2 * Copyright (c) 2008-2016 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* trees.c -- output deflated data using Huffman coding
29 * Copyright (C) 1995-2005 Jean-loup Gailly
30 * For conditions of distribution and use, see copyright notice in zlib.h
36 * The "deflation" process uses several Huffman trees. The more
37 * common source values are represented by shorter bit sequences.
39 * Each code tree is stored in a compressed form which is itself
40 * a Huffman encoding of the lengths of all the code strings (in
41 * ascending order by source values). The actual code strings are
42 * reconstructed from the lengths in the inflate process, as described
43 * in the deflate specification.
47 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
48 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
51 * Data Compression: Methods and Theory, pp. 49-50.
52 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
56 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
61 /* #define GEN_TREES_H */
69 /* ===========================================================================
74 /* Bit length codes must not exceed MAX_BL_BITS bits */
77 /* end of block literal code */
80 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
83 /* repeat a zero length 3-10 times (3 bits of repeat count) */
85 #define REPZ_11_138 18
86 /* repeat a zero length 11-138 times (7 bits of repeat count) */
88 local
const int extra_lbits
[LENGTH_CODES
] /* extra bits for each length code */
89 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
91 local
const int extra_dbits
[D_CODES
] /* extra bits for each distance code */
92 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
94 local
const int extra_blbits
[BL_CODES
]/* extra bits for each bit length code */
95 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
97 local
const uch bl_order
[BL_CODES
]
98 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
99 /* The lengths of the bit length codes are sent in order of decreasing
100 * probability, to avoid transmitting the lengths for unused bit length codes.
103 #define Buf_size (8 * 2*sizeof(char))
104 /* Number of bits used within bi_buf. (bi_buf might be implemented on
105 * more than 16 bits on some systems.)
108 /* ===========================================================================
109 * Local data. These are initialized only once.
112 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
114 #if defined(GEN_TREES_H) || !defined(STDC)
115 /* non ANSI compilers may not accept trees.h */
117 local ct_data static_ltree
[L_CODES
+2];
118 /* The static literal tree. Since the bit lengths are imposed, there is no
119 * need for the L_CODES extra codes used during heap construction. However
120 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
124 local ct_data static_dtree
[D_CODES
];
125 /* The static distance tree. (Actually a trivial tree since all codes use
129 uch _dist_code
[DIST_CODE_LEN
];
130 /* Distance codes. The first 256 values correspond to the distances
131 * 3 .. 258, the last 256 values correspond to the top 8 bits of
132 * the 15 bit distances.
135 uch _length_code
[MAX_MATCH
-MIN_MATCH
+1];
136 /* length code for each normalized match length (0 == MIN_MATCH) */
138 local
int base_length
[LENGTH_CODES
];
139 /* First normalized length for each code (0 = MIN_MATCH) */
141 local
int base_dist
[D_CODES
];
142 /* First normalized distance for each code (0 = distance of 1) */
146 #endif /* GEN_TREES_H */
148 struct static_tree_desc_s
{
149 const ct_data
*static_tree
; /* static tree or NULL */
150 const intf
*extra_bits
; /* extra bits for each code or NULL */
151 int extra_base
; /* base index for extra_bits */
152 int elems
; /* max number of elements in the tree */
153 int max_length
; /* max bit length for the codes */
156 local static_tree_desc static_l_desc
=
157 {static_ltree
, extra_lbits
, LITERALS
+1, L_CODES
, MAX_BITS
};
159 local static_tree_desc static_d_desc
=
160 {static_dtree
, extra_dbits
, 0, D_CODES
, MAX_BITS
};
162 local static_tree_desc static_bl_desc
=
163 {(const ct_data
*)0, extra_blbits
, 0, BL_CODES
, MAX_BL_BITS
};
165 /* ===========================================================================
166 * Local (static) routines in this file.
169 local
void tr_static_init
OF((void));
170 local
void init_block
OF((deflate_state
*s
));
171 local
void pqdownheap
OF((deflate_state
*s
, ct_data
*tree
, int k
));
172 local
void gen_bitlen
OF((deflate_state
*s
, tree_desc
*desc
));
173 local
void gen_codes
OF((ct_data
*tree
, int max_code
, ushf
*bl_count
));
174 local
void build_tree
OF((deflate_state
*s
, tree_desc
*desc
));
175 local
void scan_tree
OF((deflate_state
*s
, ct_data
*tree
, int max_code
));
176 local
void send_tree
OF((deflate_state
*s
, ct_data
*tree
, int max_code
));
177 local
int build_bl_tree
OF((deflate_state
*s
));
178 local
void send_all_trees
OF((deflate_state
*s
, int lcodes
, int dcodes
,
180 local
void compress_block
OF((deflate_state
*s
, ct_data
*ltree
,
182 local
void set_data_type
OF((deflate_state
*s
));
183 local
unsigned bi_reverse
OF((unsigned value
, int length
));
184 local
void bi_windup
OF((deflate_state
*s
));
185 local
void bi_flush
OF((deflate_state
*s
));
186 local
void copy_block
OF((deflate_state
*s
, charf
*buf
, unsigned len
,
190 local
void gen_trees_header
OF((void));
194 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
195 /* Send a code of the given tree. c and tree must not have side effects */
198 # define send_code(s, c, tree) \
199 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
200 send_bits(s, tree[c].Code, tree[c].Len); }
203 /* ===========================================================================
204 * Output a short LSB first on the stream.
205 * IN assertion: there is enough room in pendingBuf.
