]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/mptcp.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / bsd / netinet / mptcp.c
1 /*
2 * Copyright (c) 2012-2018 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*
30 * A note on the MPTCP/NECP-interactions:
31 *
32 * MPTCP uses NECP-callbacks to get notified of interface/policy events.
33 * MPTCP registers to these events at the MPTCP-layer for interface-events
34 * through a call to necp_client_register_multipath_cb.
35 * To get per-flow events (aka per TCP-subflow), we register to it with
36 * necp_client_register_socket_flow. Both registrations happen by using the
37 * necp-client-uuid that comes from the app.
38 *
39 * The locking is rather tricky. In general, we expect the lock-ordering to
40 * happen from necp-fd -> necp->client -> mpp_lock.
41 *
42 * There are however some subtleties.
43 *
44 * 1. When registering the multipath_cb, we are holding the mpp_lock. This is
45 * safe, because it is the very first time this MPTCP-connection goes into NECP.
46 * As we go into NECP we take the NECP-locks and thus are guaranteed that no
47 * NECP-locks will deadlock us. Because these NECP-events will also first take
48 * the NECP-locks. Either they win the race and thus won't find our
49 * MPTCP-connection. Or, MPTCP wins the race and thus it will safely install
50 * the callbacks while holding the NECP lock.
51 *
52 * 2. When registering the subflow-callbacks we must unlock the mpp_lock. This,
53 * because we have already registered callbacks and we might race against an
54 * NECP-event that will match on our socket. So, we have to unlock to be safe.
55 *
56 * 3. When removing the multipath_cb, we do it in mp_pcbdispose(). The
57 * so_usecount has reached 0. We must be careful to not remove the mpp_socket
58 * pointers before we unregistered the callback. Because, again we might be
59 * racing against an NECP-event. Unregistering must happen with an unlocked
60 * mpp_lock, because of the lock-ordering constraint. It could be that
61 * before we had a chance to unregister an NECP-event triggers. That's why
62 * we need to check for the so_usecount in mptcp_session_necp_cb. If we get
63 * there while the socket is being garbage-collected, the use-count will go
64 * down to 0 and we exit. Removal of the multipath_cb again happens by taking
65 * the NECP-locks so any running NECP-events will finish first and exit cleanly.
66 *
67 * 4. When removing the subflow-callback, we do it in in_pcbdispose(). Again,
68 * the socket-lock must be unlocked for lock-ordering constraints. This gets a
69 * bit tricky here, as in tcp_garbage_collect we hold the mp_so and so lock.
70 * So, we drop the mp_so-lock as soon as the subflow is unlinked with
71 * mptcp_subflow_del. Then, in in_pcbdispose we drop the subflow-lock.
72 * If an NECP-event was waiting on the lock in mptcp_subflow_necp_cb, when it
73 * gets it, it will realize that the subflow became non-MPTCP and retry (see
74 * tcp_lock). Then it waits again on the subflow-lock. When we drop this lock
75 * in in_pcbdispose, and enter necp_inpcb_dispose, this one will have to wait
76 * for the NECP-lock (held by the other thread that is taking care of the NECP-
77 * event). So, the event now finally gets the subflow-lock and then hits an
78 * so_usecount that is 0 and exits. Eventually, we can remove the subflow from
79 * the NECP callback.
80 */
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/mbuf.h>
86 #include <sys/mcache.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/syslog.h>
90 #include <sys/protosw.h>
91
92 #include <kern/zalloc.h>
93 #include <kern/locks.h>
94
95 #include <mach/sdt.h>
96
97 #include <net/if.h>
98 #include <netinet/in.h>
99 #include <netinet/in_var.h>
100 #include <netinet/tcp.h>
101 #include <netinet/tcp_fsm.h>
102 #include <netinet/tcp_seq.h>
103 #include <netinet/tcp_var.h>
104 #include <netinet/mptcp_var.h>
105 #include <netinet/mptcp.h>
106 #include <netinet/mptcp_seq.h>
107 #include <netinet/mptcp_opt.h>
108 #include <netinet/mptcp_timer.h>
109
110 int mptcp_enable = 1;
111 SYSCTL_INT(_net_inet_mptcp, OID_AUTO, enable, CTLFLAG_RW | CTLFLAG_LOCKED,
112 &mptcp_enable, 0, "Enable Multipath TCP Support");
113
114 /*
115 * Number of times to try negotiating MPTCP on SYN retransmissions.
116 * We haven't seen any reports of a middlebox that is dropping all SYN-segments
117 * that have an MPTCP-option. Thus, let's be generous and retransmit it 4 times.
118 */
119 int mptcp_mpcap_retries = 4;
120 SYSCTL_INT(_net_inet_mptcp, OID_AUTO, mptcp_cap_retr,
121 CTLFLAG_RW | CTLFLAG_LOCKED,
122 &mptcp_mpcap_retries, 0, "Number of MP Capable SYN Retries");
123
124 /*
125 * By default, DSS checksum is turned off, revisit if we ever do
126 * MPTCP for non SSL Traffic.
127 */
128 int mptcp_dss_csum = 0;
129 SYSCTL_INT(_net_inet_mptcp, OID_AUTO, dss_csum, CTLFLAG_RW | CTLFLAG_LOCKED,
130 &mptcp_dss_csum, 0, "Enable DSS checksum");
131
132 /*
133 * When mptcp_fail_thresh number of retransmissions are sent, subflow failover
134 * is attempted on a different path.
135 */
136 int mptcp_fail_thresh = 1;
137 SYSCTL_INT(_net_inet_mptcp, OID_AUTO, fail, CTLFLAG_RW | CTLFLAG_LOCKED,
138 &mptcp_fail_thresh, 0, "Failover threshold");
139
140 /*
141 * MPTCP subflows have TCP keepalives set to ON. Set a conservative keeptime
142 * as carrier networks mostly have a 30 minute to 60 minute NAT Timeout.
143 * Some carrier networks have a timeout of 10 or 15 minutes.
144 */
145 int mptcp_subflow_keeptime = 60 * 14;
146 SYSCTL_INT(_net_inet_mptcp, OID_AUTO, keepalive, CTLFLAG_RW | CTLFLAG_LOCKED,
147 &mptcp_subflow_keeptime, 0, "Keepalive in seconds");
148
149 int mptcp_rtthist_rtthresh = 600;
150 SYSCTL_INT(_net_inet_mptcp, OID_AUTO, rtthist_thresh, CTLFLAG_RW | CTLFLAG_LOCKED,
151 &mptcp_rtthist_rtthresh, 0, "Rtt threshold");
152
153 int mptcp_rtothresh = 1500;
154 SYSCTL_INT(_net_inet_mptcp, OID_AUTO, rto_thresh, CTLFLAG_RW | CTLFLAG_LOCKED,
155 &mptcp_rtothresh, 0, "RTO threshold");
156
157 /*
158 * Probe the preferred path, when it is not in use
159 */
160 uint32_t mptcp_probeto = 1000;
161 SYSCTL_UINT(_net_inet_mptcp, OID_AUTO, probeto, CTLFLAG_RW | CTLFLAG_LOCKED,
162 &mptcp_probeto, 0, "Disable probing by setting to 0");
163
164 uint32_t mptcp_probecnt = 5;
165 SYSCTL_UINT(_net_inet_mptcp, OID_AUTO, probecnt, CTLFLAG_RW | CTLFLAG_LOCKED,
166 &mptcp_probecnt, 0, "Number of probe writes");
167
168 static int
169 mptcp_reass_present(struct socket *mp_so)
170 {
171 struct mptses *mpte = mpsotompte(mp_so);
172 struct mptcb *mp_tp = mpte->mpte_mptcb;
173 struct tseg_qent *q;
174 int dowakeup = 0;
175 int flags = 0;
176
177 /*
178 * Present data to user, advancing rcv_nxt through
179 * completed sequence space.
