]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/stack.c
xnu-2782.1.97.tar.gz
[apple/xnu.git] / osfmk / kern / stack.c
1 /*
2 * Copyright (c) 2003-2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Kernel stack management routines.
30 */
31
32 #include <mach/mach_host.h>
33 #include <mach/mach_types.h>
34 #include <mach/processor_set.h>
35
36 #include <kern/kern_types.h>
37 #include <kern/mach_param.h>
38 #include <kern/processor.h>
39 #include <kern/thread.h>
40 #include <kern/zalloc.h>
41 #include <kern/kalloc.h>
42 #include <kern/ledger.h>
43
44 #include <vm/vm_map.h>
45 #include <vm/vm_kern.h>
46
47 #include <mach_debug.h>
48
49 /*
50 * We allocate stacks from generic kernel VM.
51 *
52 * The stack_free_list can only be accessed at splsched,
53 * because stack_alloc_try/thread_invoke operate at splsched.
54 */
55
56 decl_simple_lock_data(static,stack_lock_data)
57 #define stack_lock() simple_lock(&stack_lock_data)
58 #define stack_unlock() simple_unlock(&stack_lock_data)
59
60 #define STACK_CACHE_SIZE 2
61
62 static vm_offset_t stack_free_list;
63
64 static unsigned int stack_free_count, stack_free_hiwat; /* free list count */
65 static unsigned int stack_hiwat;
66 unsigned int stack_total; /* current total count */
67 unsigned long long stack_allocs; /* total count of allocations */
68
69 static int stack_fake_zone_index = -1; /* index in zone_info array */
70
71 static unsigned int stack_free_target;
72 static int stack_free_delta;
73
74 static unsigned int stack_new_count; /* total new stack allocations */
75
76 static vm_offset_t stack_addr_mask;
77
78 unsigned int kernel_stack_pages;
79 vm_offset_t kernel_stack_size;
80 vm_offset_t kernel_stack_mask;
81 vm_offset_t kernel_stack_depth_max;
82
83 static inline void
84 STACK_ZINFO_PALLOC(thread_t thread)
85 {
86 task_t task;
87 zinfo_usage_t zinfo;
88
89 ledger_credit(thread->t_ledger, task_ledgers.tkm_private, kernel_stack_size);
90
91 if (stack_fake_zone_index != -1 &&
92 (task = thread->task) != NULL && (zinfo = task->tkm_zinfo) != NULL)
93 OSAddAtomic64(kernel_stack_size,
94 (int64_t *)&zinfo[stack_fake_zone_index].alloc);
95 }
96
97 static inline void
98 STACK_ZINFO_PFREE(thread_t thread)
99 {
100 task_t task;
101 zinfo_usage_t zinfo;
102
103 ledger_debit(thread->t_ledger, task_ledgers.tkm_private, kernel_stack_size);
104
105 if (stack_fake_zone_index != -1 &&
106 (task = thread->task) != NULL && (zinfo = task->tkm_zinfo) != NULL)
107 OSAddAtomic64(kernel_stack_size,
108 (int64_t *)&zinfo[stack_fake_zone_index].free);
109 }
110
111 static inline void
112 STACK_ZINFO_HANDOFF(thread_t from, thread_t to)
113 {
114 ledger_debit(from->t_ledger, task_ledgers.tkm_private, kernel_stack_size);
115 ledger_credit(to->t_ledger, task_ledgers.tkm_private, kernel_stack_size);
116
117 if (stack_fake_zone_index != -1) {
118 task_t task;
119 zinfo_usage_t zinfo;
120
121 if ((task = from->task) != NULL && (zinfo = task->tkm_zinfo) != NULL)
122 OSAddAtomic64(kernel_stack_size,
123 (int64_t *)&zinfo[stack_fake_zone_index].free);
124
125 if ((task = to->task) != NULL && (zinfo = task->tkm_zinfo) != NULL)
126 OSAddAtomic64(kernel_stack_size,
127 (int64_t *)&zinfo[stack_fake_zone_index].alloc);
128 }
129 }
130
131 /*
132 * The next field is at the base of the stack,
133 * so the low end is left unsullied.
