2 * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
63 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
64 * support for mandatory and extensible security protections. This notice
65 * is included in support of clause 2.2 (b) of the Apple Public License,
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/sysctl.h>
73 #include <sys/malloc.h>
75 #include <sys/domain.h>
77 #include <sys/kauth.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/protosw.h>
81 #include <sys/random.h>
82 #include <sys/syslog.h>
83 #include <sys/mcache.h>
84 #include <kern/locks.h>
85 #include <kern/zalloc.h>
87 #include <dev/random/randomdev.h>
89 #include <net/route.h>
91 #include <net/content_filter.h>
92 #include <net/ntstat.h>
93 #include <net/multi_layer_pkt_log.h>
95 #define tcp_minmssoverload fring
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip_icmp.h>
101 #include <netinet/ip6.h>
102 #include <netinet/icmp6.h>
103 #include <netinet/in_pcb.h>
104 #include <netinet6/in6_pcb.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip_var.h>
107 #include <netinet/icmp_var.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet/mptcp_var.h>
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_var.h>
115 #include <netinet/tcp_cc.h>
116 #include <netinet/tcp_cache.h>
117 #include <kern/thread_call.h>
119 #include <netinet6/tcp6_var.h>
120 #include <netinet/tcpip.h>
122 #include <netinet/tcp_debug.h>
124 #include <netinet/tcp_log.h>
126 #include <netinet6/ip6protosw.h>
129 #include <netinet6/ipsec.h>
130 #include <netinet6/ipsec6.h>
134 #include <net/necp.h>
137 #undef tcp_minmssoverload
139 #include <corecrypto/ccaes.h>
140 #include <libkern/crypto/aes.h>
141 #include <libkern/crypto/md5.h>
142 #include <sys/kdebug.h>
143 #include <mach/sdt.h>
144 #include <atm/atm_internal.h>
145 #include <pexpert/pexpert.h>
147 #define DBG_FNC_TCP_CLOSE NETDBG_CODE(DBG_NETTCP, ((5 << 8) | 2))
149 static tcp_cc tcp_ccgen
;
151 extern struct tcptimerlist tcp_timer_list
;
152 extern struct tcptailq tcp_tw_tailq
;
154 SYSCTL_SKMEM_TCP_INT(TCPCTL_MSSDFLT
, mssdflt
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
155 int, tcp_mssdflt
, TCP_MSS
, "Default TCP Maximum Segment Size");
157 SYSCTL_SKMEM_TCP_INT(TCPCTL_V6MSSDFLT
, v6mssdflt
,
158 CTLFLAG_RW
| CTLFLAG_LOCKED
, int, tcp_v6mssdflt
, TCP6_MSS
,
159 "Default TCP Maximum Segment Size for IPv6");
161 int tcp_sysctl_fastopenkey(struct sysctl_oid
*, void *, int,
162 struct sysctl_req
*);
163 SYSCTL_PROC(_net_inet_tcp
, OID_AUTO
, fastopen_key
, CTLTYPE_STRING
| CTLFLAG_WR
,
164 0, 0, tcp_sysctl_fastopenkey
, "S", "TCP Fastopen key");
166 /* Current count of half-open TFO connections */
167 int tcp_tfo_halfcnt
= 0;
169 /* Maximum of half-open TFO connection backlog */
170 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, fastopen_backlog
,
171 CTLFLAG_RW
| CTLFLAG_LOCKED
, int, tcp_tfo_backlog
, 10,
172 "Backlog queue for half-open TFO connections");
174 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, fastopen
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
175 int, tcp_fastopen
, TCP_FASTOPEN_CLIENT
| TCP_FASTOPEN_SERVER
,
176 "Enable TCP Fastopen (RFC 7413)");
178 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, now_init
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
179 uint32_t, tcp_now_init
, 0, "Initial tcp now value");
181 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, microuptime_init
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
182 uint32_t, tcp_microuptime_init
, 0, "Initial tcp uptime value in micro seconds");
185 * Minimum MSS we accept and use. This prevents DoS attacks where
186 * we are forced to a ridiculous low MSS like 20 and send hundreds
187 * of packets instead of one. The effect scales with the available
188 * bandwidth and quickly saturates the CPU and network interface
189 * with packet generation and sending. Set to zero to disable MINMSS
190 * checking. This setting prevents us from sending too small packets.
192 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, minmss
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
193 int, tcp_minmss
, TCP_MINMSS
, "Minmum TCP Maximum Segment Size");
195 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, pcbcount
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
196 &tcbinfo
.ipi_count
, 0, "Number of active PCBs");
198 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, tw_pcbcount
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
199 &tcbinfo
.ipi_twcount
, 0, "Number of pcbs in time-wait state");
201 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, icmp_may_rst
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
202 static int, icmp_may_rst
, 1,
203 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
205 static int tcp_strict_rfc1948
= 0;
206 static int tcp_isn_reseed_interval
= 0;
207 #if (DEVELOPMENT || DEBUG)
208 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, strict_rfc1948
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
209 &tcp_strict_rfc1948
, 0, "Determines if RFC1948 is followed exactly");
211 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, isn_reseed_interval
,
212 CTLFLAG_RW
| CTLFLAG_LOCKED
,
213 &tcp_isn_reseed_interval
, 0, "Seconds between reseeding of ISN secret");
214 #endif /* (DEVELOPMENT || DEBUG) */
216 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, rtt_min
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
217 int, tcp_TCPTV_MIN
, 100, "min rtt value allowed");
219 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, rexmt_slop
, CTLFLAG_RW
,
220 int, tcp_rexmt_slop
, TCPTV_REXMTSLOP
, "Slop added to retransmit timeout");
222 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, randomize_ports
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
223 __private_extern__
int, tcp_use_randomport
, 0,
224 "Randomize TCP port numbers");
226 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, win_scale_factor
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
227 __private_extern__
int, tcp_win_scale
, 3, "Window scaling factor");
229 #if (DEVELOPMENT || DEBUG)
230 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, init_rtt_from_cache
,
231 CTLFLAG_RW
| CTLFLAG_LOCKED
, static int, tcp_init_rtt_from_cache
, 1,
232 "Initalize RTT from route cache");
234 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, init_rtt_from_cache
,
235 CTLFLAG_RD
| CTLFLAG_LOCKED
, static int, tcp_init_rtt_from_cache
, 1,
236 "Initalize RTT from route cache");
237 #endif /* (DEVELOPMENT || DEBUG) */
239 static int tso_debug
= 0;
240 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, tso_debug
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
241 &tso_debug
, 0, "TSO verbosity");
243 static void tcp_notify(struct inpcb
*, int);
245 struct zone
*sack_hole_zone
;
246 struct zone
*tcp_reass_zone
;
247 struct zone
*tcp_bwmeas_zone
;
248 struct zone
*tcp_rxt_seg_zone
;
250 extern int slowlink_wsize
; /* window correction for slow links */
251 extern int path_mtu_discovery
;
253 static void tcp_sbrcv_grow_rwin(struct tcpcb
*tp
, struct sockbuf
*sb
);
255 #define TCP_BWMEAS_BURST_MINSIZE 6
256 #define TCP_BWMEAS_BURST_MAXSIZE 25
259 * Target size of TCP PCB hash tables. Must be a power of two.
261 * Note that this can be overridden by the kernel environment
262 * variable net.inet.tcp.tcbhashsize
265 #define TCBHASHSIZE CONFIG_TCBHASHSIZE
268 __private_extern__
int tcp_tcbhashsize
= TCBHASHSIZE
;
269 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, tcbhashsize
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
270 &tcp_tcbhashsize
, 0, "Size of TCP control-block hashtable");
273 * This is the actual shape of what we allocate using the zone
274 * allocator. Doing it this way allows us to protect both structures
275 * using the same generation count, and also eliminates the overhead
276 * of allocating tcpcbs separately. By hiding the structure here,
277 * we avoid changing most of the rest of the code (although it needs
278 * to be changed, eventually, for greater efficiency).
283 struct tcpcb tcb
__attribute__((aligned(ALIGNMENT
)));
287 int get_inpcb_str_size(void);
288 int get_tcp_str_size(void);
290 os_log_t tcp_mpkl_log_object
= NULL
;
292 static void tcpcb_to_otcpcb(struct tcpcb
*, struct otcpcb
*);
294 static lck_attr_t
*tcp_uptime_mtx_attr
= NULL
;
295 static lck_grp_t
*tcp_uptime_mtx_grp
= NULL
;
296 static lck_grp_attr_t
*tcp_uptime_mtx_grp_attr
= NULL
;
297 int tcp_notsent_lowat_check(struct socket
*so
);
298 static void tcp_flow_lim_stats(struct ifnet_stats_per_flow
*ifs
,
299 struct if_lim_perf_stat
*stat
);
300 static void tcp_flow_ecn_perf_stats(struct ifnet_stats_per_flow
*ifs
,
301 struct if_tcp_ecn_perf_stat
*stat
);
303 static aes_encrypt_ctx tfo_ctx
; /* Crypto-context for TFO */
306 tcp_tfo_gen_cookie(struct inpcb
*inp
, u_char
*out
, size_t blk_size
)
308 u_char in
[CCAES_BLOCK_SIZE
];
309 int isipv6
= inp
->inp_vflag
& INP_IPV6
;
311 VERIFY(blk_size
== CCAES_BLOCK_SIZE
);
313 bzero(&in
[0], CCAES_BLOCK_SIZE
);
314 bzero(&out
[0], CCAES_BLOCK_SIZE
);
317 memcpy(in
, &inp
->in6p_faddr
, sizeof(struct in6_addr
));
319 memcpy(in
, &inp
->inp_faddr
, sizeof(struct in_addr
));
322 aes_encrypt_cbc(in
, NULL
, 1, out
, &tfo_ctx
);
325 __private_extern__
int
326 tcp_sysctl_fastopenkey(__unused
struct sysctl_oid
*oidp
, __unused
void *arg1
,
327 __unused
int arg2
, struct sysctl_req
*req
)
331 * TFO-key is expressed as a string in hex format
332 * (+1 to account for \0 char)
334 char keystring
[TCP_FASTOPEN_KEYLEN
* 2 + 1];
335 u_int32_t key
[TCP_FASTOPEN_KEYLEN
/ sizeof(u_int32_t
)];
338 /* -1, because newlen is len without the terminating \0 character */
339 if (req
->newlen
!= (sizeof(keystring
) - 1)) {
345 * sysctl_io_string copies keystring into the oldptr of the sysctl_req.
346 * Make sure everything is zero, to avoid putting garbage in there or
349 bzero(keystring
, sizeof(keystring
));
351 error
= sysctl_io_string(req
, keystring
, sizeof(keystring
), 0, NULL
);
356 for (i
= 0; i
< (TCP_FASTOPEN_KEYLEN
/ sizeof(u_int32_t
)); i
++) {
358 * We jump over the keystring in 8-character (4 byte in hex)
361 if (sscanf(&keystring
[i
* 8], "%8x", &key
[i
]) != 1) {
367 aes_encrypt_key128((u_char
*)key
, &tfo_ctx
);
374 get_inpcb_str_size(void)
376 return sizeof(struct inpcb
);
380 get_tcp_str_size(void)
382 return sizeof(struct tcpcb
);
385 static int scale_to_powerof2(int size
);
388 * This helper routine returns one of the following scaled value of size:
389 * 1. Rounded down power of two value of size if the size value passed as
390 * argument is not a power of two and the rounded up value overflows.
392 * 2. Rounded up power of two value of size if the size value passed as
393 * argument is not a power of two and the rounded up value does not overflow
395 * 3. Same value as argument size if it is already a power of two.
398 scale_to_powerof2(int size
)
400 /* Handle special case of size = 0 */
401 int ret
= size
? size
: 1;
403 if (!powerof2(ret
)) {
404 while (!powerof2(size
)) {
406 * Clear out least significant
407 * set bit till size is left with
408 * its highest set bit at which point
409 * it is rounded down power of two.
411 size
= size
& (size
- 1);
414 /* Check for overflow when rounding up */
415 if (0 == (size
<< 1)) {
428 u_char key
[TCP_FASTOPEN_KEYLEN
];
430 read_frandom(key
, sizeof(key
));
431 aes_encrypt_key128(key
, &tfo_ctx
);
438 tcp_init(struct protosw
*pp
, struct domain
*dp
)
441 static int tcp_initialized
= 0;
443 struct inpcbinfo
*pcbinfo
;
444 uint32_t logging_config
;
446 VERIFY((pp
->pr_flags
& (PR_INITIALIZED
| PR_ATTACHED
)) == PR_ATTACHED
);
448 if (tcp_initialized
) {
454 tcp_keepinit
= TCPTV_KEEP_INIT
;
455 tcp_keepidle
= TCPTV_KEEP_IDLE
;
456 tcp_keepintvl
= TCPTV_KEEPINTVL
;
457 tcp_keepcnt
= TCPTV_KEEPCNT
;
458 tcp_maxpersistidle
= TCPTV_KEEP_IDLE
;
461 microuptime(&tcp_uptime
);
462 read_frandom(&tcp_now
, sizeof(tcp_now
));
464 /* Starts tcp internal clock at a random value */
465 tcp_now
= tcp_now
& 0x3fffffff;
467 /* expose initial uptime/now via systcl for utcp to keep time sync */
468 tcp_now_init
= tcp_now
;
469 tcp_microuptime_init
=
470 (uint32_t)(tcp_uptime
.tv_usec
+ (tcp_uptime
.tv_sec
* USEC_PER_SEC
));
471 SYSCTL_SKMEM_UPDATE_FIELD(tcp
.microuptime_init
, tcp_microuptime_init
);
472 SYSCTL_SKMEM_UPDATE_FIELD(tcp
.now_init
, tcp_now_init
);
477 tcbinfo
.ipi_listhead
= &tcb
;
481 * allocate lock group attribute and group for tcp pcb mutexes
483 pcbinfo
->ipi_lock_grp_attr
= lck_grp_attr_alloc_init();
484 pcbinfo
->ipi_lock_grp
= lck_grp_alloc_init("tcppcb",
485 pcbinfo
->ipi_lock_grp_attr
);
488 * allocate the lock attribute for tcp pcb mutexes
490 pcbinfo
->ipi_lock_attr
= lck_attr_alloc_init();
492 if ((pcbinfo
->ipi_lock
= lck_rw_alloc_init(pcbinfo
->ipi_lock_grp
,
493 pcbinfo
->ipi_lock_attr
)) == NULL
) {
494 panic("%s: unable to allocate PCB lock\n", __func__
);
498 if (tcp_tcbhashsize
== 0) {
500 tcp_tcbhashsize
= 512;
503 if (!powerof2(tcp_tcbhashsize
)) {
504 int old_hash_size
= tcp_tcbhashsize
;
505 tcp_tcbhashsize
= scale_to_powerof2(tcp_tcbhashsize
);
506 /* Lower limit of 16 */
507 if (tcp_tcbhashsize
< 16) {
508 tcp_tcbhashsize
= 16;
510 printf("WARNING: TCB hash size not a power of 2, "
511 "scaled from %d to %d.\n",
516 tcbinfo
.ipi_hashbase
= hashinit(tcp_tcbhashsize
, M_PCB
,
517 &tcbinfo
.ipi_hashmask
);
518 tcbinfo
.ipi_porthashbase
= hashinit(tcp_tcbhashsize
, M_PCB
,
519 &tcbinfo
.ipi_porthashmask
);
520 str_size
= (vm_size_t
)P2ROUNDUP(sizeof(struct inp_tp
), sizeof(u_int64_t
));
521 tcbinfo
.ipi_zone
= zone_create("tcpcb", str_size
, ZC_NONE
);
523 tcbinfo
.ipi_gc
= tcp_gc
;
524 tcbinfo
.ipi_timer
= tcp_itimer
;
525 in_pcbinfo_attach(&tcbinfo
);
527 str_size
= (vm_size_t
)P2ROUNDUP(sizeof(struct sackhole
), sizeof(u_int64_t
));
528 sack_hole_zone
= zone_create("sack_hole zone", str_size
, ZC_NONE
);
530 str_size
= (vm_size_t
)P2ROUNDUP(sizeof(struct tseg_qent
), sizeof(u_int64_t
));
531 tcp_reass_zone
= zone_create("tcp_reass_zone", str_size
, ZC_NONE
);
533 str_size
= (vm_size_t
)P2ROUNDUP(sizeof(struct bwmeas
), sizeof(u_int64_t
));
534 tcp_bwmeas_zone
= zone_create("tcp_bwmeas_zone", str_size
, ZC_ZFREE_CLEARMEM
);
536 str_size
= (vm_size_t
)P2ROUNDUP(sizeof(struct tcp_ccstate
), sizeof(u_int64_t
));
537 tcp_cc_zone
= zone_create("tcp_cc_zone", str_size
, ZC_NONE
);
539 str_size
= (vm_size_t
)P2ROUNDUP(sizeof(struct tcp_rxt_seg
), sizeof(u_int64_t
));
540 tcp_rxt_seg_zone
= zone_create("tcp_rxt_seg_zone", str_size
, ZC_NONE
);
542 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
543 if (max_protohdr
< TCP_MINPROTOHDR
) {
544 _max_protohdr
= TCP_MINPROTOHDR
;
545 _max_protohdr
= (int)max_protohdr
; /* round it up */
547 if (max_linkhdr
+ max_protohdr
> MCLBYTES
) {
550 #undef TCP_MINPROTOHDR
552 /* Initialize time wait and timer lists */
553 TAILQ_INIT(&tcp_tw_tailq
);
555 bzero(&tcp_timer_list
, sizeof(tcp_timer_list
));
556 LIST_INIT(&tcp_timer_list
.lhead
);
558 * allocate lock group attribute, group and attribute for
561 tcp_timer_list
.mtx_grp_attr
= lck_grp_attr_alloc_init();
562 tcp_timer_list
.mtx_grp
= lck_grp_alloc_init("tcptimerlist",
563 tcp_timer_list
.mtx_grp_attr
);
564 tcp_timer_list
.mtx_attr
= lck_attr_alloc_init();
565 if ((tcp_timer_list
.mtx
= lck_mtx_alloc_init(tcp_timer_list
.mtx_grp
,
566 tcp_timer_list
.mtx_attr
)) == NULL
) {
567 panic("failed to allocate memory for tcp_timer_list.mtx\n");
570 tcp_timer_list
.call
= thread_call_allocate(tcp_run_timerlist
, NULL
);
571 if (tcp_timer_list
.call
== NULL
) {
572 panic("failed to allocate call entry 1 in tcp_init\n");
576 * allocate lock group attribute, group and attribute for
579 tcp_uptime_mtx_grp_attr
= lck_grp_attr_alloc_init();
580 tcp_uptime_mtx_grp
= lck_grp_alloc_init("tcpuptime",
581 tcp_uptime_mtx_grp_attr
);
582 tcp_uptime_mtx_attr
= lck_attr_alloc_init();
583 tcp_uptime_lock
= lck_spin_alloc_init(tcp_uptime_mtx_grp
,
584 tcp_uptime_mtx_attr
);
586 /* Initialize TCP Cache */
589 tcp_mpkl_log_object
= MPKL_CREATE_LOGOBJECT("com.apple.xnu.tcp");
590 if (tcp_mpkl_log_object
== NULL
) {
591 panic("MPKL_CREATE_LOGOBJECT failed");
594 logging_config
= atm_get_diagnostic_config();
595 if (logging_config
& 0x80000000) {
599 PE_parse_boot_argn("tcp_log", &tcp_log_enable_flags
, sizeof(tcp_log_enable_flags
));
602 * If more than 4GB of actual memory is available, increase the
603 * maximum allowed receive and send socket buffer size.