180 */
181 if (mp_tp->mpt_state < MPTCPS_ESTABLISHED) {
182 return flags;
183 }
184 q = LIST_FIRST(&mp_tp->mpt_segq);
185 if (!q || q->tqe_m->m_pkthdr.mp_dsn != mp_tp->mpt_rcvnxt) {
186 return flags;
187 }
188
189 /*
190 * If there is already another thread doing reassembly for this
191 * connection, it is better to let it finish the job --
192 * (radar 16316196)
193 */
194 if (mp_tp->mpt_flags & MPTCPF_REASS_INPROG) {
195 return flags;
196 }
197
198 mp_tp->mpt_flags |= MPTCPF_REASS_INPROG;
199
200 do {
201 mp_tp->mpt_rcvnxt += q->tqe_len;
202 LIST_REMOVE(q, tqe_q);
203 if (mp_so->so_state & SS_CANTRCVMORE) {
204 m_freem(q->tqe_m);
205 } else {
206 flags = !!(q->tqe_m->m_pkthdr.pkt_flags & PKTF_MPTCP_DFIN);
207 if (sbappendstream_rcvdemux(mp_so, q->tqe_m)) {
208 dowakeup = 1;
209 }
210 }
211 zfree(tcp_reass_zone, q);
212 mp_tp->mpt_reassqlen--;
213 q = LIST_FIRST(&mp_tp->mpt_segq);
214 } while (q && q->tqe_m->m_pkthdr.mp_dsn == mp_tp->mpt_rcvnxt);
215 mp_tp->mpt_flags &= ~MPTCPF_REASS_INPROG;
216
217 if (dowakeup) {
218 sorwakeup(mp_so); /* done with socket lock held */
219 }
220 return flags;
221 }
222
223 static int
224 mptcp_reass(struct socket *mp_so, struct pkthdr *phdr, int *tlenp, struct mbuf *m)
225 {
226 struct mptcb *mp_tp = mpsotomppcb(mp_so)->mpp_pcbe->mpte_mptcb;
227 u_int64_t mb_dsn = phdr->mp_dsn;
228 struct tseg_qent *q;
229 struct tseg_qent *p = NULL;
230 struct tseg_qent *nq;
231 struct tseg_qent *te = NULL;
232 uint32_t qlimit;
233
234 /*
235 * Limit the number of segments in the reassembly queue to prevent
236 * holding on to too many segments (and thus running out of mbufs).
237 * Make sure to let the missing segment through which caused this
238 * queue. Always keep one global queue entry spare to be able to
239 * process the missing segment.
240 */
241 qlimit = MIN(MAX(100, mp_so->so_rcv.sb_hiwat >> 10),
242 (tcp_autorcvbuf_max >> 10));
243 if (mb_dsn != mp_tp->mpt_rcvnxt &&
244 (mp_tp->mpt_reassqlen + 1) >= qlimit) {
245 tcpstat.tcps_mptcp_rcvmemdrop++;
246 m_freem(m);
247 *tlenp = 0;
248 return 0;
249 }
250
251 /* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
252 te = (struct tseg_qent *) zalloc(tcp_reass_zone);
253 if (te == NULL) {
254 tcpstat.tcps_mptcp_rcvmemdrop++;
255 m_freem(m);
256 return 0;
257 }
258
259 mp_tp->mpt_reassqlen++;
260
261 /*
262 * Find a segment which begins after this one does.
263 */
264 LIST_FOREACH(q, &mp_tp->mpt_segq, tqe_q) {
265 if (MPTCP_SEQ_GT(q->tqe_m->m_pkthdr.mp_dsn, mb_dsn)) {
266 break;
267 }
268 p = q;
269 }
270
271 /*
272 * If there is a preceding segment, it may provide some of
273 * our data already. If so, drop the data from the incoming
274 * segment. If it provides all of our data, drop us.
275 */
276 if (p != NULL) {
277 int64_t i;
278 /* conversion to int (in i) handles seq wraparound */
279 i = p->tqe_m->m_pkthdr.mp_dsn + p->tqe_len - mb_dsn;
280 if (i > 0) {
281 if (i >= *tlenp) {
282 tcpstat.tcps_mptcp_rcvduppack++;
283 m_freem(m);
284 zfree(tcp_reass_zone, te);
285 te = NULL;
286 mp_tp->mpt_reassqlen--;
287 /*
288 * Try to present any queued data
289 * at the left window edge to the user.
290 * This is needed after the 3-WHS
291 * completes.
292 */
293 goto out;
294 }
295 VERIFY(i <= INT_MAX);
296 m_adj(m, (int)i);
297 *tlenp -= i;
298 phdr->mp_dsn += i;
299 }
300 }
301
302 tcpstat.tcps_mp_oodata++;
303
304 /*
305 * While we overlap succeeding segments trim them or,
306 * if they are completely covered, dequeue them.
307 */
308 while (q) {
309 int64_t i = (mb_dsn + *tlenp) - q->tqe_m->m_pkthdr.mp_dsn;
310 if (i <= 0) {
311 break;
312 }
313
314 if (i < q->tqe_len) {
315 q->tqe_m->m_pkthdr.mp_dsn += i;
316 q->tqe_len -= i;
317
318 VERIFY(i <= INT_MAX);
319 m_adj(q->tqe_m, (int)i);
320 break;
321 }
322
323 nq = LIST_NEXT(q, tqe_q);
324 LIST_REMOVE(q, tqe_q);
325 m_freem(q->tqe_m);
326 zfree(tcp_reass_zone, q);
327 mp_tp->mpt_reassqlen--;
328 q = nq;
329 }
330
331 /* Insert the new segment queue entry into place. */
332 te->tqe_m = m;
333 te->tqe_th = NULL;
334 te->tqe_len = *tlenp;
335
336 if (p == NULL) {
337 LIST_INSERT_HEAD(&mp_tp->mpt_segq, te, tqe_q);
338 } else {
339 LIST_INSERT_AFTER(p, te, tqe_q);
340 }
341
342 out:
343 return mptcp_reass_present(mp_so);
344 }
345
346 /*
347 * MPTCP input, called when data has been read from a subflow socket.
348 */
349 void
350 mptcp_input(struct mptses *mpte, struct mbuf *m)
351 {
352 struct socket *mp_so;
353 struct mptcb *mp_tp = NULL;
354 int count = 0, wakeup = 0;
355 struct mbuf *save = NULL, *prev = NULL;
356 struct mbuf *freelist = NULL, *tail = NULL;
357
358 VERIFY(m->m_flags & M_PKTHDR);
359
360 mp_so = mptetoso(mpte);
361 mp_tp = mpte->mpte_mptcb;
362
363 socket_lock_assert_owned(mp_so);
364
365 DTRACE_MPTCP(input);
366
367 mp_tp->mpt_rcvwnd = mptcp_sbspace(mp_tp);
368
369 /*
370 * Each mbuf contains MPTCP Data Sequence Map
371 * Process the data for reassembly, delivery to MPTCP socket
372 * client, etc.
373 *
374 */
375 count = mp_so->so_rcv.sb_cc;
376
377 /*
378 * In the degraded fallback case, data is accepted without DSS map
379 */
380 if (mp_tp->mpt_flags & MPTCPF_FALLBACK_TO_TCP) {
381 struct mbuf *iter;
382 int mb_dfin = 0;
383 fallback:
384 mptcp_sbrcv_grow(mp_tp);
385
386 iter = m;
387 while (iter) {
388 if ((iter->m_flags & M_PKTHDR) &&
389 (iter->m_pkthdr.pkt_flags & PKTF_MPTCP_DFIN)) {
390 mb_dfin = 1;
391 }
392
393 if ((iter->m_flags & M_PKTHDR) && m_pktlen(iter) == 0) {
394 /* Don't add zero-length packets, so jump it! */
395 if (prev == NULL) {
396 m = iter->m_next;
397 m_free(iter);
398 iter = m;
399 } else {
400 prev->m_next = iter->m_next;
401 m_free(iter);
402 iter = prev->m_next;
403 }
404
405 /* It was a zero-length packet so next one must be a pkthdr */
406 VERIFY(iter == NULL || iter->m_flags & M_PKTHDR);
407 } else {
408 prev = iter;
409 iter = iter->m_next;
410 }
411 }
412
413 /*
414 * assume degraded flow as this may be the first packet
415 * without DSS, and the subflow state is not updated yet.