207 #define put_short(s, w) { \
208 put_byte(s, (uch)((w) & 0xff)); \
209 put_byte(s, (uch)((ush)(w) >> 8)); \
212 /* ===========================================================================
213 * Send a value on a given number of bits.
214 * IN assertion: length <= 16 and value fits in length bits.
217 local
void send_bits
OF((deflate_state
*s
, int value
, int length
));
220 * @param value value to send
221 * @param length number of bits
224 send_bits(deflate_state
*s
, int value
, int length
)
226 Tracevv((stderr
," l %2d v %4x ", length
, value
));
227 Assert(length
> 0 && length
<= 15, "invalid length");
228 s
->bits_sent
+= (ulg
)length
;
230 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
231 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
232 * unused bits in value.
234 if (s
->bi_valid
> (int)Buf_size
- length
) {
235 s
->bi_buf
|= (value
<< s
->bi_valid
);
236 put_short(s
, s
->bi_buf
);
237 s
->bi_buf
= (ush
)value
>> (Buf_size
- s
->bi_valid
);
238 s
->bi_valid
+= length
- Buf_size
;
240 s
->bi_buf
|= value
<< s
->bi_valid
;
241 s
->bi_valid
+= length
;
246 #define send_bits(s, value, length) \
248 if (s->bi_valid > (int)Buf_size - len) {\
250 s->bi_buf |= (val << s->bi_valid);\
251 put_short(s, s->bi_buf);\
252 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
253 s->bi_valid += len - Buf_size;\
255 s->bi_buf |= (value) << s->bi_valid;\
262 /* the arguments must not have side effects */
264 /* ===========================================================================
265 * Initialize the various 'constant' tables.
270 #if defined(GEN_TREES_H) || !defined(STDC)
271 static int static_init_done
= 0;
272 int n
; /* iterates over tree elements */
273 int bits
; /* bit counter */
274 int length
; /* length value */
275 int code
; /* code value */
276 int dist
; /* distance index */
277 ush bl_count
[MAX_BITS
+1];
278 /* number of codes at each bit length for an optimal tree */
280 if (static_init_done
) return;
282 /* For some embedded targets, global variables are not initialized: */
283 static_l_desc
.static_tree
= static_ltree
;
284 static_l_desc
.extra_bits
= extra_lbits
;
285 static_d_desc
.static_tree
= static_dtree
;
286 static_d_desc
.extra_bits
= extra_dbits
;
287 static_bl_desc
.extra_bits
= extra_blbits
;
289 /* Initialize the mapping length (0..255) -> length code (0..28) */
291 for (code
= 0; code
< LENGTH_CODES
-1; code
++) {
292 base_length
[code
] = length
;
293 for (n
= 0; n
< (1<<extra_lbits
[code
]); n
++) {
294 _length_code
[length
++] = (uch
)code
;
297 Assert (length
== 256, "tr_static_init: length != 256");
298 /* Note that the length 255 (match length 258) can be represented
299 * in two different ways: code 284 + 5 bits or code 285, so we
300 * overwrite length_code[255] to use the best encoding:
302 _length_code
[length
-1] = (uch
)code
;
304 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
306 for (code
= 0 ; code
< 16; code
++) {
307 base_dist
[code
] = dist
;
308 for (n
= 0; n
< (1<<extra_dbits
[code
]); n
++) {
309 _dist_code
[dist
++] = (uch
)code
;
312 Assert (dist
== 256, "tr_static_init: dist != 256");
313 dist
>>= 7; /* from now on, all distances are divided by 128 */
314 for ( ; code
< D_CODES
; code
++) {
315 base_dist
[code
] = dist
<< 7;
316 for (n
= 0; n
< (1<<(extra_dbits
[code
]-7)); n
++) {
317 _dist_code
[256 + dist
++] = (uch
)code
;
320 Assert (dist
== 256, "tr_static_init: 256+dist != 512");
322 /* Construct the codes of the static literal tree */
323 for (bits
= 0; bits
<= MAX_BITS
; bits
++) bl_count
[bits
] = 0;
325 while (n
<= 143) static_ltree
[n
++].Len
= 8, bl_count
[8]++;
326 while (n
<= 255) static_ltree
[n
++].Len
= 9, bl_count
[9]++;
327 while (n
<= 279) static_ltree
[n
++].Len
= 7, bl_count
[7]++;
328 while (n
<= 287) static_ltree
[n
++].Len
= 8, bl_count
[8]++;
329 /* Codes 286 and 287 do not exist, but we must include them in the
330 * tree construction to get a canonical Huffman tree (longest code
333 gen_codes((ct_data
*)static_ltree
, L_CODES
+1, bl_count
);
335 /* The static distance tree is trivial: */
336 for (n
= 0; n
< D_CODES
; n
++) {
337 static_dtree
[n
].Len
= 5;
338 static_dtree
[n
].Code
= bi_reverse((unsigned)n
, 5);
340 static_init_done
= 1;
345 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
348 /* ===========================================================================
349 * Genererate the file trees.h describing the static trees.
