2 * Copyright (c) 2019-2020 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
59 * Memory Object Management.
62 #include <kern/host_statistics.h>
63 #include <kern/kalloc.h>
64 #include <kern/ipc_kobject.h>
66 #include <machine/atomic.h>
68 #include <mach/memory_object_control.h>
69 #include <mach/memory_object_types.h>
72 #include <vm/memory_object.h>
73 #include <vm/vm_compressor_pager.h>
74 #include <vm/vm_external.h>
75 #include <vm/vm_pageout.h>
76 #include <vm/vm_protos.h>
78 /* memory_object interfaces */
79 void compressor_memory_object_reference(memory_object_t mem_obj
);
80 void compressor_memory_object_deallocate(memory_object_t mem_obj
);
81 kern_return_t
compressor_memory_object_init(
82 memory_object_t mem_obj
,
83 memory_object_control_t control
,
84 memory_object_cluster_size_t pager_page_size
);
85 kern_return_t
compressor_memory_object_terminate(memory_object_t mem_obj
);
86 kern_return_t
compressor_memory_object_data_request(
87 memory_object_t mem_obj
,
88 memory_object_offset_t offset
,
89 memory_object_cluster_size_t length
,
90 __unused vm_prot_t protection_required
,
91 memory_object_fault_info_t fault_info
);
92 kern_return_t
compressor_memory_object_data_return(
93 memory_object_t mem_obj
,
94 memory_object_offset_t offset
,
95 memory_object_cluster_size_t size
,
96 __unused memory_object_offset_t
*resid_offset
,
97 __unused
int *io_error
,
98 __unused boolean_t dirty
,
99 __unused boolean_t kernel_copy
,
100 __unused
int upl_flags
);
101 kern_return_t
compressor_memory_object_data_initialize(
102 memory_object_t mem_obj
,
103 memory_object_offset_t offset
,
104 memory_object_cluster_size_t size
);
105 kern_return_t
compressor_memory_object_data_unlock(
106 __unused memory_object_t mem_obj
,
107 __unused memory_object_offset_t offset
,
108 __unused memory_object_size_t size
,
109 __unused vm_prot_t desired_access
);
110 kern_return_t
compressor_memory_object_synchronize(
111 memory_object_t mem_obj
,
112 memory_object_offset_t offset
,
113 memory_object_size_t length
,
114 __unused vm_sync_t flags
);
115 kern_return_t
compressor_memory_object_map(
116 __unused memory_object_t mem_obj
,
117 __unused vm_prot_t prot
);
118 kern_return_t
compressor_memory_object_last_unmap(memory_object_t mem_obj
);
119 kern_return_t
compressor_memory_object_data_reclaim(
120 __unused memory_object_t mem_obj
,
121 __unused boolean_t reclaim_backing_store
);
123 const struct memory_object_pager_ops compressor_pager_ops
= {
124 .memory_object_reference
= compressor_memory_object_reference
,
125 .memory_object_deallocate
= compressor_memory_object_deallocate
,
126 .memory_object_init
= compressor_memory_object_init
,
127 .memory_object_terminate
= compressor_memory_object_terminate
,
128 .memory_object_data_request
= compressor_memory_object_data_request
,
129 .memory_object_data_return
= compressor_memory_object_data_return
,
130 .memory_object_data_initialize
= compressor_memory_object_data_initialize
,
131 .memory_object_data_unlock
= compressor_memory_object_data_unlock
,
132 .memory_object_synchronize
= compressor_memory_object_synchronize
,
133 .memory_object_map
= compressor_memory_object_map
,
134 .memory_object_last_unmap
= compressor_memory_object_last_unmap
,
135 .memory_object_data_reclaim
= compressor_memory_object_data_reclaim
,
136 .memory_object_pager_name
= "compressor pager"
139 /* internal data structures */
142 uint64_t data_returns
;
143 uint64_t data_requests
;
149 } compressor_pager_stats
;
151 typedef int compressor_slot_t
;
153 typedef struct compressor_pager
{
154 /* mandatory generic header */
155 struct memory_object cpgr_hdr
;
157 /* pager-specific data */
159 unsigned int cpgr_references
;
160 unsigned int cpgr_num_slots
;
161 unsigned int cpgr_num_slots_occupied
;
163 compressor_slot_t cpgr_eslots
[2]; /* embedded slots */
164 compressor_slot_t
*cpgr_dslots
; /* direct slots */
165 compressor_slot_t
**cpgr_islots
; /* indirect slots */
167 } *compressor_pager_t
;
169 #define compressor_pager_lookup(_mem_obj_, _cpgr_) \
171 if (_mem_obj_ == NULL || \
172 _mem_obj_->mo_pager_ops != &compressor_pager_ops) { \
175 _cpgr_ = (compressor_pager_t) _mem_obj_; \
179 zone_t compressor_pager_zone
