inpcb
->inp_flowhash
;
882 m
->m_pkthdr
.pkt_flags
|= (PKTF_FLOW_ID
| PKTF_FLOW_LOCALSRC
| PKTF_FLOW_ADV
);
883 m
->m_pkthdr
.pkt_proto
= IPPROTO_TCP
;
884 m
->m_pkthdr
.tx_tcp_pid
= tp
->t_inpcb
->inp_socket
->last_pid
;
885 m
->m_pkthdr
.tx_tcp_e_pid
= tp
->t_inpcb
->inp_socket
->e_pid
;
887 if (flags
& TH_RST
) {
888 m
->m_pkthdr
.comp_gencnt
= tp
->t_comp_gencnt
;
891 if (flags
& TH_RST
) {
892 m
->m_pkthdr
.comp_gencnt
= TCP_ACK_COMPRESSION_DUMMY
;
893 m_set_service_class(m
, MBUF_SC_BK_SYS
);
898 struct ip6_out_args ip6oa
;
899 bzero(&ip6oa
, sizeof(ip6oa
));
900 ip6oa
.ip6oa_boundif
= tra
->ifscope
;
901 ip6oa
.ip6oa_flags
= IP6OAF_SELECT_SRCIF
| IP6OAF_BOUND_SRCADDR
;
902 ip6oa
.ip6oa_sotc
= SO_TC_UNSPEC
;
903 ip6oa
.ip6oa_netsvctype
= _NET_SERVICE_TYPE_UNSPEC
;
905 if (tra
->ifscope
!= IFSCOPE_NONE
) {
906 ip6oa
.ip6oa_flags
|= IP6OAF_BOUND_IF
;
909 ip6oa
.ip6oa_flags
|= IP6OAF_NO_CELLULAR
;
911 if (tra
->noexpensive
) {
912 ip6oa
.ip6oa_flags
|= IP6OAF_NO_EXPENSIVE
;
914 if (tra
->noconstrained
) {
915 ip6oa
.ip6oa_flags
|= IP6OAF_NO_CONSTRAINED
;
917 if (tra
->awdl_unrestricted
) {
918 ip6oa
.ip6oa_flags
|= IP6OAF_AWDL_UNRESTRICTED
;
920 if (tra
->intcoproc_allowed
) {
921 ip6oa
.ip6oa_flags
|= IP6OAF_INTCOPROC_ALLOWED
;
923 ip6oa
.ip6oa_sotc
= sotc
;
925 if ((tp
->t_inpcb
->inp_socket
->so_flags1
& SOF1_QOSMARKING_ALLOWED
)) {
926 ip6oa
.ip6oa_flags
|= IP6OAF_QOSMARKING_ALLOWED
;
928 ip6oa
.qos_marking_gencount
= tp
->t_inpcb
->inp_policyresult
.results
.qos_marking_gencount
;
929 if (check_qos_marking_again
) {
930 ip6oa
.ip6oa_flags
|= IP6OAF_REDO_QOSMARKING_POLICY
;
932 ip6oa
.ip6oa_netsvctype
= tp
->t_inpcb
->inp_socket
->so_netsvctype
;
934 (void) ip6_output(m
, NULL
, ro6
, IPV6_OUTARGS
, NULL
,
937 if (check_qos_marking_again
) {
938 struct inpcb
*inp
= tp
->t_inpcb
;
939 inp
->inp_policyresult
.results
.qos_marking_gencount
= ip6oa
.qos_marking_gencount
;
940 if (ip6oa
.ip6oa_flags
& IP6OAF_QOSMARKING_ALLOWED
) {
941 inp
->inp_socket
->so_flags1
|= SOF1_QOSMARKING_ALLOWED
;
943 inp
->inp_socket
->so_flags1
&= ~SOF1_QOSMARKING_ALLOWED
;
947 if (tp
!= NULL
&& ro6
!= NULL
&& ro6
->ro_rt
!= NULL
&&
948 (outif
= ro6
->ro_rt
->rt_ifp
) !=
949 tp
->t_inpcb
->in6p_last_outifp
) {
950 tp
->t_inpcb
->in6p_last_outifp
= outif
;
957 struct ip_out_args ipoa
;
958 bzero(&ipoa
, sizeof(ipoa
));
959 ipoa
.ipoa_boundif
= tra
->ifscope
;
960 ipoa
.ipoa_flags
= IPOAF_SELECT_SRCIF
| IPOAF_BOUND_SRCADDR
;
961 ipoa
.ipoa_sotc
= SO_TC_UNSPEC
;
962 ipoa
.ipoa_netsvctype
= _NET_SERVICE_TYPE_UNSPEC
;
964 if (tra
->ifscope
!= IFSCOPE_NONE
) {
965 ipoa
.ipoa_flags
|= IPOAF_BOUND_IF
;
968 ipoa
.ipoa_flags
|= IPOAF_NO_CELLULAR
;
970 if (tra
->noexpensive
) {
971 ipoa
.ipoa_flags
|= IPOAF_NO_EXPENSIVE
;
973 if (tra
->noconstrained
) {
974 ipoa
.ipoa_flags
|= IPOAF_NO_CONSTRAINED
;
976 if (tra
->awdl_unrestricted
) {
977 ipoa
.ipoa_flags
|= IPOAF_AWDL_UNRESTRICTED
;
979 ipoa
.ipoa_sotc
= sotc
;
981 if ((tp
->t_inpcb
->inp_socket
->so_flags1
& SOF1_QOSMARKING_ALLOWED
)) {
982 ipoa
.ipoa_flags
|= IPOAF_QOSMARKING_ALLOWED
;
984 if (!(tp
->t_inpcb
->inp_socket
->so_flags1
& SOF1_QOSMARKING_POLICY_OVERRIDE
)) {
985 ipoa
.ipoa_flags
|= IPOAF_REDO_QOSMARKING_POLICY
;
987 ipoa
.qos_marking_gencount
= tp
->t_inpcb
->inp_policyresult
.results
.qos_marking_gencount
;
988 ipoa
.ipoa_netsvctype
= tp
->t_inpcb
->inp_socket
->so_netsvctype
;
991 /* Copy the cached route and take an extra reference */
992 inp_route_copyout(tp
->t_inpcb
, &sro
);
995 * For consistency, pass a local route copy.
997 (void) ip_output(m
, NULL
, &sro
, IP_OUTARGS
, NULL
, &ipoa
);
999 if (check_qos_marking_again
) {
1000 struct inpcb
*inp
= tp
->t_inpcb
;
1001 inp
->inp_policyresult
.results
.qos_marking_gencount
= ipoa
.qos_marking_gencount
;
1002 if (ipoa
.ipoa_flags
& IPOAF_QOSMARKING_ALLOWED
) {
1003 inp
->inp_socket
->so_flags1
|= SOF1_QOSMARKING_ALLOWED
;
1005 inp
->inp_socket
->so_flags1
&= ~SOF1_QOSMARKING_ALLOWED
;
1008 if (tp
!= NULL
&& sro
.ro_rt
!= NULL
&&
1009 (outif
= sro
.ro_rt
->rt_ifp
) !=
1010 tp
->t_inpcb
->inp_last_outifp
) {
1011 tp
->t_inpcb
->inp_last_outifp
= outif
;
1014 /* Synchronize cached PCB route */
1015 inp_route_copyin(tp
->t_inpcb
, &sro
);
1017 ROUTE_RELEASE(&sro
);
1023 * Create a new TCP control block, making an
1024 * empty reassembly queue and hooking it to the argument
1025 * protocol control block. The `inp' parameter must have
1026 * come from the zone allocator set up in tcp_init().
1029 tcp_newtcpcb(struct inpcb
*inp
)
1033 struct socket
*so
= inp
->inp_socket
;
1034 int isipv6
= (inp
->inp_vflag
& INP_IPV6
) != 0;
1037 calculate_tcp_clock();
1039 if ((so
->so_flags1
& SOF1_CACHED_IN_SOCK_LAYER
) == 0) {
1040 it
= (struct inp_tp
*)(void *)inp
;
1043 tp
= (struct tcpcb
*)(void *)inp
->inp_saved_ppcb
;
1046 bzero((char *) tp
, sizeof(struct tcpcb
));
1047 LIST_INIT(&tp
->t_segq
);
1048 tp
->t_maxseg
= tp
->t_maxopd
= isipv6
? tcp_v6mssdflt
: tcp_mssdflt
;
1050 tp
->t_flags
= (TF_REQ_SCALE
| TF_REQ_TSTMP
);
1051 tp
->t_flagsext
|= TF_SACK_ENABLE
;
1053 TAILQ_INIT(&tp
->snd_holes
);
1054 SLIST_INIT(&tp
->t_rxt_segments
);
1055 SLIST_INIT(&tp
->t_notify_ack
);
1058 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
1059 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
1060 * reasonable initial retransmit time.
1062 tp
->t_srtt
= TCPTV_SRTTBASE
;
1064 ((TCPTV_RTOBASE
- TCPTV_SRTTBASE
) << TCP_RTTVAR_SHIFT
) / 4;
1065 tp
->t_rttmin
= tcp_TCPTV_MIN
;
1066 tp
->t_rxtcur
= TCPTV_RTOBASE
;
1068 if (tcp_use_newreno
) {
1069 /* use newreno by default */
1070 tp
->tcp_cc_index
= TCP_CC_ALGO_NEWRENO_INDEX
;
1072 tp
->tcp_cc_index
= TCP_CC_ALGO_CUBIC_INDEX
;
1075 tcp_cc_allocate_state(tp
);
1077 if (CC_ALGO(tp
)->init
!= NULL
) {
1078 CC_ALGO(tp
)->init(tp
);
1081 tp
->snd_cwnd
= tcp_initial_cwnd(tp
);
1082 tp
->snd_ssthresh
= TCP_MAXWIN
<< TCP_MAX_WINSHIFT
;
1083 tp
->snd_ssthresh_prev
= TCP_MAXWIN
<< TCP_MAX_WINSHIFT
;
1084 tp
->t_rcvtime
= tcp_now
;
1085 tp
->tentry
.timer_start
= tcp_now
;
1086 tp
->rcv_unackwin
= tcp_now
;
1087 tp
->t_persist_timeout
= tcp_max_persist_timeout
;
1088 tp
->t_persist_stop
= 0;
1089 tp
->t_flagsext
|= TF_RCVUNACK_WAITSS
;
1090 tp
->t_rexmtthresh
= (uint8_t)tcprexmtthresh
;
1091 tp
->rfbuf_ts
= tcp_now
;
1092 tp
->rfbuf_space
= tcp_initial_cwnd(tp
);
1093 tp
->t_forced_acks
= TCP_FORCED_ACKS_COUNT
;
1095 /* Enable bandwidth measurement on this connection */
1096 tp
->t_flagsext
|= TF_MEASURESNDBW
;
1097 if (tp
->t_bwmeas
== NULL
) {
1098 tp
->t_bwmeas
= tcp_bwmeas_alloc(tp
);
1099 if (tp
->t_bwmeas
== NULL
) {
1100 tp
->t_flagsext
&= ~TF_MEASURESNDBW
;
1104 /* Clear time wait tailq entry */
1105 tp
->t_twentry
.tqe_next
= NULL
;
1106 tp
->t_twentry
.tqe_prev
= NULL
;
1108 read_frandom(&random_32
, sizeof(random_32
));
1109 if (__probable(tcp_do_ack_compression
)) {
1110 tp
->t_comp_gencnt
= random_32
;
1111 if (tp
->t_comp_gencnt
<= TCP_ACK_COMPRESSION_DUMMY
) {
1112 tp
->t_comp_gencnt
= TCP_ACK_COMPRESSION_DUMMY
+ 1;
1114 tp
->t_comp_lastinc
= tcp_now
;
1117 if (__probable(tcp_randomize_timestamps
)) {
1118 tp
->t_ts_offset
= random_32
;
1122 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
1123 * because the socket may be bound to an IPv6 wildcard address,
1124 * which may match an IPv4-mapped IPv6 address.
1126 inp
->inp_ip_ttl
= (uint8_t)ip_defttl
;
1127 inp
->inp_ppcb
= (caddr_t
)tp
;
1128 return tp
; /* XXX */
1132 * Drop a TCP connection, reporting
1133 * the specified error. If connection is synchronized,
1134 * then send a RST to peer.
1137 tcp_drop(struct tcpcb
*tp
, int errno
)
1139 struct socket
*so
= tp
->t_inpcb
->inp_socket
;
1141 struct inpcb
*inp
= tp
->t_inpcb
;
1144 if (TCPS_HAVERCVDSYN(tp
->t_state
)) {
1145 DTRACE_TCP4(state__change
, void, NULL
, struct inpcb
*, inp
,
1146 struct tcpcb
*, tp
, int32_t, TCPS_CLOSED
);
1147 tp
->t_state
= TCPS_CLOSED
;
1148 (void) tcp_output(tp
);
1149 tcpstat
.tcps_drops
++;
1151 tcpstat
.tcps_conndrops
++;
1153 if (errno
== ETIMEDOUT
&& tp
->t_softerror
) {
1154 errno
= tp
->t_softerror
;
1156 so
->so_error
= (u_short
)errno
;
1158 TCP_LOG_CONNECTION_SUMMARY(tp
);
1160 return tcp_close(tp
);
1164 tcp_getrt_rtt(struct tcpcb
*tp
, struct rtentry
*rt
)
1166 u_int32_t rtt
= rt
->rt_rmx
.rmx_rtt
;
1167 int isnetlocal
= (tp
->t_flags
& TF_LOCAL
);
1169 TCP_LOG_RTM_RTT(tp
, rt
);
1171 if (rtt
!= 0 && tcp_init_rtt_from_cache
!= 0) {
1173 * XXX the lock bit for RTT indicates that the value
1174 * is also a minimum value; this is subject to time.
