]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/bsd_kern.c
xnu-2782.1.97.tar.gz
[apple/xnu.git] / osfmk / kern / bsd_kern.c
1 /*
2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 #include <mach/mach_types.h>
29 #include <mach/machine/vm_param.h>
30 #include <mach/task.h>
31
32 #include <kern/kern_types.h>
33 #include <kern/ledger.h>
34 #include <kern/processor.h>
35 #include <kern/thread.h>
36 #include <kern/task.h>
37 #include <kern/spl.h>
38 #include <kern/ast.h>
39 #include <ipc/ipc_port.h>
40 #include <ipc/ipc_object.h>
41 #include <vm/vm_map.h>
42 #include <vm/vm_kern.h>
43 #include <vm/pmap.h>
44 #include <vm/vm_protos.h> /* last */
45 #include <sys/resource.h>
46
47 #undef thread_should_halt
48
49 /* BSD KERN COMPONENT INTERFACE */
50
51 task_t bsd_init_task = TASK_NULL;
52 char init_task_failure_data[1024];
53 extern unsigned int not_in_kdp; /* Skip acquiring locks if we're in kdp */
54
55 thread_t get_firstthread(task_t);
56 int get_task_userstop(task_t);
57 int get_thread_userstop(thread_t);
58 boolean_t current_thread_aborted(void);
59 void task_act_iterate_wth_args(task_t, void(*)(thread_t, void *), void *);
60 kern_return_t get_signalact(task_t , thread_t *, int);
61 int get_vmsubmap_entries(vm_map_t, vm_object_offset_t, vm_object_offset_t);
62 int fill_task_rusage(task_t task, rusage_info_current *ri);
63 int fill_task_io_rusage(task_t task, rusage_info_current *ri);
64 int fill_task_qos_rusage(task_t task, rusage_info_current *ri);
65 void fill_task_billed_usage(task_t task, rusage_info_current *ri);
66
67 /*
68 *
69 */
70 void *get_bsdtask_info(task_t t)
71 {
72 return(t->bsd_info);
73 }
74
75 /*
76 *
77 */
78 void *get_bsdthreadtask_info(thread_t th)
79 {
80 return(th->task != TASK_NULL ? th->task->bsd_info : NULL);
81 }
82
83 /*
84 *
85 */
86 void set_bsdtask_info(task_t t,void * v)
87 {
88 t->bsd_info=v;
89 }
90
91 /*
92 *
93 */
94 void *get_bsdthread_info(thread_t th)
95 {
96 return(th->uthread);
97 }
98
99 /*
100 * XXX
101 */
102 int get_thread_lock_count(thread_t th); /* forced forward */
103 int get_thread_lock_count(thread_t th)
104 {
105 return(th->mutex_count);
106 }
107
108 /*
109 * XXX: wait for BSD to fix signal code
110 * Until then, we cannot block here. We know the task
111 * can't go away, so we make sure it is still active after
112 * retrieving the first thread for extra safety.
113 */
114 thread_t get_firstthread(task_t task)
115 {
116 thread_t thread = (thread_t)(void *)queue_first(&task->threads);
117
118 if (queue_end(&task->threads, (queue_entry_t)thread))
119 thread = THREAD_NULL;
120
121 if (!task->active)
122 return (THREAD_NULL);
123
124 return (thread);
125 }
126
127 kern_return_t
128 get_signalact(
129 task_t task,
130 thread_t *result_out,
131 int setast)
132 {
133 kern_return_t result = KERN_SUCCESS;
134 thread_t inc, thread = THREAD_NULL;
135
136 task_lock(task);
137
138 if (!task->active) {
139 task_unlock(task);
140
141 return (KERN_FAILURE);
142 }
143
144 for (inc = (thread_t)(void *)queue_first(&task->threads);
