]> git.saurik.com Git - apple/xnu.git/blob - bsd/net/route.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / bsd / net / route.c
1 /*
2 * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1980, 1986, 1991, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)route.c 8.2 (Berkeley) 11/15/93
61 * $FreeBSD: src/sys/net/route.c,v 1.59.2.3 2001/07/29 19:18:02 ume Exp $
62 */
63
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/systm.h>
67 #include <sys/malloc.h>
68 #include <sys/mbuf.h>
69 #include <sys/socket.h>
70 #include <sys/domain.h>
71 #include <sys/stat.h>
72 #include <sys/ubc.h>
73 #include <sys/vnode.h>
74 #include <sys/syslog.h>
75 #include <sys/queue.h>
76 #include <sys/mcache.h>
77 #include <sys/priv.h>
78 #include <sys/protosw.h>
79 #include <sys/sdt.h>
80 #include <sys/kernel.h>
81 #include <kern/locks.h>
82 #include <kern/zalloc.h>
83
84 #include <net/dlil.h>
85 #include <net/if.h>
86 #include <net/route.h>
87 #include <net/ntstat.h>
88 #include <net/nwk_wq.h>
89 #if NECP
90 #include <net/necp.h>
91 #endif /* NECP */
92
93 #include <netinet/in.h>
94 #include <netinet/in_var.h>
95 #include <netinet/ip_var.h>
96 #include <netinet/ip.h>
97 #include <netinet/ip6.h>
98 #include <netinet/in_arp.h>
99
100 #include <netinet6/ip6_var.h>
101 #include <netinet6/in6_var.h>
102 #include <netinet6/nd6.h>
103
104 #include <net/if_dl.h>
105
106 #include <libkern/OSAtomic.h>
107 #include <libkern/OSDebug.h>
108
109 #include <pexpert/pexpert.h>
110
111 #if CONFIG_MACF
112 #include <sys/kauth.h>
113 #endif
114
115 /*
116 * Synchronization notes:
117 *
118 * Routing entries fall under two locking domains: the global routing table
119 * lock (rnh_lock) and the per-entry lock (rt_lock); the latter is a mutex that
120 * resides (statically defined) in the rtentry structure.
121 *
122 * The locking domains for routing are defined as follows:
123 *
124 * The global routing lock is used to serialize all accesses to the radix
125 * trees defined by rt_tables[], as well as the tree of masks. This includes
126 * lookups, insertions and removals of nodes to/from the respective tree.
127 * It is also used to protect certain fields in the route entry that aren't
128 * often modified and/or require global serialization (more details below.)
129 *
130 * The per-route entry lock is used to serialize accesses to several routing
131 * entry fields (more details below.) Acquiring and releasing this lock is
132 * done via RT_LOCK() and RT_UNLOCK() routines.
133 *
134 * In cases where both rnh_lock and rt_lock must be held, the former must be
135 * acquired first in order to maintain lock ordering. It is not a requirement
136 * that rnh_lock be acquired first before rt_lock, but in case both must be
137 * acquired in succession, the correct lock ordering must be followed.
138 *
139 * The fields of the rtentry structure are protected in the following way:
140 *
141 * rt_nodes[]
142 *
143 * - Routing table lock (rnh_lock).
144 *
145 * rt_parent, rt_mask, rt_llinfo_free, rt_tree_genid
146 *
147 * - Set once during creation and never changes; no locks to read.
148 *
149 * rt_flags, rt_genmask, rt_llinfo, rt_rmx, rt_refcnt, rt_gwroute
150 *
151 * - Routing entry lock (rt_lock) for read/write access.
152 *
153 * - Some values of rt_flags are either set once at creation time,
154 * or aren't currently used, and thus checking against them can
155 * be done without rt_lock: RTF_GATEWAY, RTF_HOST, RTF_DYNAMIC,
156 * RTF_DONE, RTF_XRESOLVE, RTF_STATIC, RTF_BLACKHOLE, RTF_ANNOUNCE,
157 * RTF_USETRAILERS, RTF_WASCLONED, RTF_PINNED, RTF_LOCAL,
158 * RTF_BROADCAST, RTF_MULTICAST, RTF_IFSCOPE, RTF_IFREF.
159 *
160 * rt_key, rt_gateway, rt_ifp, rt_ifa
161 *
162 * - Always written/modified with both rnh_lock and rt_lock held.
163 *
164 * - May be read freely with rnh_lock held, else must hold rt_lock
165 * for read access; holding both locks for read is also okay.
166 *
167 * - In the event rnh_lock is not acquired, or is not possible to be
168 * acquired across the operation, setting RTF_CONDEMNED on a route
169 * entry will prevent its rt_key, rt_gateway, rt_ifp and rt_ifa
170 * from being modified. This is typically done on a route that
171 * has been chosen for a removal (from the tree) prior to dropping
172 * the rt_lock, so that those values will remain the same until
173 * the route is freed.
174 *
175 * When rnh_lock is held rt_setgate(), rt_setif(), and rtsetifa() are
176 * single-threaded, thus exclusive. This flag will also prevent the
177 * route from being looked up via rt_lookup().
178 *
179 * rt_genid
180 *
181 * - Assumes that 32-bit writes are atomic; no locks.
182 *
183 * rt_dlt, rt_output
184 *
185 * - Currently unused; no locks.
186 *
187 * Operations on a route entry can be described as follows:
188 *
189 * CREATE an entry with reference count set to 0 as part of RTM_ADD/RESOLVE.
190 *
191 * INSERTION of an entry into the radix tree holds the rnh_lock, checks
192 * for duplicates and then adds the entry. rtrequest returns the entry
193 * after bumping up the reference count to 1 (for the caller).
194 *
195 * LOOKUP of an entry holds the rnh_lock and bumps up the reference count
196 * before returning; it is valid to also bump up the reference count using
197 * RT_ADDREF after the lookup has returned an entry.
198 *
199 * REMOVAL of an entry from the radix tree holds the rnh_lock, removes the
200 * entry but does not decrement the reference count. Removal happens when
201 * the route is explicitly deleted (RTM_DELETE) or when it is in the cached
202 * state and it expires. The route is said to be "down" when it is no
203 * longer present in the tree. Freeing the entry will happen on the last
204 * reference release of such a "down" route.
205 *
206 * RT_ADDREF/RT_REMREF operates on the routing entry which increments/
207 * decrements the reference count, rt_refcnt, atomically on the rtentry.
208 * rt_refcnt is modified only using this routine. The general rule is to
209 * do RT_ADDREF in the function that is passing the entry as an argument,
210 * in order to prevent the entry from being freed by the callee.
211 */
212
213 #define equal(a1, a2) (bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0)
214
215 extern void kdp_set_gateway_mac(void *gatewaymac);
216
217 __private_extern__ struct rtstat rtstat = {
218 .rts_badredirect = 0,
219 .rts_dynamic = 0,
220 .rts_newgateway = 0,
221 .rts_unreach = 0,
222 .rts_wildcard = 0,
223 .rts_badrtgwroute = 0
224 };
225 struct radix_node_head *rt_tables[AF_MAX + 1];
226
227 decl_lck_mtx_data(, rnh_lock_data); /* global routing tables mutex */
228 lck_mtx_t *rnh_lock = &rnh_lock_data;
229 static lck_attr_t *rnh_lock_attr;
230 static lck_grp_t *rnh_lock_grp;
231 static lck_grp_attr_t *rnh_lock_grp_attr;
232
233 /* Lock group and attribute for routing entry locks */
234 static lck_attr_t *rte_mtx_attr;
235 static lck_grp_t *rte_mtx_grp;
236 static lck_grp_attr_t *rte_mtx_grp_attr;
237
238 int rttrash = 0; /* routes not in table but not freed */
239
240 boolean_t trigger_v6_defrtr_select = FALSE;
241 unsigned int rte_debug = 0;
242
243 /* Possible flags for rte_debug */
244 #define RTD_DEBUG 0x1 /* enable or disable rtentry debug facility */
245 #define RTD_TRACE 0x2 /* trace alloc, free, refcnt and lock */
246 #define RTD_NO_FREE 0x4 /* don't free (good to catch corruptions) */
247
248 #define RTE_NAME "rtentry" /* name for zone and rt_lock */
249
250 static struct zone *rte_zone; /* special zone for rtentry */
251 #define RTE_ZONE_MAX 65536 /* maximum elements in zone */
252 #define RTE_ZONE_NAME RTE_NAME /* name of rtentry zone */
253
254 #define RTD_INUSE 0xFEEDFACE /* entry is in use */
255 #define RTD_FREED 0xDEADBEEF /* entry is freed */
256
257 #define MAX_SCOPE_ADDR_STR_LEN (MAX_IPv6_STR_LEN + 6)
258
259 /* For gdb */
260 __private_extern__ unsigned int ctrace_stack_size = CTRACE_STACK_SIZE;
261 __private_extern__ unsigned int ctrace_hist_size = CTRACE_HIST_SIZE;
262
263 /*
264 * Debug variant of rtentry structure.
265 */
266 struct rtentry_dbg {
267 struct rtentry rtd_entry; /* rtentry */
268 struct rtentry rtd_entry_saved; /* saved rtentry */
269 uint32_t rtd_inuse; /* in use pattern */
270 uint16_t rtd_refhold_cnt; /* # of rtref */
271 uint16_t rtd_refrele_cnt; /* # of rtunref */
272 uint32_t rtd_lock_cnt; /* # of locks */
273 uint32_t rtd_unlock_cnt; /* # of unlocks */
274 /*
275 * Alloc and free callers.
276 */
277 ctrace_t rtd_alloc;
278 ctrace_t rtd_free;
279 /*
280 * Circular lists of rtref and rtunref callers.
281 */
282 ctrace_t rtd_refhold[CTRACE_HIST_SIZE];
283 ctrace_t rtd_refrele[CTRACE_HIST_SIZE];
284 /*
285 * Circular lists of locks and unlocks.
286 */
287 ctrace_t rtd_lock[CTRACE_HIST_SIZE];
288 ctrace_t rtd_unlock[CTRACE_HIST_SIZE];
289 /*
290 * Trash list linkage
291 */
292 TAILQ_ENTRY(rtentry_dbg) rtd_trash_link;
293 };
294
295 /* List of trash route entries protected by rnh_lock */
296 static TAILQ_HEAD(, rtentry_dbg) rttrash_head;
297
298 static void rte_lock_init(struct rtentry *);
299 static void rte_lock_destroy(struct rtentry *);
300 static inline struct rtentry *rte_alloc_debug(void);
301 static inline void rte_free_debug(struct rtentry *);
302 static inline void rte_lock_debug(struct rtentry_dbg *);
303 static inline void rte_unlock_debug(struct rtentry_dbg *);
304 static void rt_maskedcopy(const struct sockaddr *,
305 struct sockaddr *, const struct sockaddr *);
306 static void rtable_init(void **);
307 static inline void rtref_audit(struct rtentry_dbg *);
308 static inline void rtunref_audit(struct rtentry_dbg *);
309 static struct rtentry *rtalloc1_common_locked(struct sockaddr *, int, uint32_t,
310 unsigned int);
311 static int rtrequest_common_locked(int, struct sockaddr *,
312 struct sockaddr *, struct sockaddr *, int, struct rtentry **,
313 unsigned int);
314 static struct rtentry *rtalloc1_locked(struct sockaddr *, int, uint32_t);
315 static void rtalloc_ign_common_locked(struct route *, uint32_t, unsigned int);
316 static inline void sin6_set_ifscope(struct sockaddr *, unsigned int);
317 static inline void sin6_set_embedded_ifscope(struct sockaddr *, unsigned int);
318 static inline unsigned int sin6_get_embedded_ifscope(struct sockaddr *);
319 static struct sockaddr *ma_copy(int, struct sockaddr *,
320 struct sockaddr_storage *, unsigned int);
321 static struct sockaddr *sa_trim(struct sockaddr *, int);
322 static struct radix_node *node_lookup(struct sockaddr *, struct sockaddr *,
323 unsigned int);
324 static struct radix_node *node_lookup_default(int);
325 static struct rtentry *rt_lookup_common(boolean_t, boolean_t, struct sockaddr *,
326 struct sockaddr *, struct radix_node_head *, unsigned int);
327 static int rn_match_ifscope(struct radix_node *, void *);
328 static struct ifaddr *ifa_ifwithroute_common_locked(int,
329 const struct sockaddr *, const struct sockaddr *, unsigned int);
330 static struct rtentry *rte_alloc(void);
331 static void rte_free(struct rtentry *);
332 static void rtfree_common(struct rtentry *, boolean_t);
333 static void rte_if_ref(struct ifnet *, int);
334 static void rt_set_idleref(struct rtentry *);
335 static void rt_clear_idleref(struct rtentry *);
336 static void route_event_callback(void *);
337 static void rt_str4(struct rtentry *, char *, uint32_t, char *, uint32_t);
338 static void rt_str6(struct rtentry *, char *, uint32_t, char *, uint32_t);
339 static boolean_t route_ignore_protocol_cloning_for_dst(struct rtentry *, struct sockaddr *);
340
341 uint32_t route_genid_inet = 0;
342 uint32_t route_genid_inet6 = 0;
343
344 #define ASSERT_SINIFSCOPE(sa) { \
345 if ((sa)->sa_family != AF_INET || \
346 (sa)->sa_len < sizeof (struct sockaddr_in)) \
347 panic("%s: bad sockaddr_in %p\n", __func__, sa); \
348 }
349
350 #define ASSERT_SIN6IFSCOPE(sa) { \
351 if ((sa)->sa_family != AF_INET6 || \
352 (sa)->sa_len < sizeof (struct sockaddr_in6)) \
353 panic("%s: bad sockaddr_in6 %p\n", __func__, sa); \
354 }
355
356 /*
357 * Argument to leaf-matching routine; at present it is scoped routing
358 * specific but can be expanded in future to include other search filters.
359 */
360 struct matchleaf_arg {
361 unsigned int ifscope; /* interface scope */
362 };
363
364 /*
365 * For looking up the non-scoped default route (sockaddr instead
366 * of sockaddr_in for convenience).
367 */
368 static struct sockaddr sin_def = {
369 .sa_len = sizeof(struct sockaddr_in),
370 .sa_family = AF_INET,
371 .sa_data = { 0, }
372 };
373
374 static struct sockaddr_in6 sin6_def = {
375 .sin6_len = sizeof(struct sockaddr_in6),
376 .sin6_family = AF_INET6,
377 .sin6_port = 0,
378 .sin6_flowinfo = 0,
379 .sin6_addr = IN6ADDR_ANY_INIT,
380 .sin6_scope_id = 0
381 };
382
383 /*
384 * Interface index (scope) of the primary interface; determined at
385 * the time when the default, non-scoped route gets added, changed
386 * or deleted. Protected by rnh_lock.
387 */
388 static unsigned int primary_ifscope = IFSCOPE_NONE;
389 static unsigned int primary6_ifscope = IFSCOPE_NONE;
390
391 #define INET_DEFAULT(sa) \
392 ((sa)->sa_family == AF_INET && SIN(sa)->sin_addr.s_addr == 0)
393
394 #define INET6_DEFAULT(sa) \
395 ((sa)->sa_family == AF_INET6 && \
396 IN6_IS_ADDR_UNSPECIFIED(&SIN6(sa)->sin6_addr))
397
398 #define SA_DEFAULT(sa) (INET_DEFAULT(sa) || INET6_DEFAULT(sa))
399 #define RT(r) ((struct rtentry *)r)
400 #define RN(r) ((struct radix_node *)r)
401 #define RT_HOST(r) (RT(r)->rt_flags & RTF_HOST)
402
403 unsigned int rt_verbose = 0;
404 #if (DEVELOPMENT || DEBUG)
405 SYSCTL_DECL(_net_route);
406 SYSCTL_UINT(_net_route, OID_AUTO, verbose, CTLFLAG_RW | CTLFLAG_LOCKED,
407 &rt_verbose, 0, "");
408 #endif /* (DEVELOPMENT || DEBUG) */
409
410 static void
411 rtable_init(void **table)
412 {
413 struct domain *dom;
414
415 domain_proto_mtx_lock_assert_held();
416
417 TAILQ_FOREACH(dom, &domains, dom_entry) {
418 if (dom->dom_rtattach != NULL) {
419 dom->dom_rtattach(&table[dom->dom_family],
420 dom->dom_rtoffset);
421 }
422 }
423 }
424
425 /*
426 * Called by route_dinit().
427 */
428 void
429 route_init(void)
430 {
431 int size;
432
433 _CASSERT(offsetof(struct route, ro_rt) ==
434 offsetof(struct route_in6, ro_rt));
435 _CASSERT(offsetof(struct route, ro_lle) ==
436 offsetof(struct route_in6, ro_lle));
437 _CASSERT(offsetof(struct route, ro_srcia) ==
438 offsetof(struct route_in6, ro_srcia));
439 _CASSERT(offsetof(struct route, ro_flags) ==
440 offsetof(struct route_in6, ro_flags));
441 _CASSERT(offsetof(struct route, ro_dst) ==
442 offsetof(struct route_in6, ro_dst));
443
444 PE_parse_boot_argn("rte_debug", &rte_debug, sizeof(rte_debug));
445 if (rte_debug != 0) {
446 rte_debug |= RTD_DEBUG;
447 }
448
449 rnh_lock_grp_attr = lck_grp_attr_alloc_init();
450 rnh_lock_grp = lck_grp_alloc_init("route", rnh_lock_grp_attr);
451 rnh_lock_attr = lck_attr_alloc_init();
452 lck_mtx_init(rnh_lock, rnh_lock_grp, rnh_lock_attr);
453
454 rte_mtx_grp_attr = lck_grp_attr_alloc_init();
455 rte_mtx_grp = lck_grp_alloc_init(RTE_NAME, rte_mtx_grp_attr);
456 rte_mtx_attr = lck_attr_alloc_init();
457
458 lck_mtx_lock(rnh_lock);
459 rn_init(); /* initialize all zeroes, all ones, mask table */
460 lck_mtx_unlock(rnh_lock);
461 rtable_init((void **)rt_tables);
462
463 if (rte_debug & RTD_DEBUG) {
464 size = sizeof(struct rtentry_dbg);
465 } else {
466 size = sizeof(struct rtentry);
467 }
468
469 rte_zone = zone_create(RTE_ZONE_NAME, size, ZC_NOENCRYPT);
470
471 TAILQ_INIT(&rttrash_head);
472 }
473
474 /*
475 * Given a route, determine whether or not it is the non-scoped default
476 * route; dst typically comes from rt_key(rt) but may be coming from
477 * a separate place when rt is in the process of being created.
478 */
479 boolean_t
480 rt_primary_default(struct rtentry *rt, struct sockaddr *dst)
481 {
482 return SA_DEFAULT(dst) && !(rt->rt_flags & RTF_IFSCOPE);
483 }
484
485 /*
486 * Set the ifscope of the primary interface; caller holds rnh_lock.
487 */
488 void
489 set_primary_ifscope(int af, unsigned int ifscope)
490 {
491 if (af == AF_INET) {
492 primary_ifscope = ifscope;
493 } else {
494 primary6_ifscope = ifscope;
495 }
496 }
497
498 /*
499 * Return the ifscope of the primary interface; caller holds rnh_lock.
500 */
501 unsigned int
502 get_primary_ifscope(int af)
503 {
504 return af == AF_INET ? primary_ifscope : primary6_ifscope;
505 }
506
507 /*
508 * Set the scope ID of a given a sockaddr_in.
509 */
510 void
511 sin_set_ifscope(struct sockaddr *sa, unsigned int ifscope)
512 {
513 /* Caller must pass in sockaddr_in */
514 ASSERT_SINIFSCOPE(sa);
515
516 SINIFSCOPE(sa)->sin_scope_id = ifscope;
517 }
518
519 /*
520 * Set the scope ID of given a sockaddr_in6.
521 */
522 static inline void
523 sin6_set_ifscope(struct sockaddr *sa, unsigned int ifscope)
524 {
525 /* Caller must pass in sockaddr_in6 */
526 ASSERT_SIN6IFSCOPE(sa);
527
528 SIN6IFSCOPE(sa)->sin6_scope_id = ifscope;
529 }
530
531 /*
532 * Given a sockaddr_in, return the scope ID to the caller.
533 */
534 unsigned int
535 sin_get_ifscope(struct sockaddr *sa)
536 {
537 /* Caller must pass in sockaddr_in */
538 ASSERT_SINIFSCOPE(sa);
539
540 return SINIFSCOPE(sa)->sin_scope_id;
541 }
542
543 /*
544 * Given a sockaddr_in6, return the scope ID to the caller.
545 */
546 unsigned int
547 sin6_get_ifscope(struct sockaddr *sa)
548 {
549 /* Caller must pass in sockaddr_in6 */
550 ASSERT_SIN6IFSCOPE(sa);
551
552 return SIN6IFSCOPE(sa)->sin6_scope_id;
553 }
554
555 static inline void
556 sin6_set_embedded_ifscope(struct sockaddr *sa, unsigned int ifscope)
557 {
558 /* Caller must pass in sockaddr_in6 */
559 ASSERT_SIN6IFSCOPE(sa);
560 VERIFY(IN6_IS_SCOPE_EMBED(&(SIN6(sa)->sin6_addr)));
561
562 SIN6(sa)->sin6_addr.s6_addr16[1] = htons(ifscope);
563 }
564
565 static inline unsigned int
566 sin6_get_embedded_ifscope(struct sockaddr *sa)
567 {
568 /* Caller must pass in sockaddr_in6 */
569 ASSERT_SIN6IFSCOPE(sa);
570
571 return ntohs(SIN6(sa)->sin6_addr.s6_addr16[1]);
572 }
573
574 /*
575 * Copy a sockaddr_{in,in6} src to a dst storage and set scope ID into dst.
576 *
577 * To clear the scope ID, pass is a NULL pifscope. To set the scope ID, pass
578 * in a non-NULL pifscope with non-zero ifscope. Otherwise if pifscope is
579 * non-NULL and ifscope is IFSCOPE_NONE, the existing scope ID is left intact.
580 * In any case, the effective scope ID value is returned to the caller via
581 * pifscope, if it is non-NULL.