1176 if (rt
->rt_rmx
.rmx_locks
& RTV_RTT
) {
1177 tp
->t_rttmin
= rtt
/ (RTM_RTTUNIT
/ TCP_RETRANSHZ
);
1179 tp
->t_rttmin
= isnetlocal
? tcp_TCPTV_MIN
:
1184 rtt
/ (RTM_RTTUNIT
/ (TCP_RETRANSHZ
* TCP_RTT_SCALE
));
1185 tcpstat
.tcps_usedrtt
++;
1187 if (rt
->rt_rmx
.rmx_rttvar
) {
1188 tp
->t_rttvar
= rt
->rt_rmx
.rmx_rttvar
/
1189 (RTM_RTTUNIT
/ (TCP_RETRANSHZ
* TCP_RTTVAR_SCALE
));
1190 tcpstat
.tcps_usedrttvar
++;
1192 /* default variation is +- 1 rtt */
1194 tp
->t_srtt
* TCP_RTTVAR_SCALE
/ TCP_RTT_SCALE
;
1198 * The RTO formula in the route metric case is based on:
1199 * 4 * srtt + 8 * rttvar
1200 * modulo the min, max and slop
1202 TCPT_RANGESET(tp
->t_rxtcur
,
1203 ((tp
->t_srtt
>> 2) + tp
->t_rttvar
) >> 1,
1204 tp
->t_rttmin
, TCPTV_REXMTMAX
,
1205 TCP_ADD_REXMTSLOP(tp
));
1208 TCP_LOG_RTT_INFO(tp
);
1212 tcp_create_ifnet_stats_per_flow(struct tcpcb
*tp
,
1213 struct ifnet_stats_per_flow
*ifs
)
1217 if (tp
== NULL
|| ifs
== NULL
) {
1221 bzero(ifs
, sizeof(*ifs
));
1223 so
= inp
->inp_socket
;
1225 ifs
->ipv4
= (inp
->inp_vflag
& INP_IPV6
) ? 0 : 1;
1226 ifs
->local
= (tp
->t_flags
& TF_LOCAL
) ? 1 : 0;
1227 ifs
->connreset
= (so
->so_error
== ECONNRESET
) ? 1 : 0;
1228 ifs
->conntimeout
= (so
->so_error
== ETIMEDOUT
) ? 1 : 0;
1229 ifs
->ecn_flags
= tp
->ecn_flags
;
1230 ifs
->txretransmitbytes
= tp
->t_stat
.txretransmitbytes
;
1231 ifs
->rxoutoforderbytes
= tp
->t_stat
.rxoutoforderbytes
;
1232 ifs
->rxmitpkts
= tp
->t_stat
.rxmitpkts
;
1233 ifs
->rcvoopack
= tp
->t_rcvoopack
;
1234 ifs
->pawsdrop
= tp
->t_pawsdrop
;
1235 ifs
->sack_recovery_episodes
= tp
->t_sack_recovery_episode
;
1236 ifs
->reordered_pkts
= tp
->t_reordered_pkts
;
1237 ifs
->dsack_sent
= tp
->t_dsack_sent
;
1238 ifs
->dsack_recvd
= tp
->t_dsack_recvd
;
1239 ifs
->srtt
= tp
->t_srtt
;
1240 ifs
->rttupdated
= tp
->t_rttupdated
;
1241 ifs
->rttvar
= tp
->t_rttvar
;
1242 ifs
->rttmin
= get_base_rtt(tp
);
1243 if (tp
->t_bwmeas
!= NULL
&& tp
->t_bwmeas
->bw_sndbw_max
> 0) {
1244 ifs
->bw_sndbw_max
= tp
->t_bwmeas
->bw_sndbw_max
;
1246 ifs
->bw_sndbw_max
= 0;
1248 if (tp
->t_bwmeas
!= NULL
&& tp
->t_bwmeas
->bw_rcvbw_max
> 0) {
1249 ifs
->bw_rcvbw_max
= tp
->t_bwmeas
->bw_rcvbw_max
;
1251 ifs
->bw_rcvbw_max
= 0;
1253 ifs
->bk_txpackets
= so
->so_tc_stats
[MBUF_TC_BK
].txpackets
;
1254 ifs
->txpackets
= inp
->inp_stat
->txpackets
;
1255 ifs
->rxpackets
= inp
->inp_stat
->rxpackets
;
1259 tcp_flow_ecn_perf_stats(struct ifnet_stats_per_flow
*ifs
,
1260 struct if_tcp_ecn_perf_stat
*stat
)
1262 u_int64_t curval
, oldval
;
1263 stat
->total_txpkts
+= ifs
->txpackets
;
1264 stat
->total_rxpkts
+= ifs
->rxpackets
;
1265 stat
->total_rxmitpkts
+= ifs
->rxmitpkts
;
1266 stat
->total_oopkts
+= ifs
->rcvoopack
;
1267 stat
->total_reorderpkts
+= (ifs
->reordered_pkts
+
1268 ifs
->pawsdrop
+ ifs
->dsack_sent
+ ifs
->dsack_recvd
);
1271 curval
= ifs
->srtt
>> TCP_RTT_SHIFT
;
1272 if (curval
> 0 && ifs
->rttupdated
>= 16) {
1273 if (stat
->rtt_avg
== 0) {
1274 stat
->rtt_avg
= curval
;
1276 oldval
= stat
->rtt_avg
;
1277 stat
->rtt_avg
= ((oldval
<< 4) - oldval
+ curval
) >> 4;
1282 curval
= ifs
->rttvar
>> TCP_RTTVAR_SHIFT
;
1283 if (curval
> 0 && ifs
->rttupdated
>= 16) {
1284 if (stat
->rtt_var
== 0) {
1285 stat
->rtt_var
= curval
;
1287 oldval
= stat
->rtt_var
;
1289 ((oldval
<< 4) - oldval
+ curval
) >> 4;
1294 stat
->sack_episodes
+= ifs
->sack_recovery_episodes
;
1295 if (ifs
->connreset
) {
1301 tcp_flow_lim_stats(struct ifnet_stats_per_flow
*ifs
,
1302 struct if_lim_perf_stat
*stat
)
1304 u_int64_t curval
, oldval
;
1306 stat
->lim_total_txpkts
+= ifs
->txpackets
;
1307 stat
->lim_total_rxpkts
+= ifs
->rxpackets
;
1308 stat
->lim_total_retxpkts
+= ifs
->rxmitpkts
;
1309 stat
->lim_total_oopkts
+= ifs
->rcvoopack
;
1311 if (ifs
->bw_sndbw_max
> 0) {
1312 /* convert from bytes per ms to bits per second */
1313 ifs
->bw_sndbw_max
*= 8000;
1314 stat
->lim_ul_max_bandwidth
= MAX(stat
->lim_ul_max_bandwidth
,
1318 if (ifs
->bw_rcvbw_max
> 0) {
1319 /* convert from bytes per ms to bits per second */
1320 ifs
->bw_rcvbw_max
*= 8000;
1321 stat
->lim_dl_max_bandwidth
= MAX(stat
->lim_dl_max_bandwidth
,
1326 curval
= ifs
->srtt
>> TCP_RTT_SHIFT
;
1327 if (curval
> 0 && ifs
->rttupdated
>= 16) {
1328 if (stat
->lim_rtt_average
== 0) {
1329 stat
->lim_rtt_average
= curval
;
1331 oldval
= stat
->lim_rtt_average
;
1332 stat
->lim_rtt_average
=
1333 ((oldval
<< 4) - oldval
+ curval
) >> 4;
1338 curval
= ifs
->rttvar
>> TCP_RTTVAR_SHIFT
;
1339 if (curval
> 0 && ifs
->rttupdated
>= 16) {
1340 if (stat
->lim_rtt_variance
== 0) {
1341 stat
->lim_rtt_variance
= curval
;
1343 oldval
= stat
->lim_rtt_variance
;
1344 stat
->lim_rtt_variance
=
1345 ((oldval
<< 4) - oldval
+ curval
) >> 4;
1349 if (stat
->lim_rtt_min
== 0) {
1350 stat
->lim_rtt_min
= ifs
->rttmin
;
1352 stat
->lim_rtt_min
= MIN(stat
->lim_rtt_min
, ifs
->rttmin
);
1355 /* connection timeouts */
1356 stat
->lim_conn_attempts
++;
1357 if (ifs
->conntimeout
) {
1358 stat
->lim_conn_timeouts
++;
1361 /* bytes sent using background delay-based algorithms */
1362 stat
->lim_bk_txpkts
+= ifs
->bk_txpackets
;
1366 * Close a TCP control block:
1367 * discard all space held by the tcp
1368 * discard internet protocol block
1369 * wake up any sleepers
1372 tcp_close(struct tcpcb
*tp
)
1374 struct inpcb
*inp
= tp
->t_inpcb
;
1375 struct socket
*so
= inp
->inp_socket
;
1376 int isipv6
= (inp
->inp_vflag
& INP_IPV6
) != 0;
1380 struct ifnet_stats_per_flow ifs
;
1382 /* tcp_close was called previously, bail */
1383 if (inp
->inp_ppcb
== NULL
) {
1387 tcp_del_fsw_flow(tp
);
1389 tcp_canceltimers(tp
);
1390 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE
| DBG_FUNC_START
, tp
, 0, 0, 0, 0);
1393 * If another thread for this tcp is currently in ip (indicated by
1394 * the TF_SENDINPROG flag), defer the cleanup until after it returns
1395 * back to tcp. This is done to serialize the close until after all
1396 * pending output is finished, in order to avoid having the PCB be
1397 * detached and the cached route cleaned, only for ip to cache the
1398 * route back into the PCB again. Note that we've cleared all the
1399 * timers at this point. Set TF_CLOSING to indicate to tcp_output()
1400 * that is should call us again once it returns from ip; at that
1401 * point both flags should be cleared and we can proceed further
1404 if ((tp
->t_flags
& TF_CLOSING
) ||
1405 inp
->inp_sndinprog_cnt
> 0) {
1406 tp
->t_flags
|= TF_CLOSING
;
1410 TCP_LOG_CONNECTION_SUMMARY(tp
);
1412 DTRACE_TCP4(state__change
, void, NULL
, struct inpcb
*, inp
,
1413 struct tcpcb
*, tp
, int32_t, TCPS_CLOSED
);
1415 ro
= (isipv6
? (struct route
*)&inp
->in6p_route
: &inp
->inp_route
);
1422 * If we got enough samples through the srtt filter,
1423 * save the rtt and rttvar in the routing entry.
1424 * 'Enough' is arbitrarily defined as the 16 samples.
1425 * 16 samples is enough for the srtt filter to converge
1426 * to within 5% of the correct value; fewer samples and
1427 * we could save a very bogus rtt.
1429 * Don't update the default route's characteristics and don't
1430 * update anything that the user "locked".
1432 if (tp
->t_rttupdated
>= 16) {
1434 bool log_rtt
= false;
1437 struct sockaddr_in6
*sin6
;
1442 sin6
= (struct sockaddr_in6
*)(void *)rt_key(rt
);
1443 if (IN6_IS_ADDR_UNSPECIFIED(&sin6
->sin6_addr
)) {
1446 } else if (ROUTE_UNUSABLE(ro
) ||
1447 SIN(rt_key(rt
))->sin_addr
.s_addr
== INADDR_ANY
) {
1448 DTRACE_TCP4(state__change
, void, NULL
,
1449 struct inpcb
*, inp
, struct tcpcb
*, tp
,
1450 int32_t, TCPS_CLOSED
);
1451 tp
->t_state
= TCPS_CLOSED
;
1455 RT_LOCK_ASSERT_HELD(rt
);
1456 if ((rt
->rt_rmx
.rmx_locks
& RTV_RTT
) == 0) {
1458 (RTM_RTTUNIT
/ (TCP_RETRANSHZ
* TCP_RTT_SCALE
));
1459 if (rt
->rt_rmx
.rmx_rtt
&& i
) {
1461 * filter this update to half the old & half
1462 * the new values, converting scale.
1463 * See route.h and tcp_var.h for a
1464 * description of the scaling constants.
1466 rt
->rt_rmx
.rmx_rtt
=
1467 (rt
->rt_rmx
.rmx_rtt
+ i
) / 2;
1469 rt
->rt_rmx
.rmx_rtt
= i
;
1471 tcpstat
.tcps_cachedrtt
++;
1474 if ((rt
->rt_rmx
.rmx_locks
& RTV_RTTVAR
) == 0) {
1476 (RTM_RTTUNIT
/ (TCP_RETRANSHZ
* TCP_RTTVAR_SCALE
));
1477 if (rt
->rt_rmx
.rmx_rttvar
&& i
) {
1478 rt
->rt_rmx
.rmx_rttvar
=
1479 (rt
->rt_rmx
.rmx_rttvar
+ i
) / 2;
1481 rt
->rt_rmx
.rmx_rttvar
= i
;
1483 tcpstat
.tcps_cachedrttvar
++;
1487 TCP_LOG_RTM_RTT(tp
, rt
);
1488 TCP_LOG_RTT_INFO(tp
);
1491 * The old comment here said:
1492 * update the pipelimit (ssthresh) if it has been updated
1493 * already or if a pipesize was specified & the threshhold
1494 * got below half the pipesize. I.e., wait for bad news
1495 * before we start updating, then update on both good
1498 * But we want to save the ssthresh even if no pipesize is
1499 * specified explicitly in the route, because such
1500 * connections still have an implicit pipesize specified
1501 * by the global tcp_sendspace. In the absence of a reliable
1502 * way to calculate the pipesize, it will have to do.
1504 i
= tp
->snd_ssthresh
;
1505 if (rt
->rt_rmx
.rmx_sendpipe
!= 0) {
1506 dosavessthresh
= (i
< rt
->rt_rmx
.rmx_sendpipe
/ 2);
1508 dosavessthresh
= (i
< so
->so_snd
.sb_hiwat
/ 2);
1510 if (((rt
->rt_rmx
.rmx_locks
& RTV_SSTHRESH
) == 0 &&
1511 i
!= 0 && rt
->rt_rmx
.rmx_ssthresh
!= 0) ||
1514 * convert the limit from user data bytes to
1515 * packets then to packet data bytes.
1517 i
= (i
+ tp
->t_maxseg
/ 2) / tp
->t_maxseg
;
1521 i
*= (u_int32_t
)(tp
->t_maxseg
+
1522 isipv6
? sizeof(struct ip6_hdr
) +
1523 sizeof(struct tcphdr
) :
1524 sizeof(struct tcpiphdr
));
1525 if (rt
->rt_rmx
.rmx_ssthresh
) {
1526 rt
->rt_rmx
.rmx_ssthresh
=
1527 (rt
->rt_rmx
.rmx_ssthresh
+ i
) / 2;
1529 rt
->rt_rmx
.rmx_ssthresh
= i
;
1531 tcpstat
.tcps_cachedssthresh
++;
1536 * Mark route for deletion if no information is cached.
1538 if (rt
!= NULL
&& (so
->so_flags
& SOF_OVERFLOW
)) {
1539 if (!(rt
->rt_rmx
.rmx_locks
& RTV_RTT
) &&
1540 rt
->rt_rmx
.rmx_rtt
== 0) {
1541 rt
->rt_flags
|= RTF_DELCLONE
;
1550 /* free the reassembly queue, if any */
1551 (void) tcp_freeq(tp
);
1553 /* performance stats per interface */
1554 tcp_create_ifnet_stats_per_flow(tp
, &ifs
);
1555 tcp_update_stats_per_flow(&ifs
, inp
->inp_last_outifp
);
1557 tcp_free_sackholes(tp
);
1558 tcp_notify_ack_free(tp
);
1560 inp_decr_sndbytes_allunsent(so
, tp
->snd_una
);
1562 if (tp
->t_bwmeas
!= NULL
) {
1563 tcp_bwmeas_free(tp
);
1565 tcp_rxtseg_clean(tp
);
1566 /* Free the packet list */
1567 if (tp
->t_pktlist_head
!= NULL
) {
1568 m_freem_list(tp
->t_pktlist_head
);
1570 TCP_PKTLIST_CLEAR(tp
);
1572 if (so
->so_flags1
& SOF1_CACHED_IN_SOCK_LAYER
) {
1573 inp
->inp_saved_ppcb
= (caddr_t
) tp
;
1576 tp
->t_state
= TCPS_CLOSED
;
1579 * Issue a wakeup before detach so that we don't miss
1582 sodisconnectwakeup(so
);
1585 * Make sure to clear the TCP Keep Alive Offload as it is
1586 * ref counted on the interface
1588 tcp_clear_keep_alive_offload(so
);
1591 * If this is a socket that does not want to wakeup the device
1592 * for it's traffic, the application might need to know that the
1593 * socket is closed, send a notification.
1595 if ((so
->so_options
& SO_NOWAKEFROMSLEEP
) &&
1596 inp
->inp_state
!= INPCB_STATE_DEAD
&&
1597 !(inp
->inp_flags2
& INP2_TIMEWAIT
)) {
1598 socket_post_kev_msg_closed(so
);
1601 if (CC_ALGO(tp
)->cleanup
!= NULL
) {
1602 CC_ALGO(tp
)->cleanup(tp
);
1605 if (tp
->t_ccstate
!= NULL
) {
1606 zfree(tcp_cc_zone
, tp
->t_ccstate
);
1607 tp
->t_ccstate
= NULL
;
1609 tp
->tcp_cc_index
= TCP_CC_ALGO_NONE
;
1611 /* Can happen if we close the socket before receiving the third ACK */
1612 if ((tp
->t_tfo_flags
& TFO_F_COOKIE_VALID
)) {
1613 OSDecrementAtomic(&tcp_tfo_halfcnt
);
1615 /* Panic if something has gone terribly wrong. */
1616 VERIFY(tcp_tfo_halfcnt
>= 0);
1618 tp
->t_tfo_flags
&= ~TFO_F_COOKIE_VALID
;
1621 if (SOCK_CHECK_DOM(so
, PF_INET6
)) {
1628 * Call soisdisconnected after detach because it might unlock the socket
1630 soisdisconnected(so
);
1631 tcpstat
.tcps_closed
++;
1632 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE
| DBG_FUNC_END
,
1633 tcpstat
.tcps_closed
, 0, 0, 0, 0);
1638 tcp_freeq(struct tcpcb
*tp
)
1640 struct tseg_qent
*q
;
1643 while ((q
= LIST_FIRST(&tp
->t_segq
)) != NULL
) {
1644 LIST_REMOVE(q
, tqe_q
);
1646 zfree(tcp_reass_zone
, q
);
1649 tp
->t_reassqlen
= 0;
1660 if (!lck_rw_try_lock_exclusive(tcbinfo
.ipi_lock
)) {
1664 LIST_FOREACH(inp
, tcbinfo
.ipi_listhead
, inp_list
) {
1665 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) !=
1667 socket_lock(inp
->inp_socket
, 1);
1668 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1)
1670 /* lost a race, try the next one */
1671 socket_unlock(inp
->inp_socket
, 1);
1674 tp
= intotcpcb(inp
);
1676 so_drain_extended_bk_idle(inp
->inp_socket
);
1678 socket_unlock(inp
->inp_socket
, 1);
1681 lck_rw_done(tcbinfo
.ipi_lock
);
1685 * Notify a tcp user of an asynchronous error;
1686 * store error as soft error, but wake up user
1687 * (for now, won't do anything until can select for soft error).
