]> git.saurik.com Git - apple/xnu.git/blob - bsd/dev/arm/dtrace_isa.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / bsd / dev / arm / dtrace_isa.c
1 /*
2 * Copyright (c) 2005-2018 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <arm/caches_internal.h>
30 #include <arm/proc_reg.h>
31
32 #include <kern/thread.h>
33 #include <mach/thread_status.h>
34
35 #include <stdarg.h>
36 #include <string.h>
37 #include <sys/malloc.h>
38 #include <sys/time.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/proc_internal.h>
42 #include <sys/kauth.h>
43 #include <sys/dtrace.h>
44 #include <sys/dtrace_impl.h>
45 #include <machine/atomic.h>
46 #include <kern/simple_lock.h>
47 #include <kern/sched_prim.h> /* for thread_wakeup() */
48 #include <kern/thread_call.h>
49 #include <kern/task.h>
50 #include <miscfs/devfs/devfs.h>
51 #include <mach/vm_param.h>
52
53 extern struct arm_saved_state *find_kern_regs(thread_t);
54
55 extern dtrace_id_t dtrace_probeid_error; /* special ERROR probe */
56 typedef arm_saved_state_t savearea_t;
57
58 int dtrace_arm_condition_true(int condition, int cpsr);
59
60 /*
61 * Atomicity and synchronization
62 */
63 inline void
64 dtrace_membar_producer(void)
65 {
66 __asm__ volatile ("dmb ish" : : : "memory");
67 }
68
69 inline void
70 dtrace_membar_consumer(void)
71 {
72 __asm__ volatile ("dmb ish" : : : "memory");
73 }
74
75 /*
76 * Interrupt manipulation
77 * XXX dtrace_getipl() can be called from probe context.
78 */
79 int
80 dtrace_getipl(void)
81 {
82 /*
83 * XXX Drat, get_interrupt_level is MACH_KERNEL_PRIVATE
84 * in osfmk/kern/cpu_data.h
85 */
86 /* return get_interrupt_level(); */
87 return ml_at_interrupt_context() ? 1 : 0;
88 }
89
90 /*
91 * MP coordination
92 */
93
94 static LCK_MTX_DECLARE_ATTR(dt_xc_lock, &dtrace_lck_grp, &dtrace_lck_attr);
95 static uint32_t dt_xc_sync;
96
97 typedef struct xcArg {
98 processorid_t cpu;
99 dtrace_xcall_t f;
100 void *arg;
101 } xcArg_t;
102
103 static void
104 xcRemote(void *foo)
105 {
106 xcArg_t *pArg = (xcArg_t *) foo;
107
108 if (pArg->cpu == CPU->cpu_id || pArg->cpu == DTRACE_CPUALL) {
109 (pArg->f)(pArg->arg);
110 }
111
112 if (os_atomic_dec(&dt_xc_sync, relaxed) == 0) {
113 thread_wakeup((event_t) &dt_xc_sync);
114 }
115 }
116
117 /*
118 * dtrace_xcall() is not called from probe context.
