]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/ubc_subr.c
xnu-7195.50.7.100.1.tar.gz
[apple/xnu.git] / bsd / kern / ubc_subr.c
1 /*
2 * Copyright (c) 1999-2020 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * File: ubc_subr.c
30 * Author: Umesh Vaishampayan [umeshv@apple.com]
31 * 05-Aug-1999 umeshv Created.
32 *
33 * Functions related to Unified Buffer cache.
34 *
35 * Caller of UBC functions MUST have a valid reference on the vnode.
36 *
37 */
38
39 #include <sys/types.h>
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/lock.h>
43 #include <sys/mman.h>
44 #include <sys/mount_internal.h>
45 #include <sys/vnode_internal.h>
46 #include <sys/ubc_internal.h>
47 #include <sys/ucred.h>
48 #include <sys/proc_internal.h>
49 #include <sys/kauth.h>
50 #include <sys/buf.h>
51 #include <sys/user.h>
52 #include <sys/codesign.h>
53 #include <sys/codedir_internal.h>
54 #include <sys/fsevents.h>
55 #include <sys/fcntl.h>
56 #include <sys/reboot.h>
57
58 #include <mach/mach_types.h>
59 #include <mach/memory_object_types.h>
60 #include <mach/memory_object_control.h>
61 #include <mach/vm_map.h>
62 #include <mach/mach_vm.h>
63 #include <mach/upl.h>
64
65 #include <kern/kern_types.h>
66 #include <kern/kalloc.h>
67 #include <kern/zalloc.h>
68 #include <kern/thread.h>
69 #include <vm/pmap.h>
70 #include <vm/vm_kern.h>
71 #include <vm/vm_protos.h> /* last */
72
73 #include <libkern/crypto/sha1.h>
74 #include <libkern/crypto/sha2.h>
75 #include <libkern/libkern.h>
76 #include <libkern/ptrauth_utils.h>
77
78 #include <security/mac_framework.h>
79 #include <stdbool.h>
80 #include <stdatomic.h>
81
82 /* XXX These should be in a BSD accessible Mach header, but aren't. */
83 extern kern_return_t memory_object_pages_resident(memory_object_control_t,
84 boolean_t *);
85 extern kern_return_t memory_object_signed(memory_object_control_t control,
86 boolean_t is_signed);
87 extern boolean_t memory_object_is_signed(memory_object_control_t);
88 extern void memory_object_mark_trusted(
89 memory_object_control_t control);
90
91 /* XXX Same for those. */
92
93 extern void Debugger(const char *message);
94
95
96 /* XXX no one uses this interface! */
97 kern_return_t ubc_page_op_with_control(
98 memory_object_control_t control,
99 off_t f_offset,
100 int ops,
101 ppnum_t *phys_entryp,
102 int *flagsp);
103
104
105 #if DIAGNOSTIC
106 #if defined(assert)
107 #undef assert
108 #endif
109 #define assert(cond) \
110 ((void) ((cond) ? 0 : panic("Assert failed: %s", # cond)))
111 #else
112 #include <kern/assert.h>
113 #endif /* DIAGNOSTIC */
114
115 static int ubc_info_init_internal(struct vnode *vp, int withfsize, off_t filesize);
116 static int ubc_umcallback(vnode_t, void *);
117 static int ubc_msync_internal(vnode_t, off_t, off_t, off_t *, int, int *);
118 static void ubc_cs_free(struct ubc_info *uip);
119
120 static boolean_t ubc_cs_supports_multilevel_hash(struct cs_blob *blob);
121 static kern_return_t ubc_cs_convert_to_multilevel_hash(struct cs_blob *blob);
122
123 ZONE_DECLARE(ubc_info_zone, "ubc_info zone", sizeof(struct ubc_info),
124 ZC_NOENCRYPT | ZC_ZFREE_CLEARMEM);
125 static uint32_t cs_blob_generation_count = 1;
126
127 /*
128 * CODESIGNING
129 * Routines to navigate code signing data structures in the kernel...
130 */
131
132 extern int cs_debug;
133
134 #define PAGE_SHIFT_4K (12)
135
136 static boolean_t
137 cs_valid_range(
138 const void *start,
139 const void *end,
140 const void *lower_bound,
141 const void *upper_bound)
142 {
143 if (upper_bound < lower_bound ||
144 end < start) {
145 return FALSE;
146 }
147
148 if (start < lower_bound ||
149 end > upper_bound) {
150 return FALSE;
151 }
152
153 return TRUE;
154 }
155
156 typedef void (*cs_md_init)(void *ctx);
157 typedef void (*cs_md_update)(void *ctx, const void *data, size_t size);
158 typedef void (*cs_md_final)(void *hash, void *ctx);
159
160 struct cs_hash {
161 uint8_t cs_type; /* type code as per code signing */
162 size_t cs_size; /* size of effective hash (may be truncated) */
163 size_t cs_digest_size;/* size of native hash */
164 cs_md_init cs_init;
165 cs_md_update cs_update;
166 cs_md_final cs_final;
167 };
168
169 uint8_t
170 cs_hash_type(
171 struct cs_hash const * const cs_hash)
172 {
173 return cs_hash->cs_type;
174 }
175
176 static const struct cs_hash cs_hash_sha1 = {
177 .cs_type = CS_HASHTYPE_SHA1,
178 .cs_size = CS_SHA1_LEN,
179 .cs_digest_size = SHA_DIGEST_LENGTH,
180 .cs_init = (cs_md_init)SHA1Init,
181 .cs_update = (cs_md_update)SHA1Update,
182 .cs_final = (cs_md_final)SHA1Final,
183 };
184 #if CRYPTO_SHA2
185 static const struct cs_hash cs_hash_sha256 = {
186 .cs_type = CS_HASHTYPE_SHA256,
187 .cs_size = SHA256_DIGEST_LENGTH,
188 .cs_digest_size = SHA256_DIGEST_LENGTH,
189 .cs_init = (cs_md_init)SHA256_Init,
190 .cs_update = (cs_md_update)SHA256_Update,
191 .cs_final = (cs_md_final)SHA256_Final,
192 };
193 static const struct cs_hash cs_hash_sha256_truncate = {
194 .cs_type = CS_HASHTYPE_SHA256_TRUNCATED,
195 .cs_size = CS_SHA256_TRUNCATED_LEN,
196 .cs_digest_size = SHA256_DIGEST_LENGTH,
197 .cs_init = (cs_md_init)SHA256_Init,
198 .cs_update = (cs_md_update)SHA256_Update,
199 .cs_final = (cs_md_final)SHA256_Final,
200 };
201 static const struct cs_hash cs_hash_sha384 = {
202 .cs_type = CS_HASHTYPE_SHA384,
203 .cs_size = SHA384_DIGEST_LENGTH,
204 .cs_digest_size = SHA384_DIGEST_LENGTH,
205 .cs_init = (cs_md_init)SHA384_Init,
206 .cs_update = (cs_md_update)SHA384_Update,
207 .cs_final = (cs_md_final)SHA384_Final,
208 };
209 #endif
210
211 static struct cs_hash const *
212 cs_find_md(uint8_t type)
213 {
214 if (type == CS_HASHTYPE_SHA1) {
215 return &cs_hash_sha1;
216 #if CRYPTO_SHA2
217 } else if (type == CS_HASHTYPE_SHA256) {
218 return &cs_hash_sha256;
219 } else if (type == CS_HASHTYPE_SHA256_TRUNCATED) {
220 return &cs_hash_sha256_truncate;
221 } else if (type == CS_HASHTYPE_SHA384) {
222 return &cs_hash_sha384;
223 #endif
224 }
225 return NULL;
226 }
227
228 union cs_hash_union {
229 SHA1_CTX sha1ctxt;
230 SHA256_CTX sha256ctx;
231 SHA384_CTX sha384ctx;
232 };
233
234
235 /*
236 * Choose among different hash algorithms.
237 * Higher is better, 0 => don't use at all.
238 */
239 static const uint32_t hashPriorities[] = {
240 CS_HASHTYPE_SHA1,
241 CS_HASHTYPE_SHA256_TRUNCATED,
242 CS_HASHTYPE_SHA256,
243 CS_HASHTYPE_SHA384,
244 };
245
246 static unsigned int
247 hash_rank(const CS_CodeDirectory *cd)
248 {
249 uint32_t type = cd->hashType;
250 unsigned int n;
251
252 for (n = 0; n < sizeof(hashPriorities) / sizeof(hashPriorities[0]); ++n) {
253 if (hashPriorities[n] == type) {
254 return n + 1;
255 }
256 }
257 return 0; /* not supported */
258 }
259
260
261 /*
262 * Locating a page hash
263 */
264 static const unsigned char *
265 hashes(
266 const CS_CodeDirectory *cd,
267 uint32_t page,
268 size_t hash_len,
269 const char *lower_bound,
270 const char *upper_bound)
271 {
272 const unsigned char *base, *top, *hash;
273 uint32_t nCodeSlots = ntohl(cd->nCodeSlots);
274
275 assert(cs_valid_range(cd, cd + 1, lower_bound, upper_bound));
276
277 if ((ntohl(cd->version) >= CS_SUPPORTSSCATTER) && (ntohl(cd->scatterOffset))) {
278 /* Get first scatter struct */
279 const SC_Scatter *scatter = (const SC_Scatter*)
280 ((const char*)cd + ntohl(cd->scatterOffset));
281 uint32_t hashindex = 0, scount, sbase = 0;
282 /* iterate all scatter structs */
283 do {
284 if ((const char*)scatter > (const char*)cd + ntohl(cd->length)) {
285 if (cs_debug) {
286 printf("CODE SIGNING: Scatter extends past Code Directory\n");
287 }
288 return NULL;
289 }
290
291 scount = ntohl(scatter->count);
292 uint32_t new_base = ntohl(scatter->base);
293
294 /* last scatter? */
295 if (scount == 0) {
296 return NULL;
297 }
298
299 if ((hashindex > 0) && (new_base <= sbase)) {
300 if (cs_debug) {
301 printf("CODE SIGNING: unordered Scatter, prev base %d, cur base %d\n",
302 sbase, new_base);
303 }
304 return NULL; /* unordered scatter array */
305 }
306 sbase = new_base;
307
308 /* this scatter beyond page we're looking for? */
309 if (sbase > page) {
310 return NULL;
311 }
312
313 if (sbase + scount >= page) {
314 /* Found the scatter struct that is
315 * referencing our page */
316
317 /* base = address of first hash covered by scatter */
318 base = (const unsigned char *)cd + ntohl(cd->hashOffset) +
319 hashindex * hash_len;
320 /* top = address of first hash after this scatter */
321 top = base + scount * hash_len;
322 if (!cs_valid_range(base, top, lower_bound,
323 upper_bound) ||
324 hashindex > nCodeSlots) {
325 return NULL;
326 }
327
328 break;
329 }
330
331 /* this scatter struct is before the page we're looking
332 * for. Iterate. */
333 hashindex += scount;
334 scatter++;
335 } while (1);
336
337 hash = base + (page - sbase) * hash_len;
338 } else {
339 base = (const unsigned char *)cd + ntohl(cd->hashOffset);
340 top = base + nCodeSlots * hash_len;
341 if (!cs_valid_range(base, top, lower_bound, upper_bound) ||
342 page > nCodeSlots) {
343 return NULL;
344 }
345 assert(page < nCodeSlots);
346
347 hash = base + page * hash_len;
348 }
349
350 if (!cs_valid_range(hash, hash + hash_len,
351 lower_bound, upper_bound)) {
352 hash = NULL;
353 }
354
355 return hash;
356 }
357
358 /*
359 * cs_validate_codedirectory
360 *
361 * Validate that pointers inside the code directory to make sure that
362 * all offsets and lengths are constrained within the buffer.
363 *
364 * Parameters: cd Pointer to code directory buffer
365 * length Length of buffer
366 *
367 * Returns: 0 Success
368 * EBADEXEC Invalid code signature
369 */
370
371 static int
372 cs_validate_codedirectory(const CS_CodeDirectory *cd, size_t length)
373 {
374 struct cs_hash const *hashtype;
375
376 if (length < sizeof(*cd)) {
377 return EBADEXEC;
378 }
379 if (ntohl(cd->magic) != CSMAGIC_CODEDIRECTORY) {
380 return EBADEXEC;
381 }
382 if (cd->pageSize < PAGE_SHIFT_4K || cd->pageSize > PAGE_SHIFT) {
383 return EBADEXEC;
384 }
385 hashtype = cs_find_md(cd->hashType);
386 if (hashtype == NULL) {
387 return EBADEXEC;
388 }
389
390 if (cd->hashSize != hashtype->cs_size) {
391 return EBADEXEC;
392 }
393
394 if (length < ntohl(cd->hashOffset)) {
395 return EBADEXEC;
396 }
397
398 /* check that nSpecialSlots fits in the buffer in front of hashOffset */
399 if (ntohl(cd->hashOffset) / hashtype->cs_size < ntohl(cd->nSpecialSlots)) {
400 return EBADEXEC;
401 }
402
403 /* check that codeslots fits in the buffer */
404 if ((length - ntohl(cd->hashOffset)) / hashtype->cs_size < ntohl(cd->nCodeSlots)) {
405 return EBADEXEC;
406 }
407
408 if (ntohl(cd->version) >= CS_SUPPORTSSCATTER && cd->scatterOffset) {
409 if (length < ntohl(cd->scatterOffset)) {
410 return EBADEXEC;
411 }
412
413 const SC_Scatter *scatter = (const SC_Scatter *)
414 (((const uint8_t *)cd) + ntohl(cd->scatterOffset));
415 uint32_t nPages = 0;
416
417 /*
418 * Check each scatter buffer, since we don't know the
419 * length of the scatter buffer array, we have to
420 * check each entry.
421 */
422 while (1) {
423 /* check that the end of each scatter buffer in within the length */
424 if (((const uint8_t *)scatter) + sizeof(scatter[0]) > (const uint8_t *)cd + length) {
425 return EBADEXEC;
426 }
427 uint32_t scount = ntohl(scatter->count);
428 if (scount == 0) {
429 break;
430 }
431 if (nPages + scount < nPages) {
432 return EBADEXEC;
433 }
434 nPages += scount;
435 scatter++;
436
437 /* XXX check that basees doesn't overlap */
438 /* XXX check that targetOffset doesn't overlap */
439 }
440 #if 0 /* rdar://12579439 */
441 if (nPages != ntohl(cd->nCodeSlots)) {
442 return EBADEXEC;
443 }
444 #endif
445 }
446
447 if (length < ntohl(cd->identOffset)) {
448 return EBADEXEC;
449 }
450
451 /* identifier is NUL terminated string */
452 if (cd->identOffset) {
453 const uint8_t *ptr = (const uint8_t *)cd + ntohl(cd->identOffset);
454 if (memchr(ptr, 0, length - ntohl(cd->identOffset)) == NULL) {
455 return EBADEXEC;
456 }
457 }
458
459 /* team identifier is NULL terminated string */
460 if (ntohl(cd->version) >= CS_SUPPORTSTEAMID && ntohl(cd->teamOffset)) {
461 if (length < ntohl(cd->teamOffset)) {
462 return EBADEXEC;
463 }
464
465 const uint8_t *ptr = (const uint8_t *)cd + ntohl(cd->teamOffset);
466 if (memchr(ptr, 0, length - ntohl(cd->teamOffset)) == NULL) {
467 return EBADEXEC;
468 }
469 }
470
471 /* linkage is variable length binary data */
472 if (ntohl(cd->version) >= CS_SUPPORTSLINKAGE && cd->linkageHashType != 0) {
473 const uintptr_t ptr = (uintptr_t)cd + ntohl(cd->linkageOffset);
474 const uintptr_t ptr_end = ptr + ntohl(cd->linkageSize);
475
476 if (ptr_end < ptr || ptr < (uintptr_t)cd || ptr_end > (uintptr_t)cd + length) {
477 return EBADEXEC;
478 }
479 }
480
481
482 return 0;
483 }
484
485 /*
486 *
487 */
488
489 static int
490 cs_validate_blob(const CS_GenericBlob *blob, size_t length)
491 {
492 if (length < sizeof(CS_GenericBlob) || length < ntohl(blob->length)) {
493 return EBADEXEC;
494 }
495 return 0;
496 }
497
498 /*
499 * cs_validate_csblob
500 *
501 * Validate that superblob/embedded code directory to make sure that
502 * all internal pointers are valid.
503 *
504 * Will validate both a superblob csblob and a "raw" code directory.
505 *
506 *
507 * Parameters: buffer Pointer to code signature
508 * length Length of buffer
509 * rcd returns pointer to code directory
510 *
511 * Returns: 0 Success
512 * EBADEXEC Invalid code signature
513 */
514
515 static int
516 cs_validate_csblob(
517 const uint8_t *addr,
518 const size_t blob_size,
519 const CS_CodeDirectory **rcd,
520 const CS_GenericBlob **rentitlements)
521 {
522 const CS_GenericBlob *blob;
523 int error;
524 size_t length;
525
526 *rcd = NULL;
527 *rentitlements = NULL;
528
529 blob = (const CS_GenericBlob *)(const void *)addr;
530
531 length = blob_size;
532 error = cs_validate_blob(blob, length);
533 if (error) {
534 return error;
535 }
536 length = ntohl(blob->length);
537
538 if (ntohl(blob->magic) == CSMAGIC_EMBEDDED_SIGNATURE) {
539 const CS_SuperBlob *sb;
540 uint32_t n, count;
541 const CS_CodeDirectory *best_cd = NULL;
542 unsigned int best_rank = 0;
543 #if PLATFORM_WatchOS
544 const CS_CodeDirectory *sha1_cd = NULL;
545 #endif
546
547 if (length < sizeof(CS_SuperBlob)) {
548 return EBADEXEC;
549 }
550
551 sb = (const CS_SuperBlob *)blob;
552 count = ntohl(sb->count);
553
554 /* check that the array of BlobIndex fits in the rest of the data */
555 if ((length - sizeof(CS_SuperBlob)) / sizeof(CS_BlobIndex) < count) {
556 return EBADEXEC;
557 }
558
559 /* now check each BlobIndex */
560 for (n = 0; n < count; n++) {
561 const CS_BlobIndex *blobIndex = &sb->index[n];
562 uint32_t type = ntohl(blobIndex->type);
563 uint32_t offset = ntohl(blobIndex->offset);
564 if (length < offset) {
565 return EBADEXEC;
566 }
567
568 const CS_GenericBlob *subBlob =
569 (const CS_GenericBlob *)(const void *)(addr + offset);
570
571 size_t subLength = length - offset;
572
573 if ((error = cs_validate_blob(subBlob, subLength)) != 0) {
574 return error;
575 }
576 subLength = ntohl(subBlob->length);
577
578 /* extra validation for CDs, that is also returned */
579 if (type == CSSLOT_CODEDIRECTORY || (type >= CSSLOT_ALTERNATE_CODEDIRECTORIES && type < CSSLOT_ALTERNATE_CODEDIRECTORY_LIMIT)) {
580 const CS_CodeDirectory *candidate = (const CS_CodeDirectory *)subBlob;
581 if ((error = cs_validate_codedirectory(candidate, subLength)) != 0) {
582 return error;
583 }
584 unsigned int rank = hash_rank(candidate);
585 if (cs_debug > 3) {
586 printf("CodeDirectory type %d rank %d at slot 0x%x index %d\n", candidate->hashType, (int)rank, (int)type, (int)n);
587 }
588 if (best_cd == NULL || rank > best_rank) {
589 best_cd = candidate;
590 best_rank = rank;
591
592 if (cs_debug > 2) {
593 printf("using CodeDirectory type %d (rank %d)\n", (int)best_cd->hashType, best_rank);
594 }
595 *rcd = best_cd;
596 } else if (best_cd != NULL && rank == best_rank) {
597 /* repeat of a hash type (1:1 mapped to ranks), illegal and suspicious */
598 printf("multiple hash=%d CodeDirectories in signature; rejecting\n", best_cd->hashType);
599 return EBADEXEC;
600 }
601 #if PLATFORM_WatchOS
602 if (candidate->hashType == CS_HASHTYPE_SHA1) {
603 if (sha1_cd != NULL) {
604 printf("multiple sha1 CodeDirectories in signature; rejecting\n");
605 return EBADEXEC;
606 }
607 sha1_cd = candidate;
608 }
609 #endif
610 } else if (type == CSSLOT_ENTITLEMENTS) {
611 if (ntohl(subBlob->magic) != CSMAGIC_EMBEDDED_ENTITLEMENTS) {
612 return EBADEXEC;
613 }
614 if (*rentitlements != NULL) {
615 printf("multiple entitlements blobs\n");
616 return EBADEXEC;
617 }
618 *rentitlements = subBlob;
619 }
620 }
621
622 #if PLATFORM_WatchOS
623 /* To keep watchOS fast enough, we have to resort to sha1 for
624 * some code.
625 *
626 * At the time of writing this comment, known sha1 attacks are
627 * collision attacks (not preimage or second preimage
628 * attacks), which do not apply to platform binaries since
629 * they have a fixed hash in the trust cache. Given this
630 * property, we only prefer sha1 code directories for adhoc
631 * signatures, which always have to be in a trust cache to be
632 * valid (can-load-cdhash does not exist for watchOS). Those
633 * are, incidentally, also the platform binaries, for which we
634 * care about the performance hit that sha256 would bring us.
635 *
636 * Platform binaries may still contain a (not chosen) sha256
637 * code directory, which keeps software updates that switch to
638 * sha256-only small.
639 */
640
641 if (*rcd != NULL && sha1_cd != NULL && (ntohl(sha1_cd->flags) & CS_ADHOC)) {
642 if (sha1_cd->flags != (*rcd)->flags) {
643 printf("mismatched flags between hash %d (flags: %#x) and sha1 (flags: %#x) cd.\n",
644 (int)(*rcd)->hashType, (*rcd)->flags, sha1_cd->flags);
645 *rcd = NULL;
646 return EBADEXEC;
647 }
648
649 *rcd = sha1_cd;
650 }
651 #endif
652 } else if (ntohl(blob->magic) == CSMAGIC_CODEDIRECTORY) {
653 if ((error = cs_validate_codedirectory((const CS_CodeDirectory *)(const void *)addr, length)) != 0) {
654 return error;
655 }
656 *rcd = (const CS_CodeDirectory *)blob;
657 } else {
658 return EBADEXEC;
659 }
660
661 if (*rcd == NULL) {
662 return EBADEXEC;
663 }
664
665 return 0;
666 }
667
668 /*
669 * cs_find_blob_bytes
670 *
671 * Find an blob from the superblob/code directory. The blob must have
672 * been been validated by cs_validate_csblob() before calling
673 * this. Use csblob_find_blob() instead.
674 *
675 * Will also find a "raw" code directory if its stored as well as
676 * searching the superblob.
