]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/udp_usrreq.c
xnu-2782.1.97.tar.gz
[apple/xnu.git] / bsd / netinet / udp_usrreq.c
1 /*
2 * Copyright (c) 2000-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95
61 * $FreeBSD: src/sys/netinet/udp_usrreq.c,v 1.64.2.13 2001/08/08 18:59:54 ghelmer Exp $
62 */
63
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/kernel.h>
67 #include <sys/malloc.h>
68 #include <sys/mbuf.h>
69 #include <sys/domain.h>
70 #include <sys/protosw.h>
71 #include <sys/socket.h>
72 #include <sys/socketvar.h>
73 #include <sys/sysctl.h>
74 #include <sys/syslog.h>
75 #include <sys/mcache.h>
76 #include <net/ntstat.h>
77
78 #include <kern/zalloc.h>
79 #include <mach/boolean.h>
80
81 #include <net/if.h>
82 #include <net/if_types.h>
83 #include <net/route.h>
84 #include <net/dlil.h>
85
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/ip.h>
89 #if INET6
90 #include <netinet/ip6.h>
91 #endif /* INET6 */
92 #include <netinet/in_pcb.h>
93 #include <netinet/in_var.h>
94 #include <netinet/ip_var.h>
95 #if INET6
96 #include <netinet6/in6_pcb.h>
97 #include <netinet6/ip6_var.h>
98 #include <netinet6/udp6_var.h>
99 #endif /* INET6 */
100 #include <netinet/ip_icmp.h>
101 #include <netinet/icmp_var.h>
102 #include <netinet/udp.h>
103 #include <netinet/udp_var.h>
104 #include <sys/kdebug.h>
105
106 #if IPSEC
107 #include <netinet6/ipsec.h>
108 #include <netinet6/esp.h>
109 extern int ipsec_bypass;
110 extern int esp_udp_encap_port;
111 #endif /* IPSEC */
112
113 #if NECP
114 #include <net/necp.h>
115 #endif /* NECP */
116
117 #define DBG_LAYER_IN_BEG NETDBG_CODE(DBG_NETUDP, 0)
118 #define DBG_LAYER_IN_END NETDBG_CODE(DBG_NETUDP, 2)
119 #define DBG_LAYER_OUT_BEG NETDBG_CODE(DBG_NETUDP, 1)
120 #define DBG_LAYER_OUT_END NETDBG_CODE(DBG_NETUDP, 3)
121 #define DBG_FNC_UDP_INPUT NETDBG_CODE(DBG_NETUDP, (5 << 8))
122 #define DBG_FNC_UDP_OUTPUT NETDBG_CODE(DBG_NETUDP, (6 << 8) | 1)
123
124 /*
125 * UDP protocol implementation.
126 * Per RFC 768, August, 1980.
127 */
128 #ifndef COMPAT_42
129 static int udpcksum = 1;
130 #else
131 static int udpcksum = 0; /* XXX */
132 #endif
133 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum,
134 CTLFLAG_RW | CTLFLAG_LOCKED, &udpcksum, 0, "");
135
136 int udp_log_in_vain = 0;
137 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW | CTLFLAG_LOCKED,
138 &udp_log_in_vain, 0, "Log all incoming UDP packets");
139
140 static int blackhole = 0;
141 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW | CTLFLAG_LOCKED,
142 &blackhole, 0, "Do not send port unreachables for refused connects");
143
144 struct inpcbhead udb; /* from udp_var.h */
145 #define udb6 udb /* for KAME src sync over BSD*'s */
146 struct inpcbinfo udbinfo;
147
148 #ifndef UDBHASHSIZE
149 #define UDBHASHSIZE 16
150 #endif
151
152 /* Garbage collection performed during most recent udp_gc() run */
153 static boolean_t udp_gc_done = FALSE;
154
155 #if IPFIREWALL
156 extern int fw_verbose;
157 extern void ipfwsyslog( int level, const char *format,...);
158 extern void ipfw_stealth_stats_incr_udp(void);
159
160 /* Apple logging, log to ipfw.log */
161 #define log_in_vain_log(a) { \
162 if ((udp_log_in_vain == 3) && (fw_verbose == 2)) { \
163 ipfwsyslog a; \
164 } else if ((udp_log_in_vain == 4) && (fw_verbose == 2)) { \
165 ipfw_stealth_stats_incr_udp(); \
166 } else { \
167 log a; \
168 } \
169 }
170 #else /* !IPFIREWALL */
171 #define log_in_vain_log( a ) { log a; }
172 #endif /* !IPFIREWALL */
173
174 static int udp_getstat SYSCTL_HANDLER_ARGS;
175 struct udpstat udpstat; /* from udp_var.h */
176 SYSCTL_PROC(_net_inet_udp, UDPCTL_STATS, stats,
177 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
178 0, 0, udp_getstat, "S,udpstat",
179 "UDP statistics (struct udpstat, netinet/udp_var.h)");
180
181 SYSCTL_INT(_net_inet_udp, OID_AUTO, pcbcount,
182 CTLFLAG_RD | CTLFLAG_LOCKED, &udbinfo.ipi_count, 0,
183 "Number of active PCBs");
184
185 __private_extern__ int udp_use_randomport = 1;
186 SYSCTL_INT(_net_inet_udp, OID_AUTO, randomize_ports,
187 CTLFLAG_RW | CTLFLAG_LOCKED, &udp_use_randomport, 0,
188 "Randomize UDP port numbers");
189
190 #if INET6
191 struct udp_in6 {
192 struct sockaddr_in6 uin6_sin;
193 u_char uin6_init_done : 1;
194 };
195 struct udp_ip6 {
196 struct ip6_hdr uip6_ip6;
197 u_char uip6_init_done : 1;
198 };
199
200 static int udp_abort(struct socket *);
201 static int udp_attach(struct socket *, int, struct proc *);
202 static int udp_bind(struct socket *, struct sockaddr *, struct proc *);
203 static int udp_connect(struct socket *, struct sockaddr *, struct proc *);
204 static int udp_connectx(struct socket *, struct sockaddr_list **,
205 struct sockaddr_list **, struct proc *, uint32_t, associd_t, connid_t *,
206 uint32_t, void *, uint32_t);
207 static int udp_detach(struct socket *);
208 static int udp_disconnect(struct socket *);
209 static int udp_disconnectx(struct socket *, associd_t, connid_t);
210 static int udp_send(struct socket *, int, struct mbuf *, struct sockaddr *,
211 struct mbuf *, struct proc *);
212 static void udp_append(struct inpcb *, struct ip *, struct mbuf *, int,
213 struct sockaddr_in *, struct udp_in6 *, struct udp_ip6 *, struct ifnet *);
214 #else /* !INET6 */
215 static void udp_append(struct inpcb *, struct ip *, struct mbuf *, int,
216 struct sockaddr_in *, struct ifnet *);
217 #endif /* !INET6 */
218 static int udp_input_checksum(struct mbuf *, struct udphdr *, int, int);
219 static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
220 struct mbuf *, struct proc *);
221 static void ip_2_ip6_hdr(struct ip6_hdr *ip6, struct ip *ip);
222 static void udp_gc(struct inpcbinfo *);
223
224 struct pr_usrreqs udp_usrreqs = {
225 .pru_abort = udp_abort,
226 .pru_attach = udp_attach,
227 .pru_bind = udp_bind,
228 .pru_connect = udp_connect,
229 .pru_connectx = udp_connectx,
230 .pru_control = in_control,
231 .pru_detach = udp_detach,
232 .pru_disconnect = udp_disconnect,
233 .pru_disconnectx = udp_disconnectx,
234 .pru_peeraddr = in_getpeeraddr,
235 .pru_send = udp_send,
236 .pru_shutdown = udp_shutdown,
237 .pru_sockaddr = in_getsockaddr,
238 .pru_sosend = sosend,
239 .pru_soreceive = soreceive,
240 };
241
242 void
243 udp_init(struct protosw *pp, struct domain *dp)
244 {
245 #pragma unused(dp)
246 static int udp_initialized = 0;
247 vm_size_t str_size;
248 struct inpcbinfo *pcbinfo;
249
250 VERIFY((pp->pr_flags & (PR_INITIALIZED|PR_ATTACHED)) == PR_ATTACHED);
251
252 if (udp_initialized)
253 return;
254 udp_initialized = 1;
255
256 LIST_INIT(&udb);
257 udbinfo.ipi_listhead = &udb;
258 udbinfo.ipi_hashbase = hashinit(UDBHASHSIZE, M_PCB,
259 &udbinfo.ipi_hashmask);
260 udbinfo.ipi_porthashbase = hashinit(UDBHASHSIZE, M_PCB,
261 &udbinfo.ipi_porthashmask);
262 str_size = (vm_size_t) sizeof (struct inpcb);
263 udbinfo.ipi_zone = zinit(str_size, 80000*str_size, 8192, "udpcb");
264
265 pcbinfo = &udbinfo;
266 /*
267 * allocate lock group attribute and group for udp pcb mutexes
268 */
269 pcbinfo->ipi_lock_grp_attr = lck_grp_attr_alloc_init();
270 pcbinfo->ipi_lock_grp = lck_grp_alloc_init("udppcb",
271 pcbinfo->ipi_lock_grp_attr);
272 pcbinfo->ipi_lock_attr = lck_attr_alloc_init();
273 if ((pcbinfo->ipi_lock = lck_rw_alloc_init(pcbinfo->ipi_lock_grp,
274 pcbinfo->ipi_lock_attr)) == NULL) {
275 panic("%s: unable to allocate PCB lock\n", __func__);
276 /* NOTREACHED */
277 }
278
279 udbinfo.ipi_gc = udp_gc;
280 in_pcbinfo_attach(&udbinfo);
281 }
282
283 void
284 udp_input(struct mbuf *m, int iphlen)
285 {
286 struct ip *ip;
287 struct udphdr *uh;
288 struct inpcb *inp;
289 struct mbuf *opts = NULL;
290 int len, isbroadcast;
291 struct ip save_ip;
292 struct sockaddr *append_sa;
293 struct inpcbinfo *pcbinfo = &udbinfo;
294 struct sockaddr_in udp_in;
295 struct ip_moptions *imo = NULL;
296 int foundmembership = 0, ret = 0;
297 #if INET6
298 struct udp_in6 udp_in6;
299 struct udp_ip6 udp_ip6;
300 #endif /* INET6 */
301 struct ifnet *ifp = m->m_pkthdr.rcvif;
302 boolean_t cell = IFNET_IS_CELLULAR(ifp);
303 boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp));
304 boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp));
305
306 bzero(&udp_in, sizeof (udp_in));
307 udp_in.sin_len = sizeof (struct sockaddr_in);
308 udp_in.sin_family = AF_INET;
309 #if INET6
310 bzero(&udp_in6, sizeof (udp_in6));
311 udp_in6.uin6_sin.sin6_len = sizeof (struct sockaddr_in6);
312 udp_in6.uin6_sin.sin6_family = AF_INET6;
313 #endif /* INET6 */
314
315 udpstat.udps_ipackets++;
316
317 KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_START, 0,0,0,0,0);
318
319 /* Expect 32-bit aligned data pointer on strict-align platforms */
320 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
321
322 /*
323 * Strip IP options, if any; should skip this,
324 * make available to user, and use on returned packets,
325 * but we don't yet have a way to check the checksum
326 * with options still present.