1689 * Do not wake up user since there currently is no mechanism for
1690 * reporting soft errors (yet - a kqueue filter may be added).
1693 tcp_notify(struct inpcb
*inp
, int error
)
1697 if (inp
== NULL
|| (inp
->inp_state
== INPCB_STATE_DEAD
)) {
1698 return; /* pcb is gone already */
1700 tp
= (struct tcpcb
*)inp
->inp_ppcb
;
1704 * Ignore some errors if we are hooked up.
1705 * If connection hasn't completed, has retransmitted several times,
1706 * and receives a second error, give up now. This is better
1707 * than waiting a long time to establish a connection that
1708 * can never complete.
1710 if (tp
->t_state
== TCPS_ESTABLISHED
&&
1711 (error
== EHOSTUNREACH
|| error
== ENETUNREACH
||
1712 error
== EHOSTDOWN
)) {
1713 if (inp
->inp_route
.ro_rt
) {
1714 rtfree(inp
->inp_route
.ro_rt
);
1715 inp
->inp_route
.ro_rt
= (struct rtentry
*)NULL
;
1717 } else if (tp
->t_state
< TCPS_ESTABLISHED
&& tp
->t_rxtshift
> 3 &&
1719 tcp_drop(tp
, error
);
1721 tp
->t_softerror
= error
;
1726 tcp_bwmeas_alloc(struct tcpcb
*tp
)
1729 elm
= zalloc_flags(tcp_bwmeas_zone
, Z_ZERO
| Z_WAITOK
);
1730 elm
->bw_minsizepkts
= TCP_BWMEAS_BURST_MINSIZE
;
1731 elm
->bw_minsize
= elm
->bw_minsizepkts
* tp
->t_maxseg
;
1736 tcp_bwmeas_free(struct tcpcb
*tp
)
1738 zfree(tcp_bwmeas_zone
, tp
->t_bwmeas
);
1739 tp
->t_bwmeas
= NULL
;
1740 tp
->t_flagsext
&= ~(TF_MEASURESNDBW
);
1744 get_tcp_inp_list(struct inpcb
**inp_list
, int n
, inp_gen_t gencnt
)
1750 LIST_FOREACH(inp
, tcbinfo
.ipi_listhead
, inp_list
) {
1751 if (inp
->inp_gencnt
<= gencnt
&&
1752 inp
->inp_state
!= INPCB_STATE_DEAD
) {
1753 inp_list
[i
++] = inp
;
1760 TAILQ_FOREACH(tp
, &tcp_tw_tailq
, t_twentry
) {
1762 if (inp
->inp_gencnt
<= gencnt
&&
1763 inp
->inp_state
!= INPCB_STATE_DEAD
) {
1764 inp_list
[i
++] = inp
;
1774 * tcpcb_to_otcpcb copies specific bits of a tcpcb to a otcpcb format.
1775 * The otcpcb data structure is passed to user space and must not change.
1778 tcpcb_to_otcpcb(struct tcpcb
*tp
, struct otcpcb
*otp
)
1780 otp
->t_segq
= (uint32_t)VM_KERNEL_ADDRPERM(tp
->t_segq
.lh_first
);
1781 otp
->t_dupacks
= tp
->t_dupacks
;
1782 otp
->t_timer
[TCPT_REXMT_EXT
] = tp
->t_timer
[TCPT_REXMT
];
1783 otp
->t_timer
[TCPT_PERSIST_EXT
] = tp
->t_timer
[TCPT_PERSIST
];
1784 otp
->t_timer
[TCPT_KEEP_EXT
] = tp
->t_timer
[TCPT_KEEP
];
1785 otp
->t_timer
[TCPT_2MSL_EXT
] = tp
->t_timer
[TCPT_2MSL
];
1787 (_TCPCB_PTR(struct inpcb
*))VM_KERNEL_ADDRPERM(tp
->t_inpcb
);
1788 otp
->t_state
= tp
->t_state
;
1789 otp
->t_flags
= tp
->t_flags
;
1790 otp
->t_force
= (tp
->t_flagsext
& TF_FORCE
) ? 1 : 0;
1791 otp
->snd_una
= tp
->snd_una
;
1792 otp
->snd_max
= tp
->snd_max
;
1793 otp
->snd_nxt
= tp
->snd_nxt
;
1794 otp
->snd_up
= tp
->snd_up
;
1795 otp
->snd_wl1
= tp
->snd_wl1
;
1796 otp
->snd_wl2
= tp
->snd_wl2
;
1799 otp
->rcv_nxt
= tp
->rcv_nxt
;
1800 otp
->rcv_adv
= tp
->rcv_adv
;
1801 otp
->rcv_wnd
= tp
->rcv_wnd
;
1802 otp
->rcv_up
= tp
->rcv_up
;
1803 otp
->snd_wnd
= tp
->snd_wnd
;
1804 otp
->snd_cwnd
= tp
->snd_cwnd
;
1805 otp
->snd_ssthresh
= tp
->snd_ssthresh
;
1806 otp
->t_maxopd
= tp
->t_maxopd
;
1807 otp
->t_rcvtime
= tp
->t_rcvtime
;
1808 otp
->t_starttime
= tp
->t_starttime
;
1809 otp
->t_rtttime
= tp
->t_rtttime
;
1810 otp
->t_rtseq
= tp
->t_rtseq
;
1811 otp
->t_rxtcur
= tp
->t_rxtcur
;
1812 otp
->t_maxseg
= tp
->t_maxseg
;
1813 otp
->t_srtt
= tp
->t_srtt
;
1814 otp
->t_rttvar
= tp
->t_rttvar
;
1815 otp
->t_rxtshift
= tp
->t_rxtshift
;
1816 otp
->t_rttmin
= tp
->t_rttmin
;
1817 otp
->t_rttupdated
= tp
->t_rttupdated
;
1818 otp
->max_sndwnd
= tp
->max_sndwnd
;
1819 otp
->t_softerror
= tp
->t_softerror
;
1820 otp
->t_oobflags
= tp
->t_oobflags
;
1821 otp
->t_iobc
= tp
->t_iobc
;
1822 otp
->snd_scale
= tp
->snd_scale
;
1823 otp
->rcv_scale
= tp
->rcv_scale
;
1824 otp
->request_r_scale
= tp
->request_r_scale
;
1825 otp
->requested_s_scale
= tp
->requested_s_scale
;
1826 otp
->ts_recent
= tp
->ts_recent
;
1827 otp
->ts_recent_age
= tp
->ts_recent_age
;
1828 otp
->last_ack_sent
= tp
->last_ack_sent
;
1831 otp
->snd_recover
= tp
->snd_recover
;
1832 otp
->snd_cwnd_prev
= tp
->snd_cwnd_prev
;
1833 otp
->snd_ssthresh_prev
= tp
->snd_ssthresh_prev
;
1834 otp
->t_badrxtwin
= 0;
1838 tcp_pcblist SYSCTL_HANDLER_ARGS
1840 #pragma unused(oidp, arg1, arg2)
1841 int error
, i
= 0, n
;
1842 struct inpcb
**inp_list
;
1847 * The process of preparing the TCB list is too time-consuming and
1848 * resource-intensive to repeat twice on every request.
1850 lck_rw_lock_shared(tcbinfo
.ipi_lock
);
1851 if (req
->oldptr
== USER_ADDR_NULL
) {
1852 n
= tcbinfo
.ipi_count
;
1853 req
->oldidx
= 2 * (sizeof(xig
))
1854 + (n
+ n
/ 8) * sizeof(struct xtcpcb
);
1855 lck_rw_done(tcbinfo
.ipi_lock
);
1859 if (req
->newptr
!= USER_ADDR_NULL
) {
1860 lck_rw_done(tcbinfo
.ipi_lock
);
1865 * OK, now we're committed to doing something.
1867 gencnt
= tcbinfo
.ipi_gencnt
;
1868 n
= tcbinfo
.ipi_count
;
1870 bzero(&xig
, sizeof(xig
));
1871 xig
.xig_len
= sizeof(xig
);
1873 xig
.xig_gen
= gencnt
;
1874 xig
.xig_sogen
= so_gencnt
;
1875 error
= SYSCTL_OUT(req
, &xig
, sizeof(xig
));
1877 lck_rw_done(tcbinfo
.ipi_lock
);
1881 * We are done if there is no pcb
1884 lck_rw_done(tcbinfo
.ipi_lock
);
1888 inp_list
= _MALLOC(n
* sizeof(*inp_list
), M_TEMP
, M_WAITOK
);
1889 if (inp_list
== 0) {
1890 lck_rw_done(tcbinfo
.ipi_lock
);
1894 n
= get_tcp_inp_list(inp_list
, n
, gencnt
);
1897 for (i
= 0; i
< n
; i
++) {
1904 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) == WNT_STOPUSING
) {
1907 socket_lock(inp
->inp_socket
, 1);
1908 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
1909 socket_unlock(inp
->inp_socket
, 1);
1912 if (inp
->inp_gencnt
> gencnt
) {
1913 socket_unlock(inp
->inp_socket
, 1);
1917 bzero(&xt
, sizeof(xt
));
1918 xt
.xt_len
= sizeof(xt
);
1919 /* XXX should avoid extra copy */
1920 inpcb_to_compat(inp
, &xt
.xt_inp
);
1921 inp_ppcb
= inp
->inp_ppcb
;
1922 if (inp_ppcb
!= NULL
) {
1923 tcpcb_to_otcpcb((struct tcpcb
*)(void *)inp_ppcb
,
1926 bzero((char *) &xt
.xt_tp
, sizeof(xt
.xt_tp
));
1928 if (inp
->inp_socket
) {
1929 sotoxsocket(inp
->inp_socket
, &xt
.xt_socket
);
1932 socket_unlock(inp
->inp_socket
, 1);
1934 error
= SYSCTL_OUT(req
, &xt
, sizeof(xt
));
1938 * Give the user an updated idea of our state.
1939 * If the generation differs from what we told
1940 * her before, she knows that something happened
1941 * while we were processing this request, and it
1942 * might be necessary to retry.
1944 bzero(&xig
, sizeof(xig
));
1945 xig
.xig_len
= sizeof(xig
);
1946 xig
.xig_gen
= tcbinfo
.ipi_gencnt
;
1947 xig
.xig_sogen
= so_gencnt
;
1948 xig
.xig_count
= tcbinfo
.ipi_count
;
1949 error
= SYSCTL_OUT(req
, &xig
, sizeof(xig
));
1951 FREE(inp_list
, M_TEMP
);
1952 lck_rw_done(tcbinfo
.ipi_lock
);
1956 SYSCTL_PROC(_net_inet_tcp
, TCPCTL_PCBLIST
, pcblist
,
1957 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0,
1958 tcp_pcblist
, "S,xtcpcb", "List of active TCP connections");
1960 #if XNU_TARGET_OS_OSX
1963 tcpcb_to_xtcpcb64(struct tcpcb
*tp
, struct xtcpcb64
*otp
)
1965 otp
->t_segq
= (uint32_t)VM_KERNEL_ADDRPERM(tp
->t_segq
.lh_first
);
1966 otp
->t_dupacks
= tp
->t_dupacks
;
1967 otp
->t_timer
[TCPT_REXMT_EXT
] = tp
->t_timer
[TCPT_REXMT
];
1968 otp
->t_timer
[TCPT_PERSIST_EXT
] = tp
->t_timer
[TCPT_PERSIST
];
1969 otp
->t_timer
[TCPT_KEEP_EXT
] = tp
->t_timer
[TCPT_KEEP
];
1970 otp
->t_timer
[TCPT_2MSL_EXT
] = tp
->t_timer
[TCPT_2MSL
];
1971 otp
->t_state
= tp
->t_state
;
1972 otp
->t_flags
= tp
->t_flags
;
1973 otp
->t_force
= (tp
->t_flagsext
& TF_FORCE
) ? 1 : 0;
1974 otp
->snd_una
= tp
->snd_una
;
1975 otp
->snd_max
= tp
->snd_max
;
1976 otp
->snd_nxt
= tp
->snd_nxt
;
1977 otp
->snd_up
= tp
->snd_up
;
1978 otp
->snd_wl1
= tp
->snd_wl1
;
1979 otp
->snd_wl2
= tp
->snd_wl2
;
1982 otp
->rcv_nxt
= tp
->rcv_nxt
;
1983 otp
->rcv_adv
= tp
->rcv_adv
;
1984 otp
->rcv_wnd
= tp
->rcv_wnd
;
1985 otp
->rcv_up
= tp
->rcv_up
;
1986 otp
->snd_wnd
= tp
->snd_wnd
;
1987 otp
->snd_cwnd
= tp
->snd_cwnd
;
1988 otp
->snd_ssthresh
= tp
->snd_ssthresh
;
1989 otp
->t_maxopd
= tp
->t_maxopd
;
1990 otp
->t_rcvtime
= tp
->t_rcvtime
;
1991 otp
->t_starttime
= tp
->t_starttime
;
1992 otp
->t_rtttime
= tp
->t_rtttime
;
1993 otp
->t_rtseq
= tp
->t_rtseq
;
1994 otp
->t_rxtcur
= tp
->t_rxtcur
;
1995 otp
->t_maxseg
= tp
->t_maxseg
;
1996 otp
->t_srtt
= tp
->t_srtt
;
1997 otp
->t_rttvar
= tp
->t_rttvar
;
1998 otp
->t_rxtshift
= tp
->t_rxtshift
;
1999 otp
->t_rttmin
= tp
->t_rttmin
;
2000 otp
->t_rttupdated
= tp
->t_rttupdated
;
2001 otp
->max_sndwnd
= tp
->max_sndwnd
;
2002 otp
->t_softerror
= tp
->t_softerror
;
2003 otp
->t_oobflags
= tp
->t_oobflags
;
2004 otp
->t_iobc
= tp
->t_iobc
;
2005 otp
->snd_scale
= tp
->snd_scale
;
2006 otp
->rcv_scale
= tp
->rcv_scale
;
2007 otp
->request_r_scale
= tp
->request_r_scale
;
2008 otp
->requested_s_scale
= tp
->requested_s_scale
;
2009 otp
->ts_recent
= tp
->ts_recent
;
2010 otp
->ts_recent_age
= tp
->ts_recent_age
;
2011 otp
->last_ack_sent
= tp
->last_ack_sent
;
2014 otp
->snd_recover
= tp
->snd_recover
;
2015 otp
->snd_cwnd_prev
= tp
->snd_cwnd_prev
;
2016 otp
->snd_ssthresh_prev
= tp
->snd_ssthresh_prev
;
2017 otp
->t_badrxtwin
= 0;
2022 tcp_pcblist64 SYSCTL_HANDLER_ARGS
2024 #pragma unused(oidp, arg1, arg2)
2025 int error
, i
= 0, n
;
2026 struct inpcb
**inp_list
;
2031 * The process of preparing the TCB list is too time-consuming and
2032 * resource-intensive to repeat twice on every request.