677 *
678 * Parameters: buffer Pointer to code signature
679 * length Length of buffer
680 * type type of blob to find
681 * magic the magic number for that blob
682 *
683 * Returns: pointer Success
684 * NULL Buffer not found
685 */
686
687 const CS_GenericBlob *
688 csblob_find_blob_bytes(const uint8_t *addr, size_t length, uint32_t type, uint32_t magic)
689 {
690 const CS_GenericBlob *blob = (const CS_GenericBlob *)(const void *)addr;
691
692 if (ntohl(blob->magic) == CSMAGIC_EMBEDDED_SIGNATURE) {
693 const CS_SuperBlob *sb = (const CS_SuperBlob *)blob;
694 size_t n, count = ntohl(sb->count);
695
696 for (n = 0; n < count; n++) {
697 if (ntohl(sb->index[n].type) != type) {
698 continue;
699 }
700 uint32_t offset = ntohl(sb->index[n].offset);
701 if (length - sizeof(const CS_GenericBlob) < offset) {
702 return NULL;
703 }
704 blob = (const CS_GenericBlob *)(const void *)(addr + offset);
705 if (ntohl(blob->magic) != magic) {
706 continue;
707 }
708 return blob;
709 }
710 } else if (type == CSSLOT_CODEDIRECTORY
711 && ntohl(blob->magic) == CSMAGIC_CODEDIRECTORY
712 && magic == CSMAGIC_CODEDIRECTORY) {
713 return blob;
714 }
715 return NULL;
716 }
717
718
719 const CS_GenericBlob *
720 csblob_find_blob(struct cs_blob *csblob, uint32_t type, uint32_t magic)
721 {
722 if ((csblob->csb_flags & CS_VALID) == 0) {
723 return NULL;
724 }
725 return csblob_find_blob_bytes((const uint8_t *)csblob->csb_mem_kaddr, csblob->csb_mem_size, type, magic);
726 }
727
728 static const uint8_t *
729 find_special_slot(const CS_CodeDirectory *cd, size_t slotsize, uint32_t slot)
730 {
731 /* there is no zero special slot since that is the first code slot */
732 if (ntohl(cd->nSpecialSlots) < slot || slot == 0) {
733 return NULL;
734 }
735
736 return (const uint8_t *)cd + ntohl(cd->hashOffset) - (slotsize * slot);
737 }
738
739 static uint8_t cshash_zero[CS_HASH_MAX_SIZE] = { 0 };
740
741 int
742 csblob_get_entitlements(struct cs_blob *csblob, void **out_start, size_t *out_length)
743 {
744 uint8_t computed_hash[CS_HASH_MAX_SIZE];
745 const CS_GenericBlob *entitlements;
746 const CS_CodeDirectory *code_dir;
747 const uint8_t *embedded_hash;
748 union cs_hash_union context;
749
750 *out_start = NULL;
751 *out_length = 0;
752
753 if (csblob->csb_hashtype == NULL || csblob->csb_hashtype->cs_digest_size > sizeof(computed_hash)) {
754 return EBADEXEC;
755 }
756
757 code_dir = csblob->csb_cd;
758
759 if ((csblob->csb_flags & CS_VALID) == 0) {
760 entitlements = NULL;
761 } else {
762 entitlements = csblob->csb_entitlements_blob;
763 }
764 embedded_hash = find_special_slot(code_dir, csblob->csb_hashtype->cs_size, CSSLOT_ENTITLEMENTS);
765
766 if (embedded_hash == NULL) {
767 if (entitlements) {
768 return EBADEXEC;
769 }
770 return 0;
771 } else if (entitlements == NULL) {
772 if (memcmp(embedded_hash, cshash_zero, csblob->csb_hashtype->cs_size) != 0) {
773 return EBADEXEC;
774 } else {
775 return 0;
776 }
777 }
778
779 csblob->csb_hashtype->cs_init(&context);
780 csblob->csb_hashtype->cs_update(&context, entitlements, ntohl(entitlements->length));
781 csblob->csb_hashtype->cs_final(computed_hash, &context);
782
783 if (memcmp(computed_hash, embedded_hash, csblob->csb_hashtype->cs_size) != 0) {
784 return EBADEXEC;
785 }
786
787 *out_start = __DECONST(void *, entitlements);
788 *out_length = ntohl(entitlements->length);
789
790 return 0;
791 }
792
793 /*
794 * CODESIGNING
795 * End of routines to navigate code signing data structures in the kernel.
796 */
797
798
799
800 /*
801 * ubc_info_init
802 *
803 * Allocate and attach an empty ubc_info structure to a vnode
804 *
805 * Parameters: vp Pointer to the vnode
806 *
807 * Returns: 0 Success
808 * vnode_size:ENOMEM Not enough space
809 * vnode_size:??? Other error from vnode_getattr
810 *
811 */
812 int
813 ubc_info_init(struct vnode *vp)
814 {
815 return ubc_info_init_internal(vp, 0, 0);
816 }
817
818
819 /*
820 * ubc_info_init_withsize
821 *
822 * Allocate and attach a sized ubc_info structure to a vnode
823 *
824 * Parameters: vp Pointer to the vnode
825 * filesize The size of the file
826 *
827 * Returns: 0 Success
828 * vnode_size:ENOMEM Not enough space
829 * vnode_size:??? Other error from vnode_getattr
830 */
831 int
832 ubc_info_init_withsize(struct vnode *vp, off_t filesize)
833 {
834 return ubc_info_init_internal(vp, 1, filesize);
835 }
836
837
838 /*
839 * ubc_info_init_internal
840 *
841 * Allocate and attach a ubc_info structure to a vnode
842 *
843 * Parameters: vp Pointer to the vnode
844 * withfsize{0,1} Zero if the size should be obtained
845 * from the vnode; otherwise, use filesize
846 * filesize The size of the file, if withfsize == 1
847 *
848 * Returns: 0 Success
849 * vnode_size:ENOMEM Not enough space
850 * vnode_size:??? Other error from vnode_getattr
851 *
852 * Notes: We call a blocking zalloc(), and the zone was created as an
853 * expandable and collectable zone, so if no memory is available,
854 * it is possible for zalloc() to block indefinitely. zalloc()
855 * may also panic if the zone of zones is exhausted, since it's
856 * NOT expandable.
857 *
858 * We unconditionally call vnode_pager_setup(), even if this is
859 * a reuse of a ubc_info; in that case, we should probably assert
860 * that it does not already have a pager association, but do not.
861 *
862 * Since memory_object_create_named() can only fail from receiving
863 * an invalid pager argument, the explicit check and panic is
864 * merely precautionary.
865 */
866 static int
867 ubc_info_init_internal(vnode_t vp, int withfsize, off_t filesize)
868 {
869 struct ubc_info *uip;
870 void * pager;
871 int error = 0;
872 kern_return_t kret;
873 memory_object_control_t control;
874
875 uip = vp->v_ubcinfo;
876
877 /*
878 * If there is not already a ubc_info attached to the vnode, we
879 * attach one; otherwise, we will reuse the one that's there.
880 */
881 if (uip == UBC_INFO_NULL) {
882 uip = (struct ubc_info *) zalloc(ubc_info_zone);
883 bzero((char *)uip, sizeof(struct ubc_info));
884
885 uip->ui_vnode = vp;
886 uip->ui_flags = UI_INITED;
887 uip->ui_ucred = NOCRED;
888 }
889 assert(uip->ui_flags != UI_NONE);
890 assert(uip->ui_vnode == vp);
891
892 /* now set this ubc_info in the vnode */
893 vp->v_ubcinfo = uip;
894
895 /*
896 * Allocate a pager object for this vnode
897 *
898 * XXX The value of the pager parameter is currently ignored.
899 * XXX Presumably, this API changed to avoid the race between
900 * XXX setting the pager and the UI_HASPAGER flag.
901 */
902 pager = (void *)vnode_pager_setup(vp, uip->ui_pager);
903 assert(pager);
904
905 /*
906 * Explicitly set the pager into the ubc_info, after setting the
907 * UI_HASPAGER flag.
908 */
909 SET(uip->ui_flags, UI_HASPAGER);
910 uip->ui_pager = pager;
911
912 /*
913 * Note: We can not use VNOP_GETATTR() to get accurate
914 * value of ui_size because this may be an NFS vnode, and
915 * nfs_getattr() can call vinvalbuf(); if this happens,
916 * ubc_info is not set up to deal with that event.
917 * So use bogus size.
918 */
919
920 /*
921 * create a vnode - vm_object association
922 * memory_object_create_named() creates a "named" reference on the
923 * memory object we hold this reference as long as the vnode is
924 * "alive." Since memory_object_create_named() took its own reference
925 * on the vnode pager we passed it, we can drop the reference
926 * vnode_pager_setup() returned here.
927 */
928 kret = memory_object_create_named(pager,
929 (memory_object_size_t)uip->ui_size, &control);
930 vnode_pager_deallocate(pager);
931 if (kret != KERN_SUCCESS) {
932 panic("ubc_info_init: memory_object_create_named returned %d", kret);
933 }
934
935 assert(control);
936 uip->ui_control = control; /* cache the value of the mo control */
937 SET(uip->ui_flags, UI_HASOBJREF); /* with a named reference */
938
939 if (withfsize == 0) {
940 /* initialize the size */
941 error = vnode_size(vp, &uip->ui_size, vfs_context_current());
942 if (error) {
943 uip->ui_size = 0;
944 }
945 } else {
946 uip->ui_size = filesize;
947 }
948 vp->v_lflag |= VNAMED_UBC; /* vnode has a named ubc reference */
949
950 return error;
951 }
952
953
954 /*
955 * ubc_info_free
956 *
957 * Free a ubc_info structure
958 *
959 * Parameters: uip A pointer to the ubc_info to free
960 *
961 * Returns: (void)
962 *
963 * Notes: If there is a credential that has subsequently been associated
964 * with the ubc_info via a call to ubc_setcred(), the reference
965 * to the credential is dropped.
966 *
967 * It's actually impossible for a ubc_info.ui_control to take the
968 * value MEMORY_OBJECT_CONTROL_NULL.
969 */
970 static void
971 ubc_info_free(struct ubc_info *uip)
972 {
973 if (IS_VALID_CRED(uip->ui_ucred)) {
974 kauth_cred_unref(&uip->ui_ucred);
975 }
976
977 if (uip->ui_control != MEMORY_OBJECT_CONTROL_NULL) {
978 memory_object_control_deallocate(uip->ui_control);
979 }
980
981 cluster_release(uip);
982 ubc_cs_free(uip);
983
984 zfree(ubc_info_zone, uip);
985 return;
986 }
987
988
989 void
990 ubc_info_deallocate(struct ubc_info *uip)
991 {
992 ubc_info_free(uip);
993 }
994
995 errno_t
996 mach_to_bsd_errno(kern_return_t mach_err)
997 {
998 switch (mach_err) {
999 case KERN_SUCCESS:
1000 return 0;
1001
1002 case KERN_INVALID_ADDRESS:
1003 case KERN_INVALID_ARGUMENT:
1004 case KERN_NOT_IN_SET:
1005 case KERN_INVALID_NAME:
1006 case KERN_INVALID_TASK:
1007 case KERN_INVALID_RIGHT:
1008 case KERN_INVALID_VALUE:
1009 case KERN_INVALID_CAPABILITY:
1010 case KERN_INVALID_HOST:
1011 case KERN_MEMORY_PRESENT:
1012 case KERN_INVALID_PROCESSOR_SET:
1013 case KERN_INVALID_POLICY:
1014 case KERN_ALREADY_WAITING:
1015 case KERN_DEFAULT_SET:
1016 case KERN_EXCEPTION_PROTECTED:
1017 case KERN_INVALID_LEDGER:
1018 case KERN_INVALID_MEMORY_CONTROL:
1019 case KERN_INVALID_SECURITY:
1020 case KERN_NOT_DEPRESSED:
1021 case KERN_LOCK_OWNED:
1022 case KERN_LOCK_OWNED_SELF:
1023 return EINVAL;
1024
1025 case KERN_PROTECTION_FAILURE:
1026 case KERN_NOT_RECEIVER:
1027 case KERN_NO_ACCESS:
1028 case KERN_POLICY_STATIC:
1029 return EACCES;
1030
1031 case KERN_NO_SPACE:
1032 case KERN_RESOURCE_SHORTAGE:
1033 case KERN_UREFS_OVERFLOW:
1034 case KERN_INVALID_OBJECT:
1035 return ENOMEM;
1036
1037 case KERN_FAILURE:
1038 return EIO;
1039
1040 case KERN_MEMORY_FAILURE:
1041 case KERN_POLICY_LIMIT:
1042 case KERN_CODESIGN_ERROR:
1043 return EPERM;
1044
1045 case KERN_MEMORY_ERROR:
1046 return EBUSY;
1047
1048 case KERN_ALREADY_IN_SET:
1049 case KERN_NAME_EXISTS:
1050 case KERN_RIGHT_EXISTS:
1051 return EEXIST;
1052
1053 case KERN_ABORTED:
1054 return EINTR;
1055
1056 case KERN_TERMINATED:
1057 case KERN_LOCK_SET_DESTROYED:
1058 case KERN_LOCK_UNSTABLE:
1059 case KERN_SEMAPHORE_DESTROYED:
1060 return ENOENT;
1061
1062 case KERN_RPC_SERVER_TERMINATED:
1063 return ECONNRESET;
1064
1065 case KERN_NOT_SUPPORTED:
1066 return ENOTSUP;
1067
1068 case KERN_NODE_DOWN:
1069 return ENETDOWN;
1070
1071 case KERN_NOT_WAITING:
1072 return ENOENT;
1073
1074 case KERN_OPERATION_TIMED_OUT:
1075 return ETIMEDOUT;
1076
1077 default:
1078 return EIO;
1079 }
1080 }
1081
1082 /*
1083 * ubc_setsize_ex
1084 *
1085 * Tell the VM that the the size of the file represented by the vnode has
1086 * changed
1087 *
1088 * Parameters: vp The vp whose backing file size is
1089 * being changed
1090 * nsize The new size of the backing file
1091 * opts Options
1092 *
1093 * Returns: EINVAL for new size < 0
1094 * ENOENT if no UBC info exists
1095 * EAGAIN if UBC_SETSIZE_NO_FS_REENTRY option is set and new_size < old size
1096 * Other errors (mapped to errno_t) returned by VM functions
1097 *
1098 * Notes: This function will indicate success if the new size is the
1099 * same or larger than the old size (in this case, the
1100 * remainder of the file will require modification or use of
1101 * an existing upl to access successfully).
1102 *
1103 * This function will fail if the new file size is smaller,
1104 * and the memory region being invalidated was unable to
1105 * actually be invalidated and/or the last page could not be
1106 * flushed, if the new size is not aligned to a page
1107 * boundary. This is usually indicative of an I/O error.
1108 */
1109 errno_t
1110 ubc_setsize_ex(struct vnode *vp, off_t nsize, ubc_setsize_opts_t opts)
1111 {
1112 off_t osize; /* ui_size before change */
1113 off_t lastpg, olastpgend, lastoff;
1114 struct ubc_info *uip;
1115 memory_object_control_t control;
1116 kern_return_t kret = KERN_SUCCESS;
1117
1118 if (nsize < (off_t)0) {
1119 return EINVAL;
1120 }
1121
1122 if (!UBCINFOEXISTS(vp)) {
1123 return ENOENT;
1124 }
1125
1126 uip = vp->v_ubcinfo;
1127 osize = uip->ui_size;
1128
1129 if (ISSET(opts, UBC_SETSIZE_NO_FS_REENTRY) && nsize < osize) {
1130 return EAGAIN;
1131 }
1132
1133 /*
1134 * Update the size before flushing the VM
1135 */
1136 uip->ui_size = nsize;
1137
1138 if (nsize >= osize) { /* Nothing more to do */
1139 if (nsize > osize) {
1140 lock_vnode_and_post(vp, NOTE_EXTEND);
1141 }
1142
1143 return 0;
1144 }
1145
1146 /*
1147 * When the file shrinks, invalidate the pages beyond the
1148 * new size. Also get rid of garbage beyond nsize on the
1149 * last page. The ui_size already has the nsize, so any
1150 * subsequent page-in will zero-fill the tail properly
1151 */
1152 lastpg = trunc_page_64(nsize);
1153 olastpgend = round_page_64(osize);
1154 control = uip->ui_control;
1155 assert(control);
1156 lastoff = (nsize & PAGE_MASK_64);
1157
1158 if (lastoff) {
1159 upl_t upl;
1160 upl_page_info_t *pl;
1161
1162 /*
1163 * new EOF ends up in the middle of a page
1164 * zero the tail of this page if it's currently
1165 * present in the cache
1166 */
1167 kret = ubc_create_upl_kernel(vp, lastpg, PAGE_SIZE, &upl, &pl, UPL_SET_LITE | UPL_WILL_MODIFY, VM_KERN_MEMORY_FILE);
1168
1169 if (kret != KERN_SUCCESS) {
1170 panic("ubc_setsize: ubc_create_upl (error = %d)\n", kret);
1171 }
1172
1173 if (upl_valid_page(pl, 0)) {
1174 cluster_zero(upl, (uint32_t)lastoff, PAGE_SIZE - (uint32_t)lastoff, NULL);
1175 }
1176
1177 ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
1178
1179 lastpg += PAGE_SIZE_64;
1180 }
1181 if (olastpgend > lastpg) {
1182 int flags;
1183
1184 if (lastpg == 0) {
1185 flags = MEMORY_OBJECT_DATA_FLUSH_ALL;
1186 } else {
1187 flags = MEMORY_OBJECT_DATA_FLUSH;
1188 }
1189 /*
1190 * invalidate the pages beyond the new EOF page
1191 *
1192 */
1193 kret = memory_object_lock_request(control,
1194 (memory_object_offset_t)lastpg,
1195 (memory_object_size_t)(olastpgend - lastpg), NULL, NULL,
1196 MEMORY_OBJECT_RETURN_NONE, flags, VM_PROT_NO_CHANGE);
1197 if (kret != KERN_SUCCESS) {
1198 printf("ubc_setsize: invalidate failed (error = %d)\n", kret);
1199 }
1200 }
1201 return mach_to_bsd_errno(kret);
1202 }
1203
1204 // Returns true for success
1205 int
1206 ubc_setsize(vnode_t vp, off_t nsize)
1207 {
1208 return ubc_setsize_ex(vp, nsize, 0) == 0;
1209 }
1210
1211 /*
1212 * ubc_getsize
1213 *
1214 * Get the size of the file assocated with the specified vnode
1215 *
1216 * Parameters: vp The vnode whose size is of interest
1217 *
1218 * Returns: 0 There is no ubc_info associated with
1219 * this vnode, or the size is zero
1220 * !0 The size of the file
1221 *
1222 * Notes: Using this routine, it is not possible for a caller to
1223 * successfully distinguish between a vnode associate with a zero
1224 * length file, and a vnode with no associated ubc_info. The
1225 * caller therefore needs to not care, or needs to ensure that
1226 * they have previously successfully called ubc_info_init() or
1227 * ubc_info_init_withsize().
1228 */
1229 off_t
1230 ubc_getsize(struct vnode *vp)
1231 {
1232 /* people depend on the side effect of this working this way
1233 * as they call this for directory
1234 */
1235 if (!UBCINFOEXISTS(vp)) {
1236 return (off_t)0;
1237 }
1238 return vp->v_ubcinfo->ui_size;
1239 }
1240
1241
1242 /*
1243 * ubc_umount
1244 *
1245 * Call ubc_msync(vp, 0, EOF, NULL, UBC_PUSHALL) on all the vnodes for this
1246 * mount point
1247 *
1248 * Parameters: mp The mount point
1249 *
1250 * Returns: 0 Success
1251 *
1252 * Notes: There is no failure indication for this function.
1253 *
1254 * This function is used in the unmount path; since it may block
1255 * I/O indefinitely, it should not be used in the forced unmount
1256 * path, since a device unavailability could also block that
1257 * indefinitely.
1258 *
1259 * Because there is no device ejection interlock on USB, FireWire,
1260 * or similar devices, it's possible that an ejection that begins
1261 * subsequent to the vnode_iterate() completing, either on one of
1262 * those devices, or a network mount for which the server quits
1263 * responding, etc., may cause the caller to block indefinitely.
1264 */
1265 __private_extern__ int
1266 ubc_umount(struct mount *mp)
1267 {
1268 vnode_iterate(mp, 0, ubc_umcallback, 0);
1269 return 0;
1270 }
1271
1272
1273 /*
1274 * ubc_umcallback
1275 *
1276 * Used by ubc_umount() as an internal implementation detail; see ubc_umount()
1277 * and vnode_iterate() for details of implementation.
1278 */
1279 static int
1280 ubc_umcallback(vnode_t vp, __unused void * args)
1281 {
1282 if (UBCINFOEXISTS(vp)) {
1283 (void) ubc_msync(vp, (off_t)0, ubc_getsize(vp), NULL, UBC_PUSHALL);
1284 }
1285 return VNODE_RETURNED;
1286 }
1287
1288
1289 /*
1290 * ubc_getcred
1291 *
1292 * Get the credentials currently active for the ubc_info associated with the
1293 * vnode.
1294 *
1295 * Parameters: vp The vnode whose ubc_info credentials
1296 * are to be retrieved
1297 *
1298 * Returns: !NOCRED The credentials
1299 * NOCRED If there is no ubc_info for the vnode,
1300 * or if there is one, but it has not had
1301 * any credentials associated with it via
1302 * a call to ubc_setcred()
1303 */
1304 kauth_cred_t
1305 ubc_getcred(struct vnode *vp)
1306 {
1307 if (UBCINFOEXISTS(vp)) {
1308 return vp->v_ubcinfo->ui_ucred;
1309 }
1310
1311 return NOCRED;
1312 }
1313
1314
1315 /*
1316 * ubc_setthreadcred
1317 *
1318 * If they are not already set, set the credentials of the ubc_info structure
1319 * associated with the vnode to those of the supplied thread; otherwise leave
1320 * them alone.
1321 *
1322 * Parameters: vp The vnode whose ubc_info creds are to
1323 * be set
1324 * p The process whose credentials are to
1325 * be used, if not running on an assumed
1326 * credential
1327 * thread The thread whose credentials are to
1328 * be used
1329 *
1330 * Returns: 1 This vnode has no associated ubc_info
1331 * 0 Success
1332 *
1333 * Notes: This function takes a proc parameter to account for bootstrap
1334 * issues where a task or thread may call this routine, either
1335 * before credentials have been initialized by bsd_init(), or if
1336 * there is no BSD info asscoiate with a mach thread yet. This
1337 * is known to happen in both the initial swap and memory mapping
1338 * calls.