605 if (mem_actual
>= (1ULL << (GBSHIFT
+ 2))) {
606 tcp_autorcvbuf_max
= 4 * 1024 * 1024;
607 tcp_autosndbuf_max
= 4 * 1024 * 1024;
609 SYSCTL_SKMEM_UPDATE_FIELD(tcp
.autorcvbufmax
, tcp_autorcvbuf_max
);
610 SYSCTL_SKMEM_UPDATE_FIELD(tcp
.autosndbufmax
, tcp_autosndbuf_max
);
615 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
616 * tcp_template used to store this data in mbufs, but we now recopy it out
617 * of the tcpcb each time to conserve mbufs.
620 tcp_fillheaders(struct tcpcb
*tp
, void *ip_ptr
, void *tcp_ptr
)
622 struct inpcb
*inp
= tp
->t_inpcb
;
623 struct tcphdr
*tcp_hdr
= (struct tcphdr
*)tcp_ptr
;
625 if ((inp
->inp_vflag
& INP_IPV6
) != 0) {
628 ip6
= (struct ip6_hdr
*)ip_ptr
;
629 ip6
->ip6_flow
= (ip6
->ip6_flow
& ~IPV6_FLOWINFO_MASK
) |
630 (inp
->inp_flow
& IPV6_FLOWINFO_MASK
);
631 ip6
->ip6_vfc
= (ip6
->ip6_vfc
& ~IPV6_VERSION_MASK
) |
632 (IPV6_VERSION
& IPV6_VERSION_MASK
);
633 ip6
->ip6_plen
= htons(sizeof(struct tcphdr
));
634 ip6
->ip6_nxt
= IPPROTO_TCP
;
636 ip6
->ip6_src
= inp
->in6p_laddr
;
637 ip6
->ip6_dst
= inp
->in6p_faddr
;
638 tcp_hdr
->th_sum
= in6_pseudo(&inp
->in6p_laddr
, &inp
->in6p_faddr
,
639 htonl(sizeof(struct tcphdr
) + IPPROTO_TCP
));
641 struct ip
*ip
= (struct ip
*) ip_ptr
;
643 ip
->ip_vhl
= IP_VHL_BORING
;
650 ip
->ip_p
= IPPROTO_TCP
;
651 ip
->ip_src
= inp
->inp_laddr
;
652 ip
->ip_dst
= inp
->inp_faddr
;
654 in_pseudo(ip
->ip_src
.s_addr
, ip
->ip_dst
.s_addr
,
655 htons(sizeof(struct tcphdr
) + IPPROTO_TCP
));
658 tcp_hdr
->th_sport
= inp
->inp_lport
;
659 tcp_hdr
->th_dport
= inp
->inp_fport
;
664 tcp_hdr
->th_flags
= 0;
670 * Create template to be used to send tcp packets on a connection.
671 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
672 * use for this function is in keepalives, which use tcp_respond.
675 tcp_maketemplate(struct tcpcb
*tp
)
680 m
= m_get(M_DONTWAIT
, MT_HEADER
);
684 m
->m_len
= sizeof(struct tcptemp
);
685 n
= mtod(m
, struct tcptemp
*);
687 tcp_fillheaders(tp
, (void *)&n
->tt_ipgen
, (void *)&n
->tt_t
);
692 * Send a single message to the TCP at address specified by
693 * the given TCP/IP header. If m == 0, then we make a copy
694 * of the tcpiphdr at ti and send directly to the addressed host.
695 * This is used to force keep alive messages out using the TCP
696 * template for a connection. If flags are given then we send
697 * a message back to the TCP which originated the * segment ti,
698 * and discard the mbuf containing it and any other attached mbufs.
700 * In any case the ack and sequence number of the transmitted
701 * segment are as specified by the parameters.
703 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
706 tcp_respond(struct tcpcb
*tp
, void *ipgen
, struct tcphdr
*th
, struct mbuf
*m
,
707 tcp_seq ack
, tcp_seq seq
, uint8_t flags
, struct tcp_respond_args
*tra
)
711 struct route
*ro
= 0;
715 struct route_in6
*ro6
= 0;
716 struct route_in6 sro6
;
720 int sotc
= SO_TC_UNSPEC
;
721 bool check_qos_marking_again
= FALSE
;
723 isipv6
= IP_VHL_V(((struct ip
*)ipgen
)->ip_vhl
) == 6;
728 check_qos_marking_again
= tp
->t_inpcb
->inp_socket
->so_flags1
& SOF1_QOSMARKING_POLICY_OVERRIDE
? FALSE
: TRUE
;
729 if (!(flags
& TH_RST
)) {
730 win
= tcp_sbspace(tp
);
731 if (win
> (int32_t)TCP_MAXWIN
<< tp
->rcv_scale
) {
732 win
= (int32_t)TCP_MAXWIN
<< tp
->rcv_scale
;
736 ro6
= &tp
->t_inpcb
->in6p_route
;
738 ro
= &tp
->t_inpcb
->inp_route
;
743 bzero(ro6
, sizeof(*ro6
));
746 bzero(ro
, sizeof(*ro
));
750 m
= m_gethdr(M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
755 m
->m_data
+= max_linkhdr
;
757 VERIFY((MHLEN
- max_linkhdr
) >=
758 (sizeof(*ip6
) + sizeof(*nth
)));
759 bcopy((caddr_t
)ip6
, mtod(m
, caddr_t
),
760 sizeof(struct ip6_hdr
));
761 ip6
= mtod(m
, struct ip6_hdr
*);
762 nth
= (struct tcphdr
*)(void *)(ip6
+ 1);
764 VERIFY((MHLEN
- max_linkhdr
) >=
765 (sizeof(*ip
) + sizeof(*nth
)));
766 bcopy((caddr_t
)ip
, mtod(m
, caddr_t
), sizeof(struct ip
));
767 ip
= mtod(m
, struct ip
*);
768 nth
= (struct tcphdr
*)(void *)(ip
+ 1);
770 bcopy((caddr_t
)th
, (caddr_t
)nth
, sizeof(struct tcphdr
));
772 if ((tp
) && (tp
->t_mpflags
& TMPF_RESET
)) {
773 flags
= (TH_RST
| TH_ACK
);
780 m
->m_data
= (caddr_t
)ipgen
;
781 /* m_len is set later */
783 #define xchg(a, b, type) { type t; t = a; a = b; b = t; }
785 /* Expect 32-bit aligned IP on strict-align platforms */
786 IP6_HDR_STRICT_ALIGNMENT_CHECK(ip6
);
787 xchg(ip6
->ip6_dst
, ip6
->ip6_src
, struct in6_addr
);
788 nth
= (struct tcphdr
*)(void *)(ip6
+ 1);
790 /* Expect 32-bit aligned IP on strict-align platforms */
791 IP_HDR_STRICT_ALIGNMENT_CHECK(ip
);
792 xchg(ip
->ip_dst
.s_addr
, ip
->ip_src
.s_addr
, n_long
);
793 nth
= (struct tcphdr
*)(void *)(ip
+ 1);
797 * this is usually a case when an extension header
798 * exists between the IPv6 header and the
801 nth
->th_sport
= th
->th_sport
;
802 nth
->th_dport
= th
->th_dport
;
804 xchg(nth
->th_dport
, nth
->th_sport
, n_short
);
808 ip6
->ip6_plen
= htons((u_short
)(sizeof(struct tcphdr
) +
810 tlen
+= sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
);
812 tlen
+= sizeof(struct tcpiphdr
);
814 ip
->ip_ttl
= (uint8_t)ip_defttl
;
817 m
->m_pkthdr
.len
= tlen
;
818 m
->m_pkthdr
.rcvif
= 0;
819 if (tra
->keep_alive
) {
820 m
->m_pkthdr
.pkt_flags
|= PKTF_KEEPALIVE
;
823 nth
->th_seq
= htonl(seq
);
824 nth
->th_ack
= htonl(ack
);
826 nth
->th_off
= sizeof(struct tcphdr
) >> 2;
827 nth
->th_flags
= flags
;
829 nth
->th_win
= htons((u_short
) (win
>> tp
->rcv_scale
));
831 nth
->th_win
= htons((u_short
)win
);
836 nth
->th_sum
= in6_pseudo(&ip6
->ip6_src
, &ip6
->ip6_dst
,
837 htonl((tlen
- sizeof(struct ip6_hdr
)) + IPPROTO_TCP
));
838 m
->m_pkthdr
.csum_flags
= CSUM_TCPIPV6
;
839 m
->m_pkthdr
.csum_data
= offsetof(struct tcphdr
, th_sum
);
840 ip6
->ip6_hlim
= in6_selecthlim(tp
? tp
->t_inpcb
: NULL
,
841 ro6
&& ro6
->ro_rt
? ro6
->ro_rt
->rt_ifp
: NULL
);
843 nth
->th_sum
= in_pseudo(ip
->ip_src
.s_addr
, ip
->ip_dst
.s_addr
,
844 htons((u_short
)(tlen
- sizeof(struct ip
) + ip
->ip_p
)));
845 m
->m_pkthdr
.csum_flags
= CSUM_TCP
;
846 m
->m_pkthdr
.csum_data
= offsetof(struct tcphdr
, th_sum
);
849 if (tp
== NULL
|| (tp
->t_inpcb
->inp_socket
->so_options
& SO_DEBUG
)) {
850 tcp_trace(TA_OUTPUT
, 0, tp
, mtod(m
, void *), th
, 0);
855 necp_mark_packet_from_socket(m
, tp
? tp
->t_inpcb
: NULL
, 0, 0, 0, 0);
859 if (tp
!= NULL
&& tp
->t_inpcb
->inp_sp
!= NULL
&&
860 ipsec_setsocket(m
, tp
? tp
->t_inpcb
->inp_socket
: NULL
) != 0) {
867 u_int32_t svc_flags
= 0;
869 svc_flags
|= PKT_SCF_IPV6
;
871 sotc
= tp
->t_inpcb
->inp_socket
->so_traffic_class
;
872 if ((flags
& TH_RST
) == 0) {
873 set_packet_service_class(m
, tp
->t_inpcb
->inp_socket
,
876 m_set_service_class(m
, MBUF_SC_BK_SYS
);
879 /* Embed flowhash and flow control flags */
880 m
->m_pkthdr
.pkt_flowsrc
= FLOWSRC_INPCB
;
881 m
->m_pkthdr
.pkt_flowid
= tp
->t_inpcb
->inp_flowhash
;
882 m
->m_pkthdr
.pkt_flags
|= (PKTF_FLOW_ID
| PKTF_FLOW_LOCALSRC
| PKTF_FLOW_ADV
);
883 m
->m_pkthdr
.pkt_proto
= IPPROTO_TCP
;
884 m
->m_pkthdr
.tx_tcp_pid
= tp
->t_inpcb
->inp_socket
->last_pid
;
885 m
->m_pkthdr
.tx_tcp_e_pid
= tp
->t_inpcb
->inp_socket
->e_pid
;
887 if (flags
& TH_RST
) {
888 m
->m_pkthdr
.comp_gencnt
= tp
->t_comp_gencnt
;
891 if (flags
& TH_RST
) {
892 m
->m_pkthdr
.comp_gencnt
= TCP_ACK_COMPRESSION_DUMMY
;
893 m_set_service_class(m
, MBUF_SC_BK_SYS
);
898 struct ip6_out_args ip6oa
;
899 bzero(&ip6oa
, sizeof(ip6oa
));
900 ip6oa
.ip6oa_boundif
= tra
->ifscope
;
901 ip6oa
.ip6oa_flags
= IP6OAF_SELECT_SRCIF
| IP6OAF_BOUND_SRCADDR
;
902 ip6oa
.ip6oa_sotc
= SO_TC_UNSPEC
;
903 ip6oa
.ip6oa_netsvctype
= _NET_SERVICE_TYPE_UNSPEC
;
905 if (tra
->ifscope
!= IFSCOPE_NONE
) {
906 ip6oa
.ip6oa_flags
|= IP6OAF_BOUND_IF
;
909 ip6oa
.ip6oa_flags
|= IP6OAF_NO_CELLULAR
;
911 if (tra
->noexpensive
) {
912 ip6oa
.ip6oa_flags
|= IP6OAF_NO_EXPENSIVE
;
914 if (tra
->noconstrained
) {
915 ip6oa
.ip6oa_flags
|= IP6OAF_NO_CONSTRAINED
;
917 if (tra
->awdl_unrestricted
) {
918 ip6oa
.ip6oa_flags
|= IP6OAF_AWDL_UNRESTRICTED
;
920 if (tra
->intcoproc_allowed
) {
921 ip6oa
.ip6oa_flags
|= IP6OAF_INTCOPROC_ALLOWED
;
923 ip6oa
.ip6oa_sotc
= sotc
;
925 if ((tp
->t_inpcb
->inp_socket
->so_flags1
& SOF1_QOSMARKING_ALLOWED
)) {
926 ip6oa
.ip6oa_flags
|= IP6OAF_QOSMARKING_ALLOWED
;
928 ip6oa
.qos_marking_gencount
= tp
->t_inpcb
->inp_policyresult
.results
.qos_marking_gencount
;
929 if (check_qos_marking_again
) {
930 ip6oa
.ip6oa_flags
|= IP6OAF_REDO_QOSMARKING_POLICY
;
932 ip6oa
.ip6oa_netsvctype
= tp
->t_inpcb
->inp_socket
->so_netsvctype
;
934 (void) ip6_output(m
, NULL
, ro6
, IPV6_OUTARGS
, NULL
,
937 if (check_qos_marking_again
) {
938 struct inpcb
*inp
= tp
->t_inpcb
;
939 inp
->inp_policyresult
.results
.qos_marking_gencount
= ip6oa
.qos_marking_gencount
;
940 if (ip6oa
.ip6oa_flags
& IP6OAF_QOSMARKING_ALLOWED
) {
941 inp
->inp_socket
->so_flags1
|= SOF1_QOSMARKING_ALLOWED
;
943 inp
->inp_socket
->so_flags1
&= ~SOF1_QOSMARKING_ALLOWED
;
947 if (tp
!= NULL
&& ro6
!= NULL
&& ro6
->ro_rt
!= NULL
&&
948 (outif
= ro6
->ro_rt
->rt_ifp
) !=
949 tp
->t_inpcb
->in6p_last_outifp
) {
950 tp
->t_inpcb
->in6p_last_outifp
= outif
;
957 struct ip_out_args ipoa
;
958 bzero(&ipoa
, sizeof(ipoa
));
959 ipoa
.ipoa_boundif
= tra
->ifscope
;
960 ipoa
.ipoa_flags
= IPOAF_SELECT_SRCIF
| IPOAF_BOUND_SRCADDR
;
961 ipoa
.ipoa_sotc
= SO_TC_UNSPEC
;
962 ipoa
.ipoa_netsvctype
= _NET_SERVICE_TYPE_UNSPEC
;
964 if (tra
->ifscope
!= IFSCOPE_NONE
) {
965 ipoa
.ipoa_flags
|= IPOAF_BOUND_IF
;
968 ipoa
.ipoa_flags
|= IPOAF_NO_CELLULAR
;
970 if (tra
->noexpensive
) {
971 ipoa
.ipoa_flags
|= IPOAF_NO_EXPENSIVE
;
973 if (tra
->noconstrained
) {
974 ipoa
.ipoa_flags
|= IPOAF_NO_CONSTRAINED
;
976 if (tra
->awdl_unrestricted
) {
977 ipoa
.ipoa_flags
|= IPOAF_AWDL_UNRESTRICTED
;
979 ipoa
.ipoa_sotc
= sotc
;
981 if ((tp
->t_inpcb
->inp_socket
->so_flags1
& SOF1_QOSMARKING_ALLOWED
)) {
982 ipoa
.ipoa_flags
|= IPOAF_QOSMARKING_ALLOWED
;
984 if (!(tp
->t_inpcb
->inp_socket
->so_flags1
& SOF1_QOSMARKING_POLICY_OVERRIDE
)) {
985 ipoa
.ipoa_flags
|= IPOAF_REDO_QOSMARKING_POLICY
;
987 ipoa
.qos_marking_gencount
= tp
->t_inpcb
->inp_policyresult
.results
.qos_marking_gencount
;
988 ipoa
.ipoa_netsvctype
= tp
->t_inpcb
->inp_socket
->so_netsvctype
;
991 /* Copy the cached route and take an extra reference */
992 inp_route_copyout(tp
->t_inpcb
, &sro
);
995 * For consistency, pass a local route copy.
997 (void) ip_output(m
, NULL
, &sro
, IP_OUTARGS
, NULL
, &ipoa
);
999 if (check_qos_marking_again
) {
1000 struct inpcb
*inp
= tp
->t_inpcb
;
1001 inp
->inp_policyresult
.results
.qos_marking_gencount
= ipoa
.qos_marking_gencount
;
1002 if (ipoa
.ipoa_flags
& IPOAF_QOSMARKING_ALLOWED
) {
1003 inp
->inp_socket
->so_flags1
|= SOF1_QOSMARKING_ALLOWED
;
1005 inp
->inp_socket
->so_flags1
&= ~SOF1_QOSMARKING_ALLOWED
;
1008 if (tp
!= NULL
&& sro
.ro_rt
!= NULL
&&
1009 (outif
= sro
.ro_rt
->rt_ifp
) !=
1010 tp
->t_inpcb
->inp_last_outifp
) {
1011 tp
->t_inpcb
->inp_last_outifp
= outif
;
1014 /* Synchronize cached PCB route */
1015 inp_route_copyin(tp
->t_inpcb
, &sro
);
1017 ROUTE_RELEASE(&sro
);
1023 * Create a new TCP control block, making an
1024 * empty reassembly queue and hooking it to the argument
1025 * protocol control block. The `inp' parameter must have
1026 * come from the zone allocator set up in tcp_init().
1029 tcp_newtcpcb(struct inpcb
*inp
)
1033 struct socket
*so
= inp
->inp_socket
;
1034 int isipv6
= (inp
->inp_vflag
& INP_IPV6
) != 0;
1036 calculate_tcp_clock();
1038 if ((so
->so_flags1
& SOF1_CACHED_IN_SOCK_LAYER
) == 0) {
1039 it
= (struct inp_tp
*)(void *)inp
;
1042 tp
= (struct tcpcb
*)(void *)inp
->inp_saved_ppcb
;
1045 bzero((char *) tp
, sizeof(struct tcpcb
));
1046 LIST_INIT(&tp
->t_segq
);
1047 tp
->t_maxseg
= tp
->t_maxopd
= isipv6
? tcp_v6mssdflt
: tcp_mssdflt
;
1049 tp
->t_flags
= (TF_REQ_SCALE
| TF_REQ_TSTMP
);
1050 tp
->t_flagsext
|= TF_SACK_ENABLE
;
1052 TAILQ_INIT(&tp
->snd_holes
);
1053 SLIST_INIT(&tp
->t_rxt_segments
);
1054 SLIST_INIT(&tp
->t_notify_ack
);
1057 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
1058 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
1059 * reasonable initial retransmit time.