;
181 LCK_GRP_DECLARE(compressor_pager_lck_grp
, "compressor_pager");
183 #define compressor_pager_lock(_cpgr_) \
184 lck_mtx_lock(&(_cpgr_)->cpgr_lock)
185 #define compressor_pager_unlock(_cpgr_) \
186 lck_mtx_unlock(&(_cpgr_)->cpgr_lock)
187 #define compressor_pager_lock_init(_cpgr_) \
188 lck_mtx_init(&(_cpgr_)->cpgr_lock, &compressor_pager_lck_grp, LCK_ATTR_NULL)
189 #define compressor_pager_lock_destroy(_cpgr_) \
190 lck_mtx_destroy(&(_cpgr_)->cpgr_lock, &compressor_pager_lck_grp)
192 #define COMPRESSOR_SLOTS_CHUNK_SIZE (512)
193 #define COMPRESSOR_SLOTS_PER_CHUNK (COMPRESSOR_SLOTS_CHUNK_SIZE / sizeof (compressor_slot_t))
195 /* forward declarations */
196 unsigned int compressor_pager_slots_chunk_free(compressor_slot_t
*chunk
,
200 void compressor_pager_slot_lookup(
201 compressor_pager_t pager
,
203 memory_object_offset_t offset
,
204 compressor_slot_t
**slot_pp
);
206 #if defined(__LP64__)
208 /* restricted VA zones for slots */
210 #define NUM_SLOTS_ZONES 3
212 static const size_t compressor_slots_zones_sizes
[NUM_SLOTS_ZONES
] = {
215 COMPRESSOR_SLOTS_CHUNK_SIZE
218 static const char * compressor_slots_zones_names
[NUM_SLOTS_ZONES
] = {
219 "compressor_slots.16",
220 "compressor_slots.64",
221 "compressor_slots.512"
225 compressor_slots_zones
[NUM_SLOTS_ZONES
];
227 #endif /* defined(__LP64__) */
230 zfree_slot_array(compressor_slot_t
*slots
, size_t size
);
231 static compressor_slot_t
*
232 zalloc_slot_array(size_t size
, zalloc_flags_t
);
236 compressor_memory_object_init(
237 memory_object_t mem_obj
,
238 memory_object_control_t control
,
239 __unused memory_object_cluster_size_t pager_page_size
)
241 compressor_pager_t pager
;
243 assert(pager_page_size
== PAGE_SIZE
);
245 memory_object_control_reference(control
);
247 compressor_pager_lookup(mem_obj
, pager
);
248 compressor_pager_lock(pager
);
250 if (pager
->cpgr_hdr
.mo_control
!= MEMORY_OBJECT_CONTROL_NULL
) {
251 panic("compressor_memory_object_init: bad request");
253 pager
->cpgr_hdr
.mo_control
= control
;
255 compressor_pager_unlock(pager
);
261 compressor_memory_object_synchronize(
262 __unused memory_object_t mem_obj
,
263 __unused memory_object_offset_t offset
,
264 __unused memory_object_size_t length
,
265 __unused vm_sync_t flags
)
267 panic("compressor_memory_object_synchronize: memory_object_synchronize no longer supported\n");
272 compressor_memory_object_map(
273 __unused memory_object_t mem_obj
,
274 __unused vm_prot_t prot
)
276 panic("compressor_memory_object_map");
281 compressor_memory_object_last_unmap(
282 __unused memory_object_t mem_obj
)
284 panic("compressor_memory_object_last_unmap");
289 compressor_memory_object_data_reclaim(
290 __unused memory_object_t mem_obj
,
291 __unused boolean_t reclaim_backing_store
)
293 panic("compressor_memory_object_data_reclaim");
298 compressor_memory_object_terminate(
299 memory_object_t mem_obj
)
301 memory_object_control_t control
;
302 compressor_pager_t pager
;
305 * control port is a receive right, not a send right.
308 compressor_pager_lookup(mem_obj
, pager
);
309 compressor_pager_lock(pager
);
312 * After memory_object_terminate both memory_object_init
313 * and a no-senders notification are possible, so we need
314 * to clean up our reference to the memory_object_control
315 * to prepare for a new init.
318 control
= pager
->cpgr_hdr
.mo_control
;
319 pager
->cpgr_hdr
.mo_control
= MEMORY_OBJECT_CONTROL_NULL
;
321 compressor_pager_unlock(pager
);
324 * Now we deallocate our reference on the control.
326 memory_object_control_deallocate(control
);
331 compressor_memory_object_reference(
332 memory_object_t mem_obj
)
334 compressor_pager_t pager
;
336 compressor_pager_lookup(mem_obj
, pager
);
341 compressor_pager_lock(pager
);
342 assert(pager
->cpgr_references
> 0);
343 pager
->cpgr_references
++;
344 compressor_pager_unlock(pager
);
348 compressor_memory_object_deallocate(
349 memory_object_t mem_obj
)
351 compressor_pager_t pager
;
352 unsigned int num_slots_freed
;
355 * Because we don't give out multiple first references
356 * for a memory object, there can't be a race
357 * between getting a deallocate call and creating
358 * a new reference for the object.