145 !queue_end(&task->threads, (queue_entry_t)inc); ) {
146 thread_mtx_lock(inc);
147 if (inc->active &&
148 (inc->sched_flags & TH_SFLAG_ABORTED_MASK) != TH_SFLAG_ABORT) {
149 thread = inc;
150 break;
151 }
152 thread_mtx_unlock(inc);
153
154 inc = (thread_t)(void *)queue_next(&inc->task_threads);
155 }
156
157 if (result_out)
158 *result_out = thread;
159
160 if (thread) {
161 if (setast)
162 act_set_astbsd(thread);
163
164 thread_mtx_unlock(thread);
165 }
166 else
167 result = KERN_FAILURE;
168
169 task_unlock(task);
170
171 return (result);
172 }
173
174
175 kern_return_t
176 check_actforsig(
177 task_t task,
178 thread_t thread,
179 int setast)
180 {
181 kern_return_t result = KERN_FAILURE;
182 thread_t inc;
183
184 task_lock(task);
185
186 if (!task->active) {
187 task_unlock(task);
188
189 return (KERN_FAILURE);
190 }
191
192 for (inc = (thread_t)(void *)queue_first(&task->threads);
193 !queue_end(&task->threads, (queue_entry_t)inc); ) {
194 if (inc == thread) {
195 thread_mtx_lock(inc);
196
197 if (inc->active &&
198 (inc->sched_flags & TH_SFLAG_ABORTED_MASK) != TH_SFLAG_ABORT) {
199 result = KERN_SUCCESS;
200 break;
201 }
202
203 thread_mtx_unlock(inc);
204 break;
205 }
206
207 inc = (thread_t)(void *)queue_next(&inc->task_threads);
208 }
209
210 if (result == KERN_SUCCESS) {
211 if (setast)
212 act_set_astbsd(thread);
213
214 thread_mtx_unlock(thread);
215 }
216
217 task_unlock(task);
218
219 return (result);
220 }
221
222 ledger_t get_task_ledger(task_t t)
223 {
224 return(t->ledger);
225 }
226
227 /*
228 * This is only safe to call from a thread executing in
229 * in the task's context or if the task is locked Otherwise,
230 * the map could be switched for the task (and freed) before
231 * we to return it here.
232 */
233 vm_map_t get_task_map(task_t t)
234 {
235 return(t->map);
236 }
237
238 vm_map_t get_task_map_reference(task_t t)
239 {
240 vm_map_t m;
241
242 if (t == NULL)
243 return VM_MAP_NULL;
244
245 task_lock(t);
246 if (!t->active) {
247 task_unlock(t);
248 return VM_MAP_NULL;
249 }
250 m = t->map;
251 vm_map_reference_swap(m);
252 task_unlock(t);
253 return m;
254 }
255
256 /*
257 *
258 */
259 ipc_space_t get_task_ipcspace(task_t t)
260 {
261 return(t->itk_space);
262 }
263
264 int get_task_numactivethreads(task_t task)
265 {
266 thread_t inc;
267 int num_active_thr=0;
268 task_lock(task);
269
270 for (inc = (thread_t)(void *)queue_first(&task->threads);
271 !queue_end(&task->threads, (queue_entry_t)inc); inc = (thread_t)(void *)queue_next(&inc->task_threads))
272 {
273 if(inc->active)
274 num_active_thr++;
275 }
276 task_unlock(task);
277 return num_active_thr;
278 }
279
280 int get_task_numacts(task_t t)
281 {
282 return(t->thread_count);
283 }
284
285 /* does this machine need 64bit register set for signal handler */
286 int is_64signalregset(void)
287 {
288 if (task_has_64BitData(current_task())) {
289 return(1);
290 }
291
292 return(0);
293 }
294
295 /*
296 * Swap in a new map for the task/thread pair; the old map reference is
297 * returned.