119 */
120 void
121 dtrace_xcall(processorid_t cpu, dtrace_xcall_t f, void *arg)
122 {
123 /* Only one dtrace_xcall in flight allowed */
124 lck_mtx_lock(&dt_xc_lock);
125
126 xcArg_t xcArg;
127
128 xcArg.cpu = cpu;
129 xcArg.f = f;
130 xcArg.arg = arg;
131
132 cpu_broadcast_xcall(&dt_xc_sync, TRUE, xcRemote, (void*) &xcArg);
133
134 lck_mtx_unlock(&dt_xc_lock);
135 return;
136 }
137
138 /*
139 * Runtime and ABI
140 */
141 uint64_t
142 dtrace_getreg(struct regs * savearea, uint_t reg)
143 {
144 struct arm_saved_state *regs = (struct arm_saved_state *) savearea;
145 if (regs == NULL) {
146 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
147 return 0;
148 }
149 /* beyond register limit? */
150 if (reg > ARM_SAVED_STATE32_COUNT - 1) {
151 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
152 return 0;
153 }
154
155 return (uint64_t) ((unsigned int *) (&(regs->r)))[reg];
156 }
157
158 uint64_t
159 dtrace_getvmreg(uint_t ndx)
160 {
161 #pragma unused(ndx)
162 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
163 return 0;
164 }
165
166 #define RETURN_OFFSET 4
167
168 static int
169 dtrace_getustack_common(uint64_t * pcstack, int pcstack_limit, user_addr_t pc,
170 user_addr_t sp)
171 {
172 volatile uint16_t *flags = (volatile uint16_t *) &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
173 int ret = 0;
174
175 ASSERT(pcstack == NULL || pcstack_limit > 0);
176
177 while (pc != 0) {
178 ret++;
179 if (pcstack != NULL) {
180 *pcstack++ = (uint64_t) pc;
181 pcstack_limit--;
182 if (pcstack_limit <= 0) {
183 break;
184 }
185 }
186
187 if (sp == 0) {
188 break;
189 }
190
191 pc = dtrace_fuword32((sp + RETURN_OFFSET));
192 sp = dtrace_fuword32(sp);
193
194 /* Truncate ustack if the iterator causes fault. */
195 if (*flags & CPU_DTRACE_FAULT) {
196 *flags &= ~CPU_DTRACE_FAULT;
197 break;
198 }
199 }
200
201 return ret;
202 }
203
204 void
205 dtrace_getupcstack(uint64_t * pcstack, int pcstack_limit)
206 {
207 thread_t thread = current_thread();
208 savearea_t *regs;
209 user_addr_t pc, sp;
210 volatile uint16_t *flags = (volatile uint16_t *) &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
211 int n;
212
213 if (*flags & CPU_DTRACE_FAULT) {
214 return;
215 }
216
217 if (pcstack_limit <= 0) {
218 return;
219 }
220
221 /*
222 * If there's no user context we still need to zero the stack.
223 */
224 if (thread == NULL) {
225 goto zero;
226 }
227
228 regs = (savearea_t *) find_user_regs(thread);
229 if (regs == NULL) {
230 goto zero;
231 }
232
233 *pcstack++ = (uint64_t)dtrace_proc_selfpid();
234 pcstack_limit--;
235
236 if (pcstack_limit <= 0) {
237 return;
238 }
239
240 pc = regs->pc;
241 sp = regs->sp;
242
243 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) {
244 *pcstack++ = (uint64_t) pc;
245 pcstack_limit--;
246 if (pcstack_limit <= 0) {
247 return;
248 }
249
250 pc = regs->lr;
251 }
252
253 n = dtrace_getustack_common(pcstack, pcstack_limit, pc, regs->r[7]);
254
255 ASSERT(n >= 0);
256 ASSERT(n <= pcstack_limit);
257
258 pcstack += n;
259 pcstack_limit -= n;
260
261 zero:
262 while (pcstack_limit-- > 0) {
263 *pcstack++ = 0ULL;
264 }
265 }
266
267 int
268 dtrace_getustackdepth(void)
269 {
270 thread_t thread = current_thread();
271 savearea_t *regs;
272 user_addr_t pc, sp;
273 int n = 0;
274
275 if (thread == NULL) {
276 return 0;
277 }
278
279 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) {
280 return -1;
281 }
282
283 regs = (savearea_t *) find_user_regs(thread);
284 if (regs == NULL) {
285 return 0;
286 }
287
288 pc = regs->pc;
289 sp = regs->sp;
290
291 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) {
292 n++;
293 pc = regs->lr;
294 }
295
296 /*
297 * Note that unlike ppc, the arm code does not use
298 * CPU_DTRACE_USTACK_FP. This is because arm always
299 * traces from the sp, even in syscall/profile/fbt
300 * providers.