356 # define SEPARATOR(i, last, width) \
357 ((i) == (last)? "\n};\n\n" : \
358 ((i) % (width) == (width)-1 ? ",\n" : ", "))
361 gen_trees_header(void)
363 FILE *header
= fopen("trees.h", "w");
366 Assert (header
!= NULL
, "Can't open trees.h");
368 "/* header created automatically with -DGEN_TREES_H */\n\n");
370 fprintf(header
, "local const ct_data static_ltree[L_CODES+2] = {\n");
371 for (i
= 0; i
< L_CODES
+2; i
++) {
372 fprintf(header
, "{{%3u},{%3u}}%s", static_ltree
[i
].Code
,
373 static_ltree
[i
].Len
, SEPARATOR(i
, L_CODES
+1, 5));
376 fprintf(header
, "local const ct_data static_dtree[D_CODES] = {\n");
377 for (i
= 0; i
< D_CODES
; i
++) {
378 fprintf(header
, "{{%2u},{%2u}}%s", static_dtree
[i
].Code
,
379 static_dtree
[i
].Len
, SEPARATOR(i
, D_CODES
-1, 5));
382 fprintf(header
, "const uch _dist_code[DIST_CODE_LEN] = {\n");
383 for (i
= 0; i
< DIST_CODE_LEN
; i
++) {
384 fprintf(header
, "%2u%s", _dist_code
[i
],
385 SEPARATOR(i
, DIST_CODE_LEN
-1, 20));
388 fprintf(header
, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
389 for (i
= 0; i
< MAX_MATCH
-MIN_MATCH
+1; i
++) {
390 fprintf(header
, "%2u%s", _length_code
[i
],
391 SEPARATOR(i
, MAX_MATCH
-MIN_MATCH
, 20));
394 fprintf(header
, "local const int base_length[LENGTH_CODES] = {\n");
395 for (i
= 0; i
< LENGTH_CODES
; i
++) {
396 fprintf(header
, "%1u%s", base_length
[i
],
397 SEPARATOR(i
, LENGTH_CODES
-1, 20));
400 fprintf(header
, "local const int base_dist[D_CODES] = {\n");
401 for (i
= 0; i
< D_CODES
; i
++) {
402 fprintf(header
, "%5u%s", base_dist
[i
],
403 SEPARATOR(i
, D_CODES
-1, 10));
408 #endif /* GEN_TREES_H */
410 /* ===========================================================================
411 * Initialize the tree data structures for a new zlib stream.
414 _tr_init(deflate_state
*s
)
418 s
->l_desc
.dyn_tree
= s
->dyn_ltree
;
419 s
->l_desc
.stat_desc
= &static_l_desc
;
421 s
->d_desc
.dyn_tree
= s
->dyn_dtree
;
422 s
->d_desc
.stat_desc
= &static_d_desc
;
424 s
->bl_desc
.dyn_tree
= s
->bl_tree
;
425 s
->bl_desc
.stat_desc
= &static_bl_desc
;
429 s
->last_eob_len
= 8; /* enough lookahead for inflate */
431 s
->compressed_len
= 0L;
435 /* Initialize the first block of the first file: */
439 /* ===========================================================================
440 * Initialize a new block.
443 init_block(deflate_state
*s
)
445 int n
; /* iterates over tree elements */
447 /* Initialize the trees. */
448 for (n
= 0; n
< L_CODES
; n
++) s
->dyn_ltree
[n
].Freq
= 0;
449 for (n
= 0; n
< D_CODES
; n
++) s
->dyn_dtree
[n
].Freq
= 0;
450 for (n
= 0; n
< BL_CODES
; n
++) s
->bl_tree
[n
].Freq
= 0;
452 s
->dyn_ltree
[END_BLOCK
].Freq
= 1;
453 s
->opt_len
= s
->static_len
= 0L;
454 s
->last_lit
= s
->matches
= 0;
458 /* Index within the heap array of least frequent node in the Huffman tree */
461 /* ===========================================================================
462 * Remove the smallest element from the heap and recreate the heap with
463 * one less element. Updates heap and heap_len.
465 #define pqremove(s, tree, top) \
467 top = s->heap[SMALLEST]; \
468 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
469 pqdownheap(s, tree, SMALLEST); \
472 /* ===========================================================================
473 * Compares to subtrees, using the tree depth as tie breaker when
474 * the subtrees have equal frequency. This minimizes the worst case length.
476 #define smaller(tree, n, m, depth) \
477 (tree[n].Freq < tree[m].Freq || \
478 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
480 /* ===========================================================================
481 * Restore the heap property by moving down the tree starting at node k,
482 * exchanging a node with the smallest of its two sons if necessary, stopping
483 * when the heap property is re-established (each father smaller than its
486 * @param tree the tree to restore
487 * @param k node to move down
490 pqdownheap(deflate_state
*s
, ct_data
*tree
, int k
)
493 int j
= k
<< 1; /* left son of k */
494 while (j
<= s
->heap_len
) {
495 /* Set j to the smallest of the two sons: */
496 if (j
< s
->heap_len
&&
497 smaller(tree
, s
->heap
[j
+1], s
->heap
[j
], s
->depth
)) {
500 /* Exit if v is smaller than both sons */
501 if (smaller(tree
, v
, s
->heap
[j
], s
->depth
)) break;
503 /* Exchange v with the smallest son */
504 s
->heap
[k
] = s
->heap
[j
]; k
= j
;
506 /* And continue down the tree, setting j to the left son of k */
512 /* ===========================================================================
513 * Compute the optimal bit lengths for a tree and update the total bit length
514 * for the current block.
515 * IN assertion: the fields freq and dad are set, heap[heap_max] and
516 * above are the tree nodes sorted by increasing frequency.
517 * OUT assertions: the field len is set to the optimal bit length, the
518 * array bl_count contains the frequencies for each bit length.