582 */
583 struct sockaddr *
584 sa_copy(struct sockaddr *src, struct sockaddr_storage *dst,
585 unsigned int *pifscope)
586 {
587 int af = src->sa_family;
588 unsigned int ifscope = (pifscope != NULL) ? *pifscope : IFSCOPE_NONE;
589
590 VERIFY(af == AF_INET || af == AF_INET6);
591
592 bzero(dst, sizeof(*dst));
593
594 if (af == AF_INET) {
595 bcopy(src, dst, sizeof(struct sockaddr_in));
596 dst->ss_len = sizeof(struct sockaddr_in);
597 if (pifscope == NULL || ifscope != IFSCOPE_NONE) {
598 sin_set_ifscope(SA(dst), ifscope);
599 }
600 } else {
601 bcopy(src, dst, sizeof(struct sockaddr_in6));
602 dst->ss_len = sizeof(struct sockaddr_in6);
603 if (pifscope != NULL &&
604 IN6_IS_SCOPE_EMBED(&SIN6(dst)->sin6_addr)) {
605 unsigned int eifscope;
606 /*
607 * If the address contains the embedded scope ID,
608 * use that as the value for sin6_scope_id as long
609 * the caller doesn't insist on clearing it (by
610 * passing NULL) or setting it.
611 */
612 eifscope = sin6_get_embedded_ifscope(SA(dst));
613 if (eifscope != IFSCOPE_NONE && ifscope == IFSCOPE_NONE) {
614 ifscope = eifscope;
615 }
616 if (ifscope != IFSCOPE_NONE) {
617 /* Set ifscope from pifscope or eifscope */
618 sin6_set_ifscope(SA(dst), ifscope);
619 } else {
620 /* If sin6_scope_id has a value, use that one */
621 ifscope = sin6_get_ifscope(SA(dst));
622 }
623 /*
624 * If sin6_scope_id is set but the address doesn't
625 * contain the equivalent embedded value, set it.
626 */
627 if (ifscope != IFSCOPE_NONE && eifscope != ifscope) {
628 sin6_set_embedded_ifscope(SA(dst), ifscope);
629 }
630 } else if (pifscope == NULL || ifscope != IFSCOPE_NONE) {
631 sin6_set_ifscope(SA(dst), ifscope);
632 }
633 }
634
635 if (pifscope != NULL) {
636 *pifscope = (af == AF_INET) ? sin_get_ifscope(SA(dst)) :
637 sin6_get_ifscope(SA(dst));
638 }
639
640 return SA(dst);
641 }
642
643 /*
644 * Copy a mask from src to a dst storage and set scope ID into dst.
645 */
646 static struct sockaddr *
647 ma_copy(int af, struct sockaddr *src, struct sockaddr_storage *dst,
648 unsigned int ifscope)
649 {
650 VERIFY(af == AF_INET || af == AF_INET6);
651
652 bzero(dst, sizeof(*dst));
653 rt_maskedcopy(src, SA(dst), src);
654
655 /*
656 * The length of the mask sockaddr would need to be adjusted
657 * to cover the additional {sin,sin6}_ifscope field; when ifscope
658 * is IFSCOPE_NONE, we'd end up clearing the scope ID field on
659 * the destination mask in addition to extending the length
660 * of the sockaddr, as a side effect. This is okay, as any
661 * trailing zeroes would be skipped by rn_addmask prior to
662 * inserting or looking up the mask in the mask tree.
663 */
664 if (af == AF_INET) {
665 SINIFSCOPE(dst)->sin_scope_id = ifscope;
666 SINIFSCOPE(dst)->sin_len =
667 offsetof(struct sockaddr_inifscope, sin_scope_id) +
668 sizeof(SINIFSCOPE(dst)->sin_scope_id);
669 } else {
670 SIN6IFSCOPE(dst)->sin6_scope_id = ifscope;
671 SIN6IFSCOPE(dst)->sin6_len =
672 offsetof(struct sockaddr_in6, sin6_scope_id) +
673 sizeof(SIN6IFSCOPE(dst)->sin6_scope_id);
674 }
675
676 return SA(dst);
677 }
678
679 /*
680 * Trim trailing zeroes on a sockaddr and update its length.
681 */
682 static struct sockaddr *
683 sa_trim(struct sockaddr *sa, int skip)
684 {
685 caddr_t cp, base = (caddr_t)sa + skip;
686
687 if (sa->sa_len <= skip) {
688 return sa;
689 }
690
691 for (cp = base + (sa->sa_len - skip); cp > base && cp[-1] == 0;) {
692 cp--;
693 }
694
695 sa->sa_len = (cp - base) + skip;
696 if (sa->sa_len < skip) {
697 /* Must not happen, and if so, panic */
698 panic("%s: broken logic (sa_len %d < skip %d )", __func__,
699 sa->sa_len, skip);
700 /* NOTREACHED */
701 } else if (sa->sa_len == skip) {
702 /* If we end up with all zeroes, then there's no mask */
703 sa->sa_len = 0;
704 }
705
706 return sa;
707 }
708
709 /*
710 * Called by rtm_msg{1,2} routines to "scrub" socket address structures of
711 * kernel private information, so that clients of the routing socket will
712 * not be confused by the presence of the information, or the side effect of
713 * the increased length due to that. The source sockaddr is not modified;
714 * instead, the scrubbing happens on the destination sockaddr storage that
715 * is passed in by the caller.
716 *
717 * Scrubbing entails:
718 * - removing embedded scope identifiers from network mask and destination
719 * IPv4 and IPv6 socket addresses
720 * - optionally removing global scope interface hardware addresses from
721 * link-layer interface addresses when the MAC framework check fails.
722 */
723 struct sockaddr *
724 rtm_scrub(int type, int idx, struct sockaddr *hint, struct sockaddr *sa,
725 void *buf, uint32_t buflen, kauth_cred_t *credp)
726 {
727 struct sockaddr_storage *ss = (struct sockaddr_storage *)buf;
728 struct sockaddr *ret = sa;
729
730 VERIFY(buf != NULL && buflen >= sizeof(*ss));
731 bzero(buf, buflen);
732
733 switch (idx) {
734 case RTAX_DST:
735 /*
736 * If this is for an AF_INET/AF_INET6 destination address,
737 * call sa_copy() to clear the scope ID field.
738 */
739 if (sa->sa_family == AF_INET &&
740 SINIFSCOPE(sa)->sin_scope_id != IFSCOPE_NONE) {
741 ret = sa_copy(sa, ss, NULL);
742 } else if (sa->sa_family == AF_INET6 &&
743 SIN6IFSCOPE(sa)->sin6_scope_id != IFSCOPE_NONE) {
744 ret = sa_copy(sa, ss, NULL);
745 }
746 break;
747
748 case RTAX_NETMASK: {
749 int skip, af;
750 /*
751 * If this is for a mask, we can't tell whether or not there
752 * is an valid scope ID value, as the span of bytes between
753 * sa_len and the beginning of the mask (offset of sin_addr in
754 * the case of AF_INET, or sin6_addr for AF_INET6) may be
755 * filled with all-ones by rn_addmask(), and hence we cannot
756 * rely on sa_family. Because of this, we use the sa_family
757 * of the hint sockaddr (RTAX_{DST,IFA}) as indicator as to
758 * whether or not the mask is to be treated as one for AF_INET
759 * or AF_INET6. Clearing the scope ID field involves setting
760 * it to IFSCOPE_NONE followed by calling sa_trim() to trim
761 * trailing zeroes from the storage sockaddr, which reverses
762 * what was done earlier by ma_copy() on the source sockaddr.
763 */
764 if (hint == NULL ||
765 ((af = hint->sa_family) != AF_INET && af != AF_INET6)) {
766 break; /* nothing to do */
767 }
768 skip = (af == AF_INET) ?
769 offsetof(struct sockaddr_in, sin_addr) :
770 offsetof(struct sockaddr_in6, sin6_addr);
771
772 if (sa->sa_len > skip && sa->sa_len <= sizeof(*ss)) {
773 bcopy(sa, ss, sa->sa_len);
774 /*
775 * Don't use {sin,sin6}_set_ifscope() as sa_family
776 * and sa_len for the netmask might not be set to
777 * the corresponding expected values of the hint.
778 */
779 if (hint->sa_family == AF_INET) {
780 SINIFSCOPE(ss)->sin_scope_id = IFSCOPE_NONE;
781 } else {
782 SIN6IFSCOPE(ss)->sin6_scope_id = IFSCOPE_NONE;
783 }
784 ret = sa_trim(SA(ss), skip);
785
786 /*
787 * For AF_INET6 mask, set sa_len appropriately unless
788 * this is requested via systl_dumpentry(), in which
789 * case we return the raw value.
790 */
791 if (hint->sa_family == AF_INET6 &&
792 type != RTM_GET && type != RTM_GET2) {
793 SA(ret)->sa_len = sizeof(struct sockaddr_in6);
794 }
795 }
796 break;
797 }
798 case RTAX_GATEWAY: {
799 /*
800 * Break if the gateway is not AF_LINK type (indirect routes)
801 *
802 * Else, if is, check if it is resolved. If not yet resolved
803 * simply break else scrub the link layer address.
804 */
805 if ((sa->sa_family != AF_LINK) || (SDL(sa)->sdl_alen == 0)) {
806 break;
807 }
808 OS_FALLTHROUGH;
809 }
810
811 case RTAX_IFP: {
812 if (sa->sa_family == AF_LINK && credp) {
813 struct sockaddr_dl *sdl = SDL(buf);
814 const void *bytes;
815 size_t size;
816
817 /* caller should handle worst case: SOCK_MAXADDRLEN */
818 VERIFY(buflen >= sa->sa_len);
819
820 bcopy(sa, sdl, sa->sa_len);
821 bytes = dlil_ifaddr_bytes(sdl, &size, credp);
822 if (bytes != CONST_LLADDR(sdl)) {
823 VERIFY(sdl->sdl_alen == size);
824 bcopy(bytes, LLADDR(sdl), size);
825 }
826 ret = (struct sockaddr *)sdl;
827 }
828 break;
829 }
830 default:
831 break;
832 }
833
834 return ret;
835 }
836
837 /*
838 * Callback leaf-matching routine for rn_matchaddr_args used
839 * for looking up an exact match for a scoped route entry.
840 */
841 static int
842 rn_match_ifscope(struct radix_node *rn, void *arg)
843 {
844 struct rtentry *rt = (struct rtentry *)rn;
845 struct matchleaf_arg *ma = arg;
846 int af = rt_key(rt)->sa_family;
847
848 if (!(rt->rt_flags & RTF_IFSCOPE) || (af != AF_INET && af != AF_INET6)) {
849 return 0;
850 }
851
852 return af == AF_INET ?
853 (SINIFSCOPE(rt_key(rt))->sin_scope_id == ma->ifscope) :
854 (SIN6IFSCOPE(rt_key(rt))->sin6_scope_id == ma->ifscope);
855 }
856
857 /*
858 * Atomically increment route generation counter
859 */
860 void
861 routegenid_update(void)
862 {
863 routegenid_inet_update();
864 routegenid_inet6_update();
865 }
866
867 void
868 routegenid_inet_update(void)
869 {
870 atomic_add_32(&route_genid_inet, 1);
871 }
872
873 void
874 routegenid_inet6_update(void)
875 {
876 atomic_add_32(&route_genid_inet6, 1);
877 }
878
879 /*
880 * Packet routing routines.
881 */
882 void
883 rtalloc(struct route *ro)
884 {
885 rtalloc_ign(ro, 0);
886 }
887
888 void
889 rtalloc_scoped(struct route *ro, unsigned int ifscope)
890 {
891 rtalloc_scoped_ign(ro, 0, ifscope);
892 }
893
894 static void
895 rtalloc_ign_common_locked(struct route *ro, uint32_t ignore,
896 unsigned int ifscope)
897 {
898 struct rtentry *rt;
899
900 if ((rt = ro->ro_rt) != NULL) {
901 RT_LOCK_SPIN(rt);
902 if (rt->rt_ifp != NULL && !ROUTE_UNUSABLE(ro)) {
903 RT_UNLOCK(rt);
904 return;
905 }
906 RT_UNLOCK(rt);
907 ROUTE_RELEASE_LOCKED(ro); /* rnh_lock already held */
908 }
909 ro->ro_rt = rtalloc1_common_locked(&ro->ro_dst, 1, ignore, ifscope);
910 if (ro->ro_rt != NULL) {
911 RT_GENID_SYNC(ro->ro_rt);
912 RT_LOCK_ASSERT_NOTHELD(ro->ro_rt);
913 }
914 }
915
916 void
917 rtalloc_ign(struct route *ro, uint32_t ignore)
918 {
919 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
920 lck_mtx_lock(rnh_lock);
921 rtalloc_ign_common_locked(ro, ignore, IFSCOPE_NONE);
922 lck_mtx_unlock(rnh_lock);
923 }
924
925 void
926 rtalloc_scoped_ign(struct route *ro, uint32_t ignore, unsigned int ifscope)
927 {
928 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
929 lck_mtx_lock(rnh_lock);
930 rtalloc_ign_common_locked(ro, ignore, ifscope);
931 lck_mtx_unlock(rnh_lock);
932 }
933
934 static struct rtentry *
935 rtalloc1_locked(struct sockaddr *dst, int report, uint32_t ignflags)
936 {
937 return rtalloc1_common_locked(dst, report, ignflags, IFSCOPE_NONE);
938 }
939
940 struct rtentry *
941 rtalloc1_scoped_locked(struct sockaddr *dst, int report, uint32_t ignflags,
942 unsigned int ifscope)
943 {
944 return rtalloc1_common_locked(dst, report, ignflags, ifscope);
945 }
946
947 static boolean_t
948 route_ignore_protocol_cloning_for_dst(struct rtentry *rt, struct sockaddr *dst)
949 {
950 /*
951 * For now keep protocol cloning for any type of IPv4
952 * destination.
953 */
954 if (dst->sa_family != AF_INET6) {
955 return FALSE;
956 }
957
958 /*
959 * Limit protocol route creation of IPv6 ULA destinations
960 * from default route,
961 * Just to be safe, even though it doesn't affect routability,
962 * still allow protocol cloned routes if we happen to hit
963 * default route over companion link for ULA destination.
964 */
965 if (!IFNET_IS_COMPANION_LINK(rt->rt_ifp) &&
966 (rt->rt_flags & RTF_GATEWAY) &&
967 (rt->rt_flags & RTF_PRCLONING) &&
968 SA_DEFAULT(rt_key(rt)) &&
969 IN6_IS_ADDR_UNIQUE_LOCAL(&SIN6(dst)->sin6_addr)) {
970 return TRUE;
971 }
972 return FALSE;
973 }
974
975 struct rtentry *
976 rtalloc1_common_locked(struct sockaddr *dst, int report, uint32_t ignflags,
977 unsigned int ifscope)
978 {
979 struct radix_node_head *rnh = rt_tables[dst->sa_family];
980 struct rtentry *rt, *newrt = NULL;
981 struct rt_addrinfo info;
982 uint32_t nflags;
983 int err = 0, msgtype = RTM_MISS;
984
985 if (rnh == NULL) {
986 goto unreachable;
987 }
988
989 /*
990 * Find the longest prefix or exact (in the scoped case) address match;
991 * callee adds a reference to entry and checks for root node as well
992 */
993 rt = rt_lookup(FALSE, dst, NULL, rnh, ifscope);
994 if (rt == NULL) {
995 goto unreachable;
996 }
997
998 /*
999 * Explicitly ignore protocol cloning for certain destinations.
1000 * Some checks below are kind of redundant, as for now, RTF_PRCLONING
1001 * is only set on indirect (RTF_GATEWAY) routes.
1002 * Also, we do this only when the route lookup above, resulted in default
1003 * route.
1004 * This is done to ensure, the resulting indirect host route doesn't
1005 * interfere when routing table gets configured with a indirect subnet
1006 * route/direct subnet route that is more specific than the current
1007 * parent route of the resulting protocol cloned route.
1008 *
1009 * At the crux of it all, it is a problem that we maintain host cache
1010 * in the routing table. We should revisit this for a generic solution.
1011 */
1012 if (route_ignore_protocol_cloning_for_dst(rt, dst)) {
1013 ignflags |= RTF_PRCLONING;
1014 }
1015
1016 RT_LOCK_SPIN(rt);
1017 newrt = rt;
1018 nflags = rt->rt_flags & ~ignflags;
1019 RT_UNLOCK(rt);
1020
1021 if (report && (nflags & (RTF_CLONING | RTF_PRCLONING))) {
1022 /*
1023 * We are apparently adding (report = 0 in delete).
1024 * If it requires that it be cloned, do so.
1025 * (This implies it wasn't a HOST route.)
1026 */
1027 err = rtrequest_locked(RTM_RESOLVE, dst, NULL, NULL, 0, &newrt);
1028 if (err) {
1029 /*
1030 * If the cloning didn't succeed, maybe what we
1031 * have from lookup above will do. Return that;
1032 * no need to hold another reference since it's
1033 * already done.
1034 */
1035 newrt = rt;
1036 goto miss;
1037 }
1038
1039 /*
1040 * We cloned it; drop the original route found during lookup.
1041 * The resulted cloned route (newrt) would now have an extra
1042 * reference held during rtrequest.
1043 */
1044 rtfree_locked(rt);
1045
1046 /*
1047 * If the newly created cloned route is a direct host route
1048 * then also check if it is to a router or not.
1049 * If it is, then set the RTF_ROUTER flag on the host route
1050 * for the gateway.
1051 *
1052 * XXX It is possible for the default route to be created post
1053 * cloned route creation of router's IP.
1054 * We can handle that corner case by special handing for RTM_ADD
1055 * of default route.
1056 */
1057 if ((newrt->rt_flags & (RTF_HOST | RTF_LLINFO)) ==
1058 (RTF_HOST | RTF_LLINFO)) {
1059 struct rtentry *defrt = NULL;
1060 struct sockaddr_storage def_key;
1061
1062 bzero(&def_key, sizeof(def_key));
1063 def_key.ss_len = rt_key(newrt)->sa_len;
1064 def_key.ss_family = rt_key(newrt)->sa_family;
1065
1066 defrt = rtalloc1_scoped_locked((struct sockaddr *)&def_key,
1067 0, 0, newrt->rt_ifp->if_index);
1068
1069 if (defrt) {
1070 if (equal(rt_key(newrt), defrt->rt_gateway)) {
1071 newrt->rt_flags |= RTF_ROUTER;
1072 }
1073 rtfree_locked(defrt);
1074 }
1075 }
1076
1077 if ((rt = newrt) && (rt->rt_flags & RTF_XRESOLVE)) {
1078 /*
1079 * If the new route specifies it be
1080 * externally resolved, then go do that.
1081 */
1082 msgtype = RTM_RESOLVE;
1083 goto miss;
1084 }
1085 }
1086 goto done;
1087
1088 unreachable:
1089 /*
1090 * Either we hit the root or couldn't find any match,
1091 * Which basically means "cant get there from here"
1092 */
1093 rtstat.rts_unreach++;
1094
1095 miss:
1096 if (report) {
1097 /*
1098 * If required, report the failure to the supervising
1099 * Authorities.
1100 * For a delete, this is not an error. (report == 0)
1101 */
1102 bzero((caddr_t)&info, sizeof(info));
1103 info.rti_info[RTAX_DST] = dst;
1104 rt_missmsg(msgtype, &info, 0, err);
1105 }
1106 done:
1107 return newrt;
1108 }
1109
1110 struct rtentry *
1111 rtalloc1(struct sockaddr *dst, int report, uint32_t ignflags)
1112 {
1113 struct rtentry *entry;
1114 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
1115 lck_mtx_lock(rnh_lock);
1116 entry = rtalloc1_locked(dst, report, ignflags);
1117 lck_mtx_unlock(rnh_lock);
1118 return entry;
1119 }
1120
1121 struct rtentry *
1122 rtalloc1_scoped(struct sockaddr *dst, int report, uint32_t ignflags,
1123 unsigned int ifscope)
1124 {
1125 struct rtentry *entry;
1126 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
1127 lck_mtx_lock(rnh_lock);
1128 entry = rtalloc1_scoped_locked(dst, report, ignflags, ifscope);
1129 lck_mtx_unlock(rnh_lock);
1130 return entry;
1131 }
1132
1133 /*
1134 * Remove a reference count from an rtentry.
1135 * If the count gets low enough, take it out of the routing table
1136 */
1137 void
1138 rtfree_locked(struct rtentry *rt)
1139 {
1140 rtfree_common(rt, TRUE);
1141 }
1142
1143 static void
1144 rtfree_common(struct rtentry *rt, boolean_t locked)
1145 {
1146 struct radix_node_head *rnh;
1147
1148 LCK_MTX_ASSERT(rnh_lock, locked ?
1149 LCK_MTX_ASSERT_OWNED : LCK_MTX_ASSERT_NOTOWNED);
1150
1151 /*
1152 * Atomically decrement the reference count and if it reaches 0,
1153 * and there is a close function defined, call the close function.
1154 */
1155 RT_LOCK_SPIN(rt);
1156 if (rtunref(rt) > 0) {
1157 RT_UNLOCK(rt);
1158 return;
1159 }
1160
1161 /*
1162 * To avoid violating lock ordering, we must drop rt_lock before
1163 * trying to acquire the global rnh_lock. If we are called with
1164 * rnh_lock held, then we already have exclusive access; otherwise
1165 * we do the lock dance.
1166 */
1167 if (!locked) {
1168 /*
1169 * Note that we check it again below after grabbing rnh_lock,
1170 * since it is possible that another thread doing a lookup wins
1171 * the race, grabs the rnh_lock first, and bumps up reference
1172 * count in which case the route should be left alone as it is
1173 * still in use. It's also possible that another thread frees
1174 * the route after we drop rt_lock; to prevent the route from
1175 * being freed, we hold an extra reference.
1176 */
1177 RT_ADDREF_LOCKED(rt);
1178 RT_UNLOCK(rt);
1179 lck_mtx_lock(rnh_lock);
1180 RT_LOCK_SPIN(rt);
1181 if (rtunref(rt) > 0) {
1182 /* We've lost the race, so abort */
1183 RT_UNLOCK(rt);
1184 goto done;
1185 }
1186 }
1187
1188 /*
1189 * We may be blocked on other lock(s) as part of freeing
1190 * the entry below, so convert from spin to full mutex.
