]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/machine_routines.c
xnu-2782.1.97.tar.gz
[apple/xnu.git] / osfmk / i386 / machine_routines.c
1 /*
2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <i386/machine_routines.h>
30 #include <i386/io_map_entries.h>
31 #include <i386/cpuid.h>
32 #include <i386/fpu.h>
33 #include <mach/processor.h>
34 #include <kern/processor.h>
35 #include <kern/machine.h>
36 #include <kern/cpu_data.h>
37 #include <kern/cpu_number.h>
38 #include <kern/thread.h>
39 #include <kern/thread_call.h>
40 #include <prng/random.h>
41 #include <i386/machine_cpu.h>
42 #include <i386/lapic.h>
43 #include <i386/bit_routines.h>
44 #include <i386/mp_events.h>
45 #include <i386/pmCPU.h>
46 #include <i386/trap.h>
47 #include <i386/tsc.h>
48 #include <i386/cpu_threads.h>
49 #include <i386/proc_reg.h>
50 #include <mach/vm_param.h>
51 #include <i386/pmap.h>
52 #include <i386/pmap_internal.h>
53 #include <i386/misc_protos.h>
54 #include <kern/timer_queue.h>
55 #if KPC
56 #include <kern/kpc.h>
57 #endif
58 #include <architecture/i386/pio.h>
59
60 #if DEBUG
61 #define DBG(x...) kprintf("DBG: " x)
62 #else
63 #define DBG(x...)
64 #endif
65
66 extern void wakeup(void *);
67
68 static int max_cpus_initialized = 0;
69
70 unsigned int LockTimeOut;
71 unsigned int TLBTimeOut;
72 unsigned int LockTimeOutTSC;
73 unsigned int MutexSpin;
74 uint64_t LastDebuggerEntryAllowance;
75 uint64_t delay_spin_threshold;
76
77 extern uint64_t panic_restart_timeout;
78
79 boolean_t virtualized = FALSE;
80
81 decl_simple_lock_data(static, ml_timer_evaluation_slock);
82 uint32_t ml_timer_eager_evaluations;
83 uint64_t ml_timer_eager_evaluation_max;
84 static boolean_t ml_timer_evaluation_in_progress = FALSE;
85
86
87 #define MAX_CPUS_SET 0x1
88 #define MAX_CPUS_WAIT 0x2
89
90 /* IO memory map services */
91
92 /* Map memory map IO space */
93 vm_offset_t ml_io_map(
94 vm_offset_t phys_addr,
95 vm_size_t size)
96 {
97 return(io_map(phys_addr,size,VM_WIMG_IO));
98 }
99
100 /* boot memory allocation */
101 vm_offset_t ml_static_malloc(
102 __unused vm_size_t size)
103 {
104 return((vm_offset_t)NULL);
105 }
106
107
108 void ml_get_bouncepool_info(vm_offset_t *phys_addr, vm_size_t *size)
109 {
110 *phys_addr = 0;
111 *size = 0;
112 }
113
114
115 vm_offset_t
116 ml_static_ptovirt(
117 vm_offset_t paddr)
118 {
119 #if defined(__x86_64__)
120 return (vm_offset_t)(((unsigned long) paddr) | VM_MIN_KERNEL_ADDRESS);
121 #else
122 return (vm_offset_t)((paddr) | LINEAR_KERNEL_ADDRESS);
123 #endif
124 }
125
126
127 /*
128 * Routine: ml_static_mfree
129 * Function:
130 */
131 void
132 ml_static_mfree(
133 vm_offset_t vaddr,
134 vm_size_t size)
135 {
136 addr64_t vaddr_cur;
137 ppnum_t ppn;
138 uint32_t freed_pages = 0;
139 assert(vaddr >= VM_MIN_KERNEL_ADDRESS);
140
141 assert((vaddr & (PAGE_SIZE-1)) == 0); /* must be page aligned */
142
143 for (vaddr_cur = vaddr;
144 vaddr_cur < round_page_64(vaddr+size);
145 vaddr_cur += PAGE_SIZE) {
146 ppn = pmap_find_phys(kernel_pmap, vaddr_cur);
147 if (ppn != (vm_offset_t)NULL) {
148 kernel_pmap->stats.resident_count++;
149 if (kernel_pmap->stats.resident_count >
150 kernel_pmap->stats.resident_max) {
151 kernel_pmap->stats.resident_max =
152 kernel_pmap->stats.resident_count;
153 }
154 pmap_remove(kernel_pmap, vaddr_cur, vaddr_cur+PAGE_SIZE);
155 assert(pmap_valid_page(ppn));
156
157 if (IS_MANAGED_PAGE(ppn)) {
158 vm_page_create(ppn,(ppn+1));
159 vm_page_wire_count--;
160 freed_pages++;
161 }
162 }
163 }
164 #if DEBUG
165 kprintf("ml_static_mfree: Released 0x%x pages at VA %p, size:0x%llx, last ppn: 0x%x\n", freed_pages, (void *)vaddr, (uint64_t)size, ppn);
166 #endif
167 }
168
169
170 /* virtual to physical on wired pages */
171 vm_offset_t ml_vtophys(
172 vm_offset_t vaddr)
173 {
174 return (vm_offset_t)kvtophys(vaddr);
175 }
176
177 /*
178 * Routine: ml_nofault_copy
179 * Function: Perform a physical mode copy if the source and
180 * destination have valid translations in the kernel pmap.