519 * The length opt_len is updated; static_len is also updated if stree is
521 * @param desc the tree descriptor
524 gen_bitlen(deflate_state
*s
, tree_desc
*desc
)
526 ct_data
*tree
= desc
->dyn_tree
;
527 int max_code
= desc
->max_code
;
528 const ct_data
*stree
= desc
->stat_desc
->static_tree
;
529 const intf
*extra
= desc
->stat_desc
->extra_bits
;
530 int base
= desc
->stat_desc
->extra_base
;
531 int max_length
= desc
->stat_desc
->max_length
;
532 int h
; /* heap index */
533 int n
, m
; /* iterate over the tree elements */
534 int bits
; /* bit length */
535 int xbits
; /* extra bits */
536 ush f
; /* frequency */
537 int overflow
= 0; /* number of elements with bit length too large */
539 for (bits
= 0; bits
<= MAX_BITS
; bits
++) s
->bl_count
[bits
] = 0;
541 /* In a first pass, compute the optimal bit lengths (which may
542 * overflow in the case of the bit length tree).
544 tree
[s
->heap
[s
->heap_max
]].Len
= 0; /* root of the heap */
546 for (h
= s
->heap_max
+1; h
< HEAP_SIZE
; h
++) {
548 bits
= tree
[tree
[n
].Dad
].Len
+ 1;
549 if (bits
> max_length
) {
553 tree
[n
].Len
= (ush
)bits
;
554 /* We overwrite tree[n].Dad which is no longer needed */
556 if (n
> max_code
) continue; /* not a leaf node */
560 if (n
>= base
) xbits
= extra
[n
-base
];
562 s
->opt_len
+= (ulg
)f
* (bits
+ xbits
);
563 if (stree
) s
->static_len
+= (ulg
)f
* (stree
[n
].Len
+ xbits
);
565 if (overflow
== 0) return;
567 Trace((stderr
,"\nbit length overflow\n"));
568 /* This happens for example on obj2 and pic of the Calgary corpus */
570 /* Find the first bit length which could increase: */
573 while (s
->bl_count
[bits
] == 0) bits
--;
574 s
->bl_count
[bits
]--; /* move one leaf down the tree */
575 s
->bl_count
[bits
+1] += 2; /* move one overflow item as its brother */
576 s
->bl_count
[max_length
]--;
577 /* The brother of the overflow item also moves one step up,
578 * but this does not affect bl_count[max_length]
581 } while (overflow
> 0);
583 /* Now recompute all bit lengths, scanning in increasing frequency.
584 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
585 * lengths instead of fixing only the wrong ones. This idea is taken
586 * from 'ar' written by Haruhiko Okumura.)
588 for (bits
= max_length
; bits
!= 0; bits
--) {
589 n
= s
->bl_count
[bits
];
592 if (m
> max_code
) continue;
593 if ((unsigned) tree
[m
].Len
!= (unsigned) bits
) {
594 Trace((stderr
,"code %d bits %d->%d\n", m
, tree
[m
].Len
, bits
));
595 s
->opt_len
+= ((long)bits
- (long)tree
[m
].Len
)
597 tree
[m
].Len
= (ush
)bits
;
604 /* ===========================================================================
605 * Generate the codes for a given tree and bit counts (which need not be
607 * IN assertion: the array bl_count contains the bit length statistics for
608 * the given tree and the field len is set for all tree elements.
609 * OUT assertion: the field code is set for all tree elements of non
612 * @param tree the tree to decorate
613 * @param max_count largest code with non zero frequency
614 * @param bl_count number of codes at each bit length
617 gen_codes(ct_data
*tree
, int max_code
, ushf
*bl_count
)
619 ush next_code
[MAX_BITS
+1]; /* next code value for each bit length */
620 ush code
= 0; /* running code value */
621 int bits
; /* bit index */
622 int n
; /* code index */
624 /* The distribution counts are first used to generate the code values
625 * without bit reversal.
627 for (bits
= 1; bits
<= MAX_BITS
; bits
++) {
628 next_code
[bits
] = code
= (ush
)((code
+ bl_count
[bits
-1]) << 1);
630 /* Check that the bit counts in bl_count are consistent. The last code
633 Assert (code
+ bl_count
[MAX_BITS
]-1 == (1<<MAX_BITS
)-1,
634 "inconsistent bit counts");
635 Tracev((stderr
,"\ngen_codes: max_code %d ", max_code
));
637 for (n
= 0; n
<= max_code
; n
++) {
638 int len
= tree
[n
].Len
;
639 if (len
== 0) continue;
640 /* Now reverse the bits */
641 tree
[n
].Code
= (ush
)bi_reverse(next_code
[len
]++, len
);
643 Tracecv(tree
!= static_ltree
, (stderr
,"\nn %3d %c l %2d c %4x (%x) ",
644 n
, (isgraph(n
) ? n
: ' '), len
, tree
[n
].Code
, next_code
[len
]-1));
648 /* ===========================================================================
649 * Construct one Huffman tree and assigns the code bit strings and lengths.
650 * Update the total bit length for the current block.
651 * IN assertion: the field freq is set for all tree elements.
652 * OUT assertions: the fields len and code are set to the optimal bit length
653 * and corresponding code. The length opt_len is updated; static_len is
654 * also updated if stree is not null. The field max_code is set.
656 * @param desc the tree descriptor
659 build_tree(deflate_state
*s
, tree_desc
*desc
)
661 ct_data
*tree
= desc
->dyn_tree
;
662 const ct_data
*stree
= desc
->stat_desc
->static_tree
;
663 int elems
= desc
->stat_desc
->elems
;
664 int n
, m
; /* iterate over heap elements */
665 int max_code
= -1; /* largest code with non zero frequency */
666 int node
; /* new node being created */
668 /* Construct the initial heap, with least frequent element in
669 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
670 * heap[0] is not used.