1061 tp
->t_srtt
= TCPTV_SRTTBASE
;
1063 ((TCPTV_RTOBASE
- TCPTV_SRTTBASE
) << TCP_RTTVAR_SHIFT
) / 4;
1064 tp
->t_rttmin
= tcp_TCPTV_MIN
;
1065 tp
->t_rxtcur
= TCPTV_RTOBASE
;
1067 if (tcp_use_newreno
) {
1068 /* use newreno by default */
1069 tp
->tcp_cc_index
= TCP_CC_ALGO_NEWRENO_INDEX
;
1071 tp
->tcp_cc_index
= TCP_CC_ALGO_CUBIC_INDEX
;
1074 tcp_cc_allocate_state(tp
);
1076 if (CC_ALGO(tp
)->init
!= NULL
) {
1077 CC_ALGO(tp
)->init(tp
);
1080 tp
->snd_cwnd
= tcp_initial_cwnd(tp
);
1081 tp
->snd_ssthresh
= TCP_MAXWIN
<< TCP_MAX_WINSHIFT
;
1082 tp
->snd_ssthresh_prev
= TCP_MAXWIN
<< TCP_MAX_WINSHIFT
;
1083 tp
->t_rcvtime
= tcp_now
;
1084 tp
->tentry
.timer_start
= tcp_now
;
1085 tp
->rcv_unackwin
= tcp_now
;
1086 tp
->t_persist_timeout
= tcp_max_persist_timeout
;
1087 tp
->t_persist_stop
= 0;
1088 tp
->t_flagsext
|= TF_RCVUNACK_WAITSS
;
1089 tp
->t_rexmtthresh
= (uint8_t)tcprexmtthresh
;
1090 tp
->rfbuf_ts
= tcp_now
;
1091 tp
->rfbuf_space
= tcp_initial_cwnd(tp
);
1092 tp
->t_forced_acks
= TCP_FORCED_ACKS_COUNT
;
1094 /* Enable bandwidth measurement on this connection */
1095 tp
->t_flagsext
|= TF_MEASURESNDBW
;
1096 if (tp
->t_bwmeas
== NULL
) {
1097 tp
->t_bwmeas
= tcp_bwmeas_alloc(tp
);
1098 if (tp
->t_bwmeas
== NULL
) {
1099 tp
->t_flagsext
&= ~TF_MEASURESNDBW
;
1103 /* Clear time wait tailq entry */
1104 tp
->t_twentry
.tqe_next
= NULL
;
1105 tp
->t_twentry
.tqe_prev
= NULL
;
1107 if (__probable(tcp_do_ack_compression
)) {
1108 read_frandom(&tp
->t_comp_gencnt
, sizeof(tp
->t_comp_gencnt
));
1109 if (tp
->t_comp_gencnt
<= TCP_ACK_COMPRESSION_DUMMY
) {
1110 tp
->t_comp_gencnt
= TCP_ACK_COMPRESSION_DUMMY
+ 1;
1112 tp
->t_comp_lastinc
= tcp_now
;
1116 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
1117 * because the socket may be bound to an IPv6 wildcard address,
1118 * which may match an IPv4-mapped IPv6 address.
1120 inp
->inp_ip_ttl
= (uint8_t)ip_defttl
;
1121 inp
->inp_ppcb
= (caddr_t
)tp
;
1122 return tp
; /* XXX */
1126 * Drop a TCP connection, reporting
1127 * the specified error. If connection is synchronized,
1128 * then send a RST to peer.
1131 tcp_drop(struct tcpcb
*tp
, int errno
)
1133 struct socket
*so
= tp
->t_inpcb
->inp_socket
;
1135 struct inpcb
*inp
= tp
->t_inpcb
;
1138 if (TCPS_HAVERCVDSYN(tp
->t_state
)) {
1139 DTRACE_TCP4(state__change
, void, NULL
, struct inpcb
*, inp
,
1140 struct tcpcb
*, tp
, int32_t, TCPS_CLOSED
);
1141 tp
->t_state
= TCPS_CLOSED
;
1142 (void) tcp_output(tp
);
1143 tcpstat
.tcps_drops
++;
1145 tcpstat
.tcps_conndrops
++;
1147 if (errno
== ETIMEDOUT
&& tp
->t_softerror
) {
1148 errno
= tp
->t_softerror
;
1150 so
->so_error
= (u_short
)errno
;
1152 TCP_LOG_CONNECTION_SUMMARY(tp
);
1154 return tcp_close(tp
);
1158 tcp_getrt_rtt(struct tcpcb
*tp
, struct rtentry
*rt
)
1160 u_int32_t rtt
= rt
->rt_rmx
.rmx_rtt
;
1161 int isnetlocal
= (tp
->t_flags
& TF_LOCAL
);
1163 TCP_LOG_RTM_RTT(tp
, rt
);
1165 if (rtt
!= 0 && tcp_init_rtt_from_cache
!= 0) {
1167 * XXX the lock bit for RTT indicates that the value
1168 * is also a minimum value; this is subject to time.
1170 if (rt
->rt_rmx
.rmx_locks
& RTV_RTT
) {
1171 tp
->t_rttmin
= rtt
/ (RTM_RTTUNIT
/ TCP_RETRANSHZ
);
1173 tp
->t_rttmin
= isnetlocal
? tcp_TCPTV_MIN
:
1178 rtt
/ (RTM_RTTUNIT
/ (TCP_RETRANSHZ
* TCP_RTT_SCALE
));
1179 tcpstat
.tcps_usedrtt
++;
1181 if (rt
->rt_rmx
.rmx_rttvar
) {
1182 tp
->t_rttvar
= rt
->rt_rmx
.rmx_rttvar
/
1183 (RTM_RTTUNIT
/ (TCP_RETRANSHZ
* TCP_RTTVAR_SCALE
));
1184 tcpstat
.tcps_usedrttvar
++;
1186 /* default variation is +- 1 rtt */
1188 tp
->t_srtt
* TCP_RTTVAR_SCALE
/ TCP_RTT_SCALE
;
1192 * The RTO formula in the route metric case is based on:
1193 * 4 * srtt + 8 * rttvar
1194 * modulo the min, max and slop
1196 TCPT_RANGESET(tp
->t_rxtcur
,
1197 ((tp
->t_srtt
>> 2) + tp
->t_rttvar
) >> 1,
1198 tp
->t_rttmin
, TCPTV_REXMTMAX
,
1199 TCP_ADD_REXMTSLOP(tp
));
1202 TCP_LOG_RTT_INFO(tp
);
1206 tcp_create_ifnet_stats_per_flow(struct tcpcb
*tp
,
1207 struct ifnet_stats_per_flow
*ifs
)
1211 if (tp
== NULL
|| ifs
== NULL
) {
1215 bzero(ifs
, sizeof(*ifs
));
1217 so
= inp
->inp_socket
;
1219 ifs
->ipv4
= (inp
->inp_vflag
& INP_IPV6
) ? 0 : 1;
1220 ifs
->local
= (tp
->t_flags
& TF_LOCAL
) ? 1 : 0;
1221 ifs
->connreset
= (so
->so_error
== ECONNRESET
) ? 1 : 0;
1222 ifs
->conntimeout
= (so
->so_error
== ETIMEDOUT
) ? 1 : 0;
1223 ifs
->ecn_flags
= tp
->ecn_flags
;
1224 ifs
->txretransmitbytes
= tp
->t_stat
.txretransmitbytes
;
1225 ifs
->rxoutoforderbytes
= tp
->t_stat
.rxoutoforderbytes
;
1226 ifs
->rxmitpkts
= tp
->t_stat
.rxmitpkts
;
1227 ifs
->rcvoopack
= tp
->t_rcvoopack
;
1228 ifs
->pawsdrop
= tp
->t_pawsdrop
;
1229 ifs
->sack_recovery_episodes
= tp
->t_sack_recovery_episode
;
1230 ifs
->reordered_pkts
= tp
->t_reordered_pkts
;
1231 ifs
->dsack_sent
= tp
->t_dsack_sent
;
1232 ifs
->dsack_recvd
= tp
->t_dsack_recvd
;
1233 ifs
->srtt
= tp
->t_srtt
;
1234 ifs
->rttupdated
= tp
->t_rttupdated
;
1235 ifs
->rttvar
= tp
->t_rttvar
;
1236 ifs
->rttmin
= get_base_rtt(tp
);
1237 if (tp
->t_bwmeas
!= NULL
&& tp
->t_bwmeas
->bw_sndbw_max
> 0) {
1238 ifs
->bw_sndbw_max
= tp
->t_bwmeas
->bw_sndbw_max
;
1240 ifs
->bw_sndbw_max
= 0;
1242 if (tp
->t_bwmeas
!= NULL
&& tp
->t_bwmeas
->bw_rcvbw_max
> 0) {
1243 ifs
->bw_rcvbw_max
= tp
->t_bwmeas
->bw_rcvbw_max
;
1245 ifs
->bw_rcvbw_max
= 0;
1247 ifs
->bk_txpackets
= so
->so_tc_stats
[MBUF_TC_BK
].txpackets
;
1248 ifs
->txpackets
= inp
->inp_stat
->txpackets
;
1249 ifs
->rxpackets
= inp
->inp_stat
->rxpackets
;
1253 tcp_flow_ecn_perf_stats(struct ifnet_stats_per_flow
*ifs
,
1254 struct if_tcp_ecn_perf_stat
*stat
)
1256 u_int64_t curval
, oldval
;
1257 stat
->total_txpkts
+= ifs
->txpackets
;
1258 stat
->total_rxpkts
+= ifs
->rxpackets
;
1259 stat
->total_rxmitpkts
+= ifs
->rxmitpkts
;
1260 stat
->total_oopkts
+= ifs
->rcvoopack
;
1261 stat
->total_reorderpkts
+= (ifs
->reordered_pkts
+
1262 ifs
->pawsdrop
+ ifs
->dsack_sent
+ ifs
->dsack_recvd
);
1265 curval
= ifs
->srtt
>> TCP_RTT_SHIFT
;
1266 if (curval
> 0 && ifs
->rttupdated
>= 16) {
1267 if (stat
->rtt_avg
== 0) {
1268 stat
->rtt_avg
= curval
;
1270 oldval
= stat
->rtt_avg
;
1271 stat
->rtt_avg
= ((oldval
<< 4) - oldval
+ curval
) >> 4;
1276 curval
= ifs
->rttvar
>> TCP_RTTVAR_SHIFT
;
1277 if (curval
> 0 && ifs
->rttupdated
>= 16) {
1278 if (stat
->rtt_var
== 0) {
1279 stat
->rtt_var
= curval
;
1281 oldval
= stat
->rtt_var
;
1283 ((oldval
<< 4) - oldval
+ curval
) >> 4;
1288 stat
->sack_episodes
+= ifs
->sack_recovery_episodes
;
1289 if (ifs
->connreset
) {
1295 tcp_flow_lim_stats(struct ifnet_stats_per_flow
*ifs
,
1296 struct if_lim_perf_stat
*stat
)
1298 u_int64_t curval
, oldval
;
1300 stat
->lim_total_txpkts
+= ifs
->txpackets
;
1301 stat
->lim_total_rxpkts
+= ifs
->rxpackets
;
1302 stat
->lim_total_retxpkts
+= ifs
->rxmitpkts
;
1303 stat
->lim_total_oopkts
+= ifs
->rcvoopack
;
1305 if (ifs
->bw_sndbw_max
> 0) {
1306 /* convert from bytes per ms to bits per second */
1307 ifs
->bw_sndbw_max
*= 8000;
1308 stat
->lim_ul_max_bandwidth
= MAX(stat
->lim_ul_max_bandwidth
,
1312 if (ifs
->bw_rcvbw_max
> 0) {
1313 /* convert from bytes per ms to bits per second */
1314 ifs
->bw_rcvbw_max
*= 8000;
1315 stat
->lim_dl_max_bandwidth
= MAX(stat
->lim_dl_max_bandwidth
,
1320 curval
= ifs
->srtt
>> TCP_RTT_SHIFT
;
1321 if (curval
> 0 && ifs
->rttupdated
>= 16) {
1322 if (stat
->lim_rtt_average
== 0) {
1323 stat
->lim_rtt_average
= curval
;
1325 oldval
= stat
->lim_rtt_average
;
1326 stat
->lim_rtt_average
=
1327 ((oldval
<< 4) - oldval
+ curval
) >> 4;
1332 curval
= ifs
->rttvar
>> TCP_RTTVAR_SHIFT
;
1333 if (curval
> 0 && ifs
->rttupdated
>= 16) {
1334 if (stat
->lim_rtt_variance
== 0) {
1335 stat
->lim_rtt_variance
= curval
;
1337 oldval
= stat
->lim_rtt_variance
;
1338 stat
->lim_rtt_variance
=
1339 ((oldval
<< 4) - oldval
+ curval
) >> 4;
1343 if (stat
->lim_rtt_min
== 0) {
1344 stat
->lim_rtt_min
= ifs
->rttmin
;
1346 stat
->lim_rtt_min
= MIN(stat
->lim_rtt_min
, ifs
->rttmin
);
1349 /* connection timeouts */
1350 stat
->lim_conn_attempts
++;
1351 if (ifs
->conntimeout
) {
1352 stat
->lim_conn_timeouts
++;
1355 /* bytes sent using background delay-based algorithms */
1356 stat
->lim_bk_txpkts
+= ifs
->bk_txpackets
;
1360 * Close a TCP control block:
1361 * discard all space held by the tcp
1362 * discard internet protocol block
1363 * wake up any sleepers
1366 tcp_close(struct tcpcb
*tp
)
1368 struct inpcb
*inp
= tp
->t_inpcb
;
1369 struct socket
*so
= inp
->inp_socket
;
1370 int isipv6
= (inp
->inp_vflag
& INP_IPV6
) != 0;
1374 struct ifnet_stats_per_flow ifs
;
1376 /* tcp_close was called previously, bail */
1377 if (inp
->inp_ppcb
== NULL
) {
1381 tcp_del_fsw_flow(tp
);
1383 tcp_canceltimers(tp
);
1384 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE
| DBG_FUNC_START
, tp
, 0, 0, 0, 0);
1387 * If another thread for this tcp is currently in ip (indicated by
1388 * the TF_SENDINPROG flag), defer the cleanup until after it returns
1389 * back to tcp. This is done to serialize the close until after all
1390 * pending output is finished, in order to avoid having the PCB be
1391 * detached and the cached route cleaned, only for ip to cache the
1392 * route back into the PCB again. Note that we've cleared all the
1393 * timers at this point. Set TF_CLOSING to indicate to tcp_output()
1394 * that is should call us again once it returns from ip; at that
1395 * point both flags should be cleared and we can proceed further
1398 if ((tp
->t_flags
& TF_CLOSING
) ||
1399 inp
->inp_sndinprog_cnt
> 0) {
1400 tp
->t_flags
|= TF_CLOSING
;
1404 TCP_LOG_CONNECTION_SUMMARY(tp
);
1406 DTRACE_TCP4(state__change
, void, NULL
, struct inpcb
*, inp
,
1407 struct tcpcb
*, tp
, int32_t, TCPS_CLOSED
);
1409 ro
= (isipv6
? (struct route
*)&inp
->in6p_route
: &inp
->inp_route
);
1416 * If we got enough samples through the srtt filter,
1417 * save the rtt and rttvar in the routing entry.
1418 * 'Enough' is arbitrarily defined as the 16 samples.
1419 * 16 samples is enough for the srtt filter to converge
1420 * to within 5% of the correct value; fewer samples and
1421 * we could save a very bogus rtt.
1423 * Don't update the default route's characteristics and don't
1424 * update anything that the user "locked".
1426 if (tp
->t_rttupdated
>= 16) {
1428 bool log_rtt
= false;
1431 struct sockaddr_in6
*sin6
;
1436 sin6
= (struct sockaddr_in6
*)(void *)rt_key(rt
);
1437 if (IN6_IS_ADDR_UNSPECIFIED(&sin6
->sin6_addr
)) {
1440 } else if (ROUTE_UNUSABLE(ro
) ||
1441 SIN(rt_key(rt
))->sin_addr
.s_addr
== INADDR_ANY
) {
1442 DTRACE_TCP4(state__change
, void, NULL
,
1443 struct inpcb
*, inp
, struct tcpcb
*, tp
,
1444 int32_t, TCPS_CLOSED
);
1445 tp
->t_state
= TCPS_CLOSED
;
1449 RT_LOCK_ASSERT_HELD(rt
);
1450 if ((rt
->rt_rmx
.rmx_locks
& RTV_RTT
) == 0) {
1452 (RTM_RTTUNIT
/ (TCP_RETRANSHZ
* TCP_RTT_SCALE
));
1453 if (rt
->rt_rmx
.rmx_rtt
&& i
) {
1455 * filter this update to half the old & half
1456 * the new values, converting scale.
1457 * See route.h and tcp_var.h for a
1458 * description of the scaling constants.
1460 rt
->rt_rmx
.rmx_rtt
=
1461 (rt
->rt_rmx
.rmx_rtt
+ i
) / 2;
1463 rt
->rt_rmx
.rmx_rtt
= i
;
1465 tcpstat
.tcps_cachedrtt
++;
1468 if ((rt
->rt_rmx
.rmx_locks
& RTV_RTTVAR
) == 0) {
1470 (RTM_RTTUNIT
/ (TCP_RETRANSHZ
* TCP_RTTVAR_SCALE
));
1471 if (rt
->rt_rmx
.rmx_rttvar
&& i
) {
1472 rt
->rt_rmx
.rmx_rttvar
=
1473 (rt
->rt_rmx
.rmx_rttvar
+ i
) / 2;
1475 rt
->rt_rmx
.rmx_rttvar
= i
;
1477 tcpstat
.tcps_cachedrttvar
++;
1481 TCP_LOG_RTM_RTT(tp
, rt
);
1482 TCP_LOG_RTT_INFO(tp
);
1485 * The old comment here said:
1486 * update the pipelimit (ssthresh) if it has been updated
1487 * already or if a pipesize was specified & the threshhold
1488 * got below half the pipesize. I.e., wait for bad news
1489 * before we start updating, then update on both good
1492 * But we want to save the ssthresh even if no pipesize is
1493 * specified explicitly in the route, because such
1494 * connections still have an implicit pipesize specified
1495 * by the global tcp_sendspace. In the absence of a reliable
1496 * way to calculate the pipesize, it will have to do.
1498 i
= tp
->snd_ssthresh
;
1499 if (rt
->rt_rmx
.rmx_sendpipe
!= 0) {
1500 dosavessthresh
= (i
< rt
->rt_rmx
.rmx_sendpipe
/ 2);
1502 dosavessthresh
= (i
< so
->so_snd
.sb_hiwat
/ 2);
1504 if (((rt
->rt_rmx
.rmx_locks
& RTV_SSTHRESH
) == 0 &&
1505 i
!= 0 && rt
->rt_rmx
.rmx_ssthresh
!= 0) ||
1508 * convert the limit from user data bytes to
1509 * packets then to packet data bytes.
1511 i
= (i
+ tp
->t_maxseg
/ 2) / tp
->t_maxseg
;
1515 i
*= (u_int32_t
)(tp
->t_maxseg
+
1516 isipv6
? sizeof(struct ip6_hdr
) +
1517 sizeof(struct tcphdr
) :
1518 sizeof(struct tcpiphdr
));
1519 if (rt
->rt_rmx
.rmx_ssthresh
) {
1520 rt
->rt_rmx
.rmx_ssthresh
=
1521 (rt
->rt_rmx
.rmx_ssthresh
+ i
) / 2;
1523 rt
->rt_rmx
.rmx_ssthresh
= i
;
1525 tcpstat
.tcps_cachedssthresh
++;
1530 * Mark route for deletion if no information is cached.