361 compressor_pager_lookup(mem_obj
, pager
);
366 compressor_pager_lock(pager
);
367 if (--pager
->cpgr_references
> 0) {
368 compressor_pager_unlock(pager
);
373 * We shouldn't get a deallocation call
374 * when the kernel has the object cached.
376 if (pager
->cpgr_hdr
.mo_control
!= MEMORY_OBJECT_CONTROL_NULL
) {
377 panic("compressor_memory_object_deallocate(): bad request");
381 * Unlock the pager (though there should be no one
384 compressor_pager_unlock(pager
);
386 /* free the compressor slots */
389 compressor_slot_t
*chunk
;
391 num_chunks
= (pager
->cpgr_num_slots
+ COMPRESSOR_SLOTS_PER_CHUNK
- 1) / COMPRESSOR_SLOTS_PER_CHUNK
;
392 if (num_chunks
> 1) {
393 /* we have an array of chunks */
394 for (i
= 0; i
< num_chunks
; i
++) {
395 chunk
= pager
->cpgr_slots
.cpgr_islots
[i
];
398 compressor_pager_slots_chunk_free(
400 COMPRESSOR_SLOTS_PER_CHUNK
,
403 pager
->cpgr_slots
.cpgr_islots
[i
] = NULL
;
404 zfree_slot_array(chunk
, COMPRESSOR_SLOTS_CHUNK_SIZE
);
407 kheap_free(KHEAP_DEFAULT
, pager
->cpgr_slots
.cpgr_islots
,
408 num_chunks
* sizeof(pager
->cpgr_slots
.cpgr_islots
[0]));
409 pager
->cpgr_slots
.cpgr_islots
= NULL
;
410 } else if (pager
->cpgr_num_slots
> 2) {
411 chunk
= pager
->cpgr_slots
.cpgr_dslots
;
413 compressor_pager_slots_chunk_free(
415 pager
->cpgr_num_slots
,
418 pager
->cpgr_slots
.cpgr_dslots
= NULL
;
419 zfree_slot_array(chunk
,
420 (pager
->cpgr_num_slots
*
421 sizeof(pager
->cpgr_slots
.cpgr_dslots
[0])));
423 chunk
= &pager
->cpgr_slots
.cpgr_eslots
[0];
425 compressor_pager_slots_chunk_free(
427 pager
->cpgr_num_slots
,
432 compressor_pager_lock_destroy(pager
);
433 zfree(compressor_pager_zone
, pager
);
437 compressor_memory_object_data_request(
438 memory_object_t mem_obj
,
439 memory_object_offset_t offset
,
440 memory_object_cluster_size_t length
,
441 __unused vm_prot_t protection_required
,
442 __unused memory_object_fault_info_t fault_info
)
444 compressor_pager_t pager
;
446 compressor_slot_t
*slot_p
;
448 compressor_pager_stats
.data_requests
++;
451 * Request must be on a page boundary and a multiple of pages.
453 if ((offset
& PAGE_MASK
) != 0 || (length
& PAGE_MASK
) != 0) {
454 panic("compressor_memory_object_data_request(): bad alignment");
457 if ((uint32_t)(offset
/ PAGE_SIZE
) != (offset
/ PAGE_SIZE
)) {
458 panic("%s: offset 0x%llx overflow\n",
459 __FUNCTION__
, (uint64_t) offset
);
463 compressor_pager_lookup(mem_obj
, pager
);
466 /* we're only querying the pager for this page */
468 panic("compressor: data_request");
471 /* find the compressor slot for that page */
472 compressor_pager_slot_lookup(pager
, FALSE
, offset
, &slot_p
);
474 if (offset
/ PAGE_SIZE
>= pager
->cpgr_num_slots
) {
477 } else if (slot_p
== NULL
|| *slot_p
== 0) {
478 /* compressor does not have this page */
481 /* compressor does have this page */
488 * memory_object_data_initialize: check whether we already have each page, and
489 * write it if we do not. The implementation is far from optimized, and
490 * also assumes that the default_pager is single-threaded.