181 * If translations are present, they are assumed to
182 * be wired; i.e. no attempt is made to guarantee that the
183 * translations obtained remained valid for
184 * the duration of the copy process.
185 */
186
187 vm_size_t ml_nofault_copy(
188 vm_offset_t virtsrc, vm_offset_t virtdst, vm_size_t size)
189 {
190 addr64_t cur_phys_dst, cur_phys_src;
191 uint32_t count, nbytes = 0;
192
193 while (size > 0) {
194 if (!(cur_phys_src = kvtophys(virtsrc)))
195 break;
196 if (!(cur_phys_dst = kvtophys(virtdst)))
197 break;
198 if (!pmap_valid_page(i386_btop(cur_phys_dst)) || !pmap_valid_page(i386_btop(cur_phys_src)))
199 break;
200 count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK));
201 if (count > (PAGE_SIZE - (cur_phys_dst & PAGE_MASK)))
202 count = (uint32_t)(PAGE_SIZE - (cur_phys_dst & PAGE_MASK));
203 if (count > size)
204 count = (uint32_t)size;
205
206 bcopy_phys(cur_phys_src, cur_phys_dst, count);
207
208 nbytes += count;
209 virtsrc += count;
210 virtdst += count;
211 size -= count;
212 }
213
214 return nbytes;
215 }
216
217 /*
218 * Routine: ml_validate_nofault
219 * Function: Validate that ths address range has a valid translations
220 * in the kernel pmap. If translations are present, they are
221 * assumed to be wired; i.e. no attempt is made to guarantee
222 * that the translation persist after the check.
223 * Returns: TRUE if the range is mapped and will not cause a fault,
224 * FALSE otherwise.
225 */
226
227 boolean_t ml_validate_nofault(
228 vm_offset_t virtsrc, vm_size_t size)
229 {
230 addr64_t cur_phys_src;
231 uint32_t count;
232
233 while (size > 0) {
234 if (!(cur_phys_src = kvtophys(virtsrc)))
235 return FALSE;
236 if (!pmap_valid_page(i386_btop(cur_phys_src)))
237 return FALSE;
238 count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK));
239 if (count > size)
240 count = (uint32_t)size;
241
242 virtsrc += count;
243 size -= count;
244 }
245
246 return TRUE;
247 }
248
249 /* Interrupt handling */
250
251 /* Initialize Interrupts */
252 void ml_init_interrupt(void)
253 {
254 (void) ml_set_interrupts_enabled(TRUE);
255 }
256
257
258 /* Get Interrupts Enabled */
259 boolean_t ml_get_interrupts_enabled(void)
260 {
261 unsigned long flags;
262
263 __asm__ volatile("pushf; pop %0" : "=r" (flags));
264 return (flags & EFL_IF) != 0;
265 }
266
267 /* Set Interrupts Enabled */
268 boolean_t ml_set_interrupts_enabled(boolean_t enable)
269 {
270 unsigned long flags;
271 boolean_t istate;
272
273 __asm__ volatile("pushf; pop %0" : "=r" (flags));
274
275 assert(get_interrupt_level() ? (enable == FALSE) : TRUE);
276
277 istate = ((flags & EFL_IF) != 0);
278
279 if (enable) {
280 __asm__ volatile("sti;nop");
281
282 if ((get_preemption_level() == 0) && (*ast_pending() & AST_URGENT))
283 __asm__ volatile ("int %0" :: "N" (T_PREEMPT));
284 }
285 else {
286 if (istate)
287 __asm__ volatile("cli");
288 }
289
290 return istate;
291 }
292
293 /* Check if running at interrupt context */
294 boolean_t ml_at_interrupt_context(void)
295 {
296 return get_interrupt_level() != 0;
297 }
298
299 void ml_get_power_state(boolean_t *icp, boolean_t *pidlep) {
300 *icp = (get_interrupt_level() != 0);
301 /* These will be technically inaccurate for interrupts that occur
302 * successively within a single "idle exit" event, but shouldn't
303 * matter statistically.