1532 if (rt
!= NULL
&& (so
->so_flags
& SOF_OVERFLOW
)) {
1533 if (!(rt
->rt_rmx
.rmx_locks
& RTV_RTT
) &&
1534 rt
->rt_rmx
.rmx_rtt
== 0) {
1535 rt
->rt_flags
|= RTF_DELCLONE
;
1544 /* free the reassembly queue, if any */
1545 (void) tcp_freeq(tp
);
1547 /* performance stats per interface */
1548 tcp_create_ifnet_stats_per_flow(tp
, &ifs
);
1549 tcp_update_stats_per_flow(&ifs
, inp
->inp_last_outifp
);
1551 tcp_free_sackholes(tp
);
1552 tcp_notify_ack_free(tp
);
1554 inp_decr_sndbytes_allunsent(so
, tp
->snd_una
);
1556 if (tp
->t_bwmeas
!= NULL
) {
1557 tcp_bwmeas_free(tp
);
1559 tcp_rxtseg_clean(tp
);
1560 /* Free the packet list */
1561 if (tp
->t_pktlist_head
!= NULL
) {
1562 m_freem_list(tp
->t_pktlist_head
);
1564 TCP_PKTLIST_CLEAR(tp
);
1566 if (so
->so_flags1
& SOF1_CACHED_IN_SOCK_LAYER
) {
1567 inp
->inp_saved_ppcb
= (caddr_t
) tp
;
1570 tp
->t_state
= TCPS_CLOSED
;
1573 * Issue a wakeup before detach so that we don't miss
1576 sodisconnectwakeup(so
);
1579 * Make sure to clear the TCP Keep Alive Offload as it is
1580 * ref counted on the interface
1582 tcp_clear_keep_alive_offload(so
);
1585 * If this is a socket that does not want to wakeup the device
1586 * for it's traffic, the application might need to know that the
1587 * socket is closed, send a notification.
1589 if ((so
->so_options
& SO_NOWAKEFROMSLEEP
) &&
1590 inp
->inp_state
!= INPCB_STATE_DEAD
&&
1591 !(inp
->inp_flags2
& INP2_TIMEWAIT
)) {
1592 socket_post_kev_msg_closed(so
);
1595 if (CC_ALGO(tp
)->cleanup
!= NULL
) {
1596 CC_ALGO(tp
)->cleanup(tp
);
1599 if (tp
->t_ccstate
!= NULL
) {
1600 zfree(tcp_cc_zone
, tp
->t_ccstate
);
1601 tp
->t_ccstate
= NULL
;
1603 tp
->tcp_cc_index
= TCP_CC_ALGO_NONE
;
1605 /* Can happen if we close the socket before receiving the third ACK */
1606 if ((tp
->t_tfo_flags
& TFO_F_COOKIE_VALID
)) {
1607 OSDecrementAtomic(&tcp_tfo_halfcnt
);
1609 /* Panic if something has gone terribly wrong. */
1610 VERIFY(tcp_tfo_halfcnt
>= 0);
1612 tp
->t_tfo_flags
&= ~TFO_F_COOKIE_VALID
;
1615 if (SOCK_CHECK_DOM(so
, PF_INET6
)) {
1622 * Call soisdisconnected after detach because it might unlock the socket
1624 soisdisconnected(so
);
1625 tcpstat
.tcps_closed
++;
1626 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE
| DBG_FUNC_END
,
1627 tcpstat
.tcps_closed
, 0, 0, 0, 0);
1632 tcp_freeq(struct tcpcb
*tp
)
1634 struct tseg_qent
*q
;
1637 while ((q
= LIST_FIRST(&tp
->t_segq
)) != NULL
) {
1638 LIST_REMOVE(q
, tqe_q
);
1640 zfree(tcp_reass_zone
, q
);
1643 tp
->t_reassqlen
= 0;
1654 if (!lck_rw_try_lock_exclusive(tcbinfo
.ipi_lock
)) {
1658 LIST_FOREACH(inp
, tcbinfo
.ipi_listhead
, inp_list
) {
1659 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) !=
1661 socket_lock(inp
->inp_socket
, 1);
1662 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1)
1664 /* lost a race, try the next one */
1665 socket_unlock(inp
->inp_socket
, 1);
1668 tp
= intotcpcb(inp
);
1670 so_drain_extended_bk_idle(inp
->inp_socket
);
1672 socket_unlock(inp
->inp_socket
, 1);
1675 lck_rw_done(tcbinfo
.ipi_lock
);
1679 * Notify a tcp user of an asynchronous error;
1680 * store error as soft error, but wake up user
1681 * (for now, won't do anything until can select for soft error).
1683 * Do not wake up user since there currently is no mechanism for
1684 * reporting soft errors (yet - a kqueue filter may be added).
1687 tcp_notify(struct inpcb
*inp
, int error
)
1691 if (inp
== NULL
|| (inp
->inp_state
== INPCB_STATE_DEAD
)) {
1692 return; /* pcb is gone already */
1694 tp
= (struct tcpcb
*)inp
->inp_ppcb
;
1698 * Ignore some errors if we are hooked up.
1699 * If connection hasn't completed, has retransmitted several times,
1700 * and receives a second error, give up now. This is better
1701 * than waiting a long time to establish a connection that
1702 * can never complete.
1704 if (tp
->t_state
== TCPS_ESTABLISHED
&&
1705 (error
== EHOSTUNREACH
|| error
== ENETUNREACH
||
1706 error
== EHOSTDOWN
)) {
1707 if (inp
->inp_route
.ro_rt
) {
1708 rtfree(inp
->inp_route
.ro_rt
);
1709 inp
->inp_route
.ro_rt
= (struct rtentry
*)NULL
;
1711 } else if (tp
->t_state
< TCPS_ESTABLISHED
&& tp
->t_rxtshift
> 3 &&
1713 tcp_drop(tp
, error
);
1715 tp
->t_softerror
= error
;
1720 tcp_bwmeas_alloc(struct tcpcb
*tp
)
1723 elm
= zalloc_flags(tcp_bwmeas_zone
, Z_ZERO
| Z_WAITOK
);
1724 elm
->bw_minsizepkts
= TCP_BWMEAS_BURST_MINSIZE
;
1725 elm
->bw_minsize
= elm
->bw_minsizepkts
* tp
->t_maxseg
;
1730 tcp_bwmeas_free(struct tcpcb
*tp
)
1732 zfree(tcp_bwmeas_zone
, tp
->t_bwmeas
);
1733 tp
->t_bwmeas
= NULL
;
1734 tp
->t_flagsext
&= ~(TF_MEASURESNDBW
);
1738 get_tcp_inp_list(struct inpcb
**inp_list
, int n
, inp_gen_t gencnt
)
1744 LIST_FOREACH(inp
, tcbinfo
.ipi_listhead
, inp_list
) {
1745 if (inp
->inp_gencnt
<= gencnt
&&
1746 inp
->inp_state
!= INPCB_STATE_DEAD
) {
1747 inp_list
[i
++] = inp
;
1754 TAILQ_FOREACH(tp
, &tcp_tw_tailq
, t_twentry
) {
1756 if (inp
->inp_gencnt
<= gencnt
&&
1757 inp
->inp_state
!= INPCB_STATE_DEAD
) {
1758 inp_list
[i
++] = inp
;
1768 * tcpcb_to_otcpcb copies specific bits of a tcpcb to a otcpcb format.
1769 * The otcpcb data structure is passed to user space and must not change.
1772 tcpcb_to_otcpcb(struct tcpcb
*tp
, struct otcpcb
*otp
)
1774 otp
->t_segq
= (uint32_t)VM_KERNEL_ADDRPERM(tp
->t_segq
.lh_first
);
1775 otp
->t_dupacks
= tp
->t_dupacks
;
1776 otp
->t_timer
[TCPT_REXMT_EXT
] = tp
->t_timer
[TCPT_REXMT
];
1777 otp
->t_timer
[TCPT_PERSIST_EXT
] = tp
->t_timer
[TCPT_PERSIST
];
1778 otp
->t_timer
[TCPT_KEEP_EXT
] = tp
->t_timer
[TCPT_KEEP
];
1779 otp
->t_timer
[TCPT_2MSL_EXT
] = tp
->t_timer
[TCPT_2MSL
];
1781 (_TCPCB_PTR(struct inpcb
*))VM_KERNEL_ADDRPERM(tp
->t_inpcb
);
1782 otp
->t_state
= tp
->t_state
;
1783 otp
->t_flags
= tp
->t_flags
;
1784 otp
->t_force
= (tp
->t_flagsext
& TF_FORCE
) ? 1 : 0;
1785 otp
->snd_una
= tp
->snd_una
;
1786 otp
->snd_max
= tp
->snd_max
;
1787 otp
->snd_nxt
= tp
->snd_nxt
;
1788 otp
->snd_up
= tp
->snd_up
;
1789 otp
->snd_wl1
= tp
->snd_wl1
;
1790 otp
->snd_wl2
= tp
->snd_wl2
;
1793 otp
->rcv_nxt
= tp
->rcv_nxt
;
1794 otp
->rcv_adv
= tp
->rcv_adv
;
1795 otp
->rcv_wnd
= tp
->rcv_wnd
;
1796 otp
->rcv_up
= tp
->rcv_up
;
1797 otp
->snd_wnd
= tp
->snd_wnd
;
1798 otp
->snd_cwnd
= tp
->snd_cwnd
;
1799 otp
->snd_ssthresh
= tp
->snd_ssthresh
;
1800 otp
->t_maxopd
= tp
->t_maxopd
;
1801 otp
->t_rcvtime
= tp
->t_rcvtime
;
1802 otp
->t_starttime
= tp
->t_starttime
;
1803 otp
->t_rtttime
= tp
->t_rtttime
;
1804 otp
->t_rtseq
= tp
->t_rtseq
;
1805 otp
->t_rxtcur
= tp
->t_rxtcur
;
1806 otp
->t_maxseg
= tp
->t_maxseg
;
1807 otp
->t_srtt
= tp
->t_srtt
;
1808 otp
->t_rttvar
= tp
->t_rttvar
;
1809 otp
->t_rxtshift
= tp
->t_rxtshift
;
1810 otp
->t_rttmin
= tp
->t_rttmin
;
1811 otp
->t_rttupdated
= tp
->t_rttupdated
;
1812 otp
->max_sndwnd
= tp
->max_sndwnd
;
1813 otp
->t_softerror
= tp
->t_softerror
;
1814 otp
->t_oobflags
= tp
->t_oobflags
;
1815 otp
->t_iobc
= tp
->t_iobc
;
1816 otp
->snd_scale
= tp
->snd_scale
;
1817 otp
->rcv_scale
= tp
->rcv_scale
;
1818 otp
->request_r_scale
= tp
->request_r_scale
;
1819 otp
->requested_s_scale
= tp
->requested_s_scale
;
1820 otp
->ts_recent
= tp
->ts_recent
;
1821 otp
->ts_recent_age
= tp
->ts_recent_age
;
1822 otp
->last_ack_sent
= tp
->last_ack_sent
;
1825 otp
->snd_recover
= tp
->snd_recover
;
1826 otp
->snd_cwnd_prev
= tp
->snd_cwnd_prev
;
1827 otp
->snd_ssthresh_prev
= tp
->snd_ssthresh_prev
;
1828 otp
->t_badrxtwin
= 0;
1832 tcp_pcblist SYSCTL_HANDLER_ARGS
1834 #pragma unused(oidp, arg1, arg2)
1835 int error
, i
= 0, n
;
1836 struct inpcb
**inp_list
;
1841 * The process of preparing the TCB list is too time-consuming and
1842 * resource-intensive to repeat twice on every request.
1844 lck_rw_lock_shared(tcbinfo
.ipi_lock
);
1845 if (req
->oldptr
== USER_ADDR_NULL
) {
1846 n
= tcbinfo
.ipi_count
;
1847 req
->oldidx
= 2 * (sizeof(xig
))
1848 + (n
+ n
/ 8) * sizeof(struct xtcpcb
);
1849 lck_rw_done(tcbinfo
.ipi_lock
);
1853 if (req
->newptr
!= USER_ADDR_NULL
) {
1854 lck_rw_done(tcbinfo
.ipi_lock
);
1859 * OK, now we're committed to doing something.
1861 gencnt
= tcbinfo
.ipi_gencnt
;
1862 n
= tcbinfo
.ipi_count
;
1864 bzero(&xig
, sizeof(xig
));
1865 xig
.xig_len
= sizeof(xig
);
1867 xig
.xig_gen
= gencnt
;
1868 xig
.xig_sogen
= so_gencnt
;
1869 error
= SYSCTL_OUT(req
, &xig
, sizeof(xig
));
1871 lck_rw_done(tcbinfo
.ipi_lock
);
1875 * We are done if there is no pcb
1878 lck_rw_done(tcbinfo
.ipi_lock
);
1882 inp_list
= _MALLOC(n
* sizeof(*inp_list
), M_TEMP
, M_WAITOK
);
1883 if (inp_list
== 0) {
1884 lck_rw_done(tcbinfo
.ipi_lock
);
1888 n
= get_tcp_inp_list(inp_list
, n
, gencnt
);
1891 for (i
= 0; i
< n
; i
++) {
1898 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) == WNT_STOPUSING
) {
1901 socket_lock(inp
->inp_socket
, 1);
1902 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
1903 socket_unlock(inp
->inp_socket
, 1);
1906 if (inp
->inp_gencnt
> gencnt
) {
1907 socket_unlock(inp
->inp_socket
, 1);
1911 bzero(&xt
, sizeof(xt
));
1912 xt
.xt_len
= sizeof(xt
);
1913 /* XXX should avoid extra copy */
1914 inpcb_to_compat(inp
, &xt
.xt_inp
);
1915 inp_ppcb
= inp
->inp_ppcb
;
1916 if (inp_ppcb
!= NULL
) {
1917 tcpcb_to_otcpcb((struct tcpcb
*)(void *)inp_ppcb
,
1920 bzero((char *) &xt
.xt_tp
, sizeof(xt
.xt_tp
));
1922 if (inp
->inp_socket
) {
1923 sotoxsocket(inp
->inp_socket
, &xt
.xt_socket
);
1926 socket_unlock(inp
->inp_socket
, 1);
1928 error
= SYSCTL_OUT(req
, &xt
, sizeof(xt
));
1932 * Give the user an updated idea of our state.
1933 * If the generation differs from what we told
1934 * her before, she knows that something happened
1935 * while we were processing this request, and it
1936 * might be necessary to retry.
1938 bzero(&xig
, sizeof(xig
));
1939 xig
.xig_len
= sizeof(xig
);
1940 xig
.xig_gen
= tcbinfo
.ipi_gencnt
;
1941 xig
.xig_sogen
= so_gencnt
;
1942 xig
.xig_count
= tcbinfo
.ipi_count
;
1943 error
= SYSCTL_OUT(req
, &xig
, sizeof(xig
));
1945 FREE(inp_list
, M_TEMP
);
1946 lck_rw_done(tcbinfo
.ipi_lock
);
1950 SYSCTL_PROC(_net_inet_tcp
, TCPCTL_PCBLIST
, pcblist
,
1951 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0,
1952 tcp_pcblist
, "S,xtcpcb", "List of active TCP connections");
1954 #if XNU_TARGET_OS_OSX
1957 tcpcb_to_xtcpcb64(struct tcpcb
*tp
, struct xtcpcb64
*otp
)
1959 otp
->t_segq
= (uint32_t)VM_KERNEL_ADDRPERM(tp
->t_segq
.lh_first
);
1960 otp
->t_dupacks
= tp
->t_dupacks
;
1961 otp
->t_timer
[TCPT_REXMT_EXT
] = tp
->t_timer
[TCPT_REXMT
];
1962 otp
->t_timer
[TCPT_PERSIST_EXT
] = tp
->t_timer
[TCPT_PERSIST
];
1963 otp
->t_timer
[TCPT_KEEP_EXT
] = tp
->t_timer
[TCPT_KEEP
];
1964 otp
->t_timer
[TCPT_2MSL_EXT
] = tp
->t_timer
[TCPT_2MSL
];
1965 otp
->t_state
= tp
->t_state
;
1966 otp
->t_flags
= tp
->t_flags
;
1967 otp
->t_force
= (tp
->t_flagsext
& TF_FORCE
) ? 1 : 0;
1968 otp
->snd_una
= tp
->snd_una
;
1969 otp
->snd_max
= tp
->snd_max
;
1970 otp
->snd_nxt
= tp
->snd_nxt
;
1971 otp
->snd_up
= tp
->snd_up
;
1972 otp
->snd_wl1
= tp
->snd_wl1
;
1973 otp
->snd_wl2
= tp
->snd_wl2
;
1976 otp
->rcv_nxt
= tp
->rcv_nxt
;
1977 otp
->rcv_adv
= tp
->rcv_adv
;
1978 otp
->rcv_wnd
= tp
->rcv_wnd
;
1979 otp
->rcv_up
= tp
->rcv_up
;
1980 otp
->snd_wnd
= tp
->snd_wnd
;
1981 otp
->snd_cwnd
= tp
->snd_cwnd
;
1982 otp
->snd_ssthresh
= tp
->snd_ssthresh
;
1983 otp
->t_maxopd
= tp
->t_maxopd
;
1984 otp
->t_rcvtime
= tp
->t_rcvtime
;
1985 otp
->t_starttime
= tp
->t_starttime
;
1986 otp
->t_rtttime
= tp
->t_rtttime
;
1987 otp
->t_rtseq
= tp
->t_rtseq
;
1988 otp
->t_rxtcur
= tp
->t_rxtcur
;
1989 otp
->t_maxseg
= tp
->t_maxseg
;
1990 otp
->t_srtt
= tp
->t_srtt
;
1991 otp
->t_rttvar
= tp
->t_rttvar
;
1992 otp
->t_rxtshift
= tp
->t_rxtshift
;
1993 otp
->t_rttmin
= tp
->t_rttmin
;
1994 otp
->t_rttupdated
= tp
->t_rttupdated
;
1995 otp
->max_sndwnd
= tp
->max_sndwnd
;
1996 otp
->t_softerror
= tp
->t_softerror
;
1997 otp
->t_oobflags
= tp
->t_oobflags
;
1998 otp
->t_iobc
= tp
->t_iobc
;
1999 otp
->snd_scale
= tp
->snd_scale
;
2000 otp
->rcv_scale
= tp
->rcv_scale
;
2001 otp
->request_r_scale
= tp
->request_r_scale
;
2002 otp
->requested_s_scale
= tp
->requested_s_scale
;
2003 otp
->ts_recent
= tp
->ts_recent
;
2004 otp
->ts_recent_age
= tp
->ts_recent_age
;
2005 otp
->last_ack_sent
= tp
->last_ack_sent
;
2008 otp
->snd_recover
= tp
->snd_recover
;
2009 otp
->snd_cwnd_prev
= tp
->snd_cwnd_prev
;
2010 otp
->snd_ssthresh_prev
= tp
->snd_ssthresh_prev
;
2011 otp
->t_badrxtwin
= 0;
2016 tcp_pcblist64 SYSCTL_HANDLER_ARGS
2018 #pragma unused(oidp, arg1, arg2)
2019 int error
, i
= 0, n
;
2020 struct inpcb
**inp_list
;
2025 * The process of preparing the TCB list is too time-consuming and
2026 * resource-intensive to repeat twice on every request.
2028 lck_rw_lock_shared(tcbinfo
.ipi_lock
);
2029 if (req
->oldptr
== USER_ADDR_NULL
) {
2030 n
= tcbinfo
.ipi_count
;
2031 req
->oldidx
= 2 * (sizeof(xig
))
2032 + (n
+ n
/ 8) * sizeof(struct xtcpcb64
);
2033 lck_rw_done(tcbinfo
.ipi_lock
);
2037 if (req
->newptr
!= USER_ADDR_NULL
) {
2038 lck_rw_done(tcbinfo
.ipi_lock
);
2043 * OK, now we're committed to doing something.