298 */
299 vm_map_t
300 swap_task_map(task_t task, thread_t thread, vm_map_t map, boolean_t doswitch)
301 {
302 vm_map_t old_map;
303
304 if (task != thread->task)
305 panic("swap_task_map");
306
307 task_lock(task);
308 mp_disable_preemption();
309 old_map = task->map;
310 thread->map = task->map = map;
311 if (doswitch) {
312 pmap_switch(map->pmap);
313 }
314 mp_enable_preemption();
315 task_unlock(task);
316
317 #if (defined(__i386__) || defined(__x86_64__)) && NCOPY_WINDOWS > 0
318 inval_copy_windows(thread);
319 #endif
320
321 return old_map;
322 }
323
324 /*
325 *
326 */
327 pmap_t get_task_pmap(task_t t)
328 {
329 return(t->map->pmap);
330 }
331
332 /*
333 *
334 */
335 uint64_t get_task_resident_size(task_t task)
336 {
337 vm_map_t map;
338
339 map = (task == kernel_task) ? kernel_map: task->map;
340 return((uint64_t)pmap_resident_count(map->pmap) * PAGE_SIZE_64);
341 }
342
343 uint64_t get_task_compressed(task_t task)
344 {
345 vm_map_t map;
346
347 map = (task == kernel_task) ? kernel_map: task->map;
348 return((uint64_t)pmap_compressed(map->pmap) * PAGE_SIZE_64);
349 }
350
351 uint64_t get_task_resident_max(task_t task)
352 {
353 vm_map_t map;
354
355 map = (task == kernel_task) ? kernel_map: task->map;
356 return((uint64_t)pmap_resident_max(map->pmap) * PAGE_SIZE_64);
357 }
358
359 uint64_t get_task_purgeable_size(task_t task)
360 {
361 vm_map_t map;
362 mach_vm_size_t volatile_virtual_size;
363 mach_vm_size_t volatile_resident_size;
364 mach_vm_size_t volatile_pmap_size;
365
366 map = (task == kernel_task) ? kernel_map: task->map;
367 vm_map_query_volatile(map, &volatile_virtual_size, &volatile_resident_size, &volatile_pmap_size);
368
369 return((uint64_t)volatile_resident_size);
370 }
371 /*
372 *
373 */
374 uint64_t get_task_phys_footprint(task_t task)
375 {
376 kern_return_t ret;
377 ledger_amount_t credit, debit;
378
379 ret = ledger_get_entries(task->ledger, task_ledgers.phys_footprint, &credit, &debit);
380 if (KERN_SUCCESS == ret) {
381 return (credit - debit);
382 }
383
384 return 0;
385 }
386
387 /*
388 *
389 */
390 uint64_t get_task_phys_footprint_max(task_t task)
391 {
392 kern_return_t ret;
393 ledger_amount_t max;
394
395 ret = ledger_get_maximum(task->ledger, task_ledgers.phys_footprint, &max);
396 if (KERN_SUCCESS == ret) {
397 return max;
398 }
399
400 return 0;
401 }
402
403 uint64_t get_task_cpu_time(task_t task)
404 {
405 kern_return_t ret;
406 ledger_amount_t credit, debit;
407
408 ret = ledger_get_entries(task->ledger, task_ledgers.cpu_time, &credit, &debit);
409 if (KERN_SUCCESS == ret) {
410 return (credit - debit);
411 }
412
413 return 0;
414 }
415
416 /*
417 *
418 */
419 pmap_t get_map_pmap(vm_map_t map)
420 {
421 return(map->pmap);
422 }
423 /*
424 *
425 */
426 task_t get_threadtask(thread_t th)
427 {
428 return(th->task);
429 }
430
431 /*
432 *
433 */
434 vm_map_offset_t
435 get_map_min(
436 vm_map_t map)
437 {
438 return(vm_map_min(map));
439 }
440
441 /*
442 *
443 */
444 vm_map_offset_t
445 get_map_max(
446 vm_map_t map)
447 {
448 return(vm_map_max(map));
449 }
450 vm_map_size_t
451 get_vmmap_size(
452 vm_map_t map)
453 {
454 return(map->size);
455 }
456
457 int
458 get_vmsubmap_entries(
459 vm_map_t map,
460 vm_object_offset_t start,
461 vm_object_offset_t end)
462 {
463 int total_entries = 0;
464 vm_map_entry_t entry;
465
466 if (not_in_kdp)
467 vm_map_lock(map);
468 entry = vm_map_first_entry(map);
469 while((entry != vm_map_to_entry(map)) && (entry->vme_start < start)) {
470 entry = entry->vme_next;
471 }
472
473 while((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) {
474 if(entry->is_sub_map) {
475 total_entries +=