1191 */
1192 RT_CONVERT_LOCK(rt);
1193
1194 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
1195
1196 /* Negative refcnt must never happen */
1197 if (rt->rt_refcnt != 0) {
1198 panic("rt %p invalid refcnt %d", rt, rt->rt_refcnt);
1199 /* NOTREACHED */
1200 }
1201 /* Idle refcnt must have been dropped during rtunref() */
1202 VERIFY(!(rt->rt_flags & RTF_IFREF));
1203
1204 /*
1205 * find the tree for that address family
1206 * Note: in the case of igmp packets, there might not be an rnh
1207 */
1208 rnh = rt_tables[rt_key(rt)->sa_family];
1209
1210 /*
1211 * On last reference give the "close method" a chance to cleanup
1212 * private state. This also permits (for IPv4 and IPv6) a chance
1213 * to decide if the routing table entry should be purged immediately
1214 * or at a later time. When an immediate purge is to happen the
1215 * close routine typically issues RTM_DELETE which clears the RTF_UP
1216 * flag on the entry so that the code below reclaims the storage.
1217 */
1218 if (rnh != NULL && rnh->rnh_close != NULL) {
1219 rnh->rnh_close((struct radix_node *)rt, rnh);
1220 }
1221
1222 /*
1223 * If we are no longer "up" (and ref == 0) then we can free the
1224 * resources associated with the route.
1225 */
1226 if (!(rt->rt_flags & RTF_UP)) {
1227 struct rtentry *rt_parent;
1228 struct ifaddr *rt_ifa;
1229
1230 rt->rt_flags |= RTF_DEAD;
1231 if (rt->rt_nodes->rn_flags & (RNF_ACTIVE | RNF_ROOT)) {
1232 panic("rt %p freed while in radix tree\n", rt);
1233 /* NOTREACHED */
1234 }
1235 /*
1236 * the rtentry must have been removed from the routing table
1237 * so it is represented in rttrash; remove that now.
1238 */
1239 (void) OSDecrementAtomic(&rttrash);
1240 if (rte_debug & RTD_DEBUG) {
1241 TAILQ_REMOVE(&rttrash_head, (struct rtentry_dbg *)rt,
1242 rtd_trash_link);
1243 }
1244
1245 /*
1246 * release references on items we hold them on..
1247 * e.g other routes and ifaddrs.
1248 */
1249 if ((rt_parent = rt->rt_parent) != NULL) {
1250 rt->rt_parent = NULL;
1251 }
1252
1253 if ((rt_ifa = rt->rt_ifa) != NULL) {
1254 rt->rt_ifa = NULL;
1255 }
1256
1257 /*
1258 * Now free any attached link-layer info.
1259 */
1260 if (rt->rt_llinfo != NULL) {
1261 if (rt->rt_llinfo_free != NULL) {
1262 (*rt->rt_llinfo_free)(rt->rt_llinfo);
1263 } else {
1264 R_Free(rt->rt_llinfo);
1265 }
1266 rt->rt_llinfo = NULL;
1267 }
1268
1269 /* Destroy eventhandler lists context */
1270 eventhandler_lists_ctxt_destroy(&rt->rt_evhdlr_ctxt);
1271
1272 /*
1273 * Route is no longer in the tree and refcnt is 0;
1274 * we have exclusive access, so destroy it.
1275 */
1276 RT_UNLOCK(rt);
1277 rte_lock_destroy(rt);
1278
1279 if (rt_parent != NULL) {
1280 rtfree_locked(rt_parent);
1281 }
1282
1283 if (rt_ifa != NULL) {
1284 IFA_REMREF(rt_ifa);
1285 }
1286
1287 /*
1288 * The key is separately alloc'd so free it (see rt_setgate()).
1289 * This also frees the gateway, as they are always malloc'd
1290 * together.
1291 */
1292 R_Free(rt_key(rt));
1293
1294 /*
1295 * Free any statistics that may have been allocated
1296 */
1297 nstat_route_detach(rt);
1298
1299 /*
1300 * and the rtentry itself of course
1301 */
1302 rte_free(rt);
1303 } else {
1304 /*
1305 * The "close method" has been called, but the route is
1306 * still in the radix tree with zero refcnt, i.e. "up"
1307 * and in the cached state.
1308 */
1309 RT_UNLOCK(rt);
1310 }
1311 done:
1312 if (!locked) {
1313 lck_mtx_unlock(rnh_lock);
1314 }
1315 }
1316
1317 void
1318 rtfree(struct rtentry *rt)
1319 {
1320 rtfree_common(rt, FALSE);
1321 }
1322
1323 /*
1324 * Decrements the refcount but does not free the route when
1325 * the refcount reaches zero. Unless you have really good reason,
1326 * use rtfree not rtunref.
1327 */
1328 int
1329 rtunref(struct rtentry *p)
1330 {
1331 RT_LOCK_ASSERT_HELD(p);
1332
1333 if (p->rt_refcnt == 0) {
1334 panic("%s(%p) bad refcnt\n", __func__, p);
1335 /* NOTREACHED */
1336 } else if (--p->rt_refcnt == 0) {
1337 /*
1338 * Release any idle reference count held on the interface;
1339 * if the route is eligible, still UP and the refcnt becomes
1340 * non-zero at some point in future before it is purged from
1341 * the routing table, rt_set_idleref() will undo this.
1342 */
1343 rt_clear_idleref(p);
1344 }
1345
1346 if (rte_debug & RTD_DEBUG) {
1347 rtunref_audit((struct rtentry_dbg *)p);
1348 }
1349
1350 /* Return new value */
1351 return p->rt_refcnt;
1352 }
1353
1354 static inline void
1355 rtunref_audit(struct rtentry_dbg *rte)
1356 {
1357 uint16_t idx;
1358
1359 if (rte->rtd_inuse != RTD_INUSE) {
1360 panic("rtunref: on freed rte=%p\n", rte);
1361 /* NOTREACHED */
1362 }
1363 idx = atomic_add_16_ov(&rte->rtd_refrele_cnt, 1) % CTRACE_HIST_SIZE;
1364 if (rte_debug & RTD_TRACE) {
1365 ctrace_record(&rte->rtd_refrele[idx]);
1366 }
1367 }
1368
1369 /*
1370 * Add a reference count from an rtentry.
1371 */
1372 void
1373 rtref(struct rtentry *p)
1374 {
1375 RT_LOCK_ASSERT_HELD(p);
1376
1377 VERIFY((p->rt_flags & RTF_DEAD) == 0);
1378 if (++p->rt_refcnt == 0) {
1379 panic("%s(%p) bad refcnt\n", __func__, p);
1380 /* NOTREACHED */
1381 } else if (p->rt_refcnt == 1) {
1382 /*
1383 * Hold an idle reference count on the interface,
1384 * if the route is eligible for it.
1385 */
1386 rt_set_idleref(p);
1387 }
1388
1389 if (rte_debug & RTD_DEBUG) {
1390 rtref_audit((struct rtentry_dbg *)p);
1391 }
1392 }
1393
1394 static inline void
1395 rtref_audit(struct rtentry_dbg *rte)
1396 {
1397 uint16_t idx;
1398
1399 if (rte->rtd_inuse != RTD_INUSE) {
1400 panic("rtref_audit: on freed rte=%p\n", rte);
1401 /* NOTREACHED */
1402 }
1403 idx = atomic_add_16_ov(&rte->rtd_refhold_cnt, 1) % CTRACE_HIST_SIZE;
1404 if (rte_debug & RTD_TRACE) {
1405 ctrace_record(&rte->rtd_refhold[idx]);
1406 }
1407 }
1408
1409 void
1410 rtsetifa(struct rtentry *rt, struct ifaddr *ifa)
1411 {
1412 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
1413
1414 RT_LOCK_ASSERT_HELD(rt);
1415
1416 if (rt->rt_ifa == ifa) {
1417 return;
1418 }
1419
1420 /* Become a regular mutex, just in case */
1421 RT_CONVERT_LOCK(rt);
1422
1423 /* Release the old ifa */
1424 if (rt->rt_ifa) {
1425 IFA_REMREF(rt->rt_ifa);
1426 }
1427
1428 /* Set rt_ifa */
1429 rt->rt_ifa = ifa;
1430
1431 /* Take a reference to the ifa */
1432 if (rt->rt_ifa) {
1433 IFA_ADDREF(rt->rt_ifa);
1434 }
1435 }
1436
1437 /*
1438 * Force a routing table entry to the specified
1439 * destination to go through the given gateway.
1440 * Normally called as a result of a routing redirect
1441 * message from the network layer.
1442 */
1443 void
1444 rtredirect(struct ifnet *ifp, struct sockaddr *dst, struct sockaddr *gateway,
1445 struct sockaddr *netmask, int flags, struct sockaddr *src,
1446 struct rtentry **rtp)
1447 {
1448 struct rtentry *rt = NULL;
1449 int error = 0;
1450 short *stat = 0;
1451 struct rt_addrinfo info;
1452 struct ifaddr *ifa = NULL;
1453 unsigned int ifscope = (ifp != NULL) ? ifp->if_index : IFSCOPE_NONE;
1454 struct sockaddr_storage ss;
1455 int af = src->sa_family;
1456
1457 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
1458 lck_mtx_lock(rnh_lock);
1459
1460 /*
1461 * Transform src into the internal routing table form for
1462 * comparison against rt_gateway below.
1463 */
1464 if ((af == AF_INET) || (af == AF_INET6)) {
1465 src = sa_copy(src, &ss, &ifscope);
1466 }
1467
1468 /*
1469 * Verify the gateway is directly reachable; if scoped routing
1470 * is enabled, verify that it is reachable from the interface
1471 * where the ICMP redirect arrived on.
1472 */
1473 if ((ifa = ifa_ifwithnet_scoped(gateway, ifscope)) == NULL) {
1474 error = ENETUNREACH;
1475 goto out;
1476 }
1477
1478 /* Lookup route to the destination (from the original IP header) */
1479 rt = rtalloc1_scoped_locked(dst, 0, RTF_CLONING | RTF_PRCLONING, ifscope);
1480 if (rt != NULL) {
1481 RT_LOCK(rt);
1482 }
1483
1484 /*
1485 * If the redirect isn't from our current router for this dst,
1486 * it's either old or wrong. If it redirects us to ourselves,
1487 * we have a routing loop, perhaps as a result of an interface
1488 * going down recently. Holding rnh_lock here prevents the
1489 * possibility of rt_ifa/ifa's ifa_addr from changing (e.g.
1490 * in_ifinit), so okay to access ifa_addr without locking.
1491 */
1492 if (!(flags & RTF_DONE) && rt != NULL &&
1493 (!equal(src, rt->rt_gateway) || !equal(rt->rt_ifa->ifa_addr,
1494 ifa->ifa_addr))) {
1495 error = EINVAL;
1496 } else {
1497 IFA_REMREF(ifa);
1498 if ((ifa = ifa_ifwithaddr(gateway))) {
1499 IFA_REMREF(ifa);
1500 ifa = NULL;
1501 error = EHOSTUNREACH;
1502 }
1503 }
1504
1505 if (ifa) {
1506 IFA_REMREF(ifa);
1507 ifa = NULL;
1508 }
1509
1510 if (error) {
1511 if (rt != NULL) {
1512 RT_UNLOCK(rt);
1513 }
1514 goto done;
1515 }
1516
1517 /*
1518 * Create a new entry if we just got back a wildcard entry
1519 * or the the lookup failed. This is necessary for hosts
1520 * which use routing redirects generated by smart gateways
1521 * to dynamically build the routing tables.
1522 */
1523 if ((rt == NULL) || (rt_mask(rt) != NULL && rt_mask(rt)->sa_len < 2)) {
1524 goto create;
1525 }
1526 /*
1527 * Don't listen to the redirect if it's
1528 * for a route to an interface.
1529 */
1530 RT_LOCK_ASSERT_HELD(rt);
1531 if (rt->rt_flags & RTF_GATEWAY) {
1532 if (((rt->rt_flags & RTF_HOST) == 0) && (flags & RTF_HOST)) {
1533 /*
1534 * Changing from route to net => route to host.
1535 * Create new route, rather than smashing route
1536 * to net; similar to cloned routes, the newly
1537 * created host route is scoped as well.
1538 */
1539 create:
1540 if (rt != NULL) {
1541 RT_UNLOCK(rt);
1542 }
1543 flags |= RTF_GATEWAY | RTF_DYNAMIC;
1544 error = rtrequest_scoped_locked(RTM_ADD, dst,
1545 gateway, netmask, flags, NULL, ifscope);
1546 stat = &rtstat.rts_dynamic;
1547 } else {
1548 /*
1549 * Smash the current notion of the gateway to
1550 * this destination. Should check about netmask!!!
1551 */
1552 rt->rt_flags |= RTF_MODIFIED;
1553 flags |= RTF_MODIFIED;
1554 stat = &rtstat.rts_newgateway;
1555 /*
1556 * add the key and gateway (in one malloc'd chunk).
1557 */
1558 error = rt_setgate(rt, rt_key(rt), gateway);
1559 RT_UNLOCK(rt);
1560 }
1561 } else {
1562 RT_UNLOCK(rt);
1563 error = EHOSTUNREACH;
1564 }
1565 done:
1566 if (rt != NULL) {
1567 RT_LOCK_ASSERT_NOTHELD(rt);
1568 if (!error) {
1569 /* Enqueue event to refresh flow route entries */
1570 route_event_enqueue_nwk_wq_entry(rt, NULL, ROUTE_ENTRY_REFRESH, NULL, FALSE);
1571 if (rtp) {
1572 *rtp = rt;
1573 } else {
1574 rtfree_locked(rt);
1575 }
1576 } else {
1577 rtfree_locked(rt);
1578 }
1579 }
1580 out:
1581 if (error) {
1582 rtstat.rts_badredirect++;
1583 } else {
1584 if (stat != NULL) {
1585 (*stat)++;
1586 }
1587
1588 if (af == AF_INET) {
1589 routegenid_inet_update();
1590 } else if (af == AF_INET6) {
1591 routegenid_inet6_update();
1592 }
1593 }
1594 lck_mtx_unlock(rnh_lock);
1595 bzero((caddr_t)&info, sizeof(info));
1596 info.rti_info[RTAX_DST] = dst;
1597 info.rti_info[RTAX_GATEWAY] = gateway;
1598 info.rti_info[RTAX_NETMASK] = netmask;
1599 info.rti_info[RTAX_AUTHOR] = src;
1600 rt_missmsg(RTM_REDIRECT, &info, flags, error);
1601 }
1602
1603 /*
1604 * Routing table ioctl interface.
1605 */
1606 int
1607 rtioctl(unsigned long req, caddr_t data, struct proc *p)
1608 {
1609 #pragma unused(p, req, data)
1610 return ENXIO;
1611 }
1612
1613 struct ifaddr *
1614 ifa_ifwithroute(
1615 int flags,
1616 const struct sockaddr *dst,
1617 const struct sockaddr *gateway)
1618 {
1619 struct ifaddr *ifa;
1620
1621 lck_mtx_lock(rnh_lock);
1622 ifa = ifa_ifwithroute_locked(flags, dst, gateway);
1623 lck_mtx_unlock(rnh_lock);
1624
1625 return ifa;
1626 }
1627
1628 struct ifaddr *
1629 ifa_ifwithroute_locked(int flags, const struct sockaddr *dst,
1630 const struct sockaddr *gateway)
1631 {
1632 return ifa_ifwithroute_common_locked((flags & ~RTF_IFSCOPE), dst,
1633 gateway, IFSCOPE_NONE);
1634 }
1635
1636 struct ifaddr *
1637 ifa_ifwithroute_scoped_locked(int flags, const struct sockaddr *dst,
1638 const struct sockaddr *gateway, unsigned int ifscope)
1639 {
1640 if (ifscope != IFSCOPE_NONE) {
1641 flags |= RTF_IFSCOPE;
1642 } else {
1643 flags &= ~RTF_IFSCOPE;
1644 }
1645
1646 return ifa_ifwithroute_common_locked(flags, dst, gateway, ifscope);
1647 }
1648
1649 static struct ifaddr *
1650 ifa_ifwithroute_common_locked(int flags, const struct sockaddr *dst,
1651 const struct sockaddr *gw, unsigned int ifscope)
1652 {
1653 struct ifaddr *ifa = NULL;
1654 struct rtentry *rt = NULL;
1655 struct sockaddr_storage dst_ss, gw_ss;
1656
1657 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
1658
1659 /*
1660 * Just in case the sockaddr passed in by the caller
1661 * contains a scope ID, make sure to clear it since
1662 * interface addresses aren't scoped.
1663 */
1664 if (dst != NULL &&
1665 ((dst->sa_family == AF_INET) ||
1666 (dst->sa_family == AF_INET6))) {
1667 dst = sa_copy(SA((uintptr_t)dst), &dst_ss, NULL);
1668 }
1669
1670 if (gw != NULL &&
1671 ((gw->sa_family == AF_INET) ||
1672 (gw->sa_family == AF_INET6))) {
1673 gw = sa_copy(SA((uintptr_t)gw), &gw_ss, NULL);
1674 }
1675
1676 if (!(flags & RTF_GATEWAY)) {
1677 /*
1678 * If we are adding a route to an interface,
1679 * and the interface is a pt to pt link
1680 * we should search for the destination
1681 * as our clue to the interface. Otherwise
1682 * we can use the local address.
1683 */
1684 if (flags & RTF_HOST) {
1685 ifa = ifa_ifwithdstaddr(dst);
1686 }
1687 if (ifa == NULL) {
1688 ifa = ifa_ifwithaddr_scoped(gw, ifscope);
1689 }
1690 } else {
1691 /*
1692 * If we are adding a route to a remote net
1693 * or host, the gateway may still be on the
1694 * other end of a pt to pt link.
1695 */
1696 ifa = ifa_ifwithdstaddr(gw);
1697 }
1698 if (ifa == NULL) {
1699 ifa = ifa_ifwithnet_scoped(gw, ifscope);
1700 }
1701 if (ifa == NULL) {
1702 /* Workaround to avoid gcc warning regarding const variable */
1703 rt = rtalloc1_scoped_locked((struct sockaddr *)(size_t)dst,
1704 0, 0, ifscope);
1705 if (rt != NULL) {
1706 RT_LOCK_SPIN(rt);
1707 ifa = rt->rt_ifa;
1708 if (ifa != NULL) {
1709 /* Become a regular mutex */
1710 RT_CONVERT_LOCK(rt);
1711 IFA_ADDREF(ifa);
1712 }
1713 RT_REMREF_LOCKED(rt);
1714 RT_UNLOCK(rt);
1715 rt = NULL;
1716 }
1717 }
1718 /*
1719 * Holding rnh_lock here prevents the possibility of ifa from
1720 * changing (e.g. in_ifinit), so it is safe to access its
1721 * ifa_addr (here and down below) without locking.
1722 */
1723 if (ifa != NULL && ifa->ifa_addr->sa_family != dst->sa_family) {
1724 struct ifaddr *newifa;
1725 /* Callee adds reference to newifa upon success */
1726 newifa = ifaof_ifpforaddr(dst, ifa->ifa_ifp);
1727 if (newifa != NULL) {
1728 IFA_REMREF(ifa);
1729 ifa = newifa;
1730 }
1731 }
1732 /*
1733 * If we are adding a gateway, it is quite possible that the
1734 * routing table has a static entry in place for the gateway,
1735 * that may not agree with info garnered from the interfaces.
1736 * The routing table should carry more precedence than the
1737 * interfaces in this matter. Must be careful not to stomp
1738 * on new entries from rtinit, hence (ifa->ifa_addr != gw).
1739 */
1740 if ((ifa == NULL ||
1741 !equal(ifa->ifa_addr, (struct sockaddr *)(size_t)gw)) &&
1742 (rt = rtalloc1_scoped_locked((struct sockaddr *)(size_t)gw,
1743 0, 0, ifscope)) != NULL) {
1744 if (ifa != NULL) {
1745 IFA_REMREF(ifa);
1746 }
1747 RT_LOCK_SPIN(rt);
1748 ifa = rt->rt_ifa;
1749 if (ifa != NULL) {
1750 /* Become a regular mutex */
1751 RT_CONVERT_LOCK(rt);
1752 IFA_ADDREF(ifa);
1753 }
1754 RT_REMREF_LOCKED(rt);
1755 RT_UNLOCK(rt);
1756 }
1757 /*
1758 * If an interface scope was specified, the interface index of
1759 * the found ifaddr must be equivalent to that of the scope;
1760 * otherwise there is no match.
1761 */
1762 if ((flags & RTF_IFSCOPE) &&
1763 ifa != NULL && ifa->ifa_ifp->if_index != ifscope) {
1764 IFA_REMREF(ifa);
1765 ifa = NULL;
1766 }
1767
1768 /*
1769 * ifa's address family must match destination's address family
1770 * after all is said and done.
1771 */
1772 if (ifa != NULL &&
1773 ifa->ifa_addr->sa_family != dst->sa_family) {
1774 IFA_REMREF(ifa);
1775 ifa = NULL;
1776 }
1777
1778 return ifa;
1779 }
1780
1781 static int rt_fixdelete(struct radix_node *, void *);
1782 static int rt_fixchange(struct radix_node *, void *);
1783
1784 struct rtfc_arg {
1785 struct rtentry *rt0;
1786 struct radix_node_head *rnh;
1787 };
1788
1789 int
1790 rtrequest_locked(int req, struct sockaddr *dst, struct sockaddr *gateway,
1791 struct sockaddr *netmask, int flags, struct rtentry **ret_nrt)
1792 {
1793 return rtrequest_common_locked(req, dst, gateway, netmask,
1794 (flags & ~RTF_IFSCOPE), ret_nrt, IFSCOPE_NONE);
1795 }
1796
1797 int
1798 rtrequest_scoped_locked(int req, struct sockaddr *dst,
1799 struct sockaddr *gateway, struct sockaddr *netmask, int flags,
1800 struct rtentry **ret_nrt, unsigned int ifscope)
1801 {
1802 if (ifscope != IFSCOPE_NONE) {
1803 flags |= RTF_IFSCOPE;
1804 } else {
1805 flags &= ~RTF_IFSCOPE;
1806 }
1807
1808 return rtrequest_common_locked(req, dst, gateway, netmask,
1809 flags, ret_nrt, ifscope);
1810 }
1811
1812 /*
1813 * Do appropriate manipulations of a routing tree given all the bits of
1814 * info needed.