2045 gencnt
= tcbinfo
.ipi_gencnt
;
2046 n
= tcbinfo
.ipi_count
;
2048 bzero(&xig
, sizeof(xig
));
2049 xig
.xig_len
= sizeof(xig
);
2051 xig
.xig_gen
= gencnt
;
2052 xig
.xig_sogen
= so_gencnt
;
2053 error
= SYSCTL_OUT(req
, &xig
, sizeof(xig
));
2055 lck_rw_done(tcbinfo
.ipi_lock
);
2059 * We are done if there is no pcb
2062 lck_rw_done(tcbinfo
.ipi_lock
);
2066 inp_list
= _MALLOC(n
* sizeof(*inp_list
), M_TEMP
, M_WAITOK
);
2067 if (inp_list
== 0) {
2068 lck_rw_done(tcbinfo
.ipi_lock
);
2072 n
= get_tcp_inp_list(inp_list
, n
, gencnt
);
2075 for (i
= 0; i
< n
; i
++) {
2081 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) == WNT_STOPUSING
) {
2084 socket_lock(inp
->inp_socket
, 1);
2085 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
2086 socket_unlock(inp
->inp_socket
, 1);
2089 if (inp
->inp_gencnt
> gencnt
) {
2090 socket_unlock(inp
->inp_socket
, 1);
2094 bzero(&xt
, sizeof(xt
));
2095 xt
.xt_len
= sizeof(xt
);
2096 inpcb_to_xinpcb64(inp
, &xt
.xt_inpcb
);
2097 xt
.xt_inpcb
.inp_ppcb
=
2098 (uint64_t)VM_KERNEL_ADDRPERM(inp
->inp_ppcb
);
2099 if (inp
->inp_ppcb
!= NULL
) {
2100 tcpcb_to_xtcpcb64((struct tcpcb
*)inp
->inp_ppcb
,
2103 if (inp
->inp_socket
) {
2104 sotoxsocket64(inp
->inp_socket
,
2105 &xt
.xt_inpcb
.xi_socket
);
2108 socket_unlock(inp
->inp_socket
, 1);
2110 error
= SYSCTL_OUT(req
, &xt
, sizeof(xt
));
2114 * Give the user an updated idea of our state.
2115 * If the generation differs from what we told
2116 * her before, she knows that something happened
2117 * while we were processing this request, and it
2118 * might be necessary to retry.
2120 bzero(&xig
, sizeof(xig
));
2121 xig
.xig_len
= sizeof(xig
);
2122 xig
.xig_gen
= tcbinfo
.ipi_gencnt
;
2123 xig
.xig_sogen
= so_gencnt
;
2124 xig
.xig_count
= tcbinfo
.ipi_count
;
2125 error
= SYSCTL_OUT(req
, &xig
, sizeof(xig
));
2127 FREE(inp_list
, M_TEMP
);
2128 lck_rw_done(tcbinfo
.ipi_lock
);
2132 SYSCTL_PROC(_net_inet_tcp
, OID_AUTO
, pcblist64
,
2133 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0,
2134 tcp_pcblist64
, "S,xtcpcb64", "List of active TCP connections");
2136 #endif /* XNU_TARGET_OS_OSX */
2139 tcp_pcblist_n SYSCTL_HANDLER_ARGS
2141 #pragma unused(oidp, arg1, arg2)
2144 error
= get_pcblist_n(IPPROTO_TCP
, req
, &tcbinfo
);
2150 SYSCTL_PROC(_net_inet_tcp
, OID_AUTO
, pcblist_n
,
2151 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0,
2152 tcp_pcblist_n
, "S,xtcpcb_n", "List of active TCP connections");
2155 tcp_progress_indicators SYSCTL_HANDLER_ARGS
2157 #pragma unused(oidp, arg1, arg2)
2159 return ntstat_tcp_progress_indicators(req
);
2162 SYSCTL_PROC(_net_inet_tcp
, OID_AUTO
, progress
,
2163 CTLTYPE_STRUCT
| CTLFLAG_RW
| CTLFLAG_LOCKED
| CTLFLAG_ANYBODY
, 0, 0,
2164 tcp_progress_indicators
, "S", "Various items that indicate the current state of progress on the link");
2167 __private_extern__
void
2168 tcp_get_ports_used(uint32_t ifindex
, int protocol
, uint32_t flags
,
2171 inpcb_get_ports_used(ifindex
, protocol
, flags
, bitfield
,
2175 __private_extern__
uint32_t
2176 tcp_count_opportunistic(unsigned int ifindex
, u_int32_t flags
)
2178 return inpcb_count_opportunistic(ifindex
, &tcbinfo
, flags
);
2181 __private_extern__
uint32_t
2182 tcp_find_anypcb_byaddr(struct ifaddr
*ifa
)
2184 return inpcb_find_anypcb_byaddr(ifa
, &tcbinfo
);
2188 tcp_handle_msgsize(struct ip
*ip
, struct inpcb
*inp
)
2190 struct rtentry
*rt
= NULL
;
2191 u_short ifscope
= IFSCOPE_NONE
;
2193 struct sockaddr_in icmpsrc
= {
2194 .sin_len
= sizeof(struct sockaddr_in
),
2195 .sin_family
= AF_INET
, .sin_port
= 0, .sin_addr
= { .s_addr
= 0 },
2196 .sin_zero
= { 0, 0, 0, 0, 0, 0, 0, 0 }
2198 struct icmp
*icp
= NULL
;
2200 icp
= (struct icmp
*)(void *)
2201 ((caddr_t
)ip
- offsetof(struct icmp
, icmp_ip
));
2203 icmpsrc
.sin_addr
= icp
->icmp_ip
.ip_dst
;
2207 * If we got a needfrag and there is a host route to the
2208 * original destination, and the MTU is not locked, then
2209 * set the MTU in the route to the suggested new value
2210 * (if given) and then notify as usual. The ULPs will
2211 * notice that the MTU has changed and adapt accordingly.
2212 * If no new MTU was suggested, then we guess a new one
2213 * less than the current value. If the new MTU is
2214 * unreasonably small (defined by sysctl tcp_minmss), then
2215 * we reset the MTU to the interface value and enable the
2216 * lock bit, indicating that we are no longer doing MTU
2219 if (ROUTE_UNUSABLE(&(inp
->inp_route
)) == false) {
2220 rt
= inp
->inp_route
.ro_rt
;
2224 * icmp6_mtudisc_update scopes the routing lookup
2225 * to the incoming interface (delivered from mbuf
2227 * That is mostly ok but for asymmetric networks
2228 * that may be an issue.
2229 * Frag needed OR Packet too big really communicates
2230 * MTU for the out data path.
2231 * Take the interface scope from cached route or
2232 * the last outgoing interface from inp
2235 ifscope
= (rt
->rt_ifp
!= NULL
) ?
2236 rt
->rt_ifp
->if_index
: IFSCOPE_NONE
;
2238 ifscope
= (inp
->inp_last_outifp
!= NULL
) ?
2239 inp
->inp_last_outifp
->if_index
: IFSCOPE_NONE
;
2243 !(rt
->rt_flags
& RTF_HOST
) ||
2244 (rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
))) {
2245 rt
= rtalloc1_scoped((struct sockaddr
*)&icmpsrc
, 0,
2246 RTF_CLONING
| RTF_PRCLONING
, ifscope
);
2255 if ((rt
->rt_flags
& RTF_HOST
) &&
2256 !(rt
->rt_rmx
.rmx_locks
& RTV_MTU
)) {
2257 mtu
= ntohs(icp
->icmp_nextmtu
);
2259 * XXX Stock BSD has changed the following
2260 * to compare with icp->icmp_ip.ip_len
2261 * to converge faster when sent packet
2262 * < route's MTU. We may want to adopt
2266 mtu
= ip_next_mtu(rt
->rt_rmx
.
2270 printf("MTU for %s reduced to %d\n",
2272 &icmpsrc
.sin_addr
, ipv4str
,
2273 sizeof(ipv4str
)), mtu
);
2275 if (mtu
< max(296, (tcp_minmss
+
2276 sizeof(struct tcpiphdr
)))) {
2277 rt
->rt_rmx
.rmx_locks
|= RTV_MTU
;
2278 } else if (rt
->rt_rmx
.rmx_mtu
> mtu
) {
2279 rt
->rt_rmx
.rmx_mtu
= mtu
;
2288 tcp_ctlinput(int cmd
, struct sockaddr
*sa
, void *vip
, __unused
struct ifnet
*ifp
)
2290 tcp_seq icmp_tcp_seq
;
2291 struct ip
*ip
= vip
;
2292 struct in_addr faddr
;
2297 void (*notify
)(struct inpcb
*, int) = tcp_notify
;
2299 faddr
= ((struct sockaddr_in
*)(void *)sa
)->sin_addr
;
2300 if (sa
->sa_family
!= AF_INET
|| faddr
.s_addr
== INADDR_ANY
) {
2304 if ((unsigned)cmd
>= PRC_NCMDS
) {
2308 /* Source quench is deprecated */
2309 if (cmd
== PRC_QUENCH
) {
2313 if (cmd
== PRC_MSGSIZE
) {
2314 notify
= tcp_mtudisc
;
2315 } else if (icmp_may_rst
&& (cmd
== PRC_UNREACH_ADMIN_PROHIB
||
2316 cmd
== PRC_UNREACH_PORT
|| cmd
== PRC_UNREACH_PROTOCOL
||
2317 cmd
== PRC_TIMXCEED_INTRANS
) && ip
) {
2318 notify
= tcp_drop_syn_sent
;
2321 * Hostdead is ugly because it goes linearly through all PCBs.
2322 * XXX: We never get this from ICMP, otherwise it makes an
2323 * excellent DoS attack on machines with many connections.
2325 else if (cmd
== PRC_HOSTDEAD
) {
2327 } else if (inetctlerrmap
[cmd
] == 0 && !PRC_IS_REDIRECT(cmd
)) {
2333 in_pcbnotifyall(&tcbinfo
, faddr
, inetctlerrmap
[cmd
], notify
);
2337 icp
= (struct icmp
*)(void *)
2338 ((caddr_t
)ip
- offsetof(struct icmp
, icmp_ip
));
2339 th
= (struct tcphdr
*)(void *)((caddr_t
)ip
+ (IP_VHL_HL(ip
->ip_vhl
) << 2));
2340 icmp_tcp_seq
= ntohl(th
->th_seq
);
2342 inp
= in_pcblookup_hash(&tcbinfo
, faddr
, th
->th_dport
,
2343 ip
->ip_src
, th
->th_sport
, 0, NULL
);
2346 inp
->inp_socket
== NULL
) {
2350 socket_lock(inp
->inp_socket
, 1);
2351 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) ==
2353 socket_unlock(inp
->inp_socket
, 1);
2357 if (PRC_IS_REDIRECT(cmd
)) {
2358 /* signal EHOSTDOWN, as it flushes the cached route */
2359 (*notify
)(inp
, EHOSTDOWN
);
2361 tp
= intotcpcb(inp
);
2362 if (SEQ_GEQ(icmp_tcp_seq
, tp
->snd_una
) &&
2363 SEQ_LT(icmp_tcp_seq
, tp
->snd_max
)) {
2364 if (cmd
== PRC_MSGSIZE
) {
2365 tcp_handle_msgsize(ip
, inp
);
2368 (*notify
)(inp
, inetctlerrmap
[cmd
]);
2371 socket_unlock(inp
->inp_socket
, 1);
2375 tcp6_ctlinput(int cmd
, struct sockaddr
*sa
, void *d
, __unused
struct ifnet
*ifp
)
2377 tcp_seq icmp_tcp_seq
;
2378 struct in6_addr
*dst
;
2379 void (*notify
)(struct inpcb
*, int) = tcp_notify
;
2380 struct ip6_hdr
*ip6
;
2384 struct icmp6_hdr
*icmp6
;
2385 struct ip6ctlparam
*ip6cp
= NULL
;
2386 const struct sockaddr_in6
*sa6_src
= NULL
;
2395 if (sa
->sa_family
!= AF_INET6
||
2396 sa
->sa_len
!= sizeof(struct sockaddr_in6
)) {
2400 /* Source quench is deprecated */
2401 if (cmd
== PRC_QUENCH
) {
2405 if ((unsigned)cmd
>= PRC_NCMDS
) {
2409 /* if the parameter is from icmp6, decode it. */
2411 ip6cp
= (struct ip6ctlparam
*)d
;
2412 icmp6
= ip6cp
->ip6c_icmp6
;
2414 ip6
= ip6cp
->ip6c_ip6
;
2415 off
= ip6cp
->ip6c_off
;
2416 sa6_src
= ip6cp
->ip6c_src
;
2417 dst
= ip6cp
->ip6c_finaldst
;
2421 off
= 0; /* fool gcc */
2426 if (cmd
== PRC_MSGSIZE
) {
2427 notify
= tcp_mtudisc
;
2428 } else if (icmp_may_rst
&& (cmd
== PRC_UNREACH_ADMIN_PROHIB
||
2429 cmd
== PRC_UNREACH_PORT
|| cmd
== PRC_TIMXCEED_INTRANS
) &&
2431 notify
= tcp_drop_syn_sent
;
2434 * Hostdead is ugly because it goes linearly through all PCBs.
2435 * XXX: We never get this from ICMP, otherwise it makes an
2436 * excellent DoS attack on machines with many connections.
2438 else if (cmd
== PRC_HOSTDEAD
) {
2440 } else if (inet6ctlerrmap
[cmd
] == 0 && !PRC_IS_REDIRECT(cmd
)) {
2446 in6_pcbnotify(&tcbinfo
, sa
, 0, (struct sockaddr
*)(size_t)sa6_src
,
2447 0, cmd
, NULL
, notify
);
2451 /* Check if we can safely get the ports from the tcp hdr */
2454 (int32_t) (off
+ sizeof(struct tcp_ports
)))) {
2457 bzero(&t_ports
, sizeof(struct tcp_ports
));
2458 m_copydata(m
, off
, sizeof(struct tcp_ports
), (caddr_t
)&t_ports
);
2460 off
+= sizeof(struct tcp_ports
);
2461 if (m
->m_pkthdr
.len
< (int32_t) (off
+ sizeof(tcp_seq
))) {
2464 m_copydata(m
, off
, sizeof(tcp_seq
), (caddr_t
)&icmp_tcp_seq
);
2465 icmp_tcp_seq
= ntohl(icmp_tcp_seq
);
2467 if (cmd
== PRC_MSGSIZE
) {
2468 mtu
= ntohl(icmp6
->icmp6_mtu
);
2470 * If no alternative MTU was proposed, or the proposed
2471 * MTU was too small, set to the min.
2473 if (mtu
< IPV6_MMTU
) {
2474 mtu
= IPV6_MMTU
- 8;
2478 inp
= in6_pcblookup_hash(&tcbinfo
, &ip6
->ip6_dst
, t_ports
.th_dport
,
2479 &ip6
->ip6_src
, t_ports
.th_sport
, 0, NULL
);
2482 inp
->inp_socket
== NULL
) {
2486 socket_lock(inp
->inp_socket
, 1);
2487 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) ==
2489 socket_unlock(inp
->inp_socket
, 1);
2493 if (PRC_IS_REDIRECT(cmd
)) {
2494 /* signal EHOSTDOWN, as it flushes the cached route */
2495 (*notify
)(inp
, EHOSTDOWN
);
2497 tp
= intotcpcb(inp
);
2498 if (SEQ_GEQ(icmp_tcp_seq
, tp
->snd_una
) &&
2499 SEQ_LT(icmp_tcp_seq
, tp
->snd_max
)) {
2500 if (cmd
== PRC_MSGSIZE
) {
2502 * Only process the offered MTU if it
2503 * is smaller than the current one.
2505 if (mtu
< tp
->t_maxseg
+
2506 (sizeof(struct tcphdr
) + sizeof(struct ip6_hdr
))) {
2507 (*notify
)(inp
, inetctlerrmap
[cmd
]);
2510 (*notify
)(inp
, inetctlerrmap
[cmd
]);
2514 socket_unlock(inp
->inp_socket
, 1);
2519 * Following is where TCP initial sequence number generation occurs.
2521 * There are two places where we must use initial sequence numbers:
2522 * 1. In SYN-ACK packets.
2523 * 2. In SYN packets.
2525 * The ISNs in SYN-ACK packets have no monotonicity requirement,
2526 * and should be as unpredictable as possible to avoid the possibility
2527 * of spoofing and/or connection hijacking. To satisfy this
2528 * requirement, SYN-ACK ISNs are generated via the arc4random()
2529 * function. If exact RFC 1948 compliance is requested via sysctl,
2530 * these ISNs will be generated just like those in SYN packets.
2532 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
2533 * depends on this property. In addition, these ISNs should be
2534 * unguessable so as to prevent connection hijacking. To satisfy
2535 * the requirements of this situation, the algorithm outlined in
2536 * RFC 1948 is used to generate sequence numbers.
2538 * For more information on the theory of operation, please see
2541 * Implementation details:
2543 * Time is based off the system timer, and is corrected so that it
2544 * increases by one megabyte per second. This allows for proper
2545 * recycling on high speed LANs while still leaving over an hour
2548 * Two sysctls control the generation of ISNs:
2550 * net.inet.tcp.isn_reseed_interval controls the number of seconds
2551 * between seeding of isn_secret. This is normally set to zero,
2552 * as reseeding should not be necessary.
2554 * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
2555 * strictly. When strict compliance is requested, reseeding is
2556 * disabled and SYN-ACKs will be generated in the same manner as
2557 * SYNs. Strict mode is disabled by default.
2561 #define ISN_BYTES_PER_SECOND 1048576
2564 tcp_new_isn(struct tcpcb
*tp
)
2566 u_int32_t md5_buffer
[4];
2568 struct timeval timenow
;
2569 u_char isn_secret
[32];
2570 long isn_last_reseed
= 0;
2573 /* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
2574 if (((tp
->t_state
== TCPS_LISTEN
) || (tp
->t_state
== TCPS_TIME_WAIT
)) &&
2575 tcp_strict_rfc1948
== 0)
2577 { return RandomULong(); }
2579 { return arc4random(); }
2581 getmicrotime(&timenow
);
2583 /* Seed if this is the first use, reseed if requested. */
2584 if ((isn_last_reseed
== 0) ||
2585 ((tcp_strict_rfc1948
== 0) && (tcp_isn_reseed_interval
> 0) &&
2586 (((u_int
)isn_last_reseed
+ (u_int
)tcp_isn_reseed_interval
* hz
)
2587 < (u_int
)timenow
.tv_sec
))) {
2589 read_frandom(&isn_secret
, sizeof(isn_secret
));
2591 read_random_unlimited(&isn_secret
, sizeof(isn_secret
));
2593 isn_last_reseed
= timenow
.tv_sec
;
2596 /* Compute the md5 hash and return the ISN. */
2598 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_fport
,
2600 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_lport
,
2602 if ((tp
->t_inpcb
->inp_vflag
& INP_IPV6
) != 0) {
2603 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->in6p_faddr
,
2604 sizeof(struct in6_addr
));
2605 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->in6p_laddr
,
2606 sizeof(struct in6_addr
));
2608 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_faddr
,
2609 sizeof(struct in_addr
));
2610 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_laddr
,
2611 sizeof(struct in_addr
));
2613 MD5Update(&isn_ctx
, (u_char
*) &isn_secret
, sizeof(isn_secret
));
2614 MD5Final((u_char
*) &md5_buffer
, &isn_ctx
);
2615 new_isn
= (tcp_seq
) md5_buffer
[0];
2616 new_isn
+= timenow
.tv_sec
* (ISN_BYTES_PER_SECOND
/ hz
);
2622 * When a specific ICMP unreachable message is received and the
2623 * connection state is SYN-SENT, drop the connection. This behavior
2624 * is controlled by the icmp_may_rst sysctl.
2627 tcp_drop_syn_sent(struct inpcb
*inp
, int errno
)
2629 struct tcpcb
*tp
= intotcpcb(inp
);
2631 if (tp
&& tp
->t_state
== TCPS_SYN_SENT
) {
2632 tcp_drop(tp
, errno
);
2637 * When `need fragmentation' ICMP is received, update our idea of the MSS
2638 * based on the new value in the route. Also nudge TCP to send something,
2639 * since we know the packet we just sent was dropped.