476 get_vmsubmap_entries(entry->object.sub_map,
477 entry->offset,
478 entry->offset +
479 (entry->vme_end - entry->vme_start));
480 } else {
481 total_entries += 1;
482 }
483 entry = entry->vme_next;
484 }
485 if (not_in_kdp)
486 vm_map_unlock(map);
487 return(total_entries);
488 }
489
490 int
491 get_vmmap_entries(
492 vm_map_t map)
493 {
494 int total_entries = 0;
495 vm_map_entry_t entry;
496
497 if (not_in_kdp)
498 vm_map_lock(map);
499 entry = vm_map_first_entry(map);
500
501 while(entry != vm_map_to_entry(map)) {
502 if(entry->is_sub_map) {
503 total_entries +=
504 get_vmsubmap_entries(entry->object.sub_map,
505 entry->offset,
506 entry->offset +
507 (entry->vme_end - entry->vme_start));
508 } else {
509 total_entries += 1;
510 }
511 entry = entry->vme_next;
512 }
513 if (not_in_kdp)
514 vm_map_unlock(map);
515 return(total_entries);
516 }
517
518 /*
519 *
520 */
521 /*
522 *
523 */
524 int
525 get_task_userstop(
526 task_t task)
527 {
528 return(task->user_stop_count);
529 }
530
531 /*
532 *
533 */
534 int
535 get_thread_userstop(
536 thread_t th)
537 {
538 return(th->user_stop_count);
539 }
540
541 /*
542 *
543 */
544 boolean_t
545 get_task_pidsuspended(
546 task_t task)
547 {
548 return (task->pidsuspended);
549 }
550
551 /*
552 *
553 */
554 boolean_t
555 get_task_frozen(
556 task_t task)
557 {
558 return (task->frozen);
559 }
560
561 /*
562 *
563 */
564 boolean_t
565 thread_should_abort(
566 thread_t th)
567 {
568 return ((th->sched_flags & TH_SFLAG_ABORTED_MASK) == TH_SFLAG_ABORT);
569 }
570
571 /*
572 * This routine is like thread_should_abort() above. It checks to
573 * see if the current thread is aborted. But unlike above, it also
574 * checks to see if thread is safely aborted. If so, it returns
575 * that fact, and clears the condition (safe aborts only should
576 * have a single effect, and a poll of the abort status
577 * qualifies.
578 */
579 boolean_t
580 current_thread_aborted (
581 void)
582 {
583 thread_t th = current_thread();
584 spl_t s;
585
586 if ((th->sched_flags & TH_SFLAG_ABORTED_MASK) == TH_SFLAG_ABORT &&
587 (th->options & TH_OPT_INTMASK) != THREAD_UNINT)
588 return (TRUE);
589 if (th->sched_flags & TH_SFLAG_ABORTSAFELY) {
590 s = splsched();
591 thread_lock(th);
592 if (th->sched_flags & TH_SFLAG_ABORTSAFELY)
593 th->sched_flags &= ~TH_SFLAG_ABORTED_MASK;
594 thread_unlock(th);
595 splx(s);
596 }
597 return FALSE;
598 }
599
600 /*
601 *
602 */
603 void
604 task_act_iterate_wth_args(
605 task_t task,
606 void (*func_callback)(thread_t, void *),
607 void *func_arg)
608 {
609 thread_t inc;
610
611 task_lock(task);
612
613 for (inc = (thread_t)(void *)queue_first(&task->threads);
614 !queue_end(&task->threads, (queue_entry_t)inc); ) {
615 (void) (*func_callback)(inc, func_arg);
616 inc = (thread_t)(void *)queue_next(&inc->task_threads);
617 }
618
619 task_unlock(task);
620 }
621
622
623 void
624 astbsd_on(void)
625 {
626 boolean_t reenable;
627
628 reenable = ml_set_interrupts_enabled(FALSE);
629 ast_on_fast(AST_BSD);
630 (void)ml_set_interrupts_enabled(reenable);
631 }
632
633
634 #include <sys/bsdtask_info.h>
635
636 void
637 fill_taskprocinfo(task_t task, struct proc_taskinfo_internal * ptinfo)
638 {
639 vm_map_t map;
640 task_absolutetime_info_data_t tinfo;
641 thread_t thread;
642 uint32_t cswitch = 0, numrunning = 0;
643 uint32_t syscalls_unix = 0;
644 uint32_t syscalls_mach = 0;
645
646 map = (task == kernel_task)? kernel_map: task->map;
647
648 ptinfo->pti_virtual_size = map->size;
649 ptinfo->pti_resident_size =
650 (mach_vm_size_t)(pmap_resident_count(map->pmap))
651 * PAGE_SIZE_64;
652
653 task_lock(task);
654
655 ptinfo->pti_policy = ((task != kernel_task)?