416 */
417 if (sbappendstream_rcvdemux(mp_so, m)) {
418 sorwakeup(mp_so);
419 }
420
421 DTRACE_MPTCP5(receive__degraded, struct mbuf *, m,
422 struct socket *, mp_so,
423 struct sockbuf *, &mp_so->so_rcv,
424 struct sockbuf *, &mp_so->so_snd,
425 struct mptses *, mpte);
426 count = mp_so->so_rcv.sb_cc - count;
427
428 mp_tp->mpt_rcvnxt += count;
429
430 if (mb_dfin) {
431 mptcp_close_fsm(mp_tp, MPCE_RECV_DATA_FIN);
432 socantrcvmore(mp_so);
433 }
434 return;
435 }
436
437 do {
438 u_int64_t mb_dsn;
439 int32_t mb_datalen;
440 int64_t todrop;
441 int mb_dfin = 0;
442
443 VERIFY(m->m_flags & M_PKTHDR);
444
445 /* If fallback occurs, mbufs will not have PKTF_MPTCP set */
446 if (!(m->m_pkthdr.pkt_flags & PKTF_MPTCP)) {
447 goto fallback;
448 }
449
450 save = m->m_next;
451 /*
452 * A single TCP packet formed of multiple mbufs
453 * holds DSS mapping in the first mbuf of the chain.
454 * Other mbufs in the chain may have M_PKTHDR set
455 * even though they belong to the same TCP packet
456 * and therefore use the DSS mapping stored in the
457 * first mbuf of the mbuf chain. mptcp_input() can
458 * get an mbuf chain with multiple TCP packets.
459 */
460 while (save && (!(save->m_flags & M_PKTHDR) ||
461 !(save->m_pkthdr.pkt_flags & PKTF_MPTCP))) {
462 prev = save;
463 save = save->m_next;
464 }
465 if (prev) {
466 prev->m_next = NULL;
467 } else {
468 m->m_next = NULL;
469 }
470
471 mb_dsn = m->m_pkthdr.mp_dsn;
472 mb_datalen = m->m_pkthdr.mp_rlen;
473
474 todrop = (mb_dsn + mb_datalen) - (mp_tp->mpt_rcvnxt + mp_tp->mpt_rcvwnd);
475 if (todrop > 0) {
476 tcpstat.tcps_mptcp_rcvpackafterwin++;
477
478 os_log_info(mptcp_log_handle, "%s - %lx: dropping dsn %u dlen %u rcvnxt %u rcvwnd %u todrop %lld\n",
479 __func__, (unsigned long)VM_KERNEL_ADDRPERM(mpte),
480 (uint32_t)mb_dsn, mb_datalen, (uint32_t)mp_tp->mpt_rcvnxt,
481 mp_tp->mpt_rcvwnd, todrop);
482
483 if (todrop >= mb_datalen) {
484 if (freelist == NULL) {
485 freelist = m;
486 } else {
487 tail->m_next = m;
488 }
489
490 if (prev != NULL) {
491 tail = prev;
492 } else {
493 tail = m;
494 }
495
496 m = save;
497 prev = save = NULL;
498 continue;
499 } else {
500 VERIFY(todrop <= INT_MAX);
501 m_adj(m, (int)-todrop);
502 mb_datalen -= todrop;
503 m->m_pkthdr.mp_rlen -= todrop;
504 }
505
506 /*
507 * We drop from the right edge of the mbuf, thus the
508 * DATA_FIN is dropped as well
509 */
510 m->m_pkthdr.pkt_flags &= ~PKTF_MPTCP_DFIN;
511 }
512
513 if (MPTCP_SEQ_LT(mb_dsn, mp_tp->mpt_rcvnxt)) {
514 if (MPTCP_SEQ_LEQ((mb_dsn + mb_datalen),
515 mp_tp->mpt_rcvnxt)) {
516 if (freelist == NULL) {
517 freelist = m;
518 } else {
519 tail->m_next = m;
520 }
521
522 if (prev != NULL) {
523 tail = prev;
524 } else {
525 tail = m;
526 }
527
528 m = save;
529 prev = save = NULL;
530 continue;
531 } else {
532 VERIFY((mp_tp->mpt_rcvnxt - mb_dsn) <= INT_MAX);
533 m_adj(m, (int)(mp_tp->mpt_rcvnxt - mb_dsn));
534 mb_datalen -= (mp_tp->mpt_rcvnxt - mb_dsn);
535 mb_dsn = mp_tp->mpt_rcvnxt;
536 VERIFY(mb_datalen >= 0 && mb_datalen <= USHRT_MAX);
537 m->m_pkthdr.mp_rlen = (uint16_t)mb_datalen;
538 m->m_pkthdr.mp_dsn = mb_dsn;
539 }
540 }
541
542 if (MPTCP_SEQ_GT(mb_dsn, mp_tp->mpt_rcvnxt) ||
543 !LIST_EMPTY(&mp_tp->mpt_segq)) {
544 mb_dfin = mptcp_reass(mp_so, &m->m_pkthdr, &mb_datalen, m);
545
546 goto next;
547 }
548 mb_dfin = !!(m->m_pkthdr.pkt_flags & PKTF_MPTCP_DFIN);
549
550 mptcp_sbrcv_grow(mp_tp);
551
552 if (sbappendstream_rcvdemux(mp_so, m)) {
553 wakeup = 1;
554 }
555
556 DTRACE_MPTCP6(receive, struct mbuf *, m, struct socket *, mp_so,
557 struct sockbuf *, &mp_so->so_rcv,
558 struct sockbuf *, &mp_so->so_snd,
559 struct mptses *, mpte,
560 struct mptcb *, mp_tp);
561 count = mp_so->so_rcv.sb_cc - count;
562 tcpstat.tcps_mp_rcvtotal++;
563 tcpstat.tcps_mp_rcvbytes += count;
564
565 mp_tp->mpt_rcvnxt += count;
566
567 next:
568 if (mb_dfin) {
569 mptcp_close_fsm(mp_tp, MPCE_RECV_DATA_FIN);
570 socantrcvmore(mp_so);
571 }
572 m = save;
573 prev = save = NULL;
574 count = mp_so->so_rcv.sb_cc;
575 } while (m);
576
577 if (freelist) {
578 m_freem(freelist);
579 }
580
581 if (wakeup) {
582 sorwakeup(mp_so);
583 }
584 }
585
586 boolean_t
587 mptcp_can_send_more(struct mptcb *mp_tp, boolean_t ignore_reinject)
588 {
589 struct socket *mp_so = mptetoso(mp_tp->mpt_mpte);
590
591 /*
592 * Always send if there is data in the reinject-queue.
593 */
594 if (!ignore_reinject && mp_tp->mpt_mpte->mpte_reinjectq) {
595 return TRUE;
596 }
597
598 /*
599 * Don't send, if:
600 *
601 * 1. snd_nxt >= snd_max : Means, basically everything has been sent.
602 * Except when using TFO, we might be doing a 0-byte write.
603 * 2. snd_una + snd_wnd <= snd_nxt: No space in the receiver's window
604 * 3. snd_nxt + 1 == snd_max and we are closing: A DATA_FIN is scheduled.
605 */
606
607 if (!(mp_so->so_flags1 & SOF1_PRECONNECT_DATA) && MPTCP_SEQ_GEQ(mp_tp->mpt_sndnxt, mp_tp->mpt_sndmax)) {
608 return FALSE;
609 }
610
611 if (MPTCP_SEQ_LEQ(mp_tp->mpt_snduna + mp_tp->mpt_sndwnd, mp_tp->mpt_sndnxt)) {
612 return FALSE;
613 }
614
615 if (mp_tp->mpt_sndnxt + 1 == mp_tp->mpt_sndmax && mp_tp->mpt_state > MPTCPS_CLOSE_WAIT) {
616 return FALSE;
617 }
618
619 if (mp_tp->mpt_state >= MPTCPS_FIN_WAIT_2) {
620 return FALSE;
621 }
622
623 return TRUE;
624 }
625
626 /*
627 * MPTCP output.