301 */
302
303 n += dtrace_getustack_common(NULL, 0, pc, regs->r[7]);
304
305 return n;
306 }
307
308 void
309 dtrace_getufpstack(uint64_t * pcstack, uint64_t * fpstack, int pcstack_limit)
310 {
311 /* XXX ARMTODO 64vs32 */
312 thread_t thread = current_thread();
313 savearea_t *regs;
314 user_addr_t pc, sp;
315
316 volatile uint16_t *flags = (volatile uint16_t *) &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
317
318 #if 0
319 uintptr_t oldcontext;
320 size_t s1, s2;
321 #endif
322
323 if (*flags & CPU_DTRACE_FAULT) {
324 return;
325 }
326
327 if (pcstack_limit <= 0) {
328 return;
329 }
330
331 /*
332 * If there's no user context we still need to zero the stack.
333 */
334 if (thread == NULL) {
335 goto zero;
336 }
337
338 regs = (savearea_t *) find_user_regs(thread);
339 if (regs == NULL) {
340 goto zero;
341 }
342
343 *pcstack++ = (uint64_t)dtrace_proc_selfpid();
344 pcstack_limit--;
345
346 if (pcstack_limit <= 0) {
347 return;
348 }
349
350 pc = regs->pc;
351 sp = regs->sp;
352
353 #if 0 /* XXX signal stack crawl */
354 oldcontext = lwp->lwp_oldcontext;
355
356 if (p->p_model == DATAMODEL_NATIVE) {
357 s1 = sizeof(struct frame) + 2 * sizeof(long);
358 s2 = s1 + sizeof(siginfo_t);
359 } else {
360 s1 = sizeof(struct frame32) + 3 * sizeof(int);
361 s2 = s1 + sizeof(siginfo32_t);
362 }
363 #endif
364
365 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) {
366 *pcstack++ = (uint64_t) pc;
367 *fpstack++ = 0;
368 pcstack_limit--;
369 if (pcstack_limit <= 0) {
370 return;
371 }
372
373 pc = dtrace_fuword32(sp);
374 }
375 while (pc != 0 && sp != 0) {
376 *pcstack++ = (uint64_t) pc;
377 *fpstack++ = sp;
378 pcstack_limit--;
379 if (pcstack_limit <= 0) {
380 break;
381 }
382
383 #if 0 /* XXX signal stack crawl */
384 if (oldcontext == sp + s1 || oldcontext == sp + s2) {
385 if (p->p_model == DATAMODEL_NATIVE) {
386 ucontext_t *ucp = (ucontext_t *) oldcontext;
387 greg_t *gregs = ucp->uc_mcontext.gregs;
388
389 sp = dtrace_fulword(&gregs[REG_FP]);
390 pc = dtrace_fulword(&gregs[REG_PC]);
391
392 oldcontext = dtrace_fulword(&ucp->uc_link);
393 } else {
394 ucontext_t *ucp = (ucontext_t *) oldcontext;
395 greg_t *gregs = ucp->uc_mcontext.gregs;
396
397 sp = dtrace_fuword32(&gregs[EBP]);
398 pc = dtrace_fuword32(&gregs[EIP]);
399
400 oldcontext = dtrace_fuword32(&ucp->uc_link);
401 }
402 } else
403 #endif
404 {
405 pc = dtrace_fuword32((sp + RETURN_OFFSET));
406 sp = dtrace_fuword32(sp);
407 }
408
409 /* Truncate ustack if the iterator causes fault. */
410 if (*flags & CPU_DTRACE_FAULT) {
411 *flags &= ~CPU_DTRACE_FAULT;
412 break;
413 }
414 }
415
416 zero:
417 while (pcstack_limit-- > 0) {
418 *pcstack++ = 0ULL;
419 }
420 }
421
422 void
423 dtrace_getpcstack(pc_t * pcstack, int pcstack_limit, int aframes,
424 uint32_t * intrpc)
425 {
426 struct frame *fp = (struct frame *) __builtin_frame_address(0);
427 struct frame *nextfp, *minfp, *stacktop;
428 int depth = 0;
429 int on_intr;
430 int last = 0;
431 uintptr_t pc;
432 uintptr_t caller = CPU->cpu_dtrace_caller;
433