2640 * This duplicates some code in the tcp_mss() function in tcp_input.c.
2643 tcp_mtudisc(struct inpcb
*inp
, __unused
int errno
)
2645 struct tcpcb
*tp
= intotcpcb(inp
);
2647 struct socket
*so
= inp
->inp_socket
;
2650 u_int32_t protoHdrOverhead
= sizeof(struct tcpiphdr
);
2651 int isipv6
= (tp
->t_inpcb
->inp_vflag
& INP_IPV6
) != 0;
2654 * Nothing left to send after the socket is defunct or TCP is in the closed state
2656 if ((so
->so_state
& SS_DEFUNCT
) || (tp
!= NULL
&& tp
->t_state
== TCPS_CLOSED
)) {
2661 protoHdrOverhead
= sizeof(struct ip6_hdr
) +
2662 sizeof(struct tcphdr
);
2667 rt
= tcp_rtlookup6(inp
, IFSCOPE_NONE
);
2669 rt
= tcp_rtlookup(inp
, IFSCOPE_NONE
);
2671 if (!rt
|| !rt
->rt_rmx
.rmx_mtu
) {
2672 tp
->t_maxopd
= tp
->t_maxseg
=
2673 isipv6
? tcp_v6mssdflt
:
2676 /* Route locked during lookup above */
2682 mtu
= rt
->rt_rmx
.rmx_mtu
;
2684 /* Route locked during lookup above */
2688 // Adjust MTU if necessary.
2689 mtu
= necp_socket_get_effective_mtu(inp
, mtu
);
2691 mss
= mtu
- protoHdrOverhead
;
2694 mss
= min(mss
, tp
->t_maxopd
);
2697 * XXX - The above conditional probably violates the TCP
2698 * spec. The problem is that, since we don't know the
2699 * other end's MSS, we are supposed to use a conservative
2700 * default. But, if we do that, then MTU discovery will
2701 * never actually take place, because the conservative
2702 * default is much less than the MTUs typically seen
2703 * on the Internet today. For the moment, we'll sweep
2704 * this under the carpet.
2706 * The conservative default might not actually be a problem
2707 * if the only case this occurs is when sending an initial
2708 * SYN with options and data to a host we've never talked
2709 * to before. Then, they will reply with an MSS value which
2710 * will get recorded and the new parameters should get
2711 * recomputed. For Further Study.
2713 if (tp
->t_maxopd
<= mss
) {
2718 if ((tp
->t_flags
& (TF_REQ_TSTMP
| TF_NOOPT
)) == TF_REQ_TSTMP
&&
2719 (tp
->t_flags
& TF_RCVD_TSTMP
) == TF_RCVD_TSTMP
) {
2720 mss
-= TCPOLEN_TSTAMP_APPA
;
2724 mss
-= mptcp_adj_mss(tp
, TRUE
);
2726 if (so
->so_snd
.sb_hiwat
< mss
) {
2727 mss
= so
->so_snd
.sb_hiwat
;
2732 ASSERT(tp
->t_maxseg
);
2735 * Reset the slow-start flight size as it may depends on the
2738 if (CC_ALGO(tp
)->cwnd_init
!= NULL
) {
2739 CC_ALGO(tp
)->cwnd_init(tp
);
2741 tcpstat
.tcps_mturesent
++;
2743 tp
->snd_nxt
= tp
->snd_una
;
2749 * Look-up the routing entry to the peer of this inpcb. If no route
2750 * is found and it cannot be allocated the return NULL. This routine
2751 * is called by TCP routines that access the rmx structure and by tcp_mss
2752 * to get the interface MTU. If a route is found, this routine will
2753 * hold the rtentry lock; the caller is responsible for unlocking.
2756 tcp_rtlookup(struct inpcb
*inp
, unsigned int input_ifscope
)
2762 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
2764 ro
= &inp
->inp_route
;
2765 if ((rt
= ro
->ro_rt
) != NULL
) {
2769 if (ROUTE_UNUSABLE(ro
)) {
2775 /* No route yet, so try to acquire one */
2776 if (inp
->inp_faddr
.s_addr
!= INADDR_ANY
) {
2777 unsigned int ifscope
;
2779 ro
->ro_dst
.sa_family
= AF_INET
;
2780 ro
->ro_dst
.sa_len
= sizeof(struct sockaddr_in
);
2781 ((struct sockaddr_in
*)(void *)&ro
->ro_dst
)->sin_addr
=
2785 * If the socket was bound to an interface, then
2786 * the bound-to-interface takes precedence over
2787 * the inbound interface passed in by the caller
2788 * (if we get here as part of the output path then
2789 * input_ifscope is IFSCOPE_NONE).
2791 ifscope
= (inp
->inp_flags
& INP_BOUND_IF
) ?
2792 inp
->inp_boundifp
->if_index
: input_ifscope
;
2794 rtalloc_scoped(ro
, ifscope
);
2795 if ((rt
= ro
->ro_rt
) != NULL
) {
2801 RT_LOCK_ASSERT_HELD(rt
);
2805 * Update MTU discovery determination. Don't do it if:
2806 * 1) it is disabled via the sysctl
2807 * 2) the route isn't up
2808 * 3) the MTU is locked (if it is, then discovery has been
2812 tp
= intotcpcb(inp
);
2814 if (!path_mtu_discovery
|| ((rt
!= NULL
) &&
2815 (!(rt
->rt_flags
& RTF_UP
) || (rt
->rt_rmx
.rmx_locks
& RTV_MTU
)))) {
2816 tp
->t_flags
&= ~TF_PMTUD
;
2818 tp
->t_flags
|= TF_PMTUD
;
2821 if (rt
!= NULL
&& rt
->rt_ifp
!= NULL
) {
2822 somultipages(inp
->inp_socket
,
2823 (rt
->rt_ifp
->if_hwassist
& IFNET_MULTIPAGES
));
2824 tcp_set_tso(tp
, rt
->rt_ifp
);
2825 soif2kcl(inp
->inp_socket
,
2826 (rt
->rt_ifp
->if_eflags
& IFEF_2KCL
));
2827 tcp_set_ecn(tp
, rt
->rt_ifp
);
2828 if (inp
->inp_last_outifp
== NULL
) {
2829 inp
->inp_last_outifp
= rt
->rt_ifp
;
2833 /* Note if the peer is local */
2834 if (rt
!= NULL
&& !(rt
->rt_ifp
->if_flags
& IFF_POINTOPOINT
) &&
2835 (rt
->rt_gateway
->sa_family
== AF_LINK
||
2836 rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
||
2837 in_localaddr(inp
->inp_faddr
))) {
2838 tp
->t_flags
|= TF_LOCAL
;
2842 * Caller needs to call RT_UNLOCK(rt).
2848 tcp_rtlookup6(struct inpcb
*inp
, unsigned int input_ifscope
)
2850 struct route_in6
*ro6
;
2854 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
2856 ro6
= &inp
->in6p_route
;
2857 if ((rt
= ro6
->ro_rt
) != NULL
) {
2861 if (ROUTE_UNUSABLE(ro6
)) {
2867 /* No route yet, so try to acquire one */
2868 if (!IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_faddr
)) {
2869 struct sockaddr_in6
*dst6
;
2870 unsigned int ifscope
;
2872 dst6
= (struct sockaddr_in6
*)&ro6
->ro_dst
;
2873 dst6
->sin6_family
= AF_INET6
;
2874 dst6
->sin6_len
= sizeof(*dst6
);
2875 dst6
->sin6_addr
= inp
->in6p_faddr
;
2878 * If the socket was bound to an interface, then
2879 * the bound-to-interface takes precedence over
2880 * the inbound interface passed in by the caller
2881 * (if we get here as part of the output path then
2882 * input_ifscope is IFSCOPE_NONE).
2884 ifscope
= (inp
->inp_flags
& INP_BOUND_IF
) ?
2885 inp
->inp_boundifp
->if_index
: input_ifscope
;
2887 rtalloc_scoped((struct route
*)ro6
, ifscope
);
2888 if ((rt
= ro6
->ro_rt
) != NULL
) {
2894 RT_LOCK_ASSERT_HELD(rt
);
2898 * Update path MTU Discovery determination
2899 * while looking up the route:
2900 * 1) we have a valid route to the destination
2901 * 2) the MTU is not locked (if it is, then discovery has been
2906 tp
= intotcpcb(inp
);
2909 * Update MTU discovery determination. Don't do it if:
2910 * 1) it is disabled via the sysctl
2911 * 2) the route isn't up
2912 * 3) the MTU is locked (if it is, then discovery has been
2916 if (!path_mtu_discovery
|| ((rt
!= NULL
) &&
2917 (!(rt
->rt_flags
& RTF_UP
) || (rt
->rt_rmx
.rmx_locks
& RTV_MTU
)))) {
2918 tp
->t_flags
&= ~TF_PMTUD
;
2920 tp
->t_flags
|= TF_PMTUD
;
2923 if (rt
!= NULL
&& rt
->rt_ifp
!= NULL
) {
2924 somultipages(inp
->inp_socket
,
2925 (rt
->rt_ifp
->if_hwassist
& IFNET_MULTIPAGES
));
2926 tcp_set_tso(tp
, rt
->rt_ifp
);
2927 soif2kcl(inp
->inp_socket
,
2928 (rt
->rt_ifp
->if_eflags
& IFEF_2KCL
));
2929 tcp_set_ecn(tp
, rt
->rt_ifp
);
2930 if (inp
->inp_last_outifp
== NULL
) {
2931 inp
->inp_last_outifp
= rt
->rt_ifp
;
2934 /* Note if the peer is local */
2935 if (!(rt
->rt_ifp
->if_flags
& IFF_POINTOPOINT
) &&
2936 (IN6_IS_ADDR_LOOPBACK(&inp
->in6p_faddr
) ||
2937 IN6_IS_ADDR_LINKLOCAL(&inp
->in6p_faddr
) ||
2938 rt
->rt_gateway
->sa_family
== AF_LINK
||
2939 in6_localaddr(&inp
->in6p_faddr
))) {
2940 tp
->t_flags
|= TF_LOCAL
;
2945 * Caller needs to call RT_UNLOCK(rt).
2951 /* compute ESP/AH header size for TCP, including outer IP header. */
2953 ipsec_hdrsiz_tcp(struct tcpcb
*tp
)
2959 struct ip6_hdr
*ip6
= NULL
;
2962 if ((tp
== NULL
) || ((inp
= tp
->t_inpcb
) == NULL
)) {
2965 MGETHDR(m
, M_DONTWAIT
, MT_DATA
); /* MAC-OK */
2970 if ((inp
->inp_vflag
& INP_IPV6
) != 0) {
2971 ip6
= mtod(m
, struct ip6_hdr
*);
2972 th
= (struct tcphdr
*)(void *)(ip6
+ 1);
2973 m
->m_pkthdr
.len
= m
->m_len
=
2974 sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
);
2975 tcp_fillheaders(tp
, ip6
, th
);
2976 hdrsiz
= ipsec6_hdrsiz(m
, IPSEC_DIR_OUTBOUND
, inp
);
2978 ip
= mtod(m
, struct ip
*);
2979 th
= (struct tcphdr
*)(ip
+ 1);
2980 m
->m_pkthdr
.len
= m
->m_len
= sizeof(struct tcpiphdr
);
2981 tcp_fillheaders(tp
, ip
, th
);
2982 hdrsiz
= ipsec4_hdrsiz(m
, IPSEC_DIR_OUTBOUND
, inp
);
2990 tcp_lock(struct socket
*so
, int refcount
, void *lr
)
2995 lr_saved
= __builtin_return_address(0);
3001 if (so
->so_pcb
!= NULL
) {
3002 if (so
->so_flags
& SOF_MP_SUBFLOW
) {
3003 struct mptcb
*mp_tp
= tptomptp(sototcpcb(so
));
3004 struct socket
*mp_so
= mptetoso(mp_tp
->mpt_mpte
);
3006 socket_lock(mp_so
, refcount
);
3009 * Check if we became non-MPTCP while waiting for the lock.
3010 * If yes, we have to retry to grab the right lock.
3012 if (!(so
->so_flags
& SOF_MP_SUBFLOW
)) {
3013 socket_unlock(mp_so
, refcount
);
3017 lck_mtx_lock(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
);
3019 if (so
->so_flags
& SOF_MP_SUBFLOW
) {
3021 * While waiting for the lock, we might have
3022 * become MPTCP-enabled (see mptcp_subflow_socreate).
3024 lck_mtx_unlock(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
);
3029 panic("tcp_lock: so=%p NO PCB! lr=%p lrh= %s\n",
3030 so
, lr_saved
, solockhistory_nr(so
));
3034 if (so
->so_usecount
< 0) {
3035 panic("tcp_lock: so=%p so_pcb=%p lr=%p ref=%x lrh= %s\n",
3036 so
, so
->so_pcb
, lr_saved
, so
->so_usecount
,
3037 solockhistory_nr(so
));
3043 so
->lock_lr
[so
->next_lock_lr
] = lr_saved
;
3044 so
->next_lock_lr
= (so
->next_lock_lr
+ 1) % SO_LCKDBG_MAX
;
3049 tcp_unlock(struct socket
*so
, int refcount
, void *lr
)
3054 lr_saved
= __builtin_return_address(0);
3059 #ifdef MORE_TCPLOCK_DEBUG
3060 printf("tcp_unlock: so=0x%llx sopcb=0x%llx lock=0x%llx ref=%x "
3061 "lr=0x%llx\n", (uint64_t)VM_KERNEL_ADDRPERM(so
),
3062 (uint64_t)VM_KERNEL_ADDRPERM(so
->so_pcb
),
3063 (uint64_t)VM_KERNEL_ADDRPERM(&(sotoinpcb(so
)->inpcb_mtx
)),
3064 so
->so_usecount
, (uint64_t)VM_KERNEL_ADDRPERM(lr_saved
));
3070 if (so
->so_usecount
< 0) {
3071 panic("tcp_unlock: so=%p usecount=%x lrh= %s\n",
3072 so
, so
->so_usecount
, solockhistory_nr(so
));
3075 if (so
->so_pcb
== NULL
) {
3076 panic("tcp_unlock: so=%p NO PCB usecount=%x lr=%p lrh= %s\n",
3077 so
, so
->so_usecount
, lr_saved
, solockhistory_nr(so
));
3080 so
->unlock_lr
[so
->next_unlock_lr
] = lr_saved
;
3081 so
->next_unlock_lr
= (so
->next_unlock_lr
+ 1) % SO_LCKDBG_MAX
;
3083 if (so
->so_flags
& SOF_MP_SUBFLOW
) {
3084 struct mptcb
*mp_tp
= tptomptp(sototcpcb(so
));
3085 struct socket
*mp_so
= mptetoso(mp_tp
->mpt_mpte
);
3087 socket_lock_assert_owned(mp_so
);
3089 socket_unlock(mp_so
, refcount
);
3091 LCK_MTX_ASSERT(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
,
3092 LCK_MTX_ASSERT_OWNED
);
3093 lck_mtx_unlock(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
);
3100 tcp_getlock(struct socket
*so
, int flags
)
3102 struct inpcb
*inp
= sotoinpcb(so
);
3105 if (so
->so_usecount
< 0) {
3106 panic("tcp_getlock: so=%p usecount=%x lrh= %s\n",
3107 so
, so
->so_usecount
, solockhistory_nr(so
));
3110 if (so
->so_flags
& SOF_MP_SUBFLOW
) {
3111 struct mptcb
*mp_tp
= tptomptp(sototcpcb(so
));
3112 struct socket
*mp_so
= mptetoso(mp_tp
->mpt_mpte
);
3114 return mp_so
->so_proto
->pr_getlock(mp_so
, flags
);
3116 return &inp
->inpcb_mtx
;
3119 panic("tcp_getlock: so=%p NULL so_pcb %s\n",
3120 so
, solockhistory_nr(so
));
3121 return so
->so_proto
->pr_domain
->dom_mtx
;
3126 * Determine if we can grow the recieve socket buffer to avoid sending
3127 * a zero window update to the peer. We allow even socket buffers that
3128 * have fixed size (set by the application) to grow if the resource
3129 * constraints are met. They will also be trimmed after the application
3133 tcp_sbrcv_grow_rwin(struct tcpcb
*tp
, struct sockbuf
*sb
)
3135 u_int32_t rcvbufinc
= tp
->t_maxseg
<< 4;
3136 u_int32_t rcvbuf
= sb
->sb_hiwat
;
3137 struct socket
*so
= tp
->t_inpcb
->inp_socket
;
3139 if (tcp_recv_bg
== 1 || IS_TCP_RECV_BG(so
)) {
3143 if (tcp_do_autorcvbuf
== 1 &&
3144 tcp_cansbgrow(sb
) &&
3145 (tp
->t_flags
& TF_SLOWLINK
) == 0 &&
3146 (so
->so_flags1
& SOF1_EXTEND_BK_IDLE_WANTED
) == 0 &&
3147 (rcvbuf
- sb
->sb_cc
) < rcvbufinc
&&
3148 rcvbuf
< tcp_autorcvbuf_max
&&
3149 (sb
->sb_idealsize
> 0 &&
3150 sb
->sb_hiwat
<= (sb
->sb_idealsize
+ rcvbufinc
))) {
3152 min((sb
->sb_hiwat
+ rcvbufinc
), tcp_autorcvbuf_max
));
3157 tcp_sbspace(struct tcpcb
*tp
)
3159 struct socket
*so
= tp
->t_inpcb
->inp_socket
;
3160 struct sockbuf
*sb
= &so
->so_rcv
;
3163 int32_t pending
= 0;
3165 if (so
->so_flags
& SOF_MP_SUBFLOW
) {
3166 /* We still need to grow TCP's buffer to have a BDP-estimate */
3167 tcp_sbrcv_grow_rwin(tp
, sb
);
3169 return mptcp_sbspace(tptomptp(tp
));
3172 tcp_sbrcv_grow_rwin(tp
, sb
);
3174 /* hiwat might have changed */
3175 rcvbuf
= sb
->sb_hiwat
;
3177 space
= ((int32_t) imin((rcvbuf
- sb
->sb_cc
),
3178 (sb
->sb_mbmax
- sb
->sb_mbcnt
)));
3184 /* Compensate for data being processed by content filters */
3185 pending
= cfil_sock_data_space(sb
);
3186 #endif /* CONTENT_FILTER */
3187 if (pending
> space
) {
3194 * Avoid increasing window size if the current window
3195 * is already very low, we could be in "persist" mode and
3196 * we could break some apps (see rdar://5409343)
3199 if (space
< tp
->t_maxseg
) {
3203 /* Clip window size for slower link */
3205 if (((tp
->t_flags
& TF_SLOWLINK
) != 0) && slowlink_wsize
> 0) {
3206 return imin(space
, slowlink_wsize
);
3212 * Checks TCP Segment Offloading capability for a given connection
3213 * and interface pair.
3216 tcp_set_tso(struct tcpcb
*tp
, struct ifnet
*ifp
)
3220 struct ifnet
*tunnel_ifp
= NULL
;
3221 #define IFNET_TSO_MASK (IFNET_TSO_IPV6 | IFNET_TSO_IPV4)
3223 tp
->t_flags
&= ~TF_TSO
;
3231 * We can't use TSO if this tcpcb belongs to an MPTCP session.