628 */
629 int
630 mptcp_output(struct mptses *mpte)
631 {
632 struct mptcb *mp_tp;
633 struct mptsub *mpts;
634 struct mptsub *mpts_tried = NULL;
635 struct socket *mp_so;
636 struct mptsub *preferred_mpts = NULL;
637 uint64_t old_snd_nxt;
638 int error = 0;
639
640 mp_so = mptetoso(mpte);
641 mp_tp = mpte->mpte_mptcb;
642
643 socket_lock_assert_owned(mp_so);
644
645 if (mp_so->so_flags & SOF_DEFUNCT) {
646 return 0;
647 }
648
649 VERIFY(!(mpte->mpte_mppcb->mpp_flags & MPP_WUPCALL));
650 mpte->mpte_mppcb->mpp_flags |= MPP_WUPCALL;
651
652 old_snd_nxt = mp_tp->mpt_sndnxt;
653 while (mptcp_can_send_more(mp_tp, FALSE)) {
654 /* get the "best" subflow to be used for transmission */
655 mpts = mptcp_get_subflow(mpte, &preferred_mpts);
656 if (mpts == NULL) {
657 mptcplog((LOG_INFO, "%s: no subflow\n", __func__),
658 MPTCP_SENDER_DBG, MPTCP_LOGLVL_LOG);
659 break;
660 }
661
662 /* In case there's just one flow, we reattempt later */
663 if (mpts_tried != NULL &&
664 (mpts == mpts_tried || (mpts->mpts_flags & MPTSF_FAILINGOVER))) {
665 mpts_tried->mpts_flags &= ~MPTSF_FAILINGOVER;
666 mpts_tried->mpts_flags |= MPTSF_ACTIVE;
667 mptcp_start_timer(mpte, MPTT_REXMT);
668 break;
669 }
670
671 /*
672 * Automatic sizing of send socket buffer. Increase the send
673 * socket buffer size if all of the following criteria are met
674 * 1. the receiver has enough buffer space for this data
675 * 2. send buffer is filled to 7/8th with data (so we actually
676 * have data to make use of it);
677 */
678 if ((mp_so->so_snd.sb_flags & (SB_AUTOSIZE | SB_TRIM)) == SB_AUTOSIZE &&
679 tcp_cansbgrow(&mp_so->so_snd)) {
680 if ((mp_tp->mpt_sndwnd / 4 * 5) >= mp_so->so_snd.sb_hiwat &&
681 mp_so->so_snd.sb_cc >= (mp_so->so_snd.sb_hiwat / 8 * 7)) {
682 if (sbreserve(&mp_so->so_snd,
683 min(mp_so->so_snd.sb_hiwat + tcp_autosndbuf_inc,
684 tcp_autosndbuf_max)) == 1) {
685 mp_so->so_snd.sb_idealsize = mp_so->so_snd.sb_hiwat;
686 }
687 }
688 }
689
690 DTRACE_MPTCP3(output, struct mptses *, mpte, struct mptsub *, mpts,
691 struct socket *, mp_so);
692 error = mptcp_subflow_output(mpte, mpts, 0);
693 if (error) {
694 /* can be a temporary loss of source address or other error */
695 mpts->mpts_flags |= MPTSF_FAILINGOVER;
696 mpts->mpts_flags &= ~MPTSF_ACTIVE;
697 mpts_tried = mpts;
698 if (error != ECANCELED) {
699 os_log_error(mptcp_log_handle, "%s - %lx: Error = %d mpts_flags %#x\n",
700 __func__, (unsigned long)VM_KERNEL_ADDRPERM(mpte),
701 error, mpts->mpts_flags);
702 }
703 break;
704 }
705 /* The model is to have only one active flow at a time */
706 mpts->mpts_flags |= MPTSF_ACTIVE;
707 mpts->mpts_probesoon = mpts->mpts_probecnt = 0;
708
709 /* Allows us to update the smoothed rtt */
710 if (mptcp_probeto && mpts != preferred_mpts && preferred_mpts != NULL) {
711 if (preferred_mpts->mpts_probesoon) {
712 if ((tcp_now - preferred_mpts->mpts_probesoon) > mptcp_probeto) {
713 mptcp_subflow_output(mpte, preferred_mpts, MPTCP_SUBOUT_PROBING);
714 if (preferred_mpts->mpts_probecnt >= mptcp_probecnt) {
715 preferred_mpts->mpts_probesoon = 0;
716 preferred_mpts->mpts_probecnt = 0;
717 }
718 }
719 } else {
720 preferred_mpts->mpts_probesoon = tcp_now;
721 preferred_mpts->mpts_probecnt = 0;
722 }
723 }
724
725 if (mpte->mpte_active_sub == NULL) {
726 mpte->mpte_active_sub = mpts;
727 } else if (mpte->mpte_active_sub != mpts) {
728 mpte->mpte_active_sub->mpts_flags &= ~MPTSF_ACTIVE;
729 mpte->mpte_active_sub = mpts;
730
731 mptcpstats_inc_switch(mpte, mpts);
732 }
733 }
734
735 if (mp_tp->mpt_state > MPTCPS_CLOSE_WAIT) {
736 if (mp_tp->mpt_sndnxt + 1 == mp_tp->mpt_sndmax &&
737 mp_tp->mpt_snduna == mp_tp->mpt_sndnxt) {
738 mptcp_finish_usrclosed(mpte);
739 }
740 }
741
742 mptcp_handle_deferred_upcalls(mpte->mpte_mppcb, MPP_WUPCALL);
743
744 /* subflow errors should not be percolated back up */
745 return 0;
746 }
747
748
749 static struct mptsub *
750 mptcp_choose_subflow(struct mptsub *mpts, struct mptsub *curbest, int *currtt)
751 {
752 struct tcpcb *tp = sototcpcb(mpts->mpts_socket);
753
754 /*
755 * Lower RTT? Take it, if it's our first one, or
756 * it doesn't has any loss, or the current one has
757 * loss as well.
758 */
759 if (tp->t_srtt && *currtt > tp->t_srtt &&
760 (curbest == NULL || tp->t_rxtshift == 0 ||
761 sototcpcb(curbest->mpts_socket)->t_rxtshift)) {
762 *currtt = tp->t_srtt;
763 return mpts;
764 }
765
766 /*
767 * If we find a subflow without loss, take it always!
768 */
769 if (curbest &&
770 sototcpcb(curbest->mpts_socket)->t_rxtshift &&
771 tp->t_rxtshift == 0) {
772 *currtt = tp->t_srtt;
773 return mpts;
774 }
775
776 return curbest != NULL ? curbest : mpts;
777 }
778
779 static struct mptsub *
780 mptcp_return_subflow(struct mptsub *mpts)
781 {
782 if (mpts && mptcp_subflow_cwnd_space(mpts->mpts_socket) <= 0) {
783 return NULL;
784 }
785
786 return mpts;
787 }
788
789 static boolean_t
790 mptcp_subflow_is_slow(struct mptses *mpte, struct mptsub *mpts)
791 {
792 struct tcpcb *tp = sototcpcb(mpts->mpts_socket);
793 int fail_thresh = mptcp_fail_thresh;
794
795 if (mpte->mpte_svctype == MPTCP_SVCTYPE_HANDOVER || mpte->mpte_svctype == MPTCP_SVCTYPE_PURE_HANDOVER) {
796 fail_thresh *= 2;
797 }
798
799 return tp->t_rxtshift >= fail_thresh &&
800 (mptetoso(mpte)->so_snd.sb_cc || mpte->mpte_reinjectq);
801 }
802
803 /*
804 * Return the most eligible subflow to be used for sending data.
805 */
806 struct mptsub *
807 mptcp_get_subflow(struct mptses *mpte, struct mptsub **preferred)
808 {
809 struct tcpcb *besttp, *secondtp;
810 struct inpcb *bestinp, *secondinp;
811 struct mptsub *mpts;
812 struct mptsub *best = NULL;
813 struct mptsub *second_best = NULL;
814 int exp_rtt = INT_MAX, cheap_rtt = INT_MAX;
815
816 /*
817 * First Step:
818 * Choose the best subflow for cellular and non-cellular interfaces.