492 /* It is questionable whether or not a pager should decide what is relevant */
493 /* and what is not in data sent from the kernel. Data initialize has been */
494 /* changed to copy back all data sent to it in preparation for its eventual */
495 /* merge with data return. It is the kernel that should decide what pages */
496 /* to write back. As of the writing of this note, this is indeed the case */
497 /* the kernel writes back one page at a time through this interface */
500 compressor_memory_object_data_initialize(
501 memory_object_t mem_obj
,
502 memory_object_offset_t offset
,
503 memory_object_cluster_size_t size
)
505 compressor_pager_t pager
;
506 memory_object_offset_t cur_offset
;
508 compressor_pager_lookup(mem_obj
, pager
);
509 compressor_pager_lock(pager
);
511 for (cur_offset
= offset
;
512 cur_offset
< offset
+ size
;
513 cur_offset
+= PAGE_SIZE
) {
514 panic("do a data_return() if slot for this page is empty");
517 compressor_pager_unlock(pager
);
523 compressor_memory_object_data_unlock(
524 __unused memory_object_t mem_obj
,
525 __unused memory_object_offset_t offset
,
526 __unused memory_object_size_t size
,
527 __unused vm_prot_t desired_access
)
529 panic("compressor_memory_object_data_unlock()");
536 compressor_memory_object_data_return(
537 __unused memory_object_t mem_obj
,
538 __unused memory_object_offset_t offset
,
539 __unused memory_object_cluster_size_t size
,
540 __unused memory_object_offset_t
*resid_offset
,
541 __unused
int *io_error
,
542 __unused boolean_t dirty
,
543 __unused boolean_t kernel_copy
,
544 __unused
int upl_flags
)
546 panic("compressor: data_return");
551 * Routine: default_pager_memory_object_create
553 * Handle requests for memory objects from the
556 * Because we only give out the default memory
557 * manager port to the kernel, we don't have to
558 * be so paranoid about the contents.
561 compressor_memory_object_create(
562 memory_object_size_t new_size
,
563 memory_object_t
*new_mem_obj
)
565 compressor_pager_t pager
;
568 if ((uint32_t)(new_size
/ PAGE_SIZE
) != (new_size
/ PAGE_SIZE
)) {
569 /* 32-bit overflow for number of pages */
570 panic("%s: size 0x%llx overflow\n",
571 __FUNCTION__
, (uint64_t) new_size
);
572 return KERN_INVALID_ARGUMENT
;
575 pager
= (compressor_pager_t
) zalloc(compressor_pager_zone
);
577 return KERN_RESOURCE_SHORTAGE
;
580 compressor_pager_lock_init(pager
);
581 pager
->cpgr_references
= 1;
582 pager
->cpgr_num_slots
= (uint32_t)(new_size
/ PAGE_SIZE
);
583 pager
->cpgr_num_slots_occupied
= 0;
585 num_chunks
= (pager
->cpgr_num_slots
+ COMPRESSOR_SLOTS_PER_CHUNK
- 1) / COMPRESSOR_SLOTS_PER_CHUNK
;
586 if (num_chunks
> 1) {
587 pager
->cpgr_slots
.cpgr_islots
= kheap_alloc(KHEAP_DEFAULT
,
588 num_chunks
* sizeof(pager
->cpgr_slots
.cpgr_islots
[0]),
590 } else if (pager
->cpgr_num_slots
> 2) {
591 pager
->cpgr_slots
.cpgr_dslots
= zalloc_slot_array(pager
->cpgr_num_slots
*
592 sizeof(pager
->cpgr_slots
.cpgr_dslots
[0]), Z_WAITOK
| Z_ZERO
);
594 pager
->cpgr_slots
.cpgr_eslots
[0] = 0;
595 pager
->cpgr_slots
.cpgr_eslots
[1] = 0;
599 * Set up associations between this memory object
600 * and this compressor_pager structure
602 pager
->cpgr_hdr
.mo_ikot
= IKOT_MEMORY_OBJECT
;
603 pager
->cpgr_hdr
.mo_pager_ops
= &compressor_pager_ops
;
604 pager
->cpgr_hdr
.mo_control
= MEMORY_OBJECT_CONTROL_NULL
;
606 *new_mem_obj
= (memory_object_t
) pager
;
612 compressor_pager_slots_chunk_free(
613 compressor_slot_t
*chunk
,
620 unsigned int num_slots_freed
;
626 for (i
= 0; i
< num_slots
; i
++) {
628 retval
= vm_compressor_free(&chunk
[i
], flags
);
634 assert(flags
& C_DONT_BLOCK
);
643 return num_slots_freed
;
647 compressor_pager_slot_lookup(
648 compressor_pager_t pager
,
650 memory_object_offset_t offset
,
651 compressor_slot_t
**slot_pp
)
657 compressor_slot_t
*chunk
;
658 compressor_slot_t
*t_chunk
;
660 page_num
= (uint32_t)(offset
/ PAGE_SIZE
);
661 if (page_num
!= (offset
/ PAGE_SIZE
)) {
663 panic("%s: offset 0x%llx overflow\n",
664 __FUNCTION__
, (uint64_t) offset
);
668 if (page_num
>= pager
->cpgr_num_slots
) {
673 num_chunks
= (pager
->cpgr_num_slots
+ COMPRESSOR_SLOTS_PER_CHUNK
- 1) / COMPRESSOR_SLOTS_PER_CHUNK
;
674 if (num_chunks
> 1) {
675 /* we have an array of chunks */
676 chunk_idx
= page_num
/ COMPRESSOR_SLOTS_PER_CHUNK
;
677 chunk
= pager
->cpgr_slots
.cpgr_islots
[chunk_idx
];
679 if (chunk
== NULL
&& do_alloc
) {
680 t_chunk
= zalloc_slot_array(COMPRESSOR_SLOTS_CHUNK_SIZE
,
683 compressor_pager_lock(pager
);
685 if ((chunk
= pager
->cpgr_slots
.cpgr_islots
[chunk_idx
]) == NULL
) {
687 * On some platforms, the memory stores from
688 * the bzero(t_chunk) above might not have been
689 * made visible and another thread might see
690 * the contents of this new chunk before it's
691 * been fully zero-filled.