1815 *
1816 * Storing the scope ID in the radix key is an internal job that should be
1817 * left to routines in this module. Callers should specify the scope value
1818 * to the "scoped" variants of route routines instead of manipulating the
1819 * key itself. This is typically done when creating a scoped route, e.g.
1820 * rtrequest(RTM_ADD). Once such a route is created and marked with the
1821 * RTF_IFSCOPE flag, callers can simply use its rt_key(rt) to clone it
1822 * (RTM_RESOLVE) or to remove it (RTM_DELETE). An exception to this is
1823 * during certain routing socket operations where the search key might be
1824 * derived from the routing message itself, in which case the caller must
1825 * specify the destination address and scope value for RTM_ADD/RTM_DELETE.
1826 */
1827 static int
1828 rtrequest_common_locked(int req, struct sockaddr *dst0,
1829 struct sockaddr *gateway, struct sockaddr *netmask, int flags,
1830 struct rtentry **ret_nrt, unsigned int ifscope)
1831 {
1832 int error = 0;
1833 struct rtentry *rt;
1834 struct radix_node *rn;
1835 struct radix_node_head *rnh;
1836 struct ifaddr *ifa = NULL;
1837 struct sockaddr *ndst, *dst = dst0;
1838 struct sockaddr_storage ss, mask;
1839 struct timeval caltime;
1840 int af = dst->sa_family;
1841 void (*ifa_rtrequest)(int, struct rtentry *, struct sockaddr *);
1842
1843 #define senderr(x) { error = x; goto bad; }
1844
1845 DTRACE_ROUTE6(rtrequest, int, req, struct sockaddr *, dst0,
1846 struct sockaddr *, gateway, struct sockaddr *, netmask,
1847 int, flags, unsigned int, ifscope);
1848
1849 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
1850
1851 #if !(DEVELOPMENT || DEBUG)
1852 /*
1853 * Setting the global internet flag external is only for testing
1854 */
1855 flags &= ~RTF_GLOBAL;
1856 #endif /* !(DEVELOPMENT || DEBUG) */
1857
1858 /*
1859 * Find the correct routing tree to use for this Address Family
1860 */
1861 if ((rnh = rt_tables[af]) == NULL) {
1862 senderr(ESRCH);
1863 }
1864 /*
1865 * If we are adding a host route then we don't want to put
1866 * a netmask in the tree
1867 */
1868 if (flags & RTF_HOST) {
1869 netmask = NULL;
1870 }
1871
1872 /*
1873 * If Scoped Routing is enabled, use a local copy of the destination
1874 * address to store the scope ID into. This logic is repeated below
1875 * in the RTM_RESOLVE handler since the caller does not normally
1876 * specify such a flag during a resolve, as well as for the handling
1877 * of IPv4 link-local address; instead, it passes in the route used for
1878 * cloning for which the scope info is derived from. Note also that
1879 * in the case of RTM_DELETE, the address passed in by the caller
1880 * might already contain the scope ID info when it is the key itself,
1881 * thus making RTF_IFSCOPE unnecessary; one instance where it is
1882 * explicitly set is inside route_output() as part of handling a
1883 * routing socket request.
1884 */
1885 if (req != RTM_RESOLVE && ((af == AF_INET) || (af == AF_INET6))) {
1886 /* Transform dst into the internal routing table form */
1887 dst = sa_copy(dst, &ss, &ifscope);
1888
1889 /* Transform netmask into the internal routing table form */
1890 if (netmask != NULL) {
1891 netmask = ma_copy(af, netmask, &mask, ifscope);
1892 }
1893
1894 if (ifscope != IFSCOPE_NONE) {
1895 flags |= RTF_IFSCOPE;
1896 }
1897 } else if ((flags & RTF_IFSCOPE) &&
1898 (af != AF_INET && af != AF_INET6)) {
1899 senderr(EINVAL);
1900 }
1901
1902 if (ifscope == IFSCOPE_NONE) {
1903 flags &= ~RTF_IFSCOPE;
1904 }
1905
1906 switch (req) {
1907 case RTM_DELETE: {
1908 struct rtentry *gwrt = NULL;
1909 boolean_t was_router = FALSE;
1910 uint32_t old_rt_refcnt = 0;
1911 /*
1912 * Remove the item from the tree and return it.
1913 * Complain if it is not there and do no more processing.
1914 */
1915 if ((rn = rnh->rnh_deladdr(dst, netmask, rnh)) == NULL) {
1916 senderr(ESRCH);
1917 }
1918 if (rn->rn_flags & (RNF_ACTIVE | RNF_ROOT)) {
1919 panic("rtrequest delete");
1920 /* NOTREACHED */
1921 }
1922 rt = (struct rtentry *)rn;
1923
1924 RT_LOCK(rt);
1925 old_rt_refcnt = rt->rt_refcnt;
1926 rt->rt_flags &= ~RTF_UP;
1927 /*
1928 * Release any idle reference count held on the interface
1929 * as this route is no longer externally visible.
1930 */
1931 rt_clear_idleref(rt);
1932 /*
1933 * Take an extra reference to handle the deletion of a route
1934 * entry whose reference count is already 0; e.g. an expiring
1935 * cloned route entry or an entry that was added to the table
1936 * with 0 reference. If the caller is interested in this route,
1937 * we will return it with the reference intact. Otherwise we
1938 * will decrement the reference via rtfree_locked() and then
1939 * possibly deallocate it.
1940 */
1941 RT_ADDREF_LOCKED(rt);
1942
1943 /*
1944 * For consistency, in case the caller didn't set the flag.
1945 */
1946 rt->rt_flags |= RTF_CONDEMNED;
1947
1948 /*
1949 * Clear RTF_ROUTER if it's set.
1950 */
1951 if (rt->rt_flags & RTF_ROUTER) {
1952 was_router = TRUE;
1953 VERIFY(rt->rt_flags & RTF_HOST);
1954 rt->rt_flags &= ~RTF_ROUTER;
1955 }
1956
1957 /*
1958 * Enqueue work item to invoke callback for this route entry
1959 *
1960 * If the old count is 0, it implies that last reference is being
1961 * removed and there's no one listening for this route event.
1962 */
1963 if (old_rt_refcnt != 0) {
1964 route_event_enqueue_nwk_wq_entry(rt, NULL,
1965 ROUTE_ENTRY_DELETED, NULL, TRUE);
1966 }
1967
1968 /*
1969 * Now search what's left of the subtree for any cloned
1970 * routes which might have been formed from this node.
1971 */
1972 if ((rt->rt_flags & (RTF_CLONING | RTF_PRCLONING)) &&
1973 rt_mask(rt)) {
1974 RT_UNLOCK(rt);
1975 rnh->rnh_walktree_from(rnh, dst, rt_mask(rt),
1976 rt_fixdelete, rt);
1977 RT_LOCK(rt);
1978 }
1979
1980 if (was_router) {
1981 struct route_event rt_ev;
1982 route_event_init(&rt_ev, rt, NULL, ROUTE_LLENTRY_DELETED);
1983 RT_UNLOCK(rt);
1984 (void) rnh->rnh_walktree(rnh,
1985 route_event_walktree, (void *)&rt_ev);
1986 RT_LOCK(rt);
1987 }
1988
1989 /*
1990 * Remove any external references we may have.
1991 */
1992 if ((gwrt = rt->rt_gwroute) != NULL) {
1993 rt->rt_gwroute = NULL;
1994 }
1995
1996 /*
1997 * give the protocol a chance to keep things in sync.
1998 */
1999 if ((ifa = rt->rt_ifa) != NULL) {
2000 IFA_LOCK_SPIN(ifa);
2001 ifa_rtrequest = ifa->ifa_rtrequest;
2002 IFA_UNLOCK(ifa);
2003 if (ifa_rtrequest != NULL) {
2004 ifa_rtrequest(RTM_DELETE, rt, NULL);
2005 }
2006 /* keep reference on rt_ifa */
2007 ifa = NULL;
2008 }
2009
2010 /*
2011 * one more rtentry floating around that is not
2012 * linked to the routing table.
2013 */
2014 (void) OSIncrementAtomic(&rttrash);
2015 if (rte_debug & RTD_DEBUG) {
2016 TAILQ_INSERT_TAIL(&rttrash_head,
2017 (struct rtentry_dbg *)rt, rtd_trash_link);
2018 }
2019
2020 /*
2021 * If this is the (non-scoped) default route, clear
2022 * the interface index used for the primary ifscope.
2023 */
2024 if (rt_primary_default(rt, rt_key(rt))) {
2025 set_primary_ifscope(rt_key(rt)->sa_family,
2026 IFSCOPE_NONE);
2027 if ((rt->rt_flags & RTF_STATIC) &&
2028 rt_key(rt)->sa_family == PF_INET6) {
2029 trigger_v6_defrtr_select = TRUE;
2030 }
2031 }
2032
2033 #if NECP
2034 /*
2035 * If this is a change in a default route, update
2036 * necp client watchers to re-evaluate
2037 */
2038 if (SA_DEFAULT(rt_key(rt))) {
2039 if (rt->rt_ifp != NULL) {
2040 ifnet_touch_lastupdown(rt->rt_ifp);
2041 }
2042 necp_update_all_clients();
2043 }
2044 #endif /* NECP */
2045
2046 RT_UNLOCK(rt);
2047
2048 /*
2049 * This might result in another rtentry being freed if
2050 * we held its last reference. Do this after the rtentry
2051 * lock is dropped above, as it could lead to the same
2052 * lock being acquired if gwrt is a clone of rt.
2053 */
2054 if (gwrt != NULL) {
2055 rtfree_locked(gwrt);
2056 }
2057
2058 /*
2059 * If the caller wants it, then it can have it,
2060 * but it's up to it to free the rtentry as we won't be
2061 * doing it.
2062 */
2063 if (ret_nrt != NULL) {
2064 /* Return the route to caller with reference intact */
2065 *ret_nrt = rt;
2066 } else {
2067 /* Dereference or deallocate the route */
2068 rtfree_locked(rt);
2069 }
2070 if (af == AF_INET) {
2071 routegenid_inet_update();
2072 } else if (af == AF_INET6) {
2073 routegenid_inet6_update();
2074 }
2075 break;
2076 }
2077 case RTM_RESOLVE:
2078 if (ret_nrt == NULL || (rt = *ret_nrt) == NULL) {
2079 senderr(EINVAL);
2080 }
2081 /*
2082 * According to the UNIX conformance tests, we need to return
2083 * ENETUNREACH when the parent route is RTF_REJECT.
2084 * However, there isn't any point in cloning RTF_REJECT
2085 * routes, so we immediately return an error.
2086 */
2087 if (rt->rt_flags & RTF_REJECT) {
2088 if (rt->rt_flags & RTF_HOST) {
2089 senderr(EHOSTUNREACH);
2090 } else {
2091 senderr(ENETUNREACH);
2092 }
2093 }
2094 /*
2095 * If cloning, we have the parent route given by the caller
2096 * and will use its rt_gateway, rt_rmx as part of the cloning
2097 * process below. Since rnh_lock is held at this point, the
2098 * parent's rt_ifa and rt_gateway will not change, and its
2099 * relevant rt_flags will not change as well. The only thing
2100 * that could change are the metrics, and thus we hold the
2101 * parent route's rt_lock later on during the actual copying
2102 * of rt_rmx.
2103 */
2104 ifa = rt->rt_ifa;
2105 IFA_ADDREF(ifa);
2106 flags = rt->rt_flags &
2107 ~(RTF_CLONING | RTF_PRCLONING | RTF_STATIC);
2108 flags |= RTF_WASCLONED;
2109 gateway = rt->rt_gateway;
2110 if ((netmask = rt->rt_genmask) == NULL) {
2111 flags |= RTF_HOST;
2112 }
2113
2114 if (af != AF_INET && af != AF_INET6) {
2115 goto makeroute;
2116 }
2117
2118 /*
2119 * When scoped routing is enabled, cloned entries are
2120 * always scoped according to the interface portion of
2121 * the parent route. The exception to this are IPv4
2122 * link local addresses, or those routes that are cloned
2123 * from a RTF_PROXY route. For the latter, the clone
2124 * gets to keep the RTF_PROXY flag.
2125 */
2126 if ((af == AF_INET &&
2127 IN_LINKLOCAL(ntohl(SIN(dst)->sin_addr.s_addr))) ||
2128 (rt->rt_flags & RTF_PROXY)) {
2129 ifscope = IFSCOPE_NONE;
2130 flags &= ~RTF_IFSCOPE;
2131 /*
2132 * These types of cloned routes aren't currently
2133 * eligible for idle interface reference counting.
2134 */
2135 flags |= RTF_NOIFREF;
2136 } else {
2137 if (flags & RTF_IFSCOPE) {
2138 ifscope = (af == AF_INET) ?
2139 sin_get_ifscope(rt_key(rt)) :
2140 sin6_get_ifscope(rt_key(rt));
2141 } else {
2142 ifscope = rt->rt_ifp->if_index;
2143 flags |= RTF_IFSCOPE;
2144 }
2145 VERIFY(ifscope != IFSCOPE_NONE);
2146 }
2147
2148 /*
2149 * Transform dst into the internal routing table form,
2150 * clearing out the scope ID field if ifscope isn't set.
2151 */
2152 dst = sa_copy(dst, &ss, (ifscope == IFSCOPE_NONE) ?
2153 NULL : &ifscope);
2154
2155 /* Transform netmask into the internal routing table form */
2156 if (netmask != NULL) {
2157 netmask = ma_copy(af, netmask, &mask, ifscope);
2158 }
2159
2160 goto makeroute;
2161
2162 case RTM_ADD:
2163 if ((flags & RTF_GATEWAY) && !gateway) {
2164 panic("rtrequest: RTF_GATEWAY but no gateway");
2165 /* NOTREACHED */
2166 }
2167 if (flags & RTF_IFSCOPE) {
2168 ifa = ifa_ifwithroute_scoped_locked(flags, dst0,
2169 gateway, ifscope);
2170 } else {
2171 ifa = ifa_ifwithroute_locked(flags, dst0, gateway);
2172 }
2173 if (ifa == NULL) {
2174 senderr(ENETUNREACH);
2175 }
2176 makeroute:
2177 /*
2178 * We land up here for both RTM_RESOLVE and RTM_ADD
2179 * when we decide to create a route.
2180 */
2181 if ((rt = rte_alloc()) == NULL) {
2182 senderr(ENOBUFS);
2183 }
2184 Bzero(rt, sizeof(*rt));
2185 rte_lock_init(rt);
2186 eventhandler_lists_ctxt_init(&rt->rt_evhdlr_ctxt);
2187 getmicrotime(&caltime);
2188 rt->base_calendartime = caltime.tv_sec;
2189 rt->base_uptime = net_uptime();
2190 RT_LOCK(rt);
2191 rt->rt_flags = RTF_UP | flags;
2192
2193 /*
2194 * Point the generation ID to the tree's.
2195 */
2196 switch (af) {
2197 case AF_INET:
2198 rt->rt_tree_genid = &route_genid_inet;
2199 break;
2200 case AF_INET6:
2201 rt->rt_tree_genid = &route_genid_inet6;
2202 break;
2203 default:
2204 break;
2205 }
2206
2207 /*
2208 * Add the gateway. Possibly re-malloc-ing the storage for it
2209 * also add the rt_gwroute if possible.
2210 */
2211 if ((error = rt_setgate(rt, dst, gateway)) != 0) {
2212 int tmp = error;
2213 RT_UNLOCK(rt);
2214 nstat_route_detach(rt);
2215 rte_lock_destroy(rt);
2216 rte_free(rt);
2217 senderr(tmp);
2218 }
2219
2220 /*
2221 * point to the (possibly newly malloc'd) dest address.
2222 */
2223 ndst = rt_key(rt);
2224
2225 /*
2226 * make sure it contains the value we want (masked if needed).
2227 */
2228 if (netmask) {
2229 rt_maskedcopy(dst, ndst, netmask);
2230 } else {
2231 Bcopy(dst, ndst, dst->sa_len);
2232 }
2233
2234 /*
2235 * Note that we now have a reference to the ifa.
2236 * This moved from below so that rnh->rnh_addaddr() can
2237 * examine the ifa and ifa->ifa_ifp if it so desires.
2238 */
2239 rtsetifa(rt, ifa);
2240 rt->rt_ifp = rt->rt_ifa->ifa_ifp;
2241
2242 /* XXX mtu manipulation will be done in rnh_addaddr -- itojun */
2243
2244 rn = rnh->rnh_addaddr((caddr_t)ndst, (caddr_t)netmask,
2245 rnh, rt->rt_nodes);
2246 if (rn == 0) {
2247 struct rtentry *rt2;
2248 /*
2249 * Uh-oh, we already have one of these in the tree.
2250 * We do a special hack: if the route that's already
2251 * there was generated by the protocol-cloning
2252 * mechanism, then we just blow it away and retry
2253 * the insertion of the new one.
2254 */
2255 if (flags & RTF_IFSCOPE) {
2256 rt2 = rtalloc1_scoped_locked(dst0, 0,
2257 RTF_CLONING | RTF_PRCLONING, ifscope);
2258 } else {
2259 rt2 = rtalloc1_locked(dst, 0,
2260 RTF_CLONING | RTF_PRCLONING);
2261 }
2262 if (rt2 && rt2->rt_parent) {
2263 /*
2264 * rnh_lock is held here, so rt_key and
2265 * rt_gateway of rt2 will not change.
2266 */
2267 (void) rtrequest_locked(RTM_DELETE, rt_key(rt2),
2268 rt2->rt_gateway, rt_mask(rt2),
2269 rt2->rt_flags, 0);
2270 rtfree_locked(rt2);
2271 rn = rnh->rnh_addaddr((caddr_t)ndst,
2272 (caddr_t)netmask, rnh, rt->rt_nodes);
2273 } else if (rt2) {
2274 /* undo the extra ref we got */
2275 rtfree_locked(rt2);
2276 }
2277 }
2278
2279 /*
2280 * If it still failed to go into the tree,
2281 * then un-make it (this should be a function)
2282 */
2283 if (rn == NULL) {
2284 /* Clear gateway route */
2285 rt_set_gwroute(rt, rt_key(rt), NULL);
2286 if (rt->rt_ifa) {
2287 IFA_REMREF(rt->rt_ifa);
2288 rt->rt_ifa = NULL;
2289 }
2290 R_Free(rt_key(rt));
2291 RT_UNLOCK(rt);
2292 nstat_route_detach(rt);
2293 rte_lock_destroy(rt);
2294 rte_free(rt);
2295 senderr(EEXIST);
2296 }
2297
2298 rt->rt_parent = NULL;
2299
2300 /*
2301 * If we got here from RESOLVE, then we are cloning so clone
2302 * the rest, and note that we are a clone (and increment the
2303 * parent's references). rnh_lock is still held, which prevents
2304 * a lookup from returning the newly-created route. Hence
2305 * holding and releasing the parent's rt_lock while still
2306 * holding the route's rt_lock is safe since the new route
2307 * is not yet externally visible.
2308 */
2309 if (req == RTM_RESOLVE) {
2310 RT_LOCK_SPIN(*ret_nrt);
2311 VERIFY((*ret_nrt)->rt_expire == 0 ||
2312 (*ret_nrt)->rt_rmx.rmx_expire != 0);
2313 VERIFY((*ret_nrt)->rt_expire != 0 ||
2314 (*ret_nrt)->rt_rmx.rmx_expire == 0);
2315 rt->rt_rmx = (*ret_nrt)->rt_rmx;
2316 rt_setexpire(rt, (*ret_nrt)->rt_expire);
2317 if ((*ret_nrt)->rt_flags &
2318 (RTF_CLONING | RTF_PRCLONING)) {
2319 rt->rt_parent = (*ret_nrt);
2320 RT_ADDREF_LOCKED(*ret_nrt);
2321 }
2322 RT_UNLOCK(*ret_nrt);
2323 }
2324
2325 /*
2326 * if this protocol has something to add to this then
2327 * allow it to do that as well.
2328 */
2329 IFA_LOCK_SPIN(ifa);
2330 ifa_rtrequest = ifa->ifa_rtrequest;
2331 IFA_UNLOCK(ifa);
2332 if (ifa_rtrequest != NULL) {
2333 ifa_rtrequest(req, rt, SA(ret_nrt ? *ret_nrt : NULL));
2334 }
2335 IFA_REMREF(ifa);
2336 ifa = NULL;
2337
2338 /*
2339 * If this is the (non-scoped) default route, record
2340 * the interface index used for the primary ifscope.
2341 */
2342 if (rt_primary_default(rt, rt_key(rt))) {
2343 set_primary_ifscope(rt_key(rt)->sa_family,
2344 rt->rt_ifp->if_index);
2345 }
2346
2347 #if NECP
2348 /*
2349 * If this is a change in a default route, update
2350 * necp client watchers to re-evaluate
2351 */
2352 if (SA_DEFAULT(rt_key(rt))) {
2353 /*
2354 * Mark default routes as (potentially) leading to the global internet
2355 * this can be used for policy decisions.
2356 * The clone routes will inherit this flag.
2357 * We check against the host flag as this works for default routes that have
2358 * a gateway and defaults routes when all subnets are local.
2359 */
2360 if (req == RTM_ADD && (rt->rt_flags & RTF_HOST) == 0) {
2361 rt->rt_flags |= RTF_GLOBAL;
2362 }
2363 if (rt->rt_ifp != NULL) {
2364 ifnet_touch_lastupdown(rt->rt_ifp);
2365 }
2366 necp_update_all_clients();
2367 }
2368 #endif /* NECP */
2369
2370 /*
2371 * actually return a resultant rtentry and
2372 * give the caller a single reference.