327 */
328 if (iphlen > sizeof (struct ip)) {
329 ip_stripoptions(m, (struct mbuf *)0);
330 iphlen = sizeof (struct ip);
331 }
332
333 /*
334 * Get IP and UDP header together in first mbuf.
335 */
336 ip = mtod(m, struct ip *);
337 if (m->m_len < iphlen + sizeof (struct udphdr)) {
338 m = m_pullup(m, iphlen + sizeof (struct udphdr));
339 if (m == NULL) {
340 udpstat.udps_hdrops++;
341 KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END,
342 0,0,0,0,0);
343 return;
344 }
345 ip = mtod(m, struct ip *);
346 }
347 uh = (struct udphdr *)(void *)((caddr_t)ip + iphlen);
348
349 /* destination port of 0 is illegal, based on RFC768. */
350 if (uh->uh_dport == 0) {
351 IF_UDP_STATINC(ifp, port0);
352 goto bad;
353 }
354
355 KERNEL_DEBUG(DBG_LAYER_IN_BEG, uh->uh_dport, uh->uh_sport,
356 ip->ip_src.s_addr, ip->ip_dst.s_addr, uh->uh_ulen);
357
358 /*
359 * Make mbuf data length reflect UDP length.
360 * If not enough data to reflect UDP length, drop.
361 */
362 len = ntohs((u_short)uh->uh_ulen);
363 if (ip->ip_len != len) {
364 if (len > ip->ip_len || len < sizeof (struct udphdr)) {
365 udpstat.udps_badlen++;
366 IF_UDP_STATINC(ifp, badlength);
367 goto bad;
368 }
369 m_adj(m, len - ip->ip_len);
370 /* ip->ip_len = len; */
371 }
372 /*
373 * Save a copy of the IP header in case we want restore it
374 * for sending an ICMP error message in response.
375 */
376 save_ip = *ip;
377
378 /*
379 * Checksum extended UDP header and data.
380 */
381 if (udp_input_checksum(m, uh, iphlen, len))
382 goto bad;
383
384 isbroadcast = in_broadcast(ip->ip_dst, ifp);
385
386 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || isbroadcast) {
387 int reuse_sock = 0, mcast_delivered = 0;
388
389 lck_rw_lock_shared(pcbinfo->ipi_lock);
390 /*
391 * Deliver a multicast or broadcast datagram to *all* sockets
392 * for which the local and remote addresses and ports match
393 * those of the incoming datagram. This allows more than
394 * one process to receive multi/broadcasts on the same port.
395 * (This really ought to be done for unicast datagrams as
396 * well, but that would cause problems with existing
397 * applications that open both address-specific sockets and
398 * a wildcard socket listening to the same port -- they would
399 * end up receiving duplicates of every unicast datagram.
400 * Those applications open the multiple sockets to overcome an
401 * inadequacy of the UDP socket interface, but for backwards
402 * compatibility we avoid the problem here rather than
403 * fixing the interface. Maybe 4.5BSD will remedy this?)
404 */
405
406 /*
407 * Construct sockaddr format source address.
408 */
409 udp_in.sin_port = uh->uh_sport;
410 udp_in.sin_addr = ip->ip_src;
411 /*
412 * Locate pcb(s) for datagram.
413 * (Algorithm copied from raw_intr().)
414 */
415 #if INET6
416 udp_in6.uin6_init_done = udp_ip6.uip6_init_done = 0;
417 #endif /* INET6 */
418 LIST_FOREACH(inp, &udb, inp_list) {
419 #if IPSEC
420 int skipit;
421 #endif /* IPSEC */
422
423 if (inp->inp_socket == NULL)
424 continue;
425 if (inp != sotoinpcb(inp->inp_socket)) {
426 panic("%s: bad so back ptr inp=%p\n",
427 __func__, inp);
428 /* NOTREACHED */
429 }
430 #if INET6
431 if ((inp->inp_vflag & INP_IPV4) == 0)
432 continue;
433 #endif /* INET6 */
434 if (inp_restricted_recv(inp, ifp))
435 continue;
436
437 if ((inp->inp_moptions == NULL) &&
438 (ntohl(ip->ip_dst.s_addr) !=
439 INADDR_ALLHOSTS_GROUP) && (isbroadcast == 0))
440 continue;
441
442 if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) ==
443 WNT_STOPUSING)
444 continue;
445
446 udp_lock(inp->inp_socket, 1, 0);
447
448 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) ==
449 WNT_STOPUSING) {
450 udp_unlock(inp->inp_socket, 1, 0);
451 continue;
452 }
453
454 if (inp->inp_lport != uh->uh_dport) {
455 udp_unlock(inp->inp_socket, 1, 0);
456 continue;
457 }
458 if (inp->inp_laddr.s_addr != INADDR_ANY) {
459 if (inp->inp_laddr.s_addr !=
460 ip->ip_dst.s_addr) {
461 udp_unlock(inp->inp_socket, 1, 0);
462 continue;
463 }
464 }
465 if (inp->inp_faddr.s_addr != INADDR_ANY) {
466 if (inp->inp_faddr.s_addr !=
467 ip->ip_src.s_addr ||
468 inp->inp_fport != uh->uh_sport) {
469 udp_unlock(inp->inp_socket, 1, 0);
470 continue;
471 }
472 }
473
474 if (isbroadcast == 0 && (ntohl(ip->ip_dst.s_addr) !=
475 INADDR_ALLHOSTS_GROUP)) {
476 struct sockaddr_in group;
477 int blocked;
478
479 if ((imo = inp->inp_moptions) == NULL) {
480 udp_unlock(inp->inp_socket, 1, 0);
481 continue;
482 }
483 IMO_LOCK(imo);
484
485 bzero(&group, sizeof (struct sockaddr_in));
486 group.sin_len = sizeof (struct sockaddr_in);
487 group.sin_family = AF_INET;
488 group.sin_addr = ip->ip_dst;
489
490 blocked = imo_multi_filter(imo, ifp,
491 (struct sockaddr *)&group,
492 (struct sockaddr *)&udp_in);
493 if (blocked == MCAST_PASS)
494 foundmembership = 1;
495
496 IMO_UNLOCK(imo);
497 if (!foundmembership) {
498 udp_unlock(inp->inp_socket, 1, 0);
499 if (blocked == MCAST_NOTSMEMBER ||
500 blocked == MCAST_MUTED)
501 udpstat.udps_filtermcast++;
502 continue;
503 }
504 foundmembership = 0;
505 }
506
507 reuse_sock = (inp->inp_socket->so_options &
508 (SO_REUSEPORT|SO_REUSEADDR));
509
510 #if NECP
511 skipit = 0;
512 if (!necp_socket_is_allowed_to_send_recv_v4(inp, uh->uh_dport, uh->uh_sport, &ip->ip_dst, &ip->ip_src, ifp, NULL)) {
513 /* do not inject data to pcb */
514 skipit = 1;
515 }
516 if (skipit == 0)
517 #endif /* NECP */
518 {
519 struct mbuf *n = NULL;
520
521 if (reuse_sock)
522 n = m_copy(m, 0, M_COPYALL);
523 #if INET6
524 udp_append(inp, ip, m,
525 iphlen + sizeof (struct udphdr),
526 &udp_in, &udp_in6, &udp_ip6, ifp);
527 #else /* !INET6 */
528 udp_append(inp, ip, m,
529 iphlen + sizeof (struct udphdr),
530 &udp_in, ifp);
531 #endif /* !INET6 */
532 mcast_delivered++;
533
534 m = n;
535 }
536 udp_unlock(inp->inp_socket, 1, 0);
537
538 /*
539 * Don't look for additional matches if this one does
540 * not have either the SO_REUSEPORT or SO_REUSEADDR
541 * socket options set. This heuristic avoids searching
542 * through all pcbs in the common case of a non-shared
543 * port. It assumes that an application will never
544 * clear these options after setting them.
545 */
546 if (reuse_sock == 0 || m == NULL)
547 break;
548
549 /*
550 * Expect 32-bit aligned data pointer on strict-align
551 * platforms.
552 */
553 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
554 /*
555 * Recompute IP and UDP header pointers for new mbuf
556 */
557 ip = mtod(m, struct ip *);
558 uh = (struct udphdr *)(void *)((caddr_t)ip + iphlen);
559 }
560 lck_rw_done(pcbinfo->ipi_lock);
561
562 if (mcast_delivered == 0) {
563 /*
564 * No matching pcb found; discard datagram.
565 * (No need to send an ICMP Port Unreachable
566 * for a broadcast or multicast datgram.)
567 */
568 udpstat.udps_noportbcast++;
569 IF_UDP_STATINC(ifp, port_unreach);
570 goto bad;
571 }
572
573 /* free the extra copy of mbuf or skipped by IPSec */
574 if (m != NULL)
575 m_freem(m);
576 KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0,0,0,0,0);
577 return;
578 }
579
580 #if IPSEC
581 /*
582 * UDP to port 4500 with a payload where the first four bytes are
583 * not zero is a UDP encapsulated IPSec packet. Packets where
584 * the payload is one byte and that byte is 0xFF are NAT keepalive
585 * packets. Decapsulate the ESP packet and carry on with IPSec input
586 * or discard the NAT keep-alive.
587 */
588 if (ipsec_bypass == 0 && (esp_udp_encap_port & 0xFFFF) != 0 &&
589 uh->uh_dport == ntohs((u_short)esp_udp_encap_port)) {
590 int payload_len = len - sizeof (struct udphdr) > 4 ? 4 :
591 len - sizeof (struct udphdr);
592
593 if (m->m_len < iphlen + sizeof (struct udphdr) + payload_len) {
594 if ((m = m_pullup(m, iphlen + sizeof (struct udphdr) +
595 payload_len)) == NULL) {
596 udpstat.udps_hdrops++;
597 KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END,
598 0,0,0,0,0);
599 return;
600 }
601 /*
602 * Expect 32-bit aligned data pointer on strict-align
603 * platforms.