673 s
->heap_max
= HEAP_SIZE
;
675 for (n
= 0; n
< elems
; n
++) {
676 if (tree
[n
].Freq
!= 0) {
677 s
->heap
[++(s
->heap_len
)] = max_code
= n
;
684 /* The pkzip format requires that at least one distance code exists,
685 * and that at least one bit should be sent even if there is only one
686 * possible code. So to avoid special checks later on we force at least
687 * two codes of non zero frequency.
689 while (s
->heap_len
< 2) {
690 node
= s
->heap
[++(s
->heap_len
)] = (max_code
< 2 ? ++max_code
: 0);
693 s
->opt_len
--; if (stree
) s
->static_len
-= stree
[node
].Len
;
694 /* node is 0 or 1 so it does not have extra bits */
696 desc
->max_code
= max_code
;
698 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
699 * establish sub-heaps of increasing lengths:
701 for (n
= s
->heap_len
/2; n
>= 1; n
--) pqdownheap(s
, tree
, n
);
703 /* Construct the Huffman tree by repeatedly combining the least two
706 node
= elems
; /* next internal node of the tree */
708 pqremove(s
, tree
, n
); /* n = node of least frequency */
709 m
= s
->heap
[SMALLEST
]; /* m = node of next least frequency */
711 s
->heap
[--(s
->heap_max
)] = n
; /* keep the nodes sorted by frequency */
712 s
->heap
[--(s
->heap_max
)] = m
;
714 /* Create a new node father of n and m */
715 tree
[node
].Freq
= tree
[n
].Freq
+ tree
[m
].Freq
;
716 s
->depth
[node
] = (uch
)((s
->depth
[n
] >= s
->depth
[m
] ?
717 s
->depth
[n
] : s
->depth
[m
]) + 1);
718 tree
[n
].Dad
= tree
[m
].Dad
= (ush
)node
;
720 if (tree
== s
->bl_tree
) {
721 fprintf(stderr
,"\nnode %d(%d), sons %d(%d) %d(%d)",
722 node
, tree
[node
].Freq
, n
, tree
[n
].Freq
, m
, tree
[m
].Freq
);
725 /* and insert the new node in the heap */
726 s
->heap
[SMALLEST
] = node
++;
727 pqdownheap(s
, tree
, SMALLEST
);
729 } while (s
->heap_len
>= 2);
731 s
->heap
[--(s
->heap_max
)] = s
->heap
[SMALLEST
];
733 /* At this point, the fields freq and dad are set. We can now
734 * generate the bit lengths.
736 gen_bitlen(s
, (tree_desc
*)desc
);
738 /* The field len is now set, we can generate the bit codes */
739 gen_codes ((ct_data
*)tree
, max_code
, s
->bl_count
);
742 /* ===========================================================================
743 * Scan a literal or distance tree to determine the frequencies of the codes
744 * in the bit length tree.
746 * @param tree the tree to be scanned
747 * @param max_code and its largest code of non zero frequency
750 scan_tree(deflate_state
*s
, ct_data
*tree
, int max_code
)
752 int n
; /* iterates over all tree elements */
753 int prevlen
= -1; /* last emitted length */
754 int curlen
; /* length of current code */
755 int nextlen
= tree
[0].Len
; /* length of next code */
756 int count
= 0; /* repeat count of the current code */
757 int max_count
= 7; /* max repeat count */
758 int min_count
= 4; /* min repeat count */
764 tree
[max_code
+1].Len
= (ush
)0xffff; /* guard */
766 for (n
= 0; n
<= max_code
; n
++) {
767 curlen
= nextlen
; nextlen
= tree
[n
+1].Len
;
768 if (++count
< max_count
&& curlen
== nextlen
) {
770 } else if (count
< min_count
) {
771 s
->bl_tree
[curlen
].Freq
+= count
;
772 } else if (curlen
!= 0) {
773 if (curlen
!= prevlen
) s
->bl_tree
[curlen
].Freq
++;
774 s
->bl_tree
[REP_3_6
].Freq
++;
775 } else if (count
<= 10) {
776 s
->bl_tree
[REPZ_3_10
].Freq
++;
778 s
->bl_tree
[REPZ_11_138
].Freq
++;
780 count
= 0; prevlen
= curlen
;
784 } else if (curlen
== nextlen
) {
794 /* ===========================================================================
795 * Send a literal or distance tree in compressed form, using the codes in
798 * @param tree the tree to be scanned
799 * @param max_code and its largest code of non zero frequency
802 send_tree( deflate_state
*s
, ct_data
*tree
, int max_code
)
804 int n
; /* iterates over all tree elements */
805 int prevlen
= -1; /* last emitted length */
806 int curlen
; /* length of current code */
807 int nextlen
= tree
[0].Len
; /* length of next code */
808 int count
= 0; /* repeat count of the current code */
809 int max_count
= 7; /* max repeat count */
810 int min_count
= 4; /* min repeat count */
812 /* tree[max_code+1].Len = -1; */ /* guard already set */
818 for (n
= 0; n
<= max_code
; n
++) {
819 curlen
= nextlen
; nextlen
= tree
[n
+1].Len
;
820 if (++count
< max_count
&& curlen
== nextlen
) {
822 } else if (count
< min_count
) {
823 do { send_code(s
, curlen
, s
->bl_tree
); } while (--count
!= 0);
825 } else if (curlen
!= 0) {
826 if (curlen
!= prevlen
) {
827 send_code(s
, curlen
, s
->bl_tree
); count
--;
829 Assert(count
>= 3 && count
<= 6, " 3_6?");
830 send_code(s
, REP_3_6
, s
->bl_tree
); send_bits(s
, count
-3, 2);
832 } else if (count
<= 10) {
833 send_code(s
, REPZ_3_10
, s
->bl_tree
); send_bits(s
, count
-3, 3);
836 send_code(s
, REPZ_11_138
, s
->bl_tree
); send_bits(s
, count
-11, 7);
838 count
= 0; prevlen
= curlen
;
842 } else if (curlen
== nextlen
) {
852 /* ===========================================================================
853 * Construct the Huffman tree for the bit lengths and return the index in
854 * bl_order of the last bit length code to send.