3233 if (tp
->t_mpflags
& TMPF_MPTCP_TRUE
) {
3238 isipv6
= (inp
->inp_vflag
& INP_IPV6
) != 0;
3241 * We can't use TSO if the TSO capability of the tunnel interface does
3242 * not match the capability of another interface known by TCP
3244 if (inp
->inp_policyresult
.results
.result
== NECP_KERNEL_POLICY_RESULT_IP_TUNNEL
) {
3245 u_int tunnel_if_index
= inp
->inp_policyresult
.results
.result_parameter
.tunnel_interface_index
;
3247 if (tunnel_if_index
!= 0) {
3248 ifnet_head_lock_shared();
3249 tunnel_ifp
= ifindex2ifnet
[tunnel_if_index
];
3253 if (tunnel_ifp
== NULL
) {
3257 if ((ifp
->if_hwassist
& IFNET_TSO_MASK
) != (tunnel_ifp
->if_hwassist
& IFNET_TSO_MASK
)) {
3258 if (tso_debug
> 0) {
3259 os_log(OS_LOG_DEFAULT
,
3260 "%s: %u > %u TSO 0 tunnel_ifp %s hwassist mismatch with ifp %s",
3262 ntohs(tp
->t_inpcb
->inp_lport
), ntohs(tp
->t_inpcb
->inp_fport
),
3263 tunnel_ifp
->if_xname
, ifp
->if_xname
);
3267 if (inp
->inp_last_outifp
!= NULL
&&
3268 (inp
->inp_last_outifp
->if_hwassist
& IFNET_TSO_MASK
) != (tunnel_ifp
->if_hwassist
& IFNET_TSO_MASK
)) {
3269 if (tso_debug
> 0) {
3270 os_log(OS_LOG_DEFAULT
,
3271 "%s: %u > %u TSO 0 tunnel_ifp %s hwassist mismatch with inp_last_outifp %s",
3273 ntohs(tp
->t_inpcb
->inp_lport
), ntohs(tp
->t_inpcb
->inp_fport
),
3274 tunnel_ifp
->if_xname
, inp
->inp_last_outifp
->if_xname
);
3278 if ((inp
->inp_flags
& INP_BOUND_IF
) && inp
->inp_boundifp
!= NULL
&&
3279 (inp
->inp_boundifp
->if_hwassist
& IFNET_TSO_MASK
) != (tunnel_ifp
->if_hwassist
& IFNET_TSO_MASK
)) {
3280 if (tso_debug
> 0) {
3281 os_log(OS_LOG_DEFAULT
,
3282 "%s: %u > %u TSO 0 tunnel_ifp %s hwassist mismatch with inp_boundifp %s",
3284 ntohs(tp
->t_inpcb
->inp_lport
), ntohs(tp
->t_inpcb
->inp_fport
),
3285 tunnel_ifp
->if_xname
, inp
->inp_boundifp
->if_xname
);
3292 if (ifp
->if_hwassist
& IFNET_TSO_IPV6
) {
3293 tp
->t_flags
|= TF_TSO
;
3294 if (ifp
->if_tso_v6_mtu
!= 0) {
3295 tp
->tso_max_segment_size
= ifp
->if_tso_v6_mtu
;
3297 tp
->tso_max_segment_size
= TCP_MAXWIN
;
3301 if (ifp
->if_hwassist
& IFNET_TSO_IPV4
) {
3302 tp
->t_flags
|= TF_TSO
;
3303 if (ifp
->if_tso_v4_mtu
!= 0) {
3304 tp
->tso_max_segment_size
= ifp
->if_tso_v4_mtu
;
3306 tp
->tso_max_segment_size
= TCP_MAXWIN
;
3308 if (INTF_ADJUST_MTU_FOR_CLAT46(ifp
)) {
3309 tp
->tso_max_segment_size
-=
3310 CLAT46_HDR_EXPANSION_OVERHD
;
3315 if (tso_debug
> 1) {
3316 os_log(OS_LOG_DEFAULT
, "%s: %u > %u TSO %d ifp %s",
3318 ntohs(tp
->t_inpcb
->inp_lport
),
3319 ntohs(tp
->t_inpcb
->inp_fport
),
3320 (tp
->t_flags
& TF_TSO
) != 0,
3321 ifp
!= NULL
? ifp
->if_xname
: "<NULL>");
3325 #define TIMEVAL_TO_TCPHZ(_tv_) ((uint32_t)((_tv_).tv_sec * TCP_RETRANSHZ + \
3326 (_tv_).tv_usec / TCP_RETRANSHZ_TO_USEC))
3329 * Function to calculate the tcp clock. The tcp clock will get updated
3330 * at the boundaries of the tcp layer. This is done at 3 places:
3331 * 1. Right before processing an input tcp packet
3332 * 2. Whenever a connection wants to access the network using tcp_usrreqs
3333 * 3. When a tcp timer fires or before tcp slow timeout
3338 calculate_tcp_clock(void)
3340 struct timeval tv
= tcp_uptime
;
3341 struct timeval interval
= {.tv_sec
= 0, .tv_usec
= TCP_RETRANSHZ_TO_USEC
};
3342 struct timeval now
, hold_now
;
3348 * Update coarse-grained networking timestamp (in sec.); the idea
3349 * is to update the counter returnable via net_uptime() when
3352 net_update_uptime_with_time(&now
);
3354 timevaladd(&tv
, &interval
);
3355 if (timevalcmp(&now
, &tv
, >)) {
3356 /* time to update the clock */
3357 lck_spin_lock(tcp_uptime_lock
);
3358 if (timevalcmp(&tcp_uptime
, &now
, >=)) {
3359 /* clock got updated while waiting for the lock */
3360 lck_spin_unlock(tcp_uptime_lock
);
3367 timevalsub(&now
, &tv
);
3369 incr
= TIMEVAL_TO_TCPHZ(now
);
3371 tcp_uptime
= hold_now
;
3375 lck_spin_unlock(tcp_uptime_lock
);
3380 * Compute receive window scaling that we are going to request
3381 * for this connection based on sb_hiwat. Try to leave some
3382 * room to potentially increase the window size upto a maximum
3383 * defined by the constant tcp_autorcvbuf_max.
3386 tcp_set_max_rwinscale(struct tcpcb
*tp
, struct socket
*so
)
3388 uint32_t maxsockbufsize
;
3390 tp
->request_r_scale
= MAX((uint8_t)tcp_win_scale
, tp
->request_r_scale
);
3391 maxsockbufsize
= ((so
->so_rcv
.sb_flags
& SB_USRSIZE
) != 0) ?
3392 so
->so_rcv
.sb_hiwat
: tcp_autorcvbuf_max
;
3395 * Window scale should not exceed what is needed
3396 * to send the max receive window size; adding 1 to TCP_MAXWIN
3399 while (tp
->request_r_scale
< TCP_MAX_WINSHIFT
&&
3400 ((TCP_MAXWIN
+ 1) << tp
->request_r_scale
) < maxsockbufsize
) {
3401 tp
->request_r_scale
++;
3403 tp
->request_r_scale
= MIN(tp
->request_r_scale
, TCP_MAX_WINSHIFT
);
3407 tcp_notsent_lowat_check(struct socket
*so
)
3409 struct inpcb
*inp
= sotoinpcb(so
);
3410 struct tcpcb
*tp
= NULL
;
3414 tp
= intotcpcb(inp
);
3421 notsent
= so
->so_snd
.sb_cc
-
3422 (tp
->snd_nxt
- tp
->snd_una
);
3425 * When we send a FIN or SYN, not_sent can be negative.
3426 * In that case also we need to send a write event to the
3427 * process if it is waiting. In the FIN case, it will
3428 * get an error from send because cantsendmore will be set.
3430 if (notsent
<= tp
->t_notsent_lowat
) {
3435 * When Nagle's algorithm is not disabled, it is better
3436 * to wakeup the client until there is atleast one
3437 * maxseg of data to write.
3439 if ((tp
->t_flags
& TF_NODELAY
) == 0 &&
3440 notsent
> 0 && notsent
< tp
->t_maxseg
) {
3447 tcp_rxtseg_insert(struct tcpcb
*tp
, tcp_seq start
, tcp_seq end
)
3449 struct tcp_rxt_seg
*rxseg
= NULL
, *prev
= NULL
, *next
= NULL
;
3450 uint16_t rxcount
= 0;
3452 if (SLIST_EMPTY(&tp
->t_rxt_segments
)) {
3453 tp
->t_dsack_lastuna
= tp
->snd_una
;
3456 * First check if there is a segment already existing for this
3460 SLIST_FOREACH(rxseg
, &tp
->t_rxt_segments
, rx_link
) {
3461 if (SEQ_GT(rxseg
->rx_start
, start
)) {
3468 /* check if prev seg is for this sequence */
3469 if (prev
!= NULL
&& SEQ_LEQ(prev
->rx_start
, start
) &&
3470 SEQ_GEQ(prev
->rx_end
, end
)) {
3476 * There are a couple of possibilities at this point.
3477 * 1. prev overlaps with the beginning of this sequence
3478 * 2. next overlaps with the end of this sequence
3479 * 3. there is no overlap.
3482 if (prev
!= NULL
&& SEQ_GT(prev
->rx_end
, start
)) {
3483 if (prev
->rx_start
== start
&& SEQ_GT(end
, prev
->rx_end
)) {
3484 start
= prev
->rx_end
+ 1;
3487 prev
->rx_end
= (start
- 1);
3488 rxcount
= prev
->rx_count
;
3492 if (next
!= NULL
&& SEQ_LT(next
->rx_start
, end
)) {
3493 if (SEQ_LEQ(next
->rx_end
, end
)) {
3494 end
= next
->rx_start
- 1;
3497 next
->rx_start
= end
+ 1;
3498 rxcount
= next
->rx_count
;
3501 if (!SEQ_LT(start
, end
)) {
3505 rxseg
= (struct tcp_rxt_seg
*) zalloc(tcp_rxt_seg_zone
);
3506 if (rxseg
== NULL
) {
3509 bzero(rxseg
, sizeof(*rxseg
));
3510 rxseg
->rx_start
= start
;
3511 rxseg
->rx_end
= end
;
3512 rxseg
->rx_count
= rxcount
+ 1;
3515 SLIST_INSERT_AFTER(prev
, rxseg
, rx_link
);
3517 SLIST_INSERT_HEAD(&tp
->t_rxt_segments
, rxseg
, rx_link
);
3521 struct tcp_rxt_seg
*
3522 tcp_rxtseg_find(struct tcpcb
*tp
, tcp_seq start
, tcp_seq end
)
3524 struct tcp_rxt_seg
*rxseg
;
3525 if (SLIST_EMPTY(&tp
->t_rxt_segments
)) {
3529 SLIST_FOREACH(rxseg
, &tp
->t_rxt_segments
, rx_link
) {
3530 if (SEQ_LEQ(rxseg
->rx_start
, start
) &&
3531 SEQ_GEQ(rxseg
->rx_end
, end
)) {
3534 if (SEQ_GT(rxseg
->rx_start
, start
)) {
3542 tcp_rxtseg_set_spurious(struct tcpcb
*tp
, tcp_seq start
, tcp_seq end
)
3544 struct tcp_rxt_seg
*rxseg
;
3545 if (SLIST_EMPTY(&tp
->t_rxt_segments
)) {
3549 SLIST_FOREACH(rxseg
, &tp
->t_rxt_segments
, rx_link
) {
3550 if (SEQ_GEQ(rxseg
->rx_start
, start
) &&
3551 SEQ_LEQ(rxseg
->rx_end
, end
)) {
3553 * If the segment was retransmitted only once, mark it as
3556 if (rxseg
->rx_count
== 1) {
3557 rxseg
->rx_flags
|= TCP_RXT_SPURIOUS
;
3561 if (SEQ_GEQ(rxseg
->rx_start
, end
)) {
3569 tcp_rxtseg_clean(struct tcpcb
*tp
)
3571 struct tcp_rxt_seg
*rxseg
, *next
;
3573 SLIST_FOREACH_SAFE(rxseg
, &tp
->t_rxt_segments
, rx_link
, next
) {
3574 SLIST_REMOVE(&tp
->t_rxt_segments
, rxseg
,
3575 tcp_rxt_seg
, rx_link
);
3576 zfree(tcp_rxt_seg_zone
, rxseg
);
3578 tp
->t_dsack_lastuna
= tp
->snd_max
;
3582 tcp_rxtseg_detect_bad_rexmt(struct tcpcb
*tp
, tcp_seq th_ack
)
3584 boolean_t bad_rexmt
;
3585 struct tcp_rxt_seg
*rxseg
;
3587 if (SLIST_EMPTY(&tp
->t_rxt_segments
)) {
3592 * If all of the segments in this window are not cumulatively
3593 * acknowledged, then there can still be undetected packet loss.
3594 * Do not restore congestion window in that case.
3596 if (SEQ_LT(th_ack
, tp
->snd_recover
)) {
3601 SLIST_FOREACH(rxseg
, &tp
->t_rxt_segments
, rx_link
) {
3602 if (!(rxseg
->rx_flags
& TCP_RXT_SPURIOUS
)) {
3611 tcp_rxtseg_dsack_for_tlp(struct tcpcb
*tp
)
3613 boolean_t dsack_for_tlp
= FALSE
;
3614 struct tcp_rxt_seg
*rxseg
;
3615 if (SLIST_EMPTY(&tp
->t_rxt_segments
)) {
3619 SLIST_FOREACH(rxseg
, &tp
->t_rxt_segments
, rx_link
) {
3620 if (rxseg
->rx_count
== 1 &&
3621 SLIST_NEXT(rxseg
, rx_link
) == NULL
&&
3622 (rxseg
->rx_flags
& TCP_RXT_DSACK_FOR_TLP
)) {
3623 dsack_for_tlp
= TRUE
;
3627 return dsack_for_tlp
;
3631 tcp_rxtseg_total_size(struct tcpcb
*tp
)
3633 struct tcp_rxt_seg
*rxseg
;
3634 u_int32_t total_size
= 0;
3636 SLIST_FOREACH(rxseg
, &tp
->t_rxt_segments
, rx_link
) {
3637 total_size
+= (rxseg
->rx_end
- rxseg
->rx_start
) + 1;
3643 tcp_get_connectivity_status(struct tcpcb
*tp
,
3644 struct tcp_conn_status
*connstatus
)
3646 if (tp
== NULL
|| connstatus
== NULL
) {
3649 bzero(connstatus
, sizeof(*connstatus
));
3650 if (tp
->t_rxtshift
>= TCP_CONNECTIVITY_PROBES_MAX
) {
3651 if (TCPS_HAVEESTABLISHED(tp
->t_state
)) {
3652 connstatus
->write_probe_failed
= 1;
3654 connstatus
->conn_probe_failed
= 1;
3657 if (tp
->t_rtimo_probes
>= TCP_CONNECTIVITY_PROBES_MAX
) {
3658 connstatus
->read_probe_failed
= 1;
3660 if (tp
->t_inpcb
!= NULL
&& tp
->t_inpcb
->inp_last_outifp
!= NULL
&&
3661 (tp
->t_inpcb
->inp_last_outifp
->if_eflags
& IFEF_PROBE_CONNECTIVITY
)) {
3662 connstatus
->probe_activated
= 1;
3667 tfo_enabled(const struct tcpcb
*tp
)
3669 return (tp
->t_flagsext
& TF_FASTOPEN
)? TRUE
: FALSE
;
3673 tcp_disable_tfo(struct tcpcb
*tp
)
3675 tp
->t_flagsext
&= ~TF_FASTOPEN
;
3678 static struct mbuf
*
3679 tcp_make_keepalive_frame(struct tcpcb
*tp
, struct ifnet
*ifp
,
3682 struct inpcb
*inp
= tp
->t_inpcb
;
3689 * The code assumes the IP + TCP headers fit in an mbuf packet header
3691 _CASSERT(sizeof(struct ip
) + sizeof(struct tcphdr
) <= _MHLEN
);
3692 _CASSERT(sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
) <= _MHLEN
);
3694 MGETHDR(m
, M_WAIT
, MT_HEADER
);
3698 m
->m_pkthdr
.pkt_proto
= IPPROTO_TCP
;
3700 data
= mbuf_datastart(m
);
3702 if (inp
->inp_vflag
& INP_IPV4
) {
3703 bzero(data
, sizeof(struct ip
) + sizeof(struct tcphdr
));
3704 th
= (struct tcphdr
*)(void *) (data
+ sizeof(struct ip
));
3705 m
->m_len
= sizeof(struct ip
) + sizeof(struct tcphdr
);
3706 m
->m_pkthdr
.len
= m
->m_len
;
3708 VERIFY(inp
->inp_vflag
& INP_IPV6
);
3710 bzero(data
, sizeof(struct ip6_hdr
)
3711 + sizeof(struct tcphdr
));
3712 th
= (struct tcphdr
*)(void *)(data
+ sizeof(struct ip6_hdr
));
3713 m
->m_len
= sizeof(struct ip6_hdr
) +
3714 sizeof(struct tcphdr
);
3715 m
->m_pkthdr
.len
= m
->m_len
;
3718 tcp_fillheaders(tp
, data
, th
);
3720 if (inp
->inp_vflag
& INP_IPV4
) {
3723 ip
= (__typeof__(ip
))(void *)data
;
3725 ip
->ip_id
= rfc6864
? 0 : ip_randomid();
3726 ip
->ip_off
= htons(IP_DF
);
3727 ip
->ip_len
= htons(sizeof(struct ip
) + sizeof(struct tcphdr
));
3728 ip
->ip_ttl
= inp
->inp_ip_ttl
;
3729 ip
->ip_tos
|= (inp
->inp_ip_tos
& ~IPTOS_ECN_MASK
);
3730 ip
->ip_sum
= in_cksum_hdr(ip
);
3732 struct ip6_hdr
*ip6
;
3734 ip6
= (__typeof__(ip6
))(void *)data
;
3736 ip6
->ip6_plen
= htons(sizeof(struct tcphdr
));
3737 ip6
->ip6_hlim
= in6_selecthlim(inp
, ifp
);
3738 ip6
->ip6_flow
= ip6
->ip6_flow
& ~IPV6_FLOW_ECN_MASK
;
3740 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_src
)) {
3741 ip6
->ip6_src
.s6_addr16
[1] = 0;
3743 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_dst
)) {
3744 ip6
->ip6_dst
.s6_addr16
[1] = 0;
3747 th
->th_flags
= TH_ACK
;
3749 win
= tcp_sbspace(tp
);
3750 if (win
> ((int32_t)TCP_MAXWIN
<< tp
->rcv_scale
)) {
3751 win
= (int32_t)TCP_MAXWIN
<< tp
->rcv_scale
;
3753 th
->th_win
= htons((u_short
) (win
>> tp
->rcv_scale
));
3756 th
->th_seq
= htonl(tp
->snd_una
- 1);
3758 th
->th_seq
= htonl(tp
->snd_una
);
3760 th
->th_ack
= htonl(tp
->rcv_nxt
);
3762 /* Force recompute TCP checksum to be the final value */
3764 if (inp
->inp_vflag
& INP_IPV4
) {
3765 th
->th_sum
= inet_cksum(m
, IPPROTO_TCP
,
3766 sizeof(struct ip
), sizeof(struct tcphdr
));
3768 th
->th_sum
= inet6_cksum(m
, IPPROTO_TCP
,
3769 sizeof(struct ip6_hdr
), sizeof(struct tcphdr
));
3776 tcp_fill_keepalive_offload_frames(ifnet_t ifp
,
3777 struct ifnet_keepalive_offload_frame
*frames_array
,
3778 u_int32_t frames_array_count
, size_t frame_data_offset
,
3779 u_int32_t
*used_frames_count
)
3783 u_int32_t frame_index
= *used_frames_count
;
3785 if (ifp
== NULL
|| frames_array
== NULL
||
3786 frames_array_count
== 0 ||
3787 frame_index
>= frames_array_count
||
3788 frame_data_offset
>= IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE
) {
3793 * This function is called outside the regular TCP processing
3794 * so we need to update the TCP clock.