604 */
605 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
606
607 ip = mtod(m, struct ip *);
608 uh = (struct udphdr *)(void *)((caddr_t)ip + iphlen);
609 }
610 /* Check for NAT keepalive packet */
611 if (payload_len == 1 && *(u_int8_t*)
612 ((caddr_t)uh + sizeof (struct udphdr)) == 0xFF) {
613 m_freem(m);
614 KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END,
615 0,0,0,0,0);
616 return;
617 } else if (payload_len == 4 && *(u_int32_t*)(void *)
618 ((caddr_t)uh + sizeof (struct udphdr)) != 0) {
619 /* UDP encapsulated IPSec packet to pass through NAT */
620 KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END,
621 0,0,0,0,0);
622 /* preserve the udp header */
623 esp4_input(m, iphlen + sizeof (struct udphdr));
624 return;
625 }
626 }
627 #endif /* IPSEC */
628
629 /*
630 * Locate pcb for datagram.
631 */
632 inp = in_pcblookup_hash(&udbinfo, ip->ip_src, uh->uh_sport,
633 ip->ip_dst, uh->uh_dport, 1, ifp);
634 if (inp == NULL) {
635 IF_UDP_STATINC(ifp, port_unreach);
636
637 if (udp_log_in_vain) {
638 char buf[MAX_IPv4_STR_LEN];
639 char buf2[MAX_IPv4_STR_LEN];
640
641 /* check src and dst address */
642 if (udp_log_in_vain < 3) {
643 log(LOG_INFO, "Connection attempt to "
644 "UDP %s:%d from %s:%d\n", inet_ntop(AF_INET,
645 &ip->ip_dst, buf, sizeof (buf)),
646 ntohs(uh->uh_dport), inet_ntop(AF_INET,
647 &ip->ip_src, buf2, sizeof (buf2)),
648 ntohs(uh->uh_sport));
649 } else if (!(m->m_flags & (M_BCAST | M_MCAST)) &&
650 ip->ip_dst.s_addr != ip->ip_src.s_addr) {
651 log_in_vain_log((LOG_INFO,
652 "Stealth Mode connection attempt to "
653 "UDP %s:%d from %s:%d\n", inet_ntop(AF_INET,
654 &ip->ip_dst, buf, sizeof (buf)),
655 ntohs(uh->uh_dport), inet_ntop(AF_INET,
656 &ip->ip_src, buf2, sizeof (buf2)),
657 ntohs(uh->uh_sport)))
658 }
659 }
660 udpstat.udps_noport++;
661 if (m->m_flags & (M_BCAST | M_MCAST)) {
662 udpstat.udps_noportbcast++;
663 goto bad;
664 }
665 #if ICMP_BANDLIM
666 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
667 goto bad;
668 #endif /* ICMP_BANDLIM */
669 if (blackhole)
670 if (ifp && ifp->if_type != IFT_LOOP)
671 goto bad;
672 *ip = save_ip;
673 ip->ip_len += iphlen;
674 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
675 KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0,0,0,0,0);
676 return;
677 }
678 udp_lock(inp->inp_socket, 1, 0);
679
680 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
681 udp_unlock(inp->inp_socket, 1, 0);
682 IF_UDP_STATINC(ifp, cleanup);
683 goto bad;
684 }
685 #if NECP
686 if (!necp_socket_is_allowed_to_send_recv_v4(inp, uh->uh_dport, uh->uh_sport, &ip->ip_dst, &ip->ip_src, ifp, NULL)) {
687 udp_unlock(inp->inp_socket, 1, 0);
688 IF_UDP_STATINC(ifp, badipsec);
689 goto bad;
690 }
691 #endif /* NECP */
692
693 /*
694 * Construct sockaddr format source address.
695 * Stuff source address and datagram in user buffer.
696 */
697 udp_in.sin_port = uh->uh_sport;
698 udp_in.sin_addr = ip->ip_src;
699 if ((inp->inp_flags & INP_CONTROLOPTS) != 0 ||
700 (inp->inp_socket->so_options & SO_TIMESTAMP) != 0 ||
701 (inp->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0) {
702 #if INET6
703 if (inp->inp_vflag & INP_IPV6) {
704 int savedflags;
705
706 ip_2_ip6_hdr(&udp_ip6.uip6_ip6, ip);
707 savedflags = inp->inp_flags;
708 inp->inp_flags &= ~INP_UNMAPPABLEOPTS;
709 ret = ip6_savecontrol(inp, m, &opts);
710 inp->inp_flags = savedflags;
711 } else
712 #endif /* INET6 */
713 {
714 ret = ip_savecontrol(inp, &opts, ip, m);
715 }
716 if (ret != 0) {
717 udp_unlock(inp->inp_socket, 1, 0);
718 goto bad;
719 }
720 }
721 m_adj(m, iphlen + sizeof (struct udphdr));
722
723 KERNEL_DEBUG(DBG_LAYER_IN_END, uh->uh_dport, uh->uh_sport,
724 save_ip.ip_src.s_addr, save_ip.ip_dst.s_addr, uh->uh_ulen);
725
726 #if INET6
727 if (inp->inp_vflag & INP_IPV6) {
728 in6_sin_2_v4mapsin6(&udp_in, &udp_in6.uin6_sin);
729 append_sa = (struct sockaddr *)&udp_in6.uin6_sin;
730 } else
731 #endif /* INET6 */
732 {
733 append_sa = (struct sockaddr *)&udp_in;
734 }
735 if (nstat_collect) {
736 INP_ADD_STAT(inp, cell, wifi, wired, rxpackets, 1);
737 INP_ADD_STAT(inp, cell, wifi, wired, rxbytes, m->m_pkthdr.len);
738 }
739 so_recv_data_stat(inp->inp_socket, m, 0);
740 if (sbappendaddr(&inp->inp_socket->so_rcv, append_sa,
741 m, opts, NULL) == 0) {
742 udpstat.udps_fullsock++;
743 } else {
744 sorwakeup(inp->inp_socket);
745 }
746 udp_unlock(inp->inp_socket, 1, 0);
747 KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0,0,0,0,0);
748 return;
749 bad:
750 m_freem(m);
751 if (opts)
752 m_freem(opts);
753 KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0,0,0,0,0);
754 }
755
756 #if INET6
757 static void
758 ip_2_ip6_hdr(struct ip6_hdr *ip6, struct ip *ip)
759 {
760 bzero(ip6, sizeof (*ip6));
761
762 ip6->ip6_vfc = IPV6_VERSION;
763 ip6->ip6_plen = ip->ip_len;
764 ip6->ip6_nxt = ip->ip_p;
765 ip6->ip6_hlim = ip->ip_ttl;
766 if (ip->ip_src.s_addr) {
767 ip6->ip6_src.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
768 ip6->ip6_src.s6_addr32[3] = ip->ip_src.s_addr;
769 }
770 if (ip->ip_dst.s_addr) {
771 ip6->ip6_dst.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
772 ip6->ip6_dst.s6_addr32[3] = ip->ip_dst.s_addr;
773 }
774 }
775 #endif /* INET6 */
776
777 /*
778 * subroutine of udp_input(), mainly for source code readability.
779 */
780 static void
781 #if INET6
782 udp_append(struct inpcb *last, struct ip *ip, struct mbuf *n, int off,
783 struct sockaddr_in *pudp_in, struct udp_in6 *pudp_in6,
784 struct udp_ip6 *pudp_ip6, struct ifnet *ifp)
785 #else /* !INET6 */
786 udp_append(struct inpcb *last, struct ip *ip, struct mbuf *n, int off,
787 struct sockaddr_in *pudp_in, struct ifnet *ifp)
788 #endif /* !INET6 */
789 {
790 struct sockaddr *append_sa;
791 struct mbuf *opts = 0;
792 boolean_t cell = IFNET_IS_CELLULAR(ifp);
793 boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp));
794 boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp));
795 int ret = 0;
796
797 #if CONFIG_MACF_NET
798 if (mac_inpcb_check_deliver(last, n, AF_INET, SOCK_DGRAM) != 0) {
799 m_freem(n);
800 return;
801 }
802 #endif /* CONFIG_MACF_NET */
803 if ((last->inp_flags & INP_CONTROLOPTS) != 0 ||
804 (last->inp_socket->so_options & SO_TIMESTAMP) != 0 ||
805 (last->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0) {
806 #if INET6
807 if (last->inp_vflag & INP_IPV6) {
808 int savedflags;
809
810 if (pudp_ip6->uip6_init_done == 0) {
811 ip_2_ip6_hdr(&pudp_ip6->uip6_ip6, ip);
812 pudp_ip6->uip6_init_done = 1;
813 }
814 savedflags = last->inp_flags;
815 last->inp_flags &= ~INP_UNMAPPABLEOPTS;
816 ret = ip6_savecontrol(last, n, &opts);
817 if (ret != 0) {
818 last->inp_flags = savedflags;
819 goto error;
820 }
821 last->inp_flags = savedflags;
822 } else
823 #endif /* INET6 */
824 {
825 ret = ip_savecontrol(last, &opts, ip, n);
826 if (ret != 0) {
827 goto error;
828 }
829 }
830 }
831 #if INET6
832 if (last->inp_vflag & INP_IPV6) {
833 if (pudp_in6->uin6_init_done == 0) {
834 in6_sin_2_v4mapsin6(pudp_in, &pudp_in6->uin6_sin);
835 pudp_in6->uin6_init_done = 1;
836 }
837 append_sa = (struct sockaddr *)&pudp_in6->uin6_sin;
838 } else
839 #endif /* INET6 */
840 append_sa = (struct sockaddr *)pudp_in;
841 if (nstat_collect) {
842 INP_ADD_STAT(last, cell, wifi, wired, rxpackets, 1);
843 INP_ADD_STAT(last, cell, wifi, wired, rxbytes,
844 n->m_pkthdr.len);
845 }
846 so_recv_data_stat(last->inp_socket, n, 0);
847 m_adj(n, off);
848 if (sbappendaddr(&last->inp_socket->so_rcv, append_sa,
849 n, opts, NULL) == 0) {
850 udpstat.udps_fullsock++;
851 } else {
852 sorwakeup(last->inp_socket);
853 }
854 return;
855 error:
856 m_freem(n);
857 m_freem(opts);
858 return;
859 }
860
861 /*
862 * Notify a udp user of an asynchronous error;
863 * just wake up so that he can collect error status.
