2 * Copyright (c) 2005-2006 Apple Computer, Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <kern/thread.h>
33 #include <sys/kauth.h>
35 #include <sys/systm.h>
36 #include <sys/dtrace.h>
37 #include <sys/dtrace_impl.h>
38 #include <machine/atomic.h>
39 #include <libkern/OSKextLibPrivate.h>
40 #include <kern/kern_types.h>
41 #include <kern/timer_call.h>
42 #include <kern/thread_call.h>
43 #include <kern/task.h>
44 #include <kern/sched_prim.h>
45 #include <miscfs/devfs/devfs.h>
46 #include <kern/kalloc.h>
48 #include <mach/vm_param.h>
49 #include <mach/mach_vm.h>
50 #include <mach/task.h>
51 #include <vm/vm_map.h> /* All the bits we care about are guarded by MACH_KERNEL_PRIVATE :-( */
56 /* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */
57 #define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */
59 KALLOC_HEAP_DEFINE(KHEAP_DTRACE
, "dtrace", KHEAP_ID_DEFAULT
);
62 dtrace_sprlock(proc_t
*p
)
64 lck_mtx_lock(&p
->p_dtrace_sprlock
);
68 dtrace_sprunlock(proc_t
*p
)
70 lck_mtx_unlock(&p
->p_dtrace_sprlock
);
73 /* Not called from probe context */
79 if ((p
= proc_find(pid
)) == PROC_NULL
) {
83 task_suspend_internal(p
->task
);
90 /* Not called from probe context */
97 task_resume_internal(p
->task
);
107 // These are not exported from vm_map.h.
108 extern kern_return_t
vm_map_read_user(vm_map_t map
, vm_map_address_t src_addr
, void *dst_p
, vm_size_t size
);
109 extern kern_return_t
vm_map_write_user(vm_map_t map
, void *src_p
, vm_map_address_t dst_addr
, vm_size_t size
);
111 /* Not called from probe context */
113 uread(proc_t
*p
, void *buf
, user_size_t len
, user_addr_t a
)
117 ASSERT(p
!= PROC_NULL
);
118 ASSERT(p
->task
!= NULL
);
120 task_t task
= p
->task
;
123 * Grab a reference to the task vm_map_t to make sure
124 * the map isn't pulled out from under us.
126 * Because the proc_lock is not held at all times on all code
127 * paths leading here, it is possible for the proc to have
128 * exited. If the map is null, fail.
130 vm_map_t map
= get_task_map_reference(task
);
132 ret
= vm_map_read_user( map
, (vm_map_address_t
)a
, buf
, (vm_size_t
)len
);
133 vm_map_deallocate(map
);
135 ret
= KERN_TERMINATED
;
142 /* Not called from probe context */
144 uwrite(proc_t
*p
, void *buf
, user_size_t len
, user_addr_t a
)
149 ASSERT(p
->task
!= NULL
);
151 task_t task
= p
->task
;
154 * Grab a reference to the task vm_map_t to make sure
155 * the map isn't pulled out from under us.
157 * Because the proc_lock is not held at all times on all code
158 * paths leading here, it is possible for the proc to have
159 * exited. If the map is null, fail.
161 vm_map_t map
= get_task_map_reference(task
);
163 /* Find the memory permissions. */
164 uint32_t nestingDepth
= 999999;
165 vm_region_submap_short_info_data_64_t info
;
166 mach_msg_type_number_t count
= VM_REGION_SUBMAP_SHORT_INFO_COUNT_64
;
167 mach_vm_address_t address
= (mach_vm_address_t
)a
;
168 mach_vm_size_t sizeOfRegion
= (mach_vm_size_t
)len
;
170 ret
= mach_vm_region_recurse(map
, &address
, &sizeOfRegion
, &nestingDepth
, (vm_region_recurse_info_t
)&info
, &count
);
171 if (ret
!= KERN_SUCCESS
) {
177 if (!(info
.protection
& VM_PROT_WRITE
)) {
178 /* Save the original protection values for restoration later */
179 reprotect
= info
.protection
;
181 if (info
.max_protection
& VM_PROT_WRITE
) {
182 /* The memory is not currently writable, but can be made writable. */
183 ret
= mach_vm_protect(map
, (mach_vm_offset_t
)a
, (mach_vm_size_t
)len
, 0, (reprotect
& ~VM_PROT_EXECUTE
) | VM_PROT_WRITE
);
186 * The memory is not currently writable, and cannot be made writable. We need to COW this memory.
188 * Strange, we can't just say "reprotect | VM_PROT_COPY", that fails.