656 POLICY_TIMESHARE: POLICY_RR);
657
658 tinfo.threads_user = tinfo.threads_system = 0;
659 tinfo.total_user = task->total_user_time;
660 tinfo.total_system = task->total_system_time;
661
662 queue_iterate(&task->threads, thread, thread_t, task_threads) {
663 uint64_t tval;
664 spl_t x;
665
666 if (thread->options & TH_OPT_IDLE_THREAD)
667 continue;
668
669 x = splsched();
670 thread_lock(thread);
671
672 if ((thread->state & TH_RUN) == TH_RUN)
673 numrunning++;
674 cswitch += thread->c_switch;
675 tval = timer_grab(&thread->user_timer);
676 tinfo.threads_user += tval;
677 tinfo.total_user += tval;
678
679 tval = timer_grab(&thread->system_timer);
680
681 if (thread->precise_user_kernel_time) {
682 tinfo.threads_system += tval;
683 tinfo.total_system += tval;
684 } else {
685 /* system_timer may represent either sys or user */
686 tinfo.threads_user += tval;
687 tinfo.total_user += tval;
688 }
689
690 syscalls_unix += thread->syscalls_unix;
691 syscalls_mach += thread->syscalls_mach;
692
693 thread_unlock(thread);
694 splx(x);
695 }
696
697 ptinfo->pti_total_system = tinfo.total_system;
698 ptinfo->pti_total_user = tinfo.total_user;
699 ptinfo->pti_threads_system = tinfo.threads_system;
700 ptinfo->pti_threads_user = tinfo.threads_user;
701
702 ptinfo->pti_faults = task->faults;
703 ptinfo->pti_pageins = task->pageins;
704 ptinfo->pti_cow_faults = task->cow_faults;
705 ptinfo->pti_messages_sent = task->messages_sent;
706 ptinfo->pti_messages_received = task->messages_received;
707 ptinfo->pti_syscalls_mach = task->syscalls_mach + syscalls_mach;
708 ptinfo->pti_syscalls_unix = task->syscalls_unix + syscalls_unix;
709 ptinfo->pti_csw = task->c_switch + cswitch;
710 ptinfo->pti_threadnum = task->thread_count;
711 ptinfo->pti_numrunning = numrunning;
712 ptinfo->pti_priority = task->priority;
713
714 task_unlock(task);
715 }
716
717 int
718 fill_taskthreadinfo(task_t task, uint64_t thaddr, int thuniqueid, struct proc_threadinfo_internal * ptinfo, void * vpp, int *vidp)
719 {
720 thread_t thact;
721 int err=0;
722 mach_msg_type_number_t count;
723 thread_basic_info_data_t basic_info;
724 kern_return_t kret;
725 uint64_t addr = 0;
726
727 task_lock(task);
728
729 for (thact = (thread_t)(void *)queue_first(&task->threads);
730 !queue_end(&task->threads, (queue_entry_t)thact); ) {
731 addr = (thuniqueid==0)?thact->machine.cthread_self: thact->thread_id;
732 if (addr == thaddr)
733 {
734
735 count = THREAD_BASIC_INFO_COUNT;
736 if ((kret = thread_info_internal(thact, THREAD_BASIC_INFO, (thread_info_t)&basic_info, &count)) != KERN_SUCCESS) {
737 err = 1;
738 goto out;
739 }
740 ptinfo->pth_user_time = ((basic_info.user_time.seconds * (integer_t)NSEC_PER_SEC) + (basic_info.user_time.microseconds * (integer_t)NSEC_PER_USEC));
741 ptinfo->pth_system_time = ((basic_info.system_time.seconds * (integer_t)NSEC_PER_SEC) + (basic_info.system_time.microseconds * (integer_t)NSEC_PER_USEC));
742
743 ptinfo->pth_cpu_usage = basic_info.cpu_usage;
744 ptinfo->pth_policy = basic_info.policy;
745 ptinfo->pth_run_state = basic_info.run_state;
746 ptinfo->pth_flags = basic_info.flags;
747 ptinfo->pth_sleep_time = basic_info.sleep_time;
748 ptinfo->pth_curpri = thact->sched_pri;
749 ptinfo->pth_priority = thact->priority;
750 ptinfo->pth_maxpriority = thact->max_priority;
751
752 if ((vpp != NULL) && (thact->uthread != NULL))
753 bsd_threadcdir(thact->uthread, vpp, vidp);
754 bsd_getthreadname(thact->uthread,ptinfo->pth_name);
755 err = 0;
756 goto out;
757 }
758 thact = (thread_t)(void *)queue_next(&thact->task_threads);
759 }
760 err = 1;
761
762 out:
763 task_unlock(task);
764 return(err);
765 }
766
767 int
768 fill_taskthreadlist(task_t task, void * buffer, int thcount)
769 {
770 int numthr=0;
771 thread_t thact;
772 uint64_t * uptr;
773 uint64_t thaddr;
774
775 uptr = (uint64_t *)buffer;
776
777 task_lock(task);
778
779 for (thact = (thread_t)(void *)queue_first(&task->threads);
780 !queue_end(&task->threads, (queue_entry_t)thact); ) {
781 thaddr = thact->machine.cthread_self;
782 *uptr++ = thaddr;
783 numthr++;
784 if (numthr >= thcount)
785 goto out;
786 thact = (thread_t)(void *)queue_next(&thact->task_threads);
787 }
788
789 out:
790 task_unlock(task);
791 return (int)(numthr * sizeof(uint64_t));
792
793 }
794
795 int
796 get_numthreads(task_t task)
797 {
798 return(task->thread_count);
799 }
800
801 /*
802 * Gather the various pieces of info about the designated task,
803 * and collect it all into a single rusage_info.