1339 *
1340 * This function is generally used only in the following cases:
1341 *
1342 * o a memory mapped file via the mmap() system call
1343 * o a swap store backing file
1344 * o subsequent to a successful write via vn_write()
1345 *
1346 * The information is then used by the NFS client in order to
1347 * cons up a wire message in either the page-in or page-out path.
1348 *
1349 * There are two potential problems with the use of this API:
1350 *
1351 * o Because the write path only set it on a successful
1352 * write, there is a race window between setting the
1353 * credential and its use to evict the pages to the
1354 * remote file server
1355 *
1356 * o Because a page-in may occur prior to a write, the
1357 * credential may not be set at this time, if the page-in
1358 * is not the result of a mapping established via mmap().
1359 *
1360 * In both these cases, this will be triggered from the paging
1361 * path, which will instead use the credential of the current
1362 * process, which in this case is either the dynamic_pager or
1363 * the kernel task, both of which utilize "root" credentials.
1364 *
1365 * This may potentially permit operations to occur which should
1366 * be denied, or it may cause to be denied operations which
1367 * should be permitted, depending on the configuration of the NFS
1368 * server.
1369 */
1370 int
1371 ubc_setthreadcred(struct vnode *vp, proc_t p, thread_t thread)
1372 {
1373 struct ubc_info *uip;
1374 kauth_cred_t credp;
1375 struct uthread *uthread = get_bsdthread_info(thread);
1376
1377 if (!UBCINFOEXISTS(vp)) {
1378 return 1;
1379 }
1380
1381 vnode_lock(vp);
1382
1383 uip = vp->v_ubcinfo;
1384 credp = uip->ui_ucred;
1385
1386 if (!IS_VALID_CRED(credp)) {
1387 /* use per-thread cred, if assumed identity, else proc cred */
1388 if (uthread == NULL || (uthread->uu_flag & UT_SETUID) == 0) {
1389 uip->ui_ucred = kauth_cred_proc_ref(p);
1390 } else {
1391 uip->ui_ucred = uthread->uu_ucred;
1392 kauth_cred_ref(uip->ui_ucred);
1393 }
1394 }
1395 vnode_unlock(vp);
1396
1397 return 0;
1398 }
1399
1400
1401 /*
1402 * ubc_setcred
1403 *
1404 * If they are not already set, set the credentials of the ubc_info structure
1405 * associated with the vnode to those of the process; otherwise leave them
1406 * alone.
1407 *
1408 * Parameters: vp The vnode whose ubc_info creds are to
1409 * be set
1410 * p The process whose credentials are to
1411 * be used
1412 *
1413 * Returns: 0 This vnode has no associated ubc_info
1414 * 1 Success
1415 *
1416 * Notes: The return values for this function are inverted from nearly
1417 * all other uses in the kernel.
1418 *
1419 * See also ubc_setthreadcred(), above.
1420 *
1421 * This function is considered deprecated, and generally should
1422 * not be used, as it is incompatible with per-thread credentials;
1423 * it exists for legacy KPI reasons.
1424 *
1425 * DEPRECATION: ubc_setcred() is being deprecated. Please use
1426 * ubc_setthreadcred() instead.
1427 */
1428 int
1429 ubc_setcred(struct vnode *vp, proc_t p)
1430 {
1431 struct ubc_info *uip;
1432 kauth_cred_t credp;
1433
1434 /* If there is no ubc_info, deny the operation */
1435 if (!UBCINFOEXISTS(vp)) {
1436 return 0;
1437 }
1438
1439 /*
1440 * Check to see if there is already a credential reference in the
1441 * ubc_info; if there is not, take one on the supplied credential.
1442 */
1443 vnode_lock(vp);
1444 uip = vp->v_ubcinfo;
1445 credp = uip->ui_ucred;
1446 if (!IS_VALID_CRED(credp)) {
1447 uip->ui_ucred = kauth_cred_proc_ref(p);
1448 }
1449 vnode_unlock(vp);
1450
1451 return 1;
1452 }
1453
1454 /*
1455 * ubc_getpager
1456 *
1457 * Get the pager associated with the ubc_info associated with the vnode.
1458 *
1459 * Parameters: vp The vnode to obtain the pager from
1460 *
1461 * Returns: !VNODE_PAGER_NULL The memory_object_t for the pager
1462 * VNODE_PAGER_NULL There is no ubc_info for this vnode
1463 *
1464 * Notes: For each vnode that has a ubc_info associated with it, that
1465 * ubc_info SHALL have a pager associated with it, so in the
1466 * normal case, it's impossible to return VNODE_PAGER_NULL for
1467 * a vnode with an associated ubc_info.
1468 */
1469 __private_extern__ memory_object_t
1470 ubc_getpager(struct vnode *vp)
1471 {
1472 if (UBCINFOEXISTS(vp)) {
1473 return vp->v_ubcinfo->ui_pager;
1474 }
1475
1476 return 0;
1477 }
1478
1479
1480 /*
1481 * ubc_getobject
1482 *
1483 * Get the memory object control associated with the ubc_info associated with
1484 * the vnode
1485 *
1486 * Parameters: vp The vnode to obtain the memory object
1487 * from
1488 * flags DEPRECATED
1489 *
1490 * Returns: !MEMORY_OBJECT_CONTROL_NULL
1491 * MEMORY_OBJECT_CONTROL_NULL
1492 *
1493 * Notes: Historically, if the flags were not "do not reactivate", this
1494 * function would look up the memory object using the pager if
1495 * it did not exist (this could be the case if the vnode had
1496 * been previously reactivated). The flags would also permit a
1497 * hold to be requested, which would have created an object
1498 * reference, if one had not already existed. This usage is
1499 * deprecated, as it would permit a race between finding and
1500 * taking the reference vs. a single reference being dropped in
1501 * another thread.
1502 */
1503 memory_object_control_t
1504 ubc_getobject(struct vnode *vp, __unused int flags)
1505 {
1506 if (UBCINFOEXISTS(vp)) {
1507 return vp->v_ubcinfo->ui_control;
1508 }
1509
1510 return MEMORY_OBJECT_CONTROL_NULL;
1511 }
1512
1513 /*
1514 * ubc_blktooff
1515 *
1516 * Convert a given block number to a memory backing object (file) offset for a
1517 * given vnode
1518 *
1519 * Parameters: vp The vnode in which the block is located
1520 * blkno The block number to convert
1521 *
1522 * Returns: !-1 The offset into the backing object
1523 * -1 There is no ubc_info associated with
1524 * the vnode
1525 * -1 An error occurred in the underlying VFS
1526 * while translating the block to an
1527 * offset; the most likely cause is that
1528 * the caller specified a block past the
1529 * end of the file, but this could also be
1530 * any other error from VNOP_BLKTOOFF().
1531 *
1532 * Note: Representing the error in band loses some information, but does
1533 * not occlude a valid offset, since an off_t of -1 is normally
1534 * used to represent EOF. If we had a more reliable constant in
1535 * our header files for it (i.e. explicitly cast to an off_t), we
1536 * would use it here instead.
1537 */
1538 off_t
1539 ubc_blktooff(vnode_t vp, daddr64_t blkno)
1540 {
1541 off_t file_offset = -1;
1542 int error;
1543
1544 if (UBCINFOEXISTS(vp)) {
1545 error = VNOP_BLKTOOFF(vp, blkno, &file_offset);
1546 if (error) {
1547 file_offset = -1;
1548 }
1549 }
1550
1551 return file_offset;
1552 }
1553
1554
1555 /*
1556 * ubc_offtoblk
1557 *
1558 * Convert a given offset in a memory backing object into a block number for a
1559 * given vnode
1560 *
1561 * Parameters: vp The vnode in which the offset is
1562 * located
1563 * offset The offset into the backing object
1564 *
1565 * Returns: !-1 The returned block number
1566 * -1 There is no ubc_info associated with
1567 * the vnode
1568 * -1 An error occurred in the underlying VFS
1569 * while translating the block to an
1570 * offset; the most likely cause is that
1571 * the caller specified a block past the
1572 * end of the file, but this could also be
1573 * any other error from VNOP_OFFTOBLK().
1574 *
1575 * Note: Representing the error in band loses some information, but does
1576 * not occlude a valid block number, since block numbers exceed
1577 * the valid range for offsets, due to their relative sizes. If
1578 * we had a more reliable constant than -1 in our header files
1579 * for it (i.e. explicitly cast to an daddr64_t), we would use it
1580 * here instead.
1581 */
1582 daddr64_t
1583 ubc_offtoblk(vnode_t vp, off_t offset)
1584 {
1585 daddr64_t blkno = -1;
1586 int error = 0;
1587
1588 if (UBCINFOEXISTS(vp)) {
1589 error = VNOP_OFFTOBLK(vp, offset, &blkno);
1590 if (error) {
1591 blkno = -1;
1592 }
1593 }
1594
1595 return blkno;
1596 }
1597
1598
1599 /*
1600 * ubc_pages_resident
1601 *
1602 * Determine whether or not a given vnode has pages resident via the memory
1603 * object control associated with the ubc_info associated with the vnode
1604 *
1605 * Parameters: vp The vnode we want to know about
1606 *
1607 * Returns: 1 Yes
1608 * 0 No
1609 */
1610 int
1611 ubc_pages_resident(vnode_t vp)
1612 {
1613 kern_return_t kret;
1614 boolean_t has_pages_resident;
1615
1616 if (!UBCINFOEXISTS(vp)) {
1617 return 0;
1618 }
1619
1620 /*
1621 * The following call may fail if an invalid ui_control is specified,
1622 * or if there is no VM object associated with the control object. In
1623 * either case, reacting to it as if there were no pages resident will
1624 * result in correct behavior.
1625 */
1626 kret = memory_object_pages_resident(vp->v_ubcinfo->ui_control, &has_pages_resident);
1627
1628 if (kret != KERN_SUCCESS) {
1629 return 0;
1630 }
1631
1632 if (has_pages_resident == TRUE) {
1633 return 1;
1634 }
1635
1636 return 0;
1637 }
1638
1639 /*
1640 * ubc_msync
1641 *
1642 * Clean and/or invalidate a range in the memory object that backs this vnode
1643 *
1644 * Parameters: vp The vnode whose associated ubc_info's
1645 * associated memory object is to have a
1646 * range invalidated within it
1647 * beg_off The start of the range, as an offset
1648 * end_off The end of the range, as an offset
1649 * resid_off The address of an off_t supplied by the
1650 * caller; may be set to NULL to ignore
1651 * flags See ubc_msync_internal()
1652 *
1653 * Returns: 0 Success
1654 * !0 Failure; an errno is returned
1655 *
1656 * Implicit Returns:
1657 * *resid_off, modified If non-NULL, the contents are ALWAYS
1658 * modified; they are initialized to the
1659 * beg_off, and in case of an I/O error,
1660 * the difference between beg_off and the
1661 * current value will reflect what was
1662 * able to be written before the error
1663 * occurred. If no error is returned, the
1664 * value of the resid_off is undefined; do
1665 * NOT use it in place of end_off if you
1666 * intend to increment from the end of the
1667 * last call and call iteratively.
1668 *
1669 * Notes: see ubc_msync_internal() for more detailed information.
1670 *
1671 */
1672 errno_t
1673 ubc_msync(vnode_t vp, off_t beg_off, off_t end_off, off_t *resid_off, int flags)
1674 {
1675 int retval;
1676 int io_errno = 0;
1677
1678 if (resid_off) {
1679 *resid_off = beg_off;
1680 }
1681
1682 retval = ubc_msync_internal(vp, beg_off, end_off, resid_off, flags, &io_errno);
1683
1684 if (retval == 0 && io_errno == 0) {
1685 return EINVAL;
1686 }
1687 return io_errno;
1688 }
1689
1690
1691 /*
1692 * ubc_msync_internal
1693 *
1694 * Clean and/or invalidate a range in the memory object that backs this vnode
1695 *
1696 * Parameters: vp The vnode whose associated ubc_info's
1697 * associated memory object is to have a
1698 * range invalidated within it
1699 * beg_off The start of the range, as an offset
1700 * end_off The end of the range, as an offset
1701 * resid_off The address of an off_t supplied by the
1702 * caller; may be set to NULL to ignore
1703 * flags MUST contain at least one of the flags
1704 * UBC_INVALIDATE, UBC_PUSHDIRTY, or
1705 * UBC_PUSHALL; if UBC_PUSHDIRTY is used,
1706 * UBC_SYNC may also be specified to cause
1707 * this function to block until the
1708 * operation is complete. The behavior
1709 * of UBC_SYNC is otherwise undefined.
1710 * io_errno The address of an int to contain the
1711 * errno from a failed I/O operation, if
1712 * one occurs; may be set to NULL to
1713 * ignore
1714 *
1715 * Returns: 1 Success
1716 * 0 Failure
1717 *
1718 * Implicit Returns:
1719 * *resid_off, modified The contents of this offset MAY be
1720 * modified; in case of an I/O error, the
1721 * difference between beg_off and the
1722 * current value will reflect what was
1723 * able to be written before the error
1724 * occurred.
1725 * *io_errno, modified The contents of this offset are set to
1726 * an errno, if an error occurs; if the
1727 * caller supplies an io_errno parameter,
1728 * they should be careful to initialize it
1729 * to 0 before calling this function to
1730 * enable them to distinguish an error
1731 * with a valid *resid_off from an invalid
1732 * one, and to avoid potentially falsely
1733 * reporting an error, depending on use.
1734 *
1735 * Notes: If there is no ubc_info associated with the vnode supplied,
1736 * this function immediately returns success.
1737 *
1738 * If the value of end_off is less than or equal to beg_off, this
1739 * function immediately returns success; that is, end_off is NOT
1740 * inclusive.
1741 *
1742 * IMPORTANT: one of the flags UBC_INVALIDATE, UBC_PUSHDIRTY, or
1743 * UBC_PUSHALL MUST be specified; that is, it is NOT possible to
1744 * attempt to block on in-progress I/O by calling this function
1745 * with UBC_PUSHDIRTY, and then later call it with just UBC_SYNC
1746 * in order to block pending on the I/O already in progress.
1747 *
1748 * The start offset is truncated to the page boundary and the
1749 * size is adjusted to include the last page in the range; that
1750 * is, end_off on exactly a page boundary will not change if it
1751 * is rounded, and the range of bytes written will be from the
1752 * truncate beg_off to the rounded (end_off - 1).
1753 */
1754 static int
1755 ubc_msync_internal(vnode_t vp, off_t beg_off, off_t end_off, off_t *resid_off, int flags, int *io_errno)
1756 {
1757 memory_object_size_t tsize;
1758 kern_return_t kret;
1759 int request_flags = 0;
1760 int flush_flags = MEMORY_OBJECT_RETURN_NONE;
1761
1762 if (!UBCINFOEXISTS(vp)) {
1763 return 0;
1764 }
1765 if ((flags & (UBC_INVALIDATE | UBC_PUSHDIRTY | UBC_PUSHALL)) == 0) {
1766 return 0;
1767 }
1768 if (end_off <= beg_off) {
1769 return 1;
1770 }
1771
1772 if (flags & UBC_INVALIDATE) {
1773 /*
1774 * discard the resident pages
1775 */
1776 request_flags = (MEMORY_OBJECT_DATA_FLUSH | MEMORY_OBJECT_DATA_NO_CHANGE);
1777 }
1778
1779 if (flags & UBC_SYNC) {
1780 /*
1781 * wait for all the I/O to complete before returning
1782 */
1783 request_flags |= MEMORY_OBJECT_IO_SYNC;
1784 }
1785
1786 if (flags & UBC_PUSHDIRTY) {
1787 /*
1788 * we only return the dirty pages in the range
1789 */
1790 flush_flags = MEMORY_OBJECT_RETURN_DIRTY;
1791 }
1792
1793 if (flags & UBC_PUSHALL) {
1794 /*
1795 * then return all the interesting pages in the range (both
1796 * dirty and precious) to the pager
1797 */
1798 flush_flags = MEMORY_OBJECT_RETURN_ALL;
1799 }
1800
1801 beg_off = trunc_page_64(beg_off);
1802 end_off = round_page_64(end_off);
1803 tsize = (memory_object_size_t)end_off - beg_off;
1804
1805 /* flush and/or invalidate pages in the range requested */
1806 kret = memory_object_lock_request(vp->v_ubcinfo->ui_control,
1807 beg_off, tsize,
1808 (memory_object_offset_t *)resid_off,
1809 io_errno, flush_flags, request_flags,
1810 VM_PROT_NO_CHANGE);
1811
1812 return (kret == KERN_SUCCESS) ? 1 : 0;
1813 }
1814
1815
1816 /*
1817 * ubc_map
1818 *
1819 * Explicitly map a vnode that has an associate ubc_info, and add a reference
1820 * to it for the ubc system, if there isn't one already, so it will not be
1821 * recycled while it's in use, and set flags on the ubc_info to indicate that
1822 * we have done this
1823 *
1824 * Parameters: vp The vnode to map
1825 * flags The mapping flags for the vnode; this
1826 * will be a combination of one or more of
1827 * PROT_READ, PROT_WRITE, and PROT_EXEC
1828 *
1829 * Returns: 0 Success
1830 * EPERM Permission was denied
1831 *
1832 * Notes: An I/O reference on the vnode must already be held on entry
1833 *
1834 * If there is no ubc_info associated with the vnode, this function
1835 * will return success.
1836 *
1837 * If a permission error occurs, this function will return
1838 * failure; all other failures will cause this function to return
1839 * success.
1840 *
1841 * IMPORTANT: This is an internal use function, and its symbols
1842 * are not exported, hence its error checking is not very robust.
1843 * It is primarily used by:
1844 *
1845 * o mmap(), when mapping a file
1846 * o When mapping a shared file (a shared library in the
1847 * shared segment region)
1848 * o When loading a program image during the exec process
1849 *
1850 * ...all of these uses ignore the return code, and any fault that
1851 * results later because of a failure is handled in the fix-up path
1852 * of the fault handler. The interface exists primarily as a
1853 * performance hint.
1854 *
1855 * Given that third party implementation of the type of interfaces
1856 * that would use this function, such as alternative executable
1857 * formats, etc., are unsupported, this function is not exported
1858 * for general use.
1859 *
1860 * The extra reference is held until the VM system unmaps the
1861 * vnode from its own context to maintain a vnode reference in
1862 * cases like open()/mmap()/close(), which leave the backing
1863 * object referenced by a mapped memory region in a process
1864 * address space.
1865 */
1866 __private_extern__ int
1867 ubc_map(vnode_t vp, int flags)
1868 {
1869 struct ubc_info *uip;
1870 int error = 0;
1871 int need_ref = 0;
1872 int need_wakeup = 0;
1873
1874 if (UBCINFOEXISTS(vp)) {
1875 vnode_lock(vp);
1876 uip = vp->v_ubcinfo;
1877
1878 while (ISSET(uip->ui_flags, UI_MAPBUSY)) {
1879 SET(uip->ui_flags, UI_MAPWAITING);
1880 (void) msleep(&uip->ui_flags, &vp->v_lock,
1881 PRIBIO, "ubc_map", NULL);
1882 }
1883 SET(uip->ui_flags, UI_MAPBUSY);
1884 vnode_unlock(vp);
1885
1886 error = VNOP_MMAP(vp, flags, vfs_context_current());
1887
1888 /*
1889 * rdar://problem/22587101 required that we stop propagating
1890 * EPERM up the stack. Otherwise, we would have to funnel up
1891 * the error at all the call sites for memory_object_map().
1892 * The risk is in having to undo the map/object/entry state at
1893 * all these call sites. It would also affect more than just mmap()
1894 * e.g. vm_remap().
1895 *
1896 * if (error != EPERM)
1897 * error = 0;
1898 */
1899
1900 error = 0;
1901
1902 vnode_lock_spin(vp);
1903
1904 if (error == 0) {
1905 if (!ISSET(uip->ui_flags, UI_ISMAPPED)) {
1906 need_ref = 1;
1907 }
1908 SET(uip->ui_flags, (UI_WASMAPPED | UI_ISMAPPED));
1909 if (flags & PROT_WRITE) {
1910 SET(uip->ui_flags, UI_MAPPEDWRITE);
1911 }
1912 }
1913 CLR(uip->ui_flags, UI_MAPBUSY);
1914
1915 if (ISSET(uip->ui_flags, UI_MAPWAITING)) {
1916 CLR(uip->ui_flags, UI_MAPWAITING);
1917 need_wakeup = 1;
1918 }
1919 vnode_unlock(vp);
1920
1921 if (need_wakeup) {
1922 wakeup(&uip->ui_flags);
1923 }
1924
1925 if (need_ref) {
1926 /*
1927 * Make sure we get a ref as we can't unwind from here
1928 */
1929 if (vnode_ref_ext(vp, 0, VNODE_REF_FORCE)) {
1930 panic("%s : VNODE_REF_FORCE failed\n", __FUNCTION__);
1931 }
1932 /*
1933 * Vnodes that are on "unreliable" media (like disk
1934 * images, network filesystems, 3rd-party filesystems,
1935 * and possibly external devices) could see their
1936 * contents be changed via the backing store without
1937 * triggering copy-on-write, so we can't fully rely
1938 * on copy-on-write and might have to resort to
1939 * copy-on-read to protect "privileged" processes and
1940 * prevent privilege escalation.
1941 *
1942 * The root filesystem is considered "reliable" because
1943 * there's not much point in trying to protect
1944 * ourselves from such a vulnerability and the extra
1945 * cost of copy-on-read (CPU time and memory pressure)
1946 * could result in some serious regressions.
1947 */
1948 if (vp->v_mount != NULL &&
1949 ((vp->v_mount->mnt_flag & MNT_ROOTFS) ||
1950 vnode_on_reliable_media(vp))) {
1951 /*
1952 * This vnode is deemed "reliable" so mark
1953 * its VM object as "trusted".
1954 */
1955 memory_object_mark_trusted(uip->ui_control);
1956 } else {
1957 // printf("BUGGYCOW: %s:%d vp %p \"%s\" in mnt %p \"%s\" is untrusted\n", __FUNCTION__, __LINE__, vp, vp->v_name, vp->v_mount, vp->v_mount->mnt_vnodecovered->v_name);
1958 }
1959 }
1960 }
1961 return error;
1962 }
1963
1964
1965 /*
1966 * ubc_destroy_named
1967 *
1968 * Destroy the named memory object associated with the ubc_info control object
1969 * associated with the designated vnode, if there is a ubc_info associated
1970 * with the vnode, and a control object is associated with it
1971 *
1972 * Parameters: vp The designated vnode
1973 *
1974 * Returns: (void)
1975 *
1976 * Notes: This function is called on vnode termination for all vnodes,
1977 * and must therefore not assume that there is a ubc_info that is
1978 * associated with the vnode, nor that there is a control object
1979 * associated with the ubc_info.