304 */
305 *pidlep = (current_cpu_datap()->lcpu.package->num_idle == topoParms.nLThreadsPerPackage);
306 }
307
308 /* Generate a fake interrupt */
309 void ml_cause_interrupt(void)
310 {
311 panic("ml_cause_interrupt not defined yet on Intel");
312 }
313
314 /*
315 * TODO: transition users of this to kernel_thread_start_priority
316 * ml_thread_policy is an unsupported KPI
317 */
318 void ml_thread_policy(
319 thread_t thread,
320 __unused unsigned policy_id,
321 unsigned policy_info)
322 {
323 if (policy_info & MACHINE_NETWORK_WORKLOOP) {
324 thread_precedence_policy_data_t info;
325 __assert_only kern_return_t kret;
326
327 info.importance = 1;
328
329 kret = thread_policy_set_internal(thread, THREAD_PRECEDENCE_POLICY,
330 (thread_policy_t)&info,
331 THREAD_PRECEDENCE_POLICY_COUNT);
332 assert(kret == KERN_SUCCESS);
333 }
334 }
335
336 /* Initialize Interrupts */
337 void ml_install_interrupt_handler(
338 void *nub,
339 int source,
340 void *target,
341 IOInterruptHandler handler,
342 void *refCon)
343 {
344 boolean_t current_state;
345
346 current_state = ml_get_interrupts_enabled();
347
348 PE_install_interrupt_handler(nub, source, target,
349 (IOInterruptHandler) handler, refCon);
350
351 (void) ml_set_interrupts_enabled(current_state);
352
353 initialize_screen(NULL, kPEAcquireScreen);
354 }
355
356
357 void
358 machine_signal_idle(
359 processor_t processor)
360 {
361 cpu_interrupt(processor->cpu_id);
362 }
363
364 static kern_return_t
365 register_cpu(
366 uint32_t lapic_id,
367 processor_t *processor_out,
368 boolean_t boot_cpu )
369 {
370 int target_cpu;
371 cpu_data_t *this_cpu_datap;
372
373 this_cpu_datap = cpu_data_alloc(boot_cpu);
374 if (this_cpu_datap == NULL) {
375 return KERN_FAILURE;
376 }
377 target_cpu = this_cpu_datap->cpu_number;
378 assert((boot_cpu && (target_cpu == 0)) ||
379 (!boot_cpu && (target_cpu != 0)));
380
381 lapic_cpu_map(lapic_id, target_cpu);
382
383 /* The cpu_id is not known at registration phase. Just do
384 * lapic_id for now
385 */
386 this_cpu_datap->cpu_phys_number = lapic_id;
387
388 this_cpu_datap->cpu_console_buf = console_cpu_alloc(boot_cpu);
389 if (this_cpu_datap->cpu_console_buf == NULL)
390 goto failed;
391
392 this_cpu_datap->cpu_chud = chudxnu_cpu_alloc(boot_cpu);
393 if (this_cpu_datap->cpu_chud == NULL)
394 goto failed;
395
396 #if KPC
397 this_cpu_datap->cpu_kpc_buf[0] = kpc_counterbuf_alloc();
398 if(this_cpu_datap->cpu_kpc_buf[0] == NULL )
399 goto failed;
400 this_cpu_datap->cpu_kpc_buf[1] = kpc_counterbuf_alloc();
401 if(this_cpu_datap->cpu_kpc_buf[1] == NULL )
402 goto failed;
403
404 this_cpu_datap->cpu_kpc_shadow = kpc_counterbuf_alloc();
405 if(this_cpu_datap->cpu_kpc_shadow == NULL )
406 goto failed;
407
408 this_cpu_datap->cpu_kpc_reload = kpc_counterbuf_alloc();
409 if(this_cpu_datap->cpu_kpc_reload == NULL )
410 goto failed;
411 #endif
412
413 if (!boot_cpu) {
414 cpu_thread_alloc(this_cpu_datap->cpu_number);
415 if (this_cpu_datap->lcpu.core == NULL)
416 goto failed;
417
418 #if NCOPY_WINDOWS > 0
419 this_cpu_datap->cpu_pmap = pmap_cpu_alloc(boot_cpu);
420 if (this_cpu_datap->cpu_pmap == NULL)
421 goto failed;
422 #endif
423
424 this_cpu_datap->cpu_processor = cpu_processor_alloc(boot_cpu);
425 if (this_cpu_datap->cpu_processor == NULL)
426 goto failed;
427 /*
428 * processor_init() deferred to topology start
429 * because "slot numbers" a.k.a. logical processor numbers
430 * are not yet finalized.