692 * This memory barrier should take care of this
693 * according to the platform requirements.
695 os_atomic_thread_fence(release
);
697 chunk
= pager
->cpgr_slots
.cpgr_islots
[chunk_idx
] = t_chunk
;
700 compressor_pager_unlock(pager
);
703 zfree_slot_array(t_chunk
, COMPRESSOR_SLOTS_CHUNK_SIZE
);
709 slot_idx
= page_num
% COMPRESSOR_SLOTS_PER_CHUNK
;
710 *slot_pp
= &chunk
[slot_idx
];
712 } else if (pager
->cpgr_num_slots
> 2) {
714 *slot_pp
= &pager
->cpgr_slots
.cpgr_dslots
[slot_idx
];
717 *slot_pp
= &pager
->cpgr_slots
.cpgr_eslots
[slot_idx
];
722 vm_compressor_pager_init(void)
724 /* embedded slot pointers in compressor_pager get packed, so VA restricted */
725 compressor_pager_zone
= zone_create_ext("compressor_pager",
726 sizeof(struct compressor_pager
), ZC_NOENCRYPT
,
727 ZONE_ID_ANY
, ^(zone_t z
){
728 #if defined(__LP64__)
729 zone_set_submap_idx(z
, Z_SUBMAP_IDX_VA_RESTRICTED_MAP
);
732 #endif /* defined(__LP64__) */
735 #if defined(__LP64__)
736 for (unsigned int idx
= 0; idx
< NUM_SLOTS_ZONES
; idx
++) {
737 compressor_slots_zones
[idx
] = zone_create_ext(
738 compressor_slots_zones_names
[idx
],
739 compressor_slots_zones_sizes
[idx
], ZC_NONE
,
740 ZONE_ID_ANY
, ^(zone_t z
){
741 zone_set_submap_idx(z
, Z_SUBMAP_IDX_VA_RESTRICTED_MAP
);
744 #endif /* defined(__LP64__) */
746 vm_compressor_init();
749 static compressor_slot_t
*
750 zalloc_slot_array(size_t size
, zalloc_flags_t flags
)
752 #if defined(__LP64__)
753 compressor_slot_t
*slots
= NULL
;
755 assert(size
<= COMPRESSOR_SLOTS_CHUNK_SIZE
);
756 for (unsigned int idx
= 0; idx
< NUM_SLOTS_ZONES
; idx
++) {
757 if (size
> compressor_slots_zones_sizes
[idx
]) {
760 slots
= zalloc_flags(compressor_slots_zones
[idx
], flags
);
764 #else /* defined(__LP64__) */
765 return kheap_alloc(KHEAP_DATA_BUFFERS
, size
, flags
);
766 #endif /* !defined(__LP64__) */
770 zfree_slot_array(compressor_slot_t
*slots
, size_t size
)
772 #if defined(__LP64__)
773 assert(size
<= COMPRESSOR_SLOTS_CHUNK_SIZE
);
774 for (unsigned int idx
= 0; idx
< NUM_SLOTS_ZONES
; idx
++) {
775 if (size
> compressor_slots_zones_sizes
[idx
]) {
778 zfree(compressor_slots_zones
[idx
], slots
);
781 #else /* defined(__LP64__) */
782 kheap_free(KHEAP_DATA_BUFFERS
, slots
, size
);
783 #endif /* !defined(__LP64__) */
787 vm_compressor_pager_put(
788 memory_object_t mem_obj
,
789 memory_object_offset_t offset
,
791 void **current_chead
,
793 int *compressed_count_delta_p
)
795 compressor_pager_t pager
;
796 compressor_slot_t
*slot_p
;
798 compressor_pager_stats
.put
++;
800 *compressed_count_delta_p
= 0;
802 /* This routine is called by the pageout thread. The pageout thread */
803 /* cannot be blocked by read activities unless the read activities */
804 /* Therefore the grant of vs lock must be done on a try versus a */
805 /* blocking basis. The code below relies on the fact that the */
806 /* interface is synchronous. Should this interface be again async */
807 /* for some type of pager in the future the pages will have to be */
808 /* returned through a separate, asynchronous path. */
810 compressor_pager_lookup(mem_obj
, pager
);
812 if ((uint32_t)(offset
/ PAGE_SIZE
) != (offset
/ PAGE_SIZE
)) {
814 panic("%s: offset 0x%llx overflow\n",
815 __FUNCTION__
, (uint64_t) offset
);
816 return KERN_RESOURCE_SHORTAGE
;
819 compressor_pager_slot_lookup(pager
, TRUE
, offset
, &slot_p
);
821 if (slot_p
== NULL
) {
823 panic("vm_compressor_pager_put: out of range");
827 * Already compressed: forget about the old one.