2034 lck_rw_lock_shared(tcbinfo
.ipi_lock
);
2035 if (req
->oldptr
== USER_ADDR_NULL
) {
2036 n
= tcbinfo
.ipi_count
;
2037 req
->oldidx
= 2 * (sizeof(xig
))
2038 + (n
+ n
/ 8) * sizeof(struct xtcpcb64
);
2039 lck_rw_done(tcbinfo
.ipi_lock
);
2043 if (req
->newptr
!= USER_ADDR_NULL
) {
2044 lck_rw_done(tcbinfo
.ipi_lock
);
2049 * OK, now we're committed to doing something.
2051 gencnt
= tcbinfo
.ipi_gencnt
;
2052 n
= tcbinfo
.ipi_count
;
2054 bzero(&xig
, sizeof(xig
));
2055 xig
.xig_len
= sizeof(xig
);
2057 xig
.xig_gen
= gencnt
;
2058 xig
.xig_sogen
= so_gencnt
;
2059 error
= SYSCTL_OUT(req
, &xig
, sizeof(xig
));
2061 lck_rw_done(tcbinfo
.ipi_lock
);
2065 * We are done if there is no pcb
2068 lck_rw_done(tcbinfo
.ipi_lock
);
2072 inp_list
= _MALLOC(n
* sizeof(*inp_list
), M_TEMP
, M_WAITOK
);
2073 if (inp_list
== 0) {
2074 lck_rw_done(tcbinfo
.ipi_lock
);
2078 n
= get_tcp_inp_list(inp_list
, n
, gencnt
);
2081 for (i
= 0; i
< n
; i
++) {
2087 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) == WNT_STOPUSING
) {
2090 socket_lock(inp
->inp_socket
, 1);
2091 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
2092 socket_unlock(inp
->inp_socket
, 1);
2095 if (inp
->inp_gencnt
> gencnt
) {
2096 socket_unlock(inp
->inp_socket
, 1);
2100 bzero(&xt
, sizeof(xt
));
2101 xt
.xt_len
= sizeof(xt
);
2102 inpcb_to_xinpcb64(inp
, &xt
.xt_inpcb
);
2103 xt
.xt_inpcb
.inp_ppcb
=
2104 (uint64_t)VM_KERNEL_ADDRPERM(inp
->inp_ppcb
);
2105 if (inp
->inp_ppcb
!= NULL
) {
2106 tcpcb_to_xtcpcb64((struct tcpcb
*)inp
->inp_ppcb
,
2109 if (inp
->inp_socket
) {
2110 sotoxsocket64(inp
->inp_socket
,
2111 &xt
.xt_inpcb
.xi_socket
);
2114 socket_unlock(inp
->inp_socket
, 1);
2116 error
= SYSCTL_OUT(req
, &xt
, sizeof(xt
));
2120 * Give the user an updated idea of our state.
2121 * If the generation differs from what we told
2122 * her before, she knows that something happened
2123 * while we were processing this request, and it
2124 * might be necessary to retry.
2126 bzero(&xig
, sizeof(xig
));
2127 xig
.xig_len
= sizeof(xig
);
2128 xig
.xig_gen
= tcbinfo
.ipi_gencnt
;
2129 xig
.xig_sogen
= so_gencnt
;
2130 xig
.xig_count
= tcbinfo
.ipi_count
;
2131 error
= SYSCTL_OUT(req
, &xig
, sizeof(xig
));
2133 FREE(inp_list
, M_TEMP
);
2134 lck_rw_done(tcbinfo
.ipi_lock
);
2138 SYSCTL_PROC(_net_inet_tcp
, OID_AUTO
, pcblist64
,
2139 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0,
2140 tcp_pcblist64
, "S,xtcpcb64", "List of active TCP connections");
2142 #endif /* XNU_TARGET_OS_OSX */
2145 tcp_pcblist_n SYSCTL_HANDLER_ARGS
2147 #pragma unused(oidp, arg1, arg2)
2150 error
= get_pcblist_n(IPPROTO_TCP
, req
, &tcbinfo
);
2156 SYSCTL_PROC(_net_inet_tcp
, OID_AUTO
, pcblist_n
,
2157 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0,
2158 tcp_pcblist_n
, "S,xtcpcb_n", "List of active TCP connections");
2161 tcp_progress_indicators SYSCTL_HANDLER_ARGS
2163 #pragma unused(oidp, arg1, arg2)
2165 return ntstat_tcp_progress_indicators(req
);
2168 SYSCTL_PROC(_net_inet_tcp
, OID_AUTO
, progress
,
2169 CTLTYPE_STRUCT
| CTLFLAG_RW
| CTLFLAG_LOCKED
| CTLFLAG_ANYBODY
, 0, 0,
2170 tcp_progress_indicators
, "S", "Various items that indicate the current state of progress on the link");
2173 __private_extern__
void
2174 tcp_get_ports_used(uint32_t ifindex
, int protocol
, uint32_t flags
,
2177 inpcb_get_ports_used(ifindex
, protocol
, flags
, bitfield
,
2181 __private_extern__
uint32_t
2182 tcp_count_opportunistic(unsigned int ifindex
, u_int32_t flags
)
2184 return inpcb_count_opportunistic(ifindex
, &tcbinfo
, flags
);
2187 __private_extern__
uint32_t
2188 tcp_find_anypcb_byaddr(struct ifaddr
*ifa
)
2190 return inpcb_find_anypcb_byaddr(ifa
, &tcbinfo
);
2194 tcp_handle_msgsize(struct ip
*ip
, struct inpcb
*inp
)
2196 struct rtentry
*rt
= NULL
;
2197 u_short ifscope
= IFSCOPE_NONE
;
2199 struct sockaddr_in icmpsrc
= {
2200 .sin_len
= sizeof(struct sockaddr_in
),
2201 .sin_family
= AF_INET
, .sin_port
= 0, .sin_addr
= { .s_addr
= 0 },
2202 .sin_zero
= { 0, 0, 0, 0, 0, 0, 0, 0 }
2204 struct icmp
*icp
= NULL
;
2206 icp
= (struct icmp
*)(void *)
2207 ((caddr_t
)ip
- offsetof(struct icmp
, icmp_ip
));
2209 icmpsrc
.sin_addr
= icp
->icmp_ip
.ip_dst
;
2213 * If we got a needfrag and there is a host route to the
2214 * original destination, and the MTU is not locked, then
2215 * set the MTU in the route to the suggested new value
2216 * (if given) and then notify as usual. The ULPs will
2217 * notice that the MTU has changed and adapt accordingly.
2218 * If no new MTU was suggested, then we guess a new one
2219 * less than the current value. If the new MTU is
2220 * unreasonably small (defined by sysctl tcp_minmss), then
2221 * we reset the MTU to the interface value and enable the
2222 * lock bit, indicating that we are no longer doing MTU
2225 if (ROUTE_UNUSABLE(&(inp
->inp_route
)) == false) {
2226 rt
= inp
->inp_route
.ro_rt
;
2230 * icmp6_mtudisc_update scopes the routing lookup
2231 * to the incoming interface (delivered from mbuf
2233 * That is mostly ok but for asymmetric networks
2234 * that may be an issue.
2235 * Frag needed OR Packet too big really communicates
2236 * MTU for the out data path.
2237 * Take the interface scope from cached route or
2238 * the last outgoing interface from inp
2241 ifscope
= (rt
->rt_ifp
!= NULL
) ?
2242 rt
->rt_ifp
->if_index
: IFSCOPE_NONE
;
2244 ifscope
= (inp
->inp_last_outifp
!= NULL
) ?
2245 inp
->inp_last_outifp
->if_index
: IFSCOPE_NONE
;
2249 !(rt
->rt_flags
& RTF_HOST
) ||
2250 (rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
))) {
2251 rt
= rtalloc1_scoped((struct sockaddr
*)&icmpsrc
, 0,
2252 RTF_CLONING
| RTF_PRCLONING
, ifscope
);
2261 if ((rt
->rt_flags
& RTF_HOST
) &&
2262 !(rt
->rt_rmx
.rmx_locks
& RTV_MTU
)) {
2263 mtu
= ntohs(icp
->icmp_nextmtu
);
2265 * XXX Stock BSD has changed the following
2266 * to compare with icp->icmp_ip.ip_len
2267 * to converge faster when sent packet
2268 * < route's MTU. We may want to adopt
2272 mtu
= ip_next_mtu(rt
->rt_rmx
.
2276 printf("MTU for %s reduced to %d\n",
2278 &icmpsrc
.sin_addr
, ipv4str
,
2279 sizeof(ipv4str
)), mtu
);
2281 if (mtu
< max(296, (tcp_minmss
+
2282 sizeof(struct tcpiphdr
)))) {
2283 rt
->rt_rmx
.rmx_locks
|= RTV_MTU
;
2284 } else if (rt
->rt_rmx
.rmx_mtu
> mtu
) {
2285 rt
->rt_rmx
.rmx_mtu
= mtu
;
2294 tcp_ctlinput(int cmd
, struct sockaddr
*sa
, void *vip
, __unused
struct ifnet
*ifp
)
2296 tcp_seq icmp_tcp_seq
;
2297 struct ip
*ip
= vip
;
2298 struct in_addr faddr
;
2303 void (*notify
)(struct inpcb
*, int) = tcp_notify
;
2305 faddr
= ((struct sockaddr_in
*)(void *)sa
)->sin_addr
;
2306 if (sa
->sa_family
!= AF_INET
|| faddr
.s_addr
== INADDR_ANY
) {
2310 if ((unsigned)cmd
>= PRC_NCMDS
) {
2314 /* Source quench is deprecated */
2315 if (cmd
== PRC_QUENCH
) {
2319 if (cmd
== PRC_MSGSIZE
) {
2320 notify
= tcp_mtudisc
;
2321 } else if (icmp_may_rst
&& (cmd
== PRC_UNREACH_ADMIN_PROHIB
||
2322 cmd
== PRC_UNREACH_PORT
|| cmd
== PRC_UNREACH_PROTOCOL
||
2323 cmd
== PRC_TIMXCEED_INTRANS
) && ip
) {
2324 notify
= tcp_drop_syn_sent
;
2327 * Hostdead is ugly because it goes linearly through all PCBs.
2328 * XXX: We never get this from ICMP, otherwise it makes an
2329 * excellent DoS attack on machines with many connections.
2331 else if (cmd
== PRC_HOSTDEAD
) {
2333 } else if (inetctlerrmap
[cmd
] == 0 && !PRC_IS_REDIRECT(cmd
)) {
2339 in_pcbnotifyall(&tcbinfo
, faddr
, inetctlerrmap
[cmd
], notify
);
2343 icp
= (struct icmp
*)(void *)
2344 ((caddr_t
)ip
- offsetof(struct icmp
, icmp_ip
));
2345 th
= (struct tcphdr
*)(void *)((caddr_t
)ip
+ (IP_VHL_HL(ip
->ip_vhl
) << 2));
2346 icmp_tcp_seq
= ntohl(th
->th_seq
);
2348 inp
= in_pcblookup_hash(&tcbinfo
, faddr
, th
->th_dport
,
2349 ip
->ip_src
, th
->th_sport
, 0, NULL
);
2352 inp
->inp_socket
== NULL
) {
2356 socket_lock(inp
->inp_socket
, 1);
2357 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) ==
2359 socket_unlock(inp
->inp_socket
, 1);
2363 if (PRC_IS_REDIRECT(cmd
)) {
2364 /* signal EHOSTDOWN, as it flushes the cached route */
2365 (*notify
)(inp
, EHOSTDOWN
);
2367 tp
= intotcpcb(inp
);
2368 if (SEQ_GEQ(icmp_tcp_seq
, tp
->snd_una
) &&
2369 SEQ_LT(icmp_tcp_seq
, tp
->snd_max
)) {
2370 if (cmd
== PRC_MSGSIZE
) {
2371 tcp_handle_msgsize(ip
, inp
);
2374 (*notify
)(inp
, inetctlerrmap
[cmd
]);
2377 socket_unlock(inp
->inp_socket
, 1);
2381 tcp6_ctlinput(int cmd
, struct sockaddr
*sa
, void *d
, __unused
struct ifnet
*ifp
)
2383 tcp_seq icmp_tcp_seq
;
2384 struct in6_addr
*dst
;
2385 void (*notify
)(struct inpcb
*, int) = tcp_notify
;
2386 struct ip6_hdr
*ip6
;
2390 struct icmp6_hdr
*icmp6
;
2391 struct ip6ctlparam
*ip6cp
= NULL
;
2392 const struct sockaddr_in6
*sa6_src
= NULL
;
2401 if (sa
->sa_family
!= AF_INET6
||
2402 sa
->sa_len
!= sizeof(struct sockaddr_in6
)) {
2406 /* Source quench is deprecated */
2407 if (cmd
== PRC_QUENCH
) {
2411 if ((unsigned)cmd
>= PRC_NCMDS
) {
2415 /* if the parameter is from icmp6, decode it. */
2417 ip6cp
= (struct ip6ctlparam
*)d
;
2418 icmp6
= ip6cp
->ip6c_icmp6
;
2420 ip6
= ip6cp
->ip6c_ip6
;
2421 off
= ip6cp
->ip6c_off
;
2422 sa6_src
= ip6cp
->ip6c_src
;
2423 dst
= ip6cp
->ip6c_finaldst
;
2427 off
= 0; /* fool gcc */
2432 if (cmd
== PRC_MSGSIZE
) {
2433 notify
= tcp_mtudisc
;
2434 } else if (icmp_may_rst
&& (cmd
== PRC_UNREACH_ADMIN_PROHIB
||
2435 cmd
== PRC_UNREACH_PORT
|| cmd
== PRC_TIMXCEED_INTRANS
) &&
2437 notify
= tcp_drop_syn_sent
;
2440 * Hostdead is ugly because it goes linearly through all PCBs.
2441 * XXX: We never get this from ICMP, otherwise it makes an
2442 * excellent DoS attack on machines with many connections.
2444 else if (cmd
== PRC_HOSTDEAD
) {
2446 } else if (inet6ctlerrmap
[cmd
] == 0 && !PRC_IS_REDIRECT(cmd
)) {
2452 in6_pcbnotify(&tcbinfo
, sa
, 0, (struct sockaddr
*)(size_t)sa6_src
,
2453 0, cmd
, NULL
, notify
);
2457 /* Check if we can safely get the ports from the tcp hdr */
2460 (int32_t) (off
+ sizeof(struct tcp_ports
)))) {
2463 bzero(&t_ports
, sizeof(struct tcp_ports
));
2464 m_copydata(m
, off
, sizeof(struct tcp_ports
), (caddr_t
)&t_ports
);
2466 off
+= sizeof(struct tcp_ports
);
2467 if (m
->m_pkthdr
.len
< (int32_t) (off
+ sizeof(tcp_seq
))) {
2470 m_copydata(m
, off
, sizeof(tcp_seq
), (caddr_t
)&icmp_tcp_seq
);
2471 icmp_tcp_seq
= ntohl(icmp_tcp_seq
);
2473 if (cmd
== PRC_MSGSIZE
) {
2474 mtu
= ntohl(icmp6
->icmp6_mtu
);
2476 * If no alternative MTU was proposed, or the proposed
2477 * MTU was too small, set to the min.
2479 if (mtu
< IPV6_MMTU
) {
2480 mtu
= IPV6_MMTU
- 8;
2484 inp
= in6_pcblookup_hash(&tcbinfo
, &ip6
->ip6_dst
, t_ports
.th_dport
,
2485 &ip6
->ip6_src
, t_ports
.th_sport
, 0, NULL
);
2488 inp
->inp_socket
== NULL
) {
2492 socket_lock(inp
->inp_socket
, 1);
2493 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) ==
2495 socket_unlock(inp
->inp_socket
, 1);
2499 if (PRC_IS_REDIRECT(cmd
)) {
2500 /* signal EHOSTDOWN, as it flushes the cached route */
2501 (*notify
)(inp
, EHOSTDOWN
);
2503 tp
= intotcpcb(inp
);
2504 if (SEQ_GEQ(icmp_tcp_seq
, tp
->snd_una
) &&
2505 SEQ_LT(icmp_tcp_seq
, tp
->snd_max
)) {
2506 if (cmd
== PRC_MSGSIZE
) {
2508 * Only process the offered MTU if it
2509 * is smaller than the current one.