2373 */
2374 if (ret_nrt) {
2375 *ret_nrt = rt;
2376 RT_ADDREF_LOCKED(rt);
2377 }
2378
2379 if (af == AF_INET) {
2380 routegenid_inet_update();
2381 } else if (af == AF_INET6) {
2382 routegenid_inet6_update();
2383 }
2384
2385 RT_GENID_SYNC(rt);
2386
2387 /*
2388 * We repeat the same procedures from rt_setgate() here
2389 * because they weren't completed when we called it earlier,
2390 * since the node was embryonic.
2391 */
2392 if ((rt->rt_flags & RTF_GATEWAY) && rt->rt_gwroute != NULL) {
2393 rt_set_gwroute(rt, rt_key(rt), rt->rt_gwroute);
2394 }
2395
2396 if (req == RTM_ADD &&
2397 !(rt->rt_flags & RTF_HOST) && rt_mask(rt) != NULL) {
2398 struct rtfc_arg arg;
2399 arg.rnh = rnh;
2400 arg.rt0 = rt;
2401 RT_UNLOCK(rt);
2402 rnh->rnh_walktree_from(rnh, rt_key(rt), rt_mask(rt),
2403 rt_fixchange, &arg);
2404 } else {
2405 RT_UNLOCK(rt);
2406 }
2407
2408 nstat_route_new_entry(rt);
2409 break;
2410 }
2411 bad:
2412 if (ifa) {
2413 IFA_REMREF(ifa);
2414 }
2415 return error;
2416 }
2417 #undef senderr
2418
2419 int
2420 rtrequest(int req, struct sockaddr *dst, struct sockaddr *gateway,
2421 struct sockaddr *netmask, int flags, struct rtentry **ret_nrt)
2422 {
2423 int error;
2424 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2425 lck_mtx_lock(rnh_lock);
2426 error = rtrequest_locked(req, dst, gateway, netmask, flags, ret_nrt);
2427 lck_mtx_unlock(rnh_lock);
2428 return error;
2429 }
2430
2431 int
2432 rtrequest_scoped(int req, struct sockaddr *dst, struct sockaddr *gateway,
2433 struct sockaddr *netmask, int flags, struct rtentry **ret_nrt,
2434 unsigned int ifscope)
2435 {
2436 int error;
2437 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2438 lck_mtx_lock(rnh_lock);
2439 error = rtrequest_scoped_locked(req, dst, gateway, netmask, flags,
2440 ret_nrt, ifscope);
2441 lck_mtx_unlock(rnh_lock);
2442 return error;
2443 }
2444
2445 /*
2446 * Called from rtrequest(RTM_DELETE, ...) to fix up the route's ``family''
2447 * (i.e., the routes related to it by the operation of cloning). This
2448 * routine is iterated over all potential former-child-routes by way of
2449 * rnh->rnh_walktree_from() above, and those that actually are children of
2450 * the late parent (passed in as VP here) are themselves deleted.
2451 */
2452 static int
2453 rt_fixdelete(struct radix_node *rn, void *vp)
2454 {
2455 struct rtentry *rt = (struct rtentry *)rn;
2456 struct rtentry *rt0 = vp;
2457
2458 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
2459
2460 RT_LOCK(rt);
2461 if (rt->rt_parent == rt0 &&
2462 !(rt->rt_flags & (RTF_CLONING | RTF_PRCLONING))) {
2463 /*
2464 * Safe to drop rt_lock and use rt_key, since holding
2465 * rnh_lock here prevents another thread from calling
2466 * rt_setgate() on this route.
2467 */
2468 RT_UNLOCK(rt);
2469 return rtrequest_locked(RTM_DELETE, rt_key(rt), NULL,
2470 rt_mask(rt), rt->rt_flags, NULL);
2471 }
2472 RT_UNLOCK(rt);
2473 return 0;
2474 }
2475
2476 /*
2477 * This routine is called from rt_setgate() to do the analogous thing for
2478 * adds and changes. There is the added complication in this case of a
2479 * middle insert; i.e., insertion of a new network route between an older
2480 * network route and (cloned) host routes. For this reason, a simple check
2481 * of rt->rt_parent is insufficient; each candidate route must be tested
2482 * against the (mask, value) of the new route (passed as before in vp)
2483 * to see if the new route matches it.
2484 *
2485 * XXX - it may be possible to do fixdelete() for changes and reserve this
2486 * routine just for adds. I'm not sure why I thought it was necessary to do
2487 * changes this way.
2488 */
2489 static int
2490 rt_fixchange(struct radix_node *rn, void *vp)
2491 {
2492 struct rtentry *rt = (struct rtentry *)rn;
2493 struct rtfc_arg *ap = vp;
2494 struct rtentry *rt0 = ap->rt0;
2495 struct radix_node_head *rnh = ap->rnh;
2496 u_char *xk1, *xm1, *xk2, *xmp;
2497 int i, len;
2498
2499 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
2500
2501 RT_LOCK(rt);
2502
2503 if (!rt->rt_parent ||
2504 (rt->rt_flags & (RTF_CLONING | RTF_PRCLONING))) {
2505 RT_UNLOCK(rt);
2506 return 0;
2507 }
2508
2509 if (rt->rt_parent == rt0) {
2510 goto delete_rt;
2511 }
2512
2513 /*
2514 * There probably is a function somewhere which does this...
2515 * if not, there should be.
2516 */
2517 len = imin(rt_key(rt0)->sa_len, rt_key(rt)->sa_len);
2518
2519 xk1 = (u_char *)rt_key(rt0);
2520 xm1 = (u_char *)rt_mask(rt0);
2521 xk2 = (u_char *)rt_key(rt);
2522
2523 /*
2524 * Avoid applying a less specific route; do this only if the parent
2525 * route (rt->rt_parent) is a network route, since otherwise its mask
2526 * will be NULL if it is a cloning host route.
2527 */
2528 if ((xmp = (u_char *)rt_mask(rt->rt_parent)) != NULL) {
2529 int mlen = rt_mask(rt->rt_parent)->sa_len;
2530 if (mlen > rt_mask(rt0)->sa_len) {
2531 RT_UNLOCK(rt);
2532 return 0;
2533 }
2534
2535 for (i = rnh->rnh_treetop->rn_offset; i < mlen; i++) {
2536 if ((xmp[i] & ~(xmp[i] ^ xm1[i])) != xmp[i]) {
2537 RT_UNLOCK(rt);
2538 return 0;
2539 }
2540 }
2541 }
2542
2543 for (i = rnh->rnh_treetop->rn_offset; i < len; i++) {
2544 if ((xk2[i] & xm1[i]) != xk1[i]) {
2545 RT_UNLOCK(rt);
2546 return 0;
2547 }
2548 }
2549
2550 /*
2551 * OK, this node is a clone, and matches the node currently being
2552 * changed/added under the node's mask. So, get rid of it.
2553 */
2554 delete_rt:
2555 /*
2556 * Safe to drop rt_lock and use rt_key, since holding rnh_lock here
2557 * prevents another thread from calling rt_setgate() on this route.
2558 */
2559 RT_UNLOCK(rt);
2560 return rtrequest_locked(RTM_DELETE, rt_key(rt), NULL,
2561 rt_mask(rt), rt->rt_flags, NULL);
2562 }
2563
2564 /*
2565 * Round up sockaddr len to multiples of 32-bytes. This will reduce
2566 * or even eliminate the need to re-allocate the chunk of memory used
2567 * for rt_key and rt_gateway in the event the gateway portion changes.
2568 * Certain code paths (e.g. IPsec) are notorious for caching the address
2569 * of rt_gateway; this rounding-up would help ensure that the gateway
2570 * portion never gets deallocated (though it may change contents) and
2571 * thus greatly simplifies things.
2572 */
2573 #define SA_SIZE(x) (-(-((uintptr_t)(x)) & -(32)))
2574
2575 /*
2576 * Sets the gateway and/or gateway route portion of a route; may be
2577 * called on an existing route to modify the gateway portion. Both
2578 * rt_key and rt_gateway are allocated out of the same memory chunk.
2579 * Route entry lock must be held by caller; this routine will return
2580 * with the lock held.
2581 */
2582 int
2583 rt_setgate(struct rtentry *rt, struct sockaddr *dst, struct sockaddr *gate)
2584 {
2585 int dlen = SA_SIZE(dst->sa_len), glen = SA_SIZE(gate->sa_len);
2586 struct radix_node_head *rnh = NULL;
2587 boolean_t loop = FALSE;
2588
2589 if (dst->sa_family != AF_INET && dst->sa_family != AF_INET6) {
2590 return EINVAL;
2591 }
2592
2593 rnh = rt_tables[dst->sa_family];
2594 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
2595 RT_LOCK_ASSERT_HELD(rt);
2596
2597 /*
2598 * If this is for a route that is on its way of being removed,
2599 * or is temporarily frozen, reject the modification request.
2600 */
2601 if (rt->rt_flags & RTF_CONDEMNED) {
2602 return EBUSY;
2603 }
2604
2605 /* Add an extra ref for ourselves */
2606 RT_ADDREF_LOCKED(rt);
2607
2608 if (rt->rt_flags & RTF_GATEWAY) {
2609 if ((dst->sa_len == gate->sa_len) &&
2610 (dst->sa_family == AF_INET || dst->sa_family == AF_INET6)) {
2611 struct sockaddr_storage dst_ss, gate_ss;
2612
2613 (void) sa_copy(dst, &dst_ss, NULL);
2614 (void) sa_copy(gate, &gate_ss, NULL);
2615
2616 loop = equal(SA(&dst_ss), SA(&gate_ss));
2617 } else {
2618 loop = (dst->sa_len == gate->sa_len &&
2619 equal(dst, gate));
2620 }
2621 }
2622
2623 /*
2624 * A (cloning) network route with the destination equal to the gateway
2625 * will create an endless loop (see notes below), so disallow it.
2626 */
2627 if (((rt->rt_flags & (RTF_HOST | RTF_GATEWAY | RTF_LLINFO)) ==
2628 RTF_GATEWAY) && loop) {
2629 /* Release extra ref */
2630 RT_REMREF_LOCKED(rt);
2631 return EADDRNOTAVAIL;
2632 }
2633
2634 /*
2635 * A host route with the destination equal to the gateway
2636 * will interfere with keeping LLINFO in the routing
2637 * table, so disallow it.
2638 */
2639 if (((rt->rt_flags & (RTF_HOST | RTF_GATEWAY | RTF_LLINFO)) ==
2640 (RTF_HOST | RTF_GATEWAY)) && loop) {
2641 /*
2642 * The route might already exist if this is an RTM_CHANGE
2643 * or a routing redirect, so try to delete it.
2644 */
2645 if (rt_key(rt) != NULL) {
2646 /*
2647 * Safe to drop rt_lock and use rt_key, rt_gateway,
2648 * since holding rnh_lock here prevents another thread
2649 * from calling rt_setgate() on this route.
2650 */
2651 RT_UNLOCK(rt);
2652 (void) rtrequest_locked(RTM_DELETE, rt_key(rt),
2653 rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL);
2654 RT_LOCK(rt);
2655 }
2656 /* Release extra ref */
2657 RT_REMREF_LOCKED(rt);
2658 return EADDRNOTAVAIL;
2659 }
2660
2661 /*
2662 * The destination is not directly reachable. Get a route
2663 * to the next-hop gateway and store it in rt_gwroute.
2664 */
2665 if (rt->rt_flags & RTF_GATEWAY) {
2666 struct rtentry *gwrt;
2667 unsigned int ifscope;
2668
2669 if (dst->sa_family == AF_INET) {
2670 ifscope = sin_get_ifscope(dst);
2671 } else if (dst->sa_family == AF_INET6) {
2672 ifscope = sin6_get_ifscope(dst);
2673 } else {
2674 ifscope = IFSCOPE_NONE;
2675 }
2676
2677 RT_UNLOCK(rt);
2678 /*
2679 * Don't ignore RTF_CLONING, since we prefer that rt_gwroute
2680 * points to a clone rather than a cloning route; see above
2681 * check for cloning loop avoidance (dst == gate).
2682 */
2683 gwrt = rtalloc1_scoped_locked(gate, 1, RTF_PRCLONING, ifscope);
2684 if (gwrt != NULL) {
2685 RT_LOCK_ASSERT_NOTHELD(gwrt);
2686 }
2687 RT_LOCK(rt);
2688
2689 /*
2690 * Cloning loop avoidance:
2691 *
2692 * In the presence of protocol-cloning and bad configuration,
2693 * it is possible to get stuck in bottomless mutual recursion
2694 * (rtrequest rt_setgate rtalloc1). We avoid this by not
2695 * allowing protocol-cloning to operate for gateways (which
2696 * is probably the correct choice anyway), and avoid the
2697 * resulting reference loops by disallowing any route to run
2698 * through itself as a gateway. This is obviously mandatory
2699 * when we get rt->rt_output(). It implies that a route to
2700 * the gateway must already be present in the system in order
2701 * for the gateway to be referred to by another route.
2702 */
2703 if (gwrt == rt) {
2704 RT_REMREF_LOCKED(gwrt);
2705 /* Release extra ref */
2706 RT_REMREF_LOCKED(rt);
2707 return EADDRINUSE; /* failure */
2708 }
2709
2710 /*
2711 * If scoped, the gateway route must use the same interface;
2712 * we're holding rnh_lock now, so rt_gateway and rt_ifp of gwrt
2713 * should not change and are freely accessible.
2714 */
2715 if (ifscope != IFSCOPE_NONE && (rt->rt_flags & RTF_IFSCOPE) &&
2716 gwrt != NULL && gwrt->rt_ifp != NULL &&
2717 gwrt->rt_ifp->if_index != ifscope) {
2718 rtfree_locked(gwrt); /* rt != gwrt, no deadlock */
2719 /* Release extra ref */
2720 RT_REMREF_LOCKED(rt);
2721 return (rt->rt_flags & RTF_HOST) ?
2722 EHOSTUNREACH : ENETUNREACH;
2723 }
2724
2725 /* Check again since we dropped the lock above */
2726 if (rt->rt_flags & RTF_CONDEMNED) {
2727 if (gwrt != NULL) {
2728 rtfree_locked(gwrt);
2729 }
2730 /* Release extra ref */
2731 RT_REMREF_LOCKED(rt);
2732 return EBUSY;
2733 }
2734
2735 /* Set gateway route; callee adds ref to gwrt if non-NULL */
2736 rt_set_gwroute(rt, dst, gwrt);
2737
2738 /*
2739 * In case the (non-scoped) default route gets modified via
2740 * an ICMP redirect, record the interface index used for the
2741 * primary ifscope. Also done in rt_setif() to take care
2742 * of the non-redirect cases.
2743 */
2744 if (rt_primary_default(rt, dst) && rt->rt_ifp != NULL) {
2745 set_primary_ifscope(dst->sa_family,
2746 rt->rt_ifp->if_index);
2747 }
2748
2749 #if NECP
2750 /*
2751 * If this is a change in a default route, update
2752 * necp client watchers to re-evaluate
2753 */
2754 if (SA_DEFAULT(dst)) {
2755 necp_update_all_clients();
2756 }
2757 #endif /* NECP */
2758
2759 /*
2760 * Tell the kernel debugger about the new default gateway
2761 * if the gateway route uses the primary interface, or
2762 * if we are in a transient state before the non-scoped
2763 * default gateway is installed (similar to how the system
2764 * was behaving in the past). In future, it would be good
2765 * to do all this only when KDP is enabled.
2766 */
2767 if ((dst->sa_family == AF_INET) &&
2768 gwrt != NULL && gwrt->rt_gateway->sa_family == AF_LINK &&
2769 (gwrt->rt_ifp->if_index == get_primary_ifscope(AF_INET) ||
2770 get_primary_ifscope(AF_INET) == IFSCOPE_NONE)) {
2771 kdp_set_gateway_mac(SDL((void *)gwrt->rt_gateway)->
2772 sdl_data);
2773 }
2774
2775 /* Release extra ref from rtalloc1() */
2776 if (gwrt != NULL) {
2777 RT_REMREF(gwrt);
2778 }
2779 }
2780
2781 /*
2782 * Prepare to store the gateway in rt_gateway. Both dst and gateway
2783 * are stored one after the other in the same malloc'd chunk. If we
2784 * have room, reuse the old buffer since rt_gateway already points
2785 * to the right place. Otherwise, malloc a new block and update
2786 * the 'dst' address and point rt_gateway to the right place.
2787 */
2788 if (rt->rt_gateway == NULL || glen > SA_SIZE(rt->rt_gateway->sa_len)) {
2789 caddr_t new;
2790
2791 /* The underlying allocation is done with M_WAITOK set */
2792 R_Malloc(new, caddr_t, dlen + glen);
2793 if (new == NULL) {
2794 /* Clear gateway route */
2795 rt_set_gwroute(rt, dst, NULL);
2796 /* Release extra ref */
2797 RT_REMREF_LOCKED(rt);
2798 return ENOBUFS;
2799 }
2800
2801 /*
2802 * Copy from 'dst' and not rt_key(rt) because we can get
2803 * here to initialize a newly allocated route entry, in
2804 * which case rt_key(rt) is NULL (and so does rt_gateway).
2805 */
2806 bzero(new, dlen + glen);
2807 Bcopy(dst, new, dst->sa_len);
2808 R_Free(rt_key(rt)); /* free old block; NULL is okay */
2809 rt->rt_nodes->rn_key = new;
2810 rt->rt_gateway = (struct sockaddr *)(new + dlen);
2811 }
2812
2813 /*
2814 * Copy the new gateway value into the memory chunk.
2815 */
2816 Bcopy(gate, rt->rt_gateway, gate->sa_len);
2817
2818 /*
2819 * For consistency between rt_gateway and rt_key(gwrt).
2820 */
2821 if ((rt->rt_flags & RTF_GATEWAY) && rt->rt_gwroute != NULL &&
2822 (rt->rt_gwroute->rt_flags & RTF_IFSCOPE)) {
2823 if (rt->rt_gateway->sa_family == AF_INET &&
2824 rt_key(rt->rt_gwroute)->sa_family == AF_INET) {
2825 sin_set_ifscope(rt->rt_gateway,
2826 sin_get_ifscope(rt_key(rt->rt_gwroute)));
2827 } else if (rt->rt_gateway->sa_family == AF_INET6 &&
2828 rt_key(rt->rt_gwroute)->sa_family == AF_INET6) {
2829 sin6_set_ifscope(rt->rt_gateway,
2830 sin6_get_ifscope(rt_key(rt->rt_gwroute)));
2831 }
2832 }
2833
2834 /*
2835 * This isn't going to do anything useful for host routes, so
2836 * don't bother. Also make sure we have a reasonable mask
2837 * (we don't yet have one during adds).
2838 */
2839 if (!(rt->rt_flags & RTF_HOST) && rt_mask(rt) != 0) {
2840 struct rtfc_arg arg;
2841 arg.rnh = rnh;
2842 arg.rt0 = rt;
2843 RT_UNLOCK(rt);
2844 rnh->rnh_walktree_from(rnh, rt_key(rt), rt_mask(rt),
2845 rt_fixchange, &arg);
2846 RT_LOCK(rt);
2847 }
2848
2849 /* Release extra ref */
2850 RT_REMREF_LOCKED(rt);
2851 return 0;
2852 }
2853
2854 #undef SA_SIZE
2855
2856 void
2857 rt_set_gwroute(struct rtentry *rt, struct sockaddr *dst, struct rtentry *gwrt)
2858 {
2859 boolean_t gwrt_isrouter;
2860
2861 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
2862 RT_LOCK_ASSERT_HELD(rt);
2863
2864 if (gwrt != NULL) {
2865 RT_ADDREF(gwrt); /* for this routine */
2866 }
2867 /*
2868 * Get rid of existing gateway route; if rt_gwroute is already
2869 * set to gwrt, this is slightly redundant (though safe since
2870 * we held an extra ref above) but makes the code simpler.
2871 */
2872 if (rt->rt_gwroute != NULL) {
2873 struct rtentry *ogwrt = rt->rt_gwroute;
2874
2875 VERIFY(rt != ogwrt); /* sanity check */
2876 rt->rt_gwroute = NULL;
2877 RT_UNLOCK(rt);
2878 rtfree_locked(ogwrt);
2879 RT_LOCK(rt);
2880 VERIFY(rt->rt_gwroute == NULL);
2881 }
2882
2883 /*
2884 * And associate the new gateway route.
2885 */
2886 if ((rt->rt_gwroute = gwrt) != NULL) {
2887 RT_ADDREF(gwrt); /* for rt */
2888
2889 if (rt->rt_flags & RTF_WASCLONED) {
2890 /* rt_parent might be NULL if rt is embryonic */
2891 gwrt_isrouter = (rt->rt_parent != NULL &&
2892 SA_DEFAULT(rt_key(rt->rt_parent)) &&
2893 !RT_HOST(rt->rt_parent));
2894 } else {
2895 gwrt_isrouter = (SA_DEFAULT(dst) && !RT_HOST(rt));
2896 }
2897
2898 /* If gwrt points to a default router, mark it accordingly */
2899 if (gwrt_isrouter && RT_HOST(gwrt) &&
2900 !(gwrt->rt_flags & RTF_ROUTER)) {
2901 RT_LOCK(gwrt);
2902 gwrt->rt_flags |= RTF_ROUTER;
2903 RT_UNLOCK(gwrt);
2904 }
2905
2906 RT_REMREF(gwrt); /* for this routine */
2907 }
2908 }
2909
2910 static void
2911 rt_maskedcopy(const struct sockaddr *src, struct sockaddr *dst,
2912 const struct sockaddr *netmask)
2913 {
2914 const char *netmaskp = &netmask->sa_data[0];
2915 const char *srcp = &src->sa_data[0];
2916 char *dstp = &dst->sa_data[0];
2917 const char *maskend = (char *)dst
2918 + MIN(netmask->sa_len, src->sa_len);
2919 const char *srcend = (char *)dst + src->sa_len;
2920
2921 dst->sa_len = src->sa_len;
2922 dst->sa_family = src->sa_family;
2923
2924 while (dstp < maskend) {
2925 *dstp++ = *srcp++ & *netmaskp++;
2926 }
2927 if (dstp < srcend) {
2928 memset(dstp, 0, (size_t)(srcend - dstp));
2929 }
2930 }
2931
2932 /*
2933 * Lookup an AF_INET/AF_INET6 scoped or non-scoped route depending on the
2934 * ifscope value passed in by the caller (IFSCOPE_NONE implies non-scoped).