804 */
805 int
806 fill_task_rusage(task_t task, rusage_info_current *ri)
807 {
808 struct task_power_info powerinfo;
809
810 assert(task != TASK_NULL);
811 task_lock(task);
812
813 task_power_info_locked(task, &powerinfo, NULL);
814 ri->ri_pkg_idle_wkups = powerinfo.task_platform_idle_wakeups;
815 ri->ri_interrupt_wkups = powerinfo.task_interrupt_wakeups;
816 ri->ri_user_time = powerinfo.total_user;
817 ri->ri_system_time = powerinfo.total_system;
818
819 ledger_get_balance(task->ledger, task_ledgers.phys_footprint,
820 (ledger_amount_t *)&ri->ri_phys_footprint);
821 ledger_get_balance(task->ledger, task_ledgers.phys_mem,
822 (ledger_amount_t *)&ri->ri_resident_size);
823 ledger_get_balance(task->ledger, task_ledgers.wired_mem,
824 (ledger_amount_t *)&ri->ri_wired_size);
825
826 ri->ri_pageins = task->pageins;
827
828 task_unlock(task);
829 return (0);
830 }
831
832 void
833 fill_task_billed_usage(task_t task __unused, rusage_info_current *ri)
834 {
835 #if CONFIG_BANK
836 ri->ri_billed_system_time = bank_billed_time(task->bank_context);
837 ri->ri_serviced_system_time = bank_serviced_time(task->bank_context);
838 #else
839 ri->ri_billed_system_time = 0;
840 ri->ri_serviced_system_time = 0;
841 #endif
842 }
843
844 int
845 fill_task_io_rusage(task_t task, rusage_info_current *ri)
846 {
847 assert(task != TASK_NULL);
848 task_lock(task);
849
850 if (task->task_io_stats) {
851 ri->ri_diskio_bytesread = task->task_io_stats->disk_reads.size;
852 ri->ri_diskio_byteswritten = (task->task_io_stats->total_io.size - task->task_io_stats->disk_reads.size);
853 } else {
854 /* I/O Stats unavailable */
855 ri->ri_diskio_bytesread = 0;
856 ri->ri_diskio_byteswritten = 0;
857 }
858 task_unlock(task);
859 return (0);
860 }
861
862 int
863 fill_task_qos_rusage(task_t task, rusage_info_current *ri)
864 {
865 thread_t thread;
866
867 assert(task != TASK_NULL);
868 task_lock(task);
869
870 /* Rollup Qos time of all the threads to task */
871 queue_iterate(&task->threads, thread, thread_t, task_threads) {
872 if (thread->options & TH_OPT_IDLE_THREAD)
873 continue;
874
875 thread_mtx_lock(thread);
876 thread_update_qos_cpu_time(thread, TRUE);
877 thread_mtx_unlock(thread);
878
879 }
880 ri->ri_cpu_time_qos_default = task->cpu_time_qos_stats.cpu_time_qos_default;
881 ri->ri_cpu_time_qos_maintenance = task->cpu_time_qos_stats.cpu_time_qos_maintenance;
882 ri->ri_cpu_time_qos_background = task->cpu_time_qos_stats.cpu_time_qos_background;
883 ri->ri_cpu_time_qos_utility = task->cpu_time_qos_stats.cpu_time_qos_utility;
884 ri->ri_cpu_time_qos_legacy = task->cpu_time_qos_stats.cpu_time_qos_legacy;
885 ri->ri_cpu_time_qos_user_initiated = task->cpu_time_qos_stats.cpu_time_qos_user_initiated;
886 ri->ri_cpu_time_qos_user_interactive = task->cpu_time_qos_stats.cpu_time_qos_user_interactive;
887
888 task_unlock(task);
889 return (0);
890 }