864 */
865 void
866 udp_notify(struct inpcb *inp, int errno)
867 {
868 inp->inp_socket->so_error = errno;
869 sorwakeup(inp->inp_socket);
870 sowwakeup(inp->inp_socket);
871 }
872
873 void
874 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
875 {
876 struct ip *ip = vip;
877 void (*notify)(struct inpcb *, int) = udp_notify;
878 struct in_addr faddr;
879 struct inpcb *inp;
880
881 faddr = ((struct sockaddr_in *)(void *)sa)->sin_addr;
882 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
883 return;
884
885 if (PRC_IS_REDIRECT(cmd)) {
886 ip = 0;
887 notify = in_rtchange;
888 } else if (cmd == PRC_HOSTDEAD) {
889 ip = 0;
890 } else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
891 return;
892 }
893 if (ip) {
894 struct udphdr uh;
895
896 bcopy(((caddr_t)ip + (ip->ip_hl << 2)), &uh, sizeof (uh));
897 inp = in_pcblookup_hash(&udbinfo, faddr, uh.uh_dport,
898 ip->ip_src, uh.uh_sport, 0, NULL);
899 if (inp != NULL && inp->inp_socket != NULL) {
900 udp_lock(inp->inp_socket, 1, 0);
901 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) ==
902 WNT_STOPUSING) {
903 udp_unlock(inp->inp_socket, 1, 0);
904 return;
905 }
906 (*notify)(inp, inetctlerrmap[cmd]);
907 udp_unlock(inp->inp_socket, 1, 0);
908 }
909 } else {
910 in_pcbnotifyall(&udbinfo, faddr, inetctlerrmap[cmd], notify);
911 }
912 }
913
914 int
915 udp_ctloutput(struct socket *so, struct sockopt *sopt)
916 {
917 int error, optval;
918 struct inpcb *inp;
919
920 /* Allow <SOL_SOCKET,SO_FLUSH> at this level */
921 if (sopt->sopt_level != IPPROTO_UDP &&
922 !(sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_FLUSH))
923 return (ip_ctloutput(so, sopt));
924
925 error = 0;
926 inp = sotoinpcb(so);
927
928 switch (sopt->sopt_dir) {
929 case SOPT_SET:
930 switch (sopt->sopt_name) {
931 case UDP_NOCKSUM:
932 /* This option is settable only for UDP over IPv4 */
933 if (!(inp->inp_vflag & INP_IPV4)) {
934 error = EINVAL;
935 break;
936 }
937
938 if ((error = sooptcopyin(sopt, &optval, sizeof (optval),
939 sizeof (optval))) != 0)
940 break;
941
942 if (optval != 0)
943 inp->inp_flags |= INP_UDP_NOCKSUM;
944 else
945 inp->inp_flags &= ~INP_UDP_NOCKSUM;
946 break;
947
948 case SO_FLUSH:
949 if ((error = sooptcopyin(sopt, &optval, sizeof (optval),
950 sizeof (optval))) != 0)
951 break;
952
953 error = inp_flush(inp, optval);
954 break;
955
956 default:
957 error = ENOPROTOOPT;
958 break;
959 }
960 break;
961
962 case SOPT_GET:
963 switch (sopt->sopt_name) {
964 case UDP_NOCKSUM:
965 optval = inp->inp_flags & INP_UDP_NOCKSUM;
966 break;
967
968 default:
969 error = ENOPROTOOPT;
970 break;
971 }
972 if (error == 0)
973 error = sooptcopyout(sopt, &optval, sizeof (optval));
974 break;
975 }
976 return (error);
977 }
978
979 static int
980 udp_pcblist SYSCTL_HANDLER_ARGS
981 {
982 #pragma unused(oidp, arg1, arg2)
983 int error, i, n;
984 struct inpcb *inp, **inp_list;
985 inp_gen_t gencnt;
986 struct xinpgen xig;
987
988 /*
989 * The process of preparing the TCB list is too time-consuming and
990 * resource-intensive to repeat twice on every request.
991 */
992 lck_rw_lock_exclusive(udbinfo.ipi_lock);
993 if (req->oldptr == USER_ADDR_NULL) {
994 n = udbinfo.ipi_count;
995 req->oldidx = 2 * (sizeof (xig))
996 + (n + n/8) * sizeof (struct xinpcb);
997 lck_rw_done(udbinfo.ipi_lock);
998 return (0);
999 }
1000
1001 if (req->newptr != USER_ADDR_NULL) {
1002 lck_rw_done(udbinfo.ipi_lock);
1003 return (EPERM);
1004 }
1005
1006 /*
1007 * OK, now we're committed to doing something.
1008 */
1009 gencnt = udbinfo.ipi_gencnt;
1010 n = udbinfo.ipi_count;
1011
1012 bzero(&xig, sizeof (xig));
1013 xig.xig_len = sizeof (xig);
1014 xig.xig_count = n;
1015 xig.xig_gen = gencnt;
1016 xig.xig_sogen = so_gencnt;
1017 error = SYSCTL_OUT(req, &xig, sizeof (xig));
1018 if (error) {
1019 lck_rw_done(udbinfo.ipi_lock);
1020 return (error);
1021 }
1022 /*
1023 * We are done if there is no pcb
1024 */
1025 if (n == 0) {
1026 lck_rw_done(udbinfo.ipi_lock);
1027 return (0);
1028 }
1029
1030 inp_list = _MALLOC(n * sizeof (*inp_list), M_TEMP, M_WAITOK);
1031 if (inp_list == 0) {
1032 lck_rw_done(udbinfo.ipi_lock);
1033 return (ENOMEM);
1034 }
1035
1036 for (inp = LIST_FIRST(udbinfo.ipi_listhead), i = 0; inp && i < n;
1037 inp = LIST_NEXT(inp, inp_list)) {
1038 if (inp->inp_gencnt <= gencnt &&
1039 inp->inp_state != INPCB_STATE_DEAD)
1040 inp_list[i++] = inp;
1041 }
1042 n = i;
1043
1044 error = 0;
1045 for (i = 0; i < n; i++) {
1046 inp = inp_list[i];
1047 if (inp->inp_gencnt <= gencnt &&
1048 inp->inp_state != INPCB_STATE_DEAD) {
1049 struct xinpcb xi;
1050
1051 bzero(&xi, sizeof (xi));
1052 xi.xi_len = sizeof (xi);
1053 /* XXX should avoid extra copy */
1054 inpcb_to_compat(inp, &xi.xi_inp);
1055 if (inp->inp_socket)
1056 sotoxsocket(inp->inp_socket, &xi.xi_socket);
1057 error = SYSCTL_OUT(req, &xi, sizeof (xi));
1058 }
1059 }
1060 if (!error) {
1061 /*
1062 * Give the user an updated idea of our state.
1063 * If the generation differs from what we told
1064 * her before, she knows that something happened
1065 * while we were processing this request, and it
1066 * might be necessary to retry.
1067 */
1068 bzero(&xig, sizeof (xig));
1069 xig.xig_len = sizeof (xig);
1070 xig.xig_gen = udbinfo.ipi_gencnt;
1071 xig.xig_sogen = so_gencnt;
1072 xig.xig_count = udbinfo.ipi_count;
1073 error = SYSCTL_OUT(req, &xig, sizeof (xig));
1074 }
1075 FREE(inp_list, M_TEMP);
1076 lck_rw_done(udbinfo.ipi_lock);
1077 return (error);
1078 }
1079
1080 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
1081 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, udp_pcblist,
1082 "S,xinpcb", "List of active UDP sockets");
1083
1084
1085 static int
1086 udp_pcblist64 SYSCTL_HANDLER_ARGS
1087 {
1088 #pragma unused(oidp, arg1, arg2)
1089 int error, i, n;
1090 struct inpcb *inp, **inp_list;
1091 inp_gen_t gencnt;
1092 struct xinpgen xig;
1093
1094 /*
1095 * The process of preparing the TCB list is too time-consuming and
1096 * resource-intensive to repeat twice on every request.
1097 */
1098 lck_rw_lock_shared(udbinfo.ipi_lock);
1099 if (req->oldptr == USER_ADDR_NULL) {
1100 n = udbinfo.ipi_count;
1101 req->oldidx =
1102 2 * (sizeof (xig)) + (n + n/8) * sizeof (struct xinpcb64);
1103 lck_rw_done(udbinfo.ipi_lock);
1104 return (0);
1105 }
1106
1107 if (req->newptr != USER_ADDR_NULL) {
1108 lck_rw_done(udbinfo.ipi_lock);
1109 return (EPERM);
1110 }
1111
1112 /*
1113 * OK, now we're committed to doing something.
1114 */
1115 gencnt = udbinfo.ipi_gencnt;
1116 n = udbinfo.ipi_count;
1117
1118 bzero(&xig, sizeof (xig));
1119 xig.xig_len = sizeof (xig);
1120 xig.xig_count = n;
1121 xig.xig_gen = gencnt;
1122 xig.xig_sogen = so_gencnt;
1123 error = SYSCTL_OUT(req, &xig, sizeof (xig));
1124 if (error) {
1125 lck_rw_done(udbinfo.ipi_lock);
1126 return (error);
1127 }
1128 /*
1129 * We are done if there is no pcb
1130 */
1131 if (n == 0) {
1132 lck_rw_done(udbinfo.ipi_lock);
1133 return (0);
1134 }
1135
1136 inp_list = _MALLOC(n * sizeof (*inp_list), M_TEMP, M_WAITOK);
1137 if (inp_list == 0) {
1138 lck_rw_done(udbinfo.ipi_lock);
1139 return (ENOMEM);
1140 }
1141
1142 for (inp = LIST_FIRST(udbinfo.ipi_listhead), i = 0; inp && i < n;
1143 inp = LIST_NEXT(inp, inp_list)) {
1144 if (inp->inp_gencnt <= gencnt &&
1145 inp->inp_state != INPCB_STATE_DEAD)
1146 inp_list[i++] = inp;
1147 }
1148 n = i;
1149
1150 error = 0;
1151 for (i = 0; i < n; i++) {
1152 inp = inp_list[i];
1153 if (inp->inp_gencnt <= gencnt &&
1154 inp->inp_state != INPCB_STATE_DEAD) {
1155 struct xinpcb64 xi;
1156
1157 bzero(&xi, sizeof (xi));
1158 xi.xi_len = sizeof (xi);
1159 inpcb_to_xinpcb64(inp, &xi);
1160 if (inp->inp_socket)
1161 sotoxsocket64(inp->inp_socket, &xi.xi_socket);
1162 error = SYSCTL_OUT(req, &xi, sizeof (xi));
1163 }
1164 }
1165 if (!error) {
1166 /*
1167 * Give the user an updated idea of our state.
