2 * Copyright (c) 1991-2015 Apple Computer, Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 #include <sys/param.h>
29 #include <sys/types.h>
31 #include <sys/vnode.h>
32 #include <vm/vm_kern.h>
33 #include <mach/kern_return.h>
34 #include <mach/vm_param.h>
35 #include <kern/cpu_number.h>
36 #include <mach-o/fat.h>
37 #include <kern/mach_loader.h>
38 #include <kern/mach_fat.h>
39 #include <libkern/OSByteOrder.h>
40 #include <machine/exec.h>
42 /**********************************************************************
43 * Routine: fatfile_getarch()
45 * Function: Locate the architecture-dependant contents of a fat
46 * file that match this CPU.
48 * Args: header: A pointer to the fat file header.
49 * size: How large the fat file header is (including fat_arch array)
50 * req_cpu_type: The required cpu type.
51 * mask_bits: Bits to mask from the sub-image type when
52 * grading it vs. the req_cpu_type
54 * archret (out): Pointer to fat_arch structure to hold
57 * Returns: KERN_SUCCESS: Valid architecture found.
58 * KERN_FAILURE: No valid architecture found.
59 **********************************************************************/
64 cpu_type_t req_cpu_type
,
66 cpu_subtype_t req_subcpu_type
,
67 struct image_params
*imgp
,
68 struct fat_arch
*archret
)
71 struct fat_arch
*arch
;
72 struct fat_arch
*best_arch
;
75 size_t nfat_arch
, max_nfat_arch
;
77 cpu_subtype_t testsubtype
;
78 cpu_subtype_t testfeatures
;
79 struct fat_header
*header
;
81 if (sizeof(struct fat_header
) > data_size
) {
85 header
= (struct fat_header
*)data_ptr
;
86 nfat_arch
= OSSwapBigToHostInt32(header
->nfat_arch
);
88 max_nfat_arch
= (data_size
- sizeof(struct fat_header
)) / sizeof(struct fat_arch
);
89 if (nfat_arch
> max_nfat_arch
) {
90 /* nfat_arch would cause us to read off end of buffer */
95 * Scan the fat_arch's looking for the best one. */
98 arch
= (struct fat_arch
*) (data_ptr
+ sizeof(struct fat_header
));
99 for (; nfat_arch
-- > 0; arch
++) {
100 testtype
= OSSwapBigToHostInt32(arch
->cputype
);
101 testsubtype
= OSSwapBigToHostInt32(arch
->cpusubtype
) & ~CPU_SUBTYPE_MASK
;
102 testfeatures
= OSSwapBigToHostInt32(arch
->cpusubtype
) & CPU_SUBTYPE_MASK
;
105 * Check to see if right cpu/subcpu type.
107 if (!binary_match(mask_bits
, req_cpu_type
, req_subcpu_type
, testtype
, testsubtype
)) {
112 * Get the grade of the cpu subtype
114 grade
= grade_binary(testtype
, testsubtype
, testfeatures
, TRUE
);
117 * Remember it if it's the best we've seen.
119 if (grade
> best_grade
) {
125 /* On X86_64, allow 32 bit exec only for simulator binaries.
126 * Failing here without re-running the grading algorithm is safe because i386
127 * has the lowest possible grade value (so there can't be a lower best grade
128 * that would be allowed if this check denied the i386 slice). */
129 if (best_arch
!= NULL
&&
130 validate_potential_simulator_binary(OSSwapBigToHostInt32(best_arch
->cputype
),
131 imgp
, OSSwapBigToHostInt32(best_arch
->offset
),
132 OSSwapBigToHostInt32(best_arch
->size
)) != LOAD_SUCCESS
) {
138 * Return our results.
140 if (best_arch
== NULL
) {
144 OSSwapBigToHostInt32(best_arch
->cputype
);
145 archret
->cpusubtype
=
146 OSSwapBigToHostInt32(best_arch
->cpusubtype
);
148 OSSwapBigToHostInt32(best_arch
->offset
);
150 OSSwapBigToHostInt32(best_arch
->size
);
152 OSSwapBigToHostInt32(best_arch
->align
);
158 * Free the memory we allocated and return.
165 vm_offset_t data_ptr
,
167 struct image_params
*imgp
,
168 struct fat_arch
*archret
,
169 __unused
bool affinity
)
171 int primary_type
= cpu_type();
175 * Ignore all architectural bits when determining if an image
176 * in a fat file should be skipped or graded.
178 load_return_t ret
= fatfile_getarch(data_ptr
, data_size
, primary_type
, CPU_ARCH_MASK
, CPU_SUBTYPE_ANY
, imgp
, archret
);
183 fatfile_getbestarch_for_cputype(
185 cpu_subtype_t cpusubtype
,
186 vm_offset_t data_ptr
,
188 struct image_params
*imgp
,
189 struct fat_arch
*archret
)
192 * Scan the fat_arch array for exact matches for this cpu_type_t only
194 return fatfile_getarch(data_ptr
, data_size
, cputype
, 0, cpusubtype
, imgp
, archret
);
197 /**********************************************************************
198 * Routine: fatfile_getarch_with_bits()
200 * Function: Locate the architecture-dependant contents of a fat
201 * file that match this CPU.