431 */
432 }
433
434 *processor_out = this_cpu_datap->cpu_processor;
435
436 return KERN_SUCCESS;
437
438 failed:
439 cpu_processor_free(this_cpu_datap->cpu_processor);
440 #if NCOPY_WINDOWS > 0
441 pmap_cpu_free(this_cpu_datap->cpu_pmap);
442 #endif
443 chudxnu_cpu_free(this_cpu_datap->cpu_chud);
444 console_cpu_free(this_cpu_datap->cpu_console_buf);
445 #if KPC
446 kpc_counterbuf_free(this_cpu_datap->cpu_kpc_buf[0]);
447 kpc_counterbuf_free(this_cpu_datap->cpu_kpc_buf[1]);
448 kpc_counterbuf_free(this_cpu_datap->cpu_kpc_shadow);
449 kpc_counterbuf_free(this_cpu_datap->cpu_kpc_reload);
450 #endif
451
452 return KERN_FAILURE;
453 }
454
455
456 kern_return_t
457 ml_processor_register(
458 cpu_id_t cpu_id,
459 uint32_t lapic_id,
460 processor_t *processor_out,
461 boolean_t boot_cpu,
462 boolean_t start )
463 {
464 static boolean_t done_topo_sort = FALSE;
465 static uint32_t num_registered = 0;
466
467 /* Register all CPUs first, and track max */
468 if( start == FALSE )
469 {
470 num_registered++;
471
472 DBG( "registering CPU lapic id %d\n", lapic_id );
473
474 return register_cpu( lapic_id, processor_out, boot_cpu );
475 }
476
477 /* Sort by topology before we start anything */
478 if( !done_topo_sort )
479 {
480 DBG( "about to start CPUs. %d registered\n", num_registered );
481
482 cpu_topology_sort( num_registered );
483 done_topo_sort = TRUE;
484 }
485
486 /* Assign the cpu ID */
487 uint32_t cpunum = -1;
488 cpu_data_t *this_cpu_datap = NULL;
489
490 /* find cpu num and pointer */
491 cpunum = ml_get_cpuid( lapic_id );
492
493 if( cpunum == 0xFFFFFFFF ) /* never heard of it? */
494 panic( "trying to start invalid/unregistered CPU %d\n", lapic_id );
495
496 this_cpu_datap = cpu_datap(cpunum);
497
498 /* fix the CPU id */
499 this_cpu_datap->cpu_id = cpu_id;
500
501 /* allocate and initialize other per-cpu structures */
502 if (!boot_cpu) {
503 mp_cpus_call_cpu_init(cpunum);
504 prng_cpu_init(cpunum);
505 }
506
507 /* output arg */
508 *processor_out = this_cpu_datap->cpu_processor;
509
510 /* OK, try and start this CPU */
511 return cpu_topology_start_cpu( cpunum );
512 }
513
514
515 void
516 ml_cpu_get_info(ml_cpu_info_t *cpu_infop)
517 {
518 boolean_t os_supports_sse;
519 i386_cpu_info_t *cpuid_infop;
520
521 if (cpu_infop == NULL)
522 return;
523
524 /*
525 * Are we supporting MMX/SSE/SSE2/SSE3?
