2 * Copyright (c) 2006-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 #include <kern/sched_prim.h>
31 #include <kern/kalloc.h>
32 #include <kern/assert.h>
33 #include <kern/debug.h>
34 #include <kern/locks.h>
35 #include <kern/task.h>
36 #include <kern/thread.h>
37 #include <kern/host.h>
38 #include <kern/policy_internal.h>
39 #include <kern/thread_group.h>
41 #include <corpses/task_corpse.h>
42 #include <libkern/libkern.h>
43 #include <mach/coalition.h>
44 #include <mach/mach_time.h>
45 #include <mach/task.h>
46 #include <mach/host_priv.h>
47 #include <mach/mach_host.h>
49 #include <pexpert/pexpert.h>
50 #include <sys/coalition.h>
51 #include <sys/kern_event.h>
53 #include <sys/proc_info.h>
54 #include <sys/reason.h>
55 #include <sys/signal.h>
56 #include <sys/signalvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysproto.h>
63 #include <vm/vm_pageout.h>
64 #include <vm/vm_protos.h>
65 #include <mach/machine/sdt.h>
66 #include <libkern/section_keywords.h>
67 #include <stdatomic.h>
69 #include <IOKit/IOBSD.h>
72 #include <vm/vm_map.h>
73 #endif /* CONFIG_FREEZE */
75 #include <sys/kern_memorystatus.h>
76 #include <sys/kern_memorystatus_freeze.h>
77 #include <sys/kern_memorystatus_notify.h>
79 /* For logging clarity */
80 static const char *memorystatus_kill_cause_name
[] = {
81 "", /* kMemorystatusInvalid */
82 "jettisoned", /* kMemorystatusKilled */
83 "highwater", /* kMemorystatusKilledHiwat */
84 "vnode-limit", /* kMemorystatusKilledVnodes */
85 "vm-pageshortage", /* kMemorystatusKilledVMPageShortage */
86 "proc-thrashing", /* kMemorystatusKilledProcThrashing */
87 "fc-thrashing", /* kMemorystatusKilledFCThrashing */
88 "per-process-limit", /* kMemorystatusKilledPerProcessLimit */
89 "disk-space-shortage", /* kMemorystatusKilledDiskSpaceShortage */
90 "idle-exit", /* kMemorystatusKilledIdleExit */
91 "zone-map-exhaustion", /* kMemorystatusKilledZoneMapExhaustion */
92 "vm-compressor-thrashing", /* kMemorystatusKilledVMCompressorThrashing */
93 "vm-compressor-space-shortage", /* kMemorystatusKilledVMCompressorSpaceShortage */
97 memorystatus_priority_band_name(int32_t priority
)
100 case JETSAM_PRIORITY_FOREGROUND
:
102 case JETSAM_PRIORITY_AUDIO_AND_ACCESSORY
:
103 return "AUDIO_AND_ACCESSORY";
104 case JETSAM_PRIORITY_CONDUCTOR
:
106 case JETSAM_PRIORITY_DRIVER_APPLE
:
107 return "DRIVER_APPLE";
108 case JETSAM_PRIORITY_HOME
:
110 case JETSAM_PRIORITY_EXECUTIVE
:
112 case JETSAM_PRIORITY_IMPORTANT
:
114 case JETSAM_PRIORITY_CRITICAL
:
121 /* Does cause indicate vm or fc thrashing? */
123 is_reason_thrashing(unsigned cause
)
126 case kMemorystatusKilledFCThrashing
:
127 case kMemorystatusKilledVMCompressorThrashing
:
128 case kMemorystatusKilledVMCompressorSpaceShortage
:
135 /* Is the zone map almost full? */
137 is_reason_zone_map_exhaustion(unsigned cause
)
139 if (cause
== kMemorystatusKilledZoneMapExhaustion
) {
146 * Returns the current zone map size and capacity to include in the jetsam snapshot.
147 * Defined in zalloc.c
149 extern void get_zone_map_size(uint64_t *current_size
, uint64_t *capacity
);
152 * Returns the name of the largest zone and its size to include in the jetsam snapshot.
153 * Defined in zalloc.c
155 extern void get_largest_zone_info(char *zone_name
, size_t zone_name_len
, uint64_t *zone_size
);
158 * Active / Inactive limit support
159 * proc list must be locked
161 * The SET_*** macros are used to initialize a limit
162 * for the first time.
164 * The CACHE_*** macros are use to cache the limit that will
165 * soon be in effect down in the ledgers.
168 #define SET_ACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
170 (p)->p_memstat_memlimit_active = (limit); \
172 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
174 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
178 #define SET_INACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
180 (p)->p_memstat_memlimit_inactive = (limit); \
182 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
184 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
188 #define CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal) \
190 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_active; \
191 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL) { \
192 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
195 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
200 #define CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal) \
202 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_inactive; \
203 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) { \
204 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
207 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
213 /* General tunables */
215 unsigned long delta_percentage
= 5;
216 unsigned long critical_threshold_percentage
= 5;
217 // On embedded devices with more than 3GB of memory we lower the critical percentage.
218 uint64_t config_jetsam_large_memory_cutoff
= 3UL * (1UL << 30);
219 unsigned long critical_threshold_percentage_larger_devices
= 4;
220 unsigned long delta_percentage_larger_devices
= 4;
221 unsigned long idle_offset_percentage
= 5;
222 unsigned long pressure_threshold_percentage
= 15;
223 unsigned long policy_more_free_offset_percentage
= 5;
224 unsigned long sysproc_aging_aggr_threshold_percentage
= 7;
227 * default jetsam snapshot support
229 memorystatus_jetsam_snapshot_t
*memorystatus_jetsam_snapshot
;
230 memorystatus_jetsam_snapshot_t
*memorystatus_jetsam_snapshot_copy
;
233 memorystatus_jetsam_snapshot_t
*memorystatus_jetsam_snapshot_freezer
;
235 * The size of the freezer snapshot is given by memorystatus_jetsam_snapshot_max / JETSAM_SNAPSHOT_FREEZER_MAX_FACTOR
236 * The freezer snapshot can be much smaller than the default snapshot
237 * because it only includes apps that have been killed and dasd consumes it every 30 minutes.
238 * Since the snapshots are always wired we don't want to overallocate too much.
240 #define JETSAM_SNAPSHOT_FREEZER_MAX_FACTOR 20
241 unsigned int memorystatus_jetsam_snapshot_freezer_max
;
242 unsigned int memorystatus_jetsam_snapshot_freezer_size
;
243 TUNABLE(bool, memorystatus_jetsam_use_freezer_snapshot
, "kern.jetsam_user_freezer_snapshot", true);
244 #endif /* CONFIG_FREEZE */
246 unsigned int memorystatus_jetsam_snapshot_count
= 0;
247 unsigned int memorystatus_jetsam_snapshot_copy_count
= 0;
248 unsigned int memorystatus_jetsam_snapshot_max
= 0;
249 unsigned int memorystatus_jetsam_snapshot_size
= 0;
250 uint64_t memorystatus_jetsam_snapshot_last_timestamp
= 0;
251 uint64_t memorystatus_jetsam_snapshot_timeout
= 0;
253 #if DEVELOPMENT || DEBUG
255 * On development and debug kernels, we allow one pid to take ownership
256 * of some memorystatus data structures for testing purposes (via memorystatus_control).
257 * If there's an owner, then only they may consume the jetsam snapshot & set freezer probabilities.
258 * This is used when testing these interface to avoid racing with other
259 * processes on the system that typically use them (namely OSAnalytics & dasd).
261 static pid_t memorystatus_testing_pid
= 0;
262 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_testing_pid
, CTLTYPE_INT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_testing_pid
, 0, "");
263 #endif /* DEVELOPMENT || DEBUG */
264 static void memorystatus_init_jetsam_snapshot_header(memorystatus_jetsam_snapshot_t
*snapshot
);
266 /* General memorystatus stuff */
268 uint64_t memorystatus_sysprocs_idle_delay_time
= 0;
269 uint64_t memorystatus_apps_idle_delay_time
= 0;
270 /* Some devices give entitled apps a higher memory limit */
272 int32_t memorystatus_entitled_max_task_footprint_mb
= 0;
274 #if DEVELOPMENT || DEBUG
275 SYSCTL_INT(_kern
, OID_AUTO
, entitled_max_task_pmem
, CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_entitled_max_task_footprint_mb
, 0, "");
276 #endif /* DEVELOPMENT || DEBUG */
277 #endif /* __arm64__ */
279 static LCK_GRP_DECLARE(memorystatus_jetsam_fg_band_lock_grp
,
280 "memorystatus_jetsam_fg_band");
281 LCK_MTX_DECLARE(memorystatus_jetsam_fg_band_lock
,
282 &memorystatus_jetsam_fg_band_lock_grp
);
284 /* Idle guard handling */
286 static int32_t memorystatus_scheduled_idle_demotions_sysprocs
= 0;
287 static int32_t memorystatus_scheduled_idle_demotions_apps
= 0;
289 static void memorystatus_perform_idle_demotion(__unused
void *spare1
, __unused
void *spare2
);
290 static void memorystatus_schedule_idle_demotion_locked(proc_t p
, boolean_t set_state
);
291 static void memorystatus_reschedule_idle_demotion_locked(void);
292 int memorystatus_update_priority_for_appnap(proc_t p
, boolean_t is_appnap
);
293 vm_pressure_level_t
convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t
);
294 boolean_t
is_knote_registered_modify_task_pressure_bits(struct knote
*, int, task_t
, vm_pressure_level_t
, vm_pressure_level_t
);
295 void memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear
);
296 void memorystatus_send_low_swap_note(void);
297 int memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index
);
298 boolean_t
memorystatus_kill_elevated_process(uint32_t cause
, os_reason_t jetsam_reason
, unsigned int band
, int aggr_count
,
299 uint32_t *errors
, uint64_t *memory_reclaimed
);
300 uint64_t memorystatus_available_memory_internal(proc_t p
);
302 unsigned int memorystatus_level
= 0;
303 static int memorystatus_list_count
= 0;
304 memstat_bucket_t memstat_bucket
[MEMSTAT_BUCKET_COUNT
];
305 static thread_call_t memorystatus_idle_demotion_call
;
306 uint64_t memstat_idle_demotion_deadline
= 0;
307 int system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
308 int applications_aging_band
= JETSAM_PRIORITY_IDLE
;
310 #define isProcessInAgingBands(p) ((isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) || (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)))
312 #define kJetsamAgingPolicyNone (0)
313 #define kJetsamAgingPolicyLegacy (1)
314 #define kJetsamAgingPolicySysProcsReclaimedFirst (2)
315 #define kJetsamAgingPolicyAppsReclaimedFirst (3)
316 #define kJetsamAgingPolicyMax kJetsamAgingPolicyAppsReclaimedFirst
318 unsigned int jetsam_aging_policy
= kJetsamAgingPolicySysProcsReclaimedFirst
;
320 extern int corpse_for_fatal_memkill
;
321 extern uint64_t vm_purgeable_purge_task_owned(task_t task
);
322 boolean_t
memorystatus_allowed_vm_map_fork(task_t
);
323 #if DEVELOPMENT || DEBUG
324 void memorystatus_abort_vm_map_fork(task_t
);
328 * Idle delay timeout factors for daemons based on relaunch behavior. Only used in
329 * kJetsamAgingPolicySysProcsReclaimedFirst aging policy.
331 #define kJetsamSysProcsIdleDelayTimeLowRatio (5)
332 #define kJetsamSysProcsIdleDelayTimeMedRatio (2)
333 #define kJetsamSysProcsIdleDelayTimeHighRatio (1)
334 static_assert(kJetsamSysProcsIdleDelayTimeLowRatio
<= DEFERRED_IDLE_EXIT_TIME_SECS
, "sysproc idle delay time for low relaunch daemons would be 0");
337 * For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, treat apps as well
338 * behaved daemons for aging purposes.
340 #define kJetsamAppsIdleDelayTimeRatio (kJetsamSysProcsIdleDelayTimeLowRatio)
343 memorystatus_sysprocs_idle_time(proc_t p
)
346 * The kJetsamAgingPolicySysProcsReclaimedFirst aging policy uses the relaunch behavior to
347 * determine the exact idle deferred time provided to the daemons. For all other aging
348 * policies, simply return the default aging idle time.
350 if (jetsam_aging_policy
!= kJetsamAgingPolicySysProcsReclaimedFirst
) {
351 return memorystatus_sysprocs_idle_delay_time
;
354 uint64_t idle_delay_time
= 0;
356 * For system processes, base the idle delay time on the
357 * jetsam relaunch behavior specified by launchd. The idea
358 * is to provide extra protection to the daemons which would
359 * relaunch immediately after jetsam.
361 switch (p
->p_memstat_relaunch_flags
) {
362 case P_MEMSTAT_RELAUNCH_UNKNOWN
:
363 case P_MEMSTAT_RELAUNCH_LOW
:
364 idle_delay_time
= memorystatus_sysprocs_idle_delay_time
/ kJetsamSysProcsIdleDelayTimeLowRatio
;
366 case P_MEMSTAT_RELAUNCH_MED
:
367 idle_delay_time
= memorystatus_sysprocs_idle_delay_time
/ kJetsamSysProcsIdleDelayTimeMedRatio
;
369 case P_MEMSTAT_RELAUNCH_HIGH
:
370 idle_delay_time
= memorystatus_sysprocs_idle_delay_time
/ kJetsamSysProcsIdleDelayTimeHighRatio
;
373 panic("Unknown relaunch flags on process!");
376 return idle_delay_time
;
380 memorystatus_apps_idle_time(__unused proc_t p
)
383 * For kJetsamAgingPolicySysProcsReclaimedFirst, the Apps are considered as low
384 * relaunch candidates. So only provide limited protection to them. In the other
385 * aging policies, return the default aging idle time.
387 if (jetsam_aging_policy
!= kJetsamAgingPolicySysProcsReclaimedFirst
) {
388 return memorystatus_apps_idle_delay_time
;
391 return memorystatus_apps_idle_delay_time
/ kJetsamAppsIdleDelayTimeRatio
;
397 /* Keeping around for future use if we need a utility that can do this OR an app that needs a dynamic adjustment. */
400 sysctl_set_jetsam_aging_policy SYSCTL_HANDLER_ARGS
402 #pragma unused(oidp, arg1, arg2)
404 int error
= 0, val
= 0;
405 memstat_bucket_t
*old_bucket
= 0;
406 int old_system_procs_aging_band
= 0, new_system_procs_aging_band
= 0;
407 int old_applications_aging_band
= 0, new_applications_aging_band
= 0;
408 proc_t p
= NULL
, next_proc
= NULL
;
411 error
= sysctl_io_number(req
, jetsam_aging_policy
, sizeof(int), &val
, NULL
);
412 if (error
|| !req
->newptr
) {
416 if ((val
< 0) || (val
> kJetsamAgingPolicyMax
)) {
417 printf("jetsam: ordering policy sysctl has invalid value - %d\n", val
);
422 * We need to synchronize with any potential adding/removal from aging bands
423 * that might be in progress currently. We use the proc_list_lock() just for
424 * consistency with all the routines dealing with 'aging' processes. We need
425 * a lighterweight lock.
429 old_system_procs_aging_band
= system_procs_aging_band
;
430 old_applications_aging_band
= applications_aging_band
;
433 case kJetsamAgingPolicyNone
:
434 new_system_procs_aging_band
= JETSAM_PRIORITY_IDLE
;
435 new_applications_aging_band
= JETSAM_PRIORITY_IDLE
;
438 case kJetsamAgingPolicyLegacy
:
440 * Legacy behavior where some daemons get a 10s protection once and only before the first clean->dirty->clean transition before going into IDLE band.
442 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
443 new_applications_aging_band
= JETSAM_PRIORITY_IDLE
;
446 case kJetsamAgingPolicySysProcsReclaimedFirst
:
447 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
448 new_applications_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
451 case kJetsamAgingPolicyAppsReclaimedFirst
:
452 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
453 new_applications_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
460 if (old_system_procs_aging_band
&& (old_system_procs_aging_band
!= new_system_procs_aging_band
)) {
461 old_bucket
= &memstat_bucket
[old_system_procs_aging_band
];
462 p
= TAILQ_FIRST(&old_bucket
->list
);
465 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
468 if (new_system_procs_aging_band
== JETSAM_PRIORITY_IDLE
) {
469 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
472 memorystatus_update_priority_locked(p
, new_system_procs_aging_band
, false, true);
480 if (old_applications_aging_band
&& (old_applications_aging_band
!= new_applications_aging_band
)) {
481 old_bucket
= &memstat_bucket
[old_applications_aging_band
];
482 p
= TAILQ_FIRST(&old_bucket
->list
);
485 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
488 if (new_applications_aging_band
== JETSAM_PRIORITY_IDLE
) {
489 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
492 memorystatus_update_priority_locked(p
, new_applications_aging_band
, false, true);
500 jetsam_aging_policy
= val
;
501 system_procs_aging_band
= new_system_procs_aging_band
;
502 applications_aging_band
= new_applications_aging_band
;
509 SYSCTL_PROC(_kern
, OID_AUTO
, set_jetsam_aging_policy
, CTLTYPE_INT
| CTLFLAG_RW
,
510 0, 0, sysctl_set_jetsam_aging_policy
, "I", "Jetsam Aging Policy");
514 sysctl_jetsam_set_sysprocs_idle_delay_time SYSCTL_HANDLER_ARGS
516 #pragma unused(oidp, arg1, arg2)
518 int error
= 0, val
= 0, old_time_in_secs
= 0;
519 uint64_t old_time_in_ns
= 0;
521 absolutetime_to_nanoseconds(memorystatus_sysprocs_idle_delay_time
, &old_time_in_ns
);
522 old_time_in_secs
= (int) (old_time_in_ns
/ NSEC_PER_SEC
);
524 error
= sysctl_io_number(req
, old_time_in_secs
, sizeof(int), &val
, NULL
);
525 if (error
|| !req
->newptr
) {
529 if ((val
< 0) || (val
> INT32_MAX
)) {
530 printf("jetsam: new idle delay interval has invalid value.\n");
534 nanoseconds_to_absolutetime((uint64_t)val
* NSEC_PER_SEC
, &memorystatus_sysprocs_idle_delay_time
);
539 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_sysprocs_idle_delay_time
, CTLTYPE_INT
| CTLFLAG_RW
,
540 0, 0, sysctl_jetsam_set_sysprocs_idle_delay_time
, "I", "Aging window for system processes");
544 sysctl_jetsam_set_apps_idle_delay_time SYSCTL_HANDLER_ARGS
546 #pragma unused(oidp, arg1, arg2)
548 int error
= 0, val
= 0, old_time_in_secs
= 0;
549 uint64_t old_time_in_ns
= 0;
551 absolutetime_to_nanoseconds(memorystatus_apps_idle_delay_time
, &old_time_in_ns
);
552 old_time_in_secs
= (int) (old_time_in_ns
/ NSEC_PER_SEC
);
554 error
= sysctl_io_number(req
, old_time_in_secs
, sizeof(int), &val
, NULL
);
555 if (error
|| !req
->newptr
) {
559 if ((val
< 0) || (val
> INT32_MAX
)) {
560 printf("jetsam: new idle delay interval has invalid value.\n");
564 nanoseconds_to_absolutetime((uint64_t)val
* NSEC_PER_SEC
, &memorystatus_apps_idle_delay_time
);
569 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_apps_idle_delay_time
, CTLTYPE_INT
| CTLFLAG_RW
,
570 0, 0, sysctl_jetsam_set_apps_idle_delay_time
, "I", "Aging window for applications");
572 SYSCTL_INT(_kern
, OID_AUTO
, jetsam_aging_policy
, CTLTYPE_INT
| CTLFLAG_RD
, &jetsam_aging_policy
, 0, "");
574 static unsigned int memorystatus_dirty_count
= 0;
576 SYSCTL_INT(_kern
, OID_AUTO
, max_task_pmem
, CTLFLAG_RD
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
, &max_task_footprint_mb
, 0, "");
578 static int memorystatus_highwater_enabled
= 1; /* Update the cached memlimit data. */
579 static boolean_t
proc_jetsam_state_is_active_locked(proc_t
);
582 int legacy_footprint_bonus_mb
= 50; /* This value was chosen after looking at the top 30 apps
583 * that needed the additional room in their footprint when
584 * the 'correct' accounting methods were applied to them.
587 #if DEVELOPMENT || DEBUG
588 SYSCTL_INT(_kern
, OID_AUTO
, legacy_footprint_bonus_mb
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &legacy_footprint_bonus_mb
, 0, "");
589 #endif /* DEVELOPMENT || DEBUG */
591 * Raise the inactive and active memory limits to new values.
592 * Will only raise the limits and will do nothing if either of the current
594 * Caller must hold the proc_list_lock
597 memorystatus_raise_memlimit(proc_t p
, int new_memlimit_active
, int new_memlimit_inactive
)
599 int memlimit_mb_active
= 0, memlimit_mb_inactive
= 0;
600 boolean_t memlimit_active_is_fatal
= FALSE
, memlimit_inactive_is_fatal
= FALSE
, use_active_limit
= FALSE
;
602 LCK_MTX_ASSERT(&proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
604 if (p
->p_memstat_memlimit_active
> 0) {
605 memlimit_mb_active
= p
->p_memstat_memlimit_active
;
606 } else if (p
->p_memstat_memlimit_active
== -1) {
607 memlimit_mb_active
= max_task_footprint_mb
;
610 * Nothing to do for '0' which is
611 * a special value only used internally
612 * to test 'no limits'.
617 if (p
->p_memstat_memlimit_inactive
> 0) {
618 memlimit_mb_inactive
= p
->p_memstat_memlimit_inactive
;
619 } else if (p
->p_memstat_memlimit_inactive
== -1) {
620 memlimit_mb_inactive
= max_task_footprint_mb
;
623 * Nothing to do for '0' which is
624 * a special value only used internally
625 * to test 'no limits'.
630 memlimit_mb_active
= MAX(new_memlimit_active
, memlimit_mb_active
);
631 memlimit_mb_inactive
= MAX(new_memlimit_inactive
, memlimit_mb_inactive
);
633 memlimit_active_is_fatal
= (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
);
634 memlimit_inactive_is_fatal
= (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
);
636 SET_ACTIVE_LIMITS_LOCKED(p
, memlimit_mb_active
, memlimit_active_is_fatal
);
637 SET_INACTIVE_LIMITS_LOCKED(p
, memlimit_mb_inactive
, memlimit_inactive_is_fatal
);
639 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
640 use_active_limit
= TRUE
;
641 CACHE_ACTIVE_LIMITS_LOCKED(p
, memlimit_active_is_fatal
);
643 CACHE_INACTIVE_LIMITS_LOCKED(p
, memlimit_inactive_is_fatal
);
646 if (memorystatus_highwater_enabled
) {
647 task_set_phys_footprint_limit_internal(p
->task
,
648 (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1,
649 NULL
, /*return old value */
650 use_active_limit
, /*active limit?*/
651 (use_active_limit
? memlimit_active_is_fatal
: memlimit_inactive_is_fatal
));
656 memorystatus_act_on_legacy_footprint_entitlement(proc_t p
, boolean_t footprint_increase
)
658 int memlimit_mb_active
= 0, memlimit_mb_inactive
= 0;
666 if (p
->p_memstat_memlimit_active
> 0) {
667 memlimit_mb_active
= p
->p_memstat_memlimit_active
;
668 } else if (p
->p_memstat_memlimit_active
== -1) {
669 memlimit_mb_active
= max_task_footprint_mb
;
672 * Nothing to do for '0' which is
673 * a special value only used internally
674 * to test 'no limits'.
680 if (p
->p_memstat_memlimit_inactive
> 0) {
681 memlimit_mb_inactive
= p
->p_memstat_memlimit_inactive
;
682 } else if (p
->p_memstat_memlimit_inactive
== -1) {
683 memlimit_mb_inactive
= max_task_footprint_mb
;
686 * Nothing to do for '0' which is
687 * a special value only used internally
688 * to test 'no limits'.
694 if (footprint_increase
) {
695 memlimit_mb_active
+= legacy_footprint_bonus_mb
;
696 memlimit_mb_inactive
+= legacy_footprint_bonus_mb
;
698 memlimit_mb_active
-= legacy_footprint_bonus_mb
;
699 if (memlimit_mb_active
== max_task_footprint_mb
) {
700 memlimit_mb_active
= -1; /* reverting back to default system limit */
703 memlimit_mb_inactive
-= legacy_footprint_bonus_mb
;
704 if (memlimit_mb_inactive
== max_task_footprint_mb
) {
705 memlimit_mb_inactive
= -1; /* reverting back to default system limit */
708 memorystatus_raise_memlimit(p
, memlimit_mb_active
, memlimit_mb_inactive
);
714 memorystatus_act_on_ios13extended_footprint_entitlement(proc_t p
)
716 if (max_mem
< 1500ULL * 1024 * 1024 ||
717 max_mem
> 2ULL * 1024 * 1024 * 1024) {
718 /* ios13extended_footprint is only for 2GB devices */
721 /* limit to "almost 2GB" */
723 memorystatus_raise_memlimit(p
, 1800, 1800);
728 memorystatus_act_on_entitled_task_limit(proc_t p
)
730 if (memorystatus_entitled_max_task_footprint_mb
== 0) {
731 // Entitlement is not supported on this device.
735 memorystatus_raise_memlimit(p
, memorystatus_entitled_max_task_footprint_mb
, memorystatus_entitled_max_task_footprint_mb
);
738 #endif /* __arm64__ */
740 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_level
, CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_level
, 0, "");
743 memorystatus_get_level(__unused
struct proc
*p
, struct memorystatus_get_level_args
*args
, __unused
int *ret
)
745 user_addr_t level
= 0;
749 if (copyout(&memorystatus_level
, level
, sizeof(memorystatus_level
)) != 0) {
756 static void memorystatus_thread(void *param __unused
, wait_result_t wr __unused
);
760 static boolean_t
memorystatus_kill_specific_process(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
);
761 static boolean_t
memorystatus_kill_process_sync(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
);
764 static int memorystatus_cmd_set_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
766 static int memorystatus_set_memlimit_properties(pid_t pid
, memorystatus_memlimit_properties_t
*entry
);
768 static int memorystatus_cmd_get_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
770 static int memorystatus_cmd_get_memlimit_excess_np(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
772 static void memorystatus_get_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
*p_entry
);
773 static int memorystatus_set_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
*p_entry
);
775 int proc_get_memstat_priority(proc_t
, boolean_t
);
777 static boolean_t memorystatus_idle_snapshot
= 0;
779 unsigned int memorystatus_delta
= 0;
781 /* Jetsam Loop Detection */
782 static boolean_t memorystatus_jld_enabled
= FALSE
; /* Enable jetsam loop detection */
783 static uint32_t memorystatus_jld_eval_period_msecs
= 0; /* Init pass sets this based on device memory size */
784 static int memorystatus_jld_eval_aggressive_count
= 3; /* Raise the priority max after 'n' aggressive loops */
785 static int memorystatus_jld_eval_aggressive_priority_band_max
= 15; /* Kill aggressively up through this band */
788 * A FG app can request that the aggressive jetsam mechanism display some leniency in the FG band. This 'lenient' mode is described as:
789 * --- if aggressive jetsam kills an app in the FG band and gets back >=AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD memory, it will stop the aggressive march further into and up the jetsam bands.
792 * - Such a request is respected/acknowledged only once while that 'requesting' app is in the FG band i.e. if aggressive jetsam was
793 * needed and the 'lenient' mode was deployed then that's it for this special mode while the app is in the FG band.
795 * - If the app is still in the FG band and aggressive jetsam is needed again, there will be no stop-and-check the next time around.
797 * - Also, the transition of the 'requesting' app away from the FG band will void this special behavior.
800 #define AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD 25
801 boolean_t memorystatus_aggressive_jetsam_lenient_allowed
= FALSE
;
802 boolean_t memorystatus_aggressive_jetsam_lenient
= FALSE
;
804 #if DEVELOPMENT || DEBUG
806 * Jetsam Loop Detection tunables.
809 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_period_msecs
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_jld_eval_period_msecs
, 0, "");
810 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_aggressive_count
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_jld_eval_aggressive_count
, 0, "");
811 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_aggressive_priority_band_max
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_jld_eval_aggressive_priority_band_max
, 0, "");
812 #endif /* DEVELOPMENT || DEBUG */
814 static uint32_t kill_under_pressure_cause
= 0;
817 * snapshot support for memstats collected at boot.
819 static memorystatus_jetsam_snapshot_t memorystatus_at_boot_snapshot
;
821 static void memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t
*od_snapshot
, uint32_t ods_list_count
);
822 static boolean_t
memorystatus_init_jetsam_snapshot_entry_locked(proc_t p
, memorystatus_jetsam_snapshot_entry_t
*entry
, uint64_t gencount
);
823 static void memorystatus_update_jetsam_snapshot_entry_locked(proc_t p
, uint32_t kill_cause
, uint64_t killtime
);
825 static void memorystatus_clear_errors(void);
826 static void memorystatus_get_task_phys_footprint_page_counts(task_t task
,
827 uint64_t *internal_pages
, uint64_t *internal_compressed_pages
,
828 uint64_t *purgeable_nonvolatile_pages
, uint64_t *purgeable_nonvolatile_compressed_pages
,
829 uint64_t *alternate_accounting_pages
, uint64_t *alternate_accounting_compressed_pages
,
830 uint64_t *iokit_mapped_pages
, uint64_t *page_table_pages
, uint64_t *frozen_to_swap_pages
);
832 static void memorystatus_get_task_memory_region_count(task_t task
, uint64_t *count
);
834 static uint32_t memorystatus_build_state(proc_t p
);
835 //static boolean_t memorystatus_issue_pressure_kevent(boolean_t pressured);
837 static boolean_t
memorystatus_kill_top_process(boolean_t any
, boolean_t sort_flag
, uint32_t cause
, os_reason_t jetsam_reason
, int32_t *priority
,
838 uint32_t *errors
, uint64_t *memory_reclaimed
);
839 static boolean_t
memorystatus_kill_processes_aggressive(uint32_t cause
, int aggr_count
, int32_t priority_max
, uint32_t *errors
, uint64_t *memory_reclaimed
);
840 static boolean_t
memorystatus_kill_hiwat_proc(uint32_t *errors
, boolean_t
*purged
, uint64_t *memory_reclaimed
);
842 static boolean_t
memorystatus_kill_process_async(pid_t victim_pid
, uint32_t cause
);
844 /* Priority Band Sorting Routines */
845 static int memorystatus_sort_bucket(unsigned int bucket_index
, int sort_order
);
846 static int memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index
, int coal_sort_order
);
847 static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index
);
848 static int memorystatus_move_list_locked(unsigned int bucket_index
, pid_t
*pid_list
, int list_sz
);
851 typedef int (*cmpfunc_t
)(const void *a
, const void *b
);
852 extern void qsort(void *a
, size_t n
, size_t es
, cmpfunc_t cmp
);
853 static int memstat_asc_cmp(const void *a
, const void *b
);
857 extern unsigned int vm_page_free_count
;
858 extern unsigned int vm_page_active_count
;
859 extern unsigned int vm_page_inactive_count
;
860 extern unsigned int vm_page_throttled_count
;
861 extern unsigned int vm_page_purgeable_count
;
862 extern unsigned int vm_page_wire_count
;
863 extern unsigned int vm_page_speculative_count
;
866 #define MEMORYSTATUS_LOG_AVAILABLE_PAGES memorystatus_available_pages
867 #else /* CONFIG_JETSAM */
868 #define MEMORYSTATUS_LOG_AVAILABLE_PAGES (vm_page_active_count + vm_page_inactive_count + vm_page_free_count + vm_page_speculative_count)
869 #endif /* CONFIG_JETSAM */
870 #if CONFIG_SECLUDED_MEMORY
871 extern unsigned int vm_page_secluded_count
;
872 extern unsigned int vm_page_secluded_count_over_target
;
873 #endif /* CONFIG_SECLUDED_MEMORY */
875 /* Aggressive jetsam pages threshold for sysproc aging policy */
876 unsigned int memorystatus_sysproc_aging_aggr_pages
= 0;
879 unsigned int memorystatus_available_pages
= (unsigned int)-1;
880 unsigned int memorystatus_available_pages_pressure
= 0;
881 unsigned int memorystatus_available_pages_critical
= 0;
882 unsigned int memorystatus_available_pages_critical_base
= 0;
883 unsigned int memorystatus_available_pages_critical_idle_offset
= 0;
885 #if DEVELOPMENT || DEBUG
886 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages
, CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_available_pages
, 0, "");
888 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages
, CTLFLAG_RD
| CTLFLAG_MASKED
| CTLFLAG_LOCKED
, &memorystatus_available_pages
, 0, "");
889 #endif /* DEVELOPMENT || DEBUG */
891 static unsigned int memorystatus_jetsam_policy
= kPolicyDefault
;
892 unsigned int memorystatus_policy_more_free_offset_pages
= 0;
893 static void memorystatus_update_levels_locked(boolean_t critical_only
);
894 static unsigned int memorystatus_thread_wasted_wakeup
= 0;
896 /* Callback into vm_compressor.c to signal that thrashing has been mitigated. */
897 extern void vm_thrashing_jetsam_done(void);
898 static int memorystatus_cmd_set_jetsam_memory_limit(pid_t pid
, int32_t high_water_mark
, __unused
int32_t *retval
, boolean_t is_fatal_limit
);
899 #if DEVELOPMENT || DEBUG
900 static inline uint32_t
901 roundToNearestMB(uint32_t in
)
903 return (in
+ ((1 << 20) - 1)) >> 20;
906 static int memorystatus_cmd_increase_jetsam_task_limit(pid_t pid
, uint32_t byte_increase
);
909 int32_t max_kill_priority
= JETSAM_PRIORITY_MAX
;
911 #else /* CONFIG_JETSAM */
913 uint64_t memorystatus_available_pages
= (uint64_t)-1;
914 uint64_t memorystatus_available_pages_pressure
= (uint64_t)-1;
915 uint64_t memorystatus_available_pages_critical
= (uint64_t)-1;
917 int32_t max_kill_priority
= JETSAM_PRIORITY_IDLE
;
918 #endif /* CONFIG_JETSAM */
920 #if DEVELOPMENT || DEBUG
922 static LCK_GRP_DECLARE(disconnect_page_mappings_lck_grp
, "disconnect_page_mappings");
923 static LCK_MTX_DECLARE(disconnect_page_mappings_mutex
, &disconnect_page_mappings_lck_grp
);
925 extern bool kill_on_no_paging_space
;
926 #endif /* DEVELOPMENT || DEBUG */
931 extern struct knote
*vm_find_knote_from_pid(pid_t
, struct klist
*);
933 #if DEVELOPMENT || DEBUG
935 static unsigned int memorystatus_debug_dump_this_bucket
= 0;
938 memorystatus_debug_dump_bucket_locked(unsigned int bucket_index
)
942 int ledger_limit
= 0;
943 unsigned int b
= bucket_index
;
944 boolean_t traverse_all_buckets
= FALSE
;
946 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
947 traverse_all_buckets
= TRUE
;
950 traverse_all_buckets
= FALSE
;
955 * footprint reported in [pages / MB ]
956 * limits reported as:
957 * L-limit proc's Ledger limit
958 * C-limit proc's Cached limit, should match Ledger
959 * A-limit proc's Active limit
960 * IA-limit proc's Inactive limit
961 * F==Fatal, NF==NonFatal
964 printf("memorystatus_debug_dump ***START*(PAGE_SIZE_64=%llu)**\n", PAGE_SIZE_64
);
965 printf("bucket [pid] [pages / MB] [state] [EP / RP / AP] dirty deadline [L-limit / C-limit / A-limit / IA-limit] name\n");
966 p
= memorystatus_get_first_proc_locked(&b
, traverse_all_buckets
);
968 bytes
= get_task_phys_footprint(p
->task
);
969 task_get_phys_footprint_limit(p
->task
, &ledger_limit
);
970 printf("%2d [%5d] [%5lld /%3lldMB] 0x%-8x [%2d / %2d / %2d] 0x%-3x %10lld [%3d / %3d%s / %3d%s / %3d%s] %s\n",
972 (bytes
/ PAGE_SIZE_64
), /* task's footprint converted from bytes to pages */
973 (bytes
/ (1024ULL * 1024ULL)), /* task's footprint converted from bytes to MB */
974 p
->p_memstat_state
, p
->p_memstat_effectivepriority
, p
->p_memstat_requestedpriority
, p
->p_memstat_assertionpriority
,
975 p
->p_memstat_dirty
, p
->p_memstat_idledeadline
,
977 p
->p_memstat_memlimit
,
978 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"),
979 p
->p_memstat_memlimit_active
,
980 (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
? "F " : "NF"),
981 p
->p_memstat_memlimit_inactive
,
982 (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
? "F " : "NF"),
983 (*p
->p_name
? p
->p_name
: "unknown"));
984 p
= memorystatus_get_next_proc_locked(&b
, p
, traverse_all_buckets
);
986 printf("memorystatus_debug_dump ***END***\n");
990 sysctl_memorystatus_debug_dump_bucket SYSCTL_HANDLER_ARGS
992 #pragma unused(oidp, arg2)
993 int bucket_index
= 0;
995 error
= SYSCTL_OUT(req
, arg1
, sizeof(int));
996 if (error
|| !req
->newptr
) {
999 error
= SYSCTL_IN(req
, &bucket_index
, sizeof(int));
1000 if (error
|| !req
->newptr
) {
1003 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
1005 * All jetsam buckets will be dumped.