434 if ((on_intr = CPU_ON_INTR(CPU)) != 0) {
435 stacktop = (struct frame *) dtrace_get_cpu_int_stack_top();
436 } else {
437 stacktop = (struct frame *) (dtrace_get_kernel_stack(current_thread()) + kernel_stack_size);
438 }
439
440 minfp = fp;
441
442 aframes++;
443
444 if (intrpc != NULL && depth < pcstack_limit) {
445 pcstack[depth++] = (pc_t) intrpc;
446 }
447
448 while (depth < pcstack_limit) {
449 nextfp = *(struct frame **) fp;
450 pc = *(uintptr_t *) (((uint32_t) fp) + RETURN_OFFSET);
451
452 if (nextfp <= minfp || nextfp >= stacktop) {
453 if (on_intr) {
454 /*
455 * Hop from interrupt stack to thread stack.
456 */
457 arm_saved_state_t *arm_kern_regs = (arm_saved_state_t *) find_kern_regs(current_thread());
458 if (arm_kern_regs) {
459 nextfp = (struct frame *)arm_kern_regs->r[7];
460
461 vm_offset_t kstack_base = dtrace_get_kernel_stack(current_thread());
462
463 minfp = (struct frame *)kstack_base;
464 stacktop = (struct frame *)(kstack_base + kernel_stack_size);
465
466 on_intr = 0;
467
468 if (nextfp <= minfp || nextfp >= stacktop) {
469 last = 1;
470 }
471 } else {
472 /*
473 * If this thread was on the interrupt stack, but did not
474 * take an interrupt (i.e, the idle thread), there is no
475 * explicit saved state for us to use.
476 */
477 last = 1;
478 }
479 } else {
480 /*
481 * This is the last frame we can process; indicate
482 * that we should return after processing this frame.
483 */
484 last = 1;
485 }
486 }
487 if (aframes > 0) {
488 if (--aframes == 0 && caller != (uintptr_t)NULL) {
489 /*
490 * We've just run out of artificial frames,
491 * and we have a valid caller -- fill it in
492 * now.
493 */
494 ASSERT(depth < pcstack_limit);
495 pcstack[depth++] = (pc_t) caller;
496 caller = (uintptr_t)NULL;
497 }
498 } else {
499 if (depth < pcstack_limit) {
500 pcstack[depth++] = (pc_t) pc;
501 }
502 }
503
504 if (last) {
505 while (depth < pcstack_limit) {
506 pcstack[depth++] = (pc_t) NULL;
507 }
508 return;
509 }
510 fp = nextfp;
511 minfp = fp;
512 }
513 }
514
515 int
516 dtrace_instr_size(uint32_t instr, int thumb_mode)
517 {
518 if (thumb_mode) {
519 uint16_t instr16 = *(uint16_t*) &instr;
520 if (((instr16 >> 11) & 0x1F) > 0x1C) {
521 return 4;
522 } else {
523 return 2;
524 }
525 } else {
526 return 4;
527 }
528 }
529
530 uint64_t
531 dtrace_getarg(int arg, int aframes, dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
532 {
533 #pragma unused(arg, aframes, mstate, vstate)
534 #if 0
535 /* XXX ARMTODO */
536 uint64_t val;
537 uintptr_t *fp = (uintptr_t *)__builtin_frame_address(0);
538 uintptr_t *stack;
539 uintptr_t pc;
540 int i;
541
542 for (i = 1; i <= aframes; i++) {
543 fp = fp[0];
544 pc = fp[1];
545
546 if (dtrace_invop_callsite_pre != NULL
547 && pc > (uintptr_t)dtrace_invop_callsite_pre
548 && pc <= (uintptr_t)dtrace_invop_callsite_post) {
549 /*
550 * If we pass through the invalid op handler, we will
551 * use the pointer that it passed to the stack as the
552 * second argument to dtrace_invop() as the pointer to
553 * the frame we're hunting for.