2511 if (mtu
< tp
->t_maxseg
+
2512 (sizeof(struct tcphdr
) + sizeof(struct ip6_hdr
))) {
2513 (*notify
)(inp
, inetctlerrmap
[cmd
]);
2516 (*notify
)(inp
, inetctlerrmap
[cmd
]);
2520 socket_unlock(inp
->inp_socket
, 1);
2525 * Following is where TCP initial sequence number generation occurs.
2527 * There are two places where we must use initial sequence numbers:
2528 * 1. In SYN-ACK packets.
2529 * 2. In SYN packets.
2531 * The ISNs in SYN-ACK packets have no monotonicity requirement,
2532 * and should be as unpredictable as possible to avoid the possibility
2533 * of spoofing and/or connection hijacking. To satisfy this
2534 * requirement, SYN-ACK ISNs are generated via the arc4random()
2535 * function. If exact RFC 1948 compliance is requested via sysctl,
2536 * these ISNs will be generated just like those in SYN packets.
2538 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
2539 * depends on this property. In addition, these ISNs should be
2540 * unguessable so as to prevent connection hijacking. To satisfy
2541 * the requirements of this situation, the algorithm outlined in
2542 * RFC 1948 is used to generate sequence numbers.
2544 * For more information on the theory of operation, please see
2547 * Implementation details:
2549 * Time is based off the system timer, and is corrected so that it
2550 * increases by one megabyte per second. This allows for proper
2551 * recycling on high speed LANs while still leaving over an hour
2554 * Two sysctls control the generation of ISNs:
2556 * net.inet.tcp.isn_reseed_interval controls the number of seconds
2557 * between seeding of isn_secret. This is normally set to zero,
2558 * as reseeding should not be necessary.
2560 * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
2561 * strictly. When strict compliance is requested, reseeding is
2562 * disabled and SYN-ACKs will be generated in the same manner as
2563 * SYNs. Strict mode is disabled by default.
2567 #define ISN_BYTES_PER_SECOND 1048576
2570 tcp_new_isn(struct tcpcb
*tp
)
2572 u_int32_t md5_buffer
[4];
2574 struct timeval timenow
;
2575 u_char isn_secret
[32];
2576 long isn_last_reseed
= 0;
2579 /* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
2580 if (((tp
->t_state
== TCPS_LISTEN
) || (tp
->t_state
== TCPS_TIME_WAIT
)) &&
2581 tcp_strict_rfc1948
== 0)
2583 { return RandomULong(); }
2585 { return arc4random(); }
2587 getmicrotime(&timenow
);
2589 /* Seed if this is the first use, reseed if requested. */
2590 if ((isn_last_reseed
== 0) ||
2591 ((tcp_strict_rfc1948
== 0) && (tcp_isn_reseed_interval
> 0) &&
2592 (((u_int
)isn_last_reseed
+ (u_int
)tcp_isn_reseed_interval
* hz
)
2593 < (u_int
)timenow
.tv_sec
))) {
2595 read_frandom(&isn_secret
, sizeof(isn_secret
));
2597 read_random_unlimited(&isn_secret
, sizeof(isn_secret
));
2599 isn_last_reseed
= timenow
.tv_sec
;
2602 /* Compute the md5 hash and return the ISN. */
2604 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_fport
,
2606 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_lport
,
2608 if ((tp
->t_inpcb
->inp_vflag
& INP_IPV6
) != 0) {
2609 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->in6p_faddr
,
2610 sizeof(struct in6_addr
));
2611 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->in6p_laddr
,
2612 sizeof(struct in6_addr
));
2614 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_faddr
,
2615 sizeof(struct in_addr
));
2616 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_laddr
,
2617 sizeof(struct in_addr
));
2619 MD5Update(&isn_ctx
, (u_char
*) &isn_secret
, sizeof(isn_secret
));
2620 MD5Final((u_char
*) &md5_buffer
, &isn_ctx
);
2621 new_isn
= (tcp_seq
) md5_buffer
[0];
2622 new_isn
+= timenow
.tv_sec
* (ISN_BYTES_PER_SECOND
/ hz
);
2628 * When a specific ICMP unreachable message is received and the
2629 * connection state is SYN-SENT, drop the connection. This behavior
2630 * is controlled by the icmp_may_rst sysctl.
2633 tcp_drop_syn_sent(struct inpcb
*inp
, int errno
)
2635 struct tcpcb
*tp
= intotcpcb(inp
);
2637 if (tp
&& tp
->t_state
== TCPS_SYN_SENT
) {
2638 tcp_drop(tp
, errno
);
2643 * When `need fragmentation' ICMP is received, update our idea of the MSS
2644 * based on the new value in the route. Also nudge TCP to send something,
2645 * since we know the packet we just sent was dropped.
2646 * This duplicates some code in the tcp_mss() function in tcp_input.c.
2649 tcp_mtudisc(struct inpcb
*inp
, __unused
int errno
)
2651 struct tcpcb
*tp
= intotcpcb(inp
);
2653 struct socket
*so
= inp
->inp_socket
;
2656 u_int32_t protoHdrOverhead
= sizeof(struct tcpiphdr
);
2657 int isipv6
= (tp
->t_inpcb
->inp_vflag
& INP_IPV6
) != 0;
2660 * Nothing left to send after the socket is defunct or TCP is in the closed state
2662 if ((so
->so_state
& SS_DEFUNCT
) || (tp
!= NULL
&& tp
->t_state
== TCPS_CLOSED
)) {
2667 protoHdrOverhead
= sizeof(struct ip6_hdr
) +
2668 sizeof(struct tcphdr
);
2673 rt
= tcp_rtlookup6(inp
, IFSCOPE_NONE
);
2675 rt
= tcp_rtlookup(inp
, IFSCOPE_NONE
);
2677 if (!rt
|| !rt
->rt_rmx
.rmx_mtu
) {
2678 tp
->t_maxopd
= tp
->t_maxseg
=
2679 isipv6
? tcp_v6mssdflt
:
2682 /* Route locked during lookup above */
2688 mtu
= rt
->rt_rmx
.rmx_mtu
;
2690 /* Route locked during lookup above */
2694 // Adjust MTU if necessary.
2695 mtu
= necp_socket_get_effective_mtu(inp
, mtu
);
2697 mss
= mtu
- protoHdrOverhead
;
2700 mss
= min(mss
, tp
->t_maxopd
);
2703 * XXX - The above conditional probably violates the TCP
2704 * spec. The problem is that, since we don't know the
2705 * other end's MSS, we are supposed to use a conservative
2706 * default. But, if we do that, then MTU discovery will
2707 * never actually take place, because the conservative
2708 * default is much less than the MTUs typically seen
2709 * on the Internet today. For the moment, we'll sweep
2710 * this under the carpet.
2712 * The conservative default might not actually be a problem
2713 * if the only case this occurs is when sending an initial
2714 * SYN with options and data to a host we've never talked
2715 * to before. Then, they will reply with an MSS value which
2716 * will get recorded and the new parameters should get
2717 * recomputed. For Further Study.
2719 if (tp
->t_maxopd
<= mss
) {
2724 if ((tp
->t_flags
& (TF_REQ_TSTMP
| TF_NOOPT
)) == TF_REQ_TSTMP
&&
2725 (tp
->t_flags
& TF_RCVD_TSTMP
) == TF_RCVD_TSTMP
) {
2726 mss
-= TCPOLEN_TSTAMP_APPA
;
2730 mss
-= mptcp_adj_mss(tp
, TRUE
);
2732 if (so
->so_snd
.sb_hiwat
< mss
) {
2733 mss
= so
->so_snd
.sb_hiwat
;
2738 ASSERT(tp
->t_maxseg
);
2741 * Reset the slow-start flight size as it may depends on the
2744 if (CC_ALGO(tp
)->cwnd_init
!= NULL
) {
2745 CC_ALGO(tp
)->cwnd_init(tp
);
2747 tcpstat
.tcps_mturesent
++;
2749 tp
->snd_nxt
= tp
->snd_una
;
2755 * Look-up the routing entry to the peer of this inpcb. If no route
2756 * is found and it cannot be allocated the return NULL. This routine
2757 * is called by TCP routines that access the rmx structure and by tcp_mss
2758 * to get the interface MTU. If a route is found, this routine will
2759 * hold the rtentry lock; the caller is responsible for unlocking.
2762 tcp_rtlookup(struct inpcb
*inp
, unsigned int input_ifscope
)
2768 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
2770 ro
= &inp
->inp_route
;
2771 if ((rt
= ro
->ro_rt
) != NULL
) {
2775 if (ROUTE_UNUSABLE(ro
)) {
2781 /* No route yet, so try to acquire one */
2782 if (inp
->inp_faddr
.s_addr
!= INADDR_ANY
) {
2783 unsigned int ifscope
;
2785 ro
->ro_dst
.sa_family
= AF_INET
;
2786 ro
->ro_dst
.sa_len
= sizeof(struct sockaddr_in
);
2787 ((struct sockaddr_in
*)(void *)&ro
->ro_dst
)->sin_addr
=
2791 * If the socket was bound to an interface, then
2792 * the bound-to-interface takes precedence over
2793 * the inbound interface passed in by the caller
2794 * (if we get here as part of the output path then
2795 * input_ifscope is IFSCOPE_NONE).
2797 ifscope
= (inp
->inp_flags
& INP_BOUND_IF
) ?
2798 inp
->inp_boundifp
->if_index
: input_ifscope
;
2800 rtalloc_scoped(ro
, ifscope
);
2801 if ((rt
= ro
->ro_rt
) != NULL
) {
2807 RT_LOCK_ASSERT_HELD(rt
);
2811 * Update MTU discovery determination. Don't do it if:
2812 * 1) it is disabled via the sysctl
2813 * 2) the route isn't up
2814 * 3) the MTU is locked (if it is, then discovery has been
2818 tp
= intotcpcb(inp
);
2820 if (!path_mtu_discovery
|| ((rt
!= NULL
) &&
2821 (!(rt
->rt_flags
& RTF_UP
) || (rt
->rt_rmx
.rmx_locks
& RTV_MTU
)))) {
2822 tp
->t_flags
&= ~TF_PMTUD
;
2824 tp
->t_flags
|= TF_PMTUD
;
2827 if (rt
!= NULL
&& rt
->rt_ifp
!= NULL
) {
2828 somultipages(inp
->inp_socket
,
2829 (rt
->rt_ifp
->if_hwassist
& IFNET_MULTIPAGES
));
2830 tcp_set_tso(tp
, rt
->rt_ifp
);
2831 soif2kcl(inp
->inp_socket
,
2832 (rt
->rt_ifp
->if_eflags
& IFEF_2KCL
));
2833 tcp_set_ecn(tp
, rt
->rt_ifp
);
2834 if (inp
->inp_last_outifp
== NULL
) {
2835 inp
->inp_last_outifp
= rt
->rt_ifp
;
2839 /* Note if the peer is local */
2840 if (rt
!= NULL
&& !(rt
->rt_ifp
->if_flags
& IFF_POINTOPOINT
) &&
2841 (rt
->rt_gateway
->sa_family
== AF_LINK
||
2842 rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
||
2843 in_localaddr(inp
->inp_faddr
))) {
2844 tp
->t_flags
|= TF_LOCAL
;
2848 * Caller needs to call RT_UNLOCK(rt).
2854 tcp_rtlookup6(struct inpcb
*inp
, unsigned int input_ifscope
)
2856 struct route_in6
*ro6
;
2860 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
2862 ro6
= &inp
->in6p_route
;
2863 if ((rt
= ro6
->ro_rt
) != NULL
) {
2867 if (ROUTE_UNUSABLE(ro6
)) {
2873 /* No route yet, so try to acquire one */
2874 if (!IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_faddr
)) {
2875 struct sockaddr_in6
*dst6
;
2876 unsigned int ifscope
;
2878 dst6
= (struct sockaddr_in6
*)&ro6
->ro_dst
;
2879 dst6
->sin6_family
= AF_INET6
;
2880 dst6
->sin6_len
= sizeof(*dst6
);
2881 dst6
->sin6_addr
= inp
->in6p_faddr
;
2884 * If the socket was bound to an interface, then
2885 * the bound-to-interface takes precedence over
2886 * the inbound interface passed in by the caller
2887 * (if we get here as part of the output path then
2888 * input_ifscope is IFSCOPE_NONE).
2890 ifscope
= (inp
->inp_flags
& INP_BOUND_IF
) ?
2891 inp
->inp_boundifp
->if_index
: input_ifscope
;
2893 rtalloc_scoped((struct route
*)ro6
, ifscope
);
2894 if ((rt
= ro6
->ro_rt
) != NULL
) {
2900 RT_LOCK_ASSERT_HELD(rt
);
2904 * Update path MTU Discovery determination
2905 * while looking up the route:
2906 * 1) we have a valid route to the destination
2907 * 2) the MTU is not locked (if it is, then discovery has been
2912 tp
= intotcpcb(inp
);
2915 * Update MTU discovery determination. Don't do it if:
2916 * 1) it is disabled via the sysctl
2917 * 2) the route isn't up
2918 * 3) the MTU is locked (if it is, then discovery has been
2922 if (!path_mtu_discovery
|| ((rt
!= NULL
) &&
2923 (!(rt
->rt_flags
& RTF_UP
) || (rt
->rt_rmx
.rmx_locks
& RTV_MTU
)))) {
2924 tp
->t_flags
&= ~TF_PMTUD
;
2926 tp
->t_flags
|= TF_PMTUD
;
2929 if (rt
!= NULL
&& rt
->rt_ifp
!= NULL
) {
2930 somultipages(inp
->inp_socket
,
2931 (rt
->rt_ifp
->if_hwassist
& IFNET_MULTIPAGES
));
2932 tcp_set_tso(tp
, rt
->rt_ifp
);
2933 soif2kcl(inp
->inp_socket
,
2934 (rt
->rt_ifp
->if_eflags
& IFEF_2KCL
));
2935 tcp_set_ecn(tp
, rt
->rt_ifp
);
2936 if (inp
->inp_last_outifp
== NULL
) {
2937 inp
->inp_last_outifp
= rt
->rt_ifp
;
2940 /* Note if the peer is local */
2941 if (!(rt
->rt_ifp
->if_flags
& IFF_POINTOPOINT
) &&
2942 (IN6_IS_ADDR_LOOPBACK(&inp
->in6p_faddr
) ||
2943 IN6_IS_ADDR_LINKLOCAL(&inp
->in6p_faddr
) ||
2944 rt
->rt_gateway
->sa_family
== AF_LINK
||
2945 in6_localaddr(&inp
->in6p_faddr
))) {
2946 tp
->t_flags
|= TF_LOCAL
;
2951 * Caller needs to call RT_UNLOCK(rt).
2957 /* compute ESP/AH header size for TCP, including outer IP header. */
2959 ipsec_hdrsiz_tcp(struct tcpcb
*tp
)
2965 struct ip6_hdr
*ip6
= NULL
;
2968 if ((tp
== NULL
) || ((inp
= tp
->t_inpcb
) == NULL
)) {
2971 MGETHDR(m
, M_DONTWAIT
, MT_DATA
); /* MAC-OK */
2976 if ((inp
->inp_vflag
& INP_IPV6
) != 0) {
2977 ip6
= mtod(m
, struct ip6_hdr
*);
2978 th
= (struct tcphdr
*)(void *)(ip6
+ 1);
2979 m
->m_pkthdr
.len
= m
->m_len
=
2980 sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
);
2981 tcp_fillheaders(tp
, ip6
, th
);
2982 hdrsiz
= ipsec6_hdrsiz(m
, IPSEC_DIR_OUTBOUND
, inp
);
2984 ip
= mtod(m
, struct ip
*);
2985 th
= (struct tcphdr
*)(ip
+ 1);
2986 m
->m_pkthdr
.len
= m
->m_len
= sizeof(struct tcpiphdr
);
2987 tcp_fillheaders(tp
, ip
, th
);
2988 hdrsiz
= ipsec4_hdrsiz(m
, IPSEC_DIR_OUTBOUND
, inp
);
2996 tcp_lock(struct socket
*so
, int refcount
, void *lr
)
3001 lr_saved
= __builtin_return_address(0);
3007 if (so
->so_pcb
!= NULL
) {
3008 if (so
->so_flags
& SOF_MP_SUBFLOW
) {
3009 struct mptcb
*mp_tp
= tptomptp(sototcpcb(so
));
3010 struct socket
*mp_so
= mptetoso(mp_tp
->mpt_mpte
);
3012 socket_lock(mp_so
, refcount
);
3015 * Check if we became non-MPTCP while waiting for the lock.