1009 * Only a single bucket will be dumped.
1014 memorystatus_debug_dump_bucket_locked(bucket_index
);
1016 memorystatus_debug_dump_this_bucket
= bucket_index
;
1021 * Debug aid to look at jetsam buckets and proc jetsam fields.
1022 * Use this sysctl to act on a particular jetsam bucket.
1023 * Writing the sysctl triggers the dump.
1024 * Usage: sysctl kern.memorystatus_debug_dump_this_bucket=<bucket_index>
1027 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_debug_dump_this_bucket
, CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_debug_dump_this_bucket
, 0, sysctl_memorystatus_debug_dump_bucket
, "I", "");
1030 /* Debug aid to aid determination of limit */
1033 sysctl_memorystatus_highwater_enable SYSCTL_HANDLER_ARGS
1035 #pragma unused(oidp, arg2)
1038 int error
, enable
= 0;
1039 boolean_t use_active
; /* use the active limit and active limit attributes */
1042 error
= SYSCTL_OUT(req
, arg1
, sizeof(int));
1043 if (error
|| !req
->newptr
) {
1047 error
= SYSCTL_IN(req
, &enable
, sizeof(int));
1048 if (error
|| !req
->newptr
) {
1052 if (!(enable
== 0 || enable
== 1)) {
1058 p
= memorystatus_get_first_proc_locked(&b
, TRUE
);
1060 use_active
= proc_jetsam_state_is_active_locked(p
);
1063 if (use_active
== TRUE
) {
1064 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
1066 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
1070 * Disabling limits does not touch the stored variants.
1071 * Set the cached limit fields to system_wide defaults.
1073 p
->p_memstat_memlimit
= -1;
1074 p
->p_memstat_state
|= P_MEMSTAT_FATAL_MEMLIMIT
;
1079 * Enforce the cached limit by writing to the ledger.
1081 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, use_active
, is_fatal
);
1083 p
= memorystatus_get_next_proc_locked(&b
, p
, TRUE
);
1086 memorystatus_highwater_enabled
= enable
;
1093 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_highwater_enabled
, CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_highwater_enabled
, 0, sysctl_memorystatus_highwater_enable
, "I", "");
1095 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_idle_snapshot
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_idle_snapshot
, 0, "");
1098 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical
, CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_available_pages_critical
, 0, "");
1099 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical_base
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_available_pages_critical_base
, 0, "");
1100 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical_idle_offset
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_available_pages_critical_idle_offset
, 0, "");
1101 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_policy_more_free_offset_pages
, CTLFLAG_RW
, &memorystatus_policy_more_free_offset_pages
, 0, "");
1103 static unsigned int memorystatus_jetsam_panic_debug
= 0;
1105 #if VM_PRESSURE_EVENTS
1107 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_pressure
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_available_pages_pressure
, 0, "");
1109 #endif /* VM_PRESSURE_EVENTS */
1111 #endif /* CONFIG_JETSAM */
1113 #endif /* DEVELOPMENT || DEBUG */
1115 extern kern_return_t
kernel_thread_start_priority(thread_continue_t continuation
,
1118 thread_t
*new_thread
);
1120 #if DEVELOPMENT || DEBUG
1123 sysctl_memorystatus_disconnect_page_mappings SYSCTL_HANDLER_ARGS
1125 #pragma unused(arg1, arg2)
1126 int error
= 0, pid
= 0;
1129 error
= sysctl_handle_int(oidp
, &pid
, 0, req
);
1130 if (error
|| !req
->newptr
) {
1134 lck_mtx_lock(&disconnect_page_mappings_mutex
);
1137 vm_pageout_disconnect_all_pages();
1142 error
= task_disconnect_page_mappings(p
->task
);
1153 lck_mtx_unlock(&disconnect_page_mappings_mutex
);
1158 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_disconnect_page_mappings
, CTLTYPE_INT
| CTLFLAG_WR
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
,
1159 0, 0, &sysctl_memorystatus_disconnect_page_mappings
, "I", "");
1161 #endif /* DEVELOPMENT || DEBUG */
1164 * Sorts the given bucket.
1167 * bucket_index - jetsam priority band to be sorted.
1168 * sort_order - JETSAM_SORT_xxx from kern_memorystatus.h
1169 * Currently sort_order is only meaningful when handling
1172 * proc_list_lock must be held by the caller.
1175 memorystatus_sort_bucket_locked(unsigned int bucket_index
, int sort_order
)
1177 LCK_MTX_ASSERT(&proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
1178 if (memstat_bucket
[bucket_index
].count
== 0) {
1182 switch (bucket_index
) {
1183 case JETSAM_PRIORITY_FOREGROUND
:
1184 if (memorystatus_sort_by_largest_coalition_locked(bucket_index
, sort_order
) == 0) {
1186 * Fall back to per process sorting when zero coalitions are found.
1188 memorystatus_sort_by_largest_process_locked(bucket_index
);
1192 memorystatus_sort_by_largest_process_locked(bucket_index
);
1198 * Picks the sorting routine for a given jetsam priority band.
1201 * bucket_index - jetsam priority band to be sorted.
1202 * sort_order - JETSAM_SORT_xxx from kern_memorystatus.h
1203 * Currently sort_order is only meaningful when handling
1211 memorystatus_sort_bucket(unsigned int bucket_index
, int sort_order
)
1213 int coal_sort_order
;
1216 * Verify the jetsam priority
1218 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
1222 #if DEVELOPMENT || DEBUG
1223 if (sort_order
== JETSAM_SORT_DEFAULT
) {
1224 coal_sort_order
= COALITION_SORT_DEFAULT
;
1226 coal_sort_order
= sort_order
; /* only used for testing scenarios */
1229 /* Verify default */
1230 if (sort_order
== JETSAM_SORT_DEFAULT
) {
1231 coal_sort_order
= COALITION_SORT_DEFAULT
;
1238 memorystatus_sort_bucket_locked(bucket_index
, coal_sort_order
);
1245 * Sort processes by size for a single jetsam bucket.
1249 memorystatus_sort_by_largest_process_locked(unsigned int bucket_index
)
1251 proc_t p
= NULL
, insert_after_proc
= NULL
, max_proc
= NULL
;
1252 proc_t next_p
= NULL
, prev_max_proc
= NULL
;
1253 uint32_t pages
= 0, max_pages
= 0;
1254 memstat_bucket_t
*current_bucket
;
1256 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
1260 current_bucket
= &memstat_bucket
[bucket_index
];
1262 p
= TAILQ_FIRST(¤t_bucket
->list
);
1265 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
);
1270 while ((next_p
= TAILQ_NEXT(p
, p_memstat_list
)) != NULL
) {
1271 /* traversing list until we find next largest process */
1273 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
);
1274 if (pages
> max_pages
) {
1280 if (prev_max_proc
!= max_proc
) {
1281 /* found a larger process, place it in the list */
1282 TAILQ_REMOVE(¤t_bucket
->list
, max_proc
, p_memstat_list
);
1283 if (insert_after_proc
== NULL
) {
1284 TAILQ_INSERT_HEAD(¤t_bucket
->list
, max_proc
, p_memstat_list
);
1286 TAILQ_INSERT_AFTER(¤t_bucket
->list
, insert_after_proc
, max_proc
, p_memstat_list
);
1288 prev_max_proc
= max_proc
;
1291 insert_after_proc
= max_proc
;
1293 p
= TAILQ_NEXT(max_proc
, p_memstat_list
);
1298 memorystatus_get_first_proc_locked(unsigned int *bucket_index
, boolean_t search
)
1300 memstat_bucket_t
*current_bucket
;
1303 if ((*bucket_index
) >= MEMSTAT_BUCKET_COUNT
) {
1307 current_bucket
= &memstat_bucket
[*bucket_index
];
1308 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1309 if (!next_p
&& search
) {
1310 while (!next_p
&& (++(*bucket_index
) < MEMSTAT_BUCKET_COUNT
)) {
1311 current_bucket
= &memstat_bucket
[*bucket_index
];
1312 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1320 memorystatus_get_next_proc_locked(unsigned int *bucket_index
, proc_t p
, boolean_t search
)
1322 memstat_bucket_t
*current_bucket
;
1325 if (!p
|| ((*bucket_index
) >= MEMSTAT_BUCKET_COUNT
)) {
1329 next_p
= TAILQ_NEXT(p
, p_memstat_list
);
1330 while (!next_p
&& search
&& (++(*bucket_index
) < MEMSTAT_BUCKET_COUNT
)) {
1331 current_bucket
= &memstat_bucket
[*bucket_index
];
1332 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1339 * Structure to hold state for a jetsam thread.
1340 * Typically there should be a single jetsam thread
1341 * unless parallel jetsam is enabled.
1343 struct jetsam_thread_state
{
1344 uint8_t inited
; /* boolean - if the thread is initialized */
1345 uint8_t limit_to_low_bands
; /* boolean */
1346 int memorystatus_wakeup
; /* wake channel */
1347 int index
; /* jetsam thread index */
1348 thread_t thread
; /* jetsam thread pointer */
1351 /* Maximum number of jetsam threads allowed */
1352 #define JETSAM_THREADS_LIMIT 3
1354 /* Number of active jetsam threads */
1355 _Atomic
int active_jetsam_threads
= 1;
1357 /* Number of maximum jetsam threads configured */
1358 int max_jetsam_threads
= JETSAM_THREADS_LIMIT
;
1361 * Global switch for enabling fast jetsam. Fast jetsam is
1362 * hooked up via the system_override() system call. It has the
1363 * following effects:
1364 * - Raise the jetsam threshold ("clear-the-deck")
1365 * - Enabled parallel jetsam on eligible devices
1368 int fast_jetsam_enabled
= 1;
1370 int fast_jetsam_enabled
= 0;
1371 #endif /* __AMP__ */
1373 #if CONFIG_DIRTYSTATUS_TRACKING
1374 int dirtystatus_tracking_enabled
= 0;
1375 SYSCTL_INT(_kern
, OID_AUTO
, dirtystatus_tracking_enabled
, CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &dirtystatus_tracking_enabled
, 0, "");
1378 /* Routine to find the jetsam state structure for the current jetsam thread */
1379 static inline struct jetsam_thread_state
*
1380 jetsam_current_thread(void)
1382 for (int thr_id
= 0; thr_id
< max_jetsam_threads
; thr_id
++) {
1383 if (jetsam_threads
[thr_id
].thread
== current_thread()) {
1384 return &(jetsam_threads
[thr_id
]);
1391 __private_extern__
void
1392 memorystatus_init(void)
1394 kern_return_t result
;
1398 memorystatus_freeze_jetsam_band
= JETSAM_PRIORITY_UI_SUPPORT
;
1399 memorystatus_frozen_processes_max
= FREEZE_PROCESSES_MAX
;
1400 memorystatus_frozen_shared_mb_max
= ((MAX_FROZEN_SHARED_MB_PERCENT
* max_task_footprint_mb
) / 100); /* 10% of the system wide task limit */
1401 memorystatus_freeze_shared_mb_per_process_max
= (memorystatus_frozen_shared_mb_max
/ 4);
1402 memorystatus_freeze_pages_min
= FREEZE_PAGES_MIN
;
1403 memorystatus_freeze_pages_max
= FREEZE_PAGES_MAX
;
1404 memorystatus_max_frozen_demotions_daily
= MAX_FROZEN_PROCESS_DEMOTIONS
;
1405 memorystatus_thaw_count_demotion_threshold
= MIN_THAW_DEMOTION_THRESHOLD
;
1408 #if DEVELOPMENT || DEBUG
1409 if (kill_on_no_paging_space
) {
1410 max_kill_priority
= JETSAM_PRIORITY_MAX
;
1415 for (i
= 0; i
< MEMSTAT_BUCKET_COUNT
; i
++) {
1416 TAILQ_INIT(&memstat_bucket
[i
].list
);
1417 memstat_bucket
[i
].count
= 0;
1418 memstat_bucket
[i
].relaunch_high_count
= 0;
1420 memorystatus_idle_demotion_call
= thread_call_allocate((thread_call_func_t
)memorystatus_perform_idle_demotion
, NULL
);
1422 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS
* NSEC_PER_SEC
, &memorystatus_sysprocs_idle_delay_time
);
1423 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS
* NSEC_PER_SEC
, &memorystatus_apps_idle_delay_time
);
1426 /* Apply overrides */
1427 if (!PE_parse_boot_argn("kern.jetsam_delta", &delta_percentage
, sizeof(delta_percentage
))) {
1428 PE_get_default("kern.jetsam_delta", &delta_percentage
, sizeof(delta_percentage
));
1430 if (delta_percentage
== 0) {
1431 delta_percentage
= 5;
1433 if (max_mem
> config_jetsam_large_memory_cutoff
) {
1434 critical_threshold_percentage
= critical_threshold_percentage_larger_devices
;
1435 delta_percentage
= delta_percentage_larger_devices
;
1437 assert(delta_percentage
< 100);
1438 if (!PE_parse_boot_argn("kern.jetsam_critical_threshold", &critical_threshold_percentage
, sizeof(critical_threshold_percentage
))) {
1439 PE_get_default("kern.jetsam_critical_threshold", &critical_threshold_percentage
, sizeof(critical_threshold_percentage
));
1441 assert(critical_threshold_percentage
< 100);
1442 PE_get_default("kern.jetsam_idle_offset", &idle_offset_percentage
, sizeof(idle_offset_percentage
));
1443 assert(idle_offset_percentage
< 100);
1444 PE_get_default("kern.jetsam_pressure_threshold", &pressure_threshold_percentage
, sizeof(pressure_threshold_percentage
));
1445 assert(pressure_threshold_percentage
< 100);
1446 PE_get_default("kern.jetsam_freeze_threshold", &freeze_threshold_percentage
, sizeof(freeze_threshold_percentage
));
1447 assert(freeze_threshold_percentage
< 100);
1450 if (!PE_parse_boot_argn("jetsam_aging_policy", &jetsam_aging_policy
,
1451 sizeof(jetsam_aging_policy
))) {
1452 if (!PE_get_default("kern.jetsam_aging_policy", &jetsam_aging_policy
,
1453 sizeof(jetsam_aging_policy
))) {
1454 jetsam_aging_policy
= kJetsamAgingPolicySysProcsReclaimedFirst
;
1458 if (jetsam_aging_policy
> kJetsamAgingPolicyMax
) {
1459 jetsam_aging_policy
= kJetsamAgingPolicySysProcsReclaimedFirst
;
1462 switch (jetsam_aging_policy
) {
1463 case kJetsamAgingPolicyNone
:
1464 system_procs_aging_band
= JETSAM_PRIORITY_IDLE
;
1465 applications_aging_band
= JETSAM_PRIORITY_IDLE
;
1468 case kJetsamAgingPolicyLegacy
:
1470 * Legacy behavior where some daemons get a 10s protection once
1471 * AND only before the first clean->dirty->clean transition before
1472 * going into IDLE band.
1474 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1475 applications_aging_band
= JETSAM_PRIORITY_IDLE
;
1478 case kJetsamAgingPolicySysProcsReclaimedFirst
:
1479 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1480 applications_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
1483 case kJetsamAgingPolicyAppsReclaimedFirst
:
1484 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
1485 applications_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1493 * The aging bands cannot overlap with the JETSAM_PRIORITY_ELEVATED_INACTIVE
1494 * band and must be below it in priority. This is so that we don't have to make
1495 * our 'aging' code worry about a mix of processes, some of which need to age
1496 * and some others that need to stay elevated in the jetsam bands.
1498 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE
> system_procs_aging_band
);
1499 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE
> applications_aging_band
);
1501 /* Take snapshots for idle-exit kills by default? First check the boot-arg... */
1502 if (!PE_parse_boot_argn("jetsam_idle_snapshot", &memorystatus_idle_snapshot
, sizeof(memorystatus_idle_snapshot
))) {
1503 /* ...no boot-arg, so check the device tree */
1504 PE_get_default("kern.jetsam_idle_snapshot", &memorystatus_idle_snapshot
, sizeof(memorystatus_idle_snapshot
));
1507 memorystatus_delta
= (unsigned int) (delta_percentage
* atop_64(max_mem
) / 100);
1508 memorystatus_available_pages_critical_idle_offset
= (unsigned int) (idle_offset_percentage
* atop_64(max_mem
) / 100);
1509 memorystatus_available_pages_critical_base
= (unsigned int) ((critical_threshold_percentage
/ delta_percentage
) * memorystatus_delta
);
1510 memorystatus_policy_more_free_offset_pages
= (unsigned int) ((policy_more_free_offset_percentage
/ delta_percentage
) * memorystatus_delta
);
1511 memorystatus_sysproc_aging_aggr_pages
= (unsigned int) (sysproc_aging_aggr_threshold_percentage
* atop_64(max_mem
) / 100);
1513 /* Jetsam Loop Detection */
1514 if (max_mem
<= (512 * 1024 * 1024)) {
1515 /* 512 MB devices */
1516 memorystatus_jld_eval_period_msecs
= 8000; /* 8000 msecs == 8 second window */
1518 /* 1GB and larger devices */
1519 memorystatus_jld_eval_period_msecs
= 6000; /* 6000 msecs == 6 second window */
1522 memorystatus_jld_enabled
= TRUE
;
1524 /* No contention at this point */
1525 memorystatus_update_levels_locked(FALSE
);
1527 #endif /* CONFIG_JETSAM */
1530 if (!PE_parse_boot_argn("entitled_max_task_pmem", &memorystatus_entitled_max_task_footprint_mb
,
1531 sizeof(memorystatus_entitled_max_task_footprint_mb
))) {
1532 if (!PE_get_default("kern.entitled_max_task_pmem", &memorystatus_entitled_max_task_footprint_mb
,
1533 sizeof(memorystatus_entitled_max_task_footprint_mb
))) {
1534 // entitled_max_task_pmem is not supported on this system.
1535 memorystatus_entitled_max_task_footprint_mb
= 0;
1538 if (memorystatus_entitled_max_task_footprint_mb
> max_mem
/ (1UL << 20) || memorystatus_entitled_max_task_footprint_mb
< 0) {
1539 os_log_with_startup_serial(OS_LOG_DEFAULT
, "Invalid value (%d) for entitled_max_task_pmem. Setting to 0",
1540 memorystatus_entitled_max_task_footprint_mb
);
1542 #endif /* __arm64__ */
1544 memorystatus_jetsam_snapshot_max
= maxproc
;
1546 memorystatus_jetsam_snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
1547 (sizeof(memorystatus_jetsam_snapshot_entry_t
) * memorystatus_jetsam_snapshot_max
);
1549 memorystatus_jetsam_snapshot
= kalloc_flags(memorystatus_jetsam_snapshot_size
, Z_WAITOK
| Z_ZERO
);
1550 if (!memorystatus_jetsam_snapshot
) {
1551 panic("Could not allocate memorystatus_jetsam_snapshot");
1554 memorystatus_jetsam_snapshot_copy
= kalloc_flags(memorystatus_jetsam_snapshot_size
, Z_WAITOK
| Z_ZERO
);
1555 if (!memorystatus_jetsam_snapshot_copy
) {
1556 panic("Could not allocate memorystatus_jetsam_snapshot_copy");
1560 memorystatus_jetsam_snapshot_freezer_max
= memorystatus_jetsam_snapshot_max
/ JETSAM_SNAPSHOT_FREEZER_MAX_FACTOR
;
1561 memorystatus_jetsam_snapshot_freezer_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
1562 (sizeof(memorystatus_jetsam_snapshot_entry_t
) * memorystatus_jetsam_snapshot_freezer_max
);
1564 memorystatus_jetsam_snapshot_freezer
= kalloc_flags(memorystatus_jetsam_snapshot_freezer_size
, Z_WAITOK
| Z_ZERO
);
1565 if (!memorystatus_jetsam_snapshot_freezer
) {
1566 panic("Could not allocate memorystatus_jetsam_snapshot_freezer");
1568 #endif /* CONFIG_FREEZE */
1570 nanoseconds_to_absolutetime((uint64_t)JETSAM_SNAPSHOT_TIMEOUT_SECS
* NSEC_PER_SEC
, &memorystatus_jetsam_snapshot_timeout
);
1572 memset(&memorystatus_at_boot_snapshot
, 0, sizeof(memorystatus_jetsam_snapshot_t
));
1575 memorystatus_freeze_threshold
= (unsigned int) ((freeze_threshold_percentage
/ delta_percentage
) * memorystatus_delta
);
1578 /* Check the boot-arg to see if fast jetsam is allowed */
1579 if (!PE_parse_boot_argn("fast_jetsam_enabled", &fast_jetsam_enabled
, sizeof(fast_jetsam_enabled
))) {
1580 fast_jetsam_enabled
= 0;
1583 /* Check the boot-arg to configure the maximum number of jetsam threads */
1584 if (!PE_parse_boot_argn("max_jetsam_threads", &max_jetsam_threads
, sizeof(max_jetsam_threads
))) {
1585 max_jetsam_threads
= JETSAM_THREADS_LIMIT
;
1588 /* Restrict the maximum number of jetsam threads to JETSAM_THREADS_LIMIT */
1589 if (max_jetsam_threads
> JETSAM_THREADS_LIMIT
) {
1590 max_jetsam_threads
= JETSAM_THREADS_LIMIT
;
1593 /* For low CPU systems disable fast jetsam mechanism */
1594 if (vm_pageout_state
.vm_restricted_to_single_processor
== TRUE
) {
1595 max_jetsam_threads
= 1;
1596 fast_jetsam_enabled
= 0;
1599 /* Initialize the jetsam_threads state array */
1600 jetsam_threads
= zalloc_permanent(sizeof(struct jetsam_thread_state
) *
1601 max_jetsam_threads
, ZALIGN(struct jetsam_thread_state
));
1603 /* Initialize all the jetsam threads */
1604 for (i
= 0; i
< max_jetsam_threads
; i
++) {
1605 jetsam_threads
[i
].inited
= FALSE
;
1606 jetsam_threads
[i
].index
= i
;
1607 result
= kernel_thread_start_priority(memorystatus_thread
, NULL
, 95 /* MAXPRI_KERNEL */, &jetsam_threads
[i
].thread
);
1608 if (result
!= KERN_SUCCESS
) {
1609 panic("Could not create memorystatus_thread %d", i
);
1611 thread_deallocate(jetsam_threads
[i
].thread
);
1615 /* Centralised for the purposes of allowing panic-on-jetsam */
1617 vm_run_compactor(void);
1619 vm_wake_compactor_swapper(void);
1622 * The jetsam no frills kill call
1623 * Return: 0 on success
1624 * error code on failure (EINVAL...)
1627 jetsam_do_kill(proc_t p
, int jetsam_flags
, os_reason_t jetsam_reason
)
1630 error
= exit_with_reason(p
, W_EXITCODE(0, SIGKILL
), (int *)NULL
, FALSE
, FALSE
, jetsam_flags
, jetsam_reason
);
1635 * Wrapper for processes exiting with memorystatus details
1638 memorystatus_do_kill(proc_t p
, uint32_t cause
, os_reason_t jetsam_reason
, uint64_t *footprint_of_killed_proc
)
1641 __unused pid_t victim_pid
= p
->p_pid
;
1642 uint64_t footprint
= get_task_phys_footprint(p
->task
);
1643 #if (KDEBUG_LEVEL >= KDEBUG_LEVEL_STANDARD)
1644 int32_t memstat_effectivepriority
= p
->p_memstat_effectivepriority
;
1645 #endif /* (KDEBUG_LEVEL >= KDEBUG_LEVEL_STANDARD) */
1647 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DO_KILL
)) | DBG_FUNC_START
,
1648 victim_pid
, cause
, vm_page_free_count
, footprint
, 0);
1649 DTRACE_MEMORYSTATUS4(memorystatus_do_kill
, proc_t
, p
, os_reason_t
, jetsam_reason
, uint32_t, cause
, uint64_t, footprint
);
1650 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
1651 if (memorystatus_jetsam_panic_debug
& (1 << cause
)) {
1652 panic("memorystatus_do_kill(): jetsam debug panic (cause: %d)", cause
);
1655 #pragma unused(cause)
1658 if (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
) {
1659 printf("memorystatus: killing process %d [%s] in high band %s (%d) - memorystatus_available_pages: %llu\n", p
->p_pid
,
1660 (*p
->p_name
? p
->p_name
: "unknown"),
1661 memorystatus_priority_band_name(p
->p_memstat_effectivepriority
), p
->p_memstat_effectivepriority
,
1662 (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES
);
1666 * The jetsam_reason (os_reason_t) has enough information about the kill cause.
1667 * We don't really need jetsam_flags anymore, so it's okay that not all possible kill causes have been mapped.
1669 int jetsam_flags
= P_LTERM_JETSAM
;
1671 case kMemorystatusKilledHiwat
: jetsam_flags
|= P_JETSAM_HIWAT
; break;
1672 case kMemorystatusKilledVnodes
: jetsam_flags
|= P_JETSAM_VNODE
; break;
1673 case kMemorystatusKilledVMPageShortage
: jetsam_flags
|= P_JETSAM_VMPAGESHORTAGE
; break;
1674 case kMemorystatusKilledVMCompressorThrashing
:
1675 case kMemorystatusKilledVMCompressorSpaceShortage
: jetsam_flags
|= P_JETSAM_VMTHRASHING
; break;
1676 case kMemorystatusKilledFCThrashing
: jetsam_flags
|= P_JETSAM_FCTHRASHING
; break;
1677 case kMemorystatusKilledPerProcessLimit
: jetsam_flags
|= P_JETSAM_PID
; break;
1678 case kMemorystatusKilledIdleExit
: jetsam_flags
|= P_JETSAM_IDLEEXIT
; break;
1680 error
= jetsam_do_kill(p
, jetsam_flags
, jetsam_reason
);
1681 *footprint_of_killed_proc
= ((error
== 0) ? footprint
: 0);
1683 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DO_KILL
)) | DBG_FUNC_END
,
1684 victim_pid
, memstat_effectivepriority
, vm_page_free_count
, error
, 0);
1686 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_COMPACTOR_RUN
)) | DBG_FUNC_START
,
1687 victim_pid
, cause
, vm_page_free_count
, *footprint_of_killed_proc
, 0);
1689 if (jetsam_reason
->osr_code
== JETSAM_REASON_VNODE
) {
1691 * vnode jetsams are syncronous and not caused by memory pressure.
1692 * Running the compactor on this thread adds significant latency to the filesystem operation
1693 * that triggered this jetsam.
1694 * Kick of compactor thread asyncronously instead.
1696 vm_wake_compactor_swapper();
1701 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_COMPACTOR_RUN
)) | DBG_FUNC_END
,
1702 victim_pid
, cause
, vm_page_free_count
, 0, 0);
1712 memorystatus_check_levels_locked(void)
1716 memorystatus_update_levels_locked(TRUE
);
1717 #else /* CONFIG_JETSAM */
1719 * Nothing to do here currently since we update
1720 * memorystatus_available_pages in vm_pressure_response.
1722 #endif /* CONFIG_JETSAM */
1726 * Pin a process to a particular jetsam band when it is in the background i.e. not doing active work.
1727 * For an application: that means no longer in the FG band
1728 * For a daemon: that means no longer in its 'requested' jetsam priority band
1732 memorystatus_update_inactive_jetsam_priority_band(pid_t pid
, uint32_t op_flags
, int jetsam_prio
, boolean_t effective_now
)
1735 boolean_t enable
= FALSE
;
1738 if (op_flags
== MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE
) {
1740 } else if (op_flags
== MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE
) {
1748 if ((enable
&& ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) == P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) ||
1749 (!enable
&& ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) == 0))) {
1751 * No change in state.
1757 p
->p_memstat_state
|= P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
;
1758 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1760 if (effective_now
) {
1761 if (p
->p_memstat_effectivepriority
< jetsam_prio
) {
1762 if (memorystatus_highwater_enabled
) {
1764 * Process is about to transition from
1765 * inactive --> active
1766 * assign active state
1769 boolean_t use_active
= TRUE
;
1770 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
1771 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, use_active
, is_fatal
);
1773 memorystatus_update_priority_locked(p
, jetsam_prio
, FALSE
, FALSE
);
1776 if (isProcessInAgingBands(p
)) {
1777 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1781 p
->p_memstat_state
&= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
;
1782 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1784 if (effective_now
) {
1785 if (p
->p_memstat_effectivepriority
== jetsam_prio
) {
1786 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1789 if (isProcessInAgingBands(p
)) {
1790 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1807 memorystatus_perform_idle_demotion(__unused
void *spare1
, __unused
void *spare2
)
1810 uint64_t current_time
= 0, idle_delay_time
= 0;
1811 int demote_prio_band
= 0;
1812 memstat_bucket_t
*demotion_bucket
;
1814 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion()\n");
1816 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_IDLE_DEMOTE
) | DBG_FUNC_START
, 0, 0, 0, 0, 0);
1818 current_time
= mach_absolute_time();
1822 demote_prio_band
= JETSAM_PRIORITY_IDLE
+ 1;
1824 for (; demote_prio_band
< JETSAM_PRIORITY_MAX
; demote_prio_band
++) {
1825 if (demote_prio_band
!= system_procs_aging_band
&& demote_prio_band
!= applications_aging_band
) {
1829 demotion_bucket
= &memstat_bucket
[demote_prio_band
];
1830 p
= TAILQ_FIRST(&demotion_bucket
->list
);
1833 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion() found %d\n", p
->p_pid
);
1835 assert(p
->p_memstat_idledeadline
);
1837 assert(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
);
1839 if (current_time
>= p
->p_memstat_idledeadline
) {
1840 if ((isSysProc(p
) &&
1841 ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
| P_DIRTY_IS_DIRTY
)) != P_DIRTY_IDLE_EXIT_ENABLED
)) || /* system proc marked dirty*/
1842 task_has_assertions((struct task
*)(p
->task
))) { /* has outstanding assertions which might indicate outstanding work too */
1843 idle_delay_time
= (isSysProc(p
)) ? memorystatus_sysprocs_idle_time(p
) : memorystatus_apps_idle_time(p
);
1845 p
->p_memstat_idledeadline
+= idle_delay_time
;
1846 p
= TAILQ_NEXT(p
, p_memstat_list
);
1848 proc_t next_proc
= NULL
;
1850 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
1851 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1853 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, false, true);
1859 // No further candidates
1865 memorystatus_reschedule_idle_demotion_locked();
1869 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_IDLE_DEMOTE
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
1873 memorystatus_schedule_idle_demotion_locked(proc_t p
, boolean_t set_state
)
1875 boolean_t present_in_sysprocs_aging_bucket
= FALSE
;
1876 boolean_t present_in_apps_aging_bucket
= FALSE
;
1877 uint64_t idle_delay_time
= 0;
1879 if (jetsam_aging_policy
== kJetsamAgingPolicyNone
) {
1883 if ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) ||
1884 (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
)) {
1886 * This process isn't going to be making the trip to the lower bands.