554 */
555
556 stack = (uintptr_t *)&fp[1]; /* Find marshalled arguments */
557 fp = (struct frame *)stack[1]; /* Grab *second* argument */
558 stack = (uintptr_t *)&fp[1]; /* Find marshalled arguments */
559 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
560 val = (uint64_t)(stack[arg]);
561 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
562 return val;
563 }
564 }
565
566 /*
567 * Arrive here when provider has called dtrace_probe directly.
568 */
569 stack = (uintptr_t *)&fp[1]; /* Find marshalled arguments */
570 stack++; /* Advance past probeID */
571
572 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
573 val = *(((uint64_t *)stack) + arg); /* dtrace_probe arguments arg0 .. arg4 are 64bits wide */
574 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
575 return val;
576 #endif
577 return 0xfeedfacedeafbeadLL;
578 }
579
580 void
581 dtrace_probe_error(dtrace_state_t *state, dtrace_epid_t epid, int which,
582 int fltoffs, int fault, uint64_t illval)
583 {
584 /* XXX ARMTODO */
585 /*
586 * For the case of the error probe firing lets
587 * stash away "illval" here, and special-case retrieving it in DIF_VARIABLE_ARG.
588 */
589 state->dts_arg_error_illval = illval;
590 dtrace_probe( dtrace_probeid_error, (uint64_t)(uintptr_t)state, epid, which, fltoffs, fault );
591 }
592
593 void
594 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
595 {
596 /* XXX ARMTODO check copied from ppc/x86*/
597 /*
598 * "base" is the smallest toxic address in the range, "limit" is the first
599 * VALID address greater than "base".
600 */
601 func(0x0, VM_MIN_KERNEL_ADDRESS);
602 if (VM_MAX_KERNEL_ADDRESS < ~(uintptr_t)0) {
603 func(VM_MAX_KERNEL_ADDRESS + 1, ~(uintptr_t)0);
604 }
605 }
606
607 int
608 dtrace_arm_condition_true(int cond, int cpsr)
609 {
610 int taken = 0;
611 int zf = (cpsr & PSR_ZF) ? 1 : 0,
612 nf = (cpsr & PSR_NF) ? 1 : 0,
613 cf = (cpsr & PSR_CF) ? 1 : 0,
614 vf = (cpsr & PSR_VF) ? 1 : 0;
615
616 switch (cond) {
617 case 0: taken = zf; break;
618 case 1: taken = !zf; break;
619 case 2: taken = cf; break;
620 case 3: taken = !cf; break;
621 case 4: taken = nf; break;
622 case 5: taken = !nf; break;
623 case 6: taken = vf; break;
624 case 7: taken = !vf; break;
625 case 8: taken = (cf && !zf); break;
626 case 9: taken = (!cf || zf); break;
627 case 10: taken = (nf == vf); break;
628 case 11: taken = (nf != vf); break;
629 case 12: taken = (!zf && (nf == vf)); break;
630 case 13: taken = (zf || (nf != vf)); break;
631 case 14: taken = 1; break;
632 case 15: taken = 1; break; /* always "true" for ARM, unpredictable for THUMB. */
633 }
634
635 return taken;
636 }
637
638 void
639 dtrace_flush_caches(void)
640 {
641 /* TODO There were some problems with flushing just the cache line that had been modified.
642 * For now, we'll flush the entire cache, until we figure out how to flush just the patched block.
643 */
644 FlushPoU_Dcache();
645 InvalidatePoU_Icache();
646 }