819 */
820
821 TAILQ_FOREACH(mpts, &mpte->mpte_subflows, mpts_entry) {
822 struct socket *so = mpts->mpts_socket;
823 struct tcpcb *tp = sototcpcb(so);
824 struct inpcb *inp = sotoinpcb(so);
825
826 mptcplog((LOG_DEBUG, "%s mpts %u mpts_flags %#x, suspended %u sostate %#x tpstate %u cellular %d rtt %u rxtshift %u cheap %u exp %u cwnd %d\n",
827 __func__, mpts->mpts_connid, mpts->mpts_flags,
828 INP_WAIT_FOR_IF_FEEDBACK(inp), so->so_state, tp->t_state,
829 inp->inp_last_outifp ? IFNET_IS_CELLULAR(inp->inp_last_outifp) : -1,
830 tp->t_srtt, tp->t_rxtshift, cheap_rtt, exp_rtt,
831 mptcp_subflow_cwnd_space(so)),
832 MPTCP_SOCKET_DBG, MPTCP_LOGLVL_VERBOSE);
833
834 /*
835 * First, the hard conditions to reject subflows
836 * (e.g., not connected,...)
837 */
838 if (inp->inp_last_outifp == NULL) {
839 continue;
840 }
841
842 if (INP_WAIT_FOR_IF_FEEDBACK(inp)) {
843 continue;
844 }
845
846 /* There can only be one subflow in degraded state */
847 if (mpts->mpts_flags & MPTSF_MP_DEGRADED) {
848 best = mpts;
849 break;
850 }
851
852 /*
853 * If this subflow is waiting to finally send, do it!
854 */
855 if (so->so_flags1 & SOF1_PRECONNECT_DATA) {
856 return mptcp_return_subflow(mpts);
857 }
858
859 /*
860 * Only send if the subflow is MP_CAPABLE. The exceptions to
861 * this rule (degraded or TFO) have been taken care of above.
862 */
863 if (!(mpts->mpts_flags & MPTSF_MP_CAPABLE)) {
864 continue;
865 }
866
867 if ((so->so_state & SS_ISDISCONNECTED) ||
868 !(so->so_state & SS_ISCONNECTED) ||
869 !TCPS_HAVEESTABLISHED(tp->t_state) ||
870 tp->t_state > TCPS_CLOSE_WAIT) {
871 continue;
872 }
873
874 /*
875 * Second, the soft conditions to find the subflow with best
876 * conditions for each set (aka cellular vs non-cellular)
877 */
878 if (IFNET_IS_CELLULAR(inp->inp_last_outifp)) {
879 second_best = mptcp_choose_subflow(mpts, second_best,
880 &exp_rtt);
881 } else {
882 best = mptcp_choose_subflow(mpts, best, &cheap_rtt);
883 }
884 }
885
886 /*
887 * If there is no preferred or backup subflow, and there is no active
888 * subflow use the last usable subflow.
889 */
890 if (best == NULL) {
891 return mptcp_return_subflow(second_best);
892 }
893
894 if (second_best == NULL) {
895 return mptcp_return_subflow(best);
896 }
897
898 besttp = sototcpcb(best->mpts_socket);
899 bestinp = sotoinpcb(best->mpts_socket);
900 secondtp = sototcpcb(second_best->mpts_socket);
901 secondinp = sotoinpcb(second_best->mpts_socket);
902
903 if (preferred != NULL) {
904 *preferred = mptcp_return_subflow(best);
905 }
906
907 /*
908 * Second Step: Among best and second_best. Choose the one that is
909 * most appropriate for this particular service-type.
910 */
911 if (mpte->mpte_svctype == MPTCP_SVCTYPE_PURE_HANDOVER) {
912 return mptcp_return_subflow(best);
913 } else if (mpte->mpte_svctype == MPTCP_SVCTYPE_HANDOVER) {
914 /*
915 * Only handover if Symptoms tells us to do so.
916 */
917 if (!IFNET_IS_CELLULAR(bestinp->inp_last_outifp) &&
918 mptcp_is_wifi_unusable_for_session(mpte) != 0 && mptcp_subflow_is_slow(mpte, best)) {
919 return mptcp_return_subflow(second_best);
920 }
921
922 return mptcp_return_subflow(best);
923 } else if (mpte->mpte_svctype == MPTCP_SVCTYPE_INTERACTIVE) {
924 int rtt_thresh = mptcp_rtthist_rtthresh << TCP_RTT_SHIFT;
925 int rto_thresh = mptcp_rtothresh;
926
927 /* Adjust with symptoms information */
928 if (!IFNET_IS_CELLULAR(bestinp->inp_last_outifp) &&
929 mptcp_is_wifi_unusable_for_session(mpte) != 0) {
930 rtt_thresh /= 2;
931 rto_thresh /= 2;
932 }
933
934 if (besttp->t_srtt && secondtp->t_srtt &&
935 besttp->t_srtt >= rtt_thresh &&
936 secondtp->t_srtt < rtt_thresh) {
937 tcpstat.tcps_mp_sel_rtt++;
938 mptcplog((LOG_DEBUG, "%s: best cid %d at rtt %d, second cid %d at rtt %d\n", __func__,
939 best->mpts_connid, besttp->t_srtt >> TCP_RTT_SHIFT,
940 second_best->mpts_connid,
941 secondtp->t_srtt >> TCP_RTT_SHIFT),
942 MPTCP_SENDER_DBG, MPTCP_LOGLVL_LOG);
943 return mptcp_return_subflow(second_best);
944 }
945
946 if (mptcp_subflow_is_slow(mpte, best) &&
947 secondtp->t_rxtshift == 0) {
948 return mptcp_return_subflow(second_best);
949 }
950
951 /* Compare RTOs, select second_best if best's rto exceeds rtothresh */
952 if (besttp->t_rxtcur && secondtp->t_rxtcur &&
953 besttp->t_rxtcur >= rto_thresh &&
954 secondtp->t_rxtcur < rto_thresh) {
955 tcpstat.tcps_mp_sel_rto++;
956 mptcplog((LOG_DEBUG, "%s: best cid %d at rto %d, second cid %d at rto %d\n", __func__,
957 best->mpts_connid, besttp->t_rxtcur,
958 second_best->mpts_connid, secondtp->t_rxtcur),
959 MPTCP_SENDER_DBG, MPTCP_LOGLVL_LOG);
960
961 return mptcp_return_subflow(second_best);
962 }
963
964 /*
965 * None of the above conditions for sending on the secondary
966 * were true. So, let's schedule on the best one, if he still
967 * has some space in the congestion-window.