3796 calculate_tcp_clock();
3798 lck_rw_lock_shared(tcbinfo
.ipi_lock
);
3799 gencnt
= tcbinfo
.ipi_gencnt
;
3800 LIST_FOREACH(inp
, tcbinfo
.ipi_listhead
, inp_list
) {
3802 struct ifnet_keepalive_offload_frame
*frame
;
3803 struct mbuf
*m
= NULL
;
3804 struct tcpcb
*tp
= intotcpcb(inp
);
3806 if (frame_index
>= frames_array_count
) {
3810 if (inp
->inp_gencnt
> gencnt
||
3811 inp
->inp_state
== INPCB_STATE_DEAD
) {
3815 if ((so
= inp
->inp_socket
) == NULL
||
3816 (so
->so_state
& SS_DEFUNCT
)) {
3820 * check for keepalive offload flag without socket
3821 * lock to avoid a deadlock
3823 if (!(inp
->inp_flags2
& INP2_KEEPALIVE_OFFLOAD
)) {
3827 if (!(inp
->inp_vflag
& (INP_IPV4
| INP_IPV6
))) {
3830 if (inp
->inp_ppcb
== NULL
||
3831 in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) == WNT_STOPUSING
) {
3835 /* Release the want count */
3836 if (inp
->inp_ppcb
== NULL
||
3837 (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
)) {
3838 socket_unlock(so
, 1);
3841 if ((inp
->inp_vflag
& INP_IPV4
) &&
3842 (inp
->inp_laddr
.s_addr
== INADDR_ANY
||
3843 inp
->inp_faddr
.s_addr
== INADDR_ANY
)) {
3844 socket_unlock(so
, 1);
3847 if ((inp
->inp_vflag
& INP_IPV6
) &&
3848 (IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_laddr
) ||
3849 IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_faddr
))) {
3850 socket_unlock(so
, 1);
3853 if (inp
->inp_lport
== 0 || inp
->inp_fport
== 0) {
3854 socket_unlock(so
, 1);
3857 if (inp
->inp_last_outifp
== NULL
||
3858 inp
->inp_last_outifp
->if_index
!= ifp
->if_index
) {
3859 socket_unlock(so
, 1);
3862 if ((inp
->inp_vflag
& INP_IPV4
) && frame_data_offset
+
3863 sizeof(struct ip
) + sizeof(struct tcphdr
) >
3864 IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE
) {
3865 socket_unlock(so
, 1);
3867 } else if (!(inp
->inp_vflag
& INP_IPV4
) && frame_data_offset
+
3868 sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
) >
3869 IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE
) {
3870 socket_unlock(so
, 1);
3874 * There is no point in waking up the device for connections
3875 * that are not established. Long lived connection are meant
3876 * for processes that will sent and receive data
3878 if (tp
->t_state
!= TCPS_ESTABLISHED
) {
3879 socket_unlock(so
, 1);
3883 * This inp has all the information that is needed to
3884 * generate an offload frame.
3886 frame
= &frames_array
[frame_index
];
3887 frame
->type
= IFNET_KEEPALIVE_OFFLOAD_FRAME_TCP
;
3888 frame
->ether_type
= (inp
->inp_vflag
& INP_IPV4
) ?
3889 IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV4
:
3890 IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV6
;
3891 frame
->interval
= (uint16_t)(tp
->t_keepidle
> 0 ? tp
->t_keepidle
:
3893 frame
->keep_cnt
= (uint8_t)TCP_CONN_KEEPCNT(tp
);
3894 frame
->keep_retry
= (uint16_t)TCP_CONN_KEEPINTVL(tp
);
3895 if (so
->so_options
& SO_NOWAKEFROMSLEEP
) {
3897 IFNET_KEEPALIVE_OFFLOAD_FLAG_NOWAKEFROMSLEEP
;
3899 frame
->local_port
= ntohs(inp
->inp_lport
);
3900 frame
->remote_port
= ntohs(inp
->inp_fport
);
3901 frame
->local_seq
= tp
->snd_nxt
;
3902 frame
->remote_seq
= tp
->rcv_nxt
;
3903 if (inp
->inp_vflag
& INP_IPV4
) {
3904 ASSERT(frame_data_offset
+ sizeof(struct ip
) + sizeof(struct tcphdr
) <= UINT8_MAX
);
3905 frame
->length
= (uint8_t)(frame_data_offset
+
3906 sizeof(struct ip
) + sizeof(struct tcphdr
));
3907 frame
->reply_length
= frame
->length
;
3909 frame
->addr_length
= sizeof(struct in_addr
);
3910 bcopy(&inp
->inp_laddr
, frame
->local_addr
,
3911 sizeof(struct in_addr
));
3912 bcopy(&inp
->inp_faddr
, frame
->remote_addr
,
3913 sizeof(struct in_addr
));
3915 struct in6_addr
*ip6
;
3917 ASSERT(frame_data_offset
+ sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
) <= UINT8_MAX
);
3918 frame
->length
= (uint8_t)(frame_data_offset
+
3919 sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
));
3920 frame
->reply_length
= frame
->length
;
3922 frame
->addr_length
= sizeof(struct in6_addr
);
3923 ip6
= (struct in6_addr
*)(void *)frame
->local_addr
;
3924 bcopy(&inp
->in6p_laddr
, ip6
, sizeof(struct in6_addr
));
3925 if (IN6_IS_SCOPE_EMBED(ip6
)) {
3926 ip6
->s6_addr16
[1] = 0;
3929 ip6
= (struct in6_addr
*)(void *)frame
->remote_addr
;
3930 bcopy(&inp
->in6p_faddr
, ip6
, sizeof(struct in6_addr
));
3931 if (IN6_IS_SCOPE_EMBED(ip6
)) {
3932 ip6
->s6_addr16
[1] = 0;
3939 m
= tcp_make_keepalive_frame(tp
, ifp
, TRUE
);
3941 socket_unlock(so
, 1);
3944 bcopy(m
->m_data
, frame
->data
+ frame_data_offset
,
3949 * Now the response packet to incoming probes
3951 m
= tcp_make_keepalive_frame(tp
, ifp
, FALSE
);
3953 socket_unlock(so
, 1);
3956 bcopy(m
->m_data
, frame
->reply_data
+ frame_data_offset
,
3961 socket_unlock(so
, 1);
3963 lck_rw_done(tcbinfo
.ipi_lock
);
3964 *used_frames_count
= frame_index
;
3968 inp_matches_kao_frame(ifnet_t ifp
, struct ifnet_keepalive_offload_frame
*frame
,
3971 if (inp
->inp_ppcb
== NULL
) {
3974 /* Release the want count */
3975 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
3978 if (inp
->inp_last_outifp
== NULL
||
3979 inp
->inp_last_outifp
->if_index
!= ifp
->if_index
) {
3982 if (frame
->local_port
!= ntohs(inp
->inp_lport
) ||
3983 frame
->remote_port
!= ntohs(inp
->inp_fport
)) {
3986 if (inp
->inp_vflag
& INP_IPV4
) {
3987 if (memcmp(&inp
->inp_laddr
, frame
->local_addr
,
3988 sizeof(struct in_addr
)) != 0 ||
3989 memcmp(&inp
->inp_faddr
, frame
->remote_addr
,
3990 sizeof(struct in_addr
)) != 0) {
3993 } else if (inp
->inp_vflag
& INP_IPV6
) {
3994 if (memcmp(&inp
->inp_laddr
, frame
->local_addr
,
3995 sizeof(struct in6_addr
)) != 0 ||
3996 memcmp(&inp
->inp_faddr
, frame
->remote_addr
,
3997 sizeof(struct in6_addr
)) != 0) {
4007 tcp_notify_kao_timeout(ifnet_t ifp
,
4008 struct ifnet_keepalive_offload_frame
*frame
)
4010 struct inpcb
*inp
= NULL
;
4011 struct socket
*so
= NULL
;
4015 * Unlock the list before posting event on the matching socket
4017 lck_rw_lock_shared(tcbinfo
.ipi_lock
);
4019 LIST_FOREACH(inp
, tcbinfo
.ipi_listhead
, inp_list
) {
4020 if ((so
= inp
->inp_socket
) == NULL
||
4021 (so
->so_state
& SS_DEFUNCT
)) {
4024 if (!(inp
->inp_flags2
& INP2_KEEPALIVE_OFFLOAD
)) {
4027 if (!(inp
->inp_vflag
& (INP_IPV4
| INP_IPV6
))) {
4030 if (inp
->inp_ppcb
== NULL
||
4031 in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) == WNT_STOPUSING
) {
4035 if (inp_matches_kao_frame(ifp
, frame
, inp
)) {
4037 * Keep the matching socket locked
4042 socket_unlock(so
, 1);
4044 lck_rw_done(tcbinfo
.ipi_lock
);
4047 ASSERT(inp
!= NULL
);
4049 ASSERT(so
== inp
->inp_socket
);
4051 * Drop the TCP connection like tcptimers() does
4053 struct tcpcb
*tp
= inp
->inp_ppcb
;
4055 tcpstat
.tcps_keepdrops
++;
4057 (SO_FILT_HINT_LOCKED
| SO_FILT_HINT_TIMEOUT
));
4058 tp
= tcp_drop(tp
, ETIMEDOUT
);
4060 tcpstat
.tcps_ka_offload_drops
++;
4061 os_log_info(OS_LOG_DEFAULT
, "%s: dropped lport %u fport %u\n",
4062 __func__
, frame
->local_port
, frame
->remote_port
);
4064 socket_unlock(so
, 1);
4071 tcp_notify_ack_id_valid(struct tcpcb
*tp
, struct socket
*so
,
4072 u_int32_t notify_id
)
4074 struct tcp_notify_ack_marker
*elm
;
4076 if (so
->so_snd
.sb_cc
== 0) {
4080 SLIST_FOREACH(elm
, &tp
->t_notify_ack
, notify_next
) {
4081 /* Duplicate id is not allowed */
4082 if (elm
->notify_id
== notify_id
) {
4085 /* Duplicate position is not allowed */
4086 if (elm
->notify_snd_una
== tp
->snd_una
+ so
->so_snd
.sb_cc
) {
4094 tcp_add_notify_ack_marker(struct tcpcb
*tp
, u_int32_t notify_id
)
4096 struct tcp_notify_ack_marker
*nm
, *elm
= NULL
;
4097 struct socket
*so
= tp
->t_inpcb
->inp_socket
;
4099 MALLOC(nm
, struct tcp_notify_ack_marker
*, sizeof(*nm
),
4100 M_TEMP
, M_WAIT
| M_ZERO
);
4104 nm
->notify_id
= notify_id
;
4105 nm
->notify_snd_una
= tp
->snd_una
+ so
->so_snd
.sb_cc
;
4107 SLIST_FOREACH(elm
, &tp
->t_notify_ack
, notify_next
) {
4108 if (SEQ_GT(nm
->notify_snd_una
, elm
->notify_snd_una
)) {
4114 VERIFY(SLIST_EMPTY(&tp
->t_notify_ack
));
4115 SLIST_INSERT_HEAD(&tp
->t_notify_ack
, nm
, notify_next
);
4117 SLIST_INSERT_AFTER(elm
, nm
, notify_next
);
4119 tp
->t_notify_ack_count
++;
4124 tcp_notify_ack_free(struct tcpcb
*tp
)
4126 struct tcp_notify_ack_marker
*elm
, *next
;
4127 if (SLIST_EMPTY(&tp
->t_notify_ack
)) {
4131 SLIST_FOREACH_SAFE(elm
, &tp
->t_notify_ack
, notify_next
, next
) {
4132 SLIST_REMOVE(&tp
->t_notify_ack
, elm
, tcp_notify_ack_marker
,
4136 SLIST_INIT(&tp
->t_notify_ack
);
4137 tp
->t_notify_ack_count
= 0;
4141 tcp_notify_acknowledgement(struct tcpcb
*tp
, struct socket
*so
)
4143 struct tcp_notify_ack_marker
*elm
;
4145 elm
= SLIST_FIRST(&tp
->t_notify_ack
);
4146 if (SEQ_GEQ(tp
->snd_una
, elm
->notify_snd_una
)) {
4147 soevent(so
, SO_FILT_HINT_LOCKED
| SO_FILT_HINT_NOTIFY_ACK
);
4152 tcp_get_notify_ack_count(struct tcpcb
*tp
,
4153 struct tcp_notify_ack_complete
*retid
)
4155 struct tcp_notify_ack_marker
*elm
;
4156 uint32_t complete
= 0;
4158 SLIST_FOREACH(elm
, &tp
->t_notify_ack
, notify_next
) {
4159 if (SEQ_GEQ(tp
->snd_una
, elm
->notify_snd_una
)) {
4160 ASSERT(complete
< UINT32_MAX
);
4166 retid
->notify_pending
= tp
->t_notify_ack_count
- complete
;
4167 retid
->notify_complete_count
= min(TCP_MAX_NOTIFY_ACK
, complete
);
4171 tcp_get_notify_ack_ids(struct tcpcb
*tp
,
4172 struct tcp_notify_ack_complete
*retid
)
4175 struct tcp_notify_ack_marker
*elm
, *next
;
4177 SLIST_FOREACH_SAFE(elm
, &tp
->t_notify_ack
, notify_next
, next
) {
4178 if (i
>= retid
->notify_complete_count
) {
4181 if (SEQ_GEQ(tp
->snd_una
, elm
->notify_snd_una
)) {
4182 retid
->notify_complete_id
[i
++] = elm
->notify_id
;
4183 SLIST_REMOVE(&tp
->t_notify_ack
, elm
,
4184 tcp_notify_ack_marker
, notify_next
);
4186 tp
->t_notify_ack_count
--;
4194 tcp_notify_ack_active(struct socket
*so
)
4196 if ((SOCK_DOM(so
) == PF_INET
|| SOCK_DOM(so
) == PF_INET6
) &&
4197 SOCK_TYPE(so
) == SOCK_STREAM
) {
4198 struct tcpcb
*tp
= intotcpcb(sotoinpcb(so
));
4200 if (!SLIST_EMPTY(&tp
->t_notify_ack
)) {
4201 struct tcp_notify_ack_marker
*elm
;
4202 elm
= SLIST_FIRST(&tp
->t_notify_ack
);
4203 if (SEQ_GEQ(tp
->snd_una
, elm
->notify_snd_una
)) {
4212 inp_get_sndbytes_allunsent(struct socket
*so
, u_int32_t th_ack
)
4214 struct inpcb
*inp
= sotoinpcb(so
);
4215 struct tcpcb
*tp
= intotcpcb(inp
);
4217 if ((so
->so_snd
.sb_flags
& SB_SNDBYTE_CNT
) &&
4218 so
->so_snd
.sb_cc
> 0) {
4219 int32_t unsent
, sent
;
4220 sent
= tp
->snd_max
- th_ack
;
4221 if (tp
->t_flags
& TF_SENTFIN
) {
4224 unsent
= so
->so_snd
.sb_cc
- sent
;
4230 #define IFP_PER_FLOW_STAT(_ipv4_, _stat_) { \
4232 ifp->if_ipv4_stat->_stat_++; \
4234 ifp->if_ipv6_stat->_stat_++; \
4238 #define FLOW_ECN_ENABLED(_flags_) \
4239 ((_flags_ & (TE_ECN_ON)) == (TE_ECN_ON))
4242 tcp_update_stats_per_flow(struct ifnet_stats_per_flow
*ifs
,
4245 if (ifp
== NULL
|| !IF_FULLY_ATTACHED(ifp
)) {
4249 ifnet_lock_shared(ifp
);
4250 if (ifs
->ecn_flags
& TE_SETUPSENT
) {
4251 if (ifs
->ecn_flags
& TE_CLIENT_SETUP
) {
4252 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_client_setup
);
4253 if (FLOW_ECN_ENABLED(ifs
->ecn_flags
)) {
4254 IFP_PER_FLOW_STAT(ifs
->ipv4
,
4255 ecn_client_success
);
4256 } else if (ifs
->ecn_flags
& TE_LOST_SYN
) {
4257 IFP_PER_FLOW_STAT(ifs
->ipv4
,
4260 IFP_PER_FLOW_STAT(ifs
->ipv4
,
4261 ecn_peer_nosupport
);
4264 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_server_setup
);
4265 if (FLOW_ECN_ENABLED(ifs
->ecn_flags
)) {
4266 IFP_PER_FLOW_STAT(ifs
->ipv4
,
4267 ecn_server_success
);
4268 } else if (ifs
->ecn_flags
& TE_LOST_SYN
) {
4269 IFP_PER_FLOW_STAT(ifs
->ipv4
,
4272 IFP_PER_FLOW_STAT(ifs
->ipv4
,
4273 ecn_peer_nosupport
);
4277 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_off_conn
);
4279 if (FLOW_ECN_ENABLED(ifs
->ecn_flags
)) {
4280 if (ifs
->ecn_flags
& TE_RECV_ECN_CE
) {
4281 tcpstat
.tcps_ecn_conn_recv_ce
++;
4282 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_conn_recv_ce
);
4284 if (ifs
->ecn_flags
& TE_RECV_ECN_ECE
) {
4285 tcpstat
.tcps_ecn_conn_recv_ece
++;
4286 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_conn_recv_ece
);
4288 if (ifs
->ecn_flags
& (TE_RECV_ECN_CE
| TE_RECV_ECN_ECE
)) {
4289 if (ifs
->txretransmitbytes
> 0 ||
4290 ifs
->rxoutoforderbytes
> 0) {
4291 tcpstat
.tcps_ecn_conn_pl_ce
++;
4292 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_conn_plce
);
4294 tcpstat
.tcps_ecn_conn_nopl_ce
++;
4295 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_conn_noplce
);
4298 if (ifs
->txretransmitbytes
> 0 ||
4299 ifs
->rxoutoforderbytes
> 0) {
4300 tcpstat
.tcps_ecn_conn_plnoce
++;
4301 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_conn_plnoce
);
4306 /* Other stats are interesting for non-local connections only */
4308 ifnet_lock_done(ifp
);
4313 ifp
->if_ipv4_stat
->timestamp
= net_uptime();
4314 if (FLOW_ECN_ENABLED(ifs
->ecn_flags
)) {
4315 tcp_flow_ecn_perf_stats(ifs
, &ifp
->if_ipv4_stat
->ecn_on
);
4317 tcp_flow_ecn_perf_stats(ifs
, &ifp
->if_ipv4_stat
->ecn_off
);
4320 ifp
->if_ipv6_stat
->timestamp
= net_uptime();
4321 if (FLOW_ECN_ENABLED(ifs
->ecn_flags
)) {
4322 tcp_flow_ecn_perf_stats(ifs
, &ifp
->if_ipv6_stat
->ecn_on
);
4324 tcp_flow_ecn_perf_stats(ifs
, &ifp
->if_ipv6_stat
->ecn_off
);
4328 if (ifs
->rxmit_drop
) {
4329 if (FLOW_ECN_ENABLED(ifs
->ecn_flags
)) {
4330 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_on
.rxmit_drop
);
4332 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_off
.rxmit_drop
);
4335 if (ifs
->ecn_fallback_synloss
) {
4336 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_fallback_synloss
);
4338 if (ifs
->ecn_fallback_droprst
) {
4339 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_fallback_droprst
);
4341 if (ifs
->ecn_fallback_droprxmt
) {
4342 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_fallback_droprxmt
);
4344 if (ifs
->ecn_fallback_ce
) {
4345 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_fallback_ce
);
4347 if (ifs
->ecn_fallback_reorder
) {
4348 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_fallback_reorder
);
4350 if (ifs
->ecn_recv_ce
> 0) {
4351 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_recv_ce
);
4353 if (ifs
->ecn_recv_ece
> 0) {
4354 IFP_PER_FLOW_STAT(ifs
->ipv4
, ecn_recv_ece
);
4357 tcp_flow_lim_stats(ifs
, &ifp
->if_lim_stat
);
4358 ifnet_lock_done(ifp
);