2935 */
2936 static struct radix_node *
2937 node_lookup(struct sockaddr *dst, struct sockaddr *netmask,
2938 unsigned int ifscope)
2939 {
2940 struct radix_node_head *rnh;
2941 struct radix_node *rn;
2942 struct sockaddr_storage ss, mask;
2943 int af = dst->sa_family;
2944 struct matchleaf_arg ma = { .ifscope = ifscope };
2945 rn_matchf_t *f = rn_match_ifscope;
2946 void *w = &ma;
2947
2948 if (af != AF_INET && af != AF_INET6) {
2949 return NULL;
2950 }
2951
2952 rnh = rt_tables[af];
2953
2954 /*
2955 * Transform dst into the internal routing table form,
2956 * clearing out the scope ID field if ifscope isn't set.
2957 */
2958 dst = sa_copy(dst, &ss, (ifscope == IFSCOPE_NONE) ? NULL : &ifscope);
2959
2960 /* Transform netmask into the internal routing table form */
2961 if (netmask != NULL) {
2962 netmask = ma_copy(af, netmask, &mask, ifscope);
2963 }
2964
2965 if (ifscope == IFSCOPE_NONE) {
2966 f = w = NULL;
2967 }
2968
2969 rn = rnh->rnh_lookup_args(dst, netmask, rnh, f, w);
2970 if (rn != NULL && (rn->rn_flags & RNF_ROOT)) {
2971 rn = NULL;
2972 }
2973
2974 return rn;
2975 }
2976
2977 /*
2978 * Lookup the AF_INET/AF_INET6 non-scoped default route.
2979 */
2980 static struct radix_node *
2981 node_lookup_default(int af)
2982 {
2983 struct radix_node_head *rnh;
2984
2985 VERIFY(af == AF_INET || af == AF_INET6);
2986 rnh = rt_tables[af];
2987
2988 return af == AF_INET ? rnh->rnh_lookup(&sin_def, NULL, rnh) :
2989 rnh->rnh_lookup(&sin6_def, NULL, rnh);
2990 }
2991
2992 boolean_t
2993 rt_ifa_is_dst(struct sockaddr *dst, struct ifaddr *ifa)
2994 {
2995 boolean_t result = FALSE;
2996
2997 if (ifa == NULL || ifa->ifa_addr == NULL) {
2998 return result;
2999 }
3000
3001 IFA_LOCK_SPIN(ifa);
3002
3003 if (dst->sa_family == ifa->ifa_addr->sa_family &&
3004 ((dst->sa_family == AF_INET &&
3005 SIN(dst)->sin_addr.s_addr ==
3006 SIN(ifa->ifa_addr)->sin_addr.s_addr) ||
3007 (dst->sa_family == AF_INET6 &&
3008 SA6_ARE_ADDR_EQUAL(SIN6(dst), SIN6(ifa->ifa_addr))))) {
3009 result = TRUE;
3010 }
3011
3012 IFA_UNLOCK(ifa);
3013
3014 return result;
3015 }
3016
3017 /*
3018 * Common routine to lookup/match a route. It invokes the lookup/matchaddr
3019 * callback which could be address family-specific. The main difference
3020 * between the two (at least for AF_INET/AF_INET6) is that a lookup does
3021 * not alter the expiring state of a route, whereas a match would unexpire
3022 * or revalidate the route.
3023 *
3024 * The optional scope or interface index property of a route allows for a
3025 * per-interface route instance. This permits multiple route entries having
3026 * the same destination (but not necessarily the same gateway) to exist in
3027 * the routing table; each of these entries is specific to the corresponding
3028 * interface. This is made possible by storing the scope ID value into the
3029 * radix key, thus making each route entry unique. These scoped entries
3030 * exist along with the regular, non-scoped entries in the same radix tree
3031 * for a given address family (AF_INET/AF_INET6); the scope logically
3032 * partitions it into multiple per-interface sub-trees.
3033 *
3034 * When a scoped route lookup is performed, the routing table is searched for
3035 * the best match that would result in a route using the same interface as the
3036 * one associated with the scope (the exception to this are routes that point
3037 * to the loopback interface). The search rule follows the longest matching
3038 * prefix with the additional interface constraint.
3039 */
3040 static struct rtentry *
3041 rt_lookup_common(boolean_t lookup_only, boolean_t coarse, struct sockaddr *dst,
3042 struct sockaddr *netmask, struct radix_node_head *rnh, unsigned int ifscope)
3043 {
3044 struct radix_node *rn0, *rn = NULL;
3045 int af = dst->sa_family;
3046 struct sockaddr_storage dst_ss;
3047 struct sockaddr_storage mask_ss;
3048 boolean_t dontcare;
3049 #if (DEVELOPMENT || DEBUG)
3050 char dbuf[MAX_SCOPE_ADDR_STR_LEN], gbuf[MAX_IPv6_STR_LEN];
3051 char s_dst[MAX_IPv6_STR_LEN], s_netmask[MAX_IPv6_STR_LEN];
3052 #endif
3053 VERIFY(!coarse || ifscope == IFSCOPE_NONE);
3054
3055 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
3056 /*
3057 * While we have rnh_lock held, see if we need to schedule the timer.
3058 */
3059 if (nd6_sched_timeout_want) {
3060 nd6_sched_timeout(NULL, NULL);
3061 }
3062
3063 if (!lookup_only) {
3064 netmask = NULL;
3065 }
3066
3067 /*
3068 * Non-scoped route lookup.
3069 */
3070 if (af != AF_INET && af != AF_INET6) {
3071 rn = rnh->rnh_matchaddr(dst, rnh);
3072
3073 /*
3074 * Don't return a root node; also, rnh_matchaddr callback
3075 * would have done the necessary work to clear RTPRF_OURS
3076 * for certain protocol families.
3077 */
3078 if (rn != NULL && (rn->rn_flags & RNF_ROOT)) {
3079 rn = NULL;
3080 }
3081 if (rn != NULL) {
3082 RT_LOCK_SPIN(RT(rn));
3083 if (!(RT(rn)->rt_flags & RTF_CONDEMNED)) {
3084 RT_ADDREF_LOCKED(RT(rn));
3085 RT_UNLOCK(RT(rn));
3086 } else {
3087 RT_UNLOCK(RT(rn));
3088 rn = NULL;
3089 }
3090 }
3091 return RT(rn);
3092 }
3093
3094 /* Transform dst/netmask into the internal routing table form */
3095 dst = sa_copy(dst, &dst_ss, &ifscope);
3096 if (netmask != NULL) {
3097 netmask = ma_copy(af, netmask, &mask_ss, ifscope);
3098 }
3099 dontcare = (ifscope == IFSCOPE_NONE);
3100
3101 #if (DEVELOPMENT || DEBUG)
3102 if (rt_verbose) {
3103 if (af == AF_INET) {
3104 (void) inet_ntop(af, &SIN(dst)->sin_addr.s_addr,
3105 s_dst, sizeof(s_dst));
3106 } else {
3107 (void) inet_ntop(af, &SIN6(dst)->sin6_addr,
3108 s_dst, sizeof(s_dst));
3109 }
3110
3111 if (netmask != NULL && af == AF_INET) {
3112 (void) inet_ntop(af, &SIN(netmask)->sin_addr.s_addr,
3113 s_netmask, sizeof(s_netmask));
3114 }
3115 if (netmask != NULL && af == AF_INET6) {
3116 (void) inet_ntop(af, &SIN6(netmask)->sin6_addr,
3117 s_netmask, sizeof(s_netmask));
3118 } else {
3119 *s_netmask = '\0';
3120 }
3121 printf("%s (%d, %d, %s, %s, %u)\n",
3122 __func__, lookup_only, coarse, s_dst, s_netmask, ifscope);
3123 }
3124 #endif
3125
3126 /*
3127 * Scoped route lookup:
3128 *
3129 * We first perform a non-scoped lookup for the original result.
3130 * Afterwards, depending on whether or not the caller has specified
3131 * a scope, we perform a more specific scoped search and fallback
3132 * to this original result upon failure.
3133 */
3134 rn0 = rn = node_lookup(dst, netmask, IFSCOPE_NONE);
3135
3136 /*
3137 * If the caller did not specify a scope, use the primary scope
3138 * derived from the system's non-scoped default route. If, for
3139 * any reason, there is no primary interface, ifscope will be
3140 * set to IFSCOPE_NONE; if the above lookup resulted in a route,
3141 * we'll do a more-specific search below, scoped to the interface
3142 * of that route.
3143 */
3144 if (dontcare) {
3145 ifscope = get_primary_ifscope(af);
3146 }
3147
3148 /*
3149 * Keep the original result if either of the following is true:
3150 *
3151 * 1) The interface portion of the route has the same interface
3152 * index as the scope value and it is marked with RTF_IFSCOPE.
3153 * 2) The route uses the loopback interface, in which case the
3154 * destination (host/net) is local/loopback.
3155 *
3156 * Otherwise, do a more specified search using the scope;
3157 * we're holding rnh_lock now, so rt_ifp should not change.
3158 */
3159 if (rn != NULL) {
3160 struct rtentry *rt = RT(rn);
3161 #if (DEVELOPMENT || DEBUG)
3162 if (rt_verbose) {
3163 rt_str(rt, dbuf, sizeof(dbuf), gbuf, sizeof(gbuf));
3164 printf("%s unscoped search %p to %s->%s->%s ifa_ifp %s\n",
3165 __func__, rt,
3166 dbuf, gbuf,
3167 (rt->rt_ifp != NULL) ? rt->rt_ifp->if_xname : "",
3168 (rt->rt_ifa->ifa_ifp != NULL) ?
3169 rt->rt_ifa->ifa_ifp->if_xname : "");
3170 }
3171 #endif
3172 if (!(rt->rt_ifp->if_flags & IFF_LOOPBACK) ||
3173 (rt->rt_flags & RTF_GATEWAY)) {
3174 if (rt->rt_ifp->if_index != ifscope) {
3175 /*
3176 * Wrong interface; keep the original result
3177 * only if the caller did not specify a scope,
3178 * and do a more specific scoped search using
3179 * the scope of the found route. Otherwise,
3180 * start again from scratch.
3181 *
3182 * For loopback scope we keep the unscoped
3183 * route for local addresses
3184 */
3185 rn = NULL;
3186 if (dontcare) {
3187 ifscope = rt->rt_ifp->if_index;
3188 } else if (ifscope != lo_ifp->if_index ||
3189 rt_ifa_is_dst(dst, rt->rt_ifa) == FALSE) {
3190 rn0 = NULL;
3191 }
3192 } else if (!(rt->rt_flags & RTF_IFSCOPE)) {
3193 /*
3194 * Right interface, except that this route
3195 * isn't marked with RTF_IFSCOPE. Do a more
3196 * specific scoped search. Keep the original
3197 * result and return it it in case the scoped
3198 * search fails.
3199 */
3200 rn = NULL;
3201 }
3202 }
3203 }
3204
3205 /*
3206 * Scoped search. Find the most specific entry having the same
3207 * interface scope as the one requested. The following will result
3208 * in searching for the longest prefix scoped match.
3209 */
3210 if (rn == NULL) {
3211 rn = node_lookup(dst, netmask, ifscope);
3212 #if (DEVELOPMENT || DEBUG)
3213 if (rt_verbose && rn != NULL) {
3214 struct rtentry *rt = RT(rn);
3215
3216 rt_str(rt, dbuf, sizeof(dbuf), gbuf, sizeof(gbuf));
3217 printf("%s scoped search %p to %s->%s->%s ifa %s\n",
3218 __func__, rt,
3219 dbuf, gbuf,
3220 (rt->rt_ifp != NULL) ? rt->rt_ifp->if_xname : "",
3221 (rt->rt_ifa->ifa_ifp != NULL) ?
3222 rt->rt_ifa->ifa_ifp->if_xname : "");
3223 }
3224 #endif
3225 }
3226 /*
3227 * Use the original result if either of the following is true:
3228 *
3229 * 1) The scoped search did not yield any result.
3230 * 2) The caller insists on performing a coarse-grained lookup.
3231 * 3) The result from the scoped search is a scoped default route,
3232 * and the original (non-scoped) result is not a default route,
3233 * i.e. the original result is a more specific host/net route.
3234 * 4) The scoped search yielded a net route but the original
3235 * result is a host route, i.e. the original result is treated
3236 * as a more specific route.
3237 */
3238 if (rn == NULL || coarse || (rn0 != NULL &&
3239 ((SA_DEFAULT(rt_key(RT(rn))) && !SA_DEFAULT(rt_key(RT(rn0)))) ||
3240 (!RT_HOST(rn) && RT_HOST(rn0))))) {
3241 rn = rn0;
3242 }
3243
3244 /*
3245 * If we still don't have a route, use the non-scoped default
3246 * route as long as the interface portion satistifes the scope.
3247 */
3248 if (rn == NULL && (rn = node_lookup_default(af)) != NULL &&
3249 RT(rn)->rt_ifp->if_index != ifscope) {
3250 rn = NULL;
3251 }
3252
3253 if (rn != NULL) {
3254 /*
3255 * Manually clear RTPRF_OURS using rt_validate() and
3256 * bump up the reference count after, and not before;
3257 * we only get here for AF_INET/AF_INET6. node_lookup()
3258 * has done the check against RNF_ROOT, so we can be sure
3259 * that we're not returning a root node here.
3260 */
3261 RT_LOCK_SPIN(RT(rn));
3262 if (rt_validate(RT(rn))) {
3263 RT_ADDREF_LOCKED(RT(rn));
3264 RT_UNLOCK(RT(rn));
3265 } else {
3266 RT_UNLOCK(RT(rn));
3267 rn = NULL;
3268 }
3269 }
3270 #if (DEVELOPMENT || DEBUG)
3271 if (rt_verbose) {
3272 if (rn == NULL) {
3273 printf("%s %u return NULL\n", __func__, ifscope);
3274 } else {
3275 struct rtentry *rt = RT(rn);
3276
3277 rt_str(rt, dbuf, sizeof(dbuf), gbuf, sizeof(gbuf));
3278
3279 printf("%s %u return %p to %s->%s->%s ifa_ifp %s\n",
3280 __func__, ifscope, rt,
3281 dbuf, gbuf,
3282 (rt->rt_ifp != NULL) ? rt->rt_ifp->if_xname : "",
3283 (rt->rt_ifa->ifa_ifp != NULL) ?
3284 rt->rt_ifa->ifa_ifp->if_xname : "");
3285 }
3286 }
3287 #endif
3288 return RT(rn);
3289 }
3290
3291 struct rtentry *
3292 rt_lookup(boolean_t lookup_only, struct sockaddr *dst, struct sockaddr *netmask,
3293 struct radix_node_head *rnh, unsigned int ifscope)
3294 {
3295 return rt_lookup_common(lookup_only, FALSE, dst, netmask,
3296 rnh, ifscope);
3297 }
3298
3299 struct rtentry *
3300 rt_lookup_coarse(boolean_t lookup_only, struct sockaddr *dst,
3301 struct sockaddr *netmask, struct radix_node_head *rnh)
3302 {
3303 return rt_lookup_common(lookup_only, TRUE, dst, netmask,
3304 rnh, IFSCOPE_NONE);
3305 }
3306
3307 boolean_t
3308 rt_validate(struct rtentry *rt)
3309 {
3310 RT_LOCK_ASSERT_HELD(rt);
3311
3312 if ((rt->rt_flags & (RTF_UP | RTF_CONDEMNED)) == RTF_UP) {
3313 int af = rt_key(rt)->sa_family;
3314
3315 if (af == AF_INET) {
3316 (void) in_validate(RN(rt));
3317 } else if (af == AF_INET6) {
3318 (void) in6_validate(RN(rt));
3319 }
3320 } else {
3321 rt = NULL;
3322 }
3323
3324 return rt != NULL;
3325 }
3326
3327 /*
3328 * Set up a routing table entry, normally
3329 * for an interface.
3330 */
3331 int
3332 rtinit(struct ifaddr *ifa, int cmd, int flags)
3333 {
3334 int error;
3335
3336 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
3337
3338 lck_mtx_lock(rnh_lock);
3339 error = rtinit_locked(ifa, cmd, flags);
3340 lck_mtx_unlock(rnh_lock);
3341
3342 return error;
3343 }
3344
3345 int
3346 rtinit_locked(struct ifaddr *ifa, int cmd, int flags)
3347 {
3348 struct radix_node_head *rnh;
3349 uint8_t nbuf[128]; /* long enough for IPv6 */
3350 #if (DEVELOPMENT || DEBUG)
3351 char dbuf[MAX_IPv6_STR_LEN], gbuf[MAX_IPv6_STR_LEN];
3352 char abuf[MAX_IPv6_STR_LEN];
3353 #endif
3354 struct rtentry *rt = NULL;
3355 struct sockaddr *dst;
3356 struct sockaddr *netmask;
3357 int error = 0;
3358
3359 /*
3360 * Holding rnh_lock here prevents the possibility of ifa from
3361 * changing (e.g. in_ifinit), so it is safe to access its
3362 * ifa_{dst}addr (here and down below) without locking.
3363 */
3364 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
3365
3366 if (flags & RTF_HOST) {
3367 dst = ifa->ifa_dstaddr;
3368 netmask = NULL;
3369 } else {
3370 dst = ifa->ifa_addr;
3371 netmask = ifa->ifa_netmask;
3372 }
3373
3374 if (dst->sa_len == 0) {
3375 log(LOG_ERR, "%s: %s failed, invalid dst sa_len %d\n",
3376 __func__, rtm2str(cmd), dst->sa_len);
3377 error = EINVAL;
3378 goto done;
3379 }
3380 if (netmask != NULL && netmask->sa_len > sizeof(nbuf)) {
3381 log(LOG_ERR, "%s: %s failed, mask sa_len %d too large\n",
3382 __func__, rtm2str(cmd), dst->sa_len);
3383 error = EINVAL;
3384 goto done;
3385 }
3386
3387 #if (DEVELOPMENT || DEBUG)
3388 if (dst->sa_family == AF_INET) {
3389 (void) inet_ntop(AF_INET, &SIN(dst)->sin_addr.s_addr,
3390 abuf, sizeof(abuf));
3391 } else if (dst->sa_family == AF_INET6) {
3392 (void) inet_ntop(AF_INET6, &SIN6(dst)->sin6_addr,
3393 abuf, sizeof(abuf));
3394 }
3395 #endif /* (DEVELOPMENT || DEBUG) */
3396
3397 if ((rnh = rt_tables[dst->sa_family]) == NULL) {
3398 error = EINVAL;
3399 goto done;
3400 }
3401
3402 /*
3403 * If it's a delete, check that if it exists, it's on the correct
3404 * interface or we might scrub a route to another ifa which would
3405 * be confusing at best and possibly worse.
3406 */
3407 if (cmd == RTM_DELETE) {
3408 /*
3409 * It's a delete, so it should already exist..
3410 * If it's a net, mask off the host bits
3411 * (Assuming we have a mask)
3412 */
3413 if (netmask != NULL) {
3414 rt_maskedcopy(dst, SA(nbuf), netmask);
3415 dst = SA(nbuf);
3416 }
3417 /*
3418 * Get an rtentry that is in the routing tree and contains
3419 * the correct info. Note that we perform a coarse-grained
3420 * lookup here, in case there is a scoped variant of the
3421 * subnet/prefix route which we should ignore, as we never
3422 * add a scoped subnet/prefix route as part of adding an
3423 * interface address.
3424 */
3425 rt = rt_lookup_coarse(TRUE, dst, NULL, rnh);
3426 if (rt != NULL) {
3427 #if (DEVELOPMENT || DEBUG)
3428 rt_str(rt, dbuf, sizeof(dbuf), gbuf, sizeof(gbuf));
3429 #endif
3430 /*
3431 * Ok so we found the rtentry. it has an extra reference
3432 * for us at this stage. we won't need that so
3433 * lop that off now.
3434 */
3435 RT_LOCK(rt);
3436 if (rt->rt_ifa != ifa) {
3437 /*
3438 * If the interface address in the rtentry
3439 * doesn't match the interface we are using,
3440 * then we don't want to delete it, so return
3441 * an error. This seems to be the only point
3442 * of this whole RTM_DELETE clause.
3443 */
3444 #if (DEVELOPMENT || DEBUG)
3445 if (rt_verbose) {
3446 log(LOG_DEBUG, "%s: not removing "
3447 "route to %s->%s->%s, flags %b, "
3448 "ifaddr %s, rt_ifa 0x%llx != "
3449 "ifa 0x%llx\n", __func__, dbuf,
3450 gbuf, ((rt->rt_ifp != NULL) ?
3451 rt->rt_ifp->if_xname : ""),
3452 rt->rt_flags, RTF_BITS, abuf,
3453 (uint64_t)VM_KERNEL_ADDRPERM(
3454 rt->rt_ifa),
3455 (uint64_t)VM_KERNEL_ADDRPERM(ifa));
3456 }
3457 #endif /* (DEVELOPMENT || DEBUG) */
3458 RT_REMREF_LOCKED(rt);
3459 RT_UNLOCK(rt);
3460 rt = NULL;
3461 error = ((flags & RTF_HOST) ?
3462 EHOSTUNREACH : ENETUNREACH);
3463 goto done;
3464 } else if (rt->rt_flags & RTF_STATIC) {
3465 /*
3466 * Don't remove the subnet/prefix route if
3467 * this was manually added from above.
3468 */
3469 #if (DEVELOPMENT || DEBUG)
3470 if (rt_verbose) {
3471 log(LOG_DEBUG, "%s: not removing "
3472 "static route to %s->%s->%s, "
3473 "flags %b, ifaddr %s\n", __func__,
3474 dbuf, gbuf, ((rt->rt_ifp != NULL) ?