1168 * If the generation differs from what we told
1169 * her before, she knows that something happened
1170 * while we were processing this request, and it
1171 * might be necessary to retry.
1172 */
1173 bzero(&xig, sizeof (xig));
1174 xig.xig_len = sizeof (xig);
1175 xig.xig_gen = udbinfo.ipi_gencnt;
1176 xig.xig_sogen = so_gencnt;
1177 xig.xig_count = udbinfo.ipi_count;
1178 error = SYSCTL_OUT(req, &xig, sizeof (xig));
1179 }
1180 FREE(inp_list, M_TEMP);
1181 lck_rw_done(udbinfo.ipi_lock);
1182 return (error);
1183 }
1184
1185 SYSCTL_PROC(_net_inet_udp, OID_AUTO, pcblist64,
1186 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, udp_pcblist64,
1187 "S,xinpcb64", "List of active UDP sockets");
1188
1189
1190 static int
1191 udp_pcblist_n SYSCTL_HANDLER_ARGS
1192 {
1193 #pragma unused(oidp, arg1, arg2)
1194 return (get_pcblist_n(IPPROTO_UDP, req, &udbinfo));
1195 }
1196
1197 SYSCTL_PROC(_net_inet_udp, OID_AUTO, pcblist_n,
1198 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, udp_pcblist_n,
1199 "S,xinpcb_n", "List of active UDP sockets");
1200
1201 __private_extern__ void
1202 udp_get_ports_used(uint32_t ifindex, int protocol, uint32_t flags,
1203 bitstr_t *bitfield)
1204 {
1205 inpcb_get_ports_used(ifindex, protocol, flags, bitfield, &udbinfo);
1206 }
1207
1208 __private_extern__ uint32_t
1209 udp_count_opportunistic(unsigned int ifindex, u_int32_t flags)
1210 {
1211 return (inpcb_count_opportunistic(ifindex, &udbinfo, flags));
1212 }
1213
1214 __private_extern__ uint32_t
1215 udp_find_anypcb_byaddr(struct ifaddr *ifa)
1216 {
1217 return (inpcb_find_anypcb_byaddr(ifa, &udbinfo));
1218 }
1219
1220 static int
1221 udp_check_pktinfo(struct mbuf *control, struct ifnet **outif,
1222 struct in_addr *laddr)
1223 {
1224 struct cmsghdr *cm = 0;
1225 struct in_pktinfo *pktinfo;
1226 struct ifnet *ifp;
1227
1228 if (outif != NULL)
1229 *outif = NULL;
1230
1231 /*
1232 * XXX: Currently, we assume all the optional information is stored
1233 * in a single mbuf.
1234 */
1235 if (control->m_next)
1236 return (EINVAL);
1237
1238 if (control->m_len < CMSG_LEN(0))
1239 return (EINVAL);
1240
1241 for (cm = M_FIRST_CMSGHDR(control); cm;
1242 cm = M_NXT_CMSGHDR(control, cm)) {
1243 if (cm->cmsg_len < sizeof (struct cmsghdr) ||
1244 cm->cmsg_len > control->m_len)
1245 return (EINVAL);
1246
1247 if (cm->cmsg_level != IPPROTO_IP || cm->cmsg_type != IP_PKTINFO)
1248 continue;
1249
1250 if (cm->cmsg_len != CMSG_LEN(sizeof (struct in_pktinfo)))
1251 return (EINVAL);
1252
1253 pktinfo = (struct in_pktinfo *)(void *)CMSG_DATA(cm);
1254
1255 /* Check for a valid ifindex in pktinfo */
1256 ifnet_head_lock_shared();
1257
1258 if (pktinfo->ipi_ifindex > if_index) {
1259 ifnet_head_done();
1260 return (ENXIO);
1261 }
1262
1263 /*
1264 * If ipi_ifindex is specified it takes precedence
1265 * over ipi_spec_dst.
1266 */
1267 if (pktinfo->ipi_ifindex) {
1268 ifp = ifindex2ifnet[pktinfo->ipi_ifindex];
1269 if (ifp == NULL) {
1270 ifnet_head_done();
1271 return (ENXIO);
1272 }
1273 if (outif != NULL) {
1274 ifnet_reference(ifp);
1275 *outif = ifp;
1276 }
1277 ifnet_head_done();
1278 laddr->s_addr = INADDR_ANY;
1279 break;
1280 }
1281
1282 ifnet_head_done();
1283
1284 /*
1285 * Use the provided ipi_spec_dst address for temp
1286 * source address.
1287 */
1288 *laddr = pktinfo->ipi_spec_dst;
1289 break;
1290 }
1291 return (0);
1292 }
1293
1294 static int
1295 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
1296 struct mbuf *control, struct proc *p)
1297 {
1298 struct udpiphdr *ui;
1299 int len = m->m_pkthdr.len;
1300 struct sockaddr_in *sin;
1301 struct in_addr origladdr, laddr, faddr, pi_laddr;
1302 u_short lport, fport;
1303 int error = 0, udp_dodisconnect = 0, pktinfo = 0;
1304 struct socket *so = inp->inp_socket;
1305 int soopts = 0;
1306 struct mbuf *inpopts;
1307 struct ip_moptions *mopts;
1308 struct route ro;
1309 struct ip_out_args ipoa =
1310 { IFSCOPE_NONE, { 0 }, IPOAF_SELECT_SRCIF, 0 };
1311 struct ifnet *outif = NULL;
1312 struct flowadv *adv = &ipoa.ipoa_flowadv;
1313 mbuf_svc_class_t msc = MBUF_SC_UNSPEC;
1314 struct ifnet *origoutifp = NULL;
1315 int flowadv = 0;
1316
1317 /* Enable flow advisory only when connected */
1318 flowadv = (so->so_state & SS_ISCONNECTED) ? 1 : 0;
1319 pi_laddr.s_addr = INADDR_ANY;
1320
1321 KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT | DBG_FUNC_START, 0,0,0,0,0);
1322
1323 lck_mtx_assert(&inp->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
1324 if (control != NULL) {
1325 msc = mbuf_service_class_from_control(control);
1326 VERIFY(outif == NULL);
1327 error = udp_check_pktinfo(control, &outif, &pi_laddr);
1328 m_freem(control);
1329 control = NULL;
1330 if (error)
1331 goto release;
1332 pktinfo++;
1333 if (outif != NULL)
1334 ipoa.ipoa_boundif = outif->if_index;
1335 }
1336
1337 KERNEL_DEBUG(DBG_LAYER_OUT_BEG, inp->inp_fport, inp->inp_lport,
1338 inp->inp_laddr.s_addr, inp->inp_faddr.s_addr,
1339 (htons((u_short)len + sizeof (struct udphdr))));
1340
1341 if (len + sizeof (struct udpiphdr) > IP_MAXPACKET) {
1342 error = EMSGSIZE;
1343 goto release;
1344 }
1345
1346 if (flowadv && INP_WAIT_FOR_IF_FEEDBACK(inp)) {
1347 /*
1348 * The socket is flow-controlled, drop the packets
1349 * until the inp is not flow controlled
1350 */
1351 error = ENOBUFS;
1352 goto release;
1353 }
1354 /*
1355 * If socket was bound to an ifindex, tell ip_output about it.
1356 * If the ancillary IP_PKTINFO option contains an interface index,
1357 * it takes precedence over the one specified by IP_BOUND_IF.
1358 */
1359 if (ipoa.ipoa_boundif == IFSCOPE_NONE &&
1360 (inp->inp_flags & INP_BOUND_IF)) {
1361 VERIFY(inp->inp_boundifp != NULL);
1362 ifnet_reference(inp->inp_boundifp); /* for this routine */
1363 if (outif != NULL)
1364 ifnet_release(outif);
1365 outif = inp->inp_boundifp;
1366 ipoa.ipoa_boundif = outif->if_index;
1367 }
1368 if (INP_NO_CELLULAR(inp))
1369 ipoa.ipoa_flags |= IPOAF_NO_CELLULAR;
1370 if (INP_NO_EXPENSIVE(inp))
1371 ipoa.ipoa_flags |= IPOAF_NO_EXPENSIVE;
1372 if (INP_AWDL_UNRESTRICTED(inp))
1373 ipoa.ipoa_flags |= IPOAF_AWDL_UNRESTRICTED;
1374 soopts |= IP_OUTARGS;
1375
1376 /*
1377 * If there was a routing change, discard cached route and check
1378 * that we have a valid source address. Reacquire a new source
1379 * address if INADDR_ANY was specified.
1380 */
1381 if (ROUTE_UNUSABLE(&inp->inp_route)) {
1382 struct in_ifaddr *ia = NULL;
1383
1384 ROUTE_RELEASE(&inp->inp_route);
1385
1386 /* src address is gone? */
1387 if (inp->inp_laddr.s_addr != INADDR_ANY &&
1388 (ia = ifa_foraddr(inp->inp_laddr.s_addr)) == NULL) {
1389 if (!(inp->inp_flags & INP_INADDR_ANY) ||
1390 (so->so_state & SS_ISCONNECTED)) {
1391 /*
1392 * Rdar://5448998
1393 * If the source address is gone, return an
1394 * error if:
1395 * - the source was specified
1396 * - the socket was already connected
1397 */
1398 soevent(so, (SO_FILT_HINT_LOCKED |
1399 SO_FILT_HINT_NOSRCADDR));
1400 error = EADDRNOTAVAIL;
1401 goto release;
1402 } else {
1403 /* new src will be set later */
1404 inp->inp_laddr.s_addr = INADDR_ANY;
1405 inp->inp_last_outifp = NULL;
1406 }
1407 }
1408 if (ia != NULL)
1409 IFA_REMREF(&ia->ia_ifa);
1410 }
1411
1412 /*
1413 * IP_PKTINFO option check. If a temporary scope or src address
1414 * is provided, use it for this packet only and make sure we forget
1415 * it after sending this datagram.