968 */
969 return mptcp_return_subflow(best);
970 } else if (mpte->mpte_svctype >= MPTCP_SVCTYPE_AGGREGATE) {
971 struct mptsub *tmp;
972
973 /*
974 * We only care about RTT when aggregating
975 */
976 if (besttp->t_srtt > secondtp->t_srtt) {
977 tmp = best;
978 best = second_best;
979 besttp = secondtp;
980 bestinp = secondinp;
981
982 second_best = tmp;
983 secondtp = sototcpcb(second_best->mpts_socket);
984 secondinp = sotoinpcb(second_best->mpts_socket);
985 }
986
987 /* Is there still space in the congestion window? */
988 if (mptcp_subflow_cwnd_space(bestinp->inp_socket) <= 0) {
989 return mptcp_return_subflow(second_best);
990 }
991
992 return mptcp_return_subflow(best);
993 } else {
994 panic("Unknown service-type configured for MPTCP");
995 }
996
997 return NULL;
998 }
999
1000 static const char *
1001 mptcp_event_to_str(uint32_t event)
1002 {
1003 const char *c = "UNDEFINED";
1004 switch (event) {
1005 case MPCE_CLOSE:
1006 c = "MPCE_CLOSE";
1007 break;
1008 case MPCE_RECV_DATA_ACK:
1009 c = "MPCE_RECV_DATA_ACK";
1010 break;
1011 case MPCE_RECV_DATA_FIN:
1012 c = "MPCE_RECV_DATA_FIN";
1013 break;
1014 }
1015 return c;
1016 }
1017
1018 static const char *
1019 mptcp_state_to_str(mptcp_state_t state)
1020 {
1021 const char *c = "UNDEFINED";
1022 switch (state) {
1023 case MPTCPS_CLOSED:
1024 c = "MPTCPS_CLOSED";
1025 break;
1026 case MPTCPS_LISTEN:
1027 c = "MPTCPS_LISTEN";
1028 break;
1029 case MPTCPS_ESTABLISHED:
1030 c = "MPTCPS_ESTABLISHED";
1031 break;
1032 case MPTCPS_CLOSE_WAIT:
1033 c = "MPTCPS_CLOSE_WAIT";
1034 break;
1035 case MPTCPS_FIN_WAIT_1:
1036 c = "MPTCPS_FIN_WAIT_1";
1037 break;
1038 case MPTCPS_CLOSING:
1039 c = "MPTCPS_CLOSING";
1040 break;
1041 case MPTCPS_LAST_ACK:
1042 c = "MPTCPS_LAST_ACK";
1043 break;
1044 case MPTCPS_FIN_WAIT_2:
1045 c = "MPTCPS_FIN_WAIT_2";
1046 break;
1047 case MPTCPS_TIME_WAIT:
1048 c = "MPTCPS_TIME_WAIT";
1049 break;
1050 case MPTCPS_TERMINATE:
1051 c = "MPTCPS_TERMINATE";
1052 break;
1053 }
1054 return c;
1055 }
1056
1057 void
1058 mptcp_close_fsm(struct mptcb *mp_tp, uint32_t event)
1059 {
1060 struct socket *mp_so = mptetoso(mp_tp->mpt_mpte);
1061
1062 socket_lock_assert_owned(mp_so);
1063
1064 mptcp_state_t old_state = mp_tp->mpt_state;
1065
1066 DTRACE_MPTCP2(state__change, struct mptcb *, mp_tp,
1067 uint32_t, event);
1068
1069 switch (mp_tp->mpt_state) {
1070 case MPTCPS_CLOSED:
1071 case MPTCPS_LISTEN:
1072 mp_tp->mpt_state = MPTCPS_TERMINATE;
1073 break;
1074
1075 case MPTCPS_ESTABLISHED:
1076 if (event == MPCE_CLOSE) {
1077 mp_tp->mpt_state = MPTCPS_FIN_WAIT_1;
1078 mp_tp->mpt_sndmax += 1; /* adjust for Data FIN */
1079 } else if (event == MPCE_RECV_DATA_FIN) {
1080 mp_tp->mpt_rcvnxt += 1; /* adj remote data FIN */
1081 mp_tp->mpt_state = MPTCPS_CLOSE_WAIT;
1082 }
1083 break;
1084
1085 case MPTCPS_CLOSE_WAIT:
1086 if (event == MPCE_CLOSE) {
1087 mp_tp->mpt_state = MPTCPS_LAST_ACK;
1088 mp_tp->mpt_sndmax += 1; /* adjust for Data FIN */
1089 }
1090 break;
1091
1092 case MPTCPS_FIN_WAIT_1:
1093 if (event == MPCE_RECV_DATA_ACK) {
1094 mp_tp->mpt_state = MPTCPS_FIN_WAIT_2;
1095 } else if (event == MPCE_RECV_DATA_FIN) {
1096 mp_tp->mpt_rcvnxt += 1; /* adj remote data FIN */
1097 mp_tp->mpt_state = MPTCPS_CLOSING;
1098 }
1099 break;
1100
1101 case MPTCPS_CLOSING:
1102 if (event == MPCE_RECV_DATA_ACK) {
1103 mp_tp->mpt_state = MPTCPS_TIME_WAIT;
1104 }
1105 break;
1106
1107 case MPTCPS_LAST_ACK:
1108 if (event == MPCE_RECV_DATA_ACK) {
1109 mptcp_close(mp_tp->mpt_mpte, mp_tp);
1110 }
1111 break;
1112
1113 case MPTCPS_FIN_WAIT_2:
1114 if (event == MPCE_RECV_DATA_FIN) {
1115 mp_tp->mpt_rcvnxt += 1; /* adj remote data FIN */
1116 mp_tp->mpt_state = MPTCPS_TIME_WAIT;
1117 }
1118 break;
1119
1120 case MPTCPS_TIME_WAIT:
1121 case MPTCPS_TERMINATE:
1122 break;
1123
1124 default:
1125 VERIFY(0);
1126 /* NOTREACHED */
1127 }
1128 DTRACE_MPTCP2(state__change, struct mptcb *, mp_tp,
1129 uint32_t, event);
1130 mptcplog((LOG_INFO, "%s: %s to %s on event %s\n", __func__,
1131 mptcp_state_to_str(old_state),
1132 mptcp_state_to_str(mp_tp->mpt_state),
1133 mptcp_event_to_str(event)),
1134 MPTCP_STATE_DBG, MPTCP_LOGLVL_LOG);
1135 }
1136
1137 /* If you change this function, match up mptcp_update_rcv_state_f */
1138 void
1139 mptcp_update_dss_rcv_state(struct mptcp_dsn_opt *dss_info, struct tcpcb *tp,
1140 uint16_t csum)
1141 {
1142 struct mptcb *mp_tp = tptomptp(tp);
1143 u_int64_t full_dsn = 0;
1144
1145 NTOHL(dss_info->mdss_dsn);
1146 NTOHL(dss_info->mdss_subflow_seqn);
1147 NTOHS(dss_info->mdss_data_len);
1148
1149 /* XXX for autosndbuf grow sb here */
1150 MPTCP_EXTEND_DSN(mp_tp->mpt_rcvnxt, dss_info->mdss_dsn, full_dsn);
1151 mptcp_update_rcv_state_meat(mp_tp, tp,
1152 full_dsn, dss_info->mdss_subflow_seqn, dss_info->mdss_data_len,
1153 csum);
1154 }
1155
1156 void
1157 mptcp_update_rcv_state_meat(struct mptcb *mp_tp, struct tcpcb *tp,
1158 u_int64_t full_dsn, u_int32_t seqn, u_int16_t mdss_data_len,
1159 uint16_t csum)
1160 {
1161 if (mdss_data_len == 0) {
1162 os_log_error(mptcp_log_handle, "%s - %lx: Infinite Mapping.\n",
1163 __func__, (unsigned long)VM_KERNEL_ADDRPERM(mp_tp->mpt_mpte));
1164
1165 if ((mp_tp->mpt_flags & MPTCPF_CHECKSUM) && (csum != 0)) {
1166 os_log_error(mptcp_log_handle, "%s - %lx: Bad checksum %x \n",
1167 __func__, (unsigned long)VM_KERNEL_ADDRPERM(mp_tp->mpt_mpte), csum);
1168 }
1169 mptcp_notify_mpfail(tp->t_inpcb->inp_socket);
1170 return;
1171 }
1172
1173 mptcp_notify_mpready(tp->t_inpcb->inp_socket);
1174
1175 tp->t_rcv_map.mpt_dsn = full_dsn;
1176 tp->t_rcv_map.mpt_sseq = seqn;
1177 tp->t_rcv_map.mpt_len = mdss_data_len;
1178 tp->t_rcv_map.mpt_csum = csum;
1179 tp->t_mpflags |= TMPF_EMBED_DSN;
1180 }
1181
1182
1183 static int
1184 mptcp_validate_dss_map(struct socket *so, struct tcpcb *tp, struct mbuf *m,
1185 int hdrlen)
1186 {
1187 u_int32_t datalen;
1188
1189 if (!(m->m_pkthdr.pkt_flags & PKTF_MPTCP)) {
1190 return 0;
1191 }
1192
1193 datalen = m->m_pkthdr.mp_rlen;
1194
1195 /* unacceptable DSS option, fallback to TCP */
1196 if (m->m_pkthdr.len > ((int) datalen + hdrlen)) {
1197 os_log_error(mptcp_log_handle, "%s - %lx: mbuf len %d, MPTCP expected %d",
1198 __func__, (unsigned long)VM_KERNEL_ADDRPERM(tptomptp(tp)->mpt_mpte), m->m_pkthdr.len, datalen);
1199 } else {
1200 return 0;
1201 }
1202 tp->t_mpflags |= TMPF_SND_MPFAIL;
1203 mptcp_notify_mpfail(so);
1204 m_freem(m);
1205 return -1;
1206 }
1207
1208 int
1209 mptcp_input_preproc(struct tcpcb *tp, struct mbuf *m, struct tcphdr *th,
1210 int drop_hdrlen)
1211 {
1212 mptcp_insert_rmap(tp, m, th);
1213 if (mptcp_validate_dss_map(tp->t_inpcb->inp_socket, tp, m,
1214 drop_hdrlen) != 0) {
1215 return -1;
1216 }
1217 return 0;
1218 }
1219
1220 static uint16_t
1221 mptcp_input_csum(struct tcpcb *tp, struct mbuf *m, uint64_t dsn, uint32_t sseq,
1222 uint16_t dlen, uint16_t csum, int dfin)
1223 {
1224 struct mptcb *mp_tp = tptomptp(tp);
1225 int real_len = dlen - dfin;
1226 uint32_t sum = 0;
1227
1228 VERIFY(real_len >= 0);
1229
1230 if (mp_tp == NULL) {
1231 return 0;
1232 }
1233
1234 if (!(mp_tp->mpt_flags & MPTCPF_CHECKSUM)) {
1235 return 0;
1236 }
1237
1238 if (tp->t_mpflags & TMPF_TCP_FALLBACK) {
1239 return 0;
1240 }
1241
1242 /*
1243 * The remote side may send a packet with fewer bytes than the
1244 * claimed DSS checksum length.