134 */
135 #define stack_next(stack) \
136 (*((vm_offset_t *)((stack) + kernel_stack_size) - 1))
137
138 static inline int
139 log2(vm_offset_t size)
140 {
141 int result;
142 for (result = 0; size > 0; result++)
143 size >>= 1;
144 return result;
145 }
146
147 static inline vm_offset_t
148 roundup_pow2(vm_offset_t size)
149 {
150 return 1UL << (log2(size - 1) + 1);
151 }
152
153 static vm_offset_t stack_alloc_internal(void);
154 static void stack_free_stack(vm_offset_t);
155
156 void
157 stack_init(void)
158 {
159 simple_lock_init(&stack_lock_data, 0);
160
161 kernel_stack_pages = KERNEL_STACK_SIZE / PAGE_SIZE;
162 kernel_stack_size = KERNEL_STACK_SIZE;
163 kernel_stack_mask = -KERNEL_STACK_SIZE;
164 kernel_stack_depth_max = 0;
165
166 if (PE_parse_boot_argn("kernel_stack_pages",
167 &kernel_stack_pages,
168 sizeof (kernel_stack_pages))) {
169 kernel_stack_size = kernel_stack_pages * PAGE_SIZE;
170 printf("stack_init: kernel_stack_pages=%d kernel_stack_size=%p\n",
171 kernel_stack_pages, (void *) kernel_stack_size);
172 }
173
174 if (kernel_stack_size < round_page(kernel_stack_size))
175 panic("stack_init: stack size %p not a multiple of page size %d\n",
176 (void *) kernel_stack_size, PAGE_SIZE);
177
178 stack_addr_mask = roundup_pow2(kernel_stack_size) - 1;
179 kernel_stack_mask = ~stack_addr_mask;
180 }
181
182 /*
183 * stack_alloc:
184 *
185 * Allocate a stack for a thread, may
186 * block.
187 */
188
189 static vm_offset_t
190 stack_alloc_internal(void)
191 {
192 vm_offset_t stack;
193 spl_t s;
194 int guard_flags;
195
196 s = splsched();
197 stack_lock();
198 stack_allocs++;
199 stack = stack_free_list;
200 if (stack != 0) {
201 stack_free_list = stack_next(stack);
202 stack_free_count--;
203 }
204 else {
205 if (++stack_total > stack_hiwat)
206 stack_hiwat = stack_total;
207 stack_new_count++;
208 }
209 stack_free_delta--;
210 stack_unlock();
211 splx(s);
212
213 if (stack == 0) {
214
215 /*
216 * Request guard pages on either side of the stack. Ask
217 * kernel_memory_allocate() for two extra pages to account
218 * for these.
219 */
220
221 guard_flags = KMA_GUARD_FIRST | KMA_GUARD_LAST;
222 if (kernel_memory_allocate(kernel_map, &stack,
223 kernel_stack_size + (2*PAGE_SIZE),
224 stack_addr_mask,
225 KMA_KSTACK | KMA_KOBJECT | guard_flags)
226 != KERN_SUCCESS)
227 panic("stack_alloc: kernel_memory_allocate");
228
229 /*
230 * The stack address that comes back is the address of the lower
231 * guard page. Skip past it to get the actual stack base address.
232 */
233
234 stack += PAGE_SIZE;
235 }
236 return stack;
237 }
238
239 void
240 stack_alloc(
241 thread_t thread)
242 {
243
244 assert(thread->kernel_stack == 0);
245 machine_stack_attach(thread, stack_alloc_internal());
246 STACK_ZINFO_PALLOC(thread);
247 }
248
249 void
250 stack_handoff(thread_t from, thread_t to)
251 {
252 assert(from == current_thread());
253 machine_stack_handoff(from, to);
254 STACK_ZINFO_HANDOFF(from, to);
255 }
256
257 /*
258 * stack_free:
259 *
260 * Detach and free the stack for a thread.
261 */
262 void
263 stack_free(
264 thread_t thread)
265 {
266 vm_offset_t stack = machine_stack_detach(thread);
267
268 assert(stack);
269 if (stack != thread->reserved_stack) {
270 STACK_ZINFO_PFREE(thread);
271 stack_free_stack(stack);
272 }
273 }
274
275 void
276 stack_free_reserved(
277 thread_t thread)
278 {
279 if (thread->reserved_stack != thread->kernel_stack) {
280 stack_free_stack(thread->reserved_stack);
281 STACK_ZINFO_PFREE(thread);
282 }
283 }
284
285 static void
286 stack_free_stack(
287 vm_offset_t stack)
288 {
289 struct stack_cache *cache;
290 spl_t s;
291
292 s = splsched();
293 cache = &PROCESSOR_DATA(current_processor(), stack_cache);
294 if (cache->count < STACK_CACHE_SIZE) {
295 stack_next(stack) = cache->free;
296 cache->free = stack;
297 cache->count++;
298 }
299 else {
300 stack_lock();
301 stack_next(stack) = stack_free_list;
302 stack_free_list = stack;
303 if (++stack_free_count > stack_free_hiwat)
304 stack_free_hiwat = stack_free_count;
305 stack_free_delta++;
306 stack_unlock();
307 }
308 splx(s);
309 }
310
311 /*
312 * stack_alloc_try:
313 *
314 * Non-blocking attempt to allocate a
315 * stack for a thread.