526 * As distinct from whether the cpu has these capabilities.
527 */
528 os_supports_sse = !!(get_cr4() & CR4_OSXMM);
529
530 if (ml_fpu_avx_enabled())
531 cpu_infop->vector_unit = 9;
532 else if ((cpuid_features() & CPUID_FEATURE_SSE4_2) && os_supports_sse)
533 cpu_infop->vector_unit = 8;
534 else if ((cpuid_features() & CPUID_FEATURE_SSE4_1) && os_supports_sse)
535 cpu_infop->vector_unit = 7;
536 else if ((cpuid_features() & CPUID_FEATURE_SSSE3) && os_supports_sse)
537 cpu_infop->vector_unit = 6;
538 else if ((cpuid_features() & CPUID_FEATURE_SSE3) && os_supports_sse)
539 cpu_infop->vector_unit = 5;
540 else if ((cpuid_features() & CPUID_FEATURE_SSE2) && os_supports_sse)
541 cpu_infop->vector_unit = 4;
542 else if ((cpuid_features() & CPUID_FEATURE_SSE) && os_supports_sse)
543 cpu_infop->vector_unit = 3;
544 else if (cpuid_features() & CPUID_FEATURE_MMX)
545 cpu_infop->vector_unit = 2;
546 else
547 cpu_infop->vector_unit = 0;
548
549 cpuid_infop = cpuid_info();
550
551 cpu_infop->cache_line_size = cpuid_infop->cache_linesize;
552
553 cpu_infop->l1_icache_size = cpuid_infop->cache_size[L1I];
554 cpu_infop->l1_dcache_size = cpuid_infop->cache_size[L1D];
555
556 if (cpuid_infop->cache_size[L2U] > 0) {
557 cpu_infop->l2_settings = 1;
558 cpu_infop->l2_cache_size = cpuid_infop->cache_size[L2U];
559 } else {
560 cpu_infop->l2_settings = 0;
561 cpu_infop->l2_cache_size = 0xFFFFFFFF;
562 }
563
564 if (cpuid_infop->cache_size[L3U] > 0) {
565 cpu_infop->l3_settings = 1;
566 cpu_infop->l3_cache_size = cpuid_infop->cache_size[L3U];
567 } else {
568 cpu_infop->l3_settings = 0;
569 cpu_infop->l3_cache_size = 0xFFFFFFFF;
570 }
571 }
572
573 void
574 ml_init_max_cpus(unsigned long max_cpus)
575 {
576 boolean_t current_state;
577
578 current_state = ml_set_interrupts_enabled(FALSE);
579 if (max_cpus_initialized != MAX_CPUS_SET) {
580 if (max_cpus > 0 && max_cpus <= MAX_CPUS) {
581 /*
582 * Note: max_cpus is the number of enabled processors
583 * that ACPI found; max_ncpus is the maximum number
584 * that the kernel supports or that the "cpus="
585 * boot-arg has set. Here we take int minimum.
586 */
587 machine_info.max_cpus = (integer_t)MIN(max_cpus, max_ncpus);
588 }
589 if (max_cpus_initialized == MAX_CPUS_WAIT)
590 wakeup((event_t)&max_cpus_initialized);
591 max_cpus_initialized = MAX_CPUS_SET;
592 }
593 (void) ml_set_interrupts_enabled(current_state);
594 }
595
596 int
597 ml_get_max_cpus(void)
598 {
599 boolean_t current_state;
600
601 current_state = ml_set_interrupts_enabled(FALSE);
602 if (max_cpus_initialized != MAX_CPUS_SET) {
603 max_cpus_initialized = MAX_CPUS_WAIT;
604 assert_wait((event_t)&max_cpus_initialized, THREAD_UNINT);
605 (void)thread_block(THREAD_CONTINUE_NULL);
606 }
607 (void) ml_set_interrupts_enabled(current_state);
608 return(machine_info.max_cpus);
609 }
610
611 /*
612 * Routine: ml_init_lock_timeout
613 * Function:
614 */
615 void
616 ml_init_lock_timeout(void)
617 {
618 uint64_t abstime;
619 uint32_t mtxspin;
620 #if DEVELOPMENT || DEBUG
621 uint64_t default_timeout_ns = NSEC_PER_SEC>>2;
622 #else
623 uint64_t default_timeout_ns = NSEC_PER_SEC>>1;
624 #endif
625 uint32_t slto;
626 uint32_t prt;
627
628 if (PE_parse_boot_argn("slto_us", &slto, sizeof (slto)))
629 default_timeout_ns = slto * NSEC_PER_USEC;
630
631 /* LockTimeOut is absolutetime, LockTimeOutTSC is in TSC ticks */
632 nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
633 LockTimeOut = (uint32_t) abstime;
634 LockTimeOutTSC = (uint32_t) tmrCvt(abstime, tscFCvtn2t);
635
636 /*
637 * TLBTimeOut dictates the TLB flush timeout period. It defaults to
638 * LockTimeOut but can be overriden separately. In particular, a
639 * zero value inhibits the timeout-panic and cuts a trace evnt instead
640 * - see pmap_flush_tlbs().