1416 */
1417 if (pi_laddr.s_addr != INADDR_ANY ||
1418 (ipoa.ipoa_boundif != IFSCOPE_NONE && pktinfo)) {
1419 /* temp src address for this datagram only */
1420 laddr = pi_laddr;
1421 origladdr.s_addr = INADDR_ANY;
1422 /* we don't want to keep the laddr or route */
1423 udp_dodisconnect = 1;
1424 /* remember we don't care about src addr.*/
1425 inp->inp_flags |= INP_INADDR_ANY;
1426 } else {
1427 origladdr = laddr = inp->inp_laddr;
1428 }
1429
1430 origoutifp = inp->inp_last_outifp;
1431 faddr = inp->inp_faddr;
1432 lport = inp->inp_lport;
1433 fport = inp->inp_fport;
1434
1435 if (addr) {
1436 sin = (struct sockaddr_in *)(void *)addr;
1437 if (faddr.s_addr != INADDR_ANY) {
1438 error = EISCONN;
1439 goto release;
1440 }
1441 if (lport == 0) {
1442 /*
1443 * In case we don't have a local port set, go through
1444 * the full connect. We don't have a local port yet
1445 * (i.e., we can't be looked up), so it's not an issue
1446 * if the input runs at the same time we do this.
1447 */
1448 /* if we have a source address specified, use that */
1449 if (pi_laddr.s_addr != INADDR_ANY)
1450 inp->inp_laddr = pi_laddr;
1451 /*
1452 * If a scope is specified, use it. Scope from
1453 * IP_PKTINFO takes precendence over the the scope
1454 * set via INP_BOUND_IF.
1455 */
1456 error = in_pcbconnect(inp, addr, p, ipoa.ipoa_boundif,
1457 &outif);
1458 if (error)
1459 goto release;
1460
1461 laddr = inp->inp_laddr;
1462 lport = inp->inp_lport;
1463 faddr = inp->inp_faddr;
1464 fport = inp->inp_fport;
1465 udp_dodisconnect = 1;
1466
1467 /* synch up in case in_pcbladdr() overrides */
1468 if (outif != NULL && ipoa.ipoa_boundif != IFSCOPE_NONE)
1469 ipoa.ipoa_boundif = outif->if_index;
1470 }
1471 else {
1472 /*
1473 * Fast path case
1474 *
1475 * We have a full address and a local port; use those
1476 * info to build the packet without changing the pcb
1477 * and interfering with the input path. See 3851370.
1478 *
1479 * Scope from IP_PKTINFO takes precendence over the
1480 * the scope set via INP_BOUND_IF.
1481 */
1482 if (laddr.s_addr == INADDR_ANY) {
1483 if ((error = in_pcbladdr(inp, addr, &laddr,
1484 ipoa.ipoa_boundif, &outif)) != 0)
1485 goto release;
1486 /*
1487 * from pcbconnect: remember we don't
1488 * care about src addr.
1489 */
1490 inp->inp_flags |= INP_INADDR_ANY;
1491
1492 /* synch up in case in_pcbladdr() overrides */
1493 if (outif != NULL &&
1494 ipoa.ipoa_boundif != IFSCOPE_NONE)
1495 ipoa.ipoa_boundif = outif->if_index;
1496 }
1497
1498 faddr = sin->sin_addr;
1499 fport = sin->sin_port;
1500 }
1501 } else {
1502 if (faddr.s_addr == INADDR_ANY) {
1503 error = ENOTCONN;
1504 goto release;
1505 }
1506 }
1507
1508 #if CONFIG_MACF_NET
1509 mac_mbuf_label_associate_inpcb(inp, m);
1510 #endif /* CONFIG_MACF_NET */
1511
1512 if (inp->inp_flowhash == 0)
1513 inp->inp_flowhash = inp_calc_flowhash(inp);
1514
1515 /*
1516 * Calculate data length and get a mbuf
1517 * for UDP and IP headers.
1518 */
1519 M_PREPEND(m, sizeof (struct udpiphdr), M_DONTWAIT);
1520 if (m == 0) {
1521 error = ENOBUFS;
1522 goto abort;
1523 }
1524
1525 /*
1526 * Fill in mbuf with extended UDP header
1527 * and addresses and length put into network format.
1528 */
1529 ui = mtod(m, struct udpiphdr *);
1530 bzero(ui->ui_x1, sizeof (ui->ui_x1)); /* XXX still needed? */
1531 ui->ui_pr = IPPROTO_UDP;
1532 ui->ui_src = laddr;
1533 ui->ui_dst = faddr;
1534 ui->ui_sport = lport;
1535 ui->ui_dport = fport;
1536 ui->ui_ulen = htons((u_short)len + sizeof (struct udphdr));
1537
1538 /*
1539 * Set up checksum and output datagram.
1540 */
1541 if (udpcksum && !(inp->inp_flags & INP_UDP_NOCKSUM)) {
1542 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, ui->ui_dst.s_addr,
1543 htons((u_short)len + sizeof (struct udphdr) + IPPROTO_UDP));
1544 m->m_pkthdr.csum_flags = CSUM_UDP;
1545 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1546 } else {
1547 ui->ui_sum = 0;
1548 }
1549 ((struct ip *)ui)->ip_len = sizeof (struct udpiphdr) + len;
1550 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */
1551 ((struct ip *)ui)->ip_tos = inp->inp_ip_tos; /* XXX */
1552 udpstat.udps_opackets++;
1553
1554 KERNEL_DEBUG(DBG_LAYER_OUT_END, ui->ui_dport, ui->ui_sport,
1555 ui->ui_src.s_addr, ui->ui_dst.s_addr, ui->ui_ulen);
1556
1557 #if NECP
1558 {
1559 necp_kernel_policy_id policy_id;
1560 if (!necp_socket_is_allowed_to_send_recv_v4(inp, lport, fport, &laddr, &faddr, NULL, &policy_id)) {
1561 error = EHOSTUNREACH;
1562 goto abort;
1563 }
1564
1565 necp_mark_packet_from_socket(m, inp, policy_id);
1566 }
1567 #endif /* NECP */
1568
1569 #if IPSEC
1570 if (inp->inp_sp != NULL && ipsec_setsocket(m, inp->inp_socket) != 0) {
1571 error = ENOBUFS;
1572 goto abort;
1573 }
1574 #endif /* IPSEC */
1575
1576 inpopts = inp->inp_options;
1577 soopts |= (inp->inp_socket->so_options & (SO_DONTROUTE | SO_BROADCAST));
1578 mopts = inp->inp_moptions;
1579 if (mopts != NULL) {
1580 IMO_LOCK(mopts);
1581 IMO_ADDREF_LOCKED(mopts);
1582 if (IN_MULTICAST(ntohl(ui->ui_dst.s_addr)) &&
1583 mopts->imo_multicast_ifp != NULL) {
1584 /* no reference needed */
1585 inp->inp_last_outifp = mopts->imo_multicast_ifp;
1586 }
1587 IMO_UNLOCK(mopts);
1588 }
1589
1590 /* Copy the cached route and take an extra reference */
1591 inp_route_copyout(inp, &ro);
1592
1593 set_packet_service_class(m, so, msc, 0);
1594 m->m_pkthdr.pkt_flowsrc = FLOWSRC_INPCB;
1595 m->m_pkthdr.pkt_flowid = inp->inp_flowhash;
1596 m->m_pkthdr.pkt_proto = IPPROTO_UDP;
1597 m->m_pkthdr.pkt_flags |= (PKTF_FLOW_ID | PKTF_FLOW_LOCALSRC);
1598 if (flowadv)
1599 m->m_pkthdr.pkt_flags |= PKTF_FLOW_ADV;
1600
1601 if (ipoa.ipoa_boundif != IFSCOPE_NONE)
1602 ipoa.ipoa_flags |= IPOAF_BOUND_IF;
1603
1604 if (laddr.s_addr != INADDR_ANY)
1605 ipoa.ipoa_flags |= IPOAF_BOUND_SRCADDR;
1606
1607 inp->inp_sndinprog_cnt++;
1608
1609 socket_unlock(so, 0);
1610 error = ip_output(m, inpopts, &ro, soopts, mopts, &ipoa);
1611 m = NULL;
1612 socket_lock(so, 0);
1613 if (mopts != NULL)
1614 IMO_REMREF(mopts);
1615
1616 if (error == 0 && nstat_collect) {
1617 boolean_t cell, wifi, wired;
1618
1619 if (ro.ro_rt != NULL) {
1620 cell = IFNET_IS_CELLULAR(ro.ro_rt->rt_ifp);
1621 wifi = (!cell && IFNET_IS_WIFI(ro.ro_rt->rt_ifp));
1622 wired = (!wifi && IFNET_IS_WIRED(ro.ro_rt->rt_ifp));
1623 } else {
1624 cell = wifi = wired = FALSE;
1625 }
1626 INP_ADD_STAT(inp, cell, wifi, wired, txpackets, 1);
1627 INP_ADD_STAT(inp, cell, wifi, wired, txbytes, len);
1628 }
1629
1630 if (flowadv && (adv->code == FADV_FLOW_CONTROLLED ||
1631 adv->code == FADV_SUSPENDED)) {
1632 /* return a hint to the application that
1633 * the packet has been dropped
1634 */
1635 error = ENOBUFS;
1636 inp_set_fc_state(inp, adv->code);
1637 }
1638
1639 VERIFY(inp->inp_sndinprog_cnt > 0);
1640 if ( --inp->inp_sndinprog_cnt == 0)
1641 inp->inp_flags &= ~(INP_FC_FEEDBACK);
1642
1643 /* Synchronize PCB cached route */
1644 inp_route_copyin(inp, &ro);
1645
1646 abort:
1647 if (udp_dodisconnect) {
1648 /* Always discard the cached route for unconnected socket */
1649 ROUTE_RELEASE(&inp->inp_route);
1650 in_pcbdisconnect(inp);
1651 inp->inp_laddr = origladdr; /* XXX rehash? */
1652 /* no reference needed */
1653 inp->inp_last_outifp = origoutifp;
1654 } else if (inp->inp_route.ro_rt != NULL) {
1655 struct rtentry *rt = inp->inp_route.ro_rt;
1656 struct ifnet *outifp;
1657
1658 if (rt->rt_flags & (RTF_MULTICAST|RTF_BROADCAST))
1659 rt = NULL; /* unusable */
1660 /*
1661 * Always discard if it is a multicast or broadcast route.
1662 */
1663 if (rt == NULL)
1664 ROUTE_RELEASE(&inp->inp_route);
1665
1666 /*
1667 * If the destination route is unicast, update outifp with
1668 * that of the route interface used by IP.