857 build_bl_tree(deflate_state
*s
)
859 int max_blindex
; /* index of last bit length code of non zero freq */
861 /* Determine the bit length frequencies for literal and distance trees */
862 scan_tree(s
, (ct_data
*)s
->dyn_ltree
, s
->l_desc
.max_code
);
863 scan_tree(s
, (ct_data
*)s
->dyn_dtree
, s
->d_desc
.max_code
);
865 /* Build the bit length tree: */
866 build_tree(s
, (tree_desc
*)(&(s
->bl_desc
)));
867 /* opt_len now includes the length of the tree representations, except
868 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
871 /* Determine the number of bit length codes to send. The pkzip format
872 * requires that at least 4 bit length codes be sent. (appnote.txt says
873 * 3 but the actual value used is 4.)
875 for (max_blindex
= BL_CODES
-1; max_blindex
>= 3; max_blindex
--) {
876 if (s
->bl_tree
[bl_order
[max_blindex
]].Len
!= 0) break;
878 /* Update opt_len to include the bit length tree and counts */
879 s
->opt_len
+= 3*(max_blindex
+1) + 5+5+4;
880 Tracev((stderr
, "\ndyn trees: dyn %ld, stat %ld",
881 s
->opt_len
, s
->static_len
));
886 /* ===========================================================================
887 * Send the header for a block using dynamic Huffman trees: the counts, the
888 * lengths of the bit length codes, the literal tree and the distance tree.
889 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
891 * @param lcodes number of codes for each tree
892 * @param dcodes number of codes for each tree
893 * @param blcodes number of codes for each tree
896 send_all_trees(deflate_state
*s
, int lcodes
, int dcodes
, int blcodes
)
898 int rank
; /* index in bl_order */
900 Assert (lcodes
>= 257 && dcodes
>= 1 && blcodes
>= 4, "not enough codes");
901 Assert (lcodes
<= L_CODES
&& dcodes
<= D_CODES
&& blcodes
<= BL_CODES
,
903 Tracev((stderr
, "\nbl counts: "));
904 send_bits(s
, lcodes
-257, 5); /* not +255 as stated in appnote.txt */
905 send_bits(s
, dcodes
-1, 5);
906 send_bits(s
, blcodes
-4, 4); /* not -3 as stated in appnote.txt */
907 for (rank
= 0; rank
< blcodes
; rank
++) {
908 Tracev((stderr
, "\nbl code %2d ", bl_order
[rank
]));
909 send_bits(s
, s
->bl_tree
[bl_order
[rank
]].Len
, 3);
911 Tracev((stderr
, "\nbl tree: sent %ld", s
->bits_sent
));
913 send_tree(s
, (ct_data
*)s
->dyn_ltree
, lcodes
-1); /* literal tree */
914 Tracev((stderr
, "\nlit tree: sent %ld", s
->bits_sent
));
916 send_tree(s
, (ct_data
*)s
->dyn_dtree
, dcodes
-1); /* distance tree */
917 Tracev((stderr
, "\ndist tree: sent %ld", s
->bits_sent
));
920 /* ===========================================================================
921 * Send a stored block
923 * @param buf input block
924 * @param stored_len length of input block
925 * @param eof true if this is the last block for a file
928 _tr_stored_block(deflate_state
*s
, charf
*buf
, ulg stored_len
, int eof
)
930 send_bits(s
, (STORED_BLOCK
<<1)+eof
, 3); /* send block type */
932 s
->compressed_len
= (s
->compressed_len
+ 3 + 7) & (ulg
)~7L;
933 s
->compressed_len
+= (stored_len
+ 4) << 3;
935 copy_block(s
, buf
, (unsigned)stored_len
, 1); /* with header */
938 /* ===========================================================================
939 * Send one empty static block to give enough lookahead for inflate.
940 * This takes 10 bits, of which 7 may remain in the bit buffer.
941 * The current inflate code requires 9 bits of lookahead. If the
942 * last two codes for the previous block (real code plus EOB) were coded
943 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
944 * the last real code. In this case we send two empty static blocks instead
945 * of one. (There are no problems if the previous block is stored or fixed.)
946 * To simplify the code, we assume the worst case of last real code encoded
950 _tr_align(deflate_state
*s
)
952 send_bits(s
, STATIC_TREES
<<1, 3);
953 send_code(s
, END_BLOCK
, static_ltree
);
955 s
->compressed_len
+= 10L; /* 3 for block type, 7 for EOB */
958 /* Of the 10 bits for the empty block, we have already sent
959 * (10 - bi_valid) bits. The lookahead for the last real code (before
960 * the EOB of the previous block) was thus at least one plus the length
961 * of the EOB plus what we have just sent of the empty static block.