190 ret
= mach_vm_protect(map
, (mach_vm_offset_t
)a
, (mach_vm_size_t
)len
, 0, VM_PROT_COPY
| VM_PROT_READ
| VM_PROT_WRITE
);
193 if (ret
!= KERN_SUCCESS
) {
197 /* The memory was already writable. */
198 reprotect
= VM_PROT_NONE
;
201 ret
= vm_map_write_user( map
,
206 dtrace_flush_caches();
208 if (ret
!= KERN_SUCCESS
) {
212 if (reprotect
!= VM_PROT_NONE
) {
213 ASSERT(reprotect
& VM_PROT_EXECUTE
);
214 ret
= mach_vm_protect(map
, (mach_vm_offset_t
)a
, (mach_vm_size_t
)len
, 0, reprotect
);
218 vm_map_deallocate(map
);
220 ret
= KERN_TERMINATED
;
233 dtrace_cpu_t
*cpu_list
;
234 cpu_core_t
*cpu_core
; /* XXX TLB lockdown? */
241 * dtrace_CRED() can be called from probe context. We cannot simply call kauth_cred_get() since
242 * that function may try to resolve a lazy credential binding, which entails taking the proc_lock.
247 struct uthread
*uthread
= get_bsdthread_info(current_thread());
249 if (uthread
== NULL
) {
252 return uthread
->uu_ucred
; /* May return NOCRED which is defined to be 0 */
257 PRIV_POLICY_CHOICE(void* cred
, int priv
, int all
)
259 #pragma unused(priv, all)
260 return kauth_cred_issuser(cred
); /* XXX TODO: How is this different from PRIV_POLICY_ONLY? */
264 PRIV_POLICY_ONLY(void *cr
, int priv
, int boolean
)
266 #pragma unused(priv, boolean)
267 return kauth_cred_issuser(cr
); /* XXX TODO: HAS_PRIVILEGE(cr, priv); */
271 crgetuid(const cred_t
*cr
)
273 cred_t copy_cr
= *cr
; return kauth_cred_getuid(©_cr
);
280 typedef struct wrap_timer_call
{
281 /* node attributes */
287 struct timer_call call
;
289 /* next item in the linked list */
290 LIST_ENTRY(wrap_timer_call
) entries
;
293 #define WAKEUP_REAPER 0x7FFFFFFFFFFFFFFFLL
294 #define NEARLY_FOREVER 0x7FFFFFFFFFFFFFFELL
297 typedef struct cyc_list
{
298 cyc_omni_handler_t cyl_omni
;
299 wrap_timer_call_t cyl_wrap_by_cpus
[];
300 #if __arm__ && (__BIGGEST_ALIGNMENT__ > 4)
301 } __attribute__ ((aligned(8))) cyc_list_t
;
306 /* CPU going online/offline notifications */
307 void (*dtrace_cpu_state_changed_hook
)(int, boolean_t
) = NULL
;
308 void dtrace_cpu_state_changed(int, boolean_t
);
311 dtrace_install_cpu_hooks(void)
313 dtrace_cpu_state_changed_hook
= dtrace_cpu_state_changed
;
317 dtrace_cpu_state_changed(int cpuid
, boolean_t is_running
)
319 #pragma unused(cpuid)
320 wrap_timer_call_t
*wrapTC
= NULL
;
321 boolean_t suspend
= (is_running
? FALSE
: TRUE
);
324 /* Ensure that we're not going to leave the CPU */
325 s
= dtrace_interrupt_disable();
326 assert(cpuid
== cpu_number());
328 LIST_FOREACH(wrapTC
, &(cpu_list
[cpu_number()].cpu_cyc_list
), entries
) {
329 assert(wrapTC
->cpuid
== cpu_number());
331 assert(!wrapTC
->suspended
);
332 /* If this fails, we'll panic anyway, so let's do this now. */
333 if (!timer_call_cancel(&wrapTC
->call
)) {
334 panic("timer_call_set_suspend() failed to cancel a timer call");
336 wrapTC
->suspended
= TRUE
;
338 /* Rearm the timer, but ensure it was suspended first. */
339 assert(wrapTC
->suspended
);
340 clock_deadline_for_periodic_event(wrapTC
->when
.cyt_interval
, mach_absolute_time(),
342 timer_call_enter1(&wrapTC
->call
, (void*) wrapTC
, wrapTC
->deadline
,
343 TIMER_CALL_SYS_CRITICAL
| TIMER_CALL_LOCAL
);
344 wrapTC
->suspended
= FALSE
;
348 /* Restore the previous interrupt state. */
349 dtrace_interrupt_enable(s
);
353 _timer_call_apply_cyclic( void *ignore