1980 *
1981 * If all the conditions necessary are present, this function
1982 * calls memory_object_destory(), which will in turn end up
1983 * calling ubc_unmap() to release any vnode references that were
1984 * established via ubc_map().
1985 *
1986 * IMPORTANT: This is an internal use function that is used
1987 * exclusively by the internal use function vclean().
1988 */
1989 __private_extern__ void
1990 ubc_destroy_named(vnode_t vp)
1991 {
1992 memory_object_control_t control;
1993 struct ubc_info *uip;
1994 kern_return_t kret;
1995
1996 if (UBCINFOEXISTS(vp)) {
1997 uip = vp->v_ubcinfo;
1998
1999 /* Terminate the memory object */
2000 control = ubc_getobject(vp, UBC_HOLDOBJECT);
2001 if (control != MEMORY_OBJECT_CONTROL_NULL) {
2002 kret = memory_object_destroy(control, 0);
2003 if (kret != KERN_SUCCESS) {
2004 panic("ubc_destroy_named: memory_object_destroy failed");
2005 }
2006 }
2007 }
2008 }
2009
2010
2011 /*
2012 * ubc_isinuse
2013 *
2014 * Determine whether or not a vnode is currently in use by ubc at a level in
2015 * excess of the requested busycount
2016 *
2017 * Parameters: vp The vnode to check
2018 * busycount The threshold busy count, used to bias
2019 * the count usually already held by the
2020 * caller to avoid races
2021 *
2022 * Returns: 1 The vnode is in use over the threshold
2023 * 0 The vnode is not in use over the
2024 * threshold
2025 *
2026 * Notes: Because the vnode is only held locked while actually asking
2027 * the use count, this function only represents a snapshot of the
2028 * current state of the vnode. If more accurate information is
2029 * required, an additional busycount should be held by the caller
2030 * and a non-zero busycount used.
2031 *
2032 * If there is no ubc_info associated with the vnode, this
2033 * function will report that the vnode is not in use by ubc.
2034 */
2035 int
2036 ubc_isinuse(struct vnode *vp, int busycount)
2037 {
2038 if (!UBCINFOEXISTS(vp)) {
2039 return 0;
2040 }
2041 return ubc_isinuse_locked(vp, busycount, 0);
2042 }
2043
2044
2045 /*
2046 * ubc_isinuse_locked
2047 *
2048 * Determine whether or not a vnode is currently in use by ubc at a level in
2049 * excess of the requested busycount
2050 *
2051 * Parameters: vp The vnode to check
2052 * busycount The threshold busy count, used to bias
2053 * the count usually already held by the
2054 * caller to avoid races
2055 * locked True if the vnode is already locked by
2056 * the caller
2057 *
2058 * Returns: 1 The vnode is in use over the threshold
2059 * 0 The vnode is not in use over the
2060 * threshold
2061 *
2062 * Notes: If the vnode is not locked on entry, it is locked while
2063 * actually asking the use count. If this is the case, this
2064 * function only represents a snapshot of the current state of
2065 * the vnode. If more accurate information is required, the
2066 * vnode lock should be held by the caller, otherwise an
2067 * additional busycount should be held by the caller and a
2068 * non-zero busycount used.
2069 *
2070 * If there is no ubc_info associated with the vnode, this
2071 * function will report that the vnode is not in use by ubc.
2072 */
2073 int
2074 ubc_isinuse_locked(struct vnode *vp, int busycount, int locked)
2075 {
2076 int retval = 0;
2077
2078
2079 if (!locked) {
2080 vnode_lock_spin(vp);
2081 }
2082
2083 if ((vp->v_usecount - vp->v_kusecount) > busycount) {
2084 retval = 1;
2085 }
2086
2087 if (!locked) {
2088 vnode_unlock(vp);
2089 }
2090 return retval;
2091 }
2092
2093
2094 /*
2095 * ubc_unmap
2096 *
2097 * Reverse the effects of a ubc_map() call for a given vnode
2098 *
2099 * Parameters: vp vnode to unmap from ubc
2100 *
2101 * Returns: (void)
2102 *
2103 * Notes: This is an internal use function used by vnode_pager_unmap().
2104 * It will attempt to obtain a reference on the supplied vnode,
2105 * and if it can do so, and there is an associated ubc_info, and
2106 * the flags indicate that it was mapped via ubc_map(), then the
2107 * flag is cleared, the mapping removed, and the reference taken
2108 * by ubc_map() is released.
2109 *
2110 * IMPORTANT: This MUST only be called by the VM
2111 * to prevent race conditions.
2112 */
2113 __private_extern__ void
2114 ubc_unmap(struct vnode *vp)
2115 {
2116 struct ubc_info *uip;
2117 int need_rele = 0;
2118 int need_wakeup = 0;
2119
2120 if (vnode_getwithref(vp)) {
2121 return;
2122 }
2123
2124 if (UBCINFOEXISTS(vp)) {
2125 bool want_fsevent = false;
2126
2127 vnode_lock(vp);
2128 uip = vp->v_ubcinfo;
2129
2130 while (ISSET(uip->ui_flags, UI_MAPBUSY)) {
2131 SET(uip->ui_flags, UI_MAPWAITING);
2132 (void) msleep(&uip->ui_flags, &vp->v_lock,
2133 PRIBIO, "ubc_unmap", NULL);
2134 }
2135 SET(uip->ui_flags, UI_MAPBUSY);
2136
2137 if (ISSET(uip->ui_flags, UI_ISMAPPED)) {
2138 if (ISSET(uip->ui_flags, UI_MAPPEDWRITE)) {
2139 want_fsevent = true;
2140 }
2141
2142 need_rele = 1;
2143
2144 /*
2145 * We want to clear the mapped flags after we've called
2146 * VNOP_MNOMAP to avoid certain races and allow
2147 * VNOP_MNOMAP to call ubc_is_mapped_writable.
2148 */
2149 }
2150 vnode_unlock(vp);
2151
2152 if (need_rele) {
2153 vfs_context_t ctx = vfs_context_current();
2154
2155 (void)VNOP_MNOMAP(vp, ctx);
2156
2157 #if CONFIG_FSE
2158 /*
2159 * Why do we want an fsevent here? Normally the
2160 * content modified fsevent is posted when a file is
2161 * closed and only if it's written to via conventional
2162 * means. It's perfectly legal to close a file and
2163 * keep your mappings and we don't currently track
2164 * whether it was written to via a mapping.
2165 * Therefore, we need to post an fsevent here if the
2166 * file was mapped writable. This may result in false
2167 * events, i.e. we post a notification when nothing
2168 * has really changed.
2169 */
2170 if (want_fsevent && need_fsevent(FSE_CONTENT_MODIFIED, vp)) {
2171 add_fsevent(FSE_CONTENT_MODIFIED, ctx,
2172 FSE_ARG_VNODE, vp,
2173 FSE_ARG_DONE);
2174 }
2175 #endif
2176
2177 vnode_rele(vp);
2178 }
2179
2180 vnode_lock_spin(vp);
2181
2182 if (need_rele) {
2183 CLR(uip->ui_flags, UI_ISMAPPED | UI_MAPPEDWRITE);
2184 }
2185
2186 CLR(uip->ui_flags, UI_MAPBUSY);
2187
2188 if (ISSET(uip->ui_flags, UI_MAPWAITING)) {
2189 CLR(uip->ui_flags, UI_MAPWAITING);
2190 need_wakeup = 1;
2191 }
2192 vnode_unlock(vp);
2193
2194 if (need_wakeup) {
2195 wakeup(&uip->ui_flags);
2196 }
2197 }
2198 /*
2199 * the drop of the vnode ref will cleanup
2200 */
2201 vnode_put(vp);
2202 }
2203
2204
2205 /*
2206 * ubc_page_op
2207 *
2208 * Manipulate individual page state for a vnode with an associated ubc_info
2209 * with an associated memory object control.
2210 *
2211 * Parameters: vp The vnode backing the page
2212 * f_offset A file offset interior to the page
2213 * ops The operations to perform, as a bitmap
2214 * (see below for more information)
2215 * phys_entryp The address of a ppnum_t; may be NULL
2216 * to ignore
2217 * flagsp A pointer to an int to contain flags;
2218 * may be NULL to ignore
2219 *
2220 * Returns: KERN_SUCCESS Success
2221 * KERN_INVALID_ARGUMENT If the memory object control has no VM
2222 * object associated
2223 * KERN_INVALID_OBJECT If UPL_POP_PHYSICAL and the object is
2224 * not physically contiguous
2225 * KERN_INVALID_OBJECT If !UPL_POP_PHYSICAL and the object is
2226 * physically contiguous
2227 * KERN_FAILURE If the page cannot be looked up
2228 *
2229 * Implicit Returns:
2230 * *phys_entryp (modified) If phys_entryp is non-NULL and
2231 * UPL_POP_PHYSICAL
2232 * *flagsp (modified) If flagsp is non-NULL and there was
2233 * !UPL_POP_PHYSICAL and a KERN_SUCCESS
2234 *
2235 * Notes: For object boundaries, it is considerably more efficient to
2236 * ensure that f_offset is in fact on a page boundary, as this
2237 * will avoid internal use of the hash table to identify the
2238 * page, and would therefore skip a number of early optimizations.
2239 * Since this is a page operation anyway, the caller should try
2240 * to pass only a page aligned offset because of this.
2241 *
2242 * *flagsp may be modified even if this function fails. If it is
2243 * modified, it will contain the condition of the page before the
2244 * requested operation was attempted; these will only include the
2245 * bitmap flags, and not the PL_POP_PHYSICAL, UPL_POP_DUMP,
2246 * UPL_POP_SET, or UPL_POP_CLR bits.
2247 *
2248 * The flags field may contain a specific operation, such as
2249 * UPL_POP_PHYSICAL or UPL_POP_DUMP:
2250 *
2251 * o UPL_POP_PHYSICAL Fail if not contiguous; if
2252 * *phys_entryp and successful, set
2253 * *phys_entryp
2254 * o UPL_POP_DUMP Dump the specified page
2255 *
2256 * Otherwise, it is treated as a bitmap of one or more page
2257 * operations to perform on the final memory object; allowable
2258 * bit values are:
2259 *
2260 * o UPL_POP_DIRTY The page is dirty
2261 * o UPL_POP_PAGEOUT The page is paged out
2262 * o UPL_POP_PRECIOUS The page is precious
2263 * o UPL_POP_ABSENT The page is absent
2264 * o UPL_POP_BUSY The page is busy
2265 *
2266 * If the page status is only being queried and not modified, then
2267 * not other bits should be specified. However, if it is being
2268 * modified, exactly ONE of the following bits should be set:
2269 *
2270 * o UPL_POP_SET Set the current bitmap bits
2271 * o UPL_POP_CLR Clear the current bitmap bits
2272 *
2273 * Thus to effect a combination of setting an clearing, it may be
2274 * necessary to call this function twice. If this is done, the
2275 * set should be used before the clear, since clearing may trigger
2276 * a wakeup on the destination page, and if the page is backed by
2277 * an encrypted swap file, setting will trigger the decryption
2278 * needed before the wakeup occurs.
2279 */
2280 kern_return_t
2281 ubc_page_op(
2282 struct vnode *vp,
2283 off_t f_offset,
2284 int ops,
2285 ppnum_t *phys_entryp,
2286 int *flagsp)
2287 {
2288 memory_object_control_t control;
2289
2290 control = ubc_getobject(vp, UBC_FLAGS_NONE);
2291 if (control == MEMORY_OBJECT_CONTROL_NULL) {
2292 return KERN_INVALID_ARGUMENT;
2293 }
2294
2295 return memory_object_page_op(control,
2296 (memory_object_offset_t)f_offset,
2297 ops,
2298 phys_entryp,
2299 flagsp);
2300 }
2301
2302
2303 /*
2304 * ubc_range_op
2305 *
2306 * Manipulate page state for a range of memory for a vnode with an associated
2307 * ubc_info with an associated memory object control, when page level state is
2308 * not required to be returned from the call (i.e. there are no phys_entryp or
2309 * flagsp parameters to this call, and it takes a range which may contain
2310 * multiple pages, rather than an offset interior to a single page).
2311 *
2312 * Parameters: vp The vnode backing the page
2313 * f_offset_beg A file offset interior to the start page
2314 * f_offset_end A file offset interior to the end page
2315 * ops The operations to perform, as a bitmap
2316 * (see below for more information)
2317 * range The address of an int; may be NULL to
2318 * ignore
2319 *
2320 * Returns: KERN_SUCCESS Success
2321 * KERN_INVALID_ARGUMENT If the memory object control has no VM
2322 * object associated
2323 * KERN_INVALID_OBJECT If the object is physically contiguous
2324 *
2325 * Implicit Returns:
2326 * *range (modified) If range is non-NULL, its contents will
2327 * be modified to contain the number of
2328 * bytes successfully operated upon.
2329 *
2330 * Notes: IMPORTANT: This function cannot be used on a range that
2331 * consists of physically contiguous pages.
2332 *
2333 * For object boundaries, it is considerably more efficient to
2334 * ensure that f_offset_beg and f_offset_end are in fact on page
2335 * boundaries, as this will avoid internal use of the hash table
2336 * to identify the page, and would therefore skip a number of
2337 * early optimizations. Since this is an operation on a set of
2338 * pages anyway, the caller should try to pass only a page aligned
2339 * offsets because of this.
2340 *
2341 * *range will be modified only if this function succeeds.
2342 *
2343 * The flags field MUST contain a specific operation; allowable
2344 * values are:
2345 *
2346 * o UPL_ROP_ABSENT Returns the extent of the range
2347 * presented which is absent, starting
2348 * with the start address presented
2349 *
2350 * o UPL_ROP_PRESENT Returns the extent of the range
2351 * presented which is present (resident),
2352 * starting with the start address
2353 * presented
2354 * o UPL_ROP_DUMP Dump the pages which are found in the
2355 * target object for the target range.
2356 *
2357 * IMPORTANT: For UPL_ROP_ABSENT and UPL_ROP_PRESENT; if there are
2358 * multiple regions in the range, only the first matching region
2359 * is returned.
2360 */
2361 kern_return_t
2362 ubc_range_op(
2363 struct vnode *vp,
2364 off_t f_offset_beg,
2365 off_t f_offset_end,
2366 int ops,
2367 int *range)
2368 {
2369 memory_object_control_t control;
2370
2371 control = ubc_getobject(vp, UBC_FLAGS_NONE);
2372 if (control == MEMORY_OBJECT_CONTROL_NULL) {
2373 return KERN_INVALID_ARGUMENT;
2374 }
2375
2376 return memory_object_range_op(control,
2377 (memory_object_offset_t)f_offset_beg,
2378 (memory_object_offset_t)f_offset_end,
2379 ops,
2380 range);
2381 }
2382
2383
2384 /*
2385 * ubc_create_upl
2386 *
2387 * Given a vnode, cause the population of a portion of the vm_object; based on
2388 * the nature of the request, the pages returned may contain valid data, or
2389 * they may be uninitialized.
2390 *
2391 * Parameters: vp The vnode from which to create the upl
2392 * f_offset The start offset into the backing store
2393 * represented by the vnode
2394 * bufsize The size of the upl to create
2395 * uplp Pointer to the upl_t to receive the
2396 * created upl; MUST NOT be NULL
2397 * plp Pointer to receive the internal page
2398 * list for the created upl; MAY be NULL
2399 * to ignore
2400 *
2401 * Returns: KERN_SUCCESS The requested upl has been created
2402 * KERN_INVALID_ARGUMENT The bufsize argument is not an even
2403 * multiple of the page size
2404 * KERN_INVALID_ARGUMENT There is no ubc_info associated with
2405 * the vnode, or there is no memory object
2406 * control associated with the ubc_info
2407 * memory_object_upl_request:KERN_INVALID_VALUE
2408 * The supplied upl_flags argument is
2409 * invalid
2410 * Implicit Returns:
2411 * *uplp (modified)
2412 * *plp (modified) If non-NULL, the value of *plp will be
2413 * modified to point to the internal page
2414 * list; this modification may occur even
2415 * if this function is unsuccessful, in
2416 * which case the contents may be invalid
2417 *
2418 * Note: If successful, the returned *uplp MUST subsequently be freed
2419 * via a call to ubc_upl_commit(), ubc_upl_commit_range(),
2420 * ubc_upl_abort(), or ubc_upl_abort_range().
2421 */
2422 kern_return_t
2423 ubc_create_upl_external(
2424 struct vnode *vp,
2425 off_t f_offset,
2426 int bufsize,
2427 upl_t *uplp,
2428 upl_page_info_t **plp,
2429 int uplflags)
2430 {
2431 return ubc_create_upl_kernel(vp, f_offset, bufsize, uplp, plp, uplflags, vm_tag_bt());
2432 }
2433
2434 kern_return_t
2435 ubc_create_upl_kernel(
2436 struct vnode *vp,
2437 off_t f_offset,
2438 int bufsize,
2439 upl_t *uplp,
2440 upl_page_info_t **plp,
2441 int uplflags,
2442 vm_tag_t tag)
2443 {
2444 memory_object_control_t control;
2445 kern_return_t kr;
2446
2447 if (plp != NULL) {
2448 *plp = NULL;
2449 }
2450 *uplp = NULL;
2451
2452 if (bufsize & 0xfff) {
2453 return KERN_INVALID_ARGUMENT;
2454 }
2455
2456 if (bufsize > MAX_UPL_SIZE_BYTES) {
2457 return KERN_INVALID_ARGUMENT;
2458 }
2459
2460 if (uplflags & (UPL_UBC_MSYNC | UPL_UBC_PAGEOUT | UPL_UBC_PAGEIN)) {
2461 if (uplflags & UPL_UBC_MSYNC) {
2462 uplflags &= UPL_RET_ONLY_DIRTY;
2463
2464 uplflags |= UPL_COPYOUT_FROM | UPL_CLEAN_IN_PLACE |
2465 UPL_SET_INTERNAL | UPL_SET_LITE;
2466 } else if (uplflags & UPL_UBC_PAGEOUT) {
2467 uplflags &= UPL_RET_ONLY_DIRTY;
2468
2469 if (uplflags & UPL_RET_ONLY_DIRTY) {
2470 uplflags |= UPL_NOBLOCK;
2471 }
2472
2473 uplflags |= UPL_FOR_PAGEOUT | UPL_CLEAN_IN_PLACE |
2474 UPL_COPYOUT_FROM | UPL_SET_INTERNAL | UPL_SET_LITE;
2475 } else {
2476 uplflags |= UPL_RET_ONLY_ABSENT |
2477 UPL_NO_SYNC | UPL_CLEAN_IN_PLACE |
2478 UPL_SET_INTERNAL | UPL_SET_LITE;
2479
2480 /*
2481 * if the requested size == PAGE_SIZE, we don't want to set
2482 * the UPL_NOBLOCK since we may be trying to recover from a
2483 * previous partial pagein I/O that occurred because we were low
2484 * on memory and bailed early in order to honor the UPL_NOBLOCK...
2485 * since we're only asking for a single page, we can block w/o fear
2486 * of tying up pages while waiting for more to become available
2487 */
2488 if (bufsize > PAGE_SIZE) {
2489 uplflags |= UPL_NOBLOCK;
2490 }
2491 }
2492 } else {
2493 uplflags &= ~UPL_FOR_PAGEOUT;
2494
2495 if (uplflags & UPL_WILL_BE_DUMPED) {
2496 uplflags &= ~UPL_WILL_BE_DUMPED;
2497 uplflags |= (UPL_NO_SYNC | UPL_SET_INTERNAL);
2498 } else {
2499 uplflags |= (UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL);
2500 }
2501 }
2502 control = ubc_getobject(vp, UBC_FLAGS_NONE);
2503 if (control == MEMORY_OBJECT_CONTROL_NULL) {
2504 return KERN_INVALID_ARGUMENT;
2505 }
2506
2507 kr = memory_object_upl_request(control, f_offset, bufsize, uplp, NULL, NULL, uplflags, tag);
2508 if (kr == KERN_SUCCESS && plp != NULL) {
2509 *plp = UPL_GET_INTERNAL_PAGE_LIST(*uplp);
2510 }
2511 return kr;
2512 }
2513
2514
2515 /*
2516 * ubc_upl_maxbufsize
2517 *
2518 * Return the maximum bufsize ubc_create_upl( ) will take.
2519 *
2520 * Parameters: none
2521 *
2522 * Returns: maximum size buffer (in bytes) ubc_create_upl( ) will take.
2523 */
2524 upl_size_t
2525 ubc_upl_maxbufsize(
2526 void)
2527 {
2528 return MAX_UPL_SIZE_BYTES;
2529 }
2530
2531 /*
2532 * ubc_upl_map
2533 *
2534 * Map the page list assocated with the supplied upl into the kernel virtual
2535 * address space at the virtual address indicated by the dst_addr argument;
2536 * the entire upl is mapped
2537 *
2538 * Parameters: upl The upl to map
2539 * dst_addr The address at which to map the upl
2540 *
2541 * Returns: KERN_SUCCESS The upl has been mapped
2542 * KERN_INVALID_ARGUMENT The upl is UPL_NULL
2543 * KERN_FAILURE The upl is already mapped
2544 * vm_map_enter:KERN_INVALID_ARGUMENT
2545 * A failure code from vm_map_enter() due
2546 * to an invalid argument
2547 */
2548 kern_return_t
2549 ubc_upl_map(
2550 upl_t upl,
2551 vm_offset_t *dst_addr)
2552 {
2553 return vm_upl_map(kernel_map, upl, dst_addr);
2554 }
2555
2556
2557 /*
2558 * ubc_upl_unmap
2559 *
2560 * Unmap the page list assocated with the supplied upl from the kernel virtual
2561 * address space; the entire upl is unmapped.
2562 *
2563 * Parameters: upl The upl to unmap
2564 *
2565 * Returns: KERN_SUCCESS The upl has been unmapped
2566 * KERN_FAILURE The upl is not currently mapped
2567 * KERN_INVALID_ARGUMENT If the upl is UPL_NULL
2568 */
2569 kern_return_t
2570 ubc_upl_unmap(
2571 upl_t upl)
2572 {
2573 return vm_upl_unmap(kernel_map, upl);
2574 }
2575
2576
2577 /*
2578 * ubc_upl_commit
2579 *
2580 * Commit the contents of the upl to the backing store
2581 *
2582 * Parameters: upl The upl to commit
2583 *
2584 * Returns: KERN_SUCCESS The upl has been committed
2585 * KERN_INVALID_ARGUMENT The supplied upl was UPL_NULL
2586 * KERN_FAILURE The supplied upl does not represent
2587 * device memory, and the offset plus the
2588 * size would exceed the actual size of
2589 * the upl
2590 *
2591 * Notes: In practice, the only return value for this function should be
2592 * KERN_SUCCESS, unless there has been data structure corruption;
2593 * since the upl is deallocated regardless of success or failure,
2594 * there's really nothing to do about this other than panic.