1891 if (isProcessInAgingBands(p
)) {
1892 if (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) {
1893 assert((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) != P_DIRTY_AGING_IN_PROGRESS
);
1896 if (isSysProc(p
) && system_procs_aging_band
) {
1897 present_in_sysprocs_aging_bucket
= TRUE
;
1898 } else if (isApp(p
) && applications_aging_band
) {
1899 present_in_apps_aging_bucket
= TRUE
;
1903 assert(!present_in_sysprocs_aging_bucket
);
1904 assert(!present_in_apps_aging_bucket
);
1906 MEMORYSTATUS_DEBUG(1, "memorystatus_schedule_idle_demotion_locked: scheduling demotion to idle band for pid %d (dirty:0x%x, set_state %d, demotions %d).\n",
1907 p
->p_pid
, p
->p_memstat_dirty
, set_state
, (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
));
1910 assert((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
);
1913 idle_delay_time
= (isSysProc(p
)) ? memorystatus_sysprocs_idle_time(p
) : memorystatus_apps_idle_time(p
);
1915 p
->p_memstat_dirty
|= P_DIRTY_AGING_IN_PROGRESS
;
1916 p
->p_memstat_idledeadline
= mach_absolute_time() + idle_delay_time
;
1919 assert(p
->p_memstat_idledeadline
);
1921 if (isSysProc(p
) && present_in_sysprocs_aging_bucket
== FALSE
) {
1922 memorystatus_scheduled_idle_demotions_sysprocs
++;
1923 } else if (isApp(p
) && present_in_apps_aging_bucket
== FALSE
) {
1924 memorystatus_scheduled_idle_demotions_apps
++;
1929 memorystatus_invalidate_idle_demotion_locked(proc_t p
, boolean_t clear_state
)
1931 boolean_t present_in_sysprocs_aging_bucket
= FALSE
;
1932 boolean_t present_in_apps_aging_bucket
= FALSE
;
1934 if (!system_procs_aging_band
&& !applications_aging_band
) {
1938 if ((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) == 0) {
1942 if (isProcessInAgingBands(p
)) {
1943 if (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) {
1944 assert((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) == P_DIRTY_AGING_IN_PROGRESS
);
1947 if (isSysProc(p
) && system_procs_aging_band
) {
1948 assert(p
->p_memstat_effectivepriority
== system_procs_aging_band
);
1949 assert(p
->p_memstat_idledeadline
);
1950 present_in_sysprocs_aging_bucket
= TRUE
;
1951 } else if (isApp(p
) && applications_aging_band
) {
1952 assert(p
->p_memstat_effectivepriority
== applications_aging_band
);
1953 assert(p
->p_memstat_idledeadline
);
1954 present_in_apps_aging_bucket
= TRUE
;
1958 MEMORYSTATUS_DEBUG(1, "memorystatus_invalidate_idle_demotion(): invalidating demotion to idle band for pid %d (clear_state %d, demotions %d).\n",
1959 p
->p_pid
, clear_state
, (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
));
1963 p
->p_memstat_idledeadline
= 0;
1964 p
->p_memstat_dirty
&= ~P_DIRTY_AGING_IN_PROGRESS
;
1967 if (isSysProc(p
) && present_in_sysprocs_aging_bucket
== TRUE
) {
1968 memorystatus_scheduled_idle_demotions_sysprocs
--;
1969 assert(memorystatus_scheduled_idle_demotions_sysprocs
>= 0);
1970 } else if (isApp(p
) && present_in_apps_aging_bucket
== TRUE
) {
1971 memorystatus_scheduled_idle_demotions_apps
--;
1972 assert(memorystatus_scheduled_idle_demotions_apps
>= 0);
1975 assert((memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
) >= 0);
1979 memorystatus_reschedule_idle_demotion_locked(void)
1981 if (0 == (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
)) {
1982 if (memstat_idle_demotion_deadline
) {
1983 /* Transitioned 1->0, so cancel next call */
1984 thread_call_cancel(memorystatus_idle_demotion_call
);
1985 memstat_idle_demotion_deadline
= 0;
1988 memstat_bucket_t
*demotion_bucket
;
1989 proc_t p
= NULL
, p1
= NULL
, p2
= NULL
;
1991 if (system_procs_aging_band
) {
1992 demotion_bucket
= &memstat_bucket
[system_procs_aging_band
];
1993 p1
= TAILQ_FIRST(&demotion_bucket
->list
);
1998 if (applications_aging_band
) {
1999 demotion_bucket
= &memstat_bucket
[applications_aging_band
];
2000 p2
= TAILQ_FIRST(&demotion_bucket
->list
);
2003 p
= (p1
->p_memstat_idledeadline
> p2
->p_memstat_idledeadline
) ? p2
: p1
;
2005 p
= (p1
== NULL
) ? p2
: p1
;
2012 assert(p
&& p
->p_memstat_idledeadline
);
2013 if (memstat_idle_demotion_deadline
!= p
->p_memstat_idledeadline
) {
2014 thread_call_enter_delayed(memorystatus_idle_demotion_call
, p
->p_memstat_idledeadline
);
2015 memstat_idle_demotion_deadline
= p
->p_memstat_idledeadline
;
2026 memorystatus_add(proc_t p
, boolean_t locked
)
2028 memstat_bucket_t
*bucket
;
2030 MEMORYSTATUS_DEBUG(1, "memorystatus_list_add(): adding pid %d with priority %d.\n", p
->p_pid
, p
->p_memstat_effectivepriority
);
2036 DTRACE_MEMORYSTATUS2(memorystatus_add
, proc_t
, p
, int32_t, p
->p_memstat_effectivepriority
);
2038 /* Processes marked internal do not have priority tracked */
2039 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
2044 * Opt out system processes from being frozen by default.
2045 * For coalition-based freezing, we only want to freeze sysprocs that have specifically opted in.
2048 p
->p_memstat_state
|= P_MEMSTAT_FREEZE_DISABLED
;
2051 memorystatus_freeze_init_proc(p
);
2054 bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
2056 if (isSysProc(p
) && system_procs_aging_band
&& (p
->p_memstat_effectivepriority
== system_procs_aging_band
)) {
2057 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_sysprocs
- 1);
2058 } else if (isApp(p
) && applications_aging_band
&& (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
2059 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_apps
- 1);
2060 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2062 * Entering the idle band.
2063 * Record idle start time.
2065 p
->p_memstat_idle_start
= mach_absolute_time();
2068 TAILQ_INSERT_TAIL(&bucket
->list
, p
, p_memstat_list
);
2070 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
2071 bucket
->relaunch_high_count
++;
2074 memorystatus_list_count
++;
2076 memorystatus_check_levels_locked();
2088 * Moves a process from one jetsam bucket to another.
2089 * which changes the LRU position of the process.
2091 * Monitors transition between buckets and if necessary
2092 * will update cached memory limits accordingly.
2094 * skip_demotion_check:
2095 * - if the 'jetsam aging policy' is NOT 'legacy':
2096 * When this flag is TRUE, it means we are going
2097 * to age the ripe processes out of the aging bands and into the
2098 * IDLE band and apply their inactive memory limits.
2100 * - if the 'jetsam aging policy' is 'legacy':
2101 * When this flag is TRUE, it might mean the above aging mechanism
2103 * It might be that we have a process that has used up its 'idle deferral'
2104 * stay that is given to it once per lifetime. And in this case, the process
2105 * won't be going through any aging codepaths. But we still need to apply
2106 * the right inactive limits and so we explicitly set this to TRUE if the
2107 * new priority for the process is the IDLE band.
2110 memorystatus_update_priority_locked(proc_t p
, int priority
, boolean_t head_insert
, boolean_t skip_demotion_check
)
2112 memstat_bucket_t
*old_bucket
, *new_bucket
;
2114 assert(priority
< MEMSTAT_BUCKET_COUNT
);
2116 /* Ensure that exit isn't underway, leaving the proc retained but removed from its bucket */
2117 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2121 MEMORYSTATUS_DEBUG(1, "memorystatus_update_priority_locked(): setting %s(%d) to priority %d, inserting at %s\n",
2122 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
, priority
, head_insert
? "head" : "tail");
2124 DTRACE_MEMORYSTATUS3(memorystatus_update_priority
, proc_t
, p
, int32_t, p
->p_memstat_effectivepriority
, int, priority
);
2126 old_bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
2128 if (skip_demotion_check
== FALSE
) {
2131 * For system processes, the memorystatus_dirty_* routines take care of adding/removing
2132 * the processes from the aging bands and balancing the demotion counts.
2133 * We can, however, override that if the process has an 'elevated inactive jetsam band' attribute.
2136 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
2138 * 2 types of processes can use the non-standard elevated inactive band:
2139 * - Frozen processes that always land in memorystatus_freeze_jetsam_band
2141 * - processes that specifically opt-in to the elevated inactive support e.g. docked processes.
2144 if (p
->p_memstat_state
& P_MEMSTAT_FROZEN
) {
2145 if (priority
<= memorystatus_freeze_jetsam_band
) {
2146 priority
= memorystatus_freeze_jetsam_band
;
2149 #endif /* CONFIG_FREEZE */
2151 if (priority
<= JETSAM_PRIORITY_ELEVATED_INACTIVE
) {
2152 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2155 assert(!(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
));
2157 } else if (isApp(p
)) {
2159 * Check to see if the application is being lowered in jetsam priority. If so, and:
2160 * - it has an 'elevated inactive jetsam band' attribute, then put it in the appropriate band.
2161 * - it is a normal application, then let it age in the aging band if that policy is in effect.
2164 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
2166 if (p
->p_memstat_state
& P_MEMSTAT_FROZEN
) {
2167 if (priority
<= memorystatus_freeze_jetsam_band
) {
2168 priority
= memorystatus_freeze_jetsam_band
;
2171 #endif /* CONFIG_FREEZE */
2173 if (priority
<= JETSAM_PRIORITY_ELEVATED_INACTIVE
) {
2174 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2178 if (applications_aging_band
) {
2179 if (p
->p_memstat_effectivepriority
== applications_aging_band
) {
2180 assert(old_bucket
->count
== (memorystatus_scheduled_idle_demotions_apps
+ 1));
2183 if ((jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) && (priority
<= applications_aging_band
)) {
2184 assert(!(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
));
2185 priority
= applications_aging_band
;
2186 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2193 if ((system_procs_aging_band
&& (priority
== system_procs_aging_band
)) || (applications_aging_band
&& (priority
== applications_aging_band
))) {
2194 assert(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
);
2197 #if DEVELOPMENT || DEBUG
2198 if (priority
== JETSAM_PRIORITY_IDLE
&& /* if the process is on its way into the IDLE band */
2199 skip_demotion_check
== FALSE
&& /* and it isn't via the path that will set the INACTIVE memlimits */
2200 (p
->p_memstat_dirty
& P_DIRTY_TRACK
) && /* and it has 'DIRTY' tracking enabled */
2201 ((p
->p_memstat_memlimit
!= p
->p_memstat_memlimit_inactive
) || /* and we notice that the current limit isn't the right value (inactive) */
2202 ((p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
) ? (!(p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
)) : (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
)))) { /* OR type (fatal vs non-fatal) */
2203 printf("memorystatus_update_priority_locked: on %s with 0x%x, prio: %d and %d\n", p
->p_name
, p
->p_memstat_state
, priority
, p
->p_memstat_memlimit
); /* then we must catch this */
2205 #endif /* DEVELOPMENT || DEBUG */
2207 TAILQ_REMOVE(&old_bucket
->list
, p
, p_memstat_list
);
2208 old_bucket
->count
--;
2209 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
2210 old_bucket
->relaunch_high_count
--;
2213 new_bucket
= &memstat_bucket
[priority
];
2215 TAILQ_INSERT_HEAD(&new_bucket
->list
, p
, p_memstat_list
);
2217 TAILQ_INSERT_TAIL(&new_bucket
->list
, p
, p_memstat_list
);
2219 new_bucket
->count
++;
2220 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
2221 new_bucket
->relaunch_high_count
++;
2224 if (memorystatus_highwater_enabled
) {
2226 boolean_t use_active
;
2229 * If cached limit data is updated, then the limits
2230 * will be enforced by writing to the ledgers.
2232 boolean_t ledger_update_needed
= TRUE
;
2235 * Here, we must update the cached memory limit if the task
2236 * is transitioning between:
2237 * active <--> inactive
2240 * dirty <--> clean is ignored
2242 * We bypass non-idle processes that have opted into dirty tracking because
2243 * a move between buckets does not imply a transition between the
2244 * dirty <--> clean state.
2247 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
2248 if (skip_demotion_check
== TRUE
&& priority
== JETSAM_PRIORITY_IDLE
) {
2249 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2252 ledger_update_needed
= FALSE
;
2254 } else if ((priority
>= JETSAM_PRIORITY_FOREGROUND
) && (p
->p_memstat_effectivepriority
< JETSAM_PRIORITY_FOREGROUND
)) {
2256 * inactive --> active
2258 * assign active state
2260 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2262 } else if ((priority
< JETSAM_PRIORITY_FOREGROUND
) && (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
)) {
2264 * active --> inactive
2266 * assign inactive state
2268 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2272 * The transition between jetsam priority buckets apparently did
2273 * not affect active/inactive state.
2274 * This is not unusual... especially during startup when
2275 * processes are getting established in their respective bands.
2277 ledger_update_needed
= FALSE
;
2281 * Enforce the new limits by writing to the ledger
2283 if (ledger_update_needed
) {
2284 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, use_active
, is_fatal
);
2286 MEMORYSTATUS_DEBUG(3, "memorystatus_update_priority_locked: new limit on pid %d (%dMB %s) priority old --> new (%d --> %d) dirty?=0x%x %s\n",
2287 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
2288 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, priority
, p
->p_memstat_dirty
,
2289 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
2294 * Record idle start or idle delta.
2296 if (p
->p_memstat_effectivepriority
== priority
) {
2298 * This process is not transitioning between
2299 * jetsam priority buckets. Do nothing.
2301 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2304 * Transitioning out of the idle priority bucket.
2305 * Record idle delta.
2307 assert(p
->p_memstat_idle_start
!= 0);
2308 now
= mach_absolute_time();
2309 if (now
> p
->p_memstat_idle_start
) {
2310 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
2314 * About to become active and so memory footprint could change.
2315 * So mark it eligible for freeze-considerations next time around.
2317 if (p
->p_memstat_state
& P_MEMSTAT_FREEZE_IGNORE
) {
2318 p
->p_memstat_state
&= ~P_MEMSTAT_FREEZE_IGNORE
;
2320 } else if (priority
== JETSAM_PRIORITY_IDLE
) {
2322 * Transitioning into the idle priority bucket.
2323 * Record idle start.
2325 p
->p_memstat_idle_start
= mach_absolute_time();
2328 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CHANGE_PRIORITY
), p
->p_pid
, priority
, p
->p_memstat_effectivepriority
, 0, 0);
2330 p
->p_memstat_effectivepriority
= priority
;
2332 #if CONFIG_SECLUDED_MEMORY
2333 if (secluded_for_apps
&&
2334 task_could_use_secluded_mem(p
->task
)) {
2335 task_set_can_use_secluded_mem(
2337 (priority
>= JETSAM_PRIORITY_FOREGROUND
));
2339 #endif /* CONFIG_SECLUDED_MEMORY */
2341 memorystatus_check_levels_locked();
2345 memorystatus_relaunch_flags_update(proc_t p
, int relaunch_flags
)
2347 p
->p_memstat_relaunch_flags
= relaunch_flags
;
2348 KDBG(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_RELAUNCH_FLAGS
), p
->p_pid
, relaunch_flags
, 0, 0, 0);
2354 * Description: Update the jetsam priority and memory limit attributes for a given process.
2357 * p init this process's jetsam information.
2358 * priority The jetsam priority band
2359 * user_data user specific data, unused by the kernel
2360 * is_assertion When true, a priority update is driven by an assertion.
2361 * effective guards against race if process's update already occurred
2362 * update_memlimit When true we know this is the init step via the posix_spawn path.
2364 * memlimit_active Value in megabytes; The monitored footprint level while the
2365 * process is active. Exceeding it may result in termination
2366 * based on it's associated fatal flag.
2368 * memlimit_active_is_fatal When a process is active and exceeds its memory footprint,
2369 * this describes whether or not it should be immediately fatal.
2371 * memlimit_inactive Value in megabytes; The monitored footprint level while the
2372 * process is inactive. Exceeding it may result in termination
2373 * based on it's associated fatal flag.
2375 * memlimit_inactive_is_fatal When a process is inactive and exceeds its memory footprint,
2376 * this describes whether or not it should be immediatly fatal.
2378 * Returns: 0 Success
2383 memorystatus_update(proc_t p
, int priority
, uint64_t user_data
, boolean_t is_assertion
, boolean_t effective
, boolean_t update_memlimit
,
2384 int32_t memlimit_active
, boolean_t memlimit_active_is_fatal
,
2385 int32_t memlimit_inactive
, boolean_t memlimit_inactive_is_fatal
)
2388 boolean_t head_insert
= false;
2390 MEMORYSTATUS_DEBUG(1, "memorystatus_update: changing (%s) pid %d: priority %d, user_data 0x%llx\n", (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
, priority
, user_data
);
2392 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_UPDATE
) | DBG_FUNC_START
, p
->p_pid
, priority
, user_data
, effective
, 0);
2394 if (priority
== -1) {
2395 /* Use as shorthand for default priority */
2396 priority
= JETSAM_PRIORITY_DEFAULT
;
2397 } else if ((priority
== system_procs_aging_band
) || (priority
== applications_aging_band
)) {
2398 /* Both the aging bands are reserved for internal use; if requested, adjust to JETSAM_PRIORITY_IDLE. */
2399 priority
= JETSAM_PRIORITY_IDLE
;
2400 } else if (priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
2401 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle queue */
2402 priority
= JETSAM_PRIORITY_IDLE
;
2404 } else if ((priority
< 0) || (priority
>= MEMSTAT_BUCKET_COUNT
)) {
2412 assert(!(p
->p_memstat_state
& P_MEMSTAT_INTERNAL
));
2414 if (effective
&& (p
->p_memstat_state
& P_MEMSTAT_PRIORITYUPDATED
)) {
2417 MEMORYSTATUS_DEBUG(1, "memorystatus_update: effective change specified for pid %d, but change already occurred.\n", p
->p_pid
);
2421 if ((p
->p_memstat_state
& P_MEMSTAT_TERMINATED
) || ((p
->p_listflag
& P_LIST_EXITED
) != 0)) {
2423 * This could happen when a process calling posix_spawn() is exiting on the jetsam thread.
2430 p
->p_memstat_state
|= P_MEMSTAT_PRIORITYUPDATED
;
2431 p
->p_memstat_userdata
= user_data
;
2434 if (priority
== JETSAM_PRIORITY_IDLE
) {
2436 * Assertions relinquish control when the process is heading to IDLE.
2438 if (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
) {
2440 * Mark the process as no longer being managed by assertions.
2442 p
->p_memstat_state
&= ~P_MEMSTAT_PRIORITY_ASSERTION
;
2445 * Ignore an idle priority transition if the process is not
2446 * already managed by assertions. We won't treat this as
2447 * an error, but we will log the unexpected behavior and bail.
2449 os_log(OS_LOG_DEFAULT
, "memorystatus: Ignore assertion driven idle priority. Process not previously controlled %s:%d\n",
2450 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
);
2458 * Process is now being managed by assertions,
2460 p
->p_memstat_state
|= P_MEMSTAT_PRIORITY_ASSERTION
;
2463 /* Always update the assertion priority in this path */
2465 p
->p_memstat_assertionpriority
= priority
;
2467 int memstat_dirty_flags
= memorystatus_dirty_get(p
, TRUE
); /* proc_list_lock is held */
2469 if (memstat_dirty_flags
!= 0) {
2471 * Calculate maximum priority only when dirty tracking processes are involved.
2474 if (memstat_dirty_flags
& PROC_DIRTY_IS_DIRTY
) {
2475 maxpriority
= MAX(p
->p_memstat_assertionpriority
, p
->p_memstat_requestedpriority
);
2479 if (memstat_dirty_flags
& PROC_DIRTY_ALLOWS_IDLE_EXIT
) {
2481 * The aging policy must be evaluated and applied here because runnningboardd
2482 * has relinquished its hold on the jetsam priority by attempting to move a
2483 * clean process to the idle band.
2486 int newpriority
= JETSAM_PRIORITY_IDLE
;
2487 if ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
| P_DIRTY_IS_DIRTY
)) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2488 newpriority
= (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) ? system_procs_aging_band
: JETSAM_PRIORITY_IDLE
;
2491 maxpriority
= MAX(p
->p_memstat_assertionpriority
, newpriority
);
2493 if (newpriority
== system_procs_aging_band
) {
2494 memorystatus_schedule_idle_demotion_locked(p
, FALSE
);
2498 * Preserves requestedpriority when the process does not support pressured exit.
2500 maxpriority
= MAX(p
->p_memstat_assertionpriority
, p
->p_memstat_requestedpriority
);
2503 priority
= maxpriority
;
2506 p
->p_memstat_requestedpriority
= priority
;
2509 if (update_memlimit
) {
2511 boolean_t use_active
;
2514 * Posix_spawn'd processes come through this path to instantiate ledger limits.
2515 * Forked processes do not come through this path, so no ledger limits exist.
2516 * (That's why forked processes can consume unlimited memory.)
2519 MEMORYSTATUS_DEBUG(3, "memorystatus_update(enter): pid %d, priority %d, dirty=0x%x, Active(%dMB %s), Inactive(%dMB, %s)\n",
2520 p
->p_pid
, priority
, p
->p_memstat_dirty
,
2521 memlimit_active
, (memlimit_active_is_fatal
? "F " : "NF"),
2522 memlimit_inactive
, (memlimit_inactive_is_fatal
? "F " : "NF"));
2524 if (memlimit_active
<= 0) {
2526 * This process will have a system_wide task limit when active.
2527 * System_wide task limit is always fatal.
2528 * It's quite common to see non-fatal flag passed in here.
2529 * It's not an error, we just ignore it.
2533 * For backward compatibility with some unexplained launchd behavior,
2534 * we allow a zero sized limit. But we still enforce system_wide limit
2535 * when written to the ledgers.
2538 if (memlimit_active
< 0) {
2539 memlimit_active
= -1; /* enforces system_wide task limit */
2541 memlimit_active_is_fatal
= TRUE
;
2544 if (memlimit_inactive
<= 0) {
2546 * This process will have a system_wide task limit when inactive.
2547 * System_wide task limit is always fatal.
2550 memlimit_inactive
= -1;
2551 memlimit_inactive_is_fatal
= TRUE
;
2555 * Initialize the active limit variants for this process.
2557 SET_ACTIVE_LIMITS_LOCKED(p
, memlimit_active
, memlimit_active_is_fatal
);
2560 * Initialize the inactive limit variants for this process.
2562 SET_INACTIVE_LIMITS_LOCKED(p
, memlimit_inactive
, memlimit_inactive_is_fatal
);
2565 * Initialize the cached limits for target process.
2566 * When the target process is dirty tracked, it's typically
2567 * in a clean state. Non dirty tracked processes are
2568 * typically active (Foreground or above).
2569 * But just in case, we don't make assumptions...
2572 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
2573 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2576 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2581 * Enforce the cached limit by writing to the ledger.
2583 if (memorystatus_highwater_enabled
) {
2585 task_set_phys_footprint_limit_internal(p
->task
, ((p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1), NULL
, use_active
, is_fatal
);
2587 MEMORYSTATUS_DEBUG(3, "memorystatus_update: init: limit on pid %d (%dMB %s) targeting priority(%d) dirty?=0x%x %s\n",
2588 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
2589 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), priority
, p
->p_memstat_dirty
,
2590 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
2595 * We can't add to the aging bands buckets here.
2596 * But, we could be removing it from those buckets.
2597 * Check and take appropriate steps if so.
2600 if (isProcessInAgingBands(p
)) {
2601 if ((jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) && isApp(p
) && (priority
> applications_aging_band
)) {
2603 * Runningboardd is pulling up an application that is in the aging band.
2604 * We reset the app's state here so that it'll get a fresh stay in the
2605 * aging band on the way back.
2607 * We always handled the app 'aging' in the memorystatus_update_priority_locked()
2608 * function. Daemons used to be handled via the dirty 'set/clear/track' path.
2609 * But with extensions (daemon-app hybrid), runningboardd is now going through
2610 * this routine for daemons too and things have gotten a bit tangled. This should
2611 * be simplified/untangled at some point and might require some assistance from
2614 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2616 memorystatus_invalidate_idle_demotion_locked(p
, FALSE
);
2618 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
2620 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
&& priority
== JETSAM_PRIORITY_IDLE
) {
2622 * Daemons with 'inactive' limits will go through the dirty tracking codepath.
2623 * This path deals with apps that may have 'inactive' limits e.g. WebContent processes.
2624 * If this is the legacy aging policy we explicitly need to apply those limits. If it
2625 * is any other aging policy, then we don't need to worry because all processes
2626 * will go through the aging bands and then the demotion thread will take care to
2627 * move them into the IDLE band and apply the required limits.
2629 memorystatus_update_priority_locked(p
, priority
, head_insert
, TRUE
);
2633 memorystatus_update_priority_locked(p
, priority
, head_insert
, FALSE
);
2639 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_UPDATE
) | DBG_FUNC_END
, ret
, 0, 0, 0, 0);
2645 memorystatus_remove(proc_t p
)
2648 memstat_bucket_t
*bucket
;
2649 boolean_t reschedule
= FALSE
;
2651 MEMORYSTATUS_DEBUG(1, "memorystatus_list_remove: removing pid %d\n", p
->p_pid
);
2654 * Check if this proc is locked (because we're performing a freeze).
2655 * If so, we fail and instruct the caller to try again later.
2657 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
2661 assert(!(p
->p_memstat_state
& P_MEMSTAT_INTERNAL
));
2663 bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
2665 if (isSysProc(p
) && system_procs_aging_band
&& (p
->p_memstat_effectivepriority
== system_procs_aging_band
)) {
2666 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_sysprocs
);
2668 } else if (isApp(p
) && applications_aging_band
&& (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
2669 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_apps
);
2677 if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2678 uint64_t now
= mach_absolute_time();
2679 if (now
> p
->p_memstat_idle_start
) {
2680 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
2684 TAILQ_REMOVE(&bucket
->list
, p
, p_memstat_list
);
2686 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
2687 bucket
->relaunch_high_count
--;
2690 memorystatus_list_count
--;
2692 /* If awaiting demotion to the idle band, clean up */
2694 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2695 memorystatus_reschedule_idle_demotion_locked();
2698 memorystatus_check_levels_locked();
2701 if (p
->p_memstat_state
& (P_MEMSTAT_FROZEN
)) {
2702 if (p
->p_memstat_state
& P_MEMSTAT_REFREEZE_ELIGIBLE
) {
2703 p
->p_memstat_state
&= ~P_MEMSTAT_REFREEZE_ELIGIBLE
;
2704 memorystatus_refreeze_eligible_count
--;
2707 memorystatus_frozen_count
--;
2708 memorystatus_frozen_shared_mb
-= p
->p_memstat_freeze_sharedanon_pages
;
2709 p
->p_memstat_freeze_sharedanon_pages
= 0;
2712 if (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
) {
2713 memorystatus_suspended_count
--;
2717 #if DEVELOPMENT || DEBUG
2718 if (p
->p_pid
== memorystatus_testing_pid
) {
2719 memorystatus_testing_pid
= 0;
2721 #endif /* DEVELOPMENT || DEBUG */
2733 * Validate dirty tracking flags with process state.
2739 * The proc_list_lock is held by the caller.
2743 memorystatus_validate_track_flags(struct proc
*target_p
, uint32_t pcontrol
)
2745 /* See that the process isn't marked for termination */
2746 if (target_p
->p_memstat_dirty
& P_DIRTY_TERMINATED
) {
2750 /* Idle exit requires that process be tracked */
2751 if ((pcontrol
& PROC_DIRTY_ALLOW_IDLE_EXIT
) &&
2752 !(pcontrol
& PROC_DIRTY_TRACK
)) {
2756 /* 'Launch in progress' tracking requires that process have enabled dirty tracking too. */
2757 if ((pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) &&
2758 !(pcontrol
& PROC_DIRTY_TRACK
)) {
2762 /* Only one type of DEFER behavior is allowed.*/
2763 if ((pcontrol
& PROC_DIRTY_DEFER
) &&
2764 (pcontrol
& PROC_DIRTY_DEFER_ALWAYS
)) {
2768 /* Deferral is only relevant if idle exit is specified */
2769 if (((pcontrol
& PROC_DIRTY_DEFER
) ||
2770 (pcontrol
& PROC_DIRTY_DEFER_ALWAYS
)) &&
2771 !(pcontrol
& PROC_DIRTY_ALLOWS_IDLE_EXIT
)) {
2779 memorystatus_update_idle_priority_locked(proc_t p
)
2783 MEMORYSTATUS_DEBUG(1, "memorystatus_update_idle_priority_locked(): pid %d dirty 0x%X\n", p
->p_pid
, p
->p_memstat_dirty
);
2785 assert(isSysProc(p
));
2787 if ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
| P_DIRTY_IS_DIRTY
)) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2788 priority
= (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) ? system_procs_aging_band
: JETSAM_PRIORITY_IDLE
;
2790 priority
= p
->p_memstat_requestedpriority
;
2793 if (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
) {
2795 * This process has a jetsam priority managed by an assertion.
2796 * Policy is to choose the max priority.
2798 if (p
->p_memstat_assertionpriority
> priority
) {
2799 os_log(OS_LOG_DEFAULT
, "memorystatus: assertion priority %d overrides priority %d for %s:%d\n",
2800 p
->p_memstat_assertionpriority
, priority
,
2801 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
);
2802 priority
= p
->p_memstat_assertionpriority
;
2806 if (priority
!= p
->p_memstat_effectivepriority
) {
2807 if ((jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) &&
2808 (priority
== JETSAM_PRIORITY_IDLE
)) {
2810 * This process is on its way into the IDLE band. The system is
2811 * using 'legacy' jetsam aging policy. That means, this process
2812 * has already used up its idle-deferral aging time that is given
2813 * once per its lifetime. So we need to set the INACTIVE limits
2814 * explicitly because it won't be going through the demotion paths
2815 * that take care to apply the limits appropriately.
2818 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
2820 * This process has the 'elevated inactive jetsam band' attribute.
2821 * So, there will be no trip to IDLE after all.
2822 * Instead, we pin the process in the elevated band,
2823 * where its ACTIVE limits will apply.
2826 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2829 memorystatus_update_priority_locked(p
, priority
, false, true);
2831 memorystatus_update_priority_locked(p
, priority
, false, false);
2837 * Processes can opt to have their state tracked by the kernel, indicating when they are busy (dirty) or idle
2838 * (clean). They may also indicate that they support termination when idle, with the result that they are promoted
2839 * to their desired, higher, jetsam priority when dirty (and are therefore killed later), and demoted to the low
2840 * priority idle band when clean (and killed earlier, protecting higher priority procesess).
2842 * If the deferral flag is set, then newly tracked processes will be protected for an initial period (as determined by
2843 * memorystatus_sysprocs_idle_delay_time); if they go clean during this time, then they will be moved to a deferred-idle band
2844 * with a slightly higher priority, guarding against immediate termination under memory pressure and being unable to
2845 * make forward progress. Finally, when the guard expires, they will be moved to the standard, lowest-priority, idle
2846 * band. The deferral can be cleared early by clearing the appropriate flag.
2848 * The deferral timer is active only for the duration that the process is marked as guarded and clean; if the process
2849 * is marked dirty, the timer will be cancelled. Upon being subsequently marked clean, the deferment will either be
2850 * re-enabled or the guard state cleared, depending on whether the guard deadline has passed.
2854 memorystatus_dirty_track(proc_t p
, uint32_t pcontrol
)
2856 unsigned int old_dirty
;
2857 boolean_t reschedule
= FALSE
;
2858 boolean_t already_deferred
= FALSE
;
2859 boolean_t defer_now
= FALSE
;
2862 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_TRACK
),
2863 p
->p_pid
, p
->p_memstat_dirty
, pcontrol
, 0, 0);
2867 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2869 * Process is on its way out.
2875 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
2880 if ((ret
= memorystatus_validate_track_flags(p
, pcontrol
)) != 0) {
2885 old_dirty
= p
->p_memstat_dirty
;
2887 /* These bits are cumulative, as per <rdar://problem/11159924> */
2888 if (pcontrol
& PROC_DIRTY_TRACK
) {
2889 p
->p_memstat_dirty
|= P_DIRTY_TRACK
;
2892 if (pcontrol
& PROC_DIRTY_ALLOW_IDLE_EXIT
) {
2893 p
->p_memstat_dirty
|= P_DIRTY_ALLOW_IDLE_EXIT
;
2896 if (pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) {
2897 p
->p_memstat_dirty
|= P_DIRTY_LAUNCH_IN_PROGRESS
;
2900 if (old_dirty
& P_DIRTY_AGING_IN_PROGRESS
) {
2901 already_deferred
= TRUE
;
2905 /* This can be set and cleared exactly once. */
2906 if (pcontrol
& (PROC_DIRTY_DEFER
| PROC_DIRTY_DEFER_ALWAYS
)) {
2907 if ((pcontrol
& (PROC_DIRTY_DEFER
)) &&
2908 !(old_dirty
& P_DIRTY_DEFER
)) {
2909 p
->p_memstat_dirty
|= P_DIRTY_DEFER
;
2912 if ((pcontrol
& (PROC_DIRTY_DEFER_ALWAYS
)) &&
2913 !(old_dirty
& P_DIRTY_DEFER_ALWAYS
)) {
2914 p
->p_memstat_dirty
|= P_DIRTY_DEFER_ALWAYS
;
2920 MEMORYSTATUS_DEBUG(1, "memorystatus_on_track_dirty(): set idle-exit %s / defer %s / dirty %s for pid %d\n",
2921 ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) ? "Y" : "N",
2922 defer_now
? "Y" : "N",
2923 p
->p_memstat_dirty
& P_DIRTY
? "Y" : "N",
2926 /* Kick off or invalidate the idle exit deferment if there's a state transition. */
2927 if (!(p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
)) {
2928 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2929 if (defer_now
&& !already_deferred
) {
2931 * Request to defer a clean process that's idle-exit enabled
2932 * and not already in the jetsam deferred band. Most likely a
2935 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2937 } else if (!defer_now
) {
2939 * The process isn't asking for the 'aging' facility.
2940 * Could be that it is:
2943 if (already_deferred
) {
2945 * already in the aging bands. Traditionally,
2946 * some processes have tried to use this to
2947 * opt out of the 'aging' facility.
2950 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2953 * agnostic to the 'aging' facility. In that case,
2954 * we'll go ahead and opt it in because this is likely
2955 * a new launch (clean process, dirty tracking enabled)
2958 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2966 * We are trying to operate on a dirty process. Dirty processes have to
2967 * be removed from the deferred band. The question is do we reset the
2968 * deferred state or not?
2970 * This could be a legal request like:
2971 * - this process had opted into the 'aging' band
2972 * - but it's now dirty and requests to opt out.
2973 * In this case, we remove the process from the band and reset its
2974 * state too. It'll opt back in properly when needed.
2976 * OR, this request could be a user-space bug. E.g.:
2977 * - this process had opted into the 'aging' band when clean
2978 * - and, then issues another request to again put it into the band except
2979 * this time the process is dirty.
2980 * The process going dirty, as a transition in memorystatus_dirty_set(), will pull the process out of
2981 * the deferred band with its state intact. So our request below is no-op.