, void *vTChdl
)
355 #pragma unused(ignore)
356 wrap_timer_call_t
*wrapTC
= (wrap_timer_call_t
*)vTChdl
;
358 (*(wrapTC
->hdlr
.cyh_func
))( wrapTC
->hdlr
.cyh_arg
);
360 clock_deadline_for_periodic_event( wrapTC
->when
.cyt_interval
, mach_absolute_time(), &(wrapTC
->deadline
));
361 timer_call_enter1( &(wrapTC
->call
), (void *)wrapTC
, wrapTC
->deadline
, TIMER_CALL_SYS_CRITICAL
| TIMER_CALL_LOCAL
);
365 timer_call_add_cyclic(wrap_timer_call_t
*wrapTC
, cyc_handler_t
*handler
, cyc_time_t
*when
)
370 timer_call_setup( &(wrapTC
->call
), _timer_call_apply_cyclic
, NULL
);
371 wrapTC
->hdlr
= *handler
;
372 wrapTC
->when
= *when
;
374 nanoseconds_to_absolutetime( wrapTC
->when
.cyt_interval
, (uint64_t *)&wrapTC
->when
.cyt_interval
);
376 now
= mach_absolute_time();
377 wrapTC
->deadline
= now
;
379 clock_deadline_for_periodic_event( wrapTC
->when
.cyt_interval
, now
, &(wrapTC
->deadline
));
381 /* Insert the timer to the list of the running timers on this CPU, and start it. */
382 s
= dtrace_interrupt_disable();
383 wrapTC
->cpuid
= cpu_number();
384 LIST_INSERT_HEAD(&cpu_list
[wrapTC
->cpuid
].cpu_cyc_list
, wrapTC
, entries
);
385 timer_call_enter1(&wrapTC
->call
, (void*) wrapTC
, wrapTC
->deadline
,
386 TIMER_CALL_SYS_CRITICAL
| TIMER_CALL_LOCAL
);
387 wrapTC
->suspended
= FALSE
;
388 dtrace_interrupt_enable(s
);
390 return (cyclic_id_t
)wrapTC
;
394 * Executed on the CPU the timer is running on.
397 timer_call_remove_cyclic(wrap_timer_call_t
*wrapTC
)
400 assert(cpu_number() == wrapTC
->cpuid
);
402 if (!timer_call_cancel(&wrapTC
->call
)) {
403 panic("timer_call_remove_cyclic() failed to cancel a timer call");
406 LIST_REMOVE(wrapTC
, entries
);
410 timer_call_get_cyclic_arg(wrap_timer_call_t
*wrapTC
)
412 return wrapTC
? wrapTC
->hdlr
.cyh_arg
: NULL
;
416 cyclic_timer_add(cyc_handler_t
*handler
, cyc_time_t
*when
)
418 wrap_timer_call_t
*wrapTC
= _MALLOC(sizeof(wrap_timer_call_t
), M_TEMP
, M_ZERO
| M_WAITOK
);
419 if (NULL
== wrapTC
) {
422 return timer_call_add_cyclic( wrapTC
, handler
, when
);
427 cyclic_timer_remove(cyclic_id_t cyclic
)
429 ASSERT( cyclic
!= CYCLIC_NONE
);
431 /* Removing a timer call must be done on the CPU the timer is running on. */
432 wrap_timer_call_t
*wrapTC
= (wrap_timer_call_t
*) cyclic
;
433 dtrace_xcall(wrapTC
->cpuid
, (dtrace_xcall_t
) timer_call_remove_cyclic
, (void*) cyclic
);
435 _FREE((void *)cyclic
, M_TEMP
);
439 _cyclic_add_omni(cyc_list_t
*cyc_list
)
443 cyc_omni_handler_t
*omni
= &cyc_list
->cyl_omni
;
445 (omni
->cyo_online
)(omni
->cyo_arg
, CPU
, &cH
, &cT
);
447 wrap_timer_call_t
*wrapTC
= &cyc_list
->cyl_wrap_by_cpus
[cpu_number()];
448 timer_call_add_cyclic(wrapTC
, &cH
, &cT
);
452 cyclic_add_omni(cyc_omni_handler_t
*omni
)
454 cyc_list_t
*cyc_list
=
455 _MALLOC(sizeof(cyc_list_t
) + NCPU
* sizeof(wrap_timer_call_t
), M_TEMP
, M_ZERO
| M_WAITOK
);
457 if (NULL
== cyc_list
) {
461 cyc_list
->cyl_omni
= *omni
;
463 dtrace_xcall(DTRACE_CPUALL
, (dtrace_xcall_t
)_cyclic_add_omni
, (void *)cyc_list
);
465 return (cyclic_id_list_t
)cyc_list
;
469 _cyclic_remove_omni(cyc_list_t
*cyc_list
)
471 cyc_omni_handler_t
*omni
= &cyc_list
->cyl_omni
;
473 wrap_timer_call_t
*wrapTC
;
476 * If the processor was offline when dtrace started, we did not allocate
477 * a cyclic timer for this CPU.
479 if ((wrapTC
= &cyc_list
->cyl