829 * This can happen after a vm_object_do_collapse() when
830 * the "backing_object" had some pages paged out and the
831 * "object" had an equivalent page resident.
833 vm_compressor_free(slot_p
, 0);
834 *compressed_count_delta_p
-= 1;
838 * If the compressor operation succeeds, we presumably don't need to
839 * undo any previous WIMG update, as all live mappings should be
843 if (vm_compressor_put(ppnum
, slot_p
, current_chead
, scratch_buf
)) {
844 return KERN_RESOURCE_SHORTAGE
;
846 *compressed_count_delta_p
+= 1;
853 vm_compressor_pager_get(
854 memory_object_t mem_obj
,
855 memory_object_offset_t offset
,
859 int *compressed_count_delta_p
)
861 compressor_pager_t pager
;
863 compressor_slot_t
*slot_p
;
865 compressor_pager_stats
.get
++;
867 *compressed_count_delta_p
= 0;
869 if ((uint32_t)(offset
/ PAGE_SIZE
) != (offset
/ PAGE_SIZE
)) {
870 panic("%s: offset 0x%llx overflow\n",
871 __FUNCTION__
, (uint64_t) offset
);
872 return KERN_MEMORY_ERROR
;
875 compressor_pager_lookup(mem_obj
, pager
);
877 /* find the compressor slot for that page */
878 compressor_pager_slot_lookup(pager
, FALSE
, offset
, &slot_p
);
880 if (offset
/ PAGE_SIZE
>= pager
->cpgr_num_slots
) {
882 kr
= KERN_MEMORY_FAILURE
;
883 } else if (slot_p
== NULL
|| *slot_p
== 0) {
884 /* compressor does not have this page */
885 kr
= KERN_MEMORY_ERROR
;
887 /* compressor does have this page */
890 *my_fault_type
= DBG_COMPRESSOR_FAULT
;
892 if (kr
== KERN_SUCCESS
) {
895 /* get the page from the compressor */
896 retval
= vm_compressor_get(ppnum
, slot_p
, flags
);
898 kr
= KERN_MEMORY_FAILURE
;
899 } else if (retval
== 1) {
900 *my_fault_type
= DBG_COMPRESSOR_SWAPIN_FAULT
;
901 } else if (retval
== -2) {
902 assert((flags
& C_DONT_BLOCK
));
907 if (kr
== KERN_SUCCESS
) {
908 assert(slot_p
!= NULL
);
911 * We got the page for a copy-on-write fault
912 * and we kept the original in place. Slot
916 *compressed_count_delta_p
-= 1;
924 vm_compressor_pager_state_clr(
925 memory_object_t mem_obj
,
926 memory_object_offset_t offset
)
928 compressor_pager_t pager
;
929 compressor_slot_t
*slot_p
;
930 unsigned int num_slots_freed
;
932 assert(VM_CONFIG_COMPRESSOR_IS_PRESENT
);
934 compressor_pager_stats
.state_clr
++;
936 if ((uint32_t)(offset
/ PAGE_SIZE
) != (offset
/ PAGE_SIZE
)) {
938 panic("%s: offset 0x%llx overflow\n",
939 __FUNCTION__
, (uint64_t) offset
);
943 compressor_pager_lookup(mem_obj
, pager
);
945 /* find the compressor slot for that page */
946 compressor_pager_slot_lookup(pager
, FALSE
, offset
, &slot_p
);
949 if (slot_p
&& *slot_p
!= 0) {
950 vm_compressor_free(slot_p
, 0);
952 assert(*slot_p
== 0);
955 return num_slots_freed
;
959 vm_compressor_pager_state_get(
960 memory_object_t mem_obj
,
961 memory_object_offset_t offset
)
963 compressor_pager_t pager
;
964 compressor_slot_t
*slot_p
;
966 assert(VM_CONFIG_COMPRESSOR_IS_PRESENT
);
968 compressor_pager_stats
.state_get
++;
970 if ((uint32_t)(offset
/ PAGE_SIZE
) != (offset
/ PAGE_SIZE
)) {
972 panic("%s: offset 0x%llx overflow\n",
973 __FUNCTION__
, (uint64_t) offset
);
974 return VM_EXTERNAL_STATE_ABSENT
;
977 compressor_pager_lookup(mem_obj
, pager
);
979 /* find the compressor slot for that page */
980 compressor_pager_slot_lookup(pager
, FALSE
, offset
, &slot_p
);
982 if (offset
/ PAGE_SIZE
>= pager
->cpgr_num_slots
) {
984 return VM_EXTERNAL_STATE_ABSENT
;
985 } else if (slot_p