2982 * But we do it here anyways for coverage.
2984 * memorystatus_update_idle_priority_locked()
2985 * single-mindedly treats a dirty process as "cannot be in the aging band".
2988 if (!defer_now
&& already_deferred
) {
2989 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2992 boolean_t reset_state
= (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) ? TRUE
: FALSE
;
2994 memorystatus_invalidate_idle_demotion_locked(p
, reset_state
);
2999 memorystatus_update_idle_priority_locked(p
);
3002 memorystatus_reschedule_idle_demotion_locked();
3014 memorystatus_dirty_set(proc_t p
, boolean_t self
, uint32_t pcontrol
)
3017 boolean_t kill
= false;
3018 boolean_t reschedule
= FALSE
;
3019 boolean_t was_dirty
= FALSE
;
3020 boolean_t now_dirty
= FALSE
;
3021 #if CONFIG_DIRTYSTATUS_TRACKING
3022 boolean_t notify_change
= FALSE
;
3023 dirty_status_change_event_t change_event
;
3026 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_set(): %d %d 0x%x 0x%x\n", self
, p
->p_pid
, pcontrol
, p
->p_memstat_dirty
);
3027 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_SET
), p
->p_pid
, self
, pcontrol
, 0, 0);
3031 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
3033 * Process is on its way out.
3039 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
3044 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3048 if (!(p
->p_memstat_dirty
& P_DIRTY_TRACK
)) {
3049 /* Dirty tracking not enabled */
3051 } else if (pcontrol
&& (p
->p_memstat_dirty
& P_DIRTY_TERMINATED
)) {
3053 * Process is set to be terminated and we're attempting to mark it dirty.
3054 * Set for termination and marking as clean is OK - see <rdar://problem/10594349>.
3058 int flag
= (self
== TRUE
) ? P_DIRTY
: P_DIRTY_SHUTDOWN
;
3059 if (pcontrol
&& !(p
->p_memstat_dirty
& flag
)) {
3060 /* Mark the process as having been dirtied at some point */
3061 p
->p_memstat_dirty
|= (flag
| P_DIRTY_MARKED
);
3062 memorystatus_dirty_count
++;
3064 } else if ((pcontrol
== 0) && (p
->p_memstat_dirty
& flag
)) {
3065 if ((flag
== P_DIRTY_SHUTDOWN
) && (!(p
->p_memstat_dirty
& P_DIRTY
))) {
3066 /* Clearing the dirty shutdown flag, and the process is otherwise clean - kill */
3067 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
3069 } else if ((flag
== P_DIRTY
) && (p
->p_memstat_dirty
& P_DIRTY_TERMINATED
)) {
3070 /* Kill previously terminated processes if set clean */
3073 p
->p_memstat_dirty
&= ~flag
;
3074 memorystatus_dirty_count
--;
3086 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3090 if ((was_dirty
== TRUE
&& now_dirty
== FALSE
) ||
3091 (was_dirty
== FALSE
&& now_dirty
== TRUE
)) {
3092 #if CONFIG_DIRTYSTATUS_TRACKING
3093 if (dirtystatus_tracking_enabled
) {
3095 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
);
3096 change_event
.dsc_pid
= p
->p_pid
;
3097 change_event
.dsc_event_type
= (now_dirty
== TRUE
) ? kDirtyStatusChangedDirty
: kDirtyStatusChangedClean
;
3098 change_event
.dsc_time
= mach_absolute_time();
3099 change_event
.dsc_pages
= pages
;
3100 change_event
.dsc_priority
= p
->p_memstat_effectivepriority
;
3101 strlcpy(&change_event
.dsc_process_name
[0], p
->p_name
, sizeof(change_event
.dsc_process_name
));
3102 notify_change
= TRUE
;
3106 /* Manage idle exit deferral, if applied */
3107 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
3109 * Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band OR it might be heading back
3110 * there once it's clean again. For the legacy case, this only applies if it has some protection window left.
3111 * P_DIRTY_DEFER: one-time protection window given at launch
3112 * P_DIRTY_DEFER_ALWAYS: protection window given for every dirty->clean transition. Like non-legacy mode.
3114 * Non-Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band. It will always stop over
3115 * in that band on it's way to IDLE.
3118 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3120 * New dirty process i.e. "was_dirty == FALSE && now_dirty == TRUE"
3122 * The process will move from its aging band to its higher requested
3125 boolean_t reset_state
= (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) ? TRUE
: FALSE
;
3127 memorystatus_invalidate_idle_demotion_locked(p
, reset_state
);
3131 * Process is back from "dirty" to "clean".
3134 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) {
3135 if (((p
->p_memstat_dirty
& P_DIRTY_DEFER_ALWAYS
) == FALSE
) &&
3136 (mach_absolute_time() >= p
->p_memstat_idledeadline
)) {
3138 * The process' hasn't enrolled in the "always defer after dirty"
3139 * mode and its deadline has expired. It currently
3140 * does not reside in any of the aging buckets.
3142 * It's on its way to the JETSAM_PRIORITY_IDLE
3143 * bucket via memorystatus_update_idle_priority_locked()
3146 * So all we need to do is reset all the state on the
3147 * process that's related to the aging bucket i.e.
3148 * the AGING_IN_PROGRESS flag and the timer deadline.
3151 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
3155 * Process enrolled in "always stop in deferral band after dirty" OR
3156 * it still has some protection window left and so
3157 * we just re-arm the timer without modifying any
3158 * state on the process iff it still wants into that band.
3161 if (p
->p_memstat_dirty
& P_DIRTY_DEFER_ALWAYS
) {
3162 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
3164 } else if (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) {
3165 memorystatus_schedule_idle_demotion_locked(p
, FALSE
);
3170 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
3176 memorystatus_update_idle_priority_locked(p
);
3178 if (memorystatus_highwater_enabled
) {
3179 boolean_t ledger_update_needed
= TRUE
;
3180 boolean_t use_active
;
3183 * We are in this path because this process transitioned between
3184 * dirty <--> clean state. Update the cached memory limits.
3187 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
3189 * process is pinned in elevated band
3193 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
3195 ledger_update_needed
= TRUE
;
3198 * process is clean...but if it has opted into pressured-exit
3199 * we don't apply the INACTIVE limit till the process has aged
3200 * out and is entering the IDLE band.
3201 * See memorystatus_update_priority_locked() for that.
3204 if (p
->p_memstat_dirty
& P_DIRTY_ALLOW_IDLE_EXIT
) {
3205 ledger_update_needed
= FALSE
;
3207 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
3209 ledger_update_needed
= TRUE
;
3214 * Enforce the new limits by writing to the ledger.
3216 * This is a hot path and holding the proc_list_lock while writing to the ledgers,
3217 * (where the task lock is taken) is bad. So, we temporarily drop the proc_list_lock.
3218 * We aren't traversing the jetsam bucket list here, so we should be safe.
3219 * See rdar://21394491.
3222 if (ledger_update_needed
&& proc_ref_locked(p
) == p
) {
3224 if (p
->p_memstat_memlimit
> 0) {
3225 ledger_limit
= p
->p_memstat_memlimit
;
3230 task_set_phys_footprint_limit_internal(p
->task
, ledger_limit
, NULL
, use_active
, is_fatal
);
3232 proc_rele_locked(p
);
3234 MEMORYSTATUS_DEBUG(3, "memorystatus_dirty_set: new limit on pid %d (%dMB %s) priority(%d) dirty?=0x%x %s\n",
3235 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
3236 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, p
->p_memstat_dirty
,
3237 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
3241 /* If the deferral state changed, reschedule the demotion timer */
3243 memorystatus_reschedule_idle_demotion_locked();
3248 if (proc_ref_locked(p
) == p
) {
3250 psignal(p
, SIGKILL
);
3252 proc_rele_locked(p
);
3259 #if CONFIG_DIRTYSTATUS_TRACKING
3260 // Before returning, let's notify the dirtiness status if we have to
3261 if (notify_change
) {
3262 memorystatus_send_dirty_status_change_note(&change_event
, sizeof(change_event
));
3270 memorystatus_dirty_clear(proc_t p
, uint32_t pcontrol
)
3274 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_clear(): %d 0x%x 0x%x\n", p
->p_pid
, pcontrol
, p
->p_memstat_dirty
);
3276 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_CLEAR
), p
->p_pid
, pcontrol
, 0, 0, 0);
3280 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
3282 * Process is on its way out.
3288 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
3293 if (!(p
->p_memstat_dirty
& P_DIRTY_TRACK
)) {
3294 /* Dirty tracking not enabled */
3299 if (!pcontrol
|| (pcontrol
& (PROC_DIRTY_LAUNCH_IN_PROGRESS
| PROC_DIRTY_DEFER
| PROC_DIRTY_DEFER_ALWAYS
)) == 0) {
3304 if (pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) {
3305 p
->p_memstat_dirty
&= ~P_DIRTY_LAUNCH_IN_PROGRESS
;
3308 /* This can be set and cleared exactly once. */
3309 if (pcontrol
& (PROC_DIRTY_DEFER
| PROC_DIRTY_DEFER_ALWAYS
)) {
3310 if (p
->p_memstat_dirty
& P_DIRTY_DEFER
) {
3311 p
->p_memstat_dirty
&= ~(P_DIRTY_DEFER
);
3314 if (p
->p_memstat_dirty
& P_DIRTY_DEFER_ALWAYS
) {
3315 p
->p_memstat_dirty
&= ~(P_DIRTY_DEFER_ALWAYS
);
3318 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
3319 memorystatus_update_idle_priority_locked(p
);
3320 memorystatus_reschedule_idle_demotion_locked();
3331 memorystatus_dirty_get(proc_t p
, boolean_t locked
)
3339 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
3340 ret
|= PROC_DIRTY_TRACKED
;
3341 if (p
->p_memstat_dirty
& P_DIRTY_ALLOW_IDLE_EXIT
) {
3342 ret
|= PROC_DIRTY_ALLOWS_IDLE_EXIT
;
3344 if (p
->p_memstat_dirty
& P_DIRTY
) {
3345 ret
|= PROC_DIRTY_IS_DIRTY
;
3347 if (p
->p_memstat_dirty
& P_DIRTY_LAUNCH_IN_PROGRESS
) {
3348 ret
|= PROC_DIRTY_LAUNCH_IS_IN_PROGRESS
;
3360 memorystatus_on_terminate(proc_t p
)
3366 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
3368 if (((p
->p_memstat_dirty
& (P_DIRTY_TRACK
| P_DIRTY_IS_DIRTY
)) == P_DIRTY_TRACK
) ||
3369 (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
)) {
3371 * Mark as terminated and issue SIGKILL if:-
3372 * - process is clean, or,
3373 * - if process is dirty but suspended. This case is likely
3374 * an extension because apps don't opt into dirty-tracking
3375 * and daemons aren't suspended.
3377 #if DEVELOPMENT || DEBUG
3378 if (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
) {
3379 os_log(OS_LOG_DEFAULT
, "memorystatus: sending suspended process %s (pid %d) SIGKILL",
3380 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
);
3382 #endif /* DEVELOPMENT || DEBUG */
3385 /* Dirty, terminated, or state tracking is unsupported; issue SIGTERM to allow cleanup */
3395 memorystatus_on_suspend(proc_t p
)
3399 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
);
3403 memorystatus_suspended_count
++;
3405 p
->p_memstat_state
|= P_MEMSTAT_SUSPENDED
;
3409 extern uint64_t memorystatus_thaw_count_since_boot
;
3412 memorystatus_on_resume(proc_t p
)
3422 frozen
= (p
->p_memstat_state
& P_MEMSTAT_FROZEN
);
3425 * Now that we don't _thaw_ a process completely,
3426 * resuming it (and having some on-demand swapins)
3427 * shouldn't preclude it from being counted as frozen.
3429 * memorystatus_frozen_count--;
3431 * We preserve the P_MEMSTAT_FROZEN state since the process
3432 * could have state on disk AND so will deserve some protection
3433 * in the jetsam bands.
3435 if ((p
->p_memstat_state
& P_MEMSTAT_REFREEZE_ELIGIBLE
) == 0) {
3436 p
->p_memstat_state
|= P_MEMSTAT_REFREEZE_ELIGIBLE
;
3437 memorystatus_refreeze_eligible_count
++;
3439 if (p
->p_memstat_thaw_count
== 0 || p
->p_memstat_last_thaw_interval
< memorystatus_freeze_current_interval
) {
3440 os_atomic_inc(&(memorystatus_freezer_stats
.mfs_processes_thawed
), relaxed
);
3442 p
->p_memstat_last_thaw_interval
= memorystatus_freeze_current_interval
;
3443 p
->p_memstat_thaw_count
++;
3445 memorystatus_thaw_count
++;
3446 memorystatus_thaw_count_since_boot
++;
3449 memorystatus_suspended_count
--;
3455 * P_MEMSTAT_FROZEN will remain unchanged. This used to be:
3456 * p->p_memstat_state &= ~(P_MEMSTAT_SUSPENDED | P_MEMSTAT_FROZEN);
3458 p
->p_memstat_state
&= ~P_MEMSTAT_SUSPENDED
;
3464 memorystatus_freeze_entry_t data
= { pid
, FALSE
, 0 };
3465 memorystatus_send_note(kMemorystatusFreezeNote
, &data
, sizeof(data
));
3471 memorystatus_on_inactivity(proc_t p
)
3475 /* Wake the freeze thread */
3476 thread_wakeup((event_t
)&memorystatus_freeze_wakeup
);
3481 * The proc_list_lock is held by the caller.
3484 memorystatus_build_state(proc_t p
)
3486 uint32_t snapshot_state
= 0;
3489 if (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
) {
3490 snapshot_state
|= kMemorystatusSuspended
;
3492 if (p
->p_memstat_state
& P_MEMSTAT_FROZEN
) {
3493 snapshot_state
|= kMemorystatusFrozen
;
3495 if (p
->p_memstat_state
& P_MEMSTAT_REFREEZE_ELIGIBLE
) {
3496 snapshot_state
|= kMemorystatusWasThawed
;
3498 if (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
) {
3499 snapshot_state
|= kMemorystatusAssertion
;
3503 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
3504 snapshot_state
|= kMemorystatusTracked
;
3506 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
3507 snapshot_state
|= kMemorystatusSupportsIdleExit
;
3509 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3510 snapshot_state
|= kMemorystatusDirty
;
3513 return snapshot_state
;
3517 kill_idle_exit_proc(void)
3519 proc_t p
, victim_p
= PROC_NULL
;
3520 uint64_t current_time
, footprint_of_killed_proc
;
3521 boolean_t killed
= FALSE
;
3523 os_reason_t jetsam_reason
= OS_REASON_NULL
;
3525 /* Pick next idle exit victim. */
3526 current_time
= mach_absolute_time();
3528 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_IDLE_EXIT
);
3529 if (jetsam_reason
== OS_REASON_NULL
) {
3530 printf("kill_idle_exit_proc: failed to allocate jetsam reason\n");
3535 p
= memorystatus_get_first_proc_locked(&i
, FALSE
);
3537 /* No need to look beyond the idle band */
3538 if (p
->p_memstat_effectivepriority
!= JETSAM_PRIORITY_IDLE
) {
3542 if ((p
->p_memstat_dirty
& (P_DIRTY_ALLOW_IDLE_EXIT
| P_DIRTY_IS_DIRTY
| P_DIRTY_TERMINATED
)) == (P_DIRTY_ALLOW_IDLE_EXIT
)) {
3543 if (current_time
>= p
->p_memstat_idledeadline
) {
3544 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
3545 victim_p
= proc_ref_locked(p
);
3550 p
= memorystatus_get_next_proc_locked(&i
, p
, FALSE
);
3556 printf("memorystatus: killing_idle_process pid %d [%s] jetsam_reason->osr_code: %llu\n", victim_p
->p_pid
, (*victim_p
->p_name
? victim_p
->p_name
: "unknown"), jetsam_reason
->osr_code
);
3557 killed
= memorystatus_do_kill(victim_p
, kMemorystatusKilledIdleExit
, jetsam_reason
, &footprint_of_killed_proc
);
3558 proc_rele(victim_p
);
3560 os_reason_free(jetsam_reason
);
3567 memorystatus_thread_wake(void)
3570 int active_thr
= atomic_load(&active_jetsam_threads
);
3572 /* Wakeup all the jetsam threads */
3573 for (thr_id
= 0; thr_id
< active_thr
; thr_id
++) {
3574 thread_wakeup((event_t
)&jetsam_threads
[thr_id
].memorystatus_wakeup
);
3581 memorystatus_thread_pool_max()
3583 /* Increase the jetsam thread pool to max_jetsam_threads */
3584 int max_threads
= max_jetsam_threads
;
3585 printf("Expanding memorystatus pool to %d!\n", max_threads
);
3586 atomic_store(&active_jetsam_threads
, max_threads
);
3590 memorystatus_thread_pool_default()
3592 /* Restore the jetsam thread pool to a single thread */
3593 printf("Reverting memorystatus pool back to 1\n");
3594 atomic_store(&active_jetsam_threads
, 1);
3597 #endif /* CONFIG_JETSAM */
3599 extern void vm_pressure_response(void);
3602 memorystatus_thread_block(uint32_t interval_ms
, thread_continue_t continuation
)
3604 struct jetsam_thread_state
*jetsam_thread
= jetsam_current_thread();
3606 assert(jetsam_thread
!= NULL
);
3608 assert_wait_timeout(&jetsam_thread
->memorystatus_wakeup
, THREAD_UNINT
, interval_ms
, NSEC_PER_MSEC
);
3610 assert_wait(&jetsam_thread
->memorystatus_wakeup
, THREAD_UNINT
);
3613 return thread_block(continuation
);
3617 memorystatus_avail_pages_below_pressure(void)
3620 return memorystatus_available_pages
<= memorystatus_available_pages_pressure
;
3621 #else /* CONFIG_JETSAM */
3623 #endif /* CONFIG_JETSAM */
3627 memorystatus_avail_pages_below_critical(void)
3630 return memorystatus_available_pages
<= memorystatus_available_pages_critical
;
3631 #else /* CONFIG_JETSAM */
3633 #endif /* CONFIG_JETSAM */
3637 memorystatus_post_snapshot(int32_t priority
, uint32_t cause
)
3639 boolean_t is_idle_priority
;
3641 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) {
3642 is_idle_priority
= (priority
== JETSAM_PRIORITY_IDLE
);
3644 is_idle_priority
= (priority
== JETSAM_PRIORITY_IDLE
|| priority
== JETSAM_PRIORITY_IDLE_DEFERRED
);
3647 #pragma unused(cause)
3649 * Don't generate logs for steady-state idle-exit kills,
3650 * unless it is overridden for debug or by the device
3654 return !is_idle_priority
|| memorystatus_idle_snapshot
;
3656 #else /* CONFIG_JETSAM */
3658 * Don't generate logs for steady-state idle-exit kills,
3660 * - it is overridden for debug or by the device
3663 * - the kill causes are important i.e. not kMemorystatusKilledIdleExit
3666 boolean_t snapshot_eligible_kill_cause
= (is_reason_thrashing(cause
) || is_reason_zone_map_exhaustion(cause
));
3667 return !is_idle_priority
|| memorystatus_idle_snapshot
|| snapshot_eligible_kill_cause
;
3668 #endif /* CONFIG_JETSAM */
3672 memorystatus_action_needed(void)
3675 return is_reason_thrashing(kill_under_pressure_cause
) ||
3676 is_reason_zone_map_exhaustion(kill_under_pressure_cause
) ||
3677 memorystatus_available_pages
<= memorystatus_available_pages_pressure
;
3678 #else /* CONFIG_JETSAM */
3679 return is_reason_thrashing(kill_under_pressure_cause
) ||
3680 is_reason_zone_map_exhaustion(kill_under_pressure_cause
);
3681 #endif /* CONFIG_JETSAM */
3685 memorystatus_act_on_hiwat_processes(uint32_t *errors
, uint32_t *hwm_kill
, boolean_t
*post_snapshot
, __unused boolean_t
*is_critical
, uint64_t *memory_reclaimed
)
3687 boolean_t purged
= FALSE
, killed
= FALSE
;
3689 *memory_reclaimed
= 0;
3690 killed
= memorystatus_kill_hiwat_proc(errors
, &purged
, memory_reclaimed
);
3693 *hwm_kill
= *hwm_kill
+ 1;
3694 *post_snapshot
= TRUE
;
3697 if (purged
== FALSE
) {
3698 /* couldn't purge and couldn't kill */
3699 memorystatus_hwm_candidates
= FALSE
;
3704 /* No highwater processes to kill. Continue or stop for now? */
3705 if (!is_reason_thrashing(kill_under_pressure_cause
) &&
3706 !is_reason_zone_map_exhaustion(kill_under_pressure_cause
) &&
3707 (memorystatus_available_pages
> memorystatus_available_pages_critical
)) {
3709 * We are _not_ out of pressure but we are above the critical threshold and there's:
3710 * - no compressor thrashing
3711 * - enough zone memory
3712 * - no more HWM processes left.
3713 * For now, don't kill any other processes.
3716 if (*hwm_kill
== 0) {
3717 memorystatus_thread_wasted_wakeup
++;
3720 *is_critical
= FALSE
;
3724 #endif /* CONFIG_JETSAM */
3730 * kJetsamHighRelaunchCandidatesThreshold defines the percentage of candidates
3731 * in the idle & deferred bands that need to be bad candidates in order to trigger
3732 * aggressive jetsam.
3734 #define kJetsamHighRelaunchCandidatesThreshold (100)
3736 /* kJetsamMinCandidatesThreshold defines the minimum number of candidates in the
3737 * idle/deferred bands to trigger aggressive jetsam. This value basically decides
3738 * how much memory the system is ready to hold in the lower bands without triggering
3739 * aggressive jetsam. This number should ideally be tuned based on the memory config
3742 #define kJetsamMinCandidatesThreshold (5)
3745 memorystatus_aggressive_jetsam_needed_sysproc_aging(__unused
int jld_eval_aggressive_count
, __unused
int *jld_idle_kills
, __unused
int jld_idle_kill_candidates
, int *total_candidates
, int *elevated_bucket_count
)
3747 boolean_t aggressive_jetsam_needed
= false;
3750 * For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, we maintain the jetsam
3751 * relaunch behavior for all daemons. Also, daemons and apps are aged in deferred bands on
3752 * every dirty->clean transition. For this aging policy, the best way to determine if
3753 * aggressive jetsam is needed, is to see if the kill candidates are mostly bad candidates.
3754 * If yes, then we need to go to higher bands to reclaim memory.
3757 /* Get total candidate counts for idle and idle deferred bands */
3758 *total_candidates
= memstat_bucket
[JETSAM_PRIORITY_IDLE
].count
+ memstat_bucket
[system_procs_aging_band
].count
;
3759 /* Get counts of bad kill candidates in idle and idle deferred bands */
3760 int bad_candidates
= memstat_bucket
[JETSAM_PRIORITY_IDLE
].relaunch_high_count
+ memstat_bucket
[system_procs_aging_band
].relaunch_high_count
;
3762 *elevated_bucket_count
= memstat_bucket
[JETSAM_PRIORITY_ELEVATED_INACTIVE
].count
;
3766 /* Check if the number of bad candidates is greater than kJetsamHighRelaunchCandidatesThreshold % */
3767 aggressive_jetsam_needed
= (((bad_candidates
* 100) / *total_candidates
) >= kJetsamHighRelaunchCandidatesThreshold
);
3770 * Since the new aging policy bases the aggressive jetsam trigger on percentage of
3771 * bad candidates, it is prone to being overly aggressive. In order to mitigate that,
3772 * make sure the system is really under memory pressure before triggering aggressive
3775 if (memorystatus_available_pages
> memorystatus_sysproc_aging_aggr_pages
) {
3776 aggressive_jetsam_needed
= false;
3779 #if DEVELOPMENT || DEBUG
3780 printf("memorystatus: aggressive%d: [%s] Bad Candidate Threshold Check (total: %d, bad: %d, threshold: %d %%); Memory Pressure Check (available_pgs: %llu, threshold_pgs: %llu)\n",
3781 jld_eval_aggressive_count
, aggressive_jetsam_needed
? "PASSED" : "FAILED", *total_candidates
, bad_candidates
,
3782 kJetsamHighRelaunchCandidatesThreshold
, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES
, (uint64_t)memorystatus_sysproc_aging_aggr_pages
);
3783 #endif /* DEVELOPMENT || DEBUG */
3784 return aggressive_jetsam_needed
;
3788 * Gets memory back from various system caches.
3789 * Called before jetsamming in the foreground band in the hope that we'll
3793 memorystatus_approaching_fg_band(boolean_t
*corpse_list_purged
)
3795 assert(corpse_list_purged
!= NULL
);
3796 pmap_release_pages_fast();
3797 memorystatus_issue_fg_band_notify();
3798 if (total_corpses_count() > 0 && !*corpse_list_purged
) {
3799 task_purge_all_corpses();
3800 *corpse_list_purged
= TRUE
;
3805 memorystatus_aggressive_jetsam_needed_default(__unused
int jld_eval_aggressive_count
, int *jld_idle_kills
, int jld_idle_kill_candidates
, int *total_candidates
, int *elevated_bucket_count
)
3807 boolean_t aggressive_jetsam_needed
= false;
3808 /* Jetsam Loop Detection - locals */
3809 memstat_bucket_t
*bucket
;
3810 int jld_bucket_count
= 0;
3813 switch (jetsam_aging_policy
) {
3814 case kJetsamAgingPolicyLegacy
:
3815 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3816 jld_bucket_count
= bucket
->count
;
3817 bucket
= &memstat_bucket
[JETSAM_PRIORITY_AGING_BAND1
];
3818 jld_bucket_count
+= bucket
->count
;
3820 case kJetsamAgingPolicyAppsReclaimedFirst
:
3821 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3822 jld_bucket_count
= bucket
->count
;
3823 bucket
= &memstat_bucket
[system_procs_aging_band
];
3824 jld_bucket_count
+= bucket
->count
;
3825 bucket
= &memstat_bucket
[applications_aging_band
];
3826 jld_bucket_count
+= bucket
->count
;
3828 case kJetsamAgingPolicyNone
:
3830 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3831 jld_bucket_count
= bucket
->count
;
3835 bucket
= &memstat_bucket
[JETSAM_PRIORITY_ELEVATED_INACTIVE
];
3836 *elevated_bucket_count
= bucket
->count
;
3837 *total_candidates
= jld_bucket_count
;
3840 aggressive_jetsam_needed
= (*jld_idle_kills
> jld_idle_kill_candidates
);
3842 #if DEVELOPMENT || DEBUG
3843 if (aggressive_jetsam_needed
) {
3844 printf("memorystatus: aggressive%d: idle candidates: %d, idle kills: %d\n",
3845 jld_eval_aggressive_count
,
3846 jld_idle_kill_candidates
,
3849 #endif /* DEVELOPMENT || DEBUG */
3850 return aggressive_jetsam_needed
;
3854 memorystatus_act_aggressive(uint32_t cause
, os_reason_t jetsam_reason
, int *jld_idle_kills
, boolean_t
*corpse_list_purged
, boolean_t
*post_snapshot
, uint64_t *memory_reclaimed
)
3856 boolean_t aggressive_jetsam_needed
= false;
3858 uint32_t errors
= 0;
3859 uint64_t footprint_of_killed_proc
= 0;
3860 int elevated_bucket_count
= 0;
3861 int total_candidates
= 0;
3862 *memory_reclaimed
= 0;
3865 * The aggressive jetsam logic looks at the number of times it has been in the
3866 * aggressive loop to determine the max priority band it should kill upto. The
3867 * static variables below are used to track that property.
3869 * To reset those values, the implementation checks if it has been
3870 * memorystatus_jld_eval_period_msecs since the parameters were reset.
3872 static int jld_eval_aggressive_count
= 0;
3873 static int32_t jld_priority_band_max
= JETSAM_PRIORITY_UI_SUPPORT
;
3874 static uint64_t jld_timestamp_msecs
= 0;
3875 static int jld_idle_kill_candidates
= 0;
3877 if (memorystatus_jld_enabled
== FALSE
) {
3878 /* If aggressive jetsam is disabled, nothing to do here */
3882 /* Get current timestamp (msecs only) */
3883 struct timeval jld_now_tstamp
= {0, 0};
3884 uint64_t jld_now_msecs
= 0;
3885 microuptime(&jld_now_tstamp
);
3886 jld_now_msecs
= (jld_now_tstamp
.tv_sec
* 1000);
3889 * The aggressive jetsam logic looks at the number of candidates and their
3890 * properties to decide if aggressive jetsam should be engaged.
3892 if (jetsam_aging_policy
== kJetsamAgingPolicySysProcsReclaimedFirst
) {
3894 * For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, the logic looks at the number of
3895 * candidates in the idle and deferred band and how many out of them are marked as high relaunch
3898 aggressive_jetsam_needed
= memorystatus_aggressive_jetsam_needed_sysproc_aging(jld_eval_aggressive_count
,
3899 jld_idle_kills
, jld_idle_kill_candidates
, &total_candidates
, &elevated_bucket_count
);
3902 * The other aging policies look at number of candidate processes over a specific time window and
3903 * evaluate if the system is in a jetsam loop. If yes, aggressive jetsam is triggered.
3905 aggressive_jetsam_needed
= memorystatus_aggressive_jetsam_needed_default(jld_eval_aggressive_count
,
3906 jld_idle_kills
, jld_idle_kill_candidates
, &total_candidates
, &elevated_bucket_count
);
3910 * Check if its been really long since the aggressive jetsam evaluation
3911 * parameters have been refreshed. This logic also resets the jld_eval_aggressive_count
3912 * counter to make sure we reset the aggressive jetsam severity.
3914 boolean_t param_reval
= false;
3916 if ((total_candidates
== 0) ||
3917 (jld_now_msecs
> (jld_timestamp_msecs
+ memorystatus_jld_eval_period_msecs
))) {
3918 jld_timestamp_msecs
= jld_now_msecs
;
3919 jld_idle_kill_candidates
= total_candidates
;
3920 *jld_idle_kills
= 0;
3921 jld_eval_aggressive_count
= 0;
3922 jld_priority_band_max
= JETSAM_PRIORITY_UI_SUPPORT
;
3927 * If the parameters have been updated, re-evaluate the aggressive_jetsam_needed condition for
3928 * the non kJetsamAgingPolicySysProcsReclaimedFirst policy since its based on jld_idle_kill_candidates etc.
3930 if ((param_reval
== true) && (jetsam_aging_policy
!= kJetsamAgingPolicySysProcsReclaimedFirst
)) {
3931 aggressive_jetsam_needed
= (*jld_idle_kills
> jld_idle_kill_candidates
);
3935 * It is also possible that the system is down to a very small number of processes in the candidate
3936 * bands. In that case, the decisions made by the memorystatus_aggressive_jetsam_needed_* routines
3937 * would not be useful. In that case, do not trigger aggressive jetsam.
3939 if (total_candidates
< kJetsamMinCandidatesThreshold
) {
3940 #if DEVELOPMENT || DEBUG
3941 printf("memorystatus: aggressive: [FAILED] Low Candidate Count (current: %d, threshold: %d)\n", total_candidates
, kJetsamMinCandidatesThreshold
);
3942 #endif /* DEVELOPMENT || DEBUG */
3943 aggressive_jetsam_needed
= false;
3946 if (aggressive_jetsam_needed
== false) {
3947 /* Either the aging policy or the candidate count decided that aggressive jetsam is not needed. Nothing more to do here. */
3951 /* Looks like aggressive jetsam is needed */
3952 jld_eval_aggressive_count
++;
3954 if (jld_eval_aggressive_count
== memorystatus_jld_eval_aggressive_count
) {
3955 memorystatus_approaching_fg_band(corpse_list_purged
);
3956 } else if (jld_eval_aggressive_count
> memorystatus_jld_eval_aggressive_count
) {
3958 * Bump up the jetsam priority limit (eg: the bucket index)
3959 * Enforce bucket index sanity.
3961 if ((memorystatus_jld_eval_aggressive_priority_band_max
< 0) ||
3962 (memorystatus_jld_eval_aggressive_priority_band_max
>= MEMSTAT_BUCKET_COUNT
)) {
3964 * Do nothing. Stick with the default level.
3967 jld_priority_band_max
= memorystatus_jld_eval_aggressive_priority_band_max
;
3971 /* Visit elevated processes first */
3972 while (elevated_bucket_count
) {
3973 elevated_bucket_count
--;
3976 * memorystatus_kill_elevated_process() drops a reference,
3977 * so take another one so we can continue to use this exit reason
3978 * even after it returns.
3981 os_reason_ref(jetsam_reason
);
3982 killed
= memorystatus_kill_elevated_process(
3985 JETSAM_PRIORITY_ELEVATED_INACTIVE
,
3986 jld_eval_aggressive_count
,
3987 &errors
, &footprint_of_killed_proc
);
3989 *post_snapshot
= TRUE
;
3990 *memory_reclaimed
+= footprint_of_killed_proc
;
3991 if (memorystatus_avail_pages_below_pressure()) {
3993 * Still under pressure.
3994 * Find another pinned processes.
4002 * No pinned processes left to kill.
4003 * Abandon elevated band.
4010 * memorystatus_kill_processes_aggressive() allocates its own
4011 * jetsam_reason so the kMemorystatusKilledProcThrashing cause
4012 * is consistent throughout the aggressive march.
4014 killed
= memorystatus_kill_processes_aggressive(
4015 kMemorystatusKilledProcThrashing
,
4016 jld_eval_aggressive_count
,
4017 jld_priority_band_max
,
4018 &errors
, &footprint_of_killed_proc
);
4021 /* Always generate logs after aggressive kill */
4022 *post_snapshot
= TRUE
;
4023 *memory_reclaimed
+= footprint_of_killed_proc
;
4024 *jld_idle_kills
= 0;
4033 memorystatus_thread(void *param __unused
, wait_result_t wr __unused
)
4035 boolean_t post_snapshot
= FALSE
;
4036 uint32_t errors
= 0;
4037 uint32_t hwm_kill
= 0;
4038 boolean_t sort_flag
= TRUE
;
4039 boolean_t corpse_list_purged
= FALSE
;
4040 int jld_idle_kills
= 0;
4041 struct jetsam_thread_state
*jetsam_thread
= jetsam_current_thread();
4042 uint64_t total_memory_reclaimed
= 0;
4044 assert(jetsam_thread
!= NULL
);
4045 if (jetsam_thread
->inited
== FALSE
) {
4047 * It's the first time the thread has run, so just mark the thread as privileged and block.
4048 * This avoids a spurious pass with unset variables, as set out in <rdar://problem/9609402>.