1245 */
1246 if ((int)m_length2(m, NULL) < real_len) {
1247 return 0xffff;
1248 }
1249
1250 if (real_len != 0) {
1251 sum = m_sum16(m, 0, real_len);
1252 }
1253
1254 sum += in_pseudo64(htonll(dsn), htonl(sseq), htons(dlen) + csum);
1255 ADDCARRY(sum);
1256
1257 DTRACE_MPTCP3(checksum__result, struct tcpcb *, tp, struct mbuf *, m,
1258 uint32_t, sum);
1259
1260 return ~sum & 0xffff;
1261 }
1262
1263 /*
1264 * MPTCP Checksum support
1265 * The checksum is calculated whenever the MPTCP DSS option is included
1266 * in the TCP packet. The checksum includes the sum of the MPTCP psuedo
1267 * header and the actual data indicated by the length specified in the
1268 * DSS option.
1269 */
1270
1271 int
1272 mptcp_validate_csum(struct tcpcb *tp, struct mbuf *m, uint64_t dsn,
1273 uint32_t sseq, uint16_t dlen, uint16_t csum, int dfin)
1274 {
1275 uint16_t mptcp_csum;
1276
1277 mptcp_csum = mptcp_input_csum(tp, m, dsn, sseq, dlen, csum, dfin);
1278 if (mptcp_csum) {
1279 tp->t_mpflags |= TMPF_SND_MPFAIL;
1280 mptcp_notify_mpfail(tp->t_inpcb->inp_socket);
1281 m_freem(m);
1282 tcpstat.tcps_mp_badcsum++;
1283 return -1;
1284 }
1285 return 0;
1286 }
1287
1288 uint16_t
1289 mptcp_output_csum(struct mbuf *m, uint64_t dss_val, uint32_t sseq, uint16_t dlen)
1290 {
1291 uint32_t sum = 0;
1292
1293 if (dlen) {
1294 sum = m_sum16(m, 0, dlen);
1295 }
1296
1297 dss_val = mptcp_hton64(dss_val);
1298 sseq = htonl(sseq);
1299 dlen = htons(dlen);
1300 sum += in_pseudo64(dss_val, sseq, dlen);
1301
1302 ADDCARRY(sum);
1303 sum = ~sum & 0xffff;
1304 DTRACE_MPTCP2(checksum__result, struct mbuf *, m, uint32_t, sum);
1305 mptcplog((LOG_DEBUG, "%s: sum = %x \n", __func__, sum),
1306 MPTCP_SENDER_DBG, MPTCP_LOGLVL_VERBOSE);
1307
1308 return (uint16_t)sum;
1309 }
1310
1311 /*
1312 * When WiFi signal starts fading, there's more loss and RTT spikes.
1313 * Check if there has been a large spike by comparing against
1314 * a tolerable RTT spike threshold.
1315 */
1316 boolean_t
1317 mptcp_no_rto_spike(struct socket *so)
1318 {
1319 struct tcpcb *tp = intotcpcb(sotoinpcb(so));
1320 int32_t spike = 0;
1321
1322 if (tp->t_rxtcur > mptcp_rtothresh) {
1323 spike = tp->t_rxtcur - mptcp_rtothresh;
1324
1325 mptcplog((LOG_DEBUG, "%s: spike = %d rto = %d best = %d cur = %d\n",
1326 __func__, spike,
1327 tp->t_rxtcur, tp->t_rttbest >> TCP_RTT_SHIFT,
1328 tp->t_rttcur),
1329 (MPTCP_SOCKET_DBG | MPTCP_SENDER_DBG), MPTCP_LOGLVL_LOG);
1330 }
1331
1332 if (spike > 0) {
1333 return FALSE;
1334 } else {
1335 return TRUE;
1336 }
1337 }
1338
1339 void
1340 mptcp_handle_deferred_upcalls(struct mppcb *mpp, uint32_t flag)
1341 {
1342 VERIFY(mpp->mpp_flags & flag);
1343 mpp->mpp_flags &= ~flag;
1344
1345 if (mptcp_should_defer_upcall(mpp)) {
1346 return;
1347 }
1348
1349 if (mpp->mpp_flags & MPP_SHOULD_WORKLOOP) {
1350 mpp->mpp_flags &= ~MPP_SHOULD_WORKLOOP;
1351
1352 mptcp_subflow_workloop(mpp->mpp_pcbe);
1353 }
1354
1355 if (mpp->mpp_flags & MPP_SHOULD_RWAKEUP) {
1356 mpp->mpp_flags &= ~MPP_SHOULD_RWAKEUP;
1357
1358 sorwakeup(mpp->mpp_socket);
1359 }
1360
1361 if (mpp->mpp_flags & MPP_SHOULD_WWAKEUP) {
1362 mpp->mpp_flags &= ~MPP_SHOULD_WWAKEUP;
1363
1364 sowwakeup(mpp->mpp_socket);
1365 }
1366 }
1367
1368 static void
1369 mptcp_reset_itfinfo(struct mpt_itf_info *info)
1370 {
1371 memset(info, 0, sizeof(*info));
1372 }
1373
1374 void
1375 mptcp_session_necp_cb(void *handle, int action, uint32_t interface_index,
1376 uint32_t necp_flags, __unused bool *viable)
1377 {
1378 boolean_t has_v4 = !!(necp_flags & NECP_CLIENT_RESULT_FLAG_HAS_IPV4);
1379 boolean_t has_v6 = !!(necp_flags & NECP_CLIENT_RESULT_FLAG_HAS_IPV6);
1380 boolean_t has_nat64 = !!(necp_flags & NECP_CLIENT_RESULT_FLAG_HAS_NAT64);
1381 boolean_t low_power = !!(necp_flags & NECP_CLIENT_RESULT_FLAG_INTERFACE_LOW_POWER);
1382 struct mppcb *mp = (struct mppcb *)handle;
1383 struct mptses *mpte = mptompte(mp);
1384 struct socket *mp_so;
1385 struct mptcb *mp_tp;
1386 uint32_t i, ifindex;
1387 struct ifnet *ifp;
1388 int locked = 0;
1389
1390 ifindex = interface_index;
1391 VERIFY(ifindex != IFSCOPE_NONE);
1392
1393 /* About to be garbage-collected (see note about MPTCP/NECP interactions) */
1394 if (mp->mpp_socket->so_usecount == 0) {
1395 return;
1396 }
1397
1398 mp_so = mptetoso(mpte);
1399
1400 if (action != NECP_CLIENT_CBACTION_INITIAL) {
1401 socket_lock(mp_so, 1);
1402 locked = 1;
1403
1404 /* Check again, because it might have changed while waiting */
1405 if (mp->mpp_socket->so_usecount == 0) {
1406 goto out;
1407 }
1408 }
1409
1410 socket_lock_assert_owned(mp_so);
1411
1412 mp_tp = mpte->mpte_mptcb;
1413
1414 ifnet_head_lock_shared();
1415 ifp = ifindex2ifnet[ifindex];
1416 ifnet_head_done();
1417
1418 os_log(mptcp_log_handle, "%s - %lx: action: %u ifindex %u delegated to %u usecount %u mpt_flags %#x state %u v4 %u v6 %u nat64 %u power %u\n",
1419 __func__, (unsigned long)VM_KERNEL_ADDRPERM(mpte), action, ifindex,
1420 ifp && ifp->if_delegated.ifp ? ifp->if_delegated.ifp->if_index : IFSCOPE_NONE,
1421 mp->mpp_socket->so_usecount, mp_tp->mpt_flags, mp_tp->mpt_state,
1422 has_v4, has_v6, has_nat64, low_power);
1423
1424 /* No need on fallen back sockets */
1425 if (mp_tp->mpt_flags & MPTCPF_FALLBACK_TO_TCP) {
1426 goto out;
1427 }
1428
1429 /*
1430 * When the interface goes in low-power mode we don't want to establish
1431 * new subflows on it. Thus, mark it internally as non-viable.