== NULL
|| *slot_p
== 0) {
986 /* compressor does not have this page */
987 return VM_EXTERNAL_STATE_ABSENT
;
989 /* compressor does have this page */
990 return VM_EXTERNAL_STATE_EXISTS
;
995 vm_compressor_pager_reap_pages(
996 memory_object_t mem_obj
,
999 compressor_pager_t pager
;
1003 compressor_slot_t
*chunk
;
1004 unsigned int num_slots_freed
;
1006 compressor_pager_lookup(mem_obj
, pager
);
1007 if (pager
== NULL
) {
1011 compressor_pager_lock(pager
);
1013 /* reap the compressor slots */
1014 num_slots_freed
= 0;
1016 num_chunks
= (pager
->cpgr_num_slots
+ COMPRESSOR_SLOTS_PER_CHUNK
- 1) / COMPRESSOR_SLOTS_PER_CHUNK
;
1017 if (num_chunks
> 1) {
1018 /* we have an array of chunks */
1019 for (i
= 0; i
< num_chunks
; i
++) {
1020 chunk
= pager
->cpgr_slots
.cpgr_islots
[i
];
1021 if (chunk
!= NULL
) {
1023 compressor_pager_slots_chunk_free(
1025 COMPRESSOR_SLOTS_PER_CHUNK
,
1028 if (failures
== 0) {
1029 pager
->cpgr_slots
.cpgr_islots
[i
] = NULL
;
1030 zfree_slot_array(chunk
, COMPRESSOR_SLOTS_CHUNK_SIZE
);
1034 } else if (pager
->cpgr_num_slots
> 2) {
1035 chunk
= pager
->cpgr_slots
.cpgr_dslots
;
1037 compressor_pager_slots_chunk_free(
1039 pager
->cpgr_num_slots
,
1043 chunk
= &pager
->cpgr_slots
.cpgr_eslots
[0];
1045 compressor_pager_slots_chunk_free(
1047 pager
->cpgr_num_slots
,
1052 compressor_pager_unlock(pager
);
1054 return num_slots_freed
;
1058 vm_compressor_pager_transfer(
1059 memory_object_t dst_mem_obj
,
1060 memory_object_offset_t dst_offset
,
1061 memory_object_t src_mem_obj
,
1062 memory_object_offset_t src_offset
)
1064 compressor_pager_t src_pager
, dst_pager
;
1065 compressor_slot_t
*src_slot_p
, *dst_slot_p
;
1067 compressor_pager_stats
.transfer
++;
1069 /* find the compressor slot for the destination */
1070 assert((uint32_t) dst_offset
== dst_offset
);
1071 compressor_pager_lookup(dst_mem_obj
, dst_pager
);
1072 assert(dst_offset
/ PAGE_SIZE
< dst_pager
->cpgr_num_slots
);
1073 compressor_pager_slot_lookup(dst_pager
, TRUE
, (uint32_t) dst_offset
,
1075 assert(dst_slot_p
!= NULL
);
1076 assert(*dst_slot_p
== 0);
1078 /* find the compressor slot for the source */
1079 assert((uint32_t) src_offset
== src_offset
);
1080 compressor_pager_lookup(src_mem_obj
, src_pager
);
1081 assert(src_offset
/ PAGE_SIZE
< src_pager
->cpgr_num_slots
);
1082 compressor_pager_slot_lookup(src_pager
, FALSE
, (uint32_t) src_offset
,
1084 assert(src_slot_p
!= NULL
);
1085 assert(*src_slot_p
!= 0);
1087 /* transfer the slot from source to destination */
1088 vm_compressor_transfer(dst_slot_p
, src_slot_p
);
1089 OSAddAtomic(-1, &src_pager
->cpgr_num_slots_occupied
);
1090 OSAddAtomic(+1, &dst_pager
->cpgr_num_slots_occupied
);
1093 memory_object_offset_t
1094 vm_compressor_pager_next_compressed(
1095 memory_object_t mem_obj
,
1096 memory_object_offset_t offset
)
1098 compressor_pager_t pager
;
1099 uint32_t num_chunks
;
1103 compressor_slot_t
*chunk
;
1105 compressor_pager_lookup(mem_obj
, pager
);
1107 page_num
= (uint32_t)(offset
/ PAGE_SIZE
);
1108 if (page_num
!= (offset
/ PAGE_SIZE
)) {
1110 return (memory_object_offset_t
) -1;
1112 if (page_num
>= pager
->cpgr_num_slots
) {
1114 return (memory_object_offset_t
) -1;
1117 num_chunks
= ((pager
->cpgr_num_slots
+ COMPRESSOR_SLOTS_PER_CHUNK
- 1) /
1118 COMPRESSOR_SLOTS_PER_CHUNK
);
1120 if (num_chunks
== 1) {
1121 if (pager
->cpgr_num_slots