4052 thread_wire(host_priv_self(), current_thread(), TRUE
);
4053 snprintf(name
, 32, "VM_memorystatus_%d", jetsam_thread
->index
+ 1);
4055 /* Limit all but one thread to the lower jetsam bands, as that's where most of the victims are. */
4056 if (jetsam_thread
->index
== 0) {
4057 if (vm_pageout_state
.vm_restricted_to_single_processor
== TRUE
) {
4058 thread_vm_bind_group_add();
4060 jetsam_thread
->limit_to_low_bands
= FALSE
;
4062 jetsam_thread
->limit_to_low_bands
= TRUE
;
4064 #if CONFIG_THREAD_GROUPS
4065 thread_group_vm_add();
4067 thread_set_thread_name(current_thread(), name
);
4068 jetsam_thread
->inited
= TRUE
;
4069 memorystatus_thread_block(0, memorystatus_thread
);
4072 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_SCAN
) | DBG_FUNC_START
,
4073 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, memorystatus_jld_enabled
, memorystatus_jld_eval_period_msecs
, memorystatus_jld_eval_aggressive_count
, 0);
4076 * Jetsam aware version.
4078 * The VM pressure notification thread is working it's way through clients in parallel.
4080 * So, while the pressure notification thread is targeting processes in order of
4081 * increasing jetsam priority, we can hopefully reduce / stop it's work by killing
4082 * any processes that have exceeded their highwater mark.
4084 * If we run out of HWM processes and our available pages drops below the critical threshold, then,
4085 * we target the least recently used process in order of increasing jetsam priority (exception: the FG band).
4087 while (memorystatus_action_needed()) {
4091 uint64_t memory_reclaimed
= 0;
4092 uint64_t jetsam_reason_code
= JETSAM_REASON_INVALID
;
4093 os_reason_t jetsam_reason
= OS_REASON_NULL
;
4095 cause
= kill_under_pressure_cause
;
4097 case kMemorystatusKilledFCThrashing
:
4098 jetsam_reason_code
= JETSAM_REASON_MEMORY_FCTHRASHING
;
4100 case kMemorystatusKilledVMCompressorThrashing
:
4101 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMCOMPRESSOR_THRASHING
;
4103 case kMemorystatusKilledVMCompressorSpaceShortage
:
4104 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMCOMPRESSOR_SPACE_SHORTAGE
;
4106 case kMemorystatusKilledZoneMapExhaustion
:
4107 jetsam_reason_code
= JETSAM_REASON_ZONE_MAP_EXHAUSTION
;
4109 case kMemorystatusKilledVMPageShortage
:
4112 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMPAGESHORTAGE
;
4113 cause
= kMemorystatusKilledVMPageShortage
;
4118 boolean_t is_critical
= TRUE
;
4119 if (memorystatus_act_on_hiwat_processes(&errors
, &hwm_kill
, &post_snapshot
, &is_critical
, &memory_reclaimed
)) {
4120 total_memory_reclaimed
+= memory_reclaimed
;
4121 if (is_critical
== FALSE
) {
4123 * For now, don't kill any other processes.
4131 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, jetsam_reason_code
);
4132 if (jetsam_reason
== OS_REASON_NULL
) {
4133 printf("memorystatus_thread: failed to allocate jetsam reason\n");
4136 /* Only unlimited jetsam threads should act aggressive */
4137 if (!jetsam_thread
->limit_to_low_bands
&&
4138 memorystatus_act_aggressive(cause
, jetsam_reason
, &jld_idle_kills
, &corpse_list_purged
, &post_snapshot
, &memory_reclaimed
)) {
4139 total_memory_reclaimed
+= memory_reclaimed
;
4144 * memorystatus_kill_top_process() drops a reference,
4145 * so take another one so we can continue to use this exit reason
4146 * even after it returns
4148 os_reason_ref(jetsam_reason
);
4151 killed
= memorystatus_kill_top_process(TRUE
, sort_flag
, cause
, jetsam_reason
, &priority
, &errors
, &memory_reclaimed
);
4155 total_memory_reclaimed
+= memory_reclaimed
;
4156 if (memorystatus_post_snapshot(priority
, cause
) == TRUE
) {
4157 post_snapshot
= TRUE
;
4160 /* Jetsam Loop Detection */
4161 if (memorystatus_jld_enabled
== TRUE
) {
4162 if ((priority
== JETSAM_PRIORITY_IDLE
) || (priority
== system_procs_aging_band
) || (priority
== applications_aging_band
)) {
4166 * We've reached into bands beyond idle deferred.
4167 * We make no attempt to monitor them
4173 * If we have jetsammed a process in or above JETSAM_PRIORITY_UI_SUPPORT
4174 * then we attempt to relieve pressure by purging corpse memory and notifying
4175 * anybody wanting to know this.
4177 if (priority
>= JETSAM_PRIORITY_UI_SUPPORT
) {
4178 memorystatus_approaching_fg_band(&corpse_list_purged
);
4183 if (memorystatus_avail_pages_below_critical()) {
4185 * Still under pressure and unable to kill a process - purge corpse memory
4186 * and get everything back from the pmap.
4188 pmap_release_pages_fast();
4189 if (total_corpses_count() > 0) {
4190 task_purge_all_corpses();
4191 corpse_list_purged
= TRUE
;
4194 if (!jetsam_thread
->limit_to_low_bands
&& memorystatus_avail_pages_below_critical()) {
4196 * Still under pressure and unable to kill a process - panic
4198 panic("memorystatus_jetsam_thread: no victim! available pages:%llu\n", (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES
);
4205 * We do not want to over-kill when thrashing has been detected.
4206 * To avoid that, we reset the flag here and notify the
4209 if (is_reason_thrashing(kill_under_pressure_cause
)) {
4210 kill_under_pressure_cause
= 0;
4212 vm_thrashing_jetsam_done();
4213 #endif /* CONFIG_JETSAM */
4214 } else if (is_reason_zone_map_exhaustion(kill_under_pressure_cause
)) {
4215 kill_under_pressure_cause
= 0;
4218 os_reason_free(jetsam_reason
);
4221 kill_under_pressure_cause
= 0;
4224 memorystatus_clear_errors();
4227 if (post_snapshot
) {
4229 size_t snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
4230 sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_count
);
4231 uint64_t timestamp_now
= mach_absolute_time();
4232 memorystatus_jetsam_snapshot
->notification_time
= timestamp_now
;
4233 memorystatus_jetsam_snapshot
->js_gencount
++;
4234 if (memorystatus_jetsam_snapshot_count
> 0 && (memorystatus_jetsam_snapshot_last_timestamp
== 0 ||
4235 timestamp_now
> memorystatus_jetsam_snapshot_last_timestamp
+ memorystatus_jetsam_snapshot_timeout
)) {
4237 int ret
= memorystatus_send_note(kMemorystatusSnapshotNote
, &snapshot_size
, sizeof(snapshot_size
));
4240 memorystatus_jetsam_snapshot_last_timestamp
= timestamp_now
;
4248 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_SCAN
) | DBG_FUNC_END
,
4249 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, total_memory_reclaimed
, 0, 0, 0);
4251 memorystatus_thread_block(0, memorystatus_thread
);
4256 * when an idle-exitable proc was killed
4258 * when there are no more idle-exitable procs found
4259 * when the attempt to kill an idle-exitable proc failed
4262 memorystatus_idle_exit_from_VM(void)
4265 * This routine should no longer be needed since we are
4266 * now using jetsam bands on all platforms and so will deal
4267 * with IDLE processes within the memorystatus thread itself.
4269 * But we still use it because we observed that macos systems
4270 * started heavy compression/swapping with a bunch of
4271 * idle-exitable processes alive and doing nothing. We decided
4272 * to rather kill those processes than start swapping earlier.
4275 return kill_idle_exit_proc();
4279 * Callback invoked when allowable physical memory footprint exceeded
4280 * (dirty pages + IOKit mappings)
4282 * This is invoked for both advisory, non-fatal per-task high watermarks,
4283 * as well as the fatal task memory limits.
4286 memorystatus_on_ledger_footprint_exceeded(boolean_t warning
, boolean_t memlimit_is_active
, boolean_t memlimit_is_fatal
)
4288 os_reason_t jetsam_reason
= OS_REASON_NULL
;
4290 proc_t p
= current_proc();
4292 #if VM_PRESSURE_EVENTS
4293 if (warning
== TRUE
) {
4295 * This is a warning path which implies that the current process is close, but has
4296 * not yet exceeded its per-process memory limit.
4298 if (memorystatus_warn_process(p
, memlimit_is_active
, memlimit_is_fatal
, FALSE
/* not exceeded */) != TRUE
) {
4299 /* Print warning, since it's possible that task has not registered for pressure notifications */
4300 os_log(OS_LOG_DEFAULT
, "memorystatus_on_ledger_footprint_exceeded: failed to warn the current task (%d exiting, or no handler registered?).\n", p
->p_pid
);
4304 #endif /* VM_PRESSURE_EVENTS */
4306 if (memlimit_is_fatal
) {
4308 * If this process has no high watermark or has a fatal task limit, then we have been invoked because the task
4309 * has violated either the system-wide per-task memory limit OR its own task limit.
4311 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_PERPROCESSLIMIT
);
4312 if (jetsam_reason
== NULL
) {
4313 printf("task_exceeded footprint: failed to allocate jetsam reason\n");
4314 } else if (corpse_for_fatal_memkill
!= 0 && proc_send_synchronous_EXC_RESOURCE(p
) == FALSE
) {
4315 /* Set OS_REASON_FLAG_GENERATE_CRASH_REPORT to generate corpse */
4316 jetsam_reason
->osr_flags
|= OS_REASON_FLAG_GENERATE_CRASH_REPORT
;
4319 if (memorystatus_kill_process_sync(p
->p_pid
, kMemorystatusKilledPerProcessLimit
, jetsam_reason
) != TRUE
) {
4320 printf("task_exceeded_footprint: failed to kill the current task (exiting?).\n");
4324 * HWM offender exists. Done without locks or synchronization.
4325 * See comment near its declaration for more details.
4327 memorystatus_hwm_candidates
= TRUE
;
4329 #if VM_PRESSURE_EVENTS
4331 * The current process is not in the warning path.
4332 * This path implies the current process has exceeded a non-fatal (soft) memory limit.
4333 * Failure to send note is ignored here.
4335 (void)memorystatus_warn_process(p
, memlimit_is_active
, memlimit_is_fatal
, TRUE
/* exceeded */);
4337 #endif /* VM_PRESSURE_EVENTS */
4342 memorystatus_log_exception(const int max_footprint_mb
, boolean_t memlimit_is_active
, boolean_t memlimit_is_fatal
)
4344 proc_t p
= current_proc();
4347 * The limit violation is logged here, but only once per process per limit.
4348 * Soft memory limit is a non-fatal high-water-mark
4349 * Hard memory limit is a fatal custom-task-limit or system-wide per-task memory limit.
4352 os_log_with_startup_serial(OS_LOG_DEFAULT
, "EXC_RESOURCE -> %s[%d] exceeded mem limit: %s%s %d MB (%s)\n",
4353 ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"), (p
? p
->p_pid
: -1), (memlimit_is_active
? "Active" : "Inactive"),
4354 (memlimit_is_fatal
? "Hard" : "Soft"), max_footprint_mb
,
4355 (memlimit_is_fatal
? "fatal" : "non-fatal"));
4363 * Evaluates process state to determine which limit
4364 * should be applied (active vs. inactive limit).
4366 * Processes that have the 'elevated inactive jetsam band' attribute
4367 * are first evaluated based on their current priority band.
4368 * presently elevated ==> active
4370 * Processes that opt into dirty tracking are evaluated
4371 * based on clean vs dirty state.
4373 * clean ==> inactive
4375 * Process that do not opt into dirty tracking are
4376 * evalulated based on priority level.
4377 * Foreground or above ==> active
4378 * Below Foreground ==> inactive
4380 * Return: TRUE if active
4385 proc_jetsam_state_is_active_locked(proc_t p
)
4387 if ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) &&
4388 (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_ELEVATED_INACTIVE
)) {
4390 * process has the 'elevated inactive jetsam band' attribute
4391 * and process is present in the elevated band
4392 * implies active state
4395 } else if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
4397 * process has opted into dirty tracking
4398 * active state is based on dirty vs. clean
4400 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
4403 * implies active state
4409 * implies inactive state
4413 } else if (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
) {
4415 * process is Foreground or higher
4416 * implies active state
4421 * process found below Foreground
4422 * implies inactive state
4429 memorystatus_kill_process_sync(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
)
4433 uint32_t errors
= 0;
4434 uint64_t memory_reclaimed
= 0;
4436 if (victim_pid
== -1) {
4437 /* No pid, so kill first process */
4438 res
= memorystatus_kill_top_process(TRUE
, TRUE
, cause
, jetsam_reason
, NULL
, &errors
, &memory_reclaimed
);
4440 res
= memorystatus_kill_specific_process(victim_pid
, cause
, jetsam_reason
);
4444 memorystatus_clear_errors();
4448 /* Fire off snapshot notification */
4450 size_t snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
4451 sizeof(memorystatus_jetsam_snapshot_entry_t
) * memorystatus_jetsam_snapshot_count
;
4452 uint64_t timestamp_now
= mach_absolute_time();
4453 memorystatus_jetsam_snapshot
->notification_time
= timestamp_now
;
4454 if (memorystatus_jetsam_snapshot_count
> 0 && (memorystatus_jetsam_snapshot_last_timestamp
== 0 ||
4455 timestamp_now
> memorystatus_jetsam_snapshot_last_timestamp
+ memorystatus_jetsam_snapshot_timeout
)) {
4457 int ret
= memorystatus_send_note(kMemorystatusSnapshotNote
, &snapshot_size
, sizeof(snapshot_size
));
4460 memorystatus_jetsam_snapshot_last_timestamp
= timestamp_now
;
4472 * Jetsam a specific process.
4475 memorystatus_kill_specific_process(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
)
4479 uint64_t killtime
= 0;
4480 uint64_t footprint_of_killed_proc
;
4482 clock_usec_t tv_usec
;
4485 /* TODO - add a victim queue and push this into the main jetsam thread */
4487 p
= proc_find(victim_pid
);
4489 os_reason_free(jetsam_reason
);
4495 if (memorystatus_jetsam_snapshot_count
== 0) {
4496 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
4499 killtime
= mach_absolute_time();
4500 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
4501 tv_msec
= tv_usec
/ 1000;
4503 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
4507 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
, &footprint_of_killed_proc
);
4509 os_log_with_startup_serial(OS_LOG_DEFAULT
, "%lu.%03d memorystatus: killing_specific_process pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu\n",
4510 (unsigned long)tv_sec
, tv_msec
, victim_pid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"),
4511 memorystatus_kill_cause_name
[cause
], (p
? p
->p_memstat_effectivepriority
: -1),
4512 footprint_of_killed_proc
>> 10, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES
);
4521 * Toggle the P_MEMSTAT_TERMINATED state.
4522 * Takes the proc_list_lock.
4525 proc_memstat_terminated(proc_t p
, boolean_t set
)
4527 #if DEVELOPMENT || DEBUG
4531 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
4533 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
4538 #pragma unused(p, set)
4542 #endif /* DEVELOPMENT || DEBUG */
4549 * This is invoked when cpulimits have been exceeded while in fatal mode.
4550 * The jetsam_flags do not apply as those are for memory related kills.
4551 * We call this routine so that the offending process is killed with
4552 * a non-zero exit status.
4555 jetsam_on_ledger_cpulimit_exceeded(void)
4558 int jetsam_flags
= 0; /* make it obvious */
4559 proc_t p
= current_proc();
4560 os_reason_t jetsam_reason
= OS_REASON_NULL
;
4562 printf("task_exceeded_cpulimit: killing pid %d [%s]\n",
4563 p
->p_pid
, (*p
->p_name
? p
->p_name
: "(unknown)"));
4565 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_CPULIMIT
);
4566 if (jetsam_reason
== OS_REASON_NULL
) {
4567 printf("task_exceeded_cpulimit: unable to allocate memory for jetsam reason\n");
4570 retval
= jetsam_do_kill(p
, jetsam_flags
, jetsam_reason
);
4573 printf("task_exceeded_cpulimit: failed to kill current task (exiting?).\n");
4577 #endif /* CONFIG_JETSAM */
4580 memorystatus_get_task_memory_region_count(task_t task
, uint64_t *count
)
4585 *count
= get_task_memory_region_count(task
);
4589 #define MEMORYSTATUS_VM_MAP_FORK_ALLOWED 0x100000000
4590 #define MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED 0x200000000
4592 #if DEVELOPMENT || DEBUG
4595 * Sysctl only used to test memorystatus_allowed_vm_map_fork() path.
4596 * set a new pidwatch value
4598 * get the current pidwatch value
4600 * The pidwatch_val starts out with a PID to watch for in the map_fork path.
4602 * - OR'd with MEMORYSTATUS_VM_MAP_FORK_ALLOWED if we allow the map_fork.
4603 * - OR'd with MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED if we disallow the map_fork.
4604 * - set to -1ull if the map_fork() is aborted for other reasons.
4607 uint64_t memorystatus_vm_map_fork_pidwatch_val
= 0;
4609 static int sysctl_memorystatus_vm_map_fork_pidwatch SYSCTL_HANDLER_ARGS
{
4610 #pragma unused(oidp, arg1, arg2)
4612 uint64_t new_value
= 0;
4613 uint64_t old_value
= 0;
4617 * The pid is held in the low 32 bits.
4618 * The 'allowed' flags are in the upper 32 bits.
4620 old_value
= memorystatus_vm_map_fork_pidwatch_val
;
4622 error
= sysctl_io_number(req
, old_value
, sizeof(old_value
), &new_value
, NULL
);
4624 if (error
|| !req
->newptr
) {
4626 * No new value passed in.
4632 * A new pid was passed in via req->newptr.
4633 * Ignore any attempt to set the higher order bits.
4635 memorystatus_vm_map_fork_pidwatch_val
= new_value
& 0xFFFFFFFF;
4636 printf("memorystatus: pidwatch old_value = 0x%llx, new_value = 0x%llx \n", old_value
, new_value
);
4641 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_vm_map_fork_pidwatch
, CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
,
4642 0, 0, sysctl_memorystatus_vm_map_fork_pidwatch
, "Q", "get/set pid watched for in vm_map_fork");
4646 * Record if a watched process fails to qualify for a vm_map_fork().
4649 memorystatus_abort_vm_map_fork(task_t task
)
4651 if (memorystatus_vm_map_fork_pidwatch_val
!= 0) {
4652 proc_t p
= get_bsdtask_info(task
);
4653 if (p
!= NULL
&& memorystatus_vm_map_fork_pidwatch_val
== (uint64_t)p
->p_pid
) {
4654 memorystatus_vm_map_fork_pidwatch_val
= -1ull;
4660 set_vm_map_fork_pidwatch(task_t task
, uint64_t x
)
4662 if (memorystatus_vm_map_fork_pidwatch_val
!= 0) {
4663 proc_t p
= get_bsdtask_info(task
);
4664 if (p
&& (memorystatus_vm_map_fork_pidwatch_val
== (uint64_t)p
->p_pid
)) {
4665 memorystatus_vm_map_fork_pidwatch_val
|= x
;
4670 #else /* DEVELOPMENT || DEBUG */
4674 set_vm_map_fork_pidwatch(task_t task
, uint64_t x
)
4676 #pragma unused(task)
4680 #endif /* DEVELOPMENT || DEBUG */
4683 * Called during EXC_RESOURCE handling when a process exceeds a soft
4684 * memory limit. This is the corpse fork path and here we decide if
4685 * vm_map_fork will be allowed when creating the corpse.
4686 * The task being considered is suspended.
4688 * By default, a vm_map_fork is allowed to proceed.
4690 * A few simple policy assumptions:
4691 * If the device has a zero system-wide task limit,
4692 * then the vm_map_fork is allowed. macOS always has a zero
4693 * system wide task limit (unless overriden by a boot-arg).
4695 * And if a process's memory footprint calculates less
4696 * than or equal to quarter of the system-wide task limit,
4697 * then the vm_map_fork is allowed. This calculation
4698 * is based on the assumption that a process can
4699 * munch memory up to the system-wide task limit.
4701 extern boolean_t corpse_threshold_system_limit
;
4703 memorystatus_allowed_vm_map_fork(task_t task
)
4705 boolean_t is_allowed
= TRUE
; /* default */
4707 uint64_t footprint_in_bytes
;
4708 uint64_t max_allowed_bytes
;
4710 if (max_task_footprint_mb
== 0) {
4711 set_vm_map_fork_pidwatch(task
, MEMORYSTATUS_VM_MAP_FORK_ALLOWED
);
4715 footprint_in_bytes
= get_task_phys_footprint(task
);
4718 * Maximum is 1/4 of the system-wide task limit by default.
4720 max_allowed_bytes
= ((uint64_t)max_task_footprint_mb
* 1024 * 1024) >> 2;
4722 #if DEBUG || DEVELOPMENT
4723 if (corpse_threshold_system_limit
) {
4724 max_allowed_bytes
= (uint64_t)max_task_footprint_mb
* (1UL << 20);
4726 #endif /* DEBUG || DEVELOPMENT */
4728 if (footprint_in_bytes
> max_allowed_bytes
) {
4729 printf("memorystatus disallowed vm_map_fork %lld %lld\n", footprint_in_bytes
, max_allowed_bytes
);
4730 set_vm_map_fork_pidwatch(task
, MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED
);
4734 set_vm_map_fork_pidwatch(task
, MEMORYSTATUS_VM_MAP_FORK_ALLOWED
);
4739 memorystatus_get_task_page_counts(task_t task
, uint32_t *footprint
, uint32_t *max_footprint_lifetime
, uint32_t *purgeable_pages
)
4746 pages
= (get_task_phys_footprint(task
) / PAGE_SIZE_64
);
4747 assert(((uint32_t)pages
) == pages
);
4748 *footprint
= (uint32_t)pages
;
4750 if (max_footprint_lifetime
) {
4751 pages
= (get_task_phys_footprint_lifetime_max(task
) / PAGE_SIZE_64
);
4752 assert(((uint32_t)pages
) == pages
);
4753 *max_footprint_lifetime
= (uint32_t)pages
;
4755 if (purgeable_pages
) {
4756 pages
= (get_task_purgeable_size(task
) / PAGE_SIZE_64
);
4757 assert(((uint32_t)pages
) == pages
);
4758 *purgeable_pages
= (uint32_t)pages
;
4763 memorystatus_get_task_phys_footprint_page_counts(task_t task
,
4764 uint64_t *internal_pages
, uint64_t *internal_compressed_pages
,
4765 uint64_t *purgeable_nonvolatile_pages
, uint64_t *purgeable_nonvolatile_compressed_pages
,
4766 uint64_t *alternate_accounting_pages
, uint64_t *alternate_accounting_compressed_pages
,
4767 uint64_t *iokit_mapped_pages
, uint64_t *page_table_pages
, uint64_t *frozen_to_swap_pages
)
4771 if (internal_pages
) {
4772 *internal_pages
= (get_task_internal(task
) / PAGE_SIZE_64
);
4775 if (internal_compressed_pages
) {
4776 *internal_compressed_pages
= (get_task_internal_compressed(task
) / PAGE_SIZE_64
);
4779 if (purgeable_nonvolatile_pages
) {
4780 *purgeable_nonvolatile_pages
= (get_task_purgeable_nonvolatile(task
) / PAGE_SIZE_64
);
4783 if (purgeable_nonvolatile_compressed_pages
) {
4784 *purgeable_nonvolatile_compressed_pages
= (get_task_purgeable_nonvolatile_compressed(task
) / PAGE_SIZE_64
);
4787 if (alternate_accounting_pages
) {
4788 *alternate_accounting_pages
= (get_task_alternate_accounting(task
) / PAGE_SIZE_64
);
4791 if (alternate_accounting_compressed_pages
) {
4792 *alternate_accounting_compressed_pages
= (get_task_alternate_accounting_compressed(task
) / PAGE_SIZE_64
);
4795 if (iokit_mapped_pages
) {
4796 *iokit_mapped_pages
= (get_task_iokit_mapped(task
) / PAGE_SIZE_64
);
4799 if (page_table_pages
) {
4800 *page_table_pages
= (get_task_page_table(task
) / PAGE_SIZE_64
);
4804 if (frozen_to_swap_pages
) {
4805 *frozen_to_swap_pages
= (get_task_frozen_to_swap(task
) / PAGE_SIZE_64
);
4807 #else /* CONFIG_FREEZE */
4808 #pragma unused(frozen_to_swap_pages)
4809 #endif /* CONFIG_FREEZE */
4814 * Copies the source entry into the destination snapshot.
4815 * Returns true on success. Fails if the destination snapshot is full.
4816 * Caller must hold the proc list lock.
4819 memorystatus_jetsam_snapshot_copy_entry_locked(memorystatus_jetsam_snapshot_t
*dst_snapshot
, unsigned int dst_snapshot_size
, const memorystatus_jetsam_snapshot_entry_t
*src_entry
)
4821 LCK_MTX_ASSERT(&proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
4822 assert(dst_snapshot
);
4824 if (dst_snapshot
->entry_count
== dst_snapshot_size
) {
4825 /* Destination snapshot is full. Can not be updated until it is consumed. */
4828 if (dst_snapshot
->entry_count
== 0) {
4829 memorystatus_init_jetsam_snapshot_header(dst_snapshot
);
4831 memorystatus_jetsam_snapshot_entry_t
*dst_entry
= &dst_snapshot
->entries
[dst_snapshot
->entry_count
++];
4832 memcpy(dst_entry
, src_entry
, sizeof(memorystatus_jetsam_snapshot_entry_t
));
4835 #endif /* CONFIG_FREEZE */
4838 memorystatus_init_jetsam_snapshot_entry_with_kill_locked(memorystatus_jetsam_snapshot_t
*snapshot
, proc_t p
, uint32_t kill_cause
, uint64_t killtime
, memorystatus_jetsam_snapshot_entry_t
**entry
)
4840 LCK_MTX_ASSERT(&proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
4841 memorystatus_jetsam_snapshot_entry_t
*snapshot_list
= snapshot
->entries
;
4842 size_t i
= snapshot
->entry_count
;
4844 if (memorystatus_init_jetsam_snapshot_entry_locked(p
, &snapshot_list
[i
], (snapshot
->js_gencount
)) == TRUE
) {
4845 *entry
= &snapshot_list
[i
];
4846 (*entry
)->killed
= kill_cause
;
4847 (*entry
)->jse_killtime
= killtime
;
4849 snapshot
->entry_count
= i
+ 1;
4856 * This routine only acts on the global jetsam event snapshot.
4857 * Updating the process's entry can race when the memorystatus_thread
4858 * has chosen to kill a process that is racing to exit on another core.
4861 memorystatus_update_jetsam_snapshot_entry_locked(proc_t p
, uint32_t kill_cause
, uint64_t killtime
)
4863 memorystatus_jetsam_snapshot_entry_t
*entry
= NULL
;
4864 memorystatus_jetsam_snapshot_t
*snapshot
= NULL
;
4865 memorystatus_jetsam_snapshot_entry_t
*snapshot_list
= NULL
;
4869 bool copied_to_freezer_snapshot
= false;
4870 #endif /* CONFIG_FREEZE */
4872 LCK_MTX_ASSERT(&proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
4874 if (memorystatus_jetsam_snapshot_count
== 0) {
4876 * No active snapshot.
4883 * Sanity check as this routine should only be called
4884 * from a jetsam kill path.
4886 assert(kill_cause
!= 0 && killtime
!= 0);
4888 snapshot
= memorystatus_jetsam_snapshot
;
4889 snapshot_list
= memorystatus_jetsam_snapshot
->entries
;
4891 for (i
= 0; i
< memorystatus_jetsam_snapshot_count
; i
++) {
4892 if (snapshot_list
[i
].pid
== p
->p_pid
) {
4893 entry
= &snapshot_list
[i
];
4895 if (entry
->killed
|| entry
->jse_killtime
) {
4897 * We apparently raced on the exit path
4898 * for this process, as it's snapshot entry
4899 * has already recorded a kill.
4901 assert(entry
->killed
&& entry
->jse_killtime
);
4906 * Update the entry we just found in the snapshot.
4909 entry
->killed
= kill_cause
;
4910 entry
->jse_killtime
= killtime
;
4911 entry
->jse_gencount
= snapshot
->js_gencount
;
4912 entry
->jse_idle_delta
= p
->p_memstat_idle_delta
;
4914 entry
->jse_thaw_count
= p
->p_memstat_thaw_count
;
4915 entry
->jse_freeze_skip_reason
= p
->p_memstat_freeze_skip_reason
;
4916 #else /* CONFIG_FREEZE */
4917 entry
->jse_thaw_count
= 0;
4918 entry
->jse_freeze_skip_reason
= kMemorystatusFreezeSkipReasonNone
;
4919 #endif /* CONFIG_FREEZE */
4922 * If a process has moved between bands since snapshot was
4923 * initialized, then likely these fields changed too.
4925 if (entry
->priority
!= p
->p_memstat_effectivepriority
) {
4926 strlcpy(entry
->name
, p
->p_name
, sizeof(entry
->name
));
4927 entry
->priority
= p
->p_memstat_effectivepriority
;
4928 entry
->state
= memorystatus_build_state(p
);
4929 entry
->user_data
= p
->p_memstat_userdata
;
4930 entry
->fds
= p
->p_fd
->fd_nfiles
;
4934 * Always update the page counts on a kill.
4938 uint32_t max_pages_lifetime
= 0;
4939 uint32_t purgeable_pages
= 0;
4941 memorystatus_get_task_page_counts(p
->task
, &pages
, &max_pages_lifetime
, &purgeable_pages
);
4942 entry
->pages
= (uint64_t)pages
;
4943 entry
->max_pages_lifetime
= (uint64_t)max_pages_lifetime
;
4944 entry
->purgeable_pages
= (uint64_t)purgeable_pages
;
4946 uint64_t internal_pages
= 0;
4947 uint64_t internal_compressed_pages
= 0;
4948 uint64_t purgeable_nonvolatile_pages
= 0;
4949 uint64_t purgeable_nonvolatile_compressed_pages
= 0;
4950 uint64_t alternate_accounting_pages
= 0;
4951 uint64_t alternate_accounting_compressed_pages
= 0;
4952 uint64_t iokit_mapped_pages
= 0;
4953 uint64_t page_table_pages
= 0;
4954 uint64_t frozen_to_swap_pages
= 0;
4956 memorystatus_get_task_phys_footprint_page_counts(p
->task
, &internal_pages
, &internal_compressed_pages
,
4957 &purgeable_nonvolatile_pages
, &purgeable_nonvolatile_compressed_pages
,
4958 &alternate_accounting_pages
, &alternate_accounting_compressed_pages
,
4959 &iokit_mapped_pages
, &page_table_pages
, &frozen_to_swap_pages
);
4961 entry
->jse_internal_pages
= internal_pages
;
4962 entry
->jse_internal_compressed_pages
= internal_compressed_pages
;
4963 entry
->jse_purgeable_nonvolatile_pages
= purgeable_nonvolatile_pages
;
4964 entry
->jse_purgeable_nonvolatile_compressed_pages
= purgeable_nonvolatile_compressed_pages
;
4965 entry
->jse_alternate_accounting_pages
= alternate_accounting_pages
;
4966 entry
->jse_alternate_accounting_compressed_pages
= alternate_accounting_compressed_pages
;
4967 entry
->jse_iokit_mapped_pages
= iokit_mapped_pages
;
4968 entry
->jse_page_table_pages
= page_table_pages
;
4969 entry
->jse_frozen_to_swap_pages
= frozen_to_swap_pages
;
4971 uint64_t region_count
= 0;
4972 memorystatus_get_task_memory_region_count(p
->task
, ®ion_count
);
4973 entry
->jse_memory_region_count
= region_count
;
4979 if (entry
== NULL
) {
4981 * The entry was not found in the snapshot, so the process must have
4982 * launched after the snapshot was initialized.
4983 * Let's try to append the new entry.
4985 if (memorystatus_jetsam_snapshot_count
< memorystatus_jetsam_snapshot_max
) {
4987 * A populated snapshot buffer exists
4988 * and there is room to init a new entry.
4990 assert(memorystatus_jetsam_snapshot_count
== snapshot
->entry_count
);
4992 if (memorystatus_init_jetsam_snapshot_entry_with_kill_locked(snapshot
, p
, kill_cause
, killtime
, &entry
)) {
4993 memorystatus_jetsam_snapshot_count
++;
4995 if (memorystatus_jetsam_snapshot_count
>= memorystatus_jetsam_snapshot_max
) {
4997 * We just used the last slot in the snapshot buffer.
4998 * We only want to log it once... so we do it here
4999 * when we notice we've hit the max.
5001 printf("memorystatus: WARNING snapshot buffer is full, count %d\n",
5002 memorystatus_jetsam_snapshot_count
);
5011 if (memorystatus_jetsam_use_freezer_snapshot
&& isApp(p
)) {
5012 /* This is an app kill. Record it in the freezer snapshot so dasd can incorporate this in its recommendations. */
5013 copied_to_freezer_snapshot
= memorystatus_jetsam_snapshot_copy_entry_locked(memorystatus_jetsam_snapshot_freezer
, memorystatus_jetsam_snapshot_freezer_max
, entry
);
5014 if (copied_to_freezer_snapshot
&& memorystatus_jetsam_snapshot_freezer
->entry_count
== memorystatus_jetsam_snapshot_freezer_max
) {
5016 * We just used the last slot in the freezer snapshot buffer.
5017 * We only want to log it once... so we do it here
5018 * when we notice we've hit the max.
5020 os_log_error(OS_LOG_DEFAULT
, "memorystatus: WARNING freezer snapshot buffer is full, count %zu",
5021 memorystatus_jetsam_snapshot_freezer
->entry_count
);
5024 #endif /* CONFIG_FREEZE */
5027 * If we reach here, the snapshot buffer could not be updated.
5028 * Most likely, the buffer is full, in which case we would have
5029 * logged a warning in the previous call.
5031 * For now, we will stop appending snapshot entries.
5032 * When the buffer is consumed, the snapshot state will reset.