3475 rt->rt_ifp->if_xname : ""),
3476 rt->rt_flags, RTF_BITS, abuf);
3477 }
3478 #endif /* (DEVELOPMENT || DEBUG) */
3479 RT_REMREF_LOCKED(rt);
3480 RT_UNLOCK(rt);
3481 rt = NULL;
3482 error = EBUSY;
3483 goto done;
3484 }
3485 #if (DEVELOPMENT || DEBUG)
3486 if (rt_verbose) {
3487 log(LOG_DEBUG, "%s: removing route to "
3488 "%s->%s->%s, flags %b, ifaddr %s\n",
3489 __func__, dbuf, gbuf,
3490 ((rt->rt_ifp != NULL) ?
3491 rt->rt_ifp->if_xname : ""),
3492 rt->rt_flags, RTF_BITS, abuf);
3493 }
3494 #endif /* (DEVELOPMENT || DEBUG) */
3495 RT_REMREF_LOCKED(rt);
3496 RT_UNLOCK(rt);
3497 rt = NULL;
3498 }
3499 }
3500 /*
3501 * Do the actual request
3502 */
3503 if ((error = rtrequest_locked(cmd, dst, ifa->ifa_addr, netmask,
3504 flags | ifa->ifa_flags, &rt)) != 0) {
3505 goto done;
3506 }
3507
3508 VERIFY(rt != NULL);
3509 #if (DEVELOPMENT || DEBUG)
3510 rt_str(rt, dbuf, sizeof(dbuf), gbuf, sizeof(gbuf));
3511 #endif /* (DEVELOPMENT || DEBUG) */
3512 switch (cmd) {
3513 case RTM_DELETE:
3514 /*
3515 * If we are deleting, and we found an entry, then it's
3516 * been removed from the tree. Notify any listening
3517 * routing agents of the change and throw it away.
3518 */
3519 RT_LOCK(rt);
3520 rt_newaddrmsg(cmd, ifa, error, rt);
3521 RT_UNLOCK(rt);
3522 #if (DEVELOPMENT || DEBUG)
3523 if (rt_verbose) {
3524 log(LOG_DEBUG, "%s: removed route to %s->%s->%s, "
3525 "flags %b, ifaddr %s\n", __func__, dbuf, gbuf,
3526 ((rt->rt_ifp != NULL) ? rt->rt_ifp->if_xname : ""),
3527 rt->rt_flags, RTF_BITS, abuf);
3528 }
3529 #endif /* (DEVELOPMENT || DEBUG) */
3530 rtfree_locked(rt);
3531 break;
3532
3533 case RTM_ADD:
3534 /*
3535 * We are adding, and we have a returned routing entry.
3536 * We need to sanity check the result. If it came back
3537 * with an unexpected interface, then it must have already
3538 * existed or something.
3539 */
3540 RT_LOCK(rt);
3541 if (rt->rt_ifa != ifa) {
3542 void (*ifa_rtrequest)
3543 (int, struct rtentry *, struct sockaddr *);
3544 #if (DEVELOPMENT || DEBUG)
3545 if (rt_verbose) {
3546 if (!(rt->rt_ifa->ifa_ifp->if_flags &
3547 (IFF_POINTOPOINT | IFF_LOOPBACK))) {
3548 log(LOG_ERR, "%s: %s route to %s->%s->%s, "
3549 "flags %b, ifaddr %s, rt_ifa 0x%llx != "
3550 "ifa 0x%llx\n", __func__, rtm2str(cmd),
3551 dbuf, gbuf, ((rt->rt_ifp != NULL) ?
3552 rt->rt_ifp->if_xname : ""), rt->rt_flags,
3553 RTF_BITS, abuf,
3554 (uint64_t)VM_KERNEL_ADDRPERM(rt->rt_ifa),
3555 (uint64_t)VM_KERNEL_ADDRPERM(ifa));
3556 }
3557
3558 log(LOG_DEBUG, "%s: %s route to %s->%s->%s, "
3559 "flags %b, ifaddr %s, rt_ifa was 0x%llx "
3560 "now 0x%llx\n", __func__, rtm2str(cmd),
3561 dbuf, gbuf, ((rt->rt_ifp != NULL) ?
3562 rt->rt_ifp->if_xname : ""), rt->rt_flags,
3563 RTF_BITS, abuf,
3564 (uint64_t)VM_KERNEL_ADDRPERM(rt->rt_ifa),
3565 (uint64_t)VM_KERNEL_ADDRPERM(ifa));
3566 }
3567 #endif /* (DEVELOPMENT || DEBUG) */
3568
3569 /*
3570 * Ask that the protocol in question
3571 * remove anything it has associated with
3572 * this route and ifaddr.
3573 */
3574 ifa_rtrequest = rt->rt_ifa->ifa_rtrequest;
3575 if (ifa_rtrequest != NULL) {
3576 ifa_rtrequest(RTM_DELETE, rt, NULL);
3577 }
3578 /*
3579 * Set the route's ifa.
3580 */
3581 rtsetifa(rt, ifa);
3582
3583 if (rt->rt_ifp != ifa->ifa_ifp) {
3584 /*
3585 * Purge any link-layer info caching.
3586 */
3587 if (rt->rt_llinfo_purge != NULL) {
3588 rt->rt_llinfo_purge(rt);
3589 }
3590 /*
3591 * Adjust route ref count for the interfaces.
3592 */
3593 if (rt->rt_if_ref_fn != NULL) {
3594 rt->rt_if_ref_fn(ifa->ifa_ifp, 1);
3595 rt->rt_if_ref_fn(rt->rt_ifp, -1);
3596 }
3597 }
3598
3599 /*
3600 * And substitute in references to the ifaddr
3601 * we are adding.
3602 */
3603 rt->rt_ifp = ifa->ifa_ifp;
3604 /*
3605 * If rmx_mtu is not locked, update it
3606 * to the MTU used by the new interface.
3607 */
3608 if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) {
3609 rt->rt_rmx.rmx_mtu = rt->rt_ifp->if_mtu;
3610 if (dst->sa_family == AF_INET &&
3611 INTF_ADJUST_MTU_FOR_CLAT46(rt->rt_ifp)) {
3612 rt->rt_rmx.rmx_mtu = IN6_LINKMTU(rt->rt_ifp);
3613 /* Further adjust the size for CLAT46 expansion */
3614 rt->rt_rmx.rmx_mtu -= CLAT46_HDR_EXPANSION_OVERHD;
3615 }
3616 }
3617
3618 /*
3619 * Now ask the protocol to check if it needs
3620 * any special processing in its new form.
3621 */
3622 ifa_rtrequest = ifa->ifa_rtrequest;
3623 if (ifa_rtrequest != NULL) {
3624 ifa_rtrequest(RTM_ADD, rt, NULL);
3625 }
3626 } else {
3627 #if (DEVELOPMENT || DEBUG)
3628 if (rt_verbose) {
3629 log(LOG_DEBUG, "%s: added route to %s->%s->%s, "
3630 "flags %b, ifaddr %s\n", __func__, dbuf,
3631 gbuf, ((rt->rt_ifp != NULL) ?
3632 rt->rt_ifp->if_xname : ""), rt->rt_flags,
3633 RTF_BITS, abuf);
3634 }
3635 #endif /* (DEVELOPMENT || DEBUG) */
3636 }
3637 /*
3638 * notify any listenning routing agents of the change
3639 */
3640 rt_newaddrmsg(cmd, ifa, error, rt);
3641 /*
3642 * We just wanted to add it; we don't actually need a
3643 * reference. This will result in a route that's added
3644 * to the routing table without a reference count. The
3645 * RTM_DELETE code will do the necessary step to adjust
3646 * the reference count at deletion time.
3647 */
3648 RT_REMREF_LOCKED(rt);
3649 RT_UNLOCK(rt);
3650 break;
3651
3652 default:
3653 VERIFY(0);
3654 /* NOTREACHED */
3655 }
3656 done:
3657 return error;
3658 }
3659
3660 static void
3661 rt_set_idleref(struct rtentry *rt)
3662 {
3663 RT_LOCK_ASSERT_HELD(rt);
3664
3665 /*
3666 * We currently keep idle refcnt only on unicast cloned routes
3667 * that aren't marked with RTF_NOIFREF.
3668 */
3669 if (rt->rt_parent != NULL && !(rt->rt_flags &
3670 (RTF_NOIFREF | RTF_BROADCAST | RTF_MULTICAST)) &&
3671 (rt->rt_flags & (RTF_UP | RTF_WASCLONED | RTF_IFREF)) ==
3672 (RTF_UP | RTF_WASCLONED)) {
3673 rt_clear_idleref(rt); /* drop existing refcnt if any */
3674 rt->rt_if_ref_fn = rte_if_ref;
3675 /* Become a regular mutex, just in case */
3676 RT_CONVERT_LOCK(rt);
3677 rt->rt_if_ref_fn(rt->rt_ifp, 1);
3678 rt->rt_flags |= RTF_IFREF;
3679 }
3680 }
3681
3682 void
3683 rt_clear_idleref(struct rtentry *rt)
3684 {
3685 RT_LOCK_ASSERT_HELD(rt);
3686
3687 if (rt->rt_if_ref_fn != NULL) {
3688 VERIFY((rt->rt_flags & (RTF_NOIFREF | RTF_IFREF)) == RTF_IFREF);
3689 /* Become a regular mutex, just in case */
3690 RT_CONVERT_LOCK(rt);
3691 rt->rt_if_ref_fn(rt->rt_ifp, -1);
3692 rt->rt_flags &= ~RTF_IFREF;
3693 rt->rt_if_ref_fn = NULL;
3694 }
3695 }
3696
3697 void
3698 rt_set_proxy(struct rtentry *rt, boolean_t set)
3699 {
3700 lck_mtx_lock(rnh_lock);
3701 RT_LOCK(rt);
3702 /*
3703 * Search for any cloned routes which might have
3704 * been formed from this node, and delete them.
3705 */
3706 if (rt->rt_flags & (RTF_CLONING | RTF_PRCLONING)) {
3707 struct radix_node_head *rnh = rt_tables[rt_key(rt)->sa_family];
3708
3709 if (set) {
3710 rt->rt_flags |= RTF_PROXY;
3711 } else {
3712 rt->rt_flags &= ~RTF_PROXY;
3713 }
3714
3715 RT_UNLOCK(rt);
3716 if (rnh != NULL && rt_mask(rt)) {
3717 rnh->rnh_walktree_from(rnh, rt_key(rt), rt_mask(rt),
3718 rt_fixdelete, rt);
3719 }
3720 } else {
3721 RT_UNLOCK(rt);
3722 }
3723 lck_mtx_unlock(rnh_lock);
3724 }
3725
3726 static void
3727 rte_lock_init(struct rtentry *rt)
3728 {
3729 lck_mtx_init(&rt->rt_lock, rte_mtx_grp, rte_mtx_attr);
3730 }
3731
3732 static void
3733 rte_lock_destroy(struct rtentry *rt)
3734 {
3735 RT_LOCK_ASSERT_NOTHELD(rt);
3736 lck_mtx_destroy(&rt->rt_lock, rte_mtx_grp);
3737 }
3738
3739 void
3740 rt_lock(struct rtentry *rt, boolean_t spin)
3741 {
3742 RT_LOCK_ASSERT_NOTHELD(rt);
3743 if (spin) {
3744 lck_mtx_lock_spin(&rt->rt_lock);
3745 } else {
3746 lck_mtx_lock(&rt->rt_lock);
3747 }
3748 if (rte_debug & RTD_DEBUG) {
3749 rte_lock_debug((struct rtentry_dbg *)rt);
3750 }
3751 }
3752
3753 void
3754 rt_unlock(struct rtentry *rt)
3755 {
3756 if (rte_debug & RTD_DEBUG) {
3757 rte_unlock_debug((struct rtentry_dbg *)rt);
3758 }
3759 lck_mtx_unlock(&rt->rt_lock);
3760 }
3761
3762 static inline void
3763 rte_lock_debug(struct rtentry_dbg *rte)
3764 {
3765 uint32_t idx;
3766
3767 RT_LOCK_ASSERT_HELD((struct rtentry *)rte);
3768 idx = atomic_add_32_ov(&rte->rtd_lock_cnt, 1) % CTRACE_HIST_SIZE;
3769 if (rte_debug & RTD_TRACE) {
3770 ctrace_record(&rte->rtd_lock[idx]);
3771 }
3772 }
3773
3774 static inline void
3775 rte_unlock_debug(struct rtentry_dbg *rte)
3776 {
3777 uint32_t idx;
3778
3779 RT_LOCK_ASSERT_HELD((struct rtentry *)rte);
3780 idx = atomic_add_32_ov(&rte->rtd_unlock_cnt, 1) % CTRACE_HIST_SIZE;
3781 if (rte_debug & RTD_TRACE) {
3782 ctrace_record(&rte->rtd_unlock[idx]);
3783 }
3784 }
3785
3786 static struct rtentry *
3787 rte_alloc(void)
3788 {
3789 if (rte_debug & RTD_DEBUG) {
3790 return rte_alloc_debug();
3791 }
3792
3793 return (struct rtentry *)zalloc(rte_zone);
3794 }
3795
3796 static void
3797 rte_free(struct rtentry *p)
3798 {
3799 if (rte_debug & RTD_DEBUG) {
3800 rte_free_debug(p);
3801 return;
3802 }
3803
3804 if (p->rt_refcnt != 0) {
3805 panic("rte_free: rte=%p refcnt=%d non-zero\n", p, p->rt_refcnt);
3806 /* NOTREACHED */
3807 }
3808
3809 zfree(rte_zone, p);
3810 }
3811
3812 static void
3813 rte_if_ref(struct ifnet *ifp, int cnt)
3814 {
3815 struct kev_msg ev_msg;
3816 struct net_event_data ev_data;
3817 uint32_t old;
3818
3819 /* Force cnt to 1 increment/decrement */
3820 if (cnt < -1 || cnt > 1) {
3821 panic("%s: invalid count argument (%d)", __func__, cnt);
3822 /* NOTREACHED */
3823 }
3824 old = atomic_add_32_ov(&ifp->if_route_refcnt, cnt);
3825 if (cnt < 0 && old == 0) {
3826 panic("%s: ifp=%p negative route refcnt!", __func__, ifp);
3827 /* NOTREACHED */
3828 }
3829 /*
3830 * The following is done without first holding the ifnet lock,
3831 * for performance reasons. The relevant ifnet fields, with
3832 * the exception of the if_idle_flags, are never changed
3833 * during the lifetime of the ifnet. The if_idle_flags
3834 * may possibly be modified, so in the event that the value
3835 * is stale because IFRF_IDLE_NOTIFY was cleared, we'd end up
3836 * sending the event anyway. This is harmless as it is just
3837 * a notification to the monitoring agent in user space, and
3838 * it is expected to check via SIOCGIFGETRTREFCNT again anyway.
3839 */
3840 if ((ifp->if_idle_flags & IFRF_IDLE_NOTIFY) && cnt < 0 && old == 1) {
3841 bzero(&ev_msg, sizeof(ev_msg));
3842 bzero(&ev_data, sizeof(ev_data));
3843
3844 ev_msg.vendor_code = KEV_VENDOR_APPLE;
3845 ev_msg.kev_class = KEV_NETWORK_CLASS;
3846 ev_msg.kev_subclass = KEV_DL_SUBCLASS;
3847 ev_msg.event_code = KEV_DL_IF_IDLE_ROUTE_REFCNT;
3848
3849 strlcpy(&ev_data.if_name[0], ifp->if_name, IFNAMSIZ);
3850
3851 ev_data.if_family = ifp->if_family;
3852 ev_data.if_unit = ifp->if_unit;
3853 ev_msg.dv[0].data_length = sizeof(struct net_event_data);
3854 ev_msg.dv[0].data_ptr = &ev_data;
3855
3856 dlil_post_complete_msg(NULL, &ev_msg);
3857 }
3858 }
3859
3860 static inline struct rtentry *
3861 rte_alloc_debug(void)
3862 {
3863 struct rtentry_dbg *rte;
3864
3865 rte = ((struct rtentry_dbg *)zalloc(rte_zone));
3866 if (rte != NULL) {
3867 bzero(rte, sizeof(*rte));
3868 if (rte_debug & RTD_TRACE) {
3869 ctrace_record(&rte->rtd_alloc);
3870 }
3871 rte->rtd_inuse = RTD_INUSE;
3872 }
3873 return (struct rtentry *)rte;
3874 }
3875
3876 static inline void
3877 rte_free_debug(struct rtentry *p)
3878 {
3879 struct rtentry_dbg *rte = (struct rtentry_dbg *)p;
3880
3881 if (p->rt_refcnt != 0) {
3882 panic("rte_free: rte=%p refcnt=%d\n", p, p->rt_refcnt);
3883 /* NOTREACHED */
3884 }
3885 if (rte->rtd_inuse == RTD_FREED) {
3886 panic("rte_free: double free rte=%p\n", rte);
3887 /* NOTREACHED */
3888 } else if (rte->rtd_inuse != RTD_INUSE) {
3889 panic("rte_free: corrupted rte=%p\n", rte);
3890 /* NOTREACHED */
3891 }
3892 bcopy((caddr_t)p, (caddr_t)&rte->rtd_entry_saved, sizeof(*p));
3893 /* Preserve rt_lock to help catch use-after-free cases */
3894 bzero((caddr_t)p, offsetof(struct rtentry, rt_lock));
3895
3896 rte->rtd_inuse = RTD_FREED;
3897
3898 if (rte_debug & RTD_TRACE) {
3899 ctrace_record(&rte->rtd_free);
3900 }
3901
3902 if (!(rte_debug & RTD_NO_FREE)) {
3903 zfree(rte_zone, p);
3904 }
3905 }
3906
3907 void
3908 ctrace_record(ctrace_t *tr)
3909 {
3910 tr->th = current_thread();
3911 bzero(tr->pc, sizeof(tr->pc));
3912 (void) OSBacktrace(tr->pc, CTRACE_STACK_SIZE);
3913 }
3914
3915 void
3916 route_copyout(struct route *dst, const struct route *src, size_t length)
3917 {
3918 /* Copy everything (rt, srcif, flags, dst) from src */
3919 bcopy(src, dst, length);
3920
3921 /* Hold one reference for the local copy of struct route */
3922 if (dst->ro_rt != NULL) {
3923 RT_ADDREF(dst->ro_rt);
3924 }
3925
3926 /* Hold one reference for the local copy of struct lle */
3927 if (dst->ro_lle != NULL) {
3928 LLE_ADDREF(dst->ro_lle);
3929 }
3930
3931 /* Hold one reference for the local copy of struct ifaddr */
3932 if (dst->ro_srcia != NULL) {
3933 IFA_ADDREF(dst->ro_srcia);
3934 }
3935 }
3936
3937 void
3938 route_copyin(struct route *src, struct route *dst, size_t length)
3939 {
3940 /*
3941 * No cached route at the destination?
3942 * If none, then remove old references if present
3943 * and copy entire src route.
3944 */
3945 if (dst->ro_rt == NULL) {
3946 /*
3947 * Ditch the cached link layer reference (dst)
3948 * since we're about to take everything there is in src
3949 */
3950 if (dst->ro_lle != NULL) {
3951 LLE_REMREF(dst->ro_lle);
3952 }
3953 /*
3954 * Ditch the address in the cached copy (dst) since
3955 * we're about to take everything there is in src.
3956 */
3957 if (dst->ro_srcia != NULL) {
3958 IFA_REMREF(dst->ro_srcia);
3959 }
3960 /*
3961 * Copy everything (rt, ro_lle, srcia, flags, dst) from src; the
3962 * references to rt and/or srcia were held at the time
3963 * of storage and are kept intact.
3964 */
3965 bcopy(src, dst, length);
3966 goto done;
3967 }
3968
3969 /*
3970 * We know dst->ro_rt is not NULL here.
3971 * If the src->ro_rt is the same, update ro_lle, srcia and flags
3972 * and ditch the route in the local copy.
3973 */
3974 if (dst->ro_rt == src->ro_rt) {
3975 dst->ro_flags = src->ro_flags;
3976
3977 if (dst->ro_lle != src->ro_lle) {
3978 if (dst->ro_lle != NULL) {
3979 LLE_REMREF(dst->ro_lle);
3980 }
3981 dst->ro_lle = src->ro_lle;
3982 } else if (src->ro_lle != NULL) {
3983 LLE_REMREF(src->ro_lle);
3984 }
3985
3986 if (dst->ro_srcia != src->ro_srcia) {
3987 if (dst->ro_srcia != NULL) {
3988 IFA_REMREF(dst->ro_srcia);
3989 }
3990 dst->ro_srcia = src->ro_srcia;
3991 } else if (src->ro_srcia != NULL) {
3992 IFA_REMREF(src->ro_srcia);
3993 }
3994 rtfree(src->ro_rt);
3995 goto done;
3996 }
3997
3998 /*
3999 * If they are dst's ro_rt is not equal to src's,
4000 * and src'd rt is not NULL, then remove old references
4001 * if present and copy entire src route.
4002 */
4003 if (src->ro_rt != NULL) {
4004 rtfree(dst->ro_rt);
4005
4006 if (dst->ro_lle != NULL) {
4007 LLE_REMREF(dst->ro_lle);
4008 }
4009 if (dst->ro_srcia != NULL) {
4010 IFA_REMREF(dst->ro_srcia);
4011 }
4012 bcopy(src, dst, length);
4013 goto done;
4014 }
4015
4016 /*
4017 * Here, dst's cached route is not NULL but source's is.
4018 * Just get rid of all the other cached reference in src.
4019 */
4020 if (src->ro_srcia != NULL) {
4021 /*
4022 * Ditch src address in the local copy (src) since we're
4023 * not caching the route entry anyway (ro_rt is NULL).
4024 */
4025 IFA_REMREF(src->ro_srcia);
4026 }
4027 if (src->ro_lle != NULL) {
4028 /*
4029 * Ditch cache lle in the local copy (src) since we're
4030 * not caching the route anyway (ro_rt is NULL).