963 if (1 + s
->last_eob_len
+ 10 - s
->bi_valid
< 9) {
964 send_bits(s
, STATIC_TREES
<<1, 3);
965 send_code(s
, END_BLOCK
, static_ltree
);
967 s
->compressed_len
+= 10L;
974 /* ===========================================================================
975 * Determine the best encoding for the current block: dynamic trees, static
976 * trees or store, and output the encoded block to the zip file.
978 * @param buf input block, or NULL if too old
979 * @param stored_len length of input block
980 * @param eof true if this is the last block for a file
983 _tr_flush_block(deflate_state
*s
, charf
*buf
, ulg stored_len
, int eof
)
985 ulg opt_lenb
, static_lenb
; /* opt_len and static_len in bytes */
986 int max_blindex
= 0; /* index of last bit length code of non zero freq */
988 /* Build the Huffman trees unless a stored block is forced */
991 /* Check if the file is binary or text */
992 if (stored_len
> 0 && s
->strm
->data_type
== Z_UNKNOWN
)
995 /* Construct the literal and distance trees */
996 build_tree(s
, (tree_desc
*)(&(s
->l_desc
)));
997 Tracev((stderr
, "\nlit data: dyn %ld, stat %ld", s
->opt_len
,
1000 build_tree(s
, (tree_desc
*)(&(s
->d_desc
)));
1001 Tracev((stderr
, "\ndist data: dyn %ld, stat %ld", s
->opt_len
,
1003 /* At this point, opt_len and static_len are the total bit lengths of
1004 * the compressed block data, excluding the tree representations.
1007 /* Build the bit length tree for the above two trees, and get the index
1008 * in bl_order of the last bit length code to send.
1010 max_blindex
= build_bl_tree(s
);
1012 /* Determine the best encoding. Compute the block lengths in bytes. */
1013 opt_lenb
= (s
->opt_len
+3+7)>>3;
1014 static_lenb
= (s
->static_len
+3+7)>>3;
1016 Tracev((stderr
, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
1017 opt_lenb
, s
->opt_len
, static_lenb
, s
->static_len
, stored_len
,
1020 if (static_lenb
<= opt_lenb
) opt_lenb
= static_lenb
;
1023 Assert(buf
!= (char*)0, "lost buf");
1024 opt_lenb
= static_lenb
= stored_len
+ 5; /* force a stored block */
1028 if (buf
!= (char*)0) { /* force stored block */
1030 if (stored_len
+4 <= opt_lenb
&& buf
!= (char*)0) {
1031 /* 4: two words for the lengths */
1033 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1034 * Otherwise we can't have processed more than WSIZE input bytes since
1035 * the last block flush, because compression would have been
1036 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1037 * transform a block into a stored block.
1039 _tr_stored_block(s
, buf
, stored_len
, eof
);
1042 } else if (static_lenb
>= 0) { /* force static trees */
1044 } else if (s
->strategy
== Z_FIXED
|| static_lenb
== opt_lenb
) {
1046 send_bits(s
, (STATIC_TREES
<<1)+eof
, 3);
1047 compress_block(s
, (ct_data
*)static_ltree
, (ct_data
*)static_dtree
);
1049 s
->compressed_len
+= 3 + s
->static_len
;
1052 send_bits(s
, (DYN_TREES
<<1)+eof
, 3);
1053 send_all_trees(s
, s
->l_desc
.max_code
+1, s
->d_desc
.max_code
+1,
1055 compress_block(s
, (ct_data
*)s
->dyn_ltree
, (ct_data
*)s
->dyn_dtree
);
1057 s
->compressed_len
+= 3 + s
->opt_len
;
1060 Assert (s
->compressed_len
== s
->bits_sent
, "bad compressed size");
1061 /* The above check is made mod 2^32, for files larger than 512 MB
1062 * and uLong implemented on 32 bits.
1069 s
->compressed_len
+= 7; /* align on byte boundary */
1072 Tracev((stderr
,"\ncomprlen %lu(%lu) ", s
->compressed_len
>>3,
1073 s
->compressed_len
-7*eof
));
1076 /* ===========================================================================
1077 * Save the match info and tally the frequency counts. Return true if
1078 * the current block must be flushed.