1669 */
1670 if (rt != NULL && (outifp = rt->rt_ifp) != inp->inp_last_outifp)
1671 inp->inp_last_outifp = outifp; /* no reference needed */
1672 } else {
1673 ROUTE_RELEASE(&inp->inp_route);
1674 }
1675
1676 /*
1677 * If output interface was cellular/expensive, and this socket is
1678 * denied access to it, generate an event.
1679 */
1680 if (error != 0 && (ipoa.ipoa_retflags & IPOARF_IFDENIED) &&
1681 (INP_NO_CELLULAR(inp) || INP_NO_EXPENSIVE(inp)))
1682 soevent(so, (SO_FILT_HINT_LOCKED|SO_FILT_HINT_IFDENIED));
1683
1684 release:
1685 KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT | DBG_FUNC_END, error, 0, 0, 0, 0);
1686
1687 if (m != NULL)
1688 m_freem(m);
1689
1690 if (outif != NULL)
1691 ifnet_release(outif);
1692
1693 return (error);
1694 }
1695
1696 u_int32_t udp_sendspace = 9216; /* really max datagram size */
1697 /* 187 1K datagrams (approx 192 KB) */
1698 u_int32_t udp_recvspace = 187 * (1024 +
1699 #if INET6
1700 sizeof (struct sockaddr_in6)
1701 #else /* !INET6 */
1702 sizeof (struct sockaddr_in)
1703 #endif /* !INET6 */
1704 );
1705
1706 /* Check that the values of udp send and recv space do not exceed sb_max */
1707 static int
1708 sysctl_udp_sospace(struct sysctl_oid *oidp, void *arg1, int arg2,
1709 struct sysctl_req *req)
1710 {
1711 #pragma unused(arg1, arg2)
1712 u_int32_t new_value = 0, *space_p = NULL;
1713 int changed = 0, error = 0;
1714 u_quad_t sb_effective_max = (sb_max/(MSIZE+MCLBYTES)) * MCLBYTES;
1715
1716 switch (oidp->oid_number) {
1717 case UDPCTL_RECVSPACE:
1718 space_p = &udp_recvspace;
1719 break;
1720 case UDPCTL_MAXDGRAM:
1721 space_p = &udp_sendspace;
1722 break;
1723 default:
1724 return EINVAL;
1725 }
1726 error = sysctl_io_number(req, *space_p, sizeof (u_int32_t),
1727 &new_value, &changed);
1728 if (changed) {
1729 if (new_value > 0 && new_value <= sb_effective_max)
1730 *space_p = new_value;
1731 else
1732 error = ERANGE;
1733 }
1734 return (error);
1735 }
1736
1737 SYSCTL_PROC(_net_inet_udp, UDPCTL_RECVSPACE, recvspace,
1738 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &udp_recvspace, 0,
1739 &sysctl_udp_sospace, "IU", "Maximum incoming UDP datagram size");
1740
1741 SYSCTL_PROC(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram,
1742 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &udp_sendspace, 0,
1743 &sysctl_udp_sospace, "IU", "Maximum outgoing UDP datagram size");
1744
1745 static int
1746 udp_abort(struct socket *so)
1747 {
1748 struct inpcb *inp;
1749
1750 inp = sotoinpcb(so);
1751 if (inp == NULL) {
1752 panic("%s: so=%p null inp\n", __func__, so);
1753 /* NOTREACHED */
1754 }
1755 soisdisconnected(so);
1756 in_pcbdetach(inp);
1757 return (0);
1758 }
1759
1760 static int
1761 udp_attach(struct socket *so, int proto, struct proc *p)
1762 {
1763 #pragma unused(proto)
1764 struct inpcb *inp;
1765 int error;
1766
1767 inp = sotoinpcb(so);
1768 if (inp != NULL) {
1769 panic ("%s so=%p inp=%p\n", __func__, so, inp);
1770 /* NOTREACHED */
1771 }
1772 error = in_pcballoc(so, &udbinfo, p);
1773 if (error != 0)
1774 return (error);
1775 error = soreserve(so, udp_sendspace, udp_recvspace);
1776 if (error != 0)
1777 return (error);
1778 inp = (struct inpcb *)so->so_pcb;
1779 inp->inp_vflag |= INP_IPV4;
1780 inp->inp_ip_ttl = ip_defttl;
1781 if (nstat_collect)
1782 nstat_udp_new_pcb(inp);
1783 return (0);
1784 }
1785
1786 static int
1787 udp_bind(struct socket *so, struct sockaddr *nam, struct proc *p)
1788 {
1789 struct inpcb *inp;
1790 int error;
1791
1792 if (nam->sa_family != 0 && nam->sa_family != AF_INET &&
1793 nam->sa_family != AF_INET6)
1794 return (EAFNOSUPPORT);
1795
1796 inp = sotoinpcb(so);
1797 if (inp == NULL
1798 #if NECP
1799 || (necp_socket_should_use_flow_divert(inp))
1800 #endif /* NECP */
1801 )
1802 return (inp == NULL ? EINVAL : EPROTOTYPE);
1803 error = in_pcbbind(inp, nam, p);
1804 return (error);
1805 }
1806
1807 static int
1808 udp_connect(struct socket *so, struct sockaddr *nam, struct proc *p)
1809 {
1810 struct inpcb *inp;
1811 int error;
1812
1813 inp = sotoinpcb(so);
1814 if (inp == NULL
1815 #if NECP
1816 || (necp_socket_should_use_flow_divert(inp))
1817 #endif /* NECP */
1818 )
1819 return (inp == NULL ? EINVAL : EPROTOTYPE);
1820 if (inp->inp_faddr.s_addr != INADDR_ANY)
1821 return (EISCONN);
1822 error = in_pcbconnect(inp, nam, p, IFSCOPE_NONE, NULL);
1823 if (error == 0) {
1824 soisconnected(so);
1825 if (inp->inp_flowhash == 0)
1826 inp->inp_flowhash = inp_calc_flowhash(inp);
1827 }
1828 return (error);
1829 }
1830
1831 int
1832 udp_connectx_common(struct socket *so, int af,
1833 struct sockaddr_list **src_sl, struct sockaddr_list **dst_sl,
1834 struct proc *p, uint32_t ifscope, associd_t aid, connid_t *pcid,
1835 uint32_t flags, void *arg, uint32_t arglen)
1836 {
1837 #pragma unused(aid, flags, arg, arglen)
1838 struct sockaddr_entry *src_se = NULL, *dst_se = NULL;
1839 struct inpcb *inp = sotoinpcb(so);
1840 int error;
1841
1842 if (inp == NULL)
1843 return (EINVAL);
1844
1845 VERIFY(dst_sl != NULL);
1846
1847 /* select source (if specified) and destination addresses */
1848 error = in_selectaddrs(af, src_sl, &src_se, dst_sl, &dst_se);
1849 if (error != 0)
1850 return (error);
1851
1852 VERIFY(*dst_sl != NULL && dst_se != NULL);
1853 VERIFY(src_se == NULL || *src_sl != NULL);
1854 VERIFY(dst_se->se_addr->sa_family == af);
1855 VERIFY(src_se == NULL || src_se->se_addr->sa_family == af);
1856
1857 #if NECP
1858 inp_update_necp_policy(inp, src_se ? src_se->se_addr : NULL, dst_se ? dst_se->se_addr : NULL, ifscope);
1859 #endif /* NECP */
1860
1861 /* bind socket to the specified interface, if requested */
1862 if (ifscope != IFSCOPE_NONE &&
1863 (error = inp_bindif(inp, ifscope, NULL)) != 0)
1864 return (error);
1865
1866 /* if source address and/or port is specified, bind to it */
1867 if (src_se != NULL) {
1868 struct sockaddr *sa = src_se->se_addr;
1869 error = sobindlock(so, sa, 0); /* already locked */
1870 if (error != 0)
1871 return (error);
1872 }
1873
1874 switch (af) {
1875 case AF_INET:
1876 error = udp_connect(so, dst_se->se_addr, p);
1877 break;
1878 #if INET6
1879 case AF_INET6:
1880 error = udp6_connect(so, dst_se->se_addr, p);
1881 break;
1882 #endif /* INET6 */
1883 default:
1884 VERIFY(0);
1885 /* NOTREACHED */
1886 }
1887
1888 if (error == 0 && pcid != NULL)
1889 *pcid = 1; /* there is only 1 connection for a UDP */
1890
1891 return (error);
1892 }
1893
1894 static int
1895 udp_connectx(struct socket *so, struct sockaddr_list **src_sl,
1896 struct sockaddr_list **dst_sl, struct proc *p, uint32_t ifscope,
1897 associd_t aid, connid_t *pcid, uint32_t flags, void *arg,
1898 uint32_t arglen)
1899 {
1900 return (udp_connectx_common(so, AF_INET, src_sl, dst_sl,
1901 p, ifscope, aid, pcid, flags, arg, arglen));
1902 }
1903
1904 static int
1905 udp_detach(struct socket *so)
1906 {
1907 struct inpcb *inp;
1908
1909 inp = sotoinpcb(so);
1910 if (inp == NULL) {
1911 panic("%s: so=%p null inp\n", __func__, so);
1912 /* NOTREACHED */
1913 }
1914
1915 /*
1916 * If this is a socket that does not want to wakeup the device
1917 * for it's traffic, the application might be waiting for
1918 * close to complete before going to sleep. Send a notification
1919 * for this kind of sockets
1920 */
1921 if (so->so_options & SO_NOWAKEFROMSLEEP)
1922 socket_post_kev_msg_closed(so);
1923
1924 in_pcbdetach(inp);
1925 inp->inp_state = INPCB_STATE_DEAD;
1926 return (0);
1927 }
1928
1929 static int
1930 udp_disconnect(struct socket *so)
1931 {
1932 struct inpcb *inp;
1933
1934 inp = sotoinpcb(so);
1935 if (inp == NULL
1936 #if NECP
1937 || (necp_socket_should_use_flow_divert(inp))
1938 #endif /* NECP */
1939 )
1940 return (inp == NULL ? EINVAL : EPROTOTYPE);
1941 if (inp->inp_faddr.s_addr == INADDR_ANY)
1942 return (ENOTCONN);
1943
1944 in_pcbdisconnect(inp);
1945
1946 /* reset flow controlled state, just in case */
1947 inp_reset_fc_state(inp);
1948