5035 MEMORYSTATUS_DEBUG(4, "memorystatus_update_jetsam_snapshot_entry_locked: failed to update pid %d, priority %d, count %d\n",
5036 p
->p_pid
, p
->p_memstat_effectivepriority
, memorystatus_jetsam_snapshot_count
);
5039 /* We still attempt to record this in the freezer snapshot */
5040 if (memorystatus_jetsam_use_freezer_snapshot
&& isApp(p
)) {
5041 snapshot
= memorystatus_jetsam_snapshot_freezer
;
5042 if (snapshot
->entry_count
< memorystatus_jetsam_snapshot_freezer_max
) {
5043 copied_to_freezer_snapshot
= memorystatus_init_jetsam_snapshot_entry_with_kill_locked(snapshot
, p
, kill_cause
, killtime
, &entry
);
5044 if (copied_to_freezer_snapshot
&& memorystatus_jetsam_snapshot_freezer
->entry_count
== memorystatus_jetsam_snapshot_freezer_max
) {
5046 * We just used the last slot in the freezer snapshot buffer.
5047 * We only want to log it once... so we do it here
5048 * when we notice we've hit the max.
5050 os_log_error(OS_LOG_DEFAULT
, "memorystatus: WARNING freezer snapshot buffer is full, count %zu",
5051 memorystatus_jetsam_snapshot_freezer
->entry_count
);
5055 #endif /* CONFIG_FREEZE */
5063 memorystatus_pages_update(unsigned int pages_avail
)
5065 memorystatus_available_pages
= pages_avail
;
5067 #if VM_PRESSURE_EVENTS
5069 * Since memorystatus_available_pages changes, we should
5070 * re-evaluate the pressure levels on the system and
5071 * check if we need to wake the pressure thread.
5072 * We also update memorystatus_level in that routine.
5074 vm_pressure_response();
5076 if (memorystatus_available_pages
<= memorystatus_available_pages_pressure
) {
5077 if (memorystatus_hwm_candidates
|| (memorystatus_available_pages
<= memorystatus_available_pages_critical
)) {
5078 memorystatus_thread_wake();
5083 * We can't grab the freezer_mutex here even though that synchronization would be correct to inspect
5084 * the # of frozen processes and wakeup the freezer thread. Reason being that we come here into this
5085 * code with (possibly) the page-queue locks held and preemption disabled. So trying to grab a mutex here
5086 * will result in the "mutex with preemption disabled" panic.
5089 if (memorystatus_freeze_thread_should_run() == TRUE
) {
5091 * The freezer thread is usually woken up by some user-space call i.e. pid_hibernate(any process).
5092 * That trigger isn't invoked often enough and so we are enabling this explicit wakeup here.
5094 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
5095 thread_wakeup((event_t
)&memorystatus_freeze_wakeup
);
5098 #endif /* CONFIG_FREEZE */
5100 #else /* VM_PRESSURE_EVENTS */
5102 boolean_t critical
, delta
;
5104 if (!memorystatus_delta
) {
5108 critical
= (pages_avail
< memorystatus_available_pages_critical
) ? TRUE
: FALSE
;
5109 delta
= ((pages_avail
>= (memorystatus_available_pages
+ memorystatus_delta
))
5110 || (memorystatus_available_pages
>= (pages_avail
+ memorystatus_delta
))) ? TRUE
: FALSE
;
5112 if (critical
|| delta
) {
5113 unsigned int total_pages
;
5115 total_pages
= (unsigned int) atop_64(max_mem
);
5116 #if CONFIG_SECLUDED_MEMORY
5117 total_pages
-= vm_page_secluded_count
;
5118 #endif /* CONFIG_SECLUDED_MEMORY */
5119 memorystatus_level
= memorystatus_available_pages
* 100 / total_pages
;
5120 memorystatus_thread_wake();
5122 #endif /* VM_PRESSURE_EVENTS */
5124 #endif /* CONFIG_JETSAM */
5127 memorystatus_init_jetsam_snapshot_entry_locked(proc_t p
, memorystatus_jetsam_snapshot_entry_t
*entry
, uint64_t gencount
)
5130 clock_usec_t tv_usec
;
5132 uint32_t max_pages_lifetime
= 0;
5133 uint32_t purgeable_pages
= 0;
5134 uint64_t internal_pages
= 0;
5135 uint64_t internal_compressed_pages
= 0;
5136 uint64_t purgeable_nonvolatile_pages
= 0;
5137 uint64_t purgeable_nonvolatile_compressed_pages
= 0;
5138 uint64_t alternate_accounting_pages
= 0;
5139 uint64_t alternate_accounting_compressed_pages
= 0;
5140 uint64_t iokit_mapped_pages
= 0;
5141 uint64_t page_table_pages
= 0;
5142 uint64_t frozen_to_swap_pages
= 0;
5143 uint64_t region_count
= 0;
5144 uint64_t cids
[COALITION_NUM_TYPES
];
5146 memset(entry
, 0, sizeof(memorystatus_jetsam_snapshot_entry_t
));
5148 entry
->pid
= p
->p_pid
;
5149 strlcpy(&entry
->name
[0], p
->p_name
, sizeof(entry
->name
));
5150 entry
->priority
= p
->p_memstat_effectivepriority
;
5152 memorystatus_get_task_page_counts(p
->task
, &pages
, &max_pages_lifetime
, &purgeable_pages
);
5153 entry
->pages
= (uint64_t)pages
;
5154 entry
->max_pages_lifetime
= (uint64_t)max_pages_lifetime
;
5155 entry
->purgeable_pages
= (uint64_t)purgeable_pages
;
5157 memorystatus_get_task_phys_footprint_page_counts(p
->task
, &internal_pages
, &internal_compressed_pages
,
5158 &purgeable_nonvolatile_pages
, &purgeable_nonvolatile_compressed_pages
,
5159 &alternate_accounting_pages
, &alternate_accounting_compressed_pages
,
5160 &iokit_mapped_pages
, &page_table_pages
, &frozen_to_swap_pages
);
5162 entry
->jse_internal_pages
= internal_pages
;
5163 entry
->jse_internal_compressed_pages
= internal_compressed_pages
;
5164 entry
->jse_purgeable_nonvolatile_pages
= purgeable_nonvolatile_pages
;
5165 entry
->jse_purgeable_nonvolatile_compressed_pages
= purgeable_nonvolatile_compressed_pages
;
5166 entry
->jse_alternate_accounting_pages
= alternate_accounting_pages
;
5167 entry
->jse_alternate_accounting_compressed_pages
= alternate_accounting_compressed_pages
;
5168 entry
->jse_iokit_mapped_pages
= iokit_mapped_pages
;
5169 entry
->jse_page_table_pages
= page_table_pages
;
5170 entry
->jse_frozen_to_swap_pages
= frozen_to_swap_pages
;
5172 memorystatus_get_task_memory_region_count(p
->task
, ®ion_count
);
5173 entry
->jse_memory_region_count
= region_count
;
5175 entry
->state
= memorystatus_build_state(p
);
5176 entry
->user_data
= p
->p_memstat_userdata
;
5177 memcpy(&entry
->uuid
[0], &p
->p_uuid
[0], sizeof(p
->p_uuid
));
5178 entry
->fds
= p
->p_fd
->fd_nfiles
;
5180 absolutetime_to_microtime(get_task_cpu_time(p
->task
), &tv_sec
, &tv_usec
);
5181 entry
->cpu_time
.tv_sec
= (int64_t)tv_sec
;
5182 entry
->cpu_time
.tv_usec
= (int64_t)tv_usec
;
5184 assert(p
->p_stats
!= NULL
);
5185 entry
->jse_starttime
= p
->p_stats
->ps_start
; /* abstime process started */
5186 entry
->jse_killtime
= 0; /* abstime jetsam chose to kill process */
5187 entry
->killed
= 0; /* the jetsam kill cause */
5188 entry
->jse_gencount
= gencount
; /* indicates a pass through jetsam thread, when process was targeted to be killed */
5190 entry
->jse_idle_delta
= p
->p_memstat_idle_delta
; /* Most recent timespan spent in idle-band */
5193 entry
->jse_freeze_skip_reason
= p
->p_memstat_freeze_skip_reason
;
5194 entry
->jse_thaw_count
= p
->p_memstat_thaw_count
;
5195 #else /* CONFIG_FREEZE */
5196 entry
->jse_thaw_count
= 0;
5197 entry
->jse_freeze_skip_reason
= kMemorystatusFreezeSkipReasonNone
;
5198 #endif /* CONFIG_FREEZE */
5200 proc_coalitionids(p
, cids
);
5201 entry
->jse_coalition_jetsam_id
= cids
[COALITION_TYPE_JETSAM
];
5207 memorystatus_init_snapshot_vmstats(memorystatus_jetsam_snapshot_t
*snapshot
)
5209 kern_return_t kr
= KERN_SUCCESS
;
5210 mach_msg_type_number_t count
= HOST_VM_INFO64_COUNT
;
5211 vm_statistics64_data_t vm_stat
;
5213 if ((kr
= host_statistics64(host_self(), HOST_VM_INFO64
, (host_info64_t
)&vm_stat
, &count
)) != KERN_SUCCESS
) {
5214 printf("memorystatus_init_jetsam_snapshot_stats: host_statistics64 failed with %d\n", kr
);
5215 memset(&snapshot
->stats
, 0, sizeof(snapshot
->stats
));
5217 snapshot
->stats
.free_pages
= vm_stat
.free_count
;
5218 snapshot
->stats
.active_pages
= vm_stat
.active_count
;
5219 snapshot
->stats
.inactive_pages
= vm_stat
.inactive_count
;
5220 snapshot
->stats
.throttled_pages
= vm_stat
.throttled_count
;
5221 snapshot
->stats
.purgeable_pages
= vm_stat
.purgeable_count
;
5222 snapshot
->stats
.wired_pages
= vm_stat
.wire_count
;
5224 snapshot
->stats
.speculative_pages
= vm_stat
.speculative_count
;
5225 snapshot
->stats
.filebacked_pages
= vm_stat
.external_page_count
;
5226 snapshot
->stats
.anonymous_pages
= vm_stat
.internal_page_count
;
5227 snapshot
->stats
.compressions
= vm_stat
.compressions
;
5228 snapshot
->stats
.decompressions
= vm_stat
.decompressions
;
5229 snapshot
->stats
.compressor_pages
= vm_stat
.compressor_page_count
;
5230 snapshot
->stats
.total_uncompressed_pages_in_compressor
= vm_stat
.total_uncompressed_pages_in_compressor
;
5233 get_zone_map_size(&snapshot
->stats
.zone_map_size
, &snapshot
->stats
.zone_map_capacity
);
5235 bzero(snapshot
->stats
.largest_zone_name
, sizeof(snapshot
->stats
.largest_zone_name
));
5236 get_largest_zone_info(snapshot
->stats
.largest_zone_name
, sizeof(snapshot
->stats
.largest_zone_name
),
5237 &snapshot
->stats
.largest_zone_size
);
5241 * Collect vm statistics at boot.
5242 * Called only once (see kern_exec.c)
5243 * Data can be consumed at any time.
5246 memorystatus_init_at_boot_snapshot()
5248 memorystatus_init_snapshot_vmstats(&memorystatus_at_boot_snapshot
);
5249 memorystatus_at_boot_snapshot
.entry_count
= 0;
5250 memorystatus_at_boot_snapshot
.notification_time
= 0; /* updated when consumed */
5251 memorystatus_at_boot_snapshot
.snapshot_time
= mach_absolute_time();
5255 memorystatus_init_jetsam_snapshot_header(memorystatus_jetsam_snapshot_t
*snapshot
)
5257 memorystatus_init_snapshot_vmstats(snapshot
);
5258 snapshot
->snapshot_time
= mach_absolute_time();
5259 snapshot
->notification_time
= 0;
5260 snapshot
->js_gencount
= 0;
5264 memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t
*od_snapshot
, uint32_t ods_list_count
)
5267 unsigned int b
= 0, i
= 0;
5269 memorystatus_jetsam_snapshot_t
*snapshot
= NULL
;
5270 memorystatus_jetsam_snapshot_entry_t
*snapshot_list
= NULL
;
5271 unsigned int snapshot_max
= 0;
5273 LCK_MTX_ASSERT(&proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
5277 * This is an on_demand snapshot
5279 snapshot
= od_snapshot
;
5280 snapshot_list
= od_snapshot
->entries
;
5281 snapshot_max
= ods_list_count
;
5284 * This is a jetsam event snapshot
5286 snapshot
= memorystatus_jetsam_snapshot
;
5287 snapshot_list
= memorystatus_jetsam_snapshot
->entries
;
5288 snapshot_max
= memorystatus_jetsam_snapshot_max
;
5291 memorystatus_init_jetsam_snapshot_header(snapshot
);
5293 next_p
= memorystatus_get_first_proc_locked(&b
, TRUE
);
5296 next_p
= memorystatus_get_next_proc_locked(&b
, p
, TRUE
);
5298 if (FALSE
== memorystatus_init_jetsam_snapshot_entry_locked(p
, &snapshot_list
[i
], snapshot
->js_gencount
)) {
5302 MEMORYSTATUS_DEBUG(0, "jetsam snapshot pid %d, uuid = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5304 p
->p_uuid
[0], p
->p_uuid
[1], p
->p_uuid
[2], p
->p_uuid
[3], p
->p_uuid
[4], p
->p_uuid
[5], p
->p_uuid
[6], p
->p_uuid
[7],
5305 p
->p_uuid
[8], p
->p_uuid
[9], p
->p_uuid
[10], p
->p_uuid
[11], p
->p_uuid
[12], p
->p_uuid
[13], p
->p_uuid
[14], p
->p_uuid
[15]);
5307 if (++i
== snapshot_max
) {
5312 snapshot
->entry_count
= i
;
5315 /* update the system buffer count */
5316 memorystatus_jetsam_snapshot_count
= i
;
5320 #if DEVELOPMENT || DEBUG
5324 memorystatus_cmd_set_panic_bits(user_addr_t buffer
, size_t buffer_size
)
5327 memorystatus_jetsam_panic_options_t debug
;
5329 if (buffer_size
!= sizeof(memorystatus_jetsam_panic_options_t
)) {
5333 ret
= copyin(buffer
, &debug
, buffer_size
);
5338 /* Panic bits match kMemorystatusKilled* enum */
5339 memorystatus_jetsam_panic_debug
= (memorystatus_jetsam_panic_debug
& ~debug
.mask
) | (debug
.data
& debug
.mask
);
5341 /* Copyout new value */
5342 debug
.data
= memorystatus_jetsam_panic_debug
;
5343 ret
= copyout(&debug
, buffer
, sizeof(memorystatus_jetsam_panic_options_t
));
5347 #endif /* CONFIG_JETSAM */
5350 * Verify that the given bucket has been sorted correctly.
5352 * Walks through the bucket and verifies that all pids in the
5353 * expected_order buffer are in that bucket and in the same
5356 * The proc_list_lock must be held by the caller.
5359 memorystatus_verify_sort_order(unsigned int bucket_index
, pid_t
*expected_order
, size_t num_pids
)
5361 LCK_MTX_ASSERT(&proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
5368 * NB: We allow other procs to be mixed in within the expected ones.
5369 * We just need the expected procs to be in the right order relative to each other.
5371 p
= memorystatus_get_first_proc_locked(&bucket_index
, FALSE
);
5373 if (p
->p_pid
== expected_order
[i
]) {
5376 if (i
== num_pids
) {
5379 p
= memorystatus_get_next_proc_locked(&bucket_index
, p
, FALSE
);
5381 if (i
!= num_pids
) {
5383 size_t len
= sizeof(buffer
);
5384 size_t buffer_idx
= 0;
5385 os_log_error(OS_LOG_DEFAULT
, "memorystatus_verify_sort_order: Processes in bucket %d were not sorted properly\n", bucket_index
);
5386 for (i
= 0; i
< num_pids
; i
++) {
5387 int num_written
= snprintf(buffer
+ buffer_idx
, len
- buffer_idx
, "%d,", expected_order
[i
]);
5388 if (num_written
<= 0) {
5391 if (buffer_idx
+ (unsigned int) num_written
>= len
) {
5394 buffer_idx
+= num_written
;
5396 os_log_error(OS_LOG_DEFAULT
, "memorystatus_verify_sort_order: Expected order [%s]", buffer
);
5397 memset(buffer
, 0, len
);
5399 p
= memorystatus_get_first_proc_locked(&bucket_index
, FALSE
);
5401 os_log_error(OS_LOG_DEFAULT
, "memorystatus_verify_sort_order: Actual order:");
5404 if (buffer_idx
== 0) {
5405 num_written
= snprintf(buffer
+ buffer_idx
, len
- buffer_idx
, "%zu: %d,", i
, p
->p_pid
);
5407 num_written
= snprintf(buffer
+ buffer_idx
, len
- buffer_idx
, "%d,", p
->p_pid
);
5409 if (num_written
<= 0) {
5412 buffer_idx
+= (unsigned int) num_written
;
5413 assert(buffer_idx
<= len
);
5415 os_log_error(OS_LOG_DEFAULT
, "memorystatus_verify_sort_order: %s", buffer
);
5418 p
= memorystatus_get_next_proc_locked(&bucket_index
, p
, FALSE
);
5421 if (buffer_idx
!= 0) {
5422 os_log_error(OS_LOG_DEFAULT
, "memorystatus_verify_sort_order: %s", buffer
);
5430 * Triggers a sort_order on a specified jetsam priority band.
5431 * This is for testing only, used to force a path through the sort
5435 memorystatus_cmd_test_jetsam_sort(int priority
,
5437 user_addr_t expected_order_user
,
5438 size_t expected_order_user_len
)
5441 unsigned int bucket_index
= 0;
5442 static size_t kMaxPids
= 8;
5443 pid_t expected_order
[kMaxPids
];
5444 size_t copy_size
= sizeof(expected_order
);
5447 if (expected_order_user_len
< copy_size
) {
5448 copy_size
= expected_order_user_len
;
5450 num_pids
= copy_size
/ sizeof(pid_t
);
5452 error
= copyin(expected_order_user
, expected_order
, copy_size
);
5457 if (priority
== -1) {
5458 /* Use as shorthand for default priority */
5459 bucket_index
= JETSAM_PRIORITY_DEFAULT
;
5461 bucket_index
= (unsigned int)priority
;
5465 * Acquire lock before sorting so we can check the sort order
5466 * while still holding the lock.
5470 memorystatus_sort_bucket_locked(bucket_index
, sort_order
);
5472 if (expected_order_user
!= CAST_USER_ADDR_T(NULL
) && expected_order_user_len
> 0) {
5473 error
= memorystatus_verify_sort_order(bucket_index
, expected_order
, num_pids
);
5481 #endif /* DEVELOPMENT || DEBUG */
5484 * Prepare the process to be killed (set state, update snapshot) and kill it.
5486 static uint64_t memorystatus_purge_before_jetsam_success
= 0;
5489 memorystatus_kill_proc(proc_t p
, uint32_t cause
, os_reason_t jetsam_reason
, boolean_t
*killed
, uint64_t *footprint_of_killed_proc
)
5492 uint32_t aPid_ep
= 0;
5494 uint64_t killtime
= 0;
5496 clock_usec_t tv_usec
;
5498 boolean_t retval
= FALSE
;
5501 aPid_ep
= p
->p_memstat_effectivepriority
;
5503 if (cause
!= kMemorystatusKilledVnodes
&& cause
!= kMemorystatusKilledZoneMapExhaustion
) {
5505 * Genuine memory pressure and not other (vnode/zone) resource exhaustion.
5507 boolean_t success
= FALSE
;
5508 uint64_t num_pages_purged
;
5509 uint64_t num_pages_reclaimed
= 0;
5510 uint64_t num_pages_unsecluded
= 0;
5512 networking_memstatus_callout(p
, cause
);
5513 num_pages_purged
= vm_purgeable_purge_task_owned(p
->task
);
5514 num_pages_reclaimed
+= num_pages_purged
;
5515 #if CONFIG_SECLUDED_MEMORY
5516 if (cause
== kMemorystatusKilledVMPageShortage
&&
5517 vm_page_secluded_count
> 0 &&
5518 task_can_use_secluded_mem(p
->task
, FALSE
)) {
5520 * We're about to kill a process that has access
5521 * to the secluded pool. Drain that pool into the
5522 * free or active queues to make these pages re-appear
5523 * as "available", which might make us no longer need
5524 * to kill that process.
5525 * Since the secluded pool does not get refilled while
5526 * a process has access to it, it should remain
5529 num_pages_unsecluded
= vm_page_secluded_drain();
5530 num_pages_reclaimed
+= num_pages_unsecluded
;
5532 #endif /* CONFIG_SECLUDED_MEMORY */
5534 if (num_pages_reclaimed
) {
5536 * We actually reclaimed something and so let's
5537 * check if we need to continue with the kill.
5539 if (cause
== kMemorystatusKilledHiwat
) {
5540 uint64_t footprint_in_bytes
= get_task_phys_footprint(p
->task
);
5541 uint64_t memlimit_in_bytes
= (((uint64_t)p
->p_memstat_memlimit
) * 1024ULL * 1024ULL); /* convert MB to bytes */
5542 success
= (footprint_in_bytes
<= memlimit_in_bytes
);
5544 success
= (memorystatus_avail_pages_below_pressure() == FALSE
);
5545 #if CONFIG_SECLUDED_MEMORY
5546 if (!success
&& num_pages_unsecluded
) {
5548 * We just drained the secluded pool
5549 * because we're about to kill a
5550 * process that has access to it.
5551 * This is an important process and
5552 * we'd rather not kill it unless
5553 * absolutely necessary, so declare
5554 * success even if draining the pool
5555 * did not quite get us out of the
5556 * "pressure" level but still got
5557 * us out of the "critical" level.
5559 success
= (memorystatus_avail_pages_below_critical() == FALSE
);
5561 #endif /* CONFIG_SECLUDED_MEMORY */
5565 memorystatus_purge_before_jetsam_success
++;
5567 os_log_with_startup_serial(OS_LOG_DEFAULT
, "memorystatus: reclaimed %llu pages (%llu purged, %llu unsecluded) from pid %d [%s] and avoided %s\n",
5568 num_pages_reclaimed
, num_pages_purged
, num_pages_unsecluded
, aPid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"), memorystatus_kill_cause_name
[cause
]);
5577 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
5578 MEMORYSTATUS_DEBUG(1, "jetsam: killing pid %d [%s] - %lld Mb > 1 (%d Mb)\n",
5579 aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5580 (footprint_in_bytes
/ (1024ULL * 1024ULL)), /* converted bytes to MB */
5581 p
->p_memstat_memlimit
);
5582 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
5584 killtime
= mach_absolute_time();
5585 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
5586 tv_msec
= tv_usec
/ 1000;
5589 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
5592 char kill_reason_string
[128];
5594 if (cause
== kMemorystatusKilledHiwat
) {
5595 strlcpy(kill_reason_string
, "killing_highwater_process", 128);
5597 if (aPid_ep
== JETSAM_PRIORITY_IDLE
) {
5598 strlcpy(kill_reason_string
, "killing_idle_process", 128);
5600 strlcpy(kill_reason_string
, "killing_top_process", 128);
5605 * memorystatus_do_kill drops a reference, so take another one so we can
5606 * continue to use this exit reason even after memorystatus_do_kill()
5609 os_reason_ref(jetsam_reason
);
5611 retval
= memorystatus_do_kill(p
, cause
, jetsam_reason
, footprint_of_killed_proc
);
5614 os_log_with_startup_serial(OS_LOG_DEFAULT
, "%lu.%03d memorystatus: %s pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu",
5615 (unsigned long)tv_sec
, tv_msec
, kill_reason_string
,
5616 aPid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"),
5617 memorystatus_kill_cause_name
[cause
], aPid_ep
,
5618 (*footprint_of_killed_proc
) >> 10, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES
);
5624 * Jetsam the first process in the queue.
5627 memorystatus_kill_top_process(boolean_t any
, boolean_t sort_flag
, uint32_t cause
, os_reason_t jetsam_reason
,
5628 int32_t *priority
, uint32_t *errors
, uint64_t *memory_reclaimed
)
5631 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5632 boolean_t new_snapshot
= FALSE
, force_new_snapshot
= FALSE
, killed
= FALSE
, freed_mem
= FALSE
;
5635 int32_t local_max_kill_prio
= JETSAM_PRIORITY_IDLE
;
5636 uint64_t footprint_of_killed_proc
= 0;
5638 #ifndef CONFIG_FREEZE
5642 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
5643 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, 0, 0, 0, 0);
5647 if (sort_flag
== TRUE
) {
5648 (void)memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND
, JETSAM_SORT_DEFAULT
);
5651 local_max_kill_prio
= max_kill_priority
;
5653 force_new_snapshot
= FALSE
;
5655 #else /* CONFIG_JETSAM */
5657 if (sort_flag
== TRUE
) {
5658 (void)memorystatus_sort_bucket(JETSAM_PRIORITY_IDLE
, JETSAM_SORT_DEFAULT
);
5662 * On macos, we currently only have 2 reasons to be here:
5664 * kMemorystatusKilledZoneMapExhaustion
5666 * kMemorystatusKilledVMCompressorSpaceShortage
5668 * If we are here because of kMemorystatusKilledZoneMapExhaustion, we will consider
5669 * any and all processes as eligible kill candidates since we need to avoid a panic.
5671 * Since this function can be called async. it is harder to toggle the max_kill_priority
5672 * value before and after a call. And so we use this local variable to set the upper band
5673 * on the eligible kill bands.
5675 if (cause
== kMemorystatusKilledZoneMapExhaustion
) {
5676 local_max_kill_prio
= JETSAM_PRIORITY_MAX
;
5678 local_max_kill_prio
= max_kill_priority
;
5682 * And, because we are here under extreme circumstances, we force a snapshot even for
5685 force_new_snapshot
= TRUE
;
5687 #endif /* CONFIG_JETSAM */
5689 if (cause
!= kMemorystatusKilledZoneMapExhaustion
&&
5690 jetsam_current_thread() != NULL
&&
5691 jetsam_current_thread()->limit_to_low_bands
&&
5692 local_max_kill_prio
> JETSAM_PRIORITY_BACKGROUND
) {
5693 local_max_kill_prio
= JETSAM_PRIORITY_BACKGROUND
;
5698 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5699 while (next_p
&& (next_p
->p_memstat_effectivepriority
<= local_max_kill_prio
)) {
5701 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
5705 aPid_ep
= p
->p_memstat_effectivepriority
;
5707 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5708 continue; /* with lock held */
5711 if (cause
== kMemorystatusKilledVnodes
) {
5713 * If the system runs out of vnodes, we systematically jetsam
5714 * processes in hopes of stumbling onto a vnode gain that helps
5715 * the system recover. The process that happens to trigger
5716 * this path has no known relationship to the vnode shortage.
5717 * Deadlock avoidance: attempt to safeguard the caller.
5720 if (p
== current_proc()) {
5721 /* do not jetsam the current process */
5728 boolean_t reclaim_proc
= !(p
->p_memstat_state
& P_MEMSTAT_LOCKED
);
5729 if (any
|| reclaim_proc
) {
5740 if (proc_ref_locked(p
) == p
) {
5742 * Mark as terminated so that if exit1() indicates success, but the process (for example)
5743 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
5744 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
5745 * acquisition of the proc lock.
5747 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5750 * We need to restart the search again because
5751 * proc_ref_locked _can_ drop the proc_list lock
5752 * and we could have lost our stored next_p via
5753 * an exit() on another core.
5756 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5761 * Capture a snapshot if none exists and:
5762 * - we are forcing a new snapshot creation, either because:
5763 * - on a particular platform we need these snapshots every time, OR
5764 * - a boot-arg/embedded device tree property has been set.
5765 * - priority was not requested (this is something other than an ambient kill)
5766 * - the priority was requested *and* the targeted process is not at idle priority
5768 if ((memorystatus_jetsam_snapshot_count
== 0) &&
5769 (force_new_snapshot
|| memorystatus_idle_snapshot
|| ((!priority
) || (priority
&& (aPid_ep
!= JETSAM_PRIORITY_IDLE
))))) {
5770 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
5771 new_snapshot
= TRUE
;
5776 freed_mem
= memorystatus_kill_proc(p
, cause
, jetsam_reason
, &killed
, &footprint_of_killed_proc
); /* purged and/or killed 'p' */
5780 *memory_reclaimed
= footprint_of_killed_proc
;
5782 *priority
= aPid_ep
;
5787 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5795 * Failure - first unwind the state,
5796 * then fall through to restart the search.
5799 proc_rele_locked(p
);
5800 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5801 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5805 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5812 os_reason_free(jetsam_reason
);
5815 *memory_reclaimed
= 0;
5817 /* Clear snapshot if freshly captured and no target was found */
5820 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
5825 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
5826 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, killed
? aPid
: 0, killed
, *memory_reclaimed
, 0);
5832 * Jetsam aggressively
5835 memorystatus_kill_processes_aggressive(uint32_t cause
, int aggr_count
,
5836 int32_t priority_max
, uint32_t *errors
, uint64_t *memory_reclaimed
)
5839 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5840 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
5843 int32_t aPid_ep
= 0;
5844 unsigned int memorystatus_level_snapshot
= 0;
5845 uint64_t killtime
= 0;
5847 clock_usec_t tv_usec
;
5849 os_reason_t jetsam_reason
= OS_REASON_NULL
;
5850 uint64_t footprint_of_killed_proc
= 0;
5852 *memory_reclaimed
= 0;
5854 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
5855 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, priority_max
, 0, 0, 0);
5857 if (priority_max
>= JETSAM_PRIORITY_FOREGROUND
) {
5859 * Check if aggressive jetsam has been asked to kill upto or beyond the
5860 * JETSAM_PRIORITY_FOREGROUND bucket. If yes, sort the FG band based on
5861 * coalition footprint.
5863 memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND
, JETSAM_SORT_DEFAULT
);
5866 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, cause
);
5867 if (jetsam_reason
== OS_REASON_NULL
) {
5868 printf("memorystatus_kill_processes_aggressive: failed to allocate exit reason\n");
5873 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5875 if (((next_p
->p_listflag
& P_LIST_EXITED
) != 0) ||
5876 ((unsigned int)(next_p
->p_memstat_effectivepriority
) != i
)) {
5878 * We have raced with next_p running on another core.
5879 * It may be exiting or it may have moved to a different
5880 * jetsam priority band. This means we have lost our
5881 * place in line while traversing the jetsam list. We
5882 * attempt to recover by rewinding to the beginning of the band
5883 * we were already traversing. By doing this, we do not guarantee
5884 * that no process escapes this aggressive march, but we can make
5885 * skipping an entire range of processes less likely. (PR-21069019)
5888 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: rewinding band %d, %s(%d) moved or exiting.\n",
5889 aggr_count
, i
, (*next_p
->p_name
? next_p
->p_name
: "unknown"), next_p
->p_pid
);
5891 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5896 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
5898 if (p
->p_memstat_effectivepriority
> priority_max
) {
5900 * Bail out of this killing spree if we have
5901 * reached beyond the priority_max jetsam band.
5902 * That is, we kill up to and through the
5903 * priority_max jetsam band.
5910 aPid_ep
= p
->p_memstat_effectivepriority
;
5912 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5917 * Capture a snapshot if none exists.
5919 if (memorystatus_jetsam_snapshot_count
== 0) {
5920 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
5921 new_snapshot
= TRUE
;
5925 * Mark as terminated so that if exit1() indicates success, but the process (for example)
5926 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
5927 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
5928 * acquisition of the proc lock.
5930 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5932 killtime
= mach_absolute_time();
5933 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
5934 tv_msec
= tv_usec
/ 1000;
5936 /* Shift queue, update stats */
5937 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
5940 * In order to kill the target process, we will drop the proc_list_lock.
5941 * To guaranteee that p and next_p don't disappear out from under the lock,
5942 * we must take a ref on both.
5943 * If we cannot get a reference, then it's likely we've raced with
5944 * that process exiting on another core.
5946 if (proc_ref_locked(p
) == p
) {
5948 while (next_p
&& (proc_ref_locked(next_p
) != next_p
)) {
5952 * We must have raced with next_p exiting on another core.
5953 * Recover by getting the next eligible process in the band.
5956 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: skipping %d [%s] (exiting?)\n",
5957 aggr_count
, next_p
->p_pid
, (*next_p
->p_name
? next_p
->p_name
: "(unknown)"));
5960 next_p
= memorystatus_get_next_proc_locked(&i
, temp_p
, TRUE
);
5965 printf("%lu.%03d memorystatus: %s%d pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n",
5966 (unsigned long)tv_sec
, tv_msec
,
5967 ((aPid_ep
== JETSAM_PRIORITY_IDLE
) ? "killing_idle_process_aggressive" : "killing_top_process_aggressive"),
5968 aggr_count
, aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5969 memorystatus_kill_cause_name
[cause
], aPid_ep
, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES
);
5971 memorystatus_level_snapshot
= memorystatus_level
;
5974 * memorystatus_do_kill() drops a reference, so take another one so we can
5975 * continue to use this exit reason even after memorystatus_do_kill()
5978 os_reason_ref(jetsam_reason
);
5979 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
, &footprint_of_killed_proc
);
5983 *memory_reclaimed
+= footprint_of_killed_proc
;
5990 * Continue the killing spree.
5994 proc_rele_locked(next_p
);
5997 if (aPid_ep
== JETSAM_PRIORITY_FOREGROUND
&& memorystatus_aggressive_jetsam_lenient
== TRUE
) {
5998 if (memorystatus_level
> memorystatus_level_snapshot
&& ((memorystatus_level
- memorystatus_level_snapshot
) >= AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD
)) {
5999 #if DEVELOPMENT || DEBUG
6000 printf("Disabling Lenient mode after one-time deployment.\n");
6001 #endif /* DEVELOPMENT || DEBUG */
6002 memorystatus_aggressive_jetsam_lenient
= FALSE
;
6011 * Failure - first unwind the state,
6012 * then fall through to restart the search.
6015 proc_rele_locked(p
);
6017 proc_rele_locked(next_p
);
6019 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
6020 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
6026 * Failure - restart the search at the beginning of
6027 * the band we were already traversing.
6029 * We might have raced with "p" exiting on another core, resulting in no
6030 * ref on "p". Or, we may have failed to kill "p".
6032 * Either way, we fall thru to here, leaving the proc in the
6033 * P_MEMSTAT_TERMINATED or P_MEMSTAT_ERROR state.
6035 * And, we hold the the proc_list_lock at this point.