1080 * @param dist distance of matched string
1081 * @param lc match length-MIN_MATCH or unmatched char (if dist==0)
1084 _tr_tally(deflate_state
*s
, unsigned dist
, unsigned lc
)
1086 s
->d_buf
[s
->last_lit
] = (ush
)dist
;
1087 s
->l_buf
[s
->last_lit
++] = (uch
)lc
;
1089 /* lc is the unmatched char */
1090 s
->dyn_ltree
[lc
].Freq
++;
1093 /* Here, lc is the match length - MIN_MATCH */
1094 dist
--; /* dist = match distance - 1 */
1095 Assert((ush
)dist
< (ush
)MAX_DIST(s
) &&
1096 (ush
)lc
<= (ush
)(MAX_MATCH
-MIN_MATCH
) &&
1097 (ush
)d_code(dist
) < (ush
)D_CODES
, "_tr_tally: bad match");
1099 s
->dyn_ltree
[_length_code
[lc
]+LITERALS
+1].Freq
++;
1100 s
->dyn_dtree
[d_code(dist
)].Freq
++;
1103 #ifdef TRUNCATE_BLOCK
1104 /* Try to guess if it is profitable to stop the current block here */
1105 if ((s
->last_lit
& 0x1fff) == 0 && s
->level
> 2) {
1106 /* Compute an upper bound for the compressed length */
1107 ulg out_length
= (ulg
)s
->last_lit
*8L;
1108 ulg in_length
= (ulg
)((long)s
->strstart
- s
->block_start
);
1110 for (dcode
= 0; dcode
< D_CODES
; dcode
++) {
1111 out_length
+= (ulg
)s
->dyn_dtree
[dcode
].Freq
*
1112 (5L+extra_dbits
[dcode
]);
1115 Tracev((stderr
,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1116 s
->last_lit
, in_length
, out_length
,
1117 100L - out_length
*100L/in_length
));
1118 if (s
->matches
< s
->last_lit
/2 && out_length
< in_length
/2) return 1;
1121 return (s
->last_lit
== s
->lit_bufsize
-1);
1122 /* We avoid equality with lit_bufsize because of wraparound at 64K
1123 * on 16 bit machines and because stored blocks are restricted to
1128 /* ===========================================================================
1129 * Send the block data compressed using the given Huffman trees
1131 * @param ltree literal tree
1132 * @param dtree distance tree
1135 compress_block(deflate_state
*s
, ct_data
*ltree
, ct_data
*dtree
)
1137 unsigned dist
; /* distance of matched string */
1138 int lc
; /* match length or unmatched char (if dist == 0) */
1139 unsigned lx
= 0; /* running index in l_buf */
1140 unsigned code
; /* the code to send */
1141 int extra
; /* number of extra bits to send */
1143 if (s
->last_lit
!= 0) do {
1144 dist
= s
->d_buf
[lx
];
1145 lc
= s
->l_buf
[lx
++];
1147 send_code(s
, lc
, ltree
); /* send a literal byte */
1148 Tracecv(isgraph(lc
), (stderr
," '%c' ", lc
));
1150 /* Here, lc is the match length - MIN_MATCH */
1151 code
= _length_code
[lc
];
1152 send_code(s
, code
+LITERALS
+1, ltree
); /* send the length code */
1153 extra
= extra_lbits
[code
];
1155 lc
-= base_length
[code
];
1156 send_bits(s
, lc
, extra
); /* send the extra length bits */
1158 dist
--; /* dist is now the match distance - 1 */
1159 code
= d_code(dist
);
1160 Assert (code
< D_CODES
, "bad d_code");
1162 send_code(s
, code
, dtree
); /* send the distance code */
1163 extra
= extra_dbits
[code
];
1165 dist
-= base_dist
[code
];
1166 send_bits(s
, dist
, extra
); /* send the extra distance bits */
1168 } /* literal or match pair ? */
1170 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1171 Assert((uInt
)(s
->pending
) < s
->lit_bufsize
+ 2*lx
,
1172 "pendingBuf overflow");
1174 } while (lx
< s
->last_lit
);
1176 send_code(s
, END_BLOCK
, ltree
);
1177 s
->last_eob_len
= ltree
[END_BLOCK
].Len
;
1180 /* ===========================================================================
1181 * Set the data type to BINARY or TEXT, using a crude approximation:
1182 * set it to Z_TEXT if all symbols are either printable characters (33 to 255)
1183 * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise.
1184 * IN assertion: the fields Freq of dyn_ltree are set.
1187 set_data_type(deflate_state
*s
)
1191 for (n
= 0; n
< 9; n
++)
1192 if (s
->dyn_ltree
[n
].Freq
!= 0)
1195 for (n
= 14; n
< 32; n
++)
1196 if (s
->dyn_ltree
[n
].Freq
!= 0)
1198 s
->strm
->data_type
= (n
== 32) ? Z_TEXT
: Z_BINARY
;
1201 /* ===========================================================================
1202 * Reverse the first len bits of a code, using straightforward code (a faster
1203 * method would use a table)
1204 * IN assertion: 1 <= len <= 15
1206 * @param code the value to invert
1207 * @param len its bit length
1210 bi_reverse(unsigned code
, int len
)
1217 } while (--len
> 0);
1221 /* ===========================================================================
1222 * Flush the bit buffer, keeping at most 7 bits in it.
1225 bi_flush(deflate_state
*s
)
1227 if (s
->bi_valid
== 16) {
1228 put_short(s
, s
->bi_buf
);
1231 } else if (s
->bi_valid
>= 8) {
1232 put_byte(s
, (Byte
)s
->bi_buf
);
1238 /* ===========================================================================
1239 * Flush the bit buffer and align the output on a byte boundary
1242 bi_windup(deflate_state
*s
)
1244 if (s
->bi_valid
> 8) {
1245 put_short(s
, s
->bi_buf
);
1246 } else if (s
->bi_valid
> 0) {
1247 put_byte(s
, (Byte
)s
->bi_buf
);
1252 s
->bits_sent
= (s
->bits_sent
+7) & ~7;
1256 /* ===========================================================================
1257 * Copy a stored block, storing first the length and its
1258 * one's complement if requested.
1260 * @param buf the input data
1261 * @param len its length
1262 * @param header true if block header must be written
1265 copy_block(deflate_state
*s
, charf
*buf
, unsigned len
, int header
)
1267 bi_windup(s
); /* align on byte boundary */
1268 s
->last_eob_len
= 8; /* enough lookahead for inflate */
1271 put_short(s
, (ush
)len
);
1272 put_short(s
, (ush
)~len
);
1274 s
->bits_sent
+= 2*16;
1278 s
->bits_sent
+= (ulg
)len
<<3;
1281 put_byte(s
, *buf
++);