> 2) {
1122 chunk
= pager
->cpgr_slots
.cpgr_dslots
;
1124 chunk
= &pager
->cpgr_slots
.cpgr_eslots
[0];
1126 for (slot_idx
= page_num
;
1127 slot_idx
< pager
->cpgr_num_slots
;
1129 if (chunk
[slot_idx
] != 0) {
1130 /* found a non-NULL slot in this chunk */
1131 return (memory_object_offset_t
) (slot_idx
*
1135 return (memory_object_offset_t
) -1;
1138 /* we have an array of chunks; find the next non-NULL chunk */
1140 for (chunk_idx
= page_num
/ COMPRESSOR_SLOTS_PER_CHUNK
,
1141 slot_idx
= page_num
% COMPRESSOR_SLOTS_PER_CHUNK
;
1142 chunk_idx
< num_chunks
;
1145 chunk
= pager
->cpgr_slots
.cpgr_islots
[chunk_idx
];
1146 if (chunk
== NULL
) {
1147 /* no chunk here: try the next one */
1150 /* search for an occupied slot in this chunk */
1152 slot_idx
< COMPRESSOR_SLOTS_PER_CHUNK
;
1154 if (chunk
[slot_idx
] != 0) {
1155 /* found an occupied slot in this chunk */
1158 next_slot
= ((chunk_idx
*
1159 COMPRESSOR_SLOTS_PER_CHUNK
) +
1161 if (next_slot
>= pager
->cpgr_num_slots
) {
1162 /* went beyond end of object */
1163 return (memory_object_offset_t
) -1;
1165 return (memory_object_offset_t
) (next_slot
*
1170 return (memory_object_offset_t
) -1;
1174 vm_compressor_pager_get_count(
1175 memory_object_t mem_obj
)
1177 compressor_pager_t pager
;
1179 compressor_pager_lookup(mem_obj
, pager
);
1180 if (pager
== NULL
) {
1185 * The caller should have the VM object locked and one
1186 * needs that lock to do a page-in or page-out, so no
1187 * need to lock the pager here.
1189 assert(pager
->cpgr_num_slots_occupied
>= 0);
1191 return pager
->cpgr_num_slots_occupied
;
1195 vm_compressor_pager_count(
1196 memory_object_t mem_obj
,
1197 int compressed_count_delta
,
1198 boolean_t shared_lock
,
1199 vm_object_t object __unused
)
1201 compressor_pager_t pager
;
1203 if (compressed_count_delta
== 0) {
1207 compressor_pager_lookup(mem_obj
, pager
);
1208 if (pager
== NULL
) {
1212 if (compressed_count_delta
< 0) {
1213 assert(pager
->cpgr_num_slots_occupied
>=
1214 (unsigned int) -compressed_count_delta
);
1218 * The caller should have the VM object locked,
1219 * shared or exclusive.
1222 vm_object_lock_assert_shared(object
);
1223 OSAddAtomic(compressed_count_delta
,
1224 &pager
->cpgr_num_slots_occupied
);
1226 vm_object_lock_assert_exclusive(object
);
1227 pager
->cpgr_num_slots_occupied
+= compressed_count_delta
;
1233 vm_compressor_pager_relocate(
1234 memory_object_t mem_obj
,
1235 memory_object_offset_t offset
,
1236 void **current_chead
)
1239 * Has the page at this offset been compressed?
1242 compressor_slot_t
*slot_p
;
1243 compressor_pager_t dst_pager
;
1247 compressor_pager_lookup(mem_obj
, dst_pager
);
1248 if (dst_pager
== NULL
) {
1249 return KERN_FAILURE
;
1252 compressor_pager_slot_lookup(dst_pager
, FALSE
, offset
, &slot_p
);
1253 return vm_compressor_relocate(current_chead
, slot_p
);
1255 #endif /* CONFIG_FREEZE */
1257 #if DEVELOPMENT || DEBUG
1260 vm_compressor_pager_inject_error(memory_object_t mem_obj
,
1261 memory_object_offset_t offset
)
1263 kern_return_t result
= KERN_FAILURE
;
1264 compressor_slot_t
*slot_p
;
1265 compressor_pager_t pager
;
1269 compressor_pager_lookup(mem_obj
, pager
);
1270 if (pager
!= NULL
) {
1271 compressor_pager_slot_lookup(pager
, FALSE
, offset
, &slot_p
);
1272 if (slot_p
!= NULL
&& *slot_p
!= 0) {
1273 vm_compressor_inject_error(slot_p
);
1274 result
= KERN_SUCCESS
;