6038 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6044 os_reason_free(jetsam_reason
);
6046 /* Clear snapshot if freshly captured and no target was found */
6047 if (new_snapshot
&& (kill_count
== 0)) {
6049 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
6053 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
6054 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, 0, kill_count
, *memory_reclaimed
, 0);
6056 if (kill_count
> 0) {
6064 memorystatus_kill_hiwat_proc(uint32_t *errors
, boolean_t
*purged
, uint64_t *memory_reclaimed
)
6067 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
6068 boolean_t new_snapshot
= FALSE
, killed
= FALSE
, freed_mem
= FALSE
;
6071 os_reason_t jetsam_reason
= OS_REASON_NULL
;
6072 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM_HIWAT
) | DBG_FUNC_START
,
6073 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, 0, 0, 0, 0);
6075 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_HIGHWATER
);
6076 if (jetsam_reason
== OS_REASON_NULL
) {
6077 printf("memorystatus_kill_hiwat_proc: failed to allocate exit reason\n");
6082 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6084 uint64_t footprint_in_bytes
= 0;
6085 uint64_t memlimit_in_bytes
= 0;
6089 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
6092 aPid_ep
= p
->p_memstat_effectivepriority
;
6094 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
6098 /* skip if no limit set */
6099 if (p
->p_memstat_memlimit
<= 0) {
6103 footprint_in_bytes
= get_task_phys_footprint(p
->task
);
6104 memlimit_in_bytes
= (((uint64_t)p
->p_memstat_memlimit
) * 1024ULL * 1024ULL); /* convert MB to bytes */
6105 skip
= (footprint_in_bytes
<= memlimit_in_bytes
);
6109 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
6120 if (memorystatus_jetsam_snapshot_count
== 0) {
6121 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
6122 new_snapshot
= TRUE
;
6125 if (proc_ref_locked(p
) == p
) {
6127 * Mark as terminated so that if exit1() indicates success, but the process (for example)
6128 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
6129 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
6130 * acquisition of the proc lock.
6132 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
6137 * We need to restart the search again because
6138 * proc_ref_locked _can_ drop the proc_list lock
6139 * and we could have lost our stored next_p via
6140 * an exit() on another core.
6143 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6147 footprint_in_bytes
= 0;
6148 freed_mem
= memorystatus_kill_proc(p
, kMemorystatusKilledHiwat
, jetsam_reason
, &killed
, &footprint_in_bytes
); /* purged and/or killed 'p' */
6152 if (killed
== FALSE
) {
6153 /* purged 'p'..don't reset HWM candidate count */
6157 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
6160 *memory_reclaimed
= footprint_in_bytes
;
6166 * Failure - first unwind the state,
6167 * then fall through to restart the search.
6170 proc_rele_locked(p
);
6171 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
6172 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
6176 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6183 os_reason_free(jetsam_reason
);
6186 *memory_reclaimed
= 0;
6188 /* Clear snapshot if freshly captured and no target was found */
6191 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
6196 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM_HIWAT
) | DBG_FUNC_END
,
6197 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, killed
? aPid
: 0, killed
, *memory_reclaimed
, 0);
6203 * Jetsam a process pinned in the elevated band.
6205 * Return: true -- a pinned process was jetsammed
6206 * false -- no pinned process was jetsammed
6209 memorystatus_kill_elevated_process(uint32_t cause
, os_reason_t jetsam_reason
, unsigned int band
, int aggr_count
, uint32_t *errors
, uint64_t *memory_reclaimed
)
6212 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
6213 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
6216 uint64_t killtime
= 0;
6218 clock_usec_t tv_usec
;
6220 uint64_t footprint_of_killed_proc
= 0;
6223 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
6224 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, 0, 0, 0, 0);
6227 boolean_t consider_frozen_only
= FALSE
;
6229 if (band
== (unsigned int) memorystatus_freeze_jetsam_band
) {
6230 consider_frozen_only
= TRUE
;
6232 #endif /* CONFIG_FREEZE */
6236 next_p
= memorystatus_get_first_proc_locked(&band
, FALSE
);
6239 next_p
= memorystatus_get_next_proc_locked(&band
, p
, FALSE
);
6242 aPid_ep
= p
->p_memstat_effectivepriority
;
6245 * Only pick a process pinned in this elevated band
6247 if (!(p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) {
6251 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
6256 if (consider_frozen_only
&& !(p
->p_memstat_state
& P_MEMSTAT_FROZEN
)) {
6260 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
6263 #endif /* CONFIG_FREEZE */
6265 #if DEVELOPMENT || DEBUG
6266 MEMORYSTATUS_DEBUG(1, "jetsam: elevated%d process pid %d [%s] - memorystatus_available_pages: %d\n",
6268 aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
6269 MEMORYSTATUS_LOG_AVAILABLE_PAGES
);
6270 #endif /* DEVELOPMENT || DEBUG */
6272 if (memorystatus_jetsam_snapshot_count
== 0) {
6273 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
6274 new_snapshot
= TRUE
;
6277 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
6279 killtime
= mach_absolute_time();
6280 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
6281 tv_msec
= tv_usec
/ 1000;
6283 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
6285 if (proc_ref_locked(p
) == p
) {
6289 * memorystatus_do_kill drops a reference, so take another one so we can
6290 * continue to use this exit reason even after memorystatus_do_kill()
6293 os_reason_ref(jetsam_reason
);
6294 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
, &footprint_of_killed_proc
);
6296 os_log_with_startup_serial(OS_LOG_DEFAULT
, "%lu.%03d memorystatus: killing_top_process_elevated%d pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu\n",
6297 (unsigned long)tv_sec
, tv_msec
,
6299 aPid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"),
6300 memorystatus_kill_cause_name
[cause
], aPid_ep
,
6301 footprint_of_killed_proc
>> 10, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES
);
6305 *memory_reclaimed
= footprint_of_killed_proc
;
6312 * Failure - first unwind the state,
6313 * then fall through to restart the search.
6316 proc_rele_locked(p
);
6317 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
6318 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
6323 * Failure - restart the search.
6325 * We might have raced with "p" exiting on another core, resulting in no
6326 * ref on "p". Or, we may have failed to kill "p".
6328 * Either way, we fall thru to here, leaving the proc in the
6329 * P_MEMSTAT_TERMINATED state or P_MEMSTAT_ERROR state.
6331 * And, we hold the the proc_list_lock at this point.
6334 next_p
= memorystatus_get_first_proc_locked(&band
, FALSE
);
6340 os_reason_free(jetsam_reason
);
6342 if (kill_count
== 0) {
6343 *memory_reclaimed
= 0;
6345 /* Clear snapshot if freshly captured and no target was found */
6348 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
6353 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
6354 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, killed
? aPid
: 0, kill_count
, *memory_reclaimed
, 0);
6360 memorystatus_kill_process_async(pid_t victim_pid
, uint32_t cause
)
6363 * TODO: allow a general async path
6365 * NOTE: If a new async kill cause is added, make sure to update memorystatus_thread() to
6366 * add the appropriate exit reason code mapping.
6368 if ((victim_pid
!= -1) ||
6369 (cause
!= kMemorystatusKilledVMPageShortage
&&
6370 cause
!= kMemorystatusKilledVMCompressorThrashing
&&
6371 cause
!= kMemorystatusKilledVMCompressorSpaceShortage
&&
6372 cause
!= kMemorystatusKilledFCThrashing
&&
6373 cause
!= kMemorystatusKilledZoneMapExhaustion
)) {
6377 kill_under_pressure_cause
= cause
;
6378 memorystatus_thread_wake();
6383 memorystatus_kill_on_VM_compressor_space_shortage(boolean_t async
)
6386 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMCompressorSpaceShortage
);
6388 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMCOMPRESSOR_SPACE_SHORTAGE
);
6389 if (jetsam_reason
== OS_REASON_NULL
) {
6390 printf("memorystatus_kill_on_VM_compressor_space_shortage -- sync: failed to allocate jetsam reason\n");
6393 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMCompressorSpaceShortage
, jetsam_reason
);
6399 memorystatus_kill_on_VM_compressor_thrashing(boolean_t async
)
6402 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMCompressorThrashing
);
6404 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMCOMPRESSOR_THRASHING
);
6405 if (jetsam_reason
== OS_REASON_NULL
) {
6406 printf("memorystatus_kill_on_VM_compressor_thrashing -- sync: failed to allocate jetsam reason\n");
6409 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMCompressorThrashing
, jetsam_reason
);
6414 memorystatus_kill_on_VM_page_shortage(boolean_t async
)
6417 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMPageShortage
);
6419 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMPAGESHORTAGE
);
6420 if (jetsam_reason
== OS_REASON_NULL
) {
6421 printf("memorystatus_kill_on_VM_page_shortage -- sync: failed to allocate jetsam reason\n");
6424 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMPageShortage
, jetsam_reason
);
6429 memorystatus_kill_on_FC_thrashing(boolean_t async
)
6432 return memorystatus_kill_process_async(-1, kMemorystatusKilledFCThrashing
);
6434 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_FCTHRASHING
);
6435 if (jetsam_reason
== OS_REASON_NULL
) {
6436 printf("memorystatus_kill_on_FC_thrashing -- sync: failed to allocate jetsam reason\n");
6439 return memorystatus_kill_process_sync(-1, kMemorystatusKilledFCThrashing
, jetsam_reason
);
6444 memorystatus_kill_on_vnode_limit(void)
6446 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_VNODE
);
6447 if (jetsam_reason
== OS_REASON_NULL
) {
6448 printf("memorystatus_kill_on_vnode_limit: failed to allocate jetsam reason\n");
6451 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVnodes
, jetsam_reason
);
6454 #endif /* CONFIG_JETSAM */
6457 memorystatus_kill_on_zone_map_exhaustion(pid_t pid
)
6459 boolean_t res
= FALSE
;
6461 res
= memorystatus_kill_process_async(-1, kMemorystatusKilledZoneMapExhaustion
);
6463 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_ZONE_MAP_EXHAUSTION
);
6464 if (jetsam_reason
== OS_REASON_NULL
) {
6465 printf("memorystatus_kill_on_zone_map_exhaustion: failed to allocate jetsam reason\n");
6468 res
= memorystatus_kill_process_sync(pid
, kMemorystatusKilledZoneMapExhaustion
, jetsam_reason
);
6474 memorystatus_on_pageout_scan_end(void)
6479 /* Return both allocated and actual size, since there's a race between allocation and list compilation */
6481 memorystatus_get_priority_list(memorystatus_priority_entry_t
**list_ptr
, size_t *buffer_size
, size_t *list_size
, boolean_t size_only
)
6483 uint32_t list_count
, i
= 0;
6484 memorystatus_priority_entry_t
*list_entry
;
6487 list_count
= memorystatus_list_count
;
6488 *list_size
= sizeof(memorystatus_priority_entry_t
) * list_count
;
6490 /* Just a size check? */
6495 /* Otherwise, validate the size of the buffer */
6496 if (*buffer_size
< *list_size
) {
6500 *list_ptr
= kheap_alloc(KHEAP_TEMP
, *list_size
, Z_WAITOK
| Z_ZERO
);
6505 *buffer_size
= *list_size
;
6508 list_entry
= *list_ptr
;
6512 p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6513 while (p
&& (*list_size
< *buffer_size
)) {
6514 list_entry
->pid
= p
->p_pid
;
6515 list_entry
->priority
= p
->p_memstat_effectivepriority
;
6516 list_entry
->user_data
= p
->p_memstat_userdata
;
6518 if (p
->p_memstat_memlimit
<= 0) {
6519 task_get_phys_footprint_limit(p
->task
, &list_entry
->limit
);
6521 list_entry
->limit
= p
->p_memstat_memlimit
;
6524 list_entry
->state
= memorystatus_build_state(p
);
6527 *list_size
+= sizeof(memorystatus_priority_entry_t
);
6529 p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
6534 MEMORYSTATUS_DEBUG(1, "memorystatus_get_priority_list: returning %lu for size\n", (unsigned long)*list_size
);
6540 memorystatus_get_priority_pid(pid_t pid
, user_addr_t buffer
, size_t buffer_size
)
6543 memorystatus_priority_entry_t mp_entry
;
6546 /* Validate inputs */
6547 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_priority_entry_t
))) {
6551 proc_t p
= proc_find(pid
);
6556 memset(&mp_entry
, 0, sizeof(memorystatus_priority_entry_t
));
6558 mp_entry
.pid
= p
->p_pid
;
6559 mp_entry
.priority
= p
->p_memstat_effectivepriority
;
6560 mp_entry
.user_data
= p
->p_memstat_userdata
;
6561 if (p
->p_memstat_memlimit
<= 0) {
6562 ret
= task_get_phys_footprint_limit(p
->task
, &mp_entry
.limit
);
6563 if (ret
!= KERN_SUCCESS
) {
6568 mp_entry
.limit
= p
->p_memstat_memlimit
;
6570 mp_entry
.state
= memorystatus_build_state(p
);
6574 error
= copyout(&mp_entry
, buffer
, buffer_size
);
6580 memorystatus_cmd_get_priority_list(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, int32_t *retval
)
6583 boolean_t size_only
;
6587 * When a non-zero pid is provided, the 'list' has only one entry.
6590 size_only
= ((buffer
== USER_ADDR_NULL
) ? TRUE
: FALSE
);
6593 list_size
= sizeof(memorystatus_priority_entry_t
) * 1;
6595 error
= memorystatus_get_priority_pid(pid
, buffer
, buffer_size
);
6598 memorystatus_priority_entry_t
*list
= NULL
;
6599 error
= memorystatus_get_priority_list(&list
, &buffer_size
, &list_size
, size_only
);
6603 error
= copyout(list
, buffer
, list_size
);
6608 kheap_free(KHEAP_TEMP
, list
, buffer_size
);
6613 assert(list_size
<= INT32_MAX
);
6614 *retval
= (int32_t) list_size
;
6621 memorystatus_clear_errors(void)
6626 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CLEAR_ERRORS
) | DBG_FUNC_START
, 0, 0, 0, 0, 0);
6630 p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6632 if (p
->p_memstat_state
& P_MEMSTAT_ERROR
) {
6633 p
->p_memstat_state
&= ~P_MEMSTAT_ERROR
;
6635 p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
6640 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CLEAR_ERRORS
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
6645 memorystatus_update_levels_locked(boolean_t critical_only
)
6647 memorystatus_available_pages_critical
= memorystatus_available_pages_critical_base
;
6650 * If there's an entry in the first bucket, we have idle processes.
6653 memstat_bucket_t
*first_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
6654 if (first_bucket
->count
) {
6655 memorystatus_available_pages_critical
+= memorystatus_available_pages_critical_idle_offset
;
6657 if (memorystatus_available_pages_critical
> memorystatus_available_pages_pressure
) {
6659 * The critical threshold must never exceed the pressure threshold
6661 memorystatus_available_pages_critical
= memorystatus_available_pages_pressure
;
6665 if (memorystatus_jetsam_policy
& kPolicyMoreFree
) {
6666 memorystatus_available_pages_critical
+= memorystatus_policy_more_free_offset_pages
;
6669 if (critical_only
) {
6673 #if VM_PRESSURE_EVENTS
6674 memorystatus_available_pages_pressure
= (int32_t)(pressure_threshold_percentage
* (atop_64(max_mem
) / 100));
6679 memorystatus_fast_jetsam_override(boolean_t enable_override
)
6681 /* If fast jetsam is not enabled, simply return */
6682 if (!fast_jetsam_enabled
) {
6686 if (enable_override
) {
6687 if ((memorystatus_jetsam_policy
& kPolicyMoreFree
) == kPolicyMoreFree
) {
6691 memorystatus_jetsam_policy
|= kPolicyMoreFree
;
6692 memorystatus_thread_pool_max();
6693 memorystatus_update_levels_locked(TRUE
);
6696 if ((memorystatus_jetsam_policy
& kPolicyMoreFree
) == 0) {
6700 memorystatus_jetsam_policy
&= ~kPolicyMoreFree
;
6701 memorystatus_thread_pool_default();
6702 memorystatus_update_levels_locked(TRUE
);
6709 sysctl_kern_memorystatus_policy_more_free SYSCTL_HANDLER_ARGS
6711 #pragma unused(arg1, arg2, oidp)
6712 int error
= 0, more_free
= 0;
6715 * TODO: Enable this privilege check?
6717 * error = priv_check_cred(kauth_cred_get(), PRIV_VM_JETSAM, 0);
6722 error
= sysctl_handle_int(oidp
, &more_free
, 0, req
);
6723 if (error
|| !req
->newptr
) {
6728 memorystatus_fast_jetsam_override(true);
6730 memorystatus_fast_jetsam_override(false);
6735 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_policy_more_free
, CTLTYPE_INT
| CTLFLAG_WR
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
,
6736 0, 0, &sysctl_kern_memorystatus_policy_more_free
, "I", "");
6738 #endif /* CONFIG_JETSAM */
6741 * Get the at_boot snapshot
6744 memorystatus_get_at_boot_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6746 size_t input_size
= *snapshot_size
;
6749 * The at_boot snapshot has no entry list.
6751 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
);
6758 * Validate the size of the snapshot buffer
6760 if (input_size
< *snapshot_size
) {
6765 * Update the notification_time only
6767 memorystatus_at_boot_snapshot
.notification_time
= mach_absolute_time();
6768 *snapshot
= &memorystatus_at_boot_snapshot
;
6770 MEMORYSTATUS_DEBUG(7, "memorystatus_get_at_boot_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%d)\n",
6771 (long)input_size
, (long)*snapshot_size
, 0);
6776 * Get the previous fully populated snapshot
6779 memorystatus_get_jetsam_snapshot_copy(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6781 size_t input_size
= *snapshot_size
;
6783 if (memorystatus_jetsam_snapshot_copy_count
> 0) {
6784 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_copy_count
));
6793 if (input_size
< *snapshot_size
) {
6797 *snapshot
= memorystatus_jetsam_snapshot_copy
;
6799 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot_copy: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6800 (long)input_size
, (long)*snapshot_size
, (long)memorystatus_jetsam_snapshot_copy_count
);
6807 memorystatus_get_jetsam_snapshot_freezer(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6809 size_t input_size
= *snapshot_size
;
6811 if (memorystatus_jetsam_snapshot_freezer
->entry_count
> 0) {
6812 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_freezer
->entry_count
));
6816 assert(*snapshot_size
<= memorystatus_jetsam_snapshot_freezer_size
);
6822 if (input_size
< *snapshot_size
) {
6826 *snapshot
= memorystatus_jetsam_snapshot_freezer
;
6828 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot_freezer: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6829 (long)input_size
, (long)*snapshot_size
, (long)memorystatus_jetsam_snapshot_freezer
->entry_count
);
6833 #endif /* CONFIG_FREEZE */
6836 memorystatus_get_on_demand_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6838 size_t input_size
= *snapshot_size
;
6839 uint32_t ods_list_count
= memorystatus_list_count
;
6840 memorystatus_jetsam_snapshot_t
*ods
= NULL
; /* The on_demand snapshot buffer */
6842 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (ods_list_count
));
6849 * Validate the size of the snapshot buffer.
6850 * This is inherently racey. May want to revisit
6851 * this error condition and trim the output when
6854 if (input_size
< *snapshot_size
) {
6859 * Allocate and initialize a snapshot buffer.
6861 ods
= kalloc(*snapshot_size
);
6866 memset(ods
, 0, *snapshot_size
);
6869 memorystatus_init_jetsam_snapshot_locked(ods
, ods_list_count
);
6873 * Return the kernel allocated, on_demand buffer.
6874 * The caller of this routine will copy the data out
6875 * to user space and then free the kernel allocated
6880 MEMORYSTATUS_DEBUG(7, "memorystatus_get_on_demand_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6881 (long)input_size
, (long)*snapshot_size
, (long)ods_list_count
);
6887 memorystatus_get_jetsam_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6889 size_t input_size
= *snapshot_size
;
6891 if (memorystatus_jetsam_snapshot_count
> 0) {
6892 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_count
));
6901 if (input_size
< *snapshot_size
) {
6905 *snapshot
= memorystatus_jetsam_snapshot
;
6907 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6908 (long)input_size
, (long)*snapshot_size
, (long)memorystatus_jetsam_snapshot_count
);
6915 memorystatus_cmd_get_jetsam_snapshot(int32_t flags
, user_addr_t buffer
, size_t buffer_size
, int32_t *retval
)
6918 boolean_t size_only
;
6919 boolean_t is_default_snapshot
= FALSE
;
6920 boolean_t is_on_demand_snapshot
= FALSE
;
6921 boolean_t is_at_boot_snapshot
= FALSE
;
6923 bool is_freezer_snapshot
= false;
6924 #endif /* CONFIG_FREEZE */
6925 memorystatus_jetsam_snapshot_t
*snapshot
;
6927 size_only
= ((buffer
== USER_ADDR_NULL
) ? TRUE
: FALSE
);
6931 is_default_snapshot
= TRUE
;
6932 error
= memorystatus_get_jetsam_snapshot(&snapshot
, &buffer_size
, size_only
);
6934 if (flags
& ~(MEMORYSTATUS_SNAPSHOT_ON_DEMAND
| MEMORYSTATUS_SNAPSHOT_AT_BOOT
| MEMORYSTATUS_SNAPSHOT_COPY
| MEMORYSTATUS_FLAGS_SNAPSHOT_FREEZER
)) {
6936 * Unsupported bit set in flag.
6941 if (flags
& (flags
- 0x1)) {
6943 * Can't have multiple flags set at the same time.
6948 if (flags
& MEMORYSTATUS_SNAPSHOT_ON_DEMAND
) {
6949 is_on_demand_snapshot
= TRUE
;
6951 * When not requesting the size only, the following call will allocate
6952 * an on_demand snapshot buffer, which is freed below.
6954 error
= memorystatus_get_on_demand_snapshot(&snapshot
, &buffer_size
, size_only
);
6955 } else if (flags
& MEMORYSTATUS_SNAPSHOT_AT_BOOT
) {
6956 is_at_boot_snapshot
= TRUE
;
6957 error
= memorystatus_get_at_boot_snapshot(&snapshot
, &buffer_size
, size_only
);
6958 } else if (flags
& MEMORYSTATUS_SNAPSHOT_COPY
) {
6959 error
= memorystatus_get_jetsam_snapshot_copy(&snapshot
, &buffer_size
, size_only
);
6961 } else if (flags
& MEMORYSTATUS_FLAGS_SNAPSHOT_FREEZER
) {
6962 is_freezer_snapshot
= true;
6963 error
= memorystatus_get_jetsam_snapshot_freezer(&snapshot
, &buffer_size
, size_only
);
6964 #endif /* CONFIG_FREEZE */
6967 * Invalid flag setting.
6978 * Copy the data out to user space and clear the snapshot buffer.
6979 * If working with the jetsam snapshot,
6980 * clearing the buffer means, reset the count.
6981 * If working with an on_demand snapshot
6982 * clearing the buffer means, free it.
6983 * If working with the at_boot snapshot
6984 * there is nothing to clear or update.
6985 * If working with a copy of the snapshot
6986 * there is nothing to clear or update.
6987 * If working with the freezer snapshot
6988 * clearing the buffer means, reset the count.
6991 if ((error
= copyout(snapshot
, buffer
, buffer_size
)) == 0) {
6993 if (is_default_snapshot
|| is_freezer_snapshot
) {
6995 if (is_default_snapshot
) {
6996 #endif /* CONFIG_FREEZE */
6998 * The jetsam snapshot is never freed, its count is simply reset.
6999 * However, we make a copy for any parties that might be interested
7000 * in the previous fully populated snapshot.
7003 #if DEVELOPMENT || DEBUG
7004 if (memorystatus_testing_pid
!= 0 && memorystatus_testing_pid
!= current_proc()->p_pid
) {
7005 /* Snapshot is currently owned by someone else. Don't consume it. */
7009 #endif /* (DEVELOPMENT || DEBUG)*/
7010 if (is_default_snapshot
) {
7011 memcpy(memorystatus_jetsam_snapshot_copy
, memorystatus_jetsam_snapshot
, memorystatus_jetsam_snapshot_size
);
7012 memorystatus_jetsam_snapshot_copy_count
= memorystatus_jetsam_snapshot_count
;
7013 snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
7014 memorystatus_jetsam_snapshot_last_timestamp
= 0;
7017 else if (is_freezer_snapshot
) {
7018 memorystatus_jetsam_snapshot_freezer
->entry_count
= 0;
7020 #endif /* CONFIG_FREEZE */
7025 if (is_on_demand_snapshot
) {
7027 * The on_demand snapshot is always freed,
7028 * even if the copyout failed.
7031 kfree(snapshot
, buffer_size
);
7038 assert(buffer_size
<= INT32_MAX
);
7039 *retval
= (int32_t) buffer_size
;
7044 #if DEVELOPMENT || DEBUG
7046 memorystatus_cmd_set_testing_pid(int32_t flags
)
7049 proc_t caller
= current_proc();
7050 assert(caller
!= kernproc
);
7052 if (flags
& MEMORYSTATUS_FLAGS_SET_TESTING_PID
) {
7053 if (memorystatus_testing_pid
== 0) {
7054 memorystatus_testing_pid
= caller
->p_pid
;
7056 } else if (memorystatus_testing_pid
== caller
->p_pid
) {
7059 /* We don't allow ownership to be taken from another proc. */
7062 } else if (flags
& MEMORYSTATUS_FLAGS_UNSET_TESTING_PID
) {
7063 if (memorystatus_testing_pid
== caller
->p_pid
) {
7064 memorystatus_testing_pid
= 0;
7066 } else if (memorystatus_testing_pid
!= 0) {
7067 /* We don't allow ownership to be taken from another proc. */
7075 #endif /* DEVELOPMENT || DEBUG */
7078 * Routine: memorystatus_cmd_grp_set_priorities
7079 * Purpose: Update priorities for a group of processes.
7082 * Move each process out of its effective priority
7083 * band and into a new priority band.
7084 * Maintains relative order from lowest to highest priority.
7085 * In single band, maintains relative order from head to tail.
7087 * eg: before [effectivepriority | pid]
7089 * [17 | p55, p67, p19 ]
7094 * after [ new band | pid]
7095 * [ xxx | p71, p82, p25, p103, p10, p55, p67, p19, p101]
7097 * Returns: 0 on success, else non-zero.
7099 * Caveat: We know there is a race window regarding recycled pids.
7100 * A process could be killed before the kernel can act on it here.
7101 * If a pid cannot be found in any of the jetsam priority bands,
7102 * then we simply ignore it. No harm.
7103 * But, if the pid has been recycled then it could be an issue.
7104 * In that scenario, we might move an unsuspecting process to the new
7105 * priority band. It's not clear how the kernel can safeguard
7106 * against this, but it would be an extremely rare case anyway.
7107 * The caller of this api might avoid such race conditions by
7108 * ensuring that the processes passed in the pid list are suspended.
7113 memorystatus_cmd_grp_set_priorities(user_addr_t buffer
, size_t buffer_size
)
7116 * We only handle setting priority
7121 memorystatus_properties_entry_v1_t
*entries
= NULL
;
7122 size_t entry_count
= 0;
7124 /* This will be the ordered proc list */
7125 typedef struct memorystatus_internal_properties
{
7128 } memorystatus_internal_properties_t
;
7130 memorystatus_internal_properties_t
*table
= NULL
;
7131 size_t table_size
= 0;
7132 uint32_t table_count
= 0;
7135 uint32_t bucket_index
= 0;
7136 boolean_t head_insert
;
7137 int32_t new_priority
;
7142 if ((buffer
== USER_ADDR_NULL
) || (buffer_size
== 0)) {
7147 entry_count
= (buffer_size
/ sizeof(memorystatus_properties_entry_v1_t
));
7148 if (entry_count
== 0) {
7149 /* buffer size was not large enough for a single entry */
7154 if ((entries
= kheap_alloc(KHEAP_TEMP
, buffer_size
, Z_WAITOK
)) == NULL
) {
7159 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_START
, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
, entry_count
, 0, 0, 0);
7161 if ((error
= copyin(buffer
, entries
, buffer_size
)) != 0) {
7165 /* Verify sanity of input priorities */
7166 if (entries
[0].version
== MEMORYSTATUS_MPE_VERSION_1
) {
7167 if ((buffer_size
% MEMORYSTATUS_MPE_VERSION_1_SIZE
) != 0) {
7176 for (i
= 0; i
< entry_count
; i
++) {
7177 if (entries
[i
].priority
== -1) {
7178 /* Use as shorthand for default priority */
7179 entries
[i
].priority
= JETSAM_PRIORITY_DEFAULT
;
7180 } else if ((entries
[i
].priority
== system_procs_aging_band
) || (entries
[i
].priority
== applications_aging_band
)) {
7181 /* Both the aging bands are reserved for internal use;
7182 * if requested, adjust to JETSAM_PRIORITY_IDLE. */
7183 entries
[i
].priority
= JETSAM_PRIORITY_IDLE
;
7184 } else if (entries
[i
].priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
7185 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle
7187 /* Deal with this later */
7188 } else if ((entries
[i
].priority
< 0) || (entries
[i
].priority
>= MEMSTAT_BUCKET_COUNT
)) {
7195 table_size
= sizeof(memorystatus_internal_properties_t
) * entry_count
;
7196 if ((table
= kheap_alloc(KHEAP_TEMP
, table_size
, Z_WAITOK
| Z_ZERO
)) == NULL
) {
7203 * For each jetsam bucket entry, spin through the input property list.
7204 * When a matching pid is found, populate an adjacent table with the
7205 * appropriate proc pointer and new property values.
7206 * This traversal automatically preserves order from lowest
7207 * to highest priority.
7214 /* Create the ordered table */
7215 p
= memorystatus_get_first_proc_locked(&bucket_index
, TRUE
);
7216 while (p
&& (table_count
< entry_count
)) {
7217 for (i
= 0; i
< entry_count
; i
++) {
7218 if (p
->p_pid
== entries
[i
].pid
) {
7219 /* Build the table data */
7220 table
[table_count
].proc
= p
;
7221 table
[table_count
].priority
= entries
[i
].priority
;
7226 p
= memorystatus_get_next_proc_locked(&bucket_index
, p
, TRUE
);
7229 /* We now have ordered list of procs ready to move */
7230 for (i
= 0; i
< table_count
; i
++) {
7234 /* Allow head inserts -- but relative order is now */
7235 if (table
[i
].priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
7236 new_priority
= JETSAM_PRIORITY_IDLE
;
7239 new_priority
= table
[i
].priority
;
7240 head_insert
= false;
7244 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
7249 * Take appropriate steps if moving proc out of
7250 * either of the aging bands.
7252 if ((p
->p_memstat_effectivepriority
== system_procs_aging_band
) || (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
7253 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
7256 memorystatus_update_priority_locked(p
, new_priority
, head_insert
, false);
7262 * if (table_count != entry_count)
7263 * then some pids were not found in a jetsam band.
7264 * harmless but interesting...
7267 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_END
, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
, entry_count
, table_count
, 0, 0);
7270 kheap_free(KHEAP_TEMP
, entries
, buffer_size
);
7273 kheap_free(KHEAP_TEMP
, table
, table_size
);
7279 memorystatus_internal_probabilities_t
*memorystatus_global_probabilities_table
= NULL
;
7280 size_t memorystatus_global_probabilities_size
= 0;
7283 memorystatus_cmd_grp_set_probabilities(user_addr_t buffer
, size_t buffer_size
)
7286 memorystatus_properties_entry_v1_t
*entries
= NULL
;
7287 size_t entry_count
= 0, i
= 0;
7288 memorystatus_internal_probabilities_t
*tmp_table_new
= NULL
, *tmp_table_old
= NULL
;
7289 size_t tmp_table_new_size
= 0, tmp_table_old_size
= 0;
7290 #if DEVELOPMENT || DEBUG
7291 if (memorystatus_testing_pid
!= 0 && memorystatus_testing_pid
!= current_proc()->p_pid
) {
7292 /* probabilites are currently owned by someone else. Don't change them. */
7296 #endif /* (DEVELOPMENT || DEBUG)*/
7299 if ((buffer
== USER_ADDR_NULL
) || (buffer_size
== 0)) {
7304 entry_count
= (buffer_size
/ sizeof(memorystatus_properties_entry_v1_t
));
7306 if ((entries
= kheap_alloc(KHEAP_TEMP
, buffer_size
, Z_WAITOK
)) == NULL
) {
7311 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_START
, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
, entry_count
, 0, 0, 0);
7313 if ((error
= copyin(buffer
, entries
, buffer_size
)) != 0) {
7317 if (entries
[0].version
== MEMORYSTATUS_MPE_VERSION_1
) {
7318 if ((buffer_size
% MEMORYSTATUS_MPE_VERSION_1_SIZE
) != 0) {
7327 /* Verify sanity of input priorities */
7328 for (i
= 0; i
< entry_count
; i
++) {
7330 * 0 - low probability of use.
7331 * 1 - high probability of use.
7333 * Keeping this field an int (& not a bool) to allow
7334 * us to experiment with different values/approaches
7337 if (entries
[i
].use_probability
> 1) {
7343 tmp_table_new_size
= sizeof(memorystatus_internal_probabilities_t
) * entry_count
;
7345 if ((tmp_table_new
= kalloc_flags(tmp_table_new_size
, Z_WAITOK
| Z_ZERO
)) == NULL
) {
7352 if (memorystatus_global_probabilities_table
) {
7353 tmp_table_old
= memorystatus_global_probabilities_table
;
7354 tmp_table_old_size
= memorystatus_global_probabilities_size
;
7357 memorystatus_global_probabilities_table
= tmp_table_new
;
7358 memorystatus_global_probabilities_size
= tmp_table_new_size
;
7359 tmp_table_new
= NULL
;
7361 for (i
= 0; i
< entry_count
; i
++) {
7362 /* Build the table data */
7363 strlcpy(memorystatus_global_probabilities_table
[i
].proc_name
, entries
[i
].proc_name
, MAXCOMLEN
+ 1);
7364 memorystatus_global_probabilities_table
[i
].use_probability
= entries
[i
].use_probability
;
7370 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_END
, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
, entry_count
, tmp_table_new_size
, 0, 0);
7373 kheap_free(KHEAP_TEMP
, entries
, buffer_size
);
7377 if (tmp_table_old
) {
7378 kfree(tmp_table_old
, tmp_table_old_size
);
7379 tmp_table_old
= NULL
;
7386 memorystatus_cmd_grp_set_properties(int32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7390 if ((flags
& MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
) == MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
) {
7391 error
= memorystatus_cmd_grp_set_priorities(buffer
, buffer_size
);
7392 } else if ((flags
& MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
) == MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
) {
7393 error
= memorystatus_cmd_grp_set_probabilities(buffer
, buffer_size
);
7402 * This routine is used to update a process's jetsam priority position and stored user_data.
7403 * It is not used for the setting of memory limits, which is why the last 6 args to the
7404 * memorystatus_update() call are 0 or FALSE.
7406 * Flags passed into this call are used to distinguish the motivation behind a jetsam priority
7407 * transition. By default, the kernel updates the process's original requested priority when
7408 * no flag is passed. But when the MEMORYSTATUS_SET_PRIORITY_ASSERTION flag is used, the kernel
7409 * updates the process's assertion driven priority.
7411 * The assertion flag was introduced for use by the device's assertion mediator (eg: runningboardd).
