]> git.saurik.com Git - apple/xnu.git/blob - iokit/Kernel/IOBufferMemoryDescriptor.cpp
xnu-201.19.tar.gz
[apple/xnu.git] / iokit / Kernel / IOBufferMemoryDescriptor.cpp
1 /*
2 * Copyright (c) 1998-2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 #include <IOKit/assert.h>
23 #include <IOKit/system.h>
24
25 #include <IOKit/IOLib.h>
26 #include <IOKit/IOBufferMemoryDescriptor.h>
27
28 __BEGIN_DECLS
29 void ipc_port_release_send(ipc_port_t port);
30 __END_DECLS
31
32 extern "C" vm_map_t IOPageableMapForAddress( vm_address_t address );
33
34 #define super IOGeneralMemoryDescriptor
35 OSDefineMetaClassAndStructors(IOBufferMemoryDescriptor,
36 IOGeneralMemoryDescriptor);
37
38 bool IOBufferMemoryDescriptor::initWithAddress(
39 void * /* address */ ,
40 IOByteCount /* withLength */ ,
41 IODirection /* withDirection */ )
42 {
43 return false;
44 }
45
46 bool IOBufferMemoryDescriptor::initWithAddress(
47 vm_address_t /* address */ ,
48 IOByteCount /* withLength */ ,
49 IODirection /* withDirection */ ,
50 task_t /* withTask */ )
51 {
52 return false;
53 }
54
55 bool IOBufferMemoryDescriptor::initWithPhysicalAddress(
56 IOPhysicalAddress /* address */ ,
57 IOByteCount /* withLength */ ,
58 IODirection /* withDirection */ )
59 {
60 return false;
61 }
62
63 bool IOBufferMemoryDescriptor::initWithPhysicalRanges(
64 IOPhysicalRange * /* ranges */ ,
65 UInt32 /* withCount */ ,
66 IODirection /* withDirection */ ,
67 bool /* asReference */ )
68 {
69 return false;
70 }
71
72 bool IOBufferMemoryDescriptor::initWithRanges(
73 IOVirtualRange * /* ranges */ ,
74 UInt32 /* withCount */ ,
75 IODirection /* withDirection */ ,
76 task_t /* withTask */ ,
77 bool /* asReference */ )
78 {
79 return false;
80 }
81
82 bool IOBufferMemoryDescriptor::initWithOptions(
83 IOOptionBits options,
84 vm_size_t capacity,
85 vm_offset_t alignment)
86 {
87 if (!capacity)
88 return false;
89
90 _options = options;
91 _capacity = capacity;
92 _physAddrs = 0;
93 _physSegCount = 0;
94 _buffer = 0;
95
96 if ((options & kIOMemorySharingTypeMask) && (alignment < page_size))
97 alignment = page_size;
98
99 _alignment = alignment;
100 if (options & kIOMemoryPageable)
101 /* Allocate some kernel address space. */
102 _buffer = IOMallocPageable(capacity, alignment);
103 /* Allocate a wired-down buffer inside kernel space. */
104 else if (options & kIOMemoryPhysicallyContiguous)
105 _buffer = IOMallocContiguous(capacity, alignment, 0);
106 else if (alignment > 1)
107 _buffer = IOMallocAligned(capacity, alignment);
108 else
109 _buffer = IOMalloc(capacity);
110
111 if (!_buffer)
112 return false;
113
114 _singleRange.v.address = (vm_address_t) _buffer;
115 _singleRange.v.length = capacity;
116
117 if (!super::initWithRanges(&_singleRange.v, 1,
118 (IODirection) (options & kIOMemoryDirectionMask),
119 kernel_task, true))
120 return false;
121
122 if (options & kIOMemoryPageable) {
123 _flags |= kIOMemoryRequiresWire;
124
125 kern_return_t kr;
126 ipc_port_t sharedMem = (ipc_port_t) _memEntry;
127 vm_size_t size = round_page(_ranges.v[0].length);
128
129 // must create the entry before any pages are allocated
130 if( 0 == sharedMem) {
131 kr = mach_make_memory_entry( IOPageableMapForAddress( _ranges.v[0].address ),
132 &size, _ranges.v[0].address,
133 VM_PROT_READ | VM_PROT_WRITE, &sharedMem,
134 NULL );
135 if( (KERN_SUCCESS == kr) && (size != round_page(_ranges.v[0].length))) {
136 ipc_port_release_send( sharedMem );
137 kr = kIOReturnVMError;
138 }
139 if( KERN_SUCCESS != kr)
140 sharedMem = 0;
141 _memEntry = (void *) sharedMem;
142 }
143
144 } else {
145 /* Precompute virtual-to-physical page mappings. */
146 vm_address_t inBuffer = (vm_address_t) _buffer;
147 _physSegCount = atop(trunc_page(inBuffer + capacity - 1) -
148 trunc_page(inBuffer)) + 1;
149 _physAddrs = IONew(IOPhysicalAddress, _physSegCount);
150 if (!_physAddrs)