641 */
642 if (PE_parse_boot_argn("tlbto_us", &slto, sizeof (slto))) {
643 default_timeout_ns = slto * NSEC_PER_USEC;
644 nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
645 TLBTimeOut = (uint32_t) abstime;
646 } else {
647 TLBTimeOut = LockTimeOut;
648 }
649
650 if (PE_parse_boot_argn("mtxspin", &mtxspin, sizeof (mtxspin))) {
651 if (mtxspin > USEC_PER_SEC>>4)
652 mtxspin = USEC_PER_SEC>>4;
653 nanoseconds_to_absolutetime(mtxspin*NSEC_PER_USEC, &abstime);
654 } else {
655 nanoseconds_to_absolutetime(10*NSEC_PER_USEC, &abstime);
656 }
657 MutexSpin = (unsigned int)abstime;
658
659 nanoseconds_to_absolutetime(4ULL * NSEC_PER_SEC, &LastDebuggerEntryAllowance);
660 if (PE_parse_boot_argn("panic_restart_timeout", &prt, sizeof (prt)))
661 nanoseconds_to_absolutetime(prt * NSEC_PER_SEC, &panic_restart_timeout);
662 virtualized = ((cpuid_features() & CPUID_FEATURE_VMM) != 0);
663 interrupt_latency_tracker_setup();
664 simple_lock_init(&ml_timer_evaluation_slock, 0);
665 }
666
667 /*
668 * Threshold above which we should attempt to block
669 * instead of spinning for clock_delay_until().
670 */
671
672 void
673 ml_init_delay_spin_threshold(int threshold_us)
674 {
675 nanoseconds_to_absolutetime(threshold_us * NSEC_PER_USEC, &delay_spin_threshold);
676 }
677
678 boolean_t
679 ml_delay_should_spin(uint64_t interval)
680 {
681 return (interval < delay_spin_threshold) ? TRUE : FALSE;
682 }
683
684 /*
685 * This is called from the machine-independent layer
686 * to perform machine-dependent info updates. Defer to cpu_thread_init().
687 */
688 void
689 ml_cpu_up(void)
690 {
691 return;
692 }
693
694 /*
695 * This is called from the machine-independent layer
696 * to perform machine-dependent info updates.
697 */
698 void
699 ml_cpu_down(void)
700 {
701 i386_deactivate_cpu();
702
703 return;
704 }
705
706 /*
707 * The following are required for parts of the kernel
708 * that cannot resolve these functions as inlines:
709 */
710 extern thread_t current_act(void);
711 thread_t
712 current_act(void)
713 {
714 return(current_thread_fast());
715 }
716
717 #undef current_thread
718 extern thread_t current_thread(void);
719 thread_t
720 current_thread(void)
721 {
722 return(current_thread_fast());
723 }
724
725
726 boolean_t ml_is64bit(void) {
727
728 return (cpu_mode_is64bit());
729 }
730
731
732 boolean_t ml_thread_is64bit(thread_t thread) {
733
734 return (thread_is_64bit(thread));
735 }
736
737
738 boolean_t ml_state_is64bit(void *saved_state) {
739
740 return is_saved_state64(saved_state);
741 }
742
743 void ml_cpu_set_ldt(int selector)
744 {
745 /*
746 * Avoid loading the LDT
747 * if we're setting the KERNEL LDT and it's already set.