316 *
317 * Returns TRUE on success.
318 *
319 * Called at splsched.
320 */
321 boolean_t
322 stack_alloc_try(
323 thread_t thread)
324 {
325 struct stack_cache *cache;
326 vm_offset_t stack;
327
328 cache = &PROCESSOR_DATA(current_processor(), stack_cache);
329 stack = cache->free;
330 if (stack != 0) {
331 STACK_ZINFO_PALLOC(thread);
332 cache->free = stack_next(stack);
333 cache->count--;
334 }
335 else {
336 if (stack_free_list != 0) {
337 stack_lock();
338 stack = stack_free_list;
339 if (stack != 0) {
340 STACK_ZINFO_PALLOC(thread);
341 stack_free_list = stack_next(stack);
342 stack_free_count--;
343 stack_free_delta--;
344 }
345 stack_unlock();
346 }
347 }
348
349 if (stack != 0 || (stack = thread->reserved_stack) != 0) {
350 machine_stack_attach(thread, stack);
351 return (TRUE);
352 }
353
354 return (FALSE);
355 }
356
357 static unsigned int stack_collect_tick, last_stack_tick;
358
359 /*
360 * stack_collect:
361 *
362 * Free excess kernel stacks, may
363 * block.
364 */
365 void
366 stack_collect(void)
367 {
368 if (stack_collect_tick != last_stack_tick) {
369 unsigned int target;
370 vm_offset_t stack;
371 spl_t s;
372
373 s = splsched();
374 stack_lock();
375
376 target = stack_free_target + (STACK_CACHE_SIZE * processor_count);
377 target += (stack_free_delta >= 0)? stack_free_delta: -stack_free_delta;
378
379 while (stack_free_count > target) {
380 stack = stack_free_list;
381 stack_free_list = stack_next(stack);
382 stack_free_count--; stack_total--;
383 stack_unlock();
384 splx(s);
385
386 /*
387 * Get the stack base address, then decrement by one page
388 * to account for the lower guard page. Add two extra pages
389 * to the size to account for the guard pages on both ends
390 * that were originally requested when the stack was allocated
391 * back in stack_alloc().
392 */
393
394 stack = (vm_offset_t)vm_map_trunc_page(
395 stack,
396 VM_MAP_PAGE_MASK(kernel_map));
397 stack -= PAGE_SIZE;
398 if (vm_map_remove(
399 kernel_map,
400 stack,
401 stack + kernel_stack_size+(2*PAGE_SIZE),
402 VM_MAP_REMOVE_KUNWIRE)
403 != KERN_SUCCESS)
404 panic("stack_collect: vm_map_remove");
405 stack = 0;
406
407 s = splsched();
408 stack_lock();
409
410 target = stack_free_target + (STACK_CACHE_SIZE * processor_count);
411 target += (stack_free_delta >= 0)? stack_free_delta: -stack_free_delta;
412 }
413
414 last_stack_tick = stack_collect_tick;
415
416 stack_unlock();
417 splx(s);
418 }
419 }
420
421 /*
422 * compute_stack_target:
423 *
424 * Computes a new target free list count
425 * based on recent alloc / free activity.
426 *
427 * Limits stack collection to once per
428 * computation period.