3016 * If yes, we have to retry to grab the right lock.
3018 if (!(so
->so_flags
& SOF_MP_SUBFLOW
)) {
3019 socket_unlock(mp_so
, refcount
);
3023 lck_mtx_lock(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
);
3025 if (so
->so_flags
& SOF_MP_SUBFLOW
) {
3027 * While waiting for the lock, we might have
3028 * become MPTCP-enabled (see mptcp_subflow_socreate).
3030 lck_mtx_unlock(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
);
3035 panic("tcp_lock: so=%p NO PCB! lr=%p lrh= %s\n",
3036 so
, lr_saved
, solockhistory_nr(so
));
3040 if (so
->so_usecount
< 0) {
3041 panic("tcp_lock: so=%p so_pcb=%p lr=%p ref=%x lrh= %s\n",
3042 so
, so
->so_pcb
, lr_saved
, so
->so_usecount
,
3043 solockhistory_nr(so
));
3049 so
->lock_lr
[so
->next_lock_lr
] = lr_saved
;
3050 so
->next_lock_lr
= (so
->next_lock_lr
+ 1) % SO_LCKDBG_MAX
;
3055 tcp_unlock(struct socket
*so
, int refcount
, void *lr
)
3060 lr_saved
= __builtin_return_address(0);
3065 #ifdef MORE_TCPLOCK_DEBUG
3066 printf("tcp_unlock: so=0x%llx sopcb=0x%llx lock=0x%llx ref=%x "
3067 "lr=0x%llx\n", (uint64_t)VM_KERNEL_ADDRPERM(so
),
3068 (uint64_t)VM_KERNEL_ADDRPERM(so
->so_pcb
),
3069 (uint64_t)VM_KERNEL_ADDRPERM(&(sotoinpcb(so
)->inpcb_mtx
)),
3070 so
->so_usecount
, (uint64_t)VM_KERNEL_ADDRPERM(lr_saved
));
3076 if (so
->so_usecount
< 0) {
3077 panic("tcp_unlock: so=%p usecount=%x lrh= %s\n",
3078 so
, so
->so_usecount
, solockhistory_nr(so
));
3081 if (so
->so_pcb
== NULL
) {
3082 panic("tcp_unlock: so=%p NO PCB usecount=%x lr=%p lrh= %s\n",
3083 so
, so
->so_usecount
, lr_saved
, solockhistory_nr(so
));
3086 so
->unlock_lr
[so
->next_unlock_lr
] = lr_saved
;
3087 so
->next_unlock_lr
= (so
->next_unlock_lr
+ 1) % SO_LCKDBG_MAX
;
3089 if (so
->so_flags
& SOF_MP_SUBFLOW
) {
3090 struct mptcb
*mp_tp
= tptomptp(sototcpcb(so
));
3091 struct socket
*mp_so
= mptetoso(mp_tp
->mpt_mpte
);
3093 socket_lock_assert_owned(mp_so
);
3095 socket_unlock(mp_so
, refcount
);
3097 LCK_MTX_ASSERT(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
,
3098 LCK_MTX_ASSERT_OWNED
);
3099 lck_mtx_unlock(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
);
3106 tcp_getlock(struct socket
*so
, int flags
)
3108 struct inpcb
*inp
= sotoinpcb(so
);
3111 if (so
->so_usecount
< 0) {
3112 panic("tcp_getlock: so=%p usecount=%x lrh= %s\n",
3113 so
, so
->so_usecount
, solockhistory_nr(so
));
3116 if (so
->so_flags
& SOF_MP_SUBFLOW
) {
3117 struct mptcb
*mp_tp
= tptomptp(sototcpcb(so
));
3118 struct socket
*mp_so
= mptetoso(mp_tp
->mpt_mpte
);
3120 return mp_so
->so_proto
->pr_getlock(mp_so
, flags
);
3122 return &inp
->inpcb_mtx
;
3125 panic("tcp_getlock: so=%p NULL so_pcb %s\n",
3126 so
, solockhistory_nr(so
));
3127 return so
->so_proto
->pr_domain
->dom_mtx
;
3132 * Determine if we can grow the recieve socket buffer to avoid sending
3133 * a zero window update to the peer. We allow even socket buffers that
3134 * have fixed size (set by the application) to grow if the resource
3135 * constraints are met. They will also be trimmed after the application
3139 tcp_sbrcv_grow_rwin(struct tcpcb
*tp
, struct sockbuf
*sb
)
3141 u_int32_t rcvbufinc
= tp
->t_maxseg
<< 4;
3142 u_int32_t rcvbuf
= sb
->sb_hiwat
;
3143 struct socket
*so
= tp
->t_inpcb
->inp_socket
;
3145 if (tcp_recv_bg
== 1 || IS_TCP_RECV_BG(so
)) {
3149 if (tcp_do_autorcvbuf
== 1 &&
3150 tcp_cansbgrow(sb
) &&
3151 (tp
->t_flags
& TF_SLOWLINK
) == 0 &&
3152 (so
->so_flags1
& SOF1_EXTEND_BK_IDLE_WANTED
) == 0 &&
3153 (rcvbuf
- sb
->sb_cc
) < rcvbufinc
&&
3154 rcvbuf
< tcp_autorcvbuf_max
&&
3155 (sb
->sb_idealsize
> 0 &&
3156 sb
->sb_hiwat
<= (sb
->sb_idealsize
+ rcvbufinc
))) {
3158 min((sb
->sb_hiwat
+ rcvbufinc
), tcp_autorcvbuf_max
));
3163 tcp_sbspace(struct tcpcb
*tp
)
3165 struct socket
*so
= tp
->t_inpcb
->inp_socket
;
3166 struct sockbuf
*sb
= &so
->so_rcv
;
3169 int32_t pending
= 0;
3171 if (so
->so_flags
& SOF_MP_SUBFLOW
) {
3172 /* We still need to grow TCP's buffer to have a BDP-estimate */
3173 tcp_sbrcv_grow_rwin(tp
, sb
);
3175 return mptcp_sbspace(tptomptp(tp
));
3178 tcp_sbrcv_grow_rwin(tp
, sb
);
3180 /* hiwat might have changed */
3181 rcvbuf
= sb
->sb_hiwat
;
3183 space
= ((int32_t) imin((rcvbuf
- sb
->sb_cc
),
3184 (sb
->sb_mbmax
- sb
->sb_mbcnt
)));
3190 /* Compensate for data being processed by content filters */
3191 pending
= cfil_sock_data_space(sb
);
3192 #endif /* CONTENT_FILTER */
3193 if (pending
> space
) {
3200 * Avoid increasing window size if the current window
3201 * is already very low, we could be in "persist" mode and
3202 * we could break some apps (see rdar://5409343)
3205 if (space
< tp
->t_maxseg
) {
3209 /* Clip window size for slower link */
3211 if (((tp
->t_flags
& TF_SLOWLINK
) != 0) && slowlink_wsize
> 0) {
3212 return imin(space
, slowlink_wsize
);
3218 * Checks TCP Segment Offloading capability for a given connection
3219 * and interface pair.
3222 tcp_set_tso(struct tcpcb
*tp
, struct ifnet
*ifp
)
3226 struct ifnet
*tunnel_ifp
= NULL
;
3227 #define IFNET_TSO_MASK (IFNET_TSO_IPV6 | IFNET_TSO_IPV4)
3229 tp
->t_flags
&= ~TF_TSO
;
3237 * We can't use TSO if this tcpcb belongs to an MPTCP session.
3239 if (tp
->t_mpflags
& TMPF_MPTCP_TRUE
) {
3244 isipv6
= (inp
->inp_vflag
& INP_IPV6
) != 0;
3247 * We can't use TSO if the TSO capability of the tunnel interface does
3248 * not match the capability of another interface known by TCP
3250 if (inp
->inp_policyresult
.results
.result
== NECP_KERNEL_POLICY_RESULT_IP_TUNNEL
) {
3251 u_int tunnel_if_index
= inp
->inp_policyresult
.results
.result_parameter
.tunnel_interface_index
;
3253 if (tunnel_if_index
!= 0) {
3254 ifnet_head_lock_shared();
3255 tunnel_ifp
= ifindex2ifnet
[tunnel_if_index
];
3259 if (tunnel_ifp
== NULL
) {
3263 if ((ifp
->if_hwassist
& IFNET_TSO_MASK
) != (tunnel_ifp
->if_hwassist
& IFNET_TSO_MASK
)) {
3264 if (tso_debug
> 0) {
3265 os_log(OS_LOG_DEFAULT
,
3266 "%s: %u > %u TSO 0 tunnel_ifp %s hwassist mismatch with ifp %s",
3268 ntohs(tp
->t_inpcb
->inp_lport
), ntohs(tp
->t_inpcb
->inp_fport
),
3269 tunnel_ifp
->if_xname
, ifp
->if_xname
);
3273 if (inp
->inp_last_outifp
!= NULL
&&
3274 (inp
->inp_last_outifp
->if_hwassist
& IFNET_TSO_MASK
) != (tunnel_ifp
->if_hwassist
& IFNET_TSO_MASK
)) {
3275 if (tso_debug
> 0) {
3276 os_log(OS_LOG_DEFAULT
,
3277 "%s: %u > %u TSO 0 tunnel_ifp %s hwassist mismatch with inp_last_outifp %s",
3279 ntohs(tp
->t_inpcb
->inp_lport
), ntohs(tp
->t_inpcb
->inp_fport
),
3280 tunnel_ifp
->if_xname
, inp
->inp_last_outifp
->if_xname
);
3284 if ((inp
->inp_flags
& INP_BOUND_IF
) && inp
->inp_boundifp
!= NULL
&&
3285 (inp
->inp_boundifp
->if_hwassist
& IFNET_TSO_MASK
) != (tunnel_ifp
->if_hwassist
& IFNET_TSO_MASK
)) {
3286 if (tso_debug
> 0) {
3287 os_log(OS_LOG_DEFAULT
,
3288 "%s: %u > %u TSO 0 tunnel_ifp %s hwassist mismatch with inp_boundifp %s",
3290 ntohs(tp
->t_inpcb
->inp_lport
), ntohs(tp
->t_inpcb
->inp_fport
),
3291 tunnel_ifp
->if_xname
, inp
->inp_boundifp
->if_xname
);
3298 if (ifp
->if_hwassist
& IFNET_TSO_IPV6
) {
3299 tp
->t_flags
|= TF_TSO
;
3300 if (ifp
->if_tso_v6_mtu
!= 0) {
3301 tp
->tso_max_segment_size
= ifp
->if_tso_v6_mtu
;
3303 tp
->tso_max_segment_size
= TCP_MAXWIN
;
3307 if (ifp
->if_hwassist
& IFNET_TSO_IPV4
) {
3308 tp
->t_flags
|= TF_TSO
;
3309 if (ifp
->if_tso_v4_mtu
!= 0) {
3310 tp
->tso_max_segment_size
= ifp
->if_tso_v4_mtu
;
3312 tp
->tso_max_segment_size
= TCP_MAXWIN
;
3314 if (INTF_ADJUST_MTU_FOR_CLAT46(ifp
)) {
3315 tp
->tso_max_segment_size
-=
3316 CLAT46_HDR_EXPANSION_OVERHD
;
3321 if (tso_debug
> 1) {
3322 os_log(OS_LOG_DEFAULT
, "%s: %u > %u TSO %d ifp %s",
3324 ntohs(tp
->t_inpcb
->inp_lport
),
3325 ntohs(tp
->t_inpcb
->inp_fport
),
3326 (tp
->t_flags
& TF_TSO
) != 0,
3327 ifp
!= NULL
? ifp
->if_xname
: "<NULL>");
3331 #define TIMEVAL_TO_TCPHZ(_tv_) ((uint32_t)((_tv_).tv_sec * TCP_RETRANSHZ + \
3332 (_tv_).tv_usec / TCP_RETRANSHZ_TO_USEC))
3335 * Function to calculate the tcp clock. The tcp clock will get updated
3336 * at the boundaries of the tcp layer. This is done at 3 places:
3337 * 1. Right before processing an input tcp packet
3338 * 2. Whenever a connection wants to access the network using tcp_usrreqs
3339 * 3. When a tcp timer fires or before tcp slow timeout
3344 calculate_tcp_clock(void)
3346 struct timeval tv
= tcp_uptime
;
3347 struct timeval interval
= {.tv_sec
= 0, .tv_usec
= TCP_RETRANSHZ_TO_USEC
};
3348 struct timeval now
, hold_now
;
3354 * Update coarse-grained networking timestamp (in sec.); the idea
3355 * is to update the counter returnable via net_uptime() when
3358 net_update_uptime_with_time(&now
);
3360 timevaladd(&tv
, &interval
);
3361 if (timevalcmp(&now
, &tv
, >)) {
3362 /* time to update the clock */
3363 lck_spin_lock(tcp_uptime_lock
);
3364 if (timevalcmp(&tcp_uptime
, &now
, >=)) {
3365 /* clock got updated while waiting for the lock */
3366 lck_spin_unlock(tcp_uptime_lock
);
3373 timevalsub(&now
, &tv
);
3375 incr
= TIMEVAL_TO_TCPHZ(now
);
3377 tcp_uptime
= hold_now
;
3381 lck_spin_unlock(tcp_uptime_lock
);
3386 * Compute receive window scaling that we are going to request
3387 * for this connection based on sb_hiwat. Try to leave some
3388 * room to potentially increase the window size upto a maximum
3389 * defined by the constant tcp_autorcvbuf_max.
3392 tcp_set_max_rwinscale(struct tcpcb
*tp
, struct socket
*so
)
3394 uint32_t maxsockbufsize
;
3396 tp
->request_r_scale
= MAX((uint8_t)tcp_win_scale
, tp
->request_r_scale
);
3397 maxsockbufsize
= ((so
->so_rcv
.sb_flags
& SB_USRSIZE
) != 0) ?
3398 so
->so_rcv
.sb_hiwat
: tcp_autorcvbuf_max
;
3401 * Window scale should not exceed what is needed
3402 * to send the max receive window size; adding 1 to TCP_MAXWIN
3405 while (tp
->request_r_scale
< TCP_MAX_WINSHIFT
&&
3406 ((TCP_MAXWIN
+ 1) << tp
->request_r_scale
) < maxsockbufsize
) {
3407 tp
->request_r_scale
++;
3409 tp
->request_r_scale
= MIN(tp
->request_r_scale
, TCP_MAX_WINSHIFT
);
3413 tcp_notsent_lowat_check(struct socket
*so
)
3415 struct inpcb
*inp
= sotoinpcb(so
);
3416 struct tcpcb
*tp
= NULL
;
3420 tp
= intotcpcb(inp
);
3427 notsent
= so
->so_snd
.sb_cc
-
3428 (tp
->snd_nxt
- tp
->snd_una
);
3431 * When we send a FIN or SYN, not_sent can be negative.
3432 * In that case also we need to send a write event to the
3433 * process if it is waiting. In the FIN case, it will
3434 * get an error from send because cantsendmore will be set.
3436 if (notsent
<= tp
->t_notsent_lowat
) {
3441 * When Nagle's algorithm is not disabled, it is better
3442 * to wakeup the client until there is atleast one
3443 * maxseg of data to write.