2595 *
2596 * IMPORTANT: Use of this function should not be mixed with use of
2597 * ubc_upl_commit_range(), due to the unconditional deallocation
2598 * by this function.
2599 */
2600 kern_return_t
2601 ubc_upl_commit(
2602 upl_t upl)
2603 {
2604 upl_page_info_t *pl;
2605 kern_return_t kr;
2606
2607 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
2608 kr = upl_commit(upl, pl, MAX_UPL_SIZE_BYTES >> PAGE_SHIFT);
2609 upl_deallocate(upl);
2610 return kr;
2611 }
2612
2613
2614 /*
2615 * ubc_upl_commit
2616 *
2617 * Commit the contents of the specified range of the upl to the backing store
2618 *
2619 * Parameters: upl The upl to commit
2620 * offset The offset into the upl
2621 * size The size of the region to be committed,
2622 * starting at the specified offset
2623 * flags commit type (see below)
2624 *
2625 * Returns: KERN_SUCCESS The range has been committed
2626 * KERN_INVALID_ARGUMENT The supplied upl was UPL_NULL
2627 * KERN_FAILURE The supplied upl does not represent
2628 * device memory, and the offset plus the
2629 * size would exceed the actual size of
2630 * the upl
2631 *
2632 * Notes: IMPORTANT: If the commit is successful, and the object is now
2633 * empty, the upl will be deallocated. Since the caller cannot
2634 * check that this is the case, the UPL_COMMIT_FREE_ON_EMPTY flag
2635 * should generally only be used when the offset is 0 and the size
2636 * is equal to the upl size.
2637 *
2638 * The flags argument is a bitmap of flags on the rage of pages in
2639 * the upl to be committed; allowable flags are:
2640 *
2641 * o UPL_COMMIT_FREE_ON_EMPTY Free the upl when it is
2642 * both empty and has been
2643 * successfully committed
2644 * o UPL_COMMIT_CLEAR_DIRTY Clear each pages dirty
2645 * bit; will prevent a
2646 * later pageout
2647 * o UPL_COMMIT_SET_DIRTY Set each pages dirty
2648 * bit; will cause a later
2649 * pageout
2650 * o UPL_COMMIT_INACTIVATE Clear each pages
2651 * reference bit; the page
2652 * will not be accessed
2653 * o UPL_COMMIT_ALLOW_ACCESS Unbusy each page; pages
2654 * become busy when an
2655 * IOMemoryDescriptor is
2656 * mapped or redirected,
2657 * and we have to wait for
2658 * an IOKit driver
2659 *
2660 * The flag UPL_COMMIT_NOTIFY_EMPTY is used internally, and should
2661 * not be specified by the caller.
2662 *
2663 * The UPL_COMMIT_CLEAR_DIRTY and UPL_COMMIT_SET_DIRTY flags are
2664 * mutually exclusive, and should not be combined.
2665 */
2666 kern_return_t
2667 ubc_upl_commit_range(
2668 upl_t upl,
2669 upl_offset_t offset,
2670 upl_size_t size,
2671 int flags)
2672 {
2673 upl_page_info_t *pl;
2674 boolean_t empty;
2675 kern_return_t kr;
2676
2677 if (flags & UPL_COMMIT_FREE_ON_EMPTY) {
2678 flags |= UPL_COMMIT_NOTIFY_EMPTY;
2679 }
2680
2681 if (flags & UPL_COMMIT_KERNEL_ONLY_FLAGS) {
2682 return KERN_INVALID_ARGUMENT;
2683 }
2684
2685 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
2686
2687 kr = upl_commit_range(upl, offset, size, flags,
2688 pl, MAX_UPL_SIZE_BYTES >> PAGE_SHIFT, &empty);
2689
2690 if ((flags & UPL_COMMIT_FREE_ON_EMPTY) && empty) {
2691 upl_deallocate(upl);
2692 }
2693
2694 return kr;
2695 }
2696
2697
2698 /*
2699 * ubc_upl_abort_range
2700 *
2701 * Abort the contents of the specified range of the specified upl
2702 *
2703 * Parameters: upl The upl to abort
2704 * offset The offset into the upl
2705 * size The size of the region to be aborted,
2706 * starting at the specified offset
2707 * abort_flags abort type (see below)
2708 *
2709 * Returns: KERN_SUCCESS The range has been aborted
2710 * KERN_INVALID_ARGUMENT The supplied upl was UPL_NULL
2711 * KERN_FAILURE The supplied upl does not represent
2712 * device memory, and the offset plus the
2713 * size would exceed the actual size of
2714 * the upl
2715 *
2716 * Notes: IMPORTANT: If the abort is successful, and the object is now
2717 * empty, the upl will be deallocated. Since the caller cannot
2718 * check that this is the case, the UPL_ABORT_FREE_ON_EMPTY flag
2719 * should generally only be used when the offset is 0 and the size
2720 * is equal to the upl size.
2721 *
2722 * The abort_flags argument is a bitmap of flags on the range of
2723 * pages in the upl to be aborted; allowable flags are:
2724 *
2725 * o UPL_ABORT_FREE_ON_EMPTY Free the upl when it is both
2726 * empty and has been successfully
2727 * aborted
2728 * o UPL_ABORT_RESTART The operation must be restarted
2729 * o UPL_ABORT_UNAVAILABLE The pages are unavailable
2730 * o UPL_ABORT_ERROR An I/O error occurred
2731 * o UPL_ABORT_DUMP_PAGES Just free the pages
2732 * o UPL_ABORT_NOTIFY_EMPTY RESERVED
2733 * o UPL_ABORT_ALLOW_ACCESS RESERVED
2734 *
2735 * The UPL_ABORT_NOTIFY_EMPTY is an internal use flag and should
2736 * not be specified by the caller. It is intended to fulfill the
2737 * same role as UPL_COMMIT_NOTIFY_EMPTY does in the function
2738 * ubc_upl_commit_range(), but is never referenced internally.
2739 *
2740 * The UPL_ABORT_ALLOW_ACCESS is defined, but neither set nor
2741 * referenced; do not use it.
2742 */
2743 kern_return_t
2744 ubc_upl_abort_range(
2745 upl_t upl,
2746 upl_offset_t offset,
2747 upl_size_t size,
2748 int abort_flags)
2749 {
2750 kern_return_t kr;
2751 boolean_t empty = FALSE;
2752
2753 if (abort_flags & UPL_ABORT_FREE_ON_EMPTY) {
2754 abort_flags |= UPL_ABORT_NOTIFY_EMPTY;
2755 }
2756
2757 kr = upl_abort_range(upl, offset, size, abort_flags, &empty);
2758
2759 if ((abort_flags & UPL_ABORT_FREE_ON_EMPTY) && empty) {
2760 upl_deallocate(upl);
2761 }
2762
2763 return kr;
2764 }
2765
2766
2767 /*
2768 * ubc_upl_abort
2769 *
2770 * Abort the contents of the specified upl
2771 *
2772 * Parameters: upl The upl to abort
2773 * abort_type abort type (see below)
2774 *
2775 * Returns: KERN_SUCCESS The range has been aborted
2776 * KERN_INVALID_ARGUMENT The supplied upl was UPL_NULL
2777 * KERN_FAILURE The supplied upl does not represent
2778 * device memory, and the offset plus the
2779 * size would exceed the actual size of
2780 * the upl
2781 *
2782 * Notes: IMPORTANT: If the abort is successful, and the object is now
2783 * empty, the upl will be deallocated. Since the caller cannot
2784 * check that this is the case, the UPL_ABORT_FREE_ON_EMPTY flag
2785 * should generally only be used when the offset is 0 and the size
2786 * is equal to the upl size.
2787 *
2788 * The abort_type is a bitmap of flags on the range of
2789 * pages in the upl to be aborted; allowable flags are:
2790 *
2791 * o UPL_ABORT_FREE_ON_EMPTY Free the upl when it is both
2792 * empty and has been successfully
2793 * aborted
2794 * o UPL_ABORT_RESTART The operation must be restarted
2795 * o UPL_ABORT_UNAVAILABLE The pages are unavailable
2796 * o UPL_ABORT_ERROR An I/O error occurred
2797 * o UPL_ABORT_DUMP_PAGES Just free the pages
2798 * o UPL_ABORT_NOTIFY_EMPTY RESERVED
2799 * o UPL_ABORT_ALLOW_ACCESS RESERVED
2800 *
2801 * The UPL_ABORT_NOTIFY_EMPTY is an internal use flag and should
2802 * not be specified by the caller. It is intended to fulfill the
2803 * same role as UPL_COMMIT_NOTIFY_EMPTY does in the function
2804 * ubc_upl_commit_range(), but is never referenced internally.
2805 *
2806 * The UPL_ABORT_ALLOW_ACCESS is defined, but neither set nor
2807 * referenced; do not use it.
2808 */
2809 kern_return_t
2810 ubc_upl_abort(
2811 upl_t upl,
2812 int abort_type)
2813 {
2814 kern_return_t kr;
2815
2816 kr = upl_abort(upl, abort_type);
2817 upl_deallocate(upl);
2818 return kr;
2819 }
2820
2821
2822 /*
2823 * ubc_upl_pageinfo
2824 *
2825 * Retrieve the internal page list for the specified upl
2826 *
2827 * Parameters: upl The upl to obtain the page list from
2828 *
2829 * Returns: !NULL The (upl_page_info_t *) for the page
2830 * list internal to the upl
2831 * NULL Error/no page list associated
2832 *
2833 * Notes: IMPORTANT: The function is only valid on internal objects
2834 * where the list request was made with the UPL_INTERNAL flag.
2835 *
2836 * This function is a utility helper function, since some callers
2837 * may not have direct access to the header defining the macro,
2838 * due to abstraction layering constraints.
2839 */
2840 upl_page_info_t *
2841 ubc_upl_pageinfo(
2842 upl_t upl)
2843 {
2844 return UPL_GET_INTERNAL_PAGE_LIST(upl);
2845 }
2846
2847
2848 int
2849 UBCINFOEXISTS(const struct vnode * vp)
2850 {
2851 return (vp) && ((vp)->v_type == VREG) && ((vp)->v_ubcinfo != UBC_INFO_NULL);
2852 }
2853
2854
2855 void
2856 ubc_upl_range_needed(
2857 upl_t upl,
2858 int index,
2859 int count)
2860 {
2861 upl_range_needed(upl, index, count);
2862 }
2863
2864 boolean_t
2865 ubc_is_mapped(const struct vnode *vp, boolean_t *writable)
2866 {
2867 if (!UBCINFOEXISTS(vp) || !ISSET(vp->v_ubcinfo->ui_flags, UI_ISMAPPED)) {
2868 return FALSE;
2869 }
2870 if (writable) {
2871 *writable = ISSET(vp->v_ubcinfo->ui_flags, UI_MAPPEDWRITE);
2872 }
2873 return TRUE;
2874 }
2875
2876 boolean_t
2877 ubc_is_mapped_writable(const struct vnode *vp)
2878 {
2879 boolean_t writable;
2880 return ubc_is_mapped(vp, &writable) && writable;
2881 }
2882
2883
2884 /*
2885 * CODE SIGNING
2886 */
2887 static atomic_size_t cs_blob_size = 0;
2888 static atomic_uint_fast32_t cs_blob_count = 0;
2889 static atomic_size_t cs_blob_size_peak = 0;
2890 static atomic_size_t cs_blob_size_max = 0;
2891 static atomic_uint_fast32_t cs_blob_count_peak = 0;
2892
2893 SYSCTL_UINT(_vm, OID_AUTO, cs_blob_count, CTLFLAG_RD | CTLFLAG_LOCKED, &cs_blob_count, 0, "Current number of code signature blobs");
2894 SYSCTL_ULONG(_vm, OID_AUTO, cs_blob_size, CTLFLAG_RD | CTLFLAG_LOCKED, &cs_blob_size, "Current size of all code signature blobs");
2895 SYSCTL_UINT(_vm, OID_AUTO, cs_blob_count_peak, CTLFLAG_RD | CTLFLAG_LOCKED, &cs_blob_count_peak, 0, "Peak number of code signature blobs");
2896 SYSCTL_ULONG(_vm, OID_AUTO, cs_blob_size_peak, CTLFLAG_RD | CTLFLAG_LOCKED, &cs_blob_size_peak, "Peak size of code signature blobs");
2897 SYSCTL_ULONG(_vm, OID_AUTO, cs_blob_size_max, CTLFLAG_RD | CTLFLAG_LOCKED, &cs_blob_size_max, "Size of biggest code signature blob");
2898
2899 /*
2900 * Function: csblob_parse_teamid
2901 *
2902 * Description: This function returns a pointer to the team id
2903 * stored within the codedirectory of the csblob.
2904 * If the codedirectory predates team-ids, it returns
2905 * NULL.
2906 * This does not copy the name but returns a pointer to
2907 * it within the CD. Subsequently, the CD must be
2908 * available when this is used.
2909 */
2910
2911 static const char *
2912 csblob_parse_teamid(struct cs_blob *csblob)
2913 {
2914 const CS_CodeDirectory *cd;
2915
2916 cd = csblob->csb_cd;
2917
2918 if (ntohl(cd->version) < CS_SUPPORTSTEAMID) {
2919 return NULL;
2920 }
2921
2922 if (cd->teamOffset == 0) {
2923 return NULL;
2924 }
2925
2926 const char *name = ((const char *)cd) + ntohl(cd->teamOffset);
2927 if (cs_debug > 1) {
2928 printf("found team-id %s in cdblob\n", name);
2929 }
2930
2931 return name;
2932 }
2933
2934
2935 kern_return_t
2936 ubc_cs_blob_allocate(
2937 vm_offset_t *blob_addr_p,
2938 vm_size_t *blob_size_p)
2939 {
2940 kern_return_t kr = KERN_FAILURE;
2941
2942 {
2943 *blob_addr_p = (vm_offset_t) kalloc_tag(*blob_size_p, VM_KERN_MEMORY_SECURITY);
2944
2945 if (*blob_addr_p == 0) {
2946 kr = KERN_NO_SPACE;
2947 } else {
2948 kr = KERN_SUCCESS;
2949 }
2950 }
2951
2952 return kr;
2953 }
2954
2955 void
2956 ubc_cs_blob_deallocate(
2957 vm_offset_t blob_addr,
2958 vm_size_t blob_size)
2959 {
2960 #if PMAP_CS
2961 if (blob_size > pmap_cs_blob_limit) {
2962 kmem_free(kernel_map, blob_addr, blob_size);
2963 } else
2964 #endif
2965 {
2966 kfree(blob_addr, blob_size);
2967 }
2968 }
2969
2970 /*
2971 * Some codesigned files use a lowest common denominator page size of
2972 * 4KiB, but can be used on systems that have a runtime page size of
2973 * 16KiB. Since faults will only occur on 16KiB ranges in
2974 * cs_validate_range(), we can convert the original Code Directory to
2975 * a multi-level scheme where groups of 4 hashes are combined to form
2976 * a new hash, which represents 16KiB in the on-disk file. This can
2977 * reduce the wired memory requirement for the Code Directory by
2978 * 75%. Care must be taken for binaries that use the "fourk" VM pager
2979 * for unaligned access, which may still attempt to validate on
2980 * non-16KiB multiples for compatibility with 3rd party binaries.
2981 */
2982 static boolean_t
2983 ubc_cs_supports_multilevel_hash(struct cs_blob *blob __unused)
2984 {
2985 const CS_CodeDirectory *cd;
2986
2987
2988 /*
2989 * Only applies to binaries that ship as part of the OS,
2990 * primarily the shared cache.
2991 */
2992 if (!blob->csb_platform_binary || blob->csb_teamid != NULL) {
2993 return FALSE;
2994 }
2995
2996 /*
2997 * If the runtime page size matches the code signing page
2998 * size, there is no work to do.
2999 */
3000 if (PAGE_SHIFT <= blob->csb_hash_pageshift) {
3001 return FALSE;
3002 }
3003
3004 cd = blob->csb_cd;
3005
3006 /*
3007 * There must be a valid integral multiple of hashes
3008 */
3009 if (ntohl(cd->nCodeSlots) & (PAGE_MASK >> blob->csb_hash_pageshift)) {
3010 return FALSE;
3011 }
3012
3013 /*
3014 * Scatter lists must also have ranges that have an integral number of hashes
3015 */
3016 if ((ntohl(cd->version) >= CS_SUPPORTSSCATTER) && (ntohl(cd->scatterOffset))) {
3017 const SC_Scatter *scatter = (const SC_Scatter*)
3018 ((const char*)cd + ntohl(cd->scatterOffset));
3019 /* iterate all scatter structs to make sure they are all aligned */
3020 do {
3021 uint32_t sbase = ntohl(scatter->base);
3022 uint32_t scount = ntohl(scatter->count);
3023
3024 /* last scatter? */
3025 if (scount == 0) {
3026 break;
3027 }
3028
3029 if (sbase & (PAGE_MASK >> blob->csb_hash_pageshift)) {
3030 return FALSE;
3031 }
3032
3033 if (scount & (PAGE_MASK >> blob->csb_hash_pageshift)) {
3034 return FALSE;
3035 }
3036
3037 scatter++;
3038 } while (1);
3039 }
3040
3041 /* Covered range must be a multiple of the new page size */
3042 if (ntohl(cd->codeLimit) & PAGE_MASK) {
3043 return FALSE;
3044 }
3045
3046 /* All checks pass */
3047 return TRUE;
3048 }
3049
3050 /*
3051 * Given a cs_blob with an already chosen best code directory, this
3052 * function allocates memory and copies into it only the blobs that
3053 * will be needed by the kernel, namely the single chosen code
3054 * directory (and not any of its alternatives) and the entitlement
3055 * blob.
3056 *
3057 * This saves significant memory with agile signatures, and additional
3058 * memory for 3rd Party Code because we also omit the CMS blob.
3059 *
3060 * To support multilevel and other potential code directory rewriting,
3061 * the size of a new code directory can be specified. Since that code
3062 * directory will replace the existing code directory,
3063 * ubc_cs_reconstitute_code_signature does not copy the original code
3064 * directory when a size is given, and the caller must fill it in.
3065 */
3066 static int
3067 ubc_cs_reconstitute_code_signature(struct cs_blob const *blob, vm_size_t optional_new_cd_size,
3068 vm_address_t *new_blob_addr_p, vm_size_t *new_blob_size_p,
3069 CS_CodeDirectory **new_cd_p, CS_GenericBlob const **new_entitlements_p)
3070 {
3071 const CS_CodeDirectory *old_cd, *cd;
3072 CS_CodeDirectory *new_cd;
3073 const CS_GenericBlob *entitlements;
3074 vm_offset_t new_blob_addr;
3075 vm_size_t new_blob_size;
3076 vm_size_t new_cdsize;
3077 kern_return_t kr;
3078 int error;
3079
3080 old_cd = blob->csb_cd;
3081
3082 new_cdsize = optional_new_cd_size != 0 ? optional_new_cd_size : htonl(old_cd->length);
3083
3084 new_blob_size = sizeof(CS_SuperBlob);
3085 new_blob_size += sizeof(CS_BlobIndex);
3086 new_blob_size += new_cdsize;
3087
3088 if (blob->csb_entitlements_blob) {
3089 /* We need to add a slot for the entitlements */
3090 new_blob_size += sizeof(CS_BlobIndex);
3091 new_blob_size += ntohl(blob->csb_entitlements_blob->length);
3092 }
3093
3094 kr = ubc_cs_blob_allocate(&new_blob_addr, &new_blob_size);
3095 if (kr != KERN_SUCCESS) {
3096 if (cs_debug > 1) {
3097 printf("CODE SIGNING: Failed to allocate memory for new Code Signing Blob: %d\n",
3098 kr);
3099 }
3100 return ENOMEM;
3101 }
3102
3103 CS_SuperBlob *new_superblob;
3104
3105 new_superblob = (CS_SuperBlob *)new_blob_addr;
3106 new_superblob->magic = htonl(CSMAGIC_EMBEDDED_SIGNATURE);
3107 new_superblob->length = htonl((uint32_t)new_blob_size);
3108 if (blob->csb_entitlements_blob) {
3109 vm_size_t ent_offset, cd_offset;
3110
3111 cd_offset = sizeof(CS_SuperBlob) + 2 * sizeof(CS_BlobIndex);
3112 ent_offset = cd_offset + new_cdsize;
3113
3114 new_superblob->count = htonl(2);
3115 new_superblob->index[0].type = htonl(CSSLOT_CODEDIRECTORY);
3116 new_superblob->index[0].offset = htonl((uint32_t)cd_offset);
3117 new_superblob->index[1].type = htonl(CSSLOT_ENTITLEMENTS);
3118 new_superblob->index[1].offset = htonl((uint32_t)ent_offset);
3119
3120 memcpy((void *)(new_blob_addr + ent_offset), blob->csb_entitlements_blob, ntohl(blob->csb_entitlements_blob->length));
3121
3122 new_cd = (CS_CodeDirectory *)(new_blob_addr + cd_offset);
3123 } else {
3124 // Blob is the code directory, directly.
3125 new_cd = (CS_CodeDirectory *)new_blob_addr;
3126 }
3127
3128 if (optional_new_cd_size == 0) {
3129 // Copy code directory, and revalidate.
3130 memcpy(new_cd, old_cd, new_cdsize);
3131
3132 vm_size_t length = new_blob_size;
3133
3134 error = cs_validate_csblob((const uint8_t *)new_blob_addr, length, &cd, &entitlements);
3135
3136 if (error) {
3137 printf("CODE SIGNING: Failed to validate new Code Signing Blob: %d\n",
3138 error);
3139
3140 ubc_cs_blob_deallocate(new_blob_addr, new_blob_size);
3141 return error;
3142 }
3143 *new_entitlements_p = entitlements;
3144 } else {
3145 // Caller will fill out and validate code directory.