748 */
749 if (selector == KERNEL_LDT &&
750 current_cpu_datap()->cpu_ldt == KERNEL_LDT)
751 return;
752
753 lldt(selector);
754 current_cpu_datap()->cpu_ldt = selector;
755 }
756
757 void ml_fp_setvalid(boolean_t value)
758 {
759 fp_setvalid(value);
760 }
761
762 uint64_t ml_cpu_int_event_time(void)
763 {
764 return current_cpu_datap()->cpu_int_event_time;
765 }
766
767 vm_offset_t ml_stack_remaining(void)
768 {
769 uintptr_t local = (uintptr_t) &local;
770
771 if (ml_at_interrupt_context() != 0) {
772 return (local - (current_cpu_datap()->cpu_int_stack_top - INTSTACK_SIZE));
773 } else {
774 return (local - current_thread()->kernel_stack);
775 }
776 }
777
778 void
779 kernel_preempt_check(void)
780 {
781 boolean_t intr;
782 unsigned long flags;
783
784 assert(get_preemption_level() == 0);
785
786 __asm__ volatile("pushf; pop %0" : "=r" (flags));
787
788 intr = ((flags & EFL_IF) != 0);
789
790 if ((*ast_pending() & AST_URGENT) && intr == TRUE) {
791 /*
792 * can handle interrupts and preemptions
793 * at this point
794 */
795
796 /*
797 * now cause the PRE-EMPTION trap
798 */
799 __asm__ volatile ("int %0" :: "N" (T_PREEMPT));
800 }
801 }
802
803 boolean_t machine_timeout_suspended(void) {
804 return (virtualized || pmap_tlb_flush_timeout || spinlock_timed_out || panic_active() || mp_recent_debugger_activity() || ml_recent_wake());
805 }
806
807 /* Eagerly evaluate all pending timer and thread callouts
808 */
809 void ml_timer_evaluate(void) {
810 KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN|DBG_FUNC_START, 0, 0, 0, 0, 0);
811
812 uint64_t te_end, te_start = mach_absolute_time();
813 simple_lock(&ml_timer_evaluation_slock);
814 ml_timer_evaluation_in_progress = TRUE;
815 thread_call_delayed_timer_rescan_all();
816 mp_cpus_call(CPUMASK_ALL, ASYNC, timer_queue_expire_rescan, NULL);
817 ml_timer_evaluation_in_progress = FALSE;
818 ml_timer_eager_evaluations++;
819 te_end = mach_absolute_time();
820 ml_timer_eager_evaluation_max = MAX(ml_timer_eager_evaluation_max, (te_end - te_start));
821 simple_unlock(&ml_timer_evaluation_slock);
822
823 KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN|DBG_FUNC_END, 0, 0, 0, 0, 0);
824 }
825
826 boolean_t
827 ml_timer_forced_evaluation(void) {
828 return ml_timer_evaluation_in_progress;
829 }
830
831 /* 32-bit right-rotate n bits */
832 static inline uint32_t ror32(uint32_t val, const unsigned int n)
833 {
834 __asm__ volatile("rorl %%cl,%0" : "=r" (val) : "0" (val), "c" (n));
835 return val;
836 }
837
838 void
839 ml_entropy_collect(void)
840 {
841 uint32_t tsc_lo, tsc_hi;
842 uint32_t *ep;
843
844 assert(cpu_number() == master_cpu);
845
846 /* update buffer pointer cyclically */
847 if (EntropyData.index_ptr - EntropyData.buffer == ENTROPY_BUFFER_SIZE)
848 ep = EntropyData.index_ptr = EntropyData.buffer;
849 else
850 ep = EntropyData.index_ptr++;
851
852 rdtsc_nofence(tsc_lo, tsc_hi);
853 *ep = ror32(*ep, 9) ^ tsc_lo;
854 }
855
856 void
857 ml_gpu_stat_update(uint64_t gpu_ns_delta) {
858 current_thread()->machine.thread_gpu_ns += gpu_ns_delta;
859 }
860
861 uint64_t
862 ml_gpu_stat(thread_t t) {
863 return t->machine.thread_gpu_ns;
864 }