3445 if ((tp
->t_flags
& TF_NODELAY
) == 0 &&
3446 notsent
> 0 && notsent
< tp
->t_maxseg
) {
3453 tcp_rxtseg_insert(struct tcpcb
*tp
, tcp_seq start
, tcp_seq end
)
3455 struct tcp_rxt_seg
*rxseg
= NULL
, *prev
= NULL
, *next
= NULL
;
3456 uint16_t rxcount
= 0;
3458 if (SLIST_EMPTY(&tp
->t_rxt_segments
)) {
3459 tp
->t_dsack_lastuna
= tp
->snd_una
;
3462 * First check if there is a segment already existing for this
3466 SLIST_FOREACH(rxseg
, &tp
->t_rxt_segments
, rx_link
) {
3467 if (SEQ_GT(rxseg
->rx_start
, start
)) {
3474 /* check if prev seg is for this sequence */
3475 if (prev
!= NULL
&& SEQ_LEQ(prev
->rx_start
, start
) &&
3476 SEQ_GEQ(prev
->rx_end
, end
)) {
3482 * There are a couple of possibilities at this point.
3483 * 1. prev overlaps with the beginning of this sequence
3484 * 2. next overlaps with the end of this sequence
3485 * 3. there is no overlap.
3488 if (prev
!= NULL
&& SEQ_GT(prev
->rx_end
, start
)) {
3489 if (prev
->rx_start
== start
&& SEQ_GT(end
, prev
->rx_end
)) {
3490 start
= prev
->rx_end
+ 1;
3493 prev
->rx_end
= (start
- 1);
3494 rxcount
= prev
->rx_count
;
3498 if (next
!= NULL
&& SEQ_LT(next
->rx_start
, end
)) {
3499 if (SEQ_LEQ(next
->rx_end
, end
)) {
3500 end
= next
->rx_start
- 1;
3503 next
->rx_start
= end
+ 1;
3504 rxcount
= next
->rx_count
;
3507 if (!SEQ_LT(start
, end
)) {
3511 rxseg
= (struct tcp_rxt_seg
*) zalloc(tcp_rxt_seg_zone
);
3512 if (rxseg
== NULL
) {
3515 bzero(rxseg
, sizeof(*rxseg
));
3516 rxseg
->rx_start
= start
;
3517 rxseg
->rx_end
= end
;
3518 rxseg
->rx_count
= rxcount
+ 1;
3521 SLIST_INSERT_AFTER(prev
, rxseg
, rx_link
);
3523 SLIST_INSERT_HEAD(&tp
->t_rxt_segments
, rxseg
, rx_link
);
3527 struct tcp_rxt_seg
*
3528 tcp_rxtseg_find(struct tcpcb
*tp
, tcp_seq start
, tcp_seq end
)
3530 struct tcp_rxt_seg
*rxseg
;
3531 if (SLIST_EMPTY(&tp
->t_rxt_segments
)) {
3535 SLIST_FOREACH(rxseg
, &tp
->t_rxt_segments
, rx_link
) {
3536 if (SEQ_LEQ(rxseg
->rx_start
, start
) &&
3537 SEQ_GEQ(rxseg
->rx_end
, end
)) {
3540 if (SEQ_GT(rxseg
->rx_start
, start
)) {
3548 tcp_rxtseg_set_spurious(struct tcpcb
*tp
, tcp_seq start
, tcp_seq end
)
3550 struct tcp_rxt_seg
*rxseg
;
3551 if (SLIST_EMPTY(&tp
->t_rxt_segments
)) {
3555 SLIST_FOREACH(rxseg
, &tp
->t_rxt_segments
, rx_link
) {
3556 if (SEQ_GEQ(rxseg
->rx_start
, start
) &&
3557 SEQ_LEQ(rxseg
->rx_end
, end
)) {
3559 * If the segment was retransmitted only once, mark it as
3562 if (rxseg
->rx_count
== 1) {
3563 rxseg
->rx_flags
|= TCP_RXT_SPURIOUS
;
3567 if (SEQ_GEQ(rxseg
->rx_start
, end
)) {
3575 tcp_rxtseg_clean(struct tcpcb
*tp
)
3577 struct tcp_rxt_seg
*rxseg
, *next
;
3579 SLIST_FOREACH_SAFE(rxseg
, &tp
->t_rxt_segments
, rx_link
, next
) {
3580 SLIST_REMOVE(&tp
->t_rxt_segments
, rxseg
,
3581 tcp_rxt_seg
, rx_link
);
3582 zfree(tcp_rxt_seg_zone
, rxseg
);
3584 tp
->t_dsack_lastuna
= tp
->snd_max
;
3588 tcp_rxtseg_detect_bad_rexmt(struct tcpcb
*tp
, tcp_seq th_ack
)
3590 boolean_t bad_rexmt
;
3591 struct tcp_rxt_seg
*rxseg
;
3593 if (SLIST_EMPTY(&tp
->t_rxt_segments
)) {
3598 * If all of the segments in this window are not cumulatively
3599 * acknowledged, then there can still be undetected packet loss.
3600 * Do not restore congestion window in that case.
3602 if (SEQ_LT(th_ack
, tp
->snd_recover
)) {
3607 SLIST_FOREACH(rxseg
, &tp
->t_rxt_segments
, rx_link
) {
3608 if (!(rxseg
->rx_flags
& TCP_RXT_SPURIOUS
)) {
3617 tcp_rxtseg_dsack_for_tlp(struct tcpcb
*tp
)
3619 boolean_t dsack_for_tlp
= FALSE
;
3620 struct tcp_rxt_seg
*rxseg
;
3621 if (SLIST_EMPTY(&tp
->t_rxt_segments
)) {
3625 SLIST_FOREACH(rxseg
, &tp
->t_rxt_segments
, rx_link
) {
3626 if (rxseg
->rx_count
== 1 &&
3627 SLIST_NEXT(rxseg
, rx_link
) == NULL
&&
3628 (rxseg
->rx_flags
& TCP_RXT_DSACK_FOR_TLP
)) {
3629 dsack_for_tlp
= TRUE
;
3633 return dsack_for_tlp
;
3637 tcp_rxtseg_total_size(struct tcpcb
*tp
)
3639 struct tcp_rxt_seg
*rxseg
;
3640 u_int32_t total_size
= 0;
3642 SLIST_FOREACH(rxseg
, &tp
->t_rxt_segments
, rx_link
) {
3643 total_size
+= (rxseg
->rx_end
- rxseg
->rx_start
) + 1;
3649 tcp_get_connectivity_status(struct tcpcb
*tp
,
3650 struct tcp_conn_status
*connstatus
)
3652 if (tp
== NULL
|| connstatus
== NULL
) {
3655 bzero(connstatus
, sizeof(*connstatus
));
3656 if (tp
->t_rxtshift
>= TCP_CONNECTIVITY_PROBES_MAX
) {
3657 if (TCPS_HAVEESTABLISHED(tp
->t_state
)) {
3658 connstatus
->write_probe_failed
= 1;
3660 connstatus
->conn_probe_failed
= 1;
3663 if (tp
->t_rtimo_probes
>= TCP_CONNECTIVITY_PROBES_MAX
) {
3664 connstatus
->read_probe_failed
= 1;
3666 if (tp
->t_inpcb
!= NULL
&& tp
->t_inpcb
->inp_last_outifp
!= NULL
&&
3667 (tp
->t_inpcb
->inp_last_outifp
->if_eflags
& IFEF_PROBE_CONNECTIVITY
)) {
3668 connstatus
->probe_activated
= 1;
3673 tfo_enabled(const struct tcpcb
*tp
)
3675 return (tp
->t_flagsext
& TF_FASTOPEN
)? TRUE
: FALSE
;
3679 tcp_disable_tfo(struct tcpcb
*tp
)
3681 tp
->t_flagsext
&= ~TF_FASTOPEN
;
3684 static struct mbuf
*
3685 tcp_make_keepalive_frame(struct tcpcb
*tp
, struct ifnet
*ifp
,
3688 struct inpcb
*inp
= tp
->t_inpcb
;
3695 * The code assumes the IP + TCP headers fit in an mbuf packet header
3697 _CASSERT(sizeof(struct ip
) + sizeof(struct tcphdr
) <= _MHLEN
);
3698 _CASSERT(sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
) <= _MHLEN
);
3700 MGETHDR(m
, M_WAIT
, MT_HEADER
);
3704 m
->m_pkthdr
.pkt_proto
= IPPROTO_TCP
;
3706 data
= mbuf_datastart(m
);
3708 if (inp
->inp_vflag
& INP_IPV4
) {
3709 bzero(data
, sizeof(struct ip
) + sizeof(struct tcphdr
));
3710 th
= (struct tcphdr
*)(void *) (data
+ sizeof(struct ip
));
3711 m
->m_len
= sizeof(struct ip
) + sizeof(struct tcphdr
);
3712 m
->m_pkthdr
.len
= m
->m_len
;
3714 VERIFY(inp
->inp_vflag
& INP_IPV6
);
3716 bzero(data
, sizeof(struct ip6_hdr
)
3717 + sizeof(struct tcphdr
));
3718 th
= (struct tcphdr
*)(void *)(data
+ sizeof(struct ip6_hdr
));
3719 m
->m_len
= sizeof(struct ip6_hdr
) +
3720 sizeof(struct tcphdr
);
3721 m
->m_pkthdr
.len
= m
->m_len
;
3724 tcp_fillheaders(tp
, data
, th
);
3726 if (inp
->inp_vflag
& INP_IPV4
) {
3729 ip
= (__typeof__(ip
))(void *)data
;
3731 ip
->ip_id
= rfc6864
? 0 : ip_randomid();
3732 ip
->ip_off
= htons(IP_DF
);
3733 ip
->ip_len
= htons(sizeof(struct ip
) + sizeof(struct tcphdr
));
3734 ip
->ip_ttl
= inp
->inp_ip_ttl
;
3735 ip
->ip_tos
|= (inp
->inp_ip_tos
& ~IPTOS_ECN_MASK
);
3736 ip
->ip_sum
= in_cksum_hdr(ip
);
3738 struct ip6_hdr
*ip6
;
3740 ip6
= (__typeof__(ip6
))(void *)data
;
3742 ip6
->ip6_plen
= htons(sizeof(struct tcphdr
));
3743 ip6
->ip6_hlim
= in6_selecthlim(inp
, ifp
);
3744 ip6
->ip6_flow
= ip6
->ip6_flow
& ~IPV6_FLOW_ECN_MASK
;
3746 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_src
)) {
3747 ip6
->ip6_src
.s6_addr16
[1] = 0;
3749 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_dst
)) {
3750 ip6
->ip6_dst
.s6_addr16
[1] = 0;
3753 th
->th_flags
= TH_ACK
;
3755 win
= tcp_sbspace(tp
);
3756 if (win
> ((int32_t)TCP_MAXWIN
<< tp
->rcv_scale
)) {
3757 win
= (int32_t)TCP_MAXWIN
<< tp
->rcv_scale
;
3759 th
->th_win
= htons((u_short
) (win
>> tp
->rcv_scale
));
3762 th
->th_seq
= htonl(tp
->snd_una
- 1);
3764 th
->th_seq
= htonl(tp
->snd_una
);
3766 th
->th_ack
= htonl(tp
->rcv_nxt
);
3768 /* Force recompute TCP checksum to be the final value */
3770 if (inp
->inp_vflag
& INP_IPV4
) {
3771 th
->th_sum
= inet_cksum(m
, IPPROTO_TCP
,
3772 sizeof(struct ip
), sizeof(struct tcphdr
));
3774 th
->th_sum
= inet6_cksum(m
, IPPROTO_TCP
,
3775 sizeof(struct ip6_hdr
), sizeof(struct tcphdr
));
3782 tcp_fill_keepalive_offload_frames(ifnet_t ifp
,
3783 struct ifnet_keepalive_offload_frame
*frames_array
,
3784 u_int32_t frames_array_count
, size_t frame_data_offset
,
3785 u_int32_t
*used_frames_count
)
3789 u_int32_t frame_index
= *used_frames_count
;
3791 if (ifp
== NULL
|| frames_array
== NULL
||
3792 frames_array_count
== 0 ||
3793 frame_index
>= frames_array_count
||
3794 frame_data_offset
>= IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE
) {
3799 * This function is called outside the regular TCP processing
3800 * so we need to update the TCP clock.
3802 calculate_tcp_clock();
3804 lck_rw_lock_shared(tcbinfo
.ipi_lock
);
3805 gencnt
= tcbinfo
.ipi_gencnt
;
3806 LIST_FOREACH(inp
, tcbinfo
.ipi_listhead
, inp_list
) {
3808 struct ifnet_keepalive_offload_frame
*frame
;
3809 struct mbuf
*m
= NULL
;
3810 struct tcpcb
*tp
= intotcpcb(inp
);
3812 if (frame_index
>= frames_array_count
) {
3816 if (inp
->inp_gencnt
> gencnt
||
3817 inp
->inp_state
== INPCB_STATE_DEAD
) {
3821 if ((so
= inp
->inp_socket
) == NULL
||
3822 (so
->so_state
& SS_DEFUNCT
)) {
3826 * check for keepalive offload flag without socket
3827 * lock to avoid a deadlock
3829 if (!(inp
->inp_flags2
& INP2_KEEPALIVE_OFFLOAD
)) {
3833 if (!(inp
->inp_vflag
& (INP_IPV4
| INP_IPV6
))) {
3836 if (inp
->inp_ppcb
== NULL
||
3837 in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) == WNT_STOPUSING
) {
3841 /* Release the want count */
3842 if (inp
->inp_ppcb
== NULL
||
3843 (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
)) {
3844 socket_unlock(so
, 1);
3847 if ((inp
->inp_vflag
& INP_IPV4
) &&
3848 (inp
->inp_laddr
.s_addr
== INADDR_ANY
||
3849 inp
->inp_faddr
.s_addr
== INADDR_ANY
)) {
3850 socket_unlock(so
, 1);
3853 if ((inp
->inp_vflag
& INP_IPV6
) &&
3854 (IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_laddr
) ||
3855 IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_faddr
))) {
3856 socket_unlock(so
, 1);
3859 if (inp
->inp_lport
== 0 || inp
->inp_fport
== 0) {
3860 socket_unlock(so
, 1);
3863 if (inp
->inp_last_outifp
== NULL
||
3864 inp
->inp_last_outifp
->if_index
!= ifp
->if_index
) {
3865 socket_unlock(so
, 1);
3868 if ((inp
->inp_vflag
& INP_IPV4
) && frame_data_offset
+
3869 sizeof(struct ip
) + sizeof(struct tcphdr
) >
3870 IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE
) {
3871 socket_unlock(so
, 1);
3873 } else if (!(inp
->inp_vflag
& INP_IPV4
) && frame_data_offset
+
3874 sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
) >
3875 IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE
) {
3876 socket_unlock(so
, 1);
3880 * There is no point in waking up the device for connections
3881 * that are not established. Long lived connection are meant
3882 * for processes that will sent and receive data
3884 if (tp
->t_state
!= TCPS_ESTABLISHED
) {
3885 socket_unlock(so
, 1);
3889 * This inp has all the information that is needed to
3890 * generate an offload frame.
3892 frame
= &frames_array
[frame_index
];
3893 frame
->type
= IFNET_KEEPALIVE_OFFLOAD_FRAME_TCP
;
3894 frame
->ether_type
= (inp
->inp_vflag
& INP_IPV4
) ?