3146 memset(new_cd, 0, new_cdsize);
3147 *new_entitlements_p = NULL;
3148 }
3149
3150 *new_blob_addr_p = new_blob_addr;
3151 *new_blob_size_p = new_blob_size;
3152 *new_cd_p = new_cd;
3153
3154 return 0;
3155 }
3156
3157 static int
3158 ubc_cs_convert_to_multilevel_hash(struct cs_blob *blob)
3159 {
3160 const CS_CodeDirectory *old_cd, *cd;
3161 CS_CodeDirectory *new_cd;
3162 const CS_GenericBlob *entitlements;
3163 vm_offset_t new_blob_addr;
3164 vm_size_t new_blob_size;
3165 vm_size_t new_cdsize;
3166 int error;
3167
3168 uint32_t hashes_per_new_hash_shift = (uint32_t)(PAGE_SHIFT - blob->csb_hash_pageshift);
3169
3170 if (cs_debug > 1) {
3171 printf("CODE SIGNING: Attempting to convert Code Directory for %lu -> %lu page shift\n",
3172 (unsigned long)blob->csb_hash_pageshift, (unsigned long)PAGE_SHIFT);
3173 }
3174
3175 old_cd = blob->csb_cd;
3176
3177 /* Up to the hashes, we can copy all data */
3178 new_cdsize = ntohl(old_cd->hashOffset);
3179 new_cdsize += (ntohl(old_cd->nCodeSlots) >> hashes_per_new_hash_shift) * old_cd->hashSize;
3180
3181 error = ubc_cs_reconstitute_code_signature(blob, new_cdsize,
3182 &new_blob_addr, &new_blob_size, &new_cd,
3183 &entitlements);
3184 if (error != 0) {
3185 printf("CODE SIGNING: Failed to reconsitute code signature: %d\n", error);
3186 return error;
3187 }
3188
3189 memcpy(new_cd, old_cd, ntohl(old_cd->hashOffset));
3190
3191 /* Update fields in the Code Directory structure */
3192 new_cd->length = htonl((uint32_t)new_cdsize);
3193
3194 uint32_t nCodeSlots = ntohl(new_cd->nCodeSlots);
3195 nCodeSlots >>= hashes_per_new_hash_shift;
3196 new_cd->nCodeSlots = htonl(nCodeSlots);
3197
3198 new_cd->pageSize = (uint8_t)PAGE_SHIFT; /* Not byte-swapped */
3199
3200 if ((ntohl(new_cd->version) >= CS_SUPPORTSSCATTER) && (ntohl(new_cd->scatterOffset))) {
3201 SC_Scatter *scatter = (SC_Scatter*)
3202 ((char *)new_cd + ntohl(new_cd->scatterOffset));
3203 /* iterate all scatter structs to scale their counts */
3204 do {
3205 uint32_t scount = ntohl(scatter->count);
3206 uint32_t sbase = ntohl(scatter->base);
3207
3208 /* last scatter? */
3209 if (scount == 0) {
3210 break;
3211 }
3212
3213 scount >>= hashes_per_new_hash_shift;
3214 scatter->count = htonl(scount);
3215
3216 sbase >>= hashes_per_new_hash_shift;
3217 scatter->base = htonl(sbase);
3218
3219 scatter++;
3220 } while (1);
3221 }
3222
3223 /* For each group of hashes, hash them together */
3224 const unsigned char *src_base = (const unsigned char *)old_cd + ntohl(old_cd->hashOffset);
3225 unsigned char *dst_base = (unsigned char *)new_cd + ntohl(new_cd->hashOffset);
3226
3227 uint32_t hash_index;
3228 for (hash_index = 0; hash_index < nCodeSlots; hash_index++) {
3229 union cs_hash_union mdctx;
3230
3231 uint32_t source_hash_len = old_cd->hashSize << hashes_per_new_hash_shift;
3232 const unsigned char *src = src_base + hash_index * source_hash_len;
3233 unsigned char *dst = dst_base + hash_index * new_cd->hashSize;
3234
3235 blob->csb_hashtype->cs_init(&mdctx);
3236 blob->csb_hashtype->cs_update(&mdctx, src, source_hash_len);
3237 blob->csb_hashtype->cs_final(dst, &mdctx);
3238 }
3239
3240 error = cs_validate_csblob((const uint8_t *)new_blob_addr, new_blob_size, &cd, &entitlements);
3241 if (error != 0) {
3242 printf("CODE SIGNING: Failed to validate new Code Signing Blob: %d\n",
3243 error);
3244
3245 ubc_cs_blob_deallocate(new_blob_addr, new_blob_size);
3246 return error;
3247 }
3248
3249 /* New Code Directory is ready for use, swap it out in the blob structure */
3250 ubc_cs_blob_deallocate(blob->csb_mem_kaddr, blob->csb_mem_size);
3251
3252 blob->csb_mem_size = new_blob_size;
3253 blob->csb_mem_kaddr = new_blob_addr;
3254 blob->csb_cd = cd;
3255 blob->csb_entitlements_blob = entitlements;
3256
3257 /* The blob has some cached attributes of the Code Directory, so update those */
3258
3259 blob->csb_hash_firstlevel_pageshift = blob->csb_hash_pageshift; /* Save the original page size */
3260
3261 blob->csb_hash_pageshift = PAGE_SHIFT;
3262 blob->csb_end_offset = ntohl(cd->codeLimit);
3263 if ((ntohl(cd->version) >= CS_SUPPORTSSCATTER) && (ntohl(cd->scatterOffset))) {
3264 const SC_Scatter *scatter = (const SC_Scatter*)
3265 ((const char*)cd + ntohl(cd->scatterOffset));
3266 blob->csb_start_offset = ((off_t)ntohl(scatter->base)) * PAGE_SIZE;
3267 } else {
3268 blob->csb_start_offset = 0;
3269 }
3270
3271 return 0;
3272 }
3273
3274 /*
3275 * Validate the code signature blob, create a struct cs_blob wrapper
3276 * and return it together with a pointer to the chosen code directory
3277 * and entitlements blob.
3278 *
3279 * Note that this takes ownership of the memory as addr, mainly because
3280 * this function can actually replace the passed in blob with another
3281 * one, e.g. when performing multilevel hashing optimization.
3282 */
3283 int
3284 cs_blob_create_validated(
3285 vm_address_t * const addr,
3286 vm_size_t size,
3287 struct cs_blob ** const ret_blob,
3288 CS_CodeDirectory const ** const ret_cd)
3289 {
3290 struct cs_blob *blob;
3291 int error = EINVAL;
3292 const CS_CodeDirectory *cd;
3293 const CS_GenericBlob *entitlements;
3294 union cs_hash_union mdctx;
3295 size_t length;
3296
3297 if (ret_blob) {
3298 *ret_blob = NULL;
3299 }
3300
3301 blob = (struct cs_blob *) kalloc(sizeof(struct cs_blob));
3302 if (blob == NULL) {
3303 return ENOMEM;
3304 }
3305
3306 /* fill in the new blob */
3307 blob->csb_mem_size = size;
3308 blob->csb_mem_offset = 0;
3309 blob->csb_mem_kaddr = *addr;
3310 blob->csb_flags = 0;
3311 blob->csb_signer_type = CS_SIGNER_TYPE_UNKNOWN;
3312 blob->csb_platform_binary = 0;
3313 blob->csb_platform_path = 0;
3314 blob->csb_teamid = NULL;
3315 #if CONFIG_SUPPLEMENTAL_SIGNATURES
3316 blob->csb_supplement_teamid = NULL;
3317 #endif
3318 blob->csb_entitlements_blob = NULL;
3319 blob->csb_entitlements = NULL;
3320 blob->csb_reconstituted = false;
3321
3322 /* Transfer ownership. Even on error, this function will deallocate */
3323 *addr = 0;
3324
3325 /*
3326 * Validate the blob's contents
3327 */
3328 length = (size_t) size;
3329 error = cs_validate_csblob((const uint8_t *)blob->csb_mem_kaddr,
3330 length, &cd, &entitlements);
3331 if (error) {
3332 if (cs_debug) {
3333 printf("CODESIGNING: csblob invalid: %d\n", error);
3334 }
3335 /*
3336 * The vnode checker can't make the rest of this function
3337 * succeed if csblob validation failed, so bail */
3338 goto out;
3339 } else {
3340 const unsigned char *md_base;
3341 uint8_t hash[CS_HASH_MAX_SIZE];
3342 int md_size;
3343 vm_offset_t hash_pagemask;
3344
3345 blob->csb_cd = cd;
3346 blob->csb_entitlements_blob = entitlements; /* may be NULL, not yet validated */
3347 blob->csb_hashtype = cs_find_md(cd->hashType);
3348 if (blob->csb_hashtype == NULL || blob->csb_hashtype->cs_digest_size > sizeof(hash)) {
3349 panic("validated CodeDirectory but unsupported type");
3350 }
3351
3352 blob->csb_hash_pageshift = cd->pageSize;
3353 hash_pagemask = (1U << cd->pageSize) - 1;
3354 blob->csb_hash_firstlevel_pageshift = 0;
3355 blob->csb_flags = (ntohl(cd->flags) & CS_ALLOWED_MACHO) | CS_VALID;
3356 blob->csb_end_offset = (((vm_offset_t)ntohl(cd->codeLimit) + hash_pagemask) & ~hash_pagemask);
3357 if ((ntohl(cd->version) >= CS_SUPPORTSSCATTER) && (ntohl(cd->scatterOffset))) {
3358 const SC_Scatter *scatter = (const SC_Scatter*)
3359 ((const char*)cd + ntohl(cd->scatterOffset));
3360 blob->csb_start_offset = ((off_t)ntohl(scatter->base)) * (1U << blob->csb_hash_pageshift);
3361 } else {
3362 blob->csb_start_offset = 0;
3363 }
3364 /* compute the blob's cdhash */
3365 md_base = (const unsigned char *) cd;
3366 md_size = ntohl(cd->length);
3367
3368 blob->csb_hashtype->cs_init(&mdctx);
3369 blob->csb_hashtype->cs_update(&mdctx, md_base, md_size);
3370 blob->csb_hashtype->cs_final(hash, &mdctx);
3371
3372 memcpy(blob->csb_cdhash, hash, CS_CDHASH_LEN);
3373 blob->csb_cdhash_signature = ptrauth_utils_sign_blob_generic(blob->csb_cdhash,
3374 sizeof(blob->csb_cdhash),
3375 OS_PTRAUTH_DISCRIMINATOR("cs_blob.csb_cd_signature"),
3376 PTRAUTH_ADDR_DIVERSIFY);
3377
3378 #if CONFIG_SUPPLEMENTAL_SIGNATURES
3379 blob->csb_linkage_hashtype = NULL;
3380 if (ntohl(cd->version) >= CS_SUPPORTSLINKAGE && cd->linkageHashType != 0 &&
3381 ntohl(cd->linkageSize) >= CS_CDHASH_LEN) {
3382 blob->csb_linkage_hashtype = cs_find_md(cd->linkageHashType);
3383
3384 if (blob->csb_linkage_hashtype != NULL) {
3385 memcpy(blob->csb_linkage, (uint8_t const*)cd + ntohl(cd->linkageOffset),
3386 CS_CDHASH_LEN);
3387 }
3388 }
3389 #endif
3390 }
3391
3392 error = 0;
3393
3394 out:
3395 if (error != 0) {
3396 cs_blob_free(blob);
3397 blob = NULL;
3398 cd = NULL;
3399 }
3400
3401 if (ret_blob != NULL) {
3402 *ret_blob = blob;
3403 }
3404 if (ret_cd != NULL) {
3405 *ret_cd = cd;
3406 }
3407
3408 return error;
3409 }
3410
3411 /*
3412 * Free a cs_blob previously created by cs_blob_create_validated.
3413 */
3414 void
3415 cs_blob_free(
3416 struct cs_blob * const blob)
3417 {
3418 if (blob != NULL) {
3419 if (blob->csb_mem_kaddr) {
3420 ubc_cs_blob_deallocate(blob->csb_mem_kaddr, blob->csb_mem_size);
3421 blob->csb_mem_kaddr = 0;
3422 }
3423 if (blob->csb_entitlements != NULL) {
3424 osobject_release(blob->csb_entitlements);
3425 blob->csb_entitlements = NULL;
3426 }
3427 (kfree)(blob, sizeof(*blob));
3428 }
3429 }
3430 #if CONFIG_SUPPLEMENTAL_SIGNATURES
3431 static void
3432 cs_blob_supplement_free(struct cs_blob * const blob)
3433 {
3434 if (blob != NULL) {
3435 if (blob->csb_supplement_teamid != NULL) {
3436 vm_size_t teamid_size = strlen(blob->csb_supplement_teamid) + 1;
3437 kfree(blob->csb_supplement_teamid, teamid_size);
3438 blob->csb_supplement_teamid = NULL;
3439 }
3440 cs_blob_free(blob);
3441 }
3442 }
3443 #endif
3444
3445 static void
3446 ubc_cs_blob_adjust_statistics(struct cs_blob const *blob)
3447 {
3448 /* Note that the atomic ops are not enough to guarantee
3449 * correctness: If a blob with an intermediate size is inserted
3450 * concurrently, we can lose a peak value assignment. But these
3451 * statistics are only advisory anyway, so we're not going to
3452 * employ full locking here. (Consequently, we are also okay with
3453 * relaxed ordering of those accesses.)
3454 */
3455
3456 unsigned int new_cs_blob_count = os_atomic_add(&cs_blob_count, 1, relaxed);
3457 if (new_cs_blob_count > os_atomic_load(&cs_blob_count_peak, relaxed)) {
3458 os_atomic_store(&cs_blob_count_peak, new_cs_blob_count, relaxed);
3459 }
3460
3461 size_t new_cs_blob_size = os_atomic_add(&cs_blob_size, blob->csb_mem_size, relaxed);
3462
3463 if (new_cs_blob_size > os_atomic_load(&cs_blob_size_peak, relaxed)) {
3464 os_atomic_store(&cs_blob_size_peak, new_cs_blob_size, relaxed);
3465 }
3466 if (blob->csb_mem_size > os_atomic_load(&cs_blob_size_max, relaxed)) {
3467 os_atomic_store(&cs_blob_size_max, blob->csb_mem_size, relaxed);
3468 }
3469 }
3470
3471 int
3472 ubc_cs_blob_add(
3473 struct vnode *vp,
3474 uint32_t platform,
3475 cpu_type_t cputype,
3476 cpu_subtype_t cpusubtype,
3477 off_t base_offset,
3478 vm_address_t *addr,
3479 vm_size_t size,
3480 struct image_params *imgp,
3481 __unused int flags,
3482 struct cs_blob **ret_blob)
3483 {
3484 kern_return_t kr;
3485 struct ubc_info *uip;
3486 struct cs_blob *blob = NULL, *oblob = NULL;
3487 int error;
3488 CS_CodeDirectory const *cd;
3489 off_t blob_start_offset, blob_end_offset;
3490 boolean_t record_mtime;
3491
3492 record_mtime = FALSE;
3493 if (ret_blob) {
3494 *ret_blob = NULL;
3495 }
3496
3497 /* Create the struct cs_blob wrapper that will be attached to the vnode.
3498 * Validates the passed in blob in the process. */
3499 error = cs_blob_create_validated(addr, size, &blob, &cd);
3500
3501 if (error != 0) {
3502 printf("malform code signature blob: %d\n", error);
3503 return error;
3504 }
3505
3506 blob->csb_cpu_type = cputype;
3507 blob->csb_cpu_subtype = cpusubtype & ~CPU_SUBTYPE_MASK;
3508 blob->csb_base_offset = base_offset;
3509
3510 /*
3511 * Let policy module check whether the blob's signature is accepted.
3512 */
3513 #if CONFIG_MACF
3514 unsigned int cs_flags = blob->csb_flags;
3515 unsigned int signer_type = blob->csb_signer_type;
3516 error = mac_vnode_check_signature(vp, blob, imgp, &cs_flags, &signer_type, flags, platform);
3517 blob->csb_flags = cs_flags;
3518 blob->csb_signer_type = signer_type;
3519
3520 if (error) {
3521 if (cs_debug) {
3522 printf("check_signature[pid: %d], error = %d\n", current_proc()->p_pid, error);
3523 }
3524 goto out;
3525 }
3526 if ((flags & MAC_VNODE_CHECK_DYLD_SIM) && !(blob->csb_flags & CS_PLATFORM_BINARY)) {
3527 if (cs_debug) {
3528 printf("check_signature[pid: %d], is not apple signed\n", current_proc()->p_pid);
3529 }
3530 error = EPERM;
3531 goto out;
3532 }
3533 #endif
3534
3535 #if CONFIG_ENFORCE_SIGNED_CODE
3536 /*
3537 * Reconstitute code signature
3538 */
3539 {
3540 vm_address_t new_mem_kaddr = 0;
3541 vm_size_t new_mem_size = 0;
3542
3543 CS_CodeDirectory *new_cd = NULL;
3544 CS_GenericBlob const *new_entitlements = NULL;
3545
3546 error = ubc_cs_reconstitute_code_signature(blob, 0,
3547 &new_mem_kaddr, &new_mem_size,
3548 &new_cd, &new_entitlements);
3549
3550 if (error != 0) {
3551 printf("failed code signature reconstitution: %d\n", error);
3552 goto out;
3553 }
3554
3555 ubc_cs_blob_deallocate(blob->csb_mem_kaddr, blob->csb_mem_size);
3556
3557 blob->csb_mem_kaddr = new_mem_kaddr;
3558 blob->csb_mem_size = new_mem_size;
3559 blob->csb_cd = new_cd;
3560 blob->csb_entitlements_blob = new_entitlements;
3561 blob->csb_reconstituted = true;
3562 }
3563 #elif PMAP_CS
3564 /*
3565 * When pmap_cs is enabled, there's an expectation that large blobs are
3566 * relocated to their own page. Above, this happens under
3567 * ubc_cs_reconstitute_code_signature() but that discards parts of the
3568 * signatures that are necessary on some platforms (eg, requirements).
3569 * So in this case, just copy everything.
3570 */
3571 if (pmap_cs && (blob->csb_mem_size > pmap_cs_blob_limit)) {
3572 vm_offset_t cd_offset, ent_offset;
3573 vm_size_t new_mem_size = round_page(blob->csb_mem_size);
3574 vm_address_t new_mem_kaddr = 0;
3575
3576 kr = kmem_alloc_kobject(kernel_map, &new_mem_kaddr, new_mem_size, VM_KERN_MEMORY_SECURITY);
3577 if (kr != KERN_SUCCESS) {
3578 printf("failed to allocate %lu bytes to relocate blob: %d\n", new_mem_size, kr);
3579 error = ENOMEM;
3580 goto out;
3581 }
3582
3583 cd_offset = (vm_address_t) blob->csb_cd - blob->csb_mem_kaddr;
3584 ent_offset = (vm_address_t) blob->csb_entitlements_blob - blob->csb_mem_kaddr;
3585
3586 memcpy((void *) new_mem_kaddr, (const void *) blob->csb_mem_kaddr, blob->csb_mem_size);
3587 ubc_cs_blob_deallocate(blob->csb_mem_kaddr, blob->csb_mem_size);
3588 blob->csb_cd = (const CS_CodeDirectory *) (new_mem_kaddr + cd_offset);
3589 /* Only update the entitlements blob pointer if it is non-NULL. If it is NULL, then
3590 * the blob has no entitlements and ent_offset is garbage. */
3591 if (blob->csb_entitlements_blob != NULL) {
3592 blob->csb_entitlements_blob = (const CS_GenericBlob *) (new_mem_kaddr + ent_offset);
3593 }
3594 blob->csb_mem_kaddr = new_mem_kaddr;
3595 blob->csb_mem_size = new_mem_size;
3596 }
3597 #endif
3598
3599
3600 if (blob->csb_flags & CS_PLATFORM_BINARY) {
3601 if (cs_debug > 1) {
3602 printf("check_signature[pid: %d]: platform binary\n", current_proc()->p_pid);
3603 }
3604 blob->csb_platform_binary = 1;
3605 blob->csb_platform_path = !!(blob->csb_flags & CS_PLATFORM_PATH);
3606 } else {
3607 blob->csb_platform_binary = 0;
3608 blob->csb_platform_path = 0;
3609 blob->csb_teamid = csblob_parse_teamid(blob);
3610 if (cs_debug > 1) {
3611 if (blob->csb_teamid) {
3612 printf("check_signature[pid: %d]: team-id is %s\n", current_proc()->p_pid, blob->csb_teamid);
3613 } else {
3614 printf("check_signature[pid: %d]: no team-id\n", current_proc()->p_pid);
3615 }
3616 }
3617 }
3618
3619 /*
3620 * Validate the blob's coverage
3621 */
3622 blob_start_offset = blob->csb_base_offset + blob->csb_start_offset;
3623 blob_end_offset = blob->csb_base_offset + blob->csb_end_offset;
3624
3625 if (blob_start_offset >= blob_end_offset ||
3626 blob_start_offset < 0 ||
3627 blob_end_offset <= 0) {
3628 /* reject empty or backwards blob */
3629 error = EINVAL;
3630 goto out;
3631 }
3632
3633 if (ubc_cs_supports_multilevel_hash(blob)) {
3634 error = ubc_cs_convert_to_multilevel_hash(blob);
3635 if (error != 0) {
3636 printf("failed multilevel hash conversion: %d\n", error);
3637 goto out;
3638 }
3639 blob->csb_reconstituted = true;
3640 }
3641
3642 vnode_lock(vp);
3643 if (!UBCINFOEXISTS(vp)) {
3644 vnode_unlock(vp);
3645 error = ENOENT;
3646 goto out;
3647 }
3648 uip = vp->v_ubcinfo;
3649
3650 /* check if this new blob overlaps with an existing blob */
3651 for (oblob = uip->cs_blobs;
3652 oblob != NULL;
3653 oblob = oblob->csb_next) {
3654 off_t oblob_start_offset, oblob_end_offset;
3655
3656 if (blob->csb_signer_type != oblob->csb_signer_type) { // signer type needs to be the same for slices
3657 vnode_unlock(vp);
3658 error = EALREADY;
3659 goto out;
3660 } else if (blob->csb_platform_binary) { //platform binary needs to be the same for app slices
3661 if (!oblob->csb_platform_binary) {
3662 vnode_unlock(vp);
3663 error = EALREADY;
3664 goto out;
3665 }
3666 } else if (blob->csb_teamid) { //teamid binary needs to be the same for app slices
3667 if (oblob->csb_platform_binary ||
3668 oblob->csb_teamid == NULL ||
3669 strcmp(oblob->csb_teamid, blob->csb_teamid) != 0) {
3670 vnode_unlock(vp);
3671 error = EALREADY;
3672 goto out;
3673 }
3674 } else { // non teamid binary needs to be the same for app slices
3675 if (oblob->csb_platform_binary ||
3676 oblob->csb_teamid != NULL) {
3677 vnode_unlock(vp);
3678 error = EALREADY;
3679 goto out;
3680 }
3681 }
3682
3683 oblob_start_offset = (oblob->csb_base_offset +
3684 oblob->csb_start_offset);
3685 oblob_end_offset = (oblob->csb_base_offset +
3686 oblob->csb_end_offset);
3687 if (blob_start_offset >= oblob_end_offset ||
3688 blob_end_offset <= oblob_start_offset) {
3689 /* no conflict with this existing blob */
3690 } else {
3691 /* conflict ! */
3692 if (blob_start_offset == oblob_start_offset &&
3693 blob_end_offset == oblob_end_offset &&
3694 blob->csb_mem_size == oblob->csb_mem_size &&
3695 blob->csb_flags == oblob->csb_flags &&
3696 (blob->csb_cpu_type == CPU_TYPE_ANY ||
3697 oblob->csb_cpu_type == CPU_TYPE_ANY ||
3698 blob->csb_cpu_type == oblob->csb_cpu_type) &&
3699 !bcmp(blob->csb_cdhash,
3700 oblob->csb_cdhash,
3701 CS_CDHASH_LEN)) {
3702 /*
3703 * We already have this blob:
3704 * we'll return success but
3705 * throw away the new blob.