4031 */
4032 LLE_REMREF(src->ro_lle);
4033 }
4034 done:
4035 /* This function consumes the references on src */
4036 src->ro_lle = NULL;
4037 src->ro_rt = NULL;
4038 src->ro_srcia = NULL;
4039 }
4040
4041 /*
4042 * route_to_gwroute will find the gateway route for a given route.
4043 *
4044 * If the route is down, look the route up again.
4045 * If the route goes through a gateway, get the route to the gateway.
4046 * If the gateway route is down, look it up again.
4047 * If the route is set to reject, verify it hasn't expired.
4048 *
4049 * If the returned route is non-NULL, the caller is responsible for
4050 * releasing the reference and unlocking the route.
4051 */
4052 #define senderr(e) { error = (e); goto bad; }
4053 errno_t
4054 route_to_gwroute(const struct sockaddr *net_dest, struct rtentry *hint0,
4055 struct rtentry **out_route)
4056 {
4057 uint64_t timenow;
4058 struct rtentry *rt = hint0, *hint = hint0;
4059 errno_t error = 0;
4060 unsigned int ifindex;
4061 boolean_t gwroute;
4062
4063 *out_route = NULL;
4064
4065 if (rt == NULL) {
4066 return 0;
4067 }
4068
4069 /*
4070 * Next hop determination. Because we may involve the gateway route
4071 * in addition to the original route, locking is rather complicated.
4072 * The general concept is that regardless of whether the route points
4073 * to the original route or to the gateway route, this routine takes
4074 * an extra reference on such a route. This extra reference will be
4075 * released at the end.
4076 *
4077 * Care must be taken to ensure that the "hint0" route never gets freed
4078 * via rtfree(), since the caller may have stored it inside a struct
4079 * route with a reference held for that placeholder.
4080 */
4081 RT_LOCK_SPIN(rt);
4082 ifindex = rt->rt_ifp->if_index;
4083 RT_ADDREF_LOCKED(rt);
4084 if (!(rt->rt_flags & RTF_UP)) {
4085 RT_REMREF_LOCKED(rt);
4086 RT_UNLOCK(rt);
4087 /* route is down, find a new one */
4088 hint = rt = rtalloc1_scoped((struct sockaddr *)
4089 (size_t)net_dest, 1, 0, ifindex);
4090 if (hint != NULL) {
4091 RT_LOCK_SPIN(rt);
4092 ifindex = rt->rt_ifp->if_index;
4093 } else {
4094 senderr(EHOSTUNREACH);
4095 }
4096 }
4097
4098 /*
4099 * We have a reference to "rt" by now; it will either
4100 * be released or freed at the end of this routine.
4101 */
4102 RT_LOCK_ASSERT_HELD(rt);
4103 if ((gwroute = (rt->rt_flags & RTF_GATEWAY))) {
4104 struct rtentry *gwrt = rt->rt_gwroute;
4105 struct sockaddr_storage ss;
4106 struct sockaddr *gw = (struct sockaddr *)&ss;
4107
4108 VERIFY(rt == hint);
4109 RT_ADDREF_LOCKED(hint);
4110
4111 /* If there's no gateway rt, look it up */
4112 if (gwrt == NULL) {
4113 bcopy(rt->rt_gateway, gw, MIN(sizeof(ss),
4114 rt->rt_gateway->sa_len));
4115 gw->sa_len = MIN(sizeof(ss), rt->rt_gateway->sa_len);
4116 RT_UNLOCK(rt);
4117 goto lookup;
4118 }
4119 /* Become a regular mutex */
4120 RT_CONVERT_LOCK(rt);
4121
4122 /*
4123 * Take gwrt's lock while holding route's lock;
4124 * this is okay since gwrt never points back
4125 * to "rt", so no lock ordering issues.
4126 */
4127 RT_LOCK_SPIN(gwrt);
4128 if (!(gwrt->rt_flags & RTF_UP)) {
4129 rt->rt_gwroute = NULL;
4130 RT_UNLOCK(gwrt);
4131 bcopy(rt->rt_gateway, gw, MIN(sizeof(ss),
4132 rt->rt_gateway->sa_len));
4133 gw->sa_len = MIN(sizeof(ss), rt->rt_gateway->sa_len);
4134 RT_UNLOCK(rt);
4135 rtfree(gwrt);
4136 lookup:
4137 lck_mtx_lock(rnh_lock);
4138 gwrt = rtalloc1_scoped_locked(gw, 1, 0, ifindex);
4139
4140 RT_LOCK(rt);
4141 /*
4142 * Bail out if the route is down, no route
4143 * to gateway, circular route, or if the
4144 * gateway portion of "rt" has changed.
4145 */
4146 if (!(rt->rt_flags & RTF_UP) || gwrt == NULL ||
4147 gwrt == rt || !equal(gw, rt->rt_gateway)) {
4148 if (gwrt == rt) {
4149 RT_REMREF_LOCKED(gwrt);
4150 gwrt = NULL;
4151 }
4152 VERIFY(rt == hint);
4153 RT_REMREF_LOCKED(hint);
4154 hint = NULL;
4155 RT_UNLOCK(rt);
4156 if (gwrt != NULL) {
4157 rtfree_locked(gwrt);
4158 }
4159 lck_mtx_unlock(rnh_lock);
4160 senderr(EHOSTUNREACH);
4161 }
4162 VERIFY(gwrt != NULL);
4163 /*
4164 * Set gateway route; callee adds ref to gwrt;
4165 * gwrt has an extra ref from rtalloc1() for
4166 * this routine.
4167 */
4168 rt_set_gwroute(rt, rt_key(rt), gwrt);
4169 VERIFY(rt == hint);
4170 RT_REMREF_LOCKED(rt); /* hint still holds a refcnt */
4171 RT_UNLOCK(rt);
4172 lck_mtx_unlock(rnh_lock);
4173 rt = gwrt;
4174 } else {
4175 RT_ADDREF_LOCKED(gwrt);
4176 RT_UNLOCK(gwrt);
4177 VERIFY(rt == hint);
4178 RT_REMREF_LOCKED(rt); /* hint still holds a refcnt */
4179 RT_UNLOCK(rt);
4180 rt = gwrt;
4181 }
4182 VERIFY(rt == gwrt && rt != hint);
4183
4184 /*
4185 * This is an opportunity to revalidate the parent route's
4186 * rt_gwroute, in case it now points to a dead route entry.
4187 * Parent route won't go away since the clone (hint) holds
4188 * a reference to it. rt == gwrt.
4189 */
4190 RT_LOCK_SPIN(hint);
4191 if ((hint->rt_flags & (RTF_WASCLONED | RTF_UP)) ==
4192 (RTF_WASCLONED | RTF_UP)) {
4193 struct rtentry *prt = hint->rt_parent;
4194 VERIFY(prt != NULL);
4195
4196 RT_CONVERT_LOCK(hint);
4197 RT_ADDREF(prt);
4198 RT_UNLOCK(hint);
4199 rt_revalidate_gwroute(prt, rt);
4200 RT_REMREF(prt);
4201 } else {
4202 RT_UNLOCK(hint);
4203 }
4204
4205 /* Clean up "hint" now; see notes above regarding hint0 */
4206 if (hint == hint0) {
4207 RT_REMREF(hint);
4208 } else {
4209 rtfree(hint);
4210 }
4211 hint = NULL;
4212
4213 /* rt == gwrt; if it is now down, give up */
4214 RT_LOCK_SPIN(rt);
4215 if (!(rt->rt_flags & RTF_UP)) {
4216 RT_UNLOCK(rt);
4217 senderr(EHOSTUNREACH);
4218 }
4219 }
4220
4221 if (rt->rt_flags & RTF_REJECT) {
4222 VERIFY(rt->rt_expire == 0 || rt->rt_rmx.rmx_expire != 0);
4223 VERIFY(rt->rt_expire != 0 || rt->rt_rmx.rmx_expire == 0);
4224 timenow = net_uptime();
4225 if (rt->rt_expire == 0 || timenow < rt->rt_expire) {
4226 RT_UNLOCK(rt);
4227 senderr(!gwroute ? EHOSTDOWN : EHOSTUNREACH);
4228 }
4229 }
4230
4231 /* Become a regular mutex */
4232 RT_CONVERT_LOCK(rt);
4233
4234 /* Caller is responsible for cleaning up "rt" */
4235 *out_route = rt;
4236 return 0;
4237
4238 bad:
4239 /* Clean up route (either it is "rt" or "gwrt") */
4240 if (rt != NULL) {
4241 RT_LOCK_SPIN(rt);
4242 if (rt == hint0) {
4243 RT_REMREF_LOCKED(rt);
4244 RT_UNLOCK(rt);
4245 } else {
4246 RT_UNLOCK(rt);
4247 rtfree(rt);
4248 }
4249 }
4250 return error;
4251 }
4252 #undef senderr
4253
4254 void
4255 rt_revalidate_gwroute(struct rtentry *rt, struct rtentry *gwrt)
4256 {
4257 VERIFY(gwrt != NULL);
4258
4259 RT_LOCK_SPIN(rt);
4260 if ((rt->rt_flags & (RTF_GATEWAY | RTF_UP)) == (RTF_GATEWAY | RTF_UP) &&
4261 rt->rt_ifp == gwrt->rt_ifp && rt->rt_gateway->sa_family ==
4262 rt_key(gwrt)->sa_family && (rt->rt_gwroute == NULL ||
4263 !(rt->rt_gwroute->rt_flags & RTF_UP))) {
4264 boolean_t isequal;
4265 VERIFY(rt->rt_flags & (RTF_CLONING | RTF_PRCLONING));
4266
4267 if (rt->rt_gateway->sa_family == AF_INET ||
4268 rt->rt_gateway->sa_family == AF_INET6) {
4269 struct sockaddr_storage key_ss, gw_ss;
4270 /*
4271 * We need to compare rt_key and rt_gateway; create
4272 * local copies to get rid of any ifscope association.
4273 */
4274 (void) sa_copy(rt_key(gwrt), &key_ss, NULL);
4275 (void) sa_copy(rt->rt_gateway, &gw_ss, NULL);
4276
4277 isequal = equal(SA(&key_ss), SA(&gw_ss));
4278 } else {
4279 isequal = equal(rt_key(gwrt), rt->rt_gateway);
4280 }
4281
4282 /* If they are the same, update gwrt */
4283 if (isequal) {
4284 RT_UNLOCK(rt);
4285 lck_mtx_lock(rnh_lock);
4286 RT_LOCK(rt);
4287 rt_set_gwroute(rt, rt_key(rt), gwrt);
4288 RT_UNLOCK(rt);
4289 lck_mtx_unlock(rnh_lock);
4290 } else {
4291 RT_UNLOCK(rt);
4292 }
4293 } else {
4294 RT_UNLOCK(rt);
4295 }
4296 }
4297
4298 static void
4299 rt_str4(struct rtentry *rt, char *ds, uint32_t dslen, char *gs, uint32_t gslen)
4300 {
4301 VERIFY(rt_key(rt)->sa_family == AF_INET);
4302
4303 if (ds != NULL) {
4304 (void) inet_ntop(AF_INET,
4305 &SIN(rt_key(rt))->sin_addr.s_addr, ds, dslen);
4306 if (dslen >= MAX_SCOPE_ADDR_STR_LEN &&
4307 SINIFSCOPE(rt_key(rt))->sin_scope_id != IFSCOPE_NONE) {
4308 char scpstr[16];
4309
4310 snprintf(scpstr, sizeof(scpstr), "@%u",
4311 SINIFSCOPE(rt_key(rt))->sin_scope_id);
4312
4313 strlcat(ds, scpstr, dslen);
4314 }
4315 }
4316
4317 if (gs != NULL) {
4318 if (rt->rt_flags & RTF_GATEWAY) {
4319 (void) inet_ntop(AF_INET,
4320 &SIN(rt->rt_gateway)->sin_addr.s_addr, gs, gslen);
4321 } else if (rt->rt_ifp != NULL) {
4322 snprintf(gs, gslen, "link#%u", rt->rt_ifp->if_unit);
4323 } else {
4324 snprintf(gs, gslen, "%s", "link");
4325 }
4326 }
4327 }
4328
4329 static void
4330 rt_str6(struct rtentry *rt, char *ds, uint32_t dslen, char *gs, uint32_t gslen)
4331 {
4332 VERIFY(rt_key(rt)->sa_family == AF_INET6);
4333
4334 if (ds != NULL) {
4335 (void) inet_ntop(AF_INET6,
4336 &SIN6(rt_key(rt))->sin6_addr, ds, dslen);
4337 if (dslen >= MAX_SCOPE_ADDR_STR_LEN &&
4338 SIN6IFSCOPE(rt_key(rt))->sin6_scope_id != IFSCOPE_NONE) {
4339 char scpstr[16];
4340
4341 snprintf(scpstr, sizeof(scpstr), "@%u",
4342 SIN6IFSCOPE(rt_key(rt))->sin6_scope_id);
4343
4344 strlcat(ds, scpstr, dslen);
4345 }
4346 }
4347
4348 if (gs != NULL) {
4349 if (rt->rt_flags & RTF_GATEWAY) {
4350 (void) inet_ntop(AF_INET6,
4351 &SIN6(rt->rt_gateway)->sin6_addr, gs, gslen);
4352 } else if (rt->rt_ifp != NULL) {
4353 snprintf(gs, gslen, "link#%u", rt->rt_ifp->if_unit);
4354 } else {
4355 snprintf(gs, gslen, "%s", "link");
4356 }
4357 }
4358 }
4359
4360 void
4361 rt_str(struct rtentry *rt, char *ds, uint32_t dslen, char *gs, uint32_t gslen)
4362 {
4363 switch (rt_key(rt)->sa_family) {
4364 case AF_INET:
4365 rt_str4(rt, ds, dslen, gs, gslen);
4366 break;
4367 case AF_INET6:
4368 rt_str6(rt, ds, dslen, gs, gslen);
4369 break;
4370 default:
4371 if (ds != NULL) {
4372 bzero(ds, dslen);
4373 }
4374 if (gs != NULL) {
4375 bzero(gs, gslen);
4376 }
4377 break;
4378 }
4379 }
4380
4381 void
4382 route_event_init(struct route_event *p_route_ev, struct rtentry *rt,
4383 struct rtentry *gwrt, int route_ev_code)
4384 {
4385 VERIFY(p_route_ev != NULL);
4386 bzero(p_route_ev, sizeof(*p_route_ev));
4387
4388 p_route_ev->rt = rt;
4389 p_route_ev->gwrt = gwrt;
4390 p_route_ev->route_event_code = route_ev_code;
4391 }
4392
4393 static void
4394 route_event_callback(void *arg)
4395 {
4396 struct route_event *p_rt_ev = (struct route_event *)arg;
4397 struct rtentry *rt = p_rt_ev->rt;
4398 eventhandler_tag evtag = p_rt_ev->evtag;
4399 int route_ev_code = p_rt_ev->route_event_code;
4400
4401 if (route_ev_code == ROUTE_EVHDLR_DEREGISTER) {
4402 VERIFY(evtag != NULL);
4403 EVENTHANDLER_DEREGISTER(&rt->rt_evhdlr_ctxt, route_event,
4404 evtag);
4405 rtfree(rt);
4406 return;
4407 }
4408
4409 EVENTHANDLER_INVOKE(&rt->rt_evhdlr_ctxt, route_event, rt_key(rt),
4410 route_ev_code, (struct sockaddr *)&p_rt_ev->rt_addr,
4411 rt->rt_flags);
4412
4413 /* The code enqueuing the route event held a reference */
4414 rtfree(rt);
4415 /* XXX No reference is taken on gwrt */
4416 }
4417
4418 int
4419 route_event_walktree(struct radix_node *rn, void *arg)
4420 {
4421 struct route_event *p_route_ev = (struct route_event *)arg;
4422 struct rtentry *rt = (struct rtentry *)rn;
4423 struct rtentry *gwrt = p_route_ev->rt;
4424
4425 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
4426
4427 RT_LOCK(rt);
4428
4429 /* Return if the entry is pending cleanup */
4430 if (rt->rt_flags & RTPRF_OURS) {
4431 RT_UNLOCK(rt);
4432 return 0;
4433 }
4434
4435 /* Return if it is not an indirect route */
4436 if (!(rt->rt_flags & RTF_GATEWAY)) {
4437 RT_UNLOCK(rt);
4438 return 0;
4439 }
4440
4441 if (rt->rt_gwroute != gwrt) {
4442 RT_UNLOCK(rt);
4443 return 0;
4444 }
4445
4446 route_event_enqueue_nwk_wq_entry(rt, gwrt, p_route_ev->route_event_code,
4447 NULL, TRUE);
4448 RT_UNLOCK(rt);
4449
4450 return 0;
4451 }
4452
4453 struct route_event_nwk_wq_entry {
4454 struct nwk_wq_entry nwk_wqe;
4455 struct route_event rt_ev_arg;
4456 };
4457
4458 void
4459 route_event_enqueue_nwk_wq_entry(struct rtentry *rt, struct rtentry *gwrt,
4460 uint32_t route_event_code, eventhandler_tag evtag, boolean_t rt_locked)
4461 {
4462 struct route_event_nwk_wq_entry *p_rt_ev = NULL;
4463 struct sockaddr *p_gw_saddr = NULL;
4464
4465 MALLOC(p_rt_ev, struct route_event_nwk_wq_entry *,
4466 sizeof(struct route_event_nwk_wq_entry),
4467 M_NWKWQ, M_WAITOK | M_ZERO);
4468
4469 /*
4470 * If the intent is to de-register, don't take
4471 * reference, route event registration already takes
4472 * a reference on route.
4473 */
4474 if (route_event_code != ROUTE_EVHDLR_DEREGISTER) {
4475 /* The reference is released by route_event_callback */
4476 if (rt_locked) {
4477 RT_ADDREF_LOCKED(rt);
4478 } else {
4479 RT_ADDREF(rt);
4480 }
4481 }
4482
4483 p_rt_ev->rt_ev_arg.rt = rt;
4484 p_rt_ev->rt_ev_arg.gwrt = gwrt;
4485 p_rt_ev->rt_ev_arg.evtag = evtag;
4486
4487 if (gwrt != NULL) {
4488 p_gw_saddr = gwrt->rt_gateway;
4489 } else {
4490 p_gw_saddr = rt->rt_gateway;
4491 }
4492
4493 VERIFY(p_gw_saddr->sa_len <= sizeof(p_rt_ev->rt_ev_arg.rt_addr));
4494 bcopy(p_gw_saddr, &(p_rt_ev->rt_ev_arg.rt_addr), p_gw_saddr->sa_len);
4495
4496 p_rt_ev->rt_ev_arg.route_event_code = route_event_code;
4497 p_rt_ev->nwk_wqe.func = route_event_callback;
4498 p_rt_ev->nwk_wqe.is_arg_managed = TRUE;
4499 p_rt_ev->nwk_wqe.arg = &p_rt_ev->rt_ev_arg;
4500 nwk_wq_enqueue((struct nwk_wq_entry*)p_rt_ev);
4501 }
4502
4503 const char *
4504 route_event2str(int route_event)
4505 {
4506 const char *route_event_str = "ROUTE_EVENT_UNKNOWN";
4507 switch (route_event) {
4508 case ROUTE_STATUS_UPDATE:
4509 route_event_str = "ROUTE_STATUS_UPDATE";
4510 break;
4511 case ROUTE_ENTRY_REFRESH:
4512 route_event_str = "ROUTE_ENTRY_REFRESH";
4513 break;
4514 case ROUTE_ENTRY_DELETED:
4515 route_event_str = "ROUTE_ENTRY_DELETED";
4516 break;
4517 case ROUTE_LLENTRY_RESOLVED:
4518 route_event_str = "ROUTE_LLENTRY_RESOLVED";
4519 break;
4520 case ROUTE_LLENTRY_UNREACH:
4521 route_event_str = "ROUTE_LLENTRY_UNREACH";
4522 break;
4523 case ROUTE_LLENTRY_CHANGED:
4524 route_event_str = "ROUTE_LLENTRY_CHANGED";
4525 break;
4526 case ROUTE_LLENTRY_STALE:
4527 route_event_str = "ROUTE_LLENTRY_STALE";
4528 break;
4529 case ROUTE_LLENTRY_TIMEDOUT:
4530 route_event_str = "ROUTE_LLENTRY_TIMEDOUT";
4531 break;
4532 case ROUTE_LLENTRY_DELETED:
4533 route_event_str = "ROUTE_LLENTRY_DELETED";
4534 break;
4535 case ROUTE_LLENTRY_EXPIRED:
4536 route_event_str = "ROUTE_LLENTRY_EXPIRED";
4537 break;
4538 case ROUTE_LLENTRY_PROBED:
4539 route_event_str = "ROUTE_LLENTRY_PROBED";
4540 break;
4541 case ROUTE_EVHDLR_DEREGISTER:
4542 route_event_str = "ROUTE_EVHDLR_DEREGISTER";
4543 break;
4544 default:
4545 /* Init'd to ROUTE_EVENT_UNKNOWN */
4546 break;
4547 }
4548 return route_event_str;
4549 }
4550
4551 int
4552 route_op_entitlement_check(struct socket *so,
4553 kauth_cred_t cred,
4554 int route_op_type,
4555 boolean_t allow_root)
4556 {
4557 if (so != NULL) {
4558 if (route_op_type == ROUTE_OP_READ) {
4559 /*
4560 * If needed we can later extend this for more
4561 * granular entitlements and return a bit set of
4562 * allowed accesses.
4563 */
4564 if (soopt_cred_check(so, PRIV_NET_RESTRICTED_ROUTE_NC_READ,
4565 allow_root, false) == 0) {
4566 return 0;
4567 } else {
4568 return -1;
4569 }
4570 }
4571 } else if (cred != NULL) {
4572 uid_t uid = kauth_cred_getuid(cred);
4573
4574 /* uid is 0 for root */
4575 if (uid != 0 || !allow_root) {
4576 if (route_op_type == ROUTE_OP_READ) {
4577 if (priv_check_cred(cred,
4578 PRIV_NET_RESTRICTED_ROUTE_NC_READ, 0) == 0) {
4579 return 0;
4580 } else {
4581 return -1;
4582 }
4583 }
4584 }
4585 }
4586 return -1;
4587 }