3895 IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV4
:
3896 IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV6
;
3897 frame
->interval
= (uint16_t)(tp
->t_keepidle
> 0 ? tp
->t_keepidle
:
3899 frame
->keep_cnt
= (uint8_t)TCP_CONN_KEEPCNT(tp
);
3900 frame
->keep_retry
= (uint16_t)TCP_CONN_KEEPINTVL(tp
);
3901 if (so
->so_options
& SO_NOWAKEFROMSLEEP
) {
3903 IFNET_KEEPALIVE_OFFLOAD_FLAG_NOWAKEFROMSLEEP
;
3905 frame
->local_port
= ntohs(inp
->inp_lport
);
3906 frame
->remote_port
= ntohs(inp
->inp_fport
);
3907 frame
->local_seq
= tp
->snd_nxt
;
3908 frame
->remote_seq
= tp
->rcv_nxt
;
3909 if (inp
->inp_vflag
& INP_IPV4
) {
3910 ASSERT(frame_data_offset
+ sizeof(struct ip
) + sizeof(struct tcphdr
) <= UINT8_MAX
);
3911 frame
->length
= (uint8_t)(frame_data_offset
+
3912 sizeof(struct ip
) + sizeof(struct tcphdr
));
3913 frame
->reply_length
= frame
->length
;
3915 frame
->addr_length
= sizeof(struct in_addr
);
3916 bcopy(&inp
->inp_laddr
, frame
->local_addr
,
3917 sizeof(struct in_addr
));
3918 bcopy(&inp
->inp_faddr
, frame
->remote_addr
,
3919 sizeof(struct in_addr
));
3921 struct in6_addr
*ip6
;
3923 ASSERT(frame_data_offset
+ sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
) <= UINT8_MAX
);
3924 frame
->length
= (uint8_t)(frame_data_offset
+
3925 sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
));
3926 frame
->reply_length
= frame
->length
;
3928 frame
->addr_length
= sizeof(struct in6_addr
);
3929 ip6
= (struct in6_addr
*)(void *)frame
->local_addr
;
3930 bcopy(&inp
->in6p_laddr
, ip6
, sizeof(struct in6_addr
));
3931 if (IN6_IS_SCOPE_EMBED(ip6
)) {
3932 ip6
->s6_addr16
[1] = 0;
3935 ip6
= (struct in6_addr
*)(void *)frame
->remote_addr
;
3936 bcopy(&inp
->in6p_faddr
, ip6
, sizeof(struct in6_addr
));
3937 if (IN6_IS_SCOPE_EMBED(ip6
)) {
3938 ip6
->s6_addr16
[1] = 0;
3945 m
= tcp_make_keepalive_frame(tp
, ifp
, TRUE
);
3947 socket_unlock(so
, 1);
3950 bcopy(m
->m_data
, frame
->data
+ frame_data_offset
,
3955 * Now the response packet to incoming probes
3957 m
= tcp_make_keepalive_frame(tp
, ifp
, FALSE
);
3959 socket_unlock(so
, 1);
3962 bcopy(m
->m_data
, frame
->reply_data
+ frame_data_offset
,
3967 socket_unlock(so
, 1);
3969 lck_rw_done(tcbinfo
.ipi_lock
);
3970 *used_frames_count
= frame_index
;
3974 inp_matches_kao_frame(ifnet_t ifp
, struct ifnet_keepalive_offload_frame
*frame
,
3977 if (inp
->inp_ppcb
== NULL
) {
3980 /* Release the want count */
3981 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
3984 if (inp
->inp_last_outifp
== NULL
||
3985 inp
->inp_last_outifp
->if_index
!= ifp
->if_index
) {
3988 if (frame
->local_port
!= ntohs(inp
->inp_lport
) ||
3989 frame
->remote_port
!= ntohs(inp
->inp_fport
)) {
3992 if (inp
->inp_vflag
& INP_IPV4
) {
3993 if (memcmp(&inp
->inp_laddr
, frame
->local_addr
,
3994 sizeof(struct in_addr
)) != 0 ||
3995 memcmp(&inp
->inp_faddr
, frame
->remote_addr
,
3996 sizeof(struct in_addr
)) != 0) {
3999 } else if (inp
->inp_vflag
& INP_IPV6
) {
4000 if (memcmp(&inp
->inp_laddr
, frame
->local_addr
,
4001 sizeof(struct in6_addr
)) != 0 ||
4002 memcmp(&inp
->inp_faddr
, frame
->remote_addr
,
4003 sizeof(struct in6_addr
)) != 0) {
4013 tcp_notify_kao_timeout(ifnet_t ifp
,
4014 struct ifnet_keepalive_offload_frame
*frame
)
4016 struct inpcb
*inp
= NULL
;
4017 struct socket
*so
= NULL
;
4021 * Unlock the list before posting event on the matching socket
4023 lck_rw_lock_shared(tcbinfo
.ipi_lock
);
4025 LIST_FOREACH(inp
, tcbinfo
.ipi_listhead
, inp_list
) {
4026 if ((so
= inp
->inp_socket
) == NULL
||
4027 (so
->so_state
& SS_DEFUNCT
)) {
4030 if (!(inp
->inp_flags2
& INP2_KEEPALIVE_OFFLOAD
)) {
4033 if (!(inp
->inp_vflag
& (INP_IPV4
| INP_IPV6
))) {
4036 if (inp
->inp_ppcb
== NULL
||
4037 in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) == WNT_STOPUSING
) {
4041 if (inp_matches_kao_frame(ifp
, frame
, inp
)) {
4043 * Keep the matching socket locked
4048 socket_unlock(so
, 1);
4050 lck_rw_done(tcbinfo
.ipi_lock
);
4053 ASSERT(inp
!= NULL
);
4055 ASSERT(so
== inp
->inp_socket
);
4057 * Drop the TCP connection like tcptimers() does
4059 struct tcpcb
*tp
= inp
->inp_ppcb
;
4061 tcpstat
.tcps_keepdrops
++;
4063 (SO_FILT_HINT_LOCKED
| SO_FILT_HINT_TIMEOUT
));
4064 tp
= tcp_drop(tp
, ETIMEDOUT
);
4066 tcpstat
.tcps_ka_offload_drops
++;
4067 os_log_info(OS_LOG_DEFAULT
, "%s: dropped lport %u fport %u\n",
4068 __func__
, frame
->local_port
, frame
->remote_port
);
4070 socket_unlock(so
, 1);
4077 tcp_notify_ack_id_valid(struct tcpcb
*tp
, struct socket
*so
,
4078 u_int32_t notify_id
)
4080 struct tcp_notify_ack_marker
*elm
;
4082 if (so
->so_snd
.sb_cc
== 0) {
4086 SLIST_FOREACH(elm
, &tp
->t_notify_ack
, notify_next
) {
4087 /* Duplicate id is not allowed */
4088 if (elm
->notify_id
== notify_id
) {
4091 /* Duplicate position is not allowed */
4092 if (elm
->notify_snd_una
== tp
->snd_una
+ so
->so_snd
.sb_cc
) {
4100 tcp_add_notify_ack_marker(struct tcpcb
*tp
, u_int32_t notify_id
)
4102 struct tcp_notify_ack_marker
*nm
, *elm
= NULL
;
4103 struct socket
*so
= tp
->t_inpcb
->inp_socket
;
4105 MALLOC(nm
, struct tcp_notify_ack_marker
*, sizeof(*nm
),
4106 M_TEMP
, M_WAIT
| M_ZERO
);
4110 nm
->notify_id
= notify_id
;
4111 nm
->notify_snd_una
= tp
->snd_una
+ so
->so_snd
.sb_cc
;
4113 SLIST_FOREACH(elm
, &tp
->t_notify_ack
, notify_next
) {
4114 if (SEQ_GT(nm
->notify_snd_una
, elm
->notify_snd_una
)) {
4120 VERIFY(SLIST_EMPTY(&tp
->t_notify_ack
));
4121 SLIST_INSERT_HEAD(&tp
->t_notify_ack
, nm
, notify_next
);
4123 SLIST_INSERT_AFTER(elm
, nm
, notify_next
);
4125 tp
->t_notify_ack_count
++;
4130 tcp_notify_ack_free(struct tcpcb
*tp
)
4132 struct tcp_notify_ack_marker
*elm
, *next
;
4133 if (SLIST_EMPTY(&tp
->t_notify_ack
)) {
4137 SLIST_FOREACH_SAFE(elm
, &tp
->t_notify_ack
, notify_next
, next
) {
4138 SLIST_REMOVE(&tp
->t_notify_ack
, elm
, tcp_notify_ack_marker
,
4142 SLIST_INIT(&tp
->t_notify_ack
);
4143 tp
->t_notify_ack_count
= 0;
4147 tcp_notify_acknowledgement(struct tcpcb
*tp
, struct socket
*so
)
4149 struct tcp_notify_ack_marker
*elm
;
4151 elm
= SLIST_FIRST(&tp
->t_notify_ack
);
4152 if (SEQ_GEQ(tp
->snd_una
, elm
->notify_snd_una
)) {
4153 soevent(so
, SO_FILT_HINT_LOCKED
| SO_FILT_HINT_NOTIFY_ACK
);
4158 tcp_get_notify_ack_count(struct tcpcb
*tp
,
4159 struct tcp_notify_ack_complete
*retid
)
4161 struct tcp_notify_ack_marker
*elm
;
4162 uint32_t complete
= 0;
4164 SLIST_FOREACH(elm
, &tp
->t_notify_ack
, notify_next
) {
4165 if (SEQ_GEQ(tp
->snd_una
, elm
->notify_snd_una
)) {
4166 ASSERT(complete
< UINT32_MAX
);
4172 retid
->notify_pending
= tp
->t_notify_ack_count
- complete
;
4173 retid
->notify_complete_count
= min(TCP_MAX_NOTIFY_ACK
, complete
);
4177 tcp_get_notify_ack_ids(struct tcpcb
*tp
,
4178 struct tcp_notify_ack_complete
*retid
)
4181 struct tcp_notify_ack_marker
*elm
, *next
;
4183 SLIST_FOREACH_SAFE(elm
, &tp
->t_notify_ack
, notify_next
, next
) {
4184 if (i
>= retid
->notify_complete_count
) {
4187 if (SEQ_GEQ(tp
->snd_una
, elm
->notify_snd_una
)) {
4188 retid
->notify_complete_id
[i
++] = elm
->notify_id
;
4189 SLIST_REMOVE(&tp
->t_notify_ack
, elm
,
4190 tcp_notify_ack_marker
, notify_next
);
4192 tp
->t_notify_ack_count
--;
4200 tcp_notify_ack_active(struct socket
*so
)
4202 if ((SOCK_DOM(so
) == PF_INET
|| SOCK_DOM(so
) == PF_INET6
) &&
4203 SOCK_TYPE(so
) == SOCK_STREAM
) {
4204 struct tcpcb
*tp
= intotcpcb(sotoinpcb(so
));
4206 if (!SLIST_EMPTY(&tp
->t_notify_ack
)) {
4207 struct tcp_notify_ack_marker
*elm
;
4208 elm
= SLIST_FIRST(&tp
->t_notify_ack
);
4209 if (SEQ_GEQ(tp
->snd_una
, elm
->notify_snd_una
)) {
4218 inp_get_sndbytes_allunsent(struct socket
*so
, u_int32_t th_ack
)
4220 struct inpcb
*inp
= sotoinpcb(so
);
4221 struct tcpcb
*tp
= intotcpcb(inp
);
4223 if ((so
->so_snd
.sb_flags
& SB_SNDBYTE_CNT
) &&
4224 so
->so_snd
.sb_cc
> 0) {
4225 int32_t unsent
, sent
;
4226 sent
= tp
->snd_max
- th_ack
;
4227 if (tp
->t_flags
& TF_SENTFIN
) {
4230 unsent
= so
->so_snd
.sb_cc
- sent
;
4236 #define IFP_PER_FLOW_STAT(_ipv4_, _stat_) { \
4238 ifp->if_ipv4_stat->_stat_++; \
4240 ifp->if_ipv6_stat->_stat_++; \
4244 #define FLOW_ECN_ENABLED(_flags_) \
4245 ((_flags_ & (TE_ECN_ON)) == (TE_ECN_ON))
4248 tcp_update_stats_per_flow(struct ifnet_stats_per_flow
*ifs
,
4251 if (ifp
== NULL
|| !IF_FULLY_ATTACHED(ifp
)) {
4255 ifnet_lock_shared(ifp
);
4256 if (ifs
->ecn_flags
& TE_SETUPSENT
) {
4257 if (ifs
->ecn_flags
& TE_CLIENT_SETUP
) {
4258 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_client_setup
);
4259 if (FLOW_ECN_ENABLED(ifs
->ecn_flags
)) {
4260 IFP_PER_FLOW_STAT(ifs
->ipv4
,
4261 ecn_client_success
);
4262 } else if (ifs
->ecn_flags
& TE_LOST_SYN
) {
4263 IFP_PER_FLOW_STAT(ifs
->ipv4
,
4266 IFP_PER_FLOW_STAT(ifs
->ipv4
,
4267 ecn_peer_nosupport
);
4270 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_server_setup
);
4271 if (FLOW_ECN_ENABLED(ifs
->ecn_flags
)) {
4272 IFP_PER_FLOW_STAT(ifs
->ipv4
,
4273 ecn_server_success
);
4274 } else if (ifs
->ecn_flags
& TE_LOST_SYN
) {
4275 IFP_PER_FLOW_STAT(ifs
->ipv4
,
4278 IFP_PER_FLOW_STAT(ifs
->ipv4
,
4279 ecn_peer_nosupport
);
4283 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_off_conn
);
4285 if (FLOW_ECN_ENABLED(ifs
->ecn_flags
)) {
4286 if (ifs
->ecn_flags
& TE_RECV_ECN_CE
) {
4287 tcpstat
.tcps_ecn_conn_recv_ce
++;
4288 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_conn_recv_ce
);
4290 if (ifs
->ecn_flags
& TE_RECV_ECN_ECE
) {
4291 tcpstat
.tcps_ecn_conn_recv_ece
++;
4292 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_conn_recv_ece
);
4294 if (ifs
->ecn_flags
& (TE_RECV_ECN_CE
| TE_RECV_ECN_ECE
)) {
4295 if (ifs
->txretransmitbytes
> 0 ||
4296 ifs
->rxoutoforderbytes
> 0) {
4297 tcpstat
.tcps_ecn_conn_pl_ce
++;
4298 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_conn_plce
);
4300 tcpstat
.tcps_ecn_conn_nopl_ce
++;
4301 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_conn_noplce
);
4304 if (ifs
->txretransmitbytes
> 0 ||
4305 ifs
->rxoutoforderbytes
> 0) {
4306 tcpstat
.tcps_ecn_conn_plnoce
++;
4307 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_conn_plnoce
);
4312 /* Other stats are interesting for non-local connections only */
4314 ifnet_lock_done(ifp
);
4319 ifp
->if_ipv4_stat
->timestamp
= net_uptime();
4320 if (FLOW_ECN_ENABLED(ifs
->ecn_flags
)) {
4321 tcp_flow_ecn_perf_stats(ifs
, &ifp
->if_ipv4_stat
->ecn_on
);
4323 tcp_flow_ecn_perf_stats(ifs
, &ifp
->if_ipv4_stat
->ecn_off
);
4326 ifp
->if_ipv6_stat
->timestamp
= net_uptime();
4327 if (FLOW_ECN_ENABLED(ifs
->ecn_flags
)) {
4328 tcp_flow_ecn_perf_stats(ifs
, &ifp
->if_ipv6_stat
->ecn_on
);
4330 tcp_flow_ecn_perf_stats(ifs
, &ifp
->if_ipv6_stat
->ecn_off
);
4334 if (ifs
->rxmit_drop
) {
4335 if (FLOW_ECN_ENABLED(ifs
->ecn_flags
)) {
4336 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_on
.rxmit_drop
);
4338 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_off
.rxmit_drop
);
4341 if (ifs
->ecn_fallback_synloss
) {
4342 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_fallback_synloss
);
4344 if (ifs
->ecn_fallback_droprst
) {
4345 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_fallback_droprst
);
4347 if (ifs
->ecn_fallback_droprxmt
) {
4348 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_fallback_droprxmt
);
4350 if (ifs
->ecn_fallback_ce
) {
4351 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_fallback_ce
);
4353 if (ifs
->ecn_fallback_reorder
) {
4354 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_fallback_reorder
);
4356 if (ifs
->ecn_recv_ce
> 0) {
4357 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_recv_ce
);
4359 if (ifs
->ecn_recv_ece
> 0) {
4360 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_recv_ece
);
4363 tcp_flow_lim_stats(ifs
, &ifp
->if_lim_stat
);
4364 ifnet_lock_done(ifp
);