3706 */
3707 if (oblob->csb_cpu_type == CPU_TYPE_ANY) {
3708 /*
3709 * The old blob matches this one
3710 * but doesn't have any CPU type.
3711 * Update it with whatever the caller
3712 * provided this time.
3713 */
3714 oblob->csb_cpu_type = cputype;
3715 }
3716
3717 /* The signature is still accepted, so update the
3718 * generation count. */
3719 uip->cs_add_gen = cs_blob_generation_count;
3720
3721 vnode_unlock(vp);
3722 if (ret_blob) {
3723 *ret_blob = oblob;
3724 }
3725 error = EAGAIN;
3726 goto out;
3727 } else {
3728 /* different blob: reject the new one */
3729 vnode_unlock(vp);
3730 error = EALREADY;
3731 goto out;
3732 }
3733 }
3734 }
3735
3736
3737 /* mark this vnode's VM object as having "signed pages" */
3738 kr = memory_object_signed(uip->ui_control, TRUE);
3739 if (kr != KERN_SUCCESS) {
3740 vnode_unlock(vp);
3741 error = ENOENT;
3742 goto out;
3743 }
3744
3745 if (uip->cs_blobs == NULL) {
3746 /* loading 1st blob: record the file's current "modify time" */
3747 record_mtime = TRUE;
3748 }
3749
3750 /* set the generation count for cs_blobs */
3751 uip->cs_add_gen = cs_blob_generation_count;
3752
3753 /*
3754 * Add this blob to the list of blobs for this vnode.
3755 * We always add at the front of the list and we never remove a
3756 * blob from the list, so ubc_cs_get_blobs() can return whatever
3757 * the top of the list was and that list will remain valid
3758 * while we validate a page, even after we release the vnode's lock.
3759 */
3760 blob->csb_next = uip->cs_blobs;
3761 uip->cs_blobs = blob;
3762
3763 ubc_cs_blob_adjust_statistics(blob);
3764
3765 if (cs_debug > 1) {
3766 proc_t p;
3767 const char *name = vnode_getname_printable(vp);
3768 p = current_proc();
3769 printf("CODE SIGNING: proc %d(%s) "
3770 "loaded %s signatures for file (%s) "
3771 "range 0x%llx:0x%llx flags 0x%x\n",
3772 p->p_pid, p->p_comm,
3773 blob->csb_cpu_type == -1 ? "detached" : "embedded",
3774 name,
3775 blob->csb_base_offset + blob->csb_start_offset,
3776 blob->csb_base_offset + blob->csb_end_offset,
3777 blob->csb_flags);
3778 vnode_putname_printable(name);
3779 }
3780
3781 vnode_unlock(vp);
3782
3783 if (record_mtime) {
3784 vnode_mtime(vp, &uip->cs_mtime, vfs_context_current());
3785 }
3786
3787 if (ret_blob) {
3788 *ret_blob = blob;
3789 }
3790
3791 error = 0; /* success ! */
3792
3793 out:
3794 if (error) {
3795 if (cs_debug) {
3796 printf("check_signature[pid: %d]: error = %d\n", current_proc()->p_pid, error);
3797 }
3798
3799 cs_blob_free(blob);
3800 }
3801
3802 if (error == EAGAIN) {
3803 /*
3804 * See above: error is EAGAIN if we were asked
3805 * to add an existing blob again. We cleaned the new
3806 * blob and we want to return success.
3807 */
3808 error = 0;
3809 }
3810
3811 return error;
3812 }
3813
3814 #if CONFIG_SUPPLEMENTAL_SIGNATURES
3815 int
3816 ubc_cs_blob_add_supplement(
3817 struct vnode *vp,
3818 struct vnode *orig_vp,
3819 off_t base_offset,
3820 vm_address_t *addr,
3821 vm_size_t size,
3822 struct cs_blob **ret_blob)
3823 {
3824 kern_return_t kr;
3825 struct ubc_info *uip, *orig_uip;
3826 int error;
3827 struct cs_blob *blob, *orig_blob;
3828 CS_CodeDirectory const *cd;
3829 off_t blob_start_offset, blob_end_offset;
3830
3831 if (ret_blob) {
3832 *ret_blob = NULL;
3833 }
3834
3835 /* Create the struct cs_blob wrapper that will be attached to the vnode.
3836 * Validates the passed in blob in the process. */
3837 error = cs_blob_create_validated(addr, size, &blob, &cd);
3838
3839 if (error != 0) {
3840 printf("malformed code signature supplement blob: %d\n", error);
3841 return error;
3842 }
3843
3844 blob->csb_cpu_type = -1;
3845 blob->csb_base_offset = base_offset;
3846
3847 blob->csb_reconstituted = false;
3848
3849 vnode_lock(orig_vp);
3850 if (!UBCINFOEXISTS(orig_vp)) {
3851 vnode_unlock(orig_vp);
3852 error = ENOENT;
3853 goto out;
3854 }
3855
3856 orig_uip = orig_vp->v_ubcinfo;
3857
3858 /* check that the supplement's linked cdhash matches a cdhash of
3859 * the target image.
3860 */
3861
3862 if (blob->csb_linkage_hashtype == NULL) {
3863 proc_t p;
3864 const char *iname = vnode_getname_printable(vp);
3865 p = current_proc();
3866
3867 printf("CODE SIGNING: proc %d(%s) supplemental signature for file (%s) "
3868 "is not a supplemental.\n",
3869 p->p_pid, p->p_comm, iname);
3870
3871 error = EINVAL;
3872
3873 vnode_putname_printable(iname);
3874 vnode_unlock(orig_vp);
3875 goto out;
3876 }
3877
3878 for (orig_blob = orig_uip->cs_blobs; orig_blob != NULL;
3879 orig_blob = orig_blob->csb_next) {
3880 ptrauth_utils_auth_blob_generic(orig_blob->csb_cdhash,
3881 sizeof(orig_blob->csb_cdhash),
3882 OS_PTRAUTH_DISCRIMINATOR("cs_blob.csb_cd_signature"),
3883 PTRAUTH_ADDR_DIVERSIFY,
3884 orig_blob->csb_cdhash_signature);
3885 if (orig_blob->csb_hashtype == blob->csb_linkage_hashtype &&
3886 memcmp(orig_blob->csb_cdhash, blob->csb_linkage, CS_CDHASH_LEN) == 0) {
3887 // Found match!
3888 break;
3889 }
3890 }
3891
3892 if (orig_blob == NULL) {
3893 // Not found.
3894
3895 proc_t p;
3896 const char *iname = vnode_getname_printable(vp);
3897 p = current_proc();
3898
3899 printf("CODE SIGNING: proc %d(%s) supplemental signature for file (%s) "
3900 "does not match any attached cdhash.\n",
3901 p->p_pid, p->p_comm, iname);
3902
3903 error = ESRCH;
3904
3905 vnode_putname_printable(iname);
3906 vnode_unlock(orig_vp);
3907 goto out;
3908 }
3909
3910 vnode_unlock(orig_vp);
3911
3912 // validate the signature against policy!
3913 #if CONFIG_MACF
3914 unsigned int signer_type = blob->csb_signer_type;
3915 error = mac_vnode_check_supplemental_signature(vp, blob, orig_vp, orig_blob, &signer_type);
3916 blob->csb_signer_type = signer_type;
3917
3918
3919 if (error) {
3920 if (cs_debug) {
3921 printf("check_supplemental_signature[pid: %d], error = %d\n", current_proc()->p_pid, error);
3922 }
3923 goto out;
3924 }
3925 #endif
3926
3927 // We allowed the supplemental signature blob so
3928 // copy the platform bit or team-id from the linked signature and whether or not the original is developer code
3929 blob->csb_platform_binary = 0;
3930 blob->csb_platform_path = 0;
3931 if (orig_blob->csb_platform_binary == 1) {
3932 blob->csb_platform_binary = orig_blob->csb_platform_binary;
3933 blob->csb_platform_path = orig_blob->csb_platform_path;
3934 } else if (orig_blob->csb_teamid != NULL) {
3935 vm_size_t teamid_size = strlen(orig_blob->csb_teamid) + 1;
3936 blob->csb_supplement_teamid = kalloc(teamid_size);
3937 if (blob->csb_supplement_teamid == NULL) {
3938 error = ENOMEM;
3939 goto out;
3940 }
3941 strlcpy(blob->csb_supplement_teamid, orig_blob->csb_teamid, teamid_size);
3942 }
3943 blob->csb_flags = (orig_blob->csb_flags & CS_DEV_CODE);
3944
3945 // Validate the blob's coverage
3946 blob_start_offset = blob->csb_base_offset + blob->csb_start_offset;
3947 blob_end_offset = blob->csb_base_offset + blob->csb_end_offset;
3948
3949 if (blob_start_offset >= blob_end_offset || blob_start_offset < 0 || blob_end_offset <= 0) {
3950 /* reject empty or backwards blob */
3951 error = EINVAL;
3952 goto out;
3953 }
3954
3955 vnode_lock(vp);
3956 if (!UBCINFOEXISTS(vp)) {
3957 vnode_unlock(vp);
3958 error = ENOENT;
3959 goto out;
3960 }
3961 uip = vp->v_ubcinfo;
3962
3963 struct cs_blob *existing = uip->cs_blob_supplement;
3964 if (existing != NULL) {
3965 if (blob->csb_hashtype == existing->csb_hashtype &&
3966 memcmp(blob->csb_cdhash, existing->csb_cdhash, CS_CDHASH_LEN) == 0) {
3967 error = EAGAIN; // non-fatal
3968 } else {
3969 error = EALREADY; // fatal
3970 }
3971
3972 vnode_unlock(vp);
3973 goto out;
3974 }
3975
3976 /* Unlike regular cs_blobs, we only ever support one supplement. */
3977 blob->csb_next = NULL;
3978 uip->cs_blob_supplement = blob;
3979
3980 /* mark this vnode's VM object as having "signed pages" */
3981 kr = memory_object_signed(uip->ui_control, TRUE);
3982 if (kr != KERN_SUCCESS) {
3983 vnode_unlock(vp);
3984 error = ENOENT;
3985 goto out;
3986 }
3987
3988 vnode_unlock(vp);
3989
3990 /* We still adjust statistics even for supplemental blobs, as they
3991 * consume memory just the same. */
3992 ubc_cs_blob_adjust_statistics(blob);
3993
3994 if (cs_debug > 1) {
3995 proc_t p;
3996 const char *name = vnode_getname_printable(vp);
3997 p = current_proc();
3998 printf("CODE SIGNING: proc %d(%s) "
3999 "loaded supplemental signature for file (%s) "
4000 "range 0x%llx:0x%llx\n",
4001 p->p_pid, p->p_comm,
4002 name,
4003 blob->csb_base_offset + blob->csb_start_offset,
4004 blob->csb_base_offset + blob->csb_end_offset);
4005 vnode_putname_printable(name);
4006 }
4007
4008 if (ret_blob) {
4009 *ret_blob = blob;
4010 }
4011
4012 error = 0; // Success!
4013 out:
4014 if (error) {
4015 if (cs_debug) {
4016 printf("ubc_cs_blob_add_supplement[pid: %d]: error = %d\n", current_proc()->p_pid, error);
4017 }
4018
4019 cs_blob_supplement_free(blob);
4020 }
4021
4022 if (error == EAGAIN) {
4023 /* We were asked to add an existing blob.
4024 * We cleaned up and ignore the attempt. */
4025 error = 0;
4026 }
4027
4028 return error;
4029 }
4030 #endif
4031
4032
4033
4034 void
4035 csvnode_print_debug(struct vnode *vp)
4036 {
4037 const char *name = NULL;
4038 struct ubc_info *uip;
4039 struct cs_blob *blob;
4040
4041 name = vnode_getname_printable(vp);
4042 if (name) {
4043 printf("csvnode: name: %s\n", name);
4044 vnode_putname_printable(name);
4045 }
4046
4047 vnode_lock_spin(vp);
4048
4049 if (!UBCINFOEXISTS(vp)) {
4050 blob = NULL;
4051 goto out;
4052 }
4053
4054 uip = vp->v_ubcinfo;
4055 for (blob = uip->cs_blobs; blob != NULL; blob = blob->csb_next) {
4056 printf("csvnode: range: %lu -> %lu flags: 0x%08x platform: %s path: %s team: %s\n",
4057 (unsigned long)blob->csb_start_offset,
4058 (unsigned long)blob->csb_end_offset,
4059 blob->csb_flags,
4060 blob->csb_platform_binary ? "yes" : "no",
4061 blob->csb_platform_path ? "yes" : "no",
4062 blob->csb_teamid ? blob->csb_teamid : "<NO-TEAM>");
4063 }
4064
4065 out:
4066 vnode_unlock(vp);
4067 }
4068
4069 #if CONFIG_SUPPLEMENTAL_SIGNATURES
4070 struct cs_blob *
4071 ubc_cs_blob_get_supplement(
4072 struct vnode *vp,
4073 off_t offset)
4074 {
4075 struct cs_blob *blob;
4076 off_t offset_in_blob;
4077
4078 vnode_lock_spin(vp);
4079
4080 if (!UBCINFOEXISTS(vp)) {
4081 blob = NULL;
4082 goto out;
4083 }
4084
4085 blob = vp->v_ubcinfo->cs_blob_supplement;
4086
4087 if (blob == NULL) {
4088 // no supplemental blob
4089 goto out;
4090 }
4091
4092
4093 if (offset != -1) {
4094 offset_in_blob = offset - blob->csb_base_offset;
4095 if (offset_in_blob < blob->csb_start_offset || offset_in_blob >= blob->csb_end_offset) {
4096 // not actually covered by this blob
4097 blob = NULL;
4098 }
4099 }
4100
4101 out:
4102 vnode_unlock(vp);
4103
4104 return blob;
4105 }
4106 #endif
4107
4108 struct cs_blob *
4109 ubc_cs_blob_get(
4110 struct vnode *vp,
4111 cpu_type_t cputype,
4112 cpu_subtype_t cpusubtype,
4113 off_t offset)
4114 {
4115 struct ubc_info *uip;
4116 struct cs_blob *blob;
4117 off_t offset_in_blob;
4118
4119 vnode_lock_spin(vp);
4120
4121 if (!UBCINFOEXISTS(vp)) {
4122 blob = NULL;
4123 goto out;
4124 }
4125
4126 uip = vp->v_ubcinfo;
4127 for (blob = uip->cs_blobs;
4128 blob != NULL;
4129 blob = blob->csb_next) {
4130 if (cputype != -1 && blob->csb_cpu_type == cputype && (cpusubtype == -1 || blob->csb_cpu_subtype == (cpusubtype & ~CPU_SUBTYPE_MASK))) {
4131 break;
4132 }
4133 if (offset != -1) {
4134 offset_in_blob = offset - blob->csb_base_offset;
4135 if (offset_in_blob >= blob->csb_start_offset &&
4136 offset_in_blob < blob->csb_end_offset) {
4137 /* our offset is covered by this blob */
4138 break;
4139 }
4140 }
4141 }
4142
4143 out:
4144 vnode_unlock(vp);
4145
4146 return blob;
4147 }
4148
4149 static void
4150 ubc_cs_free(
4151 struct ubc_info *uip)
4152 {
4153 struct cs_blob *blob, *next_blob;
4154
4155 for (blob = uip->cs_blobs;
4156 blob != NULL;
4157 blob = next_blob) {
4158 next_blob = blob->csb_next;
4159 os_atomic_add(&cs_blob_count, -1, relaxed);
4160 os_atomic_add(&cs_blob_size, -blob->csb_mem_size, relaxed);
4161 cs_blob_free(blob);
4162 }
4163 #if CHECK_CS_VALIDATION_BITMAP
4164 ubc_cs_validation_bitmap_deallocate( uip->ui_vnode );
4165 #endif
4166 uip->cs_blobs = NULL;
4167 #if CONFIG_SUPPLEMENTAL_SIGNATURES
4168 if (uip->cs_blob_supplement != NULL) {
4169 blob = uip->cs_blob_supplement;
4170 os_atomic_add(&cs_blob_count, -1, relaxed);
4171 os_atomic_add(&cs_blob_size, -blob->csb_mem_size, relaxed);
4172 cs_blob_supplement_free(uip->cs_blob_supplement);
4173 uip->cs_blob_supplement = NULL;
4174 }
4175 #endif
4176 }
4177
4178 /* check cs blob generation on vnode
4179 * returns:
4180 * 0 : Success, the cs_blob attached is current
4181 * ENEEDAUTH : Generation count mismatch. Needs authentication again.
4182 */
4183 int
4184 ubc_cs_generation_check(
4185 struct vnode *vp)
4186 {
4187 int retval = ENEEDAUTH;
4188
4189 vnode_lock_spin(vp);
4190
4191 if (UBCINFOEXISTS(vp) && vp->v_ubcinfo->cs_add_gen == cs_blob_generation_count) {
4192 retval = 0;
4193 }
4194
4195 vnode_unlock(vp);
4196 return retval;
4197 }
4198
4199 int
4200 ubc_cs_blob_revalidate(
4201 struct vnode *vp,
4202 struct cs_blob *blob,
4203 struct image_params *imgp,
4204 int flags,
4205 uint32_t platform
4206 )
4207 {
4208 int error = 0;
4209 const CS_CodeDirectory *cd = NULL;
4210 const CS_GenericBlob *entitlements = NULL;
4211 size_t size;
4212 assert(vp != NULL);
4213 assert(blob != NULL);
4214
4215 size = blob->csb_mem_size;
4216 error = cs_validate_csblob((const uint8_t *)blob->csb_mem_kaddr,
4217 size, &cd, &entitlements);
4218 if (error) {
4219 if (cs_debug) {
4220 printf("CODESIGNING: csblob invalid: %d\n", error);
4221 }
4222 goto out;
4223 }
4224
4225 unsigned int cs_flags = (ntohl(cd->flags) & CS_ALLOWED_MACHO) | CS_VALID;
4226 unsigned int signer_type = CS_SIGNER_TYPE_UNKNOWN;
4227
4228 if (blob->csb_reconstituted) {
4229 /*
4230 * Code signatures that have been modified after validation
4231 * cannot be revalidated inline from their in-memory blob.
4232 *
4233 * That's okay, though, because the only path left that relies
4234 * on revalidation of existing in-memory blobs is the legacy
4235 * detached signature database path, which only exists on macOS,
4236 * which does not do reconstitution of any kind.
4237 */
4238 if (cs_debug) {
4239 printf("CODESIGNING: revalidate: not inline revalidating reconstituted signature.\n");
4240 }
4241
4242 /*
4243 * EAGAIN tells the caller that they may reread the code
4244 * signature and try attaching it again, which is the same
4245 * thing they would do if there was no cs_blob yet in the
4246 * first place.
4247 *
4248 * Conveniently, after ubc_cs_blob_add did a successful
4249 * validation, it will detect that a matching cs_blob (cdhash,
4250 * offset, arch etc.) already exists, and return success
4251 * without re-adding a cs_blob to the vnode.
4252 */
4253 return EAGAIN;
4254 }
4255
4256 /* callout to mac_vnode_check_signature */
4257 #if CONFIG_MACF
4258 error = mac_vnode_check_signature(vp, blob, imgp, &cs_flags, &signer_type, flags, platform);
4259 if (cs_debug && error) {
4260 printf("revalidate: check_signature[pid: %d], error = %d\n", current_proc()->p_pid, error);
4261 }
4262 #else
4263 (void)flags;
4264 (void)signer_type;
4265 #endif
4266
4267 /* update generation number if success */
4268 vnode_lock_spin(vp);
4269 blob->csb_flags = cs_flags;
4270 blob->csb_signer_type = signer_type;
4271 if (UBCINFOEXISTS(vp)) {
4272 if (error == 0) {
4273 vp->v_ubcinfo->cs_add_gen = cs_blob_generation_count;
4274 } else {
4275 vp->v_ubcinfo->cs_add_gen = 0;
4276 }
4277 }
4278
4279 vnode_unlock(vp);
4280
4281 out:
4282 return error;
4283 }
4284
4285 void
4286 cs_blob_reset_cache()
4287 {
4288 /* incrementing odd no by 2 makes sure '0' is never reached. */
4289 OSAddAtomic(+2, &cs_blob_generation_count);
4290 printf("Reseting cs_blob cache from all vnodes. \n");
4291 }
4292
4293 struct cs_blob *
4294 ubc_get_cs_blobs(
4295 struct vnode *vp)
4296 {
4297 struct ubc_info *uip;
4298 struct cs_blob *blobs;
4299
4300 /*
4301 * No need to take the vnode lock here. The caller must be holding
4302 * a reference on the vnode (via a VM mapping or open file descriptor),
4303 * so the vnode will not go away. The ubc_info stays until the vnode
4304 * goes away. And we only modify "blobs" by adding to the head of the
4305 * list.
4306 * The ubc_info could go away entirely if the vnode gets reclaimed as
4307 * part of a forced unmount. In the case of a code-signature validation
4308 * during a page fault, the "paging_in_progress" reference on the VM
4309 * object guarantess that the vnode pager (and the ubc_info) won't go
4310 * away during the fault.
4311 * Other callers need to protect against vnode reclaim by holding the
4312 * vnode lock, for example.
4313 */
4314
4315 if (!UBCINFOEXISTS(vp)) {
4316 blobs = NULL;
4317 goto out;
4318 }
4319
4320 uip = vp->v_ubcinfo;
4321 blobs = uip->cs_blobs;
4322
4323 out:
4324 return blobs;
4325 }
4326
4327 #if CONFIG_SUPPLEMENTAL_SIGNATURES
4328 struct cs_blob *
4329 ubc_get_cs_supplement(
4330 struct vnode *vp)
4331 {
4332 struct ubc_info *uip;
4333 struct cs_blob *blob;
4334
4335 /*
4336 * No need to take the vnode lock here. The caller must be holding
4337 * a reference on the vnode (via a VM mapping or open file descriptor),
4338 * so the vnode will not go away. The ubc_info stays until the vnode
4339 * goes away.
4340 * The ubc_info could go away entirely if the vnode gets reclaimed as
4341 * part of a forced unmount. In the case of a code-signature validation
4342 * during a page fault, the "paging_in_progress" reference on the VM
4343 * object guarantess that the vnode pager (and the ubc_info) won't go
4344 * away during the fault.