1432 */
1433 if (low_power) {
1434 action = NECP_CLIENT_CBACTION_NONVIABLE;
1435 }
1436
1437 if (action == NECP_CLIENT_CBACTION_NONVIABLE) {
1438 for (i = 0; i < mpte->mpte_itfinfo_size; i++) {
1439 if (mpte->mpte_itfinfo[i].ifindex == IFSCOPE_NONE) {
1440 continue;
1441 }
1442
1443 if (mpte->mpte_itfinfo[i].ifindex == ifindex) {
1444 mptcp_reset_itfinfo(&mpte->mpte_itfinfo[i]);
1445 }
1446 }
1447
1448 mptcp_sched_create_subflows(mpte);
1449 } else if (action == NECP_CLIENT_CBACTION_VIABLE ||
1450 action == NECP_CLIENT_CBACTION_INITIAL) {
1451 int found_slot = 0, slot_index = -1;
1452 struct sockaddr *dst;
1453
1454 if (ifp == NULL) {
1455 goto out;
1456 }
1457
1458 if (IFNET_IS_COMPANION_LINK(ifp)) {
1459 goto out;
1460 }
1461
1462 if (IFNET_IS_EXPENSIVE(ifp) &&
1463 (mp_so->so_restrictions & SO_RESTRICT_DENY_EXPENSIVE)) {
1464 goto out;
1465 }
1466
1467 if (IFNET_IS_CONSTRAINED(ifp) &&
1468 (mp_so->so_restrictions & SO_RESTRICT_DENY_CONSTRAINED)) {
1469 goto out;
1470 }
1471
1472 if (IFNET_IS_CELLULAR(ifp) &&
1473 (mp_so->so_restrictions & SO_RESTRICT_DENY_CELLULAR)) {
1474 goto out;
1475 }
1476
1477 if (IS_INTF_CLAT46(ifp)) {
1478 has_v4 = FALSE;
1479 }
1480
1481 /* Look for the slot on where to store/update the interface-info. */
1482 for (i = 0; i < mpte->mpte_itfinfo_size; i++) {
1483 /* Found a potential empty slot where we can put it */
1484 if (mpte->mpte_itfinfo[i].ifindex == 0) {
1485 found_slot = 1;
1486 slot_index = i;
1487 }
1488
1489 /*
1490 * The interface is already in our array. Check if we
1491 * need to update it.
1492 */
1493 if (mpte->mpte_itfinfo[i].ifindex == ifindex &&
1494 (mpte->mpte_itfinfo[i].has_v4_conn != has_v4 ||
1495 mpte->mpte_itfinfo[i].has_v6_conn != has_v6 ||
1496 mpte->mpte_itfinfo[i].has_nat64_conn != has_nat64)) {
1497 found_slot = 1;
1498 slot_index = i;
1499 break;
1500 }
1501
1502 if (mpte->mpte_itfinfo[i].ifindex == ifindex) {
1503 /*
1504 * Ok, it's already there and we don't need
1505 * to update it
1506 */
1507 goto out;
1508 }
1509 }
1510
1511 dst = mptcp_get_session_dst(mpte, has_v6, has_v4);
1512 if (dst && dst->sa_family == AF_INET &&
1513 has_v6 && !has_nat64 && !has_v4) {
1514 if (found_slot) {
1515 mpte->mpte_itfinfo[slot_index].ifindex = ifindex;
1516 mpte->mpte_itfinfo[slot_index].has_v4_conn = has_v4;
1517 mpte->mpte_itfinfo[slot_index].has_v6_conn = has_v6;
1518 mpte->mpte_itfinfo[slot_index].has_nat64_conn = has_nat64;
1519 }
1520 goto out;
1521 }
1522
1523 if (found_slot == 0) {
1524 int new_size = mpte->mpte_itfinfo_size * 2;
1525 struct mpt_itf_info *info = _MALLOC(sizeof(*info) * new_size, M_TEMP, M_ZERO);
1526
1527 if (info == NULL) {
1528 os_log_error(mptcp_log_handle, "%s - %lx: malloc failed for %u\n",
1529 __func__, (unsigned long)VM_KERNEL_ADDRPERM(mpte), new_size);
1530 goto out;
1531 }
1532
1533 memcpy(info, mpte->mpte_itfinfo, mpte->mpte_itfinfo_size * sizeof(*info));
1534
1535 if (mpte->mpte_itfinfo_size > MPTE_ITFINFO_SIZE) {
1536 _FREE(mpte->mpte_itfinfo, M_TEMP);
1537 }
1538
1539 /* We allocated a new one, thus the first must be empty */
1540 slot_index = mpte->mpte_itfinfo_size;
1541
1542 mpte->mpte_itfinfo = info;
1543 mpte->mpte_itfinfo_size = new_size;
1544 }
1545
1546 VERIFY(slot_index >= 0 && slot_index < (int)mpte->mpte_itfinfo_size);
1547 mpte->mpte_itfinfo[slot_index].ifindex = ifindex;
1548 mpte->mpte_itfinfo[slot_index].has_v4_conn = has_v4;
1549 mpte->mpte_itfinfo[slot_index].has_v6_conn = has_v6;
1550 mpte->mpte_itfinfo[slot_index].has_nat64_conn = has_nat64;
1551
1552 mptcp_sched_create_subflows(mpte);
1553 }
1554
1555 out:
1556 if (locked) {
1557 socket_unlock(mp_so, 1);
1558 }
1559 }
1560
1561 void
1562 mptcp_set_restrictions(struct socket *mp_so)
1563 {
1564 struct mptses *mpte = mpsotompte(mp_so);
1565 uint32_t i;
1566
1567 socket_lock_assert_owned(mp_so);
1568
1569 ifnet_head_lock_shared();
1570
1571 for (i = 0; i < mpte->mpte_itfinfo_size; i++) {
1572 struct mpt_itf_info *info = &mpte->mpte_itfinfo[i];
1573 uint32_t ifindex = info->ifindex;
1574 struct ifnet *ifp;
1575
1576 if (ifindex == IFSCOPE_NONE) {
1577 continue;
1578 }
1579
1580 ifp = ifindex2ifnet[ifindex];
1581 if (ifp == NULL) {
1582 continue;
1583 }
1584
1585 if (IFNET_IS_EXPENSIVE(ifp) &&
1586 (mp_so->so_restrictions & SO_RESTRICT_DENY_EXPENSIVE)) {
1587 info->ifindex = IFSCOPE_NONE;
1588 }
1589
1590 if (IFNET_IS_CONSTRAINED(ifp) &&
1591 (mp_so->so_restrictions & SO_RESTRICT_DENY_CONSTRAINED)) {
1592 info->ifindex = IFSCOPE_NONE;
1593 }
1594
1595 if (IFNET_IS_CELLULAR(ifp) &&
1596 (mp_so->so_restrictions & SO_RESTRICT_DENY_CELLULAR)) {
1597 info->ifindex = IFSCOPE_NONE;
1598 }
1599 }
1600
1601 ifnet_head_done();
1602 }