429 */
430 void
431 compute_stack_target(
432 __unused void *arg)
433 {
434 spl_t s;
435
436 s = splsched();
437 stack_lock();
438
439 if (stack_free_target > 5)
440 stack_free_target = (4 * stack_free_target) / 5;
441 else
442 if (stack_free_target > 0)
443 stack_free_target--;
444
445 stack_free_target += (stack_free_delta >= 0)? stack_free_delta: -stack_free_delta;
446
447 stack_free_delta = 0;
448 stack_collect_tick++;
449
450 stack_unlock();
451 splx(s);
452 }
453
454 void
455 stack_fake_zone_init(int zone_index)
456 {
457 stack_fake_zone_index = zone_index;
458 }
459
460 void
461 stack_fake_zone_info(int *count,
462 vm_size_t *cur_size, vm_size_t *max_size, vm_size_t *elem_size, vm_size_t *alloc_size,
463 uint64_t *sum_size, int *collectable, int *exhaustable, int *caller_acct)
464 {
465 unsigned int total, hiwat, free;
466 unsigned long long all;
467 spl_t s;
468
469 s = splsched();
470 stack_lock();
471 all = stack_allocs;
472 total = stack_total;
473 hiwat = stack_hiwat;
474 free = stack_free_count;
475 stack_unlock();
476 splx(s);
477
478 *count = total - free;
479 *cur_size = kernel_stack_size * total;
480 *max_size = kernel_stack_size * hiwat;
481 *elem_size = kernel_stack_size;
482 *alloc_size = kernel_stack_size;
483 *sum_size = all * kernel_stack_size;
484
485 *collectable = 1;
486 *exhaustable = 0;
487 *caller_acct = 1;
488 }
489
490 /* OBSOLETE */
491 void stack_privilege(
492 thread_t thread);
493
494 void
495 stack_privilege(
496 __unused thread_t thread)
497 {
498 /* OBSOLETE */
499 }
500
501 /*
502 * Return info on stack usage for threads in a specific processor set
503 */
504 kern_return_t
505 processor_set_stack_usage(
506 processor_set_t pset,
507 unsigned int *totalp,
508 vm_size_t *spacep,
509 vm_size_t *residentp,
510 vm_size_t *maxusagep,
511 vm_offset_t *maxstackp)
512 {
513 #if !MACH_DEBUG
514 return KERN_NOT_SUPPORTED;
515 #else
516 unsigned int total;
517 vm_size_t maxusage;
518 vm_offset_t maxstack;
519
520 register thread_t *thread_list;
521 register thread_t thread;
522
523 unsigned int actual; /* this many things */
524 unsigned int i;
525
526 vm_size_t size, size_needed;
527 void *addr;
528
529 if (pset == PROCESSOR_SET_NULL || pset != &pset0)
530 return KERN_INVALID_ARGUMENT;
531
532 size = 0;
533 addr = NULL;
534
535 for (;;) {
536 lck_mtx_lock(&tasks_threads_lock);
537
538 actual = threads_count;
539
540 /* do we have the memory we need? */
541
542 size_needed = actual * sizeof(thread_t);
543 if (size_needed <= size)
544 break;
545
546 lck_mtx_unlock(&tasks_threads_lock);
547
548 if (size != 0)
549 kfree(addr, size);
550
551 assert(size_needed > 0);
552 size = size_needed;
553
554 addr = kalloc(size);
555 if (addr == 0)
556 return KERN_RESOURCE_SHORTAGE;
557 }
558
559 /* OK, have memory and list is locked */
560 thread_list = (thread_t *) addr;
561 for (i = 0, thread = (thread_t)(void *) queue_first(&threads);
562 !queue_end(&threads, (queue_entry_t) thread);
563 thread = (thread_t)(void *) queue_next(&thread->threads)) {
564 thread_reference_internal(thread);
565 thread_list[i++] = thread;
566 }
567 assert(i <= actual);
568
569 lck_mtx_unlock(&tasks_threads_lock);
570
571 /* calculate maxusage and free thread references */
572
573 total = 0;
574 maxusage = 0;
575 maxstack = 0;
576 while (i > 0) {
577 thread_t threadref = thread_list[--i];
578
579 if (threadref->kernel_stack != 0)
580 total++;
581
582 thread_deallocate(threadref);
583 }
584
585 if (size != 0)
586 kfree(addr, size);
587
588 *totalp = total;
589 *residentp = *spacep = total * round_page(kernel_stack_size);
590 *maxusagep = maxusage;
591 *maxstackp = maxstack;
592 return KERN_SUCCESS;
593
594 #endif /* MACH_DEBUG */
595 }
596
597 vm_offset_t min_valid_stack_address(void)
598 {
599 return (vm_offset_t)vm_map_min(kernel_map);
600 }
601
602 vm_offset_t max_valid_stack_address(void)
603 {
604 return (vm_offset_t)vm_map_max(kernel_map);
605 }