4345 * Other callers need to protect against vnode reclaim by holding the
4346 * vnode lock, for example.
4347 */
4348
4349 if (!UBCINFOEXISTS(vp)) {
4350 blob = NULL;
4351 goto out;
4352 }
4353
4354 uip = vp->v_ubcinfo;
4355 blob = uip->cs_blob_supplement;
4356
4357 out:
4358 return blob;
4359 }
4360 #endif
4361
4362
4363 void
4364 ubc_get_cs_mtime(
4365 struct vnode *vp,
4366 struct timespec *cs_mtime)
4367 {
4368 struct ubc_info *uip;
4369
4370 if (!UBCINFOEXISTS(vp)) {
4371 cs_mtime->tv_sec = 0;
4372 cs_mtime->tv_nsec = 0;
4373 return;
4374 }
4375
4376 uip = vp->v_ubcinfo;
4377 cs_mtime->tv_sec = uip->cs_mtime.tv_sec;
4378 cs_mtime->tv_nsec = uip->cs_mtime.tv_nsec;
4379 }
4380
4381 unsigned long cs_validate_page_no_hash = 0;
4382 unsigned long cs_validate_page_bad_hash = 0;
4383 static boolean_t
4384 cs_validate_hash(
4385 struct cs_blob *blobs,
4386 memory_object_t pager,
4387 memory_object_offset_t page_offset,
4388 const void *data,
4389 vm_size_t *bytes_processed,
4390 unsigned *tainted)
4391 {
4392 union cs_hash_union mdctx;
4393 struct cs_hash const *hashtype = NULL;
4394 unsigned char actual_hash[CS_HASH_MAX_SIZE];
4395 unsigned char expected_hash[CS_HASH_MAX_SIZE];
4396 boolean_t found_hash;
4397 struct cs_blob *blob;
4398 const CS_CodeDirectory *cd;
4399 const unsigned char *hash;
4400 boolean_t validated;
4401 off_t offset; /* page offset in the file */
4402 size_t size;
4403 off_t codeLimit = 0;
4404 const char *lower_bound, *upper_bound;
4405 vm_offset_t kaddr, blob_addr;
4406
4407 /* retrieve the expected hash */
4408 found_hash = FALSE;
4409
4410 for (blob = blobs;
4411 blob != NULL;
4412 blob = blob->csb_next) {
4413 offset = page_offset - blob->csb_base_offset;
4414 if (offset < blob->csb_start_offset ||
4415 offset >= blob->csb_end_offset) {
4416 /* our page is not covered by this blob */
4417 continue;
4418 }
4419
4420 /* blob data has been released */
4421 kaddr = blob->csb_mem_kaddr;
4422 if (kaddr == 0) {
4423 continue;
4424 }
4425
4426 blob_addr = kaddr + blob->csb_mem_offset;
4427 lower_bound = CAST_DOWN(char *, blob_addr);
4428 upper_bound = lower_bound + blob->csb_mem_size;
4429
4430 cd = blob->csb_cd;
4431 if (cd != NULL) {
4432 /* all CD's that have been injected is already validated */
4433
4434 hashtype = blob->csb_hashtype;
4435 if (hashtype == NULL) {
4436 panic("unknown hash type ?");
4437 }
4438 if (hashtype->cs_digest_size > sizeof(actual_hash)) {
4439 panic("hash size too large");
4440 }
4441 if (offset & ((1U << blob->csb_hash_pageshift) - 1)) {
4442 panic("offset not aligned to cshash boundary");
4443 }
4444
4445 codeLimit = ntohl(cd->codeLimit);
4446
4447 hash = hashes(cd, (uint32_t)(offset >> blob->csb_hash_pageshift),
4448 hashtype->cs_size,
4449 lower_bound, upper_bound);
4450 if (hash != NULL) {
4451 bcopy(hash, expected_hash, hashtype->cs_size);
4452 found_hash = TRUE;
4453 }
4454
4455 break;
4456 }
4457 }
4458
4459 if (found_hash == FALSE) {
4460 /*
4461 * We can't verify this page because there is no signature
4462 * for it (yet). It's possible that this part of the object
4463 * is not signed, or that signatures for that part have not
4464 * been loaded yet.
4465 * Report that the page has not been validated and let the
4466 * caller decide if it wants to accept it or not.
4467 */
4468 cs_validate_page_no_hash++;
4469 if (cs_debug > 1) {
4470 printf("CODE SIGNING: cs_validate_page: "
4471 "mobj %p off 0x%llx: no hash to validate !?\n",
4472 pager, page_offset);
4473 }
4474 validated = FALSE;
4475 *tainted = 0;
4476 } else {
4477 *tainted = 0;
4478
4479 size = (1U << blob->csb_hash_pageshift);
4480 *bytes_processed = size;
4481
4482 const uint32_t *asha1, *esha1;
4483 if ((off_t)(offset + size) > codeLimit) {
4484 /* partial page at end of segment */
4485 assert(offset < codeLimit);
4486 size = (size_t) (codeLimit & (size - 1));
4487 *tainted |= CS_VALIDATE_NX;
4488 }
4489
4490 hashtype->cs_init(&mdctx);
4491
4492 if (blob->csb_hash_firstlevel_pageshift) {
4493 const unsigned char *partial_data = (const unsigned char *)data;
4494 size_t i;
4495 for (i = 0; i < size;) {
4496 union cs_hash_union partialctx;
4497 unsigned char partial_digest[CS_HASH_MAX_SIZE];
4498 size_t partial_size = MIN(size - i, (1U << blob->csb_hash_firstlevel_pageshift));
4499
4500 hashtype->cs_init(&partialctx);
4501 hashtype->cs_update(&partialctx, partial_data, partial_size);
4502 hashtype->cs_final(partial_digest, &partialctx);
4503
4504 /* Update cumulative multi-level hash */
4505 hashtype->cs_update(&mdctx, partial_digest, hashtype->cs_size);
4506 partial_data = partial_data + partial_size;
4507 i += partial_size;
4508 }
4509 } else {
4510 hashtype->cs_update(&mdctx, data, size);
4511 }
4512 hashtype->cs_final(actual_hash, &mdctx);
4513
4514 asha1 = (const uint32_t *) actual_hash;
4515 esha1 = (const uint32_t *) expected_hash;
4516
4517 if (bcmp(expected_hash, actual_hash, hashtype->cs_size) != 0) {
4518 if (cs_debug) {
4519 printf("CODE SIGNING: cs_validate_page: "
4520 "mobj %p off 0x%llx size 0x%lx: "
4521 "actual [0x%x 0x%x 0x%x 0x%x 0x%x] != "
4522 "expected [0x%x 0x%x 0x%x 0x%x 0x%x]\n",
4523 pager, page_offset, size,
4524 asha1[0], asha1[1], asha1[2],
4525 asha1[3], asha1[4],
4526 esha1[0], esha1[1], esha1[2],
4527 esha1[3], esha1[4]);
4528 }
4529 cs_validate_page_bad_hash++;
4530 *tainted |= CS_VALIDATE_TAINTED;
4531 } else {
4532 if (cs_debug > 10) {
4533 printf("CODE SIGNING: cs_validate_page: "
4534 "mobj %p off 0x%llx size 0x%lx: "
4535 "SHA1 OK\n",
4536 pager, page_offset, size);
4537 }
4538 }
4539 validated = TRUE;
4540 }
4541
4542 return validated;
4543 }
4544
4545 boolean_t
4546 cs_validate_range(
4547 struct vnode *vp,
4548 memory_object_t pager,
4549 memory_object_offset_t page_offset,
4550 const void *data,
4551 vm_size_t dsize,
4552 unsigned *tainted)
4553 {
4554 vm_size_t offset_in_range;
4555 boolean_t all_subranges_validated = TRUE; /* turn false if any subrange fails */
4556
4557 struct cs_blob *blobs = ubc_get_cs_blobs(vp);
4558
4559 #if CONFIG_SUPPLEMENTAL_SIGNATURES
4560 if (blobs == NULL && proc_is_translated(current_proc())) {
4561 struct cs_blob *supp = ubc_get_cs_supplement(vp);
4562
4563 if (supp != NULL) {
4564 blobs = supp;
4565 } else {
4566 return FALSE;
4567 }
4568 }
4569 #endif
4570
4571
4572
4573 *tainted = 0;
4574
4575 for (offset_in_range = 0;
4576 offset_in_range < dsize;
4577 /* offset_in_range updated based on bytes processed */) {
4578 unsigned subrange_tainted = 0;
4579 boolean_t subrange_validated;
4580 vm_size_t bytes_processed = 0;
4581
4582 subrange_validated = cs_validate_hash(blobs,
4583 pager,
4584 page_offset + offset_in_range,
4585 (const void *)((const char *)data + offset_in_range),
4586 &bytes_processed,
4587 &subrange_tainted);
4588
4589 *tainted |= subrange_tainted;
4590
4591 if (bytes_processed == 0) {
4592 /* Cannote make forward progress, so return an error */
4593 all_subranges_validated = FALSE;
4594 break;
4595 } else if (subrange_validated == FALSE) {
4596 all_subranges_validated = FALSE;
4597 /* Keep going to detect other types of failures in subranges */
4598 }
4599
4600 offset_in_range += bytes_processed;
4601 }
4602
4603 return all_subranges_validated;
4604 }
4605
4606 void
4607 cs_validate_page(
4608 struct vnode *vp,
4609 memory_object_t pager,
4610 memory_object_offset_t page_offset,
4611 const void *data,
4612 int *validated_p,
4613 int *tainted_p,
4614 int *nx_p)
4615 {
4616 vm_size_t offset_in_page;
4617 struct cs_blob *blobs;
4618
4619 blobs = ubc_get_cs_blobs(vp);
4620
4621 #if CONFIG_SUPPLEMENTAL_SIGNATURES
4622 if (blobs == NULL && proc_is_translated(current_proc())) {
4623 struct cs_blob *supp = ubc_get_cs_supplement(vp);
4624
4625 if (supp != NULL) {
4626 blobs = supp;
4627 }
4628 }
4629 #endif
4630
4631 *validated_p = VMP_CS_ALL_FALSE;
4632 *tainted_p = VMP_CS_ALL_FALSE;
4633 *nx_p = VMP_CS_ALL_FALSE;
4634
4635 for (offset_in_page = 0;
4636 offset_in_page < PAGE_SIZE;
4637 /* offset_in_page updated based on bytes processed */) {
4638 unsigned subrange_tainted = 0;
4639 boolean_t subrange_validated;
4640 vm_size_t bytes_processed = 0;
4641 int sub_bit;
4642
4643 subrange_validated = cs_validate_hash(blobs,
4644 pager,
4645 page_offset + offset_in_page,
4646 (const void *)((const char *)data + offset_in_page),
4647 &bytes_processed,
4648 &subrange_tainted);
4649
4650 if (bytes_processed == 0) {
4651 /* 4k chunk not code-signed: try next one */
4652 offset_in_page += FOURK_PAGE_SIZE;
4653 continue;
4654 }
4655 if (offset_in_page == 0 &&
4656 bytes_processed > PAGE_SIZE - FOURK_PAGE_SIZE) {
4657 /* all processed: no 4k granularity */
4658 if (subrange_validated) {
4659 *validated_p = VMP_CS_ALL_TRUE;
4660 }
4661 if (subrange_tainted & CS_VALIDATE_TAINTED) {
4662 *tainted_p = VMP_CS_ALL_TRUE;
4663 }
4664 if (subrange_tainted & CS_VALIDATE_NX) {
4665 *nx_p = VMP_CS_ALL_TRUE;
4666 }
4667 break;
4668 }
4669 /* we only handle 4k or 16k code-signing granularity... */
4670 assertf(bytes_processed <= FOURK_PAGE_SIZE,
4671 "vp %p blobs %p offset 0x%llx + 0x%llx bytes_processed 0x%llx\n",
4672 vp, blobs, (uint64_t)page_offset,
4673 (uint64_t)offset_in_page, (uint64_t)bytes_processed);
4674 sub_bit = 1 << (offset_in_page >> FOURK_PAGE_SHIFT);
4675 if (subrange_validated) {
4676 *validated_p |= sub_bit;
4677 }
4678 if (subrange_tainted & CS_VALIDATE_TAINTED) {
4679 *tainted_p |= sub_bit;
4680 }
4681 if (subrange_tainted & CS_VALIDATE_NX) {
4682 *nx_p |= sub_bit;
4683 }
4684 /* go to next 4k chunk */
4685 offset_in_page += FOURK_PAGE_SIZE;
4686 }
4687
4688 return;
4689 }
4690
4691 int
4692 ubc_cs_getcdhash(
4693 vnode_t vp,
4694 off_t offset,
4695 unsigned char *cdhash)
4696 {
4697 struct cs_blob *blobs, *blob;
4698 off_t rel_offset;
4699 int ret;
4700
4701 vnode_lock(vp);
4702
4703 blobs = ubc_get_cs_blobs(vp);
4704 for (blob = blobs;
4705 blob != NULL;
4706 blob = blob->csb_next) {
4707 /* compute offset relative to this blob */
4708 rel_offset = offset - blob->csb_base_offset;
4709 if (rel_offset >= blob->csb_start_offset &&
4710 rel_offset < blob->csb_end_offset) {
4711 /* this blob does cover our "offset" ! */
4712 break;
4713 }
4714 }
4715
4716 if (blob == NULL) {
4717 /* we didn't find a blob covering "offset" */
4718 ret = EBADEXEC; /* XXX any better error ? */
4719 } else {
4720 /* get the SHA1 hash of that blob */
4721 ptrauth_utils_auth_blob_generic(blob->csb_cdhash,
4722 sizeof(blob->csb_cdhash),
4723 OS_PTRAUTH_DISCRIMINATOR("cs_blob.csb_cd_signature"),
4724 PTRAUTH_ADDR_DIVERSIFY,
4725 blob->csb_cdhash_signature);
4726 bcopy(blob->csb_cdhash, cdhash, sizeof(blob->csb_cdhash));
4727 ret = 0;
4728 }
4729
4730 vnode_unlock(vp);
4731
4732 return ret;
4733 }
4734
4735 boolean_t
4736 ubc_cs_is_range_codesigned(
4737 vnode_t vp,
4738 mach_vm_offset_t start,
4739 mach_vm_size_t size)
4740 {
4741 struct cs_blob *csblob;
4742 mach_vm_offset_t blob_start;
4743 mach_vm_offset_t blob_end;
4744
4745 if (vp == NULL) {
4746 /* no file: no code signature */
4747 return FALSE;
4748 }
4749 if (size == 0) {
4750 /* no range: no code signature */
4751 return FALSE;
4752 }
4753 if (start + size < start) {
4754 /* overflow */
4755 return FALSE;
4756 }
4757
4758 csblob = ubc_cs_blob_get(vp, -1, -1, start);
4759 if (csblob == NULL) {
4760 return FALSE;
4761 }
4762
4763 /*
4764 * We currently check if the range is covered by a single blob,
4765 * which should always be the case for the dyld shared cache.
4766 * If we ever want to make this routine handle other cases, we
4767 * would have to iterate if the blob does not cover the full range.
4768 */
4769 blob_start = (mach_vm_offset_t) (csblob->csb_base_offset +
4770 csblob->csb_start_offset);
4771 blob_end = (mach_vm_offset_t) (csblob->csb_base_offset +
4772 csblob->csb_end_offset);
4773 if (blob_start > start || blob_end < (start + size)) {
4774 /* range not fully covered by this code-signing blob */
4775 return FALSE;
4776 }
4777
4778 return TRUE;
4779 }
4780
4781 #if CHECK_CS_VALIDATION_BITMAP
4782 #define stob(s) (((atop_64(round_page_64(s))) + 07) >> 3)
4783 extern boolean_t root_fs_upgrade_try;
4784
4785 /*
4786 * Should we use the code-sign bitmap to avoid repeated code-sign validation?
4787 * Depends:
4788 * a) Is the target vnode on the root filesystem?
4789 * b) Has someone tried to mount the root filesystem read-write?
4790 * If answers are (a) yes AND (b) no, then we can use the bitmap.
4791 */
4792 #define USE_CODE_SIGN_BITMAP(vp) ( (vp != NULL) && (vp->v_mount != NULL) && (vp->v_mount->mnt_flag & MNT_ROOTFS) && !root_fs_upgrade_try)
4793 kern_return_t
4794 ubc_cs_validation_bitmap_allocate(
4795 vnode_t vp)
4796 {
4797 kern_return_t kr = KERN_SUCCESS;
4798 struct ubc_info *uip;
4799 char *target_bitmap;
4800 vm_object_size_t bitmap_size;
4801
4802 if (!USE_CODE_SIGN_BITMAP(vp) || (!UBCINFOEXISTS(vp))) {
4803 kr = KERN_INVALID_ARGUMENT;
4804 } else {
4805 uip = vp->v_ubcinfo;
4806
4807 if (uip->cs_valid_bitmap == NULL) {
4808 bitmap_size = stob(uip->ui_size);
4809 target_bitmap = (char*) kalloc((vm_size_t)bitmap_size );
4810 if (target_bitmap == 0) {
4811 kr = KERN_NO_SPACE;
4812 } else {
4813 kr = KERN_SUCCESS;
4814 }
4815 if (kr == KERN_SUCCESS) {
4816 memset( target_bitmap, 0, (size_t)bitmap_size);
4817 uip->cs_valid_bitmap = (void*)target_bitmap;
4818 uip->cs_valid_bitmap_size = bitmap_size;
4819 }
4820 }
4821 }
4822 return kr;
4823 }
4824
4825 kern_return_t
4826 ubc_cs_check_validation_bitmap(
4827 vnode_t vp,
4828 memory_object_offset_t offset,
4829 int optype)
4830 {
4831 kern_return_t kr = KERN_SUCCESS;
4832
4833 if (!USE_CODE_SIGN_BITMAP(vp) || !UBCINFOEXISTS(vp)) {
4834 kr = KERN_INVALID_ARGUMENT;
4835 } else {
4836 struct ubc_info *uip = vp->v_ubcinfo;
4837 char *target_bitmap = uip->cs_valid_bitmap;
4838
4839 if (target_bitmap == NULL) {
4840 kr = KERN_INVALID_ARGUMENT;
4841 } else {
4842 uint64_t bit, byte;
4843 bit = atop_64( offset );
4844 byte = bit >> 3;
4845
4846 if (byte > uip->cs_valid_bitmap_size) {
4847 kr = KERN_INVALID_ARGUMENT;
4848 } else {
4849 if (optype == CS_BITMAP_SET) {
4850 target_bitmap[byte] |= (1 << (bit & 07));
4851 kr = KERN_SUCCESS;
4852 } else if (optype == CS_BITMAP_CLEAR) {
4853 target_bitmap[byte] &= ~(1 << (bit & 07));
4854 kr = KERN_SUCCESS;
4855 } else if (optype == CS_BITMAP_CHECK) {
4856 if (target_bitmap[byte] & (1 << (bit & 07))) {
4857 kr = KERN_SUCCESS;
4858 } else {
4859 kr = KERN_FAILURE;
4860 }
4861 }
4862 }
4863 }
4864 }
4865 return kr;
4866 }
4867
4868 void
4869 ubc_cs_validation_bitmap_deallocate(
4870 vnode_t vp)
4871 {
4872 struct ubc_info *uip;
4873 void *target_bitmap;
4874 vm_object_size_t bitmap_size;
4875
4876 if (UBCINFOEXISTS(vp)) {
4877 uip = vp->v_ubcinfo;
4878
4879 if ((target_bitmap = uip->cs_valid_bitmap) != NULL) {
4880 bitmap_size = uip->cs_valid_bitmap_size;
4881 kfree( target_bitmap, (vm_size_t) bitmap_size );
4882 uip->cs_valid_bitmap = NULL;
4883 }
4884 }
4885 }
4886 #else
4887 kern_return_t
4888 ubc_cs_validation_bitmap_allocate(__unused vnode_t vp)
4889 {
4890 return KERN_INVALID_ARGUMENT;
4891 }
4892
4893 kern_return_t
4894 ubc_cs_check_validation_bitmap(
4895 __unused struct vnode *vp,
4896 __unused memory_object_offset_t offset,
4897 __unused int optype)
4898 {
4899 return KERN_INVALID_ARGUMENT;
4900 }
4901
4902 void
4903 ubc_cs_validation_bitmap_deallocate(__unused vnode_t vp)
4904 {
4905 return;
4906 }
4907 #endif /* CHECK_CS_VALIDATION_BITMAP */
4908
4909 #if PMAP_CS
4910 kern_return_t
4911 cs_associate_blob_with_mapping(
4912 void *pmap,
4913 vm_map_offset_t start,
4914 vm_map_size_t size,
4915 vm_object_offset_t offset,
4916 void *blobs_p)
4917 {
4918 off_t blob_start_offset, blob_end_offset;
4919 kern_return_t kr;
4920 struct cs_blob *blobs, *blob;
4921 vm_offset_t kaddr;
4922 struct pmap_cs_code_directory *cd_entry = NULL;
4923
4924 if (!pmap_cs) {
4925 return KERN_NOT_SUPPORTED;
4926 }
4927
4928 blobs = (struct cs_blob *)blobs_p;
4929
4930 for (blob = blobs;
4931 blob != NULL;
4932 blob = blob->csb_next) {
4933 blob_start_offset = (blob->csb_base_offset +
4934 blob->csb_start_offset);
4935 blob_end_offset = (blob->csb_base_offset +
4936 blob->csb_end_offset);
4937 if ((off_t) offset < blob_start_offset ||
4938 (off_t) offset >= blob_end_offset ||
4939 (off_t) (offset + size) <= blob_start_offset ||
4940 (off_t) (offset + size) > blob_end_offset) {
4941 continue;
4942 }
4943 kaddr = blob->csb_mem_kaddr;
4944 if (kaddr == 0) {
4945 /* blob data has been released */
4946 continue;
4947 }
4948 cd_entry = blob->csb_pmap_cs_entry;
4949 if (cd_entry == NULL) {
4950 continue;
4951 }
4952
4953 break;
4954 }
4955
4956 if (cd_entry != NULL) {
4957 kr = pmap_cs_associate(pmap,
4958 cd_entry,
4959 start,
4960 size,
4961 offset - blob_start_offset);
4962 } else {
4963 kr = KERN_CODESIGN_ERROR;
4964 }
4965 #if 00
4966 printf("FBDP %d[%s] pmap_cs_associate(%p,%p,0x%llx,0x%llx) -> kr=0x%x\n", proc_selfpid(), &(current_proc()->p_comm[0]), pmap, cd_entry, (uint64_t)start, (uint64_t)size, kr);
4967 kr = KERN_SUCCESS;
4968 #endif
4969 return kr;
4970 }
4971 #endif /* PMAP_CS */