151 return false;
152
153 inBuffer = trunc_page(inBuffer);
154 for (unsigned i = 0; i < _physSegCount; i++) {
155 _physAddrs[i] = pmap_extract(get_task_pmap(kernel_task), inBuffer);
156 assert(_physAddrs[i]); /* supposed to be wired */
157 inBuffer += page_size;
158 }
159 }
160
161 setLength(capacity);
162
163 return true;
164 }
165
166 IOBufferMemoryDescriptor * IOBufferMemoryDescriptor::withOptions(
167 IOOptionBits options,
168 vm_size_t capacity,
169 vm_offset_t alignment = 1)
170 {
171 IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor;
172
173 if (me && !me->initWithOptions(options, capacity, alignment)) {
174 me->release();
175 me = 0;
176 }
177 return me;
178 }
179
180
181 /*
182 * withCapacity:
183 *
184 * Returns a new IOBufferMemoryDescriptor with a buffer large enough to
185 * hold capacity bytes. The descriptor's length is initially set to the capacity.
186 */
187 IOBufferMemoryDescriptor *
188 IOBufferMemoryDescriptor::withCapacity(vm_size_t inCapacity,
189 IODirection inDirection,
190 bool inContiguous)
191 {
192 return( IOBufferMemoryDescriptor::withOptions(
193 inDirection | kIOMemoryUnshared
194 | (inContiguous ? kIOMemoryPhysicallyContiguous : 0),
195 inCapacity, inContiguous ? inCapacity : 1 ));
196 }
197
198 /*
199 * initWithBytes:
200 *
201 * Initialize a new IOBufferMemoryDescriptor preloaded with bytes (copied).
202 * The descriptor's length and capacity are set to the input buffer's size.
203 */
204 bool IOBufferMemoryDescriptor::initWithBytes(const void * inBytes,
205 vm_size_t inLength,
206 IODirection inDirection,
207 bool inContiguous)
208 {
209 if (!initWithOptions(
210 inDirection | kIOMemoryUnshared
211 | (inContiguous ? kIOMemoryPhysicallyContiguous : 0),
212 inLength, inLength ))
213 return false;
214
215 // start out with no data
216 setLength(0);
217
218 if (!appendBytes(inBytes, inLength))
219 return false;
220
221 return true;
222 }
223
224 /*
225 * withBytes:
226 *
227 * Returns a new IOBufferMemoryDescriptor preloaded with bytes (copied).
228 * The descriptor's length and capacity are set to the input buffer's size.
229 */
230 IOBufferMemoryDescriptor *
231 IOBufferMemoryDescriptor::withBytes(const void * inBytes,
232 vm_size_t inLength,
233 IODirection inDirection,
234 bool inContiguous)
235 {
236 IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor;
237
238 if (me && !me->initWithBytes(inBytes, inLength, inDirection, inContiguous)){
239 me->release();
240 me = 0;
241 }
242 return me;
243 }
244
245 /*
246 * free:
247 *
248 * Free resources
249 */
250 void IOBufferMemoryDescriptor::free()
251 {
252 IOOptionBits options = _options;
253 vm_size_t size = _capacity;
254 void * buffer = _buffer;
255 vm_offset_t alignment = _alignment;
256
257 if (_physAddrs)
258 IODelete(_physAddrs, IOPhysicalAddress, _physSegCount);
259
260 /* super::free may unwire - deallocate buffer afterwards */
261 super::free();
262
263 if (buffer) {
264 if (options & kIOMemoryPageable)
265 IOFreePageable(buffer, size);
266 else {
267 if (options & kIOMemoryPhysicallyContiguous)
268 IOFreeContiguous(buffer, size);
269 else if (alignment > 1)
270 IOFreeAligned(buffer, size);
271 else
272 IOFree(buffer, size);
273 }
274 }
275 }
276
277 /*
278 * getCapacity:
279 *
280 * Get the buffer capacity
281 */
282 vm_size_t IOBufferMemoryDescriptor::getCapacity() const
283 {
284 return _capacity;
285 }
286
287 /*
288 * setLength:
289 *
290 * Change the buffer length of the memory descriptor. When a new buffer
291 * is created, the initial length of the buffer is set to be the same as
292 * the capacity. The length can be adjusted via setLength for a shorter
293 * transfer (there is no need to create more buffer descriptors when you
294 * can reuse an existing one, even for different transfer sizes). Note
295 * that the specified length must not exceed the capacity of the buffer.