1949 inp->inp_laddr.s_addr = INADDR_ANY;
1950 so->so_state &= ~SS_ISCONNECTED; /* XXX */
1951 inp->inp_last_outifp = NULL;
1952 return (0);
1953 }
1954
1955 static int
1956 udp_disconnectx(struct socket *so, associd_t aid, connid_t cid)
1957 {
1958 #pragma unused(cid)
1959 if (aid != ASSOCID_ANY && aid != ASSOCID_ALL)
1960 return (EINVAL);
1961
1962 return (udp_disconnect(so));
1963 }
1964
1965 static int
1966 udp_send(struct socket *so, int flags, struct mbuf *m,
1967 struct sockaddr *addr, struct mbuf *control, struct proc *p)
1968 {
1969 #pragma unused(flags)
1970 struct inpcb *inp;
1971
1972 inp = sotoinpcb(so);
1973 if (inp == NULL
1974 #if NECP
1975 || (necp_socket_should_use_flow_divert(inp))
1976 #endif /* NECP */
1977 ) {
1978 if (m != NULL)
1979 m_freem(m);
1980 if (control != NULL)
1981 m_freem(control);
1982 return (inp == NULL ? EINVAL : EPROTOTYPE);
1983 }
1984
1985 return (udp_output(inp, m, addr, control, p));
1986 }
1987
1988 int
1989 udp_shutdown(struct socket *so)
1990 {
1991 struct inpcb *inp;
1992
1993 inp = sotoinpcb(so);
1994 if (inp == NULL)
1995 return (EINVAL);
1996 socantsendmore(so);
1997 return (0);
1998 }
1999
2000 int
2001 udp_lock(struct socket *so, int refcount, void *debug)
2002 {
2003 void *lr_saved;
2004
2005 if (debug == NULL)
2006 lr_saved = __builtin_return_address(0);
2007 else
2008 lr_saved = debug;
2009
2010 if (so->so_pcb != NULL) {
2011 lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx,
2012 LCK_MTX_ASSERT_NOTOWNED);
2013 lck_mtx_lock(&((struct inpcb *)so->so_pcb)->inpcb_mtx);
2014 } else {
2015 panic("%s: so=%p NO PCB! lr=%p lrh= %s\n", __func__,
2016 so, lr_saved, solockhistory_nr(so));
2017 /* NOTREACHED */
2018 }
2019 if (refcount)
2020 so->so_usecount++;
2021
2022 so->lock_lr[so->next_lock_lr] = lr_saved;
2023 so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX;
2024 return (0);
2025 }
2026
2027 int
2028 udp_unlock(struct socket *so, int refcount, void *debug)
2029 {
2030 void *lr_saved;
2031
2032 if (debug == NULL)
2033 lr_saved = __builtin_return_address(0);
2034 else
2035 lr_saved = debug;
2036
2037 if (refcount)
2038 so->so_usecount--;
2039
2040 if (so->so_pcb == NULL) {
2041 panic("%s: so=%p NO PCB! lr=%p lrh= %s\n", __func__,
2042 so, lr_saved, solockhistory_nr(so));
2043 /* NOTREACHED */
2044 } else {
2045 lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx,
2046 LCK_MTX_ASSERT_OWNED);
2047 so->unlock_lr[so->next_unlock_lr] = lr_saved;
2048 so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX;
2049 lck_mtx_unlock(&((struct inpcb *)so->so_pcb)->inpcb_mtx);
2050 }
2051 return (0);
2052 }
2053
2054 lck_mtx_t *
2055 udp_getlock(struct socket *so, int locktype)
2056 {
2057 #pragma unused(locktype)
2058 struct inpcb *inp = sotoinpcb(so);
2059
2060 if (so->so_pcb == NULL) {
2061 panic("%s: so=%p NULL so_pcb lrh= %s\n", __func__,
2062 so, solockhistory_nr(so));
2063 /* NOTREACHED */
2064 }
2065 return (&inp->inpcb_mtx);
2066 }
2067
2068 /*
2069 * UDP garbage collector callback (inpcb_timer_func_t).
2070 *
2071 * Returns > 0 to keep timer active.
2072 */
2073 static void
2074 udp_gc(struct inpcbinfo *ipi)
2075 {
2076 struct inpcb *inp, *inpnxt;
2077 struct socket *so;
2078
2079 if (lck_rw_try_lock_exclusive(ipi->ipi_lock) == FALSE) {
2080 if (udp_gc_done == TRUE) {
2081 udp_gc_done = FALSE;
2082 /* couldn't get the lock, must lock next time */
2083 atomic_add_32(&ipi->ipi_gc_req.intimer_fast, 1);
2084 return;
2085 }
2086 lck_rw_lock_exclusive(ipi->ipi_lock);
2087 }
2088
2089 udp_gc_done = TRUE;
2090
2091 for (inp = udb.lh_first; inp != NULL; inp = inpnxt) {
2092 inpnxt = inp->inp_list.le_next;
2093
2094 /*
2095 * Skip unless it's STOPUSING; garbage collector will
2096 * be triggered by in_pcb_checkstate() upon setting
2097 * wantcnt to that value. If the PCB is already dead,
2098 * keep gc active to anticipate wantcnt changing.
2099 */
2100 if (inp->inp_wantcnt != WNT_STOPUSING)
2101 continue;
2102
2103 /*
2104 * Skip if busy, no hurry for cleanup. Keep gc active
2105 * and try the lock again during next round.
2106 */
2107 if (!lck_mtx_try_lock(&inp->inpcb_mtx)) {
2108 atomic_add_32(&ipi->ipi_gc_req.intimer_fast, 1);
2109 continue;
2110 }
2111
2112 /*
2113 * Keep gc active unless usecount is 0.
2114 */
2115 so = inp->inp_socket;
2116 if (so->so_usecount == 0) {
2117 if (inp->inp_state != INPCB_STATE_DEAD) {
2118 #if INET6
2119 if (SOCK_CHECK_DOM(so, PF_INET6))
2120 in6_pcbdetach(inp);
2121 else
2122 #endif /* INET6 */
2123 in_pcbdetach(inp);
2124 }
2125 in_pcbdispose(inp);
2126 } else {
2127 lck_mtx_unlock(&inp->inpcb_mtx);
2128 atomic_add_32(&ipi->ipi_gc_req.intimer_fast, 1);
2129 }
2130 }
2131 lck_rw_done(ipi->ipi_lock);
2132
2133 return;
2134 }
2135
2136 static int
2137 udp_getstat SYSCTL_HANDLER_ARGS
2138 {
2139 #pragma unused(oidp, arg1, arg2)
2140 if (req->oldptr == USER_ADDR_NULL)
2141 req->oldlen = (size_t)sizeof (struct udpstat);
2142
2143 return (SYSCTL_OUT(req, &udpstat, MIN(sizeof (udpstat), req->oldlen)));
2144 }
2145
2146 void
2147 udp_in_cksum_stats(u_int32_t len)
2148 {
2149 udpstat.udps_rcv_swcsum++;
2150 udpstat.udps_rcv_swcsum_bytes += len;
2151 }
2152
2153 void
2154 udp_out_cksum_stats(u_int32_t len)
2155 {
2156 udpstat.udps_snd_swcsum++;
2157 udpstat.udps_snd_swcsum_bytes += len;
2158 }
2159
2160 #if INET6
2161 void
2162 udp_in6_cksum_stats(u_int32_t len)
2163 {
2164 udpstat.udps_rcv6_swcsum++;
2165 udpstat.udps_rcv6_swcsum_bytes += len;
2166 }
2167
2168 void
2169 udp_out6_cksum_stats(u_int32_t len)
2170 {
2171 udpstat.udps_snd6_swcsum++;
2172 udpstat.udps_snd6_swcsum_bytes += len;
2173 }
2174 #endif /* INET6 */
2175
2176 /*
2177 * Checksum extended UDP header and data.
2178 */
2179 static int
2180 udp_input_checksum(struct mbuf *m, struct udphdr *uh, int off, int ulen)
2181 {
2182 struct ifnet *ifp = m->m_pkthdr.rcvif;
2183 struct ip *ip = mtod(m, struct ip *);
2184 struct ipovly *ipov = (struct ipovly *)ip;
2185
2186 if (uh->uh_sum == 0) {
2187 udpstat.udps_nosum++;
2188 return (0);
2189 }
2190
2191 if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) ||
2192 (m->m_pkthdr.pkt_flags & PKTF_LOOP)) &&
2193 (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) {
2194 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
2195 uh->uh_sum = m->m_pkthdr.csum_rx_val;
2196 } else {
2197 uint16_t sum = m->m_pkthdr.csum_rx_val;
2198 uint16_t start = m->m_pkthdr.csum_rx_start;
2199
2200 /*
2201 * Perform 1's complement adjustment of octets
2202 * that got included/excluded in the hardware-
2203 * calculated checksum value. Ignore cases
2204 * where the value includes or excludes the
2205 * IP header span, as the sum for those octets
2206 * would already be 0xffff and thus no-op.
2207 */
2208 if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) &&
2209 start != 0 && (off - start) != off) {
2210 #if BYTE_ORDER != BIG_ENDIAN
2211 if (start < off) {
2212 HTONS(ip->ip_len);
2213 HTONS(ip->ip_off);
2214 }
2215 #endif /* BYTE_ORDER != BIG_ENDIAN */
2216 /* callee folds in sum */
2217 sum = m_adj_sum16(m, start, off, sum);
2218 #if BYTE_ORDER != BIG_ENDIAN
2219 if (start < off) {
2220 NTOHS(ip->ip_off);
2221 NTOHS(ip->ip_len);
2222 }
2223 #endif /* BYTE_ORDER != BIG_ENDIAN */
2224 }
2225
2226 /* callee folds in sum */
2227 uh->uh_sum = in_pseudo(ip->ip_src.s_addr,
2228 ip->ip_dst.s_addr, sum + htonl(ulen + IPPROTO_UDP));
2229 }
2230 uh->uh_sum ^= 0xffff;
2231 } else {
2232 uint16_t ip_sum;
2233 char b[9];
2234
2235 bcopy(ipov->ih_x1, b, sizeof (ipov->ih_x1));
2236 bzero(ipov->ih_x1, sizeof (ipov->ih_x1));
2237 ip_sum = ipov->ih_len;
2238 ipov->ih_len = uh->uh_ulen;
2239 uh->uh_sum = in_cksum(m, ulen + sizeof (struct ip));
2240 bcopy(b, ipov->ih_x1, sizeof (ipov->ih_x1));
2241 ipov->ih_len = ip_sum;
2242
2243 udp_in_cksum_stats(ulen);
2244 }
2245
2246 if (uh->uh_sum != 0) {
2247 udpstat.udps_badsum++;
2248 IF_UDP_STATINC(ifp, badchksum);
2249 return (-1);
2250 }
2251
2252 return (0);
2253 }