203 * Args: vp: The vnode for the fat file.
204 * archbits: Architecture specific feature bits
205 * header: A pointer to the fat file header.
206 * archret (out): Pointer to fat_arch structure to hold
209 * Returns: KERN_SUCCESS: Valid architecture found.
210 * KERN_FAILURE: No valid architecture found.
211 **********************************************************************/
213 fatfile_getarch_with_bits(
215 vm_offset_t data_ptr
,
217 struct fat_arch
*archret
)
220 * Scan the fat_arch array for matches with the requested
221 * architectural bits set, and for the current hardware cpu CPU.
223 return fatfile_getarch(data_ptr
, data_size
, (archbits
& CPU_ARCH_MASK
) | (cpu_type() & ~CPU_ARCH_MASK
), 0, CPU_SUBTYPE_ANY
, NULL
, archret
);
227 * Validate the fat_header and fat_arch array in memory. We check that:
229 * 1) arch count would not exceed the data buffer
230 * 2) arch list does not contain duplicate cputype/cpusubtype tuples
231 * 3) arch list does not have two overlapping slices. The area
232 * at the front of the file containing the fat headers is implicitly
233 * a range that a slice should also not try to cover
236 fatfile_validate_fatarches(vm_offset_t data_ptr
, vm_size_t data_size
)
239 size_t nfat_arch
, max_nfat_arch
, i
, j
;
240 size_t fat_header_size
;
242 struct fat_arch
*arches
;
243 struct fat_header
*header
;
245 if (sizeof(struct fat_header
) > data_size
) {
249 header
= (struct fat_header
*)data_ptr
;
250 magic
= OSSwapBigToHostInt32(header
->magic
);
251 nfat_arch
= OSSwapBigToHostInt32(header
->nfat_arch
);
253 if (magic
!= FAT_MAGIC
) {
254 /* must be FAT_MAGIC big endian */
258 max_nfat_arch
= (data_size
- sizeof(struct fat_header
)) / sizeof(struct fat_arch
);
259 if (nfat_arch
> max_nfat_arch
) {
260 /* nfat_arch would cause us to read off end of buffer */
261 return LOAD_BADMACHO
;
264 /* now that we know the fat_arch list fits in the buffer, how much does it use? */
265 fat_header_size
= sizeof(struct fat_header
) + nfat_arch
* sizeof(struct fat_arch
);
266 arches
= (struct fat_arch
*)(data_ptr
+ sizeof(struct fat_header
));
268 for (i
= 0; i
< nfat_arch
; i
++) {
269 uint32_t i_begin
= OSSwapBigToHostInt32(arches
[i
].offset
);
270 uint32_t i_size
= OSSwapBigToHostInt32(arches
[i
].size
);
271 uint32_t i_cputype
= OSSwapBigToHostInt32(arches
[i
].cputype
);
272 uint32_t i_cpusubtype
= OSSwapBigToHostInt32(arches
[i
].cpusubtype
);
274 if (i_begin
< fat_header_size
) {
275 /* slice is trying to claim part of the file used by fat headers themselves */
276 return LOAD_BADMACHO
;
279 if ((UINT32_MAX
- i_size
) < i_begin
) {
280 /* start + size would overflow */
281 return LOAD_BADMACHO
;
283 uint32_t i_end
= i_begin
+ i_size
;
285 for (j
= i
+ 1; j
< nfat_arch
; j
++) {
286 uint32_t j_begin
= OSSwapBigToHostInt32(arches
[j
].offset
);
287 uint32_t j_size
= OSSwapBigToHostInt32(arches
[j
].size
);
288 uint32_t j_cputype
= OSSwapBigToHostInt32(arches
[j
].cputype
);
289 uint32_t j_cpusubtype
= OSSwapBigToHostInt32(arches
[j
].cpusubtype
);
291 if ((i_cputype
== j_cputype
) && (i_cpusubtype
== j_cpusubtype
)) {
292 /* duplicate cputype/cpusubtype, results in ambiguous references */
293 return LOAD_BADMACHO
;
296 if ((UINT32_MAX
- j_size
) < j_begin
) {
297 /* start + size would overflow */
298 return LOAD_BADMACHO
;
300 uint32_t j_end
= j_begin
+ j_size
;
302 if (i_begin
<= j_begin
) {
303 if (i_end
<= j_begin
) {
304 /* I completely precedes J */
306 /* I started before J, but ends somewhere in or after J */
307 return LOAD_BADMACHO
;
310 if (i_begin
>= j_end
) {
311 /* I started after J started but also after J ended */
313 /* I started after J started but before it ended, so there is overlap */
314 return LOAD_BADMACHO
;