7412 * When an assertion is controlling a process's jetsam priority, it may conflict with that process's
7413 * dirty/clean (active/inactive) jetsam state. The kernel attempts to resolve a priority transition
7414 * conflict by reviewing the process state and then choosing the maximum jetsam band at play,
7415 * eg: requested priority versus assertion priority.
7419 memorystatus_cmd_set_priority_properties(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7422 boolean_t is_assertion
= FALSE
; /* priority is driven by an assertion */
7423 memorystatus_priority_properties_t mpp_entry
;
7425 /* Validate inputs */
7426 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_priority_properties_t
))) {
7430 /* Validate flags */
7433 * Default. This path updates requestedpriority.
7436 if (flags
& ~(MEMORYSTATUS_SET_PRIORITY_ASSERTION
)) {
7438 * Unsupported bit set in flag.
7441 } else if (flags
& MEMORYSTATUS_SET_PRIORITY_ASSERTION
) {
7442 is_assertion
= TRUE
;
7446 error
= copyin(buffer
, &mpp_entry
, buffer_size
);
7456 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
7462 os_log(OS_LOG_DEFAULT
, "memorystatus: set assertion priority(%d) target %s:%d\n",
7463 mpp_entry
.priority
, (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
);
7466 error
= memorystatus_update(p
, mpp_entry
.priority
, mpp_entry
.user_data
, is_assertion
, FALSE
, FALSE
, 0, 0, FALSE
, FALSE
);
7474 memorystatus_cmd_set_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7477 memorystatus_memlimit_properties_t mmp_entry
;
7479 /* Validate inputs */
7480 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_memlimit_properties_t
))) {
7484 error
= copyin(buffer
, &mmp_entry
, buffer_size
);
7487 error
= memorystatus_set_memlimit_properties(pid
, &mmp_entry
);
7494 memorystatus_get_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
* p_entry
)
7496 memset(p_entry
, 0, sizeof(memorystatus_memlimit_properties_t
));
7498 if (p
->p_memstat_memlimit_active
> 0) {
7499 p_entry
->memlimit_active
= p
->p_memstat_memlimit_active
;
7501 task_convert_phys_footprint_limit(-1, &p_entry
->memlimit_active
);
7504 if (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
) {
7505 p_entry
->memlimit_active_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7509 * Get the inactive limit and attributes
7511 if (p
->p_memstat_memlimit_inactive
<= 0) {
7512 task_convert_phys_footprint_limit(-1, &p_entry
->memlimit_inactive
);
7514 p_entry
->memlimit_inactive
= p
->p_memstat_memlimit_inactive
;
7516 if (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
) {
7517 p_entry
->memlimit_inactive_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7522 * When getting the memlimit settings, we can't simply call task_get_phys_footprint_limit().
7523 * That gets the proc's cached memlimit and there is no guarantee that the active/inactive
7524 * limits will be the same in the no-limit case. Instead we convert limits <= 0 using
7525 * task_convert_phys_footprint_limit(). It computes the same limit value that would be written
7526 * to the task's ledgers via task_set_phys_footprint_limit().
7529 memorystatus_cmd_get_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7531 memorystatus_memlimit_properties2_t mmp_entry
;
7533 /* Validate inputs */
7534 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) ||
7535 ((buffer_size
!= sizeof(memorystatus_memlimit_properties_t
)) &&
7536 (buffer_size
!= sizeof(memorystatus_memlimit_properties2_t
)))) {
7540 memset(&mmp_entry
, 0, sizeof(memorystatus_memlimit_properties2_t
));
7542 proc_t p
= proc_find(pid
);
7548 * Get the active limit and attributes.
7549 * No locks taken since we hold a reference to the proc.
7552 memorystatus_get_memlimit_properties_internal(p
, &mmp_entry
.v1
);
7555 #if DEVELOPMENT || DEBUG
7557 * Get the limit increased via SPI
7559 mmp_entry
.memlimit_increase
= roundToNearestMB(p
->p_memlimit_increase
);
7560 mmp_entry
.memlimit_increase_bytes
= p
->p_memlimit_increase
;
7561 #endif /* DEVELOPMENT || DEBUG */
7562 #endif /* CONFIG_JETSAM */
7566 int error
= copyout(&mmp_entry
, buffer
, buffer_size
);
7573 * SPI for kbd - pr24956468
7574 * This is a very simple snapshot that calculates how much a
7575 * process's phys_footprint exceeds a specific memory limit.
7576 * Only the inactive memory limit is supported for now.
7577 * The delta is returned as bytes in excess or zero.
7580 memorystatus_cmd_get_memlimit_excess_np(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7583 uint64_t footprint_in_bytes
= 0;
7584 uint64_t delta_in_bytes
= 0;
7585 int32_t memlimit_mb
= 0;
7586 uint64_t memlimit_bytes
= 0;
7588 /* Validate inputs */
7589 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(uint64_t)) || (flags
!= 0)) {
7593 proc_t p
= proc_find(pid
);
7599 * Get the inactive limit.
7600 * No locks taken since we hold a reference to the proc.
7603 if (p
->p_memstat_memlimit_inactive
<= 0) {
7604 task_convert_phys_footprint_limit(-1, &memlimit_mb
);
7606 memlimit_mb
= p
->p_memstat_memlimit_inactive
;
7609 footprint_in_bytes
= get_task_phys_footprint(p
->task
);
7613 memlimit_bytes
= memlimit_mb
* 1024 * 1024; /* MB to bytes */
7616 * Computed delta always returns >= 0 bytes
7618 if (footprint_in_bytes
> memlimit_bytes
) {
7619 delta_in_bytes
= footprint_in_bytes
- memlimit_bytes
;
7622 error
= copyout(&delta_in_bytes
, buffer
, sizeof(delta_in_bytes
));
7629 memorystatus_cmd_get_pressure_status(int32_t *retval
)
7633 /* Need privilege for check */
7634 error
= priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE
, 0);
7639 /* Inherently racy, so it's not worth taking a lock here */
7640 *retval
= (kVMPressureNormal
!= memorystatus_vm_pressure_level
) ? 1 : 0;
7646 memorystatus_get_pressure_status_kdp()
7648 return (kVMPressureNormal
!= memorystatus_vm_pressure_level
) ? 1 : 0;
7652 * Every process, including a P_MEMSTAT_INTERNAL process (currently only pid 1), is allowed to set a HWM.
7654 * This call is inflexible -- it does not distinguish between active/inactive, fatal/non-fatal
7655 * So, with 2-level HWM preserving previous behavior will map as follows.
7656 * - treat the limit passed in as both an active and inactive limit.
7657 * - treat the is_fatal_limit flag as though it applies to both active and inactive limits.
7659 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK
7660 * - the is_fatal_limit is FALSE, meaning the active and inactive limits are non-fatal/soft
7661 * - so mapping is (active/non-fatal, inactive/non-fatal)
7663 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT
7664 * - the is_fatal_limit is TRUE, meaning the process's active and inactive limits are fatal/hard
7665 * - so mapping is (active/fatal, inactive/fatal)
7670 memorystatus_cmd_set_jetsam_memory_limit(pid_t pid
, int32_t high_water_mark
, __unused
int32_t *retval
, boolean_t is_fatal_limit
)
7673 memorystatus_memlimit_properties_t entry
;
7675 entry
.memlimit_active
= high_water_mark
;
7676 entry
.memlimit_active_attr
= 0;
7677 entry
.memlimit_inactive
= high_water_mark
;
7678 entry
.memlimit_inactive_attr
= 0;
7680 if (is_fatal_limit
== TRUE
) {
7681 entry
.memlimit_active_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7682 entry
.memlimit_inactive_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7685 error
= memorystatus_set_memlimit_properties(pid
, &entry
);
7688 #endif /* CONFIG_JETSAM */
7691 memorystatus_set_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
*p_entry
)
7695 LCK_MTX_ASSERT(&proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
7698 * Store the active limit variants in the proc.
7700 SET_ACTIVE_LIMITS_LOCKED(p
, p_entry
->memlimit_active
, p_entry
->memlimit_active_attr
);
7703 * Store the inactive limit variants in the proc.
7705 SET_INACTIVE_LIMITS_LOCKED(p
, p_entry
->memlimit_inactive
, p_entry
->memlimit_inactive_attr
);
7708 * Enforce appropriate limit variant by updating the cached values
7709 * and writing the ledger.
7710 * Limit choice is based on process active/inactive state.
7713 if (memorystatus_highwater_enabled
) {
7715 boolean_t use_active
;
7717 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
7718 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
7721 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
7725 /* Enforce the limit by writing to the ledgers */
7726 error
= (task_set_phys_footprint_limit_internal(p
->task
, ((p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1), NULL
, use_active
, is_fatal
) == 0) ? 0 : EINVAL
;
7728 MEMORYSTATUS_DEBUG(3, "memorystatus_set_memlimit_properties: new limit on pid %d (%dMB %s) current priority (%d) dirty_state?=0x%x %s\n",
7729 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
7730 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, p
->p_memstat_dirty
,
7731 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
7732 DTRACE_MEMORYSTATUS2(memorystatus_set_memlimit
, proc_t
, p
, int32_t, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1));
7739 memorystatus_set_memlimit_properties(pid_t pid
, memorystatus_memlimit_properties_t
*entry
)
7741 memorystatus_memlimit_properties_t set_entry
;
7743 proc_t p
= proc_find(pid
);
7749 * Check for valid attribute flags.
7751 const uint32_t valid_attrs
= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7752 if ((entry
->memlimit_active_attr
& (~valid_attrs
)) != 0) {
7756 if ((entry
->memlimit_inactive_attr
& (~valid_attrs
)) != 0) {
7762 * Setup the active memlimit properties
7764 set_entry
.memlimit_active
= entry
->memlimit_active
;
7765 set_entry
.memlimit_active_attr
= entry
->memlimit_active_attr
& MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7768 * Setup the inactive memlimit properties
7770 set_entry
.memlimit_inactive
= entry
->memlimit_inactive
;
7771 set_entry
.memlimit_inactive_attr
= entry
->memlimit_inactive_attr
& MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7774 * Setting a limit of <= 0 implies that the process has no
7775 * high-water-mark and has no per-task-limit. That means
7776 * the system_wide task limit is in place, which by the way,
7780 if (set_entry
.memlimit_active
<= 0) {
7782 * Enforce the fatal system_wide task limit while process is active.
7784 set_entry
.memlimit_active
= -1;
7785 set_entry
.memlimit_active_attr
= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7788 #if DEVELOPMENT || DEBUG
7790 /* add the current increase to it, for roots */
7791 set_entry
.memlimit_active
+= roundToNearestMB(p
->p_memlimit_increase
);
7793 #endif /* DEVELOPMENT || DEBUG */
7794 #endif /* CONFIG_JETSAM */
7796 if (set_entry
.memlimit_inactive
<= 0) {
7798 * Enforce the fatal system_wide task limit while process is inactive.
7800 set_entry
.memlimit_inactive
= -1;
7801 set_entry
.memlimit_inactive_attr
= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7804 #if DEVELOPMENT || DEBUG
7806 /* add the current increase to it, for roots */
7807 set_entry
.memlimit_inactive
+= roundToNearestMB(p
->p_memlimit_increase
);
7809 #endif /* DEVELOPMENT || DEBUG */
7810 #endif /* CONFIG_JETSAM */
7814 int error
= memorystatus_set_memlimit_properties_internal(p
, &set_entry
);
7823 * Returns the jetsam priority (effective or requested) of the process
7824 * associated with this task.
7827 proc_get_memstat_priority(proc_t p
, boolean_t effective_priority
)
7830 if (effective_priority
) {
7831 return p
->p_memstat_effectivepriority
;
7833 return p
->p_memstat_requestedpriority
;
7840 memorystatus_get_process_is_managed(pid_t pid
, int *is_managed
)
7844 /* Validate inputs */
7855 *is_managed
= ((p
->p_memstat_state
& P_MEMSTAT_MANAGED
) ? 1 : 0);
7856 proc_rele_locked(p
);
7863 memorystatus_set_process_is_managed(pid_t pid
, boolean_t set_managed
)
7867 /* Validate inputs */
7878 if (set_managed
== TRUE
) {
7879 p
->p_memstat_state
|= P_MEMSTAT_MANAGED
;
7881 * The P_MEMSTAT_MANAGED bit is set by assertiond for Apps.
7882 * Also opt them in to being frozen (they might have started
7883 * off with the P_MEMSTAT_FREEZE_DISABLED bit set.)
7885 p
->p_memstat_state
&= ~P_MEMSTAT_FREEZE_DISABLED
;
7887 p
->p_memstat_state
&= ~P_MEMSTAT_MANAGED
;
7889 proc_rele_locked(p
);
7896 memorystatus_control(struct proc
*p __unused
, struct memorystatus_control_args
*args
, int *ret
)
7899 boolean_t skip_auth_check
= FALSE
;
7900 os_reason_t jetsam_reason
= OS_REASON_NULL
;
7904 #pragma unused(jetsam_reason)
7907 /* We don't need entitlements if we're setting / querying the freeze preference or frozen status for a process. */
7908 if (args
->command
== MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE
||
7909 args
->command
== MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE
||
7910 args
->command
== MEMORYSTATUS_CMD_GET_PROCESS_IS_FROZEN
) {
7911 skip_auth_check
= TRUE
;
7914 /* Need to be root or have entitlement. */
7915 if (!kauth_cred_issuser(kauth_cred_get()) && !IOTaskHasEntitlement(current_task(), MEMORYSTATUS_ENTITLEMENT
) && !skip_auth_check
) {
7922 * Do not enforce it for snapshots.
7924 if (args
->command
!= MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT
) {
7925 if (args
->buffersize
> MEMORYSTATUS_BUFFERSIZE_MAX
) {
7931 switch (args
->command
) {
7932 case MEMORYSTATUS_CMD_GET_PRIORITY_LIST
:
7933 error
= memorystatus_cmd_get_priority_list(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7935 case MEMORYSTATUS_CMD_SET_PRIORITY_PROPERTIES
:
7936 error
= memorystatus_cmd_set_priority_properties(args
->pid
, args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7938 case MEMORYSTATUS_CMD_SET_MEMLIMIT_PROPERTIES
:
7939 error
= memorystatus_cmd_set_memlimit_properties(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7941 case MEMORYSTATUS_CMD_GET_MEMLIMIT_PROPERTIES
:
7942 error
= memorystatus_cmd_get_memlimit_properties(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7944 case MEMORYSTATUS_CMD_GET_MEMLIMIT_EXCESS
:
7945 error
= memorystatus_cmd_get_memlimit_excess_np(args
->pid
, args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7947 case MEMORYSTATUS_CMD_GRP_SET_PROPERTIES
:
7948 error
= memorystatus_cmd_grp_set_properties((int32_t)args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7950 case MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT
:
7951 error
= memorystatus_cmd_get_jetsam_snapshot((int32_t)args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7953 #if DEVELOPMENT || DEBUG
7954 case MEMORYSTATUS_CMD_SET_TESTING_PID
:
7955 error
= memorystatus_cmd_set_testing_pid((int32_t) args
->flags
);
7958 case MEMORYSTATUS_CMD_GET_PRESSURE_STATUS
:
7959 error
= memorystatus_cmd_get_pressure_status(ret
);
7962 case MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK
:
7964 * This call does not distinguish between active and inactive limits.
7965 * Default behavior in 2-level HWM world is to set both.
7966 * Non-fatal limit is also assumed for both.
7968 error
= memorystatus_cmd_set_jetsam_memory_limit(args
->pid
, (int32_t)args
->flags
, ret
, FALSE
);
7970 case MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT
:
7972 * This call does not distinguish between active and inactive limits.
7973 * Default behavior in 2-level HWM world is to set both.
7974 * Fatal limit is also assumed for both.
7976 error
= memorystatus_cmd_set_jetsam_memory_limit(args
->pid
, (int32_t)args
->flags
, ret
, TRUE
);
7978 #endif /* CONFIG_JETSAM */
7980 #if DEVELOPMENT || DEBUG
7981 case MEMORYSTATUS_CMD_TEST_JETSAM
:
7982 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_GENERIC
);
7983 if (jetsam_reason
== OS_REASON_NULL
) {
7984 printf("memorystatus_control: failed to allocate jetsam reason\n");
7987 error
= memorystatus_kill_process_sync(args
->pid
, kMemorystatusKilled
, jetsam_reason
) ? 0 : EINVAL
;
7989 case MEMORYSTATUS_CMD_TEST_JETSAM_SORT
:
7990 error
= memorystatus_cmd_test_jetsam_sort(args
->pid
, (int32_t)args
->flags
, args
->buffer
, args
->buffersize
);
7993 case MEMORYSTATUS_CMD_SET_JETSAM_PANIC_BITS
:
7994 error
= memorystatus_cmd_set_panic_bits(args
->buffer
, args
->buffersize
);
7996 #endif /* CONFIG_JETSAM */
7997 #else /* DEVELOPMENT || DEBUG */
7998 #pragma unused(jetsam_reason)
7999 #endif /* DEVELOPMENT || DEBUG */
8000 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_ENABLE
:
8001 if (memorystatus_aggressive_jetsam_lenient_allowed
== FALSE
) {
8002 #if DEVELOPMENT || DEBUG
8003 printf("Enabling Lenient Mode\n");
8004 #endif /* DEVELOPMENT || DEBUG */
8006 memorystatus_aggressive_jetsam_lenient_allowed
= TRUE
;
8007 memorystatus_aggressive_jetsam_lenient
= TRUE
;
8011 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_DISABLE
:
8012 #if DEVELOPMENT || DEBUG
8013 printf("Disabling Lenient mode\n");
8014 #endif /* DEVELOPMENT || DEBUG */
8015 memorystatus_aggressive_jetsam_lenient_allowed
= FALSE
;
8016 memorystatus_aggressive_jetsam_lenient
= FALSE
;
8019 case MEMORYSTATUS_CMD_GET_AGGRESSIVE_JETSAM_LENIENT_MODE
:
8020 *ret
= (memorystatus_aggressive_jetsam_lenient
? 1 : 0);
8023 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE
:
8024 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE
:
8025 error
= memorystatus_low_mem_privileged_listener(args
->command
);
8028 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE
:
8029 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE
:
8030 error
= memorystatus_update_inactive_jetsam_priority_band(args
->pid
, args
->command
, JETSAM_PRIORITY_ELEVATED_INACTIVE
, args
->flags
? TRUE
: FALSE
);
8032 case MEMORYSTATUS_CMD_SET_PROCESS_IS_MANAGED
:
8033 error
= memorystatus_set_process_is_managed(args
->pid
, args
->flags
);
8036 case MEMORYSTATUS_CMD_GET_PROCESS_IS_MANAGED
:
8037 error
= memorystatus_get_process_is_managed(args
->pid
, ret
);
8041 case MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE
:
8042 error
= memorystatus_set_process_is_freezable(args
->pid
, args
->flags
? TRUE
: FALSE
);
8045 case MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE
:
8046 error
= memorystatus_get_process_is_freezable(args
->pid
, ret
);
8048 case MEMORYSTATUS_CMD_GET_PROCESS_IS_FROZEN
:
8049 error
= memorystatus_get_process_is_frozen(args
->pid
, ret
);
8052 case MEMORYSTATUS_CMD_FREEZER_CONTROL
:
8053 error
= memorystatus_freezer_control(args
->flags
, args
->buffer
, args
->buffersize
, ret
);
8055 #endif /* CONFIG_FREEZE */
8058 #if DEVELOPMENT || DEBUG
8059 case MEMORYSTATUS_CMD_INCREASE_JETSAM_TASK_LIMIT
:
8060 error
= memorystatus_cmd_increase_jetsam_task_limit(args
->pid
, args
->flags
);
8062 #endif /* DEVELOPMENT || DEBUG */
8063 #endif /* CONFIG_JETSAM */
8073 /* Coalition support */
8075 /* sorting info for a particular priority bucket */
8076 typedef struct memstat_sort_info
{
8077 coalition_t msi_coal
;
8078 uint64_t msi_page_count
;
8081 } memstat_sort_info_t
;
8084 * qsort from smallest page count to largest page count
8086 * return < 0 for a < b
8091 memstat_asc_cmp(const void *a
, const void *b
)
8093 const memstat_sort_info_t
*msA
= (const memstat_sort_info_t
*)a
;
8094 const memstat_sort_info_t
*msB
= (const memstat_sort_info_t
*)b
;
8096 return (int)((uint64_t)msA
->msi_page_count
- (uint64_t)msB
->msi_page_count
);
8100 * Return the number of pids rearranged during this sort.
8103 memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index
, int coal_sort_order
)
8105 #define MAX_SORT_PIDS 80
8106 #define MAX_COAL_LEADERS 10
8108 unsigned int b
= bucket_index
;
8112 coalition_t coal
= COALITION_NULL
;
8114 int total_pids_moved
= 0;
8118 * The system is typically under memory pressure when in this
8119 * path, hence, we want to avoid dynamic memory allocation.
8121 memstat_sort_info_t leaders
[MAX_COAL_LEADERS
];
8122 pid_t pid_list
[MAX_SORT_PIDS
];
8124 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
8129 * Clear the array that holds coalition leader information
8131 for (i
= 0; i
< MAX_COAL_LEADERS
; i
++) {
8132 leaders
[i
].msi_coal
= COALITION_NULL
;
8133 leaders
[i
].msi_page_count
= 0; /* will hold total coalition page count */
8134 leaders
[i
].msi_pid
= 0; /* will hold coalition leader pid */
8135 leaders
[i
].msi_ntasks
= 0; /* will hold the number of tasks in a coalition */
8138 p
= memorystatus_get_first_proc_locked(&b
, FALSE
);
8140 coal
= task_get_coalition(p
->task
, COALITION_TYPE_JETSAM
);
8141 if (coalition_is_leader(p
->task
, coal
)) {
8142 if (nleaders
< MAX_COAL_LEADERS
) {
8143 int coal_ntasks
= 0;
8144 uint64_t coal_page_count
= coalition_get_page_count(coal
, &coal_ntasks
);
8145 leaders
[nleaders
].msi_coal
= coal
;
8146 leaders
[nleaders
].msi_page_count
= coal_page_count
;
8147 leaders
[nleaders
].msi_pid
= p
->p_pid
; /* the coalition leader */
8148 leaders
[nleaders
].msi_ntasks
= coal_ntasks
;
8152 * We've hit MAX_COAL_LEADERS meaning we can handle no more coalitions.
8153 * Abandoned coalitions will linger at the tail of the priority band
8154 * when this sort session ends.
8155 * TODO: should this be an assert?
8157 printf("%s: WARNING: more than %d leaders in priority band [%d]\n",
8158 __FUNCTION__
, MAX_COAL_LEADERS
, bucket_index
);
8162 p
= memorystatus_get_next_proc_locked(&b
, p
, FALSE
);
8165 if (nleaders
== 0) {
8166 /* Nothing to sort */
8171 * Sort the coalition leader array, from smallest coalition page count
8172 * to largest coalition page count. When inserted in the priority bucket,
8173 * smallest coalition is handled first, resulting in the last to be jetsammed.
8176 qsort(leaders
, nleaders
, sizeof(memstat_sort_info_t
), memstat_asc_cmp
);
8180 for (i
= 0; i
< nleaders
; i
++) {
8181 printf("%s: coal_leader[%d of %d] pid[%d] pages[%llu] ntasks[%d]\n",
8182 __FUNCTION__
, i
, nleaders
, leaders
[i
].msi_pid
, leaders
[i
].msi_page_count
,
8183 leaders
[i
].msi_ntasks
);
8188 * During coalition sorting, processes in a priority band are rearranged
8189 * by being re-inserted at the head of the queue. So, when handling a
8190 * list, the first process that gets moved to the head of the queue,
8191 * ultimately gets pushed toward the queue tail, and hence, jetsams last.
8193 * So, for example, the coalition leader is expected to jetsam last,
8194 * after its coalition members. Therefore, the coalition leader is
8195 * inserted at the head of the queue first.
8197 * After processing a coalition, the jetsam order is as follows:
8198 * undefs(jetsam first), extensions, xpc services, leader(jetsam last)
8202 * Coalition members are rearranged in the priority bucket here,
8203 * based on their coalition role.
8205 total_pids_moved
= 0;
8206 for (i
= 0; i
< nleaders
; i
++) {
8207 /* a bit of bookkeeping */
8210 /* Coalition leaders are jetsammed last, so move into place first */
8211 pid_list
[0] = leaders
[i
].msi_pid
;
8212 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
, 1);
8214 /* xpc services should jetsam after extensions */
8215 ntasks
= coalition_get_pid_list(leaders
[i
].msi_coal
, COALITION_ROLEMASK_XPC
,
8216 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
8219 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
8220 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
8223 /* extensions should jetsam after unmarked processes */
8224 ntasks
= coalition_get_pid_list(leaders
[i
].msi_coal
, COALITION_ROLEMASK_EXT
,
8225 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
8228 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
8229 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
8232 /* undefined coalition members should be the first to jetsam */
8233 ntasks
= coalition_get_pid_list(leaders
[i
].msi_coal
, COALITION_ROLEMASK_UNDEF
,
8234 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
8237 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
8238 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
8242 if (pids_moved
== leaders
[i
].msi_ntasks
) {
8244 * All the pids in the coalition were found in this band.
8246 printf("%s: pids_moved[%d] equal total coalition ntasks[%d] \n", __FUNCTION__
,
8247 pids_moved
, leaders
[i
].msi_ntasks
);
8248 } else if (pids_moved
> leaders
[i
].msi_ntasks
) {
8250 * Apparently new coalition members showed up during the sort?
8252 printf("%s: pids_moved[%d] were greater than expected coalition ntasks[%d] \n", __FUNCTION__
,
8253 pids_moved
, leaders
[i
].msi_ntasks
);
8256 * Apparently not all the pids in the coalition were found in this band?
8258 printf("%s: pids_moved[%d] were less than expected coalition ntasks[%d] \n", __FUNCTION__
,
8259 pids_moved
, leaders
[i
].msi_ntasks
);
8263 total_pids_moved
+= pids_moved
;
8266 return total_pids_moved
;
8271 * Traverse a list of pids, searching for each within the priority band provided.
8272 * If pid is found, move it to the front of the priority band.
8273 * Never searches outside the priority band provided.
8276 * bucket_index - jetsam priority band.
8277 * pid_list - pointer to a list of pids.
8278 * list_sz - number of pids in the list.
8280 * Pid list ordering is important in that,
8281 * pid_list[n] is expected to jetsam ahead of pid_list[n+1].
8282 * The sort_order is set by the coalition default.
8285 * the number of pids found and hence moved within the priority band.
8288 memorystatus_move_list_locked(unsigned int bucket_index
, pid_t
*pid_list
, int list_sz
)
8290 memstat_bucket_t
*current_bucket
;
8294 if ((pid_list
== NULL
) || (list_sz
<= 0)) {
8298 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
8302 current_bucket
= &memstat_bucket
[bucket_index
];
8303 for (i
= 0; i
< list_sz
; i
++) {
8304 unsigned int b
= bucket_index
;
8306 proc_t aProc
= NULL
;
8310 list_index
= ((list_sz
- 1) - i
);
8311 aPid
= pid_list
[list_index
];
8313 /* never search beyond bucket_index provided */
8314 p
= memorystatus_get_first_proc_locked(&b
, FALSE
);
8316 if (p
->p_pid
== aPid
) {
8320 p
= memorystatus_get_next_proc_locked(&b
, p
, FALSE
);
8323 if (aProc
== NULL
) {
8324 /* pid not found in this band, just skip it */
8327 TAILQ_REMOVE(¤t_bucket
->list
, aProc
, p_memstat_list
);
8328 TAILQ_INSERT_HEAD(¤t_bucket
->list
, aProc
, p_memstat_list
);
8336 memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index
)
8338 int32_t i
= JETSAM_PRIORITY_IDLE
;
8341 if (max_bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
8345 while (i
<= max_bucket_index
) {
8346 count
+= memstat_bucket
[i
++].count
;
8353 memorystatus_update_priority_for_appnap(proc_t p
, boolean_t is_appnap
)
8356 if (!p
|| (!isApp(p
)) || (p
->p_memstat_state
& (P_MEMSTAT_INTERNAL
| P_MEMSTAT_MANAGED
))) {
8358 * Ineligible processes OR system processes e.g. launchd.
8360 * We also skip processes that have the P_MEMSTAT_MANAGED bit set, i.e.
8361 * they're managed by assertiond. These are iOS apps that have been ported
8362 * to macOS. assertiond might be in the process of modifying the app's
8363 * priority / memory limit - so it might have the proc_list lock, and then try
8364 * to take the task lock. Meanwhile we've entered this function with the task lock
8365 * held, and we need the proc_list lock below. So we'll deadlock with assertiond.
8367 * It should be fine to read the P_MEMSTAT_MANAGED bit without the proc_list
8368 * lock here, since assertiond only sets this bit on process launch.
8375 * We would like to use memorystatus_update() here to move the processes
8376 * within the bands. Unfortunately memorystatus_update() calls
8377 * memorystatus_update_priority_locked() which uses any band transitions
8378 * as an indication to modify ledgers. For that it needs the task lock
8379 * and since we came into this function with the task lock held, we'll deadlock.
8381 * Unfortunately we can't completely disable ledger updates because we still
8382 * need the ledger updates for a subset of processes i.e. daemons.
8383 * When all processes on all platforms support memory limits, we can simply call
8384 * memorystatus_update().
8386 * It also has some logic to deal with 'aging' which, currently, is only applicable
8387 * on CONFIG_JETSAM configs. So, till every platform has CONFIG_JETSAM we'll need
8388 * to do this explicit band transition.
8391 memstat_bucket_t
*current_bucket
, *new_bucket
;
8392 int32_t priority
= 0;
8396 if (((p
->p_listflag
& P_LIST_EXITED
) != 0) ||
8397 (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
))) {
8399 * If the process is on its way out OR
8400 * jetsam has alread tried and failed to kill this process,
8401 * let's skip the whole jetsam band transition.
8408 current_bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
8409 new_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
8410 priority
= JETSAM_PRIORITY_IDLE
;
8412 if (p
->p_memstat_effectivepriority
!= JETSAM_PRIORITY_IDLE
) {
8414 * It is possible that someone pulled this process
8415 * out of the IDLE band without updating its app-nap
8422 current_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
8423 new_bucket
= &memstat_bucket
[p
->p_memstat_requestedpriority
];
8424 priority
= p
->p_memstat_requestedpriority
;
8427 TAILQ_REMOVE(¤t_bucket
->list
, p
, p_memstat_list
);
8428 current_bucket
->count
--;
8429 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
8430 current_bucket
->relaunch_high_count
--;
8432 TAILQ_INSERT_TAIL(&new_bucket
->list
, p
, p_memstat_list
);
8433 new_bucket
->count
++;
8434 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
8435 new_bucket
->relaunch_high_count
++;
8438 * Record idle start or idle delta.
8440 if (p
->p_memstat_effectivepriority
== priority
) {
8442 * This process is not transitioning between
8443 * jetsam priority buckets. Do nothing.
8445 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
8448 * Transitioning out of the idle priority bucket.
8449 * Record idle delta.
8451 assert(p
->p_memstat_idle_start
!= 0);
8452 now
= mach_absolute_time();
8453 if (now
> p
->p_memstat_idle_start
) {
8454 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
8456 } else if (priority
== JETSAM_PRIORITY_IDLE
) {
8458 * Transitioning into the idle priority bucket.
8459 * Record idle start.
8461 p
->p_memstat_idle_start
= mach_absolute_time();
8464 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CHANGE_PRIORITY
), p
->p_pid
, priority
, p
->p_memstat_effectivepriority
, 0, 0);
8466 p
->p_memstat_effectivepriority
= priority
;
8472 #else /* !CONFIG_JETSAM */
8474 #pragma unused(is_appnap)
8476 #endif /* !CONFIG_JETSAM */
8480 memorystatus_available_memory_internal(struct proc
*p
)
8482 #ifdef XNU_TARGET_OS_OSX
8483 if (p
->p_memstat_memlimit
<= 0) {
8486 #endif /* XNU_TARGET_OS_OSX */
8487 const uint64_t footprint_in_bytes
= get_task_phys_footprint(p
->task
);
8488 int32_t memlimit_mb
;
8489 int64_t memlimit_bytes
;
8492 if (isApp(p
) == FALSE
) {
8496 if (p
->p_memstat_memlimit
> 0) {
8497 memlimit_mb
= p
->p_memstat_memlimit
;
8498 } else if (task_convert_phys_footprint_limit(-1, &memlimit_mb
) != KERN_SUCCESS
) {
8502 if (memlimit_mb
<= 0) {
8503 memlimit_bytes
= INT_MAX
& ~((1 << 20) - 1);
8505 memlimit_bytes
= ((int64_t) memlimit_mb
) << 20;
8508 rc
= memlimit_bytes
- footprint_in_bytes
;
8510 return (rc
>= 0) ? rc
: 0;
8514 memorystatus_available_memory(struct proc
*p
, __unused
struct memorystatus_available_memory_args
*args
, uint64_t *ret
)
8516 *ret
= memorystatus_available_memory_internal(p
);
8522 #if DEVELOPMENT || DEBUG
8524 memorystatus_cmd_increase_jetsam_task_limit(pid_t pid
, uint32_t byte_increase
)
8526 memorystatus_memlimit_properties_t mmp_entry
;
8528 /* Validate inputs */
8529 if ((pid
== 0) || (byte_increase
== 0)) {
8533 proc_t p
= proc_find(pid
);
8539 const uint32_t current_memlimit_increase
= roundToNearestMB(p
->p_memlimit_increase
);
8541 const int32_t page_aligned_increase
= (int32_t) MIN(round_page(p
->p_memlimit_increase
+ byte_increase
), INT32_MAX
);
8545 memorystatus_get_memlimit_properties_internal(p
, &mmp_entry
);
8547 if (mmp_entry
.memlimit_active
> 0) {
8548 mmp_entry
.memlimit_active
-= current_memlimit_increase
;
8549 mmp_entry
.memlimit_active
+= roundToNearestMB(page_aligned_increase
);
8552 if (mmp_entry
.memlimit_inactive
> 0) {
8553 mmp_entry
.memlimit_inactive
-= current_memlimit_increase
;
8554 mmp_entry
.memlimit_inactive
+= roundToNearestMB(page_aligned_increase
);
8558 * Store the updated delta limit in the proc.
8560 p
->p_memlimit_increase
= page_aligned_increase
;
8562 int error
= memorystatus_set_memlimit_properties_internal(p
, &mmp_entry
);
8569 #endif /* DEVELOPMENT */
8570 #endif /* CONFIG_JETSAM */