296 */
297 void IOBufferMemoryDescriptor::setLength(vm_size_t length)
298 {
299 assert(length <= _capacity);
300
301 _length = length;
302 _singleRange.v.length = length;
303 }
304
305 /*
306 * setDirection:
307 *
308 * Change the direction of the transfer. This method allows one to redirect
309 * the descriptor's transfer direction. This eliminates the need to destroy
310 * and create new buffers when different transfer directions are needed.
311 */
312 void IOBufferMemoryDescriptor::setDirection(IODirection direction)
313 {
314 _direction = direction;
315 }
316
317 /*
318 * appendBytes:
319 *
320 * Add some data to the end of the buffer. This method automatically
321 * maintains the memory descriptor buffer length. Note that appendBytes
322 * will not copy past the end of the memory descriptor's current capacity.
323 */
324 bool
325 IOBufferMemoryDescriptor::appendBytes(const void * bytes, vm_size_t withLength)
326 {
327 vm_size_t actualBytesToCopy = min(withLength, _capacity - _length);
328
329 assert(_length <= _capacity);
330 bcopy(/* from */ bytes, (void *)(_singleRange.v.address + _length),
331 actualBytesToCopy);
332 _length += actualBytesToCopy;
333 _singleRange.v.length += actualBytesToCopy;
334
335 return true;
336 }
337
338 /*
339 * getBytesNoCopy:
340 *
341 * Return the virtual address of the beginning of the buffer
342 */
343 void * IOBufferMemoryDescriptor::getBytesNoCopy()
344 {
345 return (void *)_singleRange.v.address;
346 }
347
348 /*
349 * getBytesNoCopy:
350 *
351 * Return the virtual address of an offset from the beginning of the buffer
352 */
353 void *
354 IOBufferMemoryDescriptor::getBytesNoCopy(vm_size_t start, vm_size_t withLength)
355 {
356 if (start < _length && (start + withLength) <= _length)
357 return (void *)(_singleRange.v.address + start);
358 return 0;
359 }
360
361 /*
362 * getPhysicalSegment:
363 *
364 * Get the physical address of the buffer, relative to the current position.
365 * If the current position is at the end of the buffer, a zero is returned.
366 */
367 IOPhysicalAddress
368 IOBufferMemoryDescriptor::getPhysicalSegment(IOByteCount offset,
369 IOByteCount * lengthOfSegment)
370 {
371 IOPhysicalAddress physAddr;
372
373 if( offset != _position)
374 setPosition( offset );
375
376 assert(_position <= _length);
377
378 /* Fail gracefully if the position is at (or past) the end-of-buffer. */
379 if (_position >= _length) {
380 *lengthOfSegment = 0;
381 return 0;
382 }
383
384 if (_options & kIOMemoryPageable) {
385 physAddr = super::getPhysicalSegment(offset, lengthOfSegment);
386
387 } else {
388 /* Compute the largest contiguous physical length possible. */
389 vm_address_t actualPos = _singleRange.v.address + _position;
390 vm_address_t actualPage = trunc_page(actualPos);
391 unsigned physInd = atop(actualPage-trunc_page(_singleRange.v.address));
392
393 vm_size_t physicalLength = actualPage + page_size - actualPos;
394 for (unsigned index = physInd + 1; index < _physSegCount &&
395 _physAddrs[index] == _physAddrs[index-1] + page_size; index++) {
396 physicalLength += page_size;
397 }
398
399 /* Clip contiguous physical length at the end-of-buffer. */
400 if (physicalLength > _length - _position)
401 physicalLength = _length - _position;
402
403 *lengthOfSegment = physicalLength;
404 physAddr = _physAddrs[physInd] + (actualPos - actualPage);
405 }
406
407 return physAddr;
408 }
409
410 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 0);
411 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 1);
412 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 2);
413 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 3);
414 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 4);
415 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 5);
416 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 6);
417 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 7);
418 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 8);
419 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 9);
420 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 10);
421 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 11);
422 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 12);
423 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 13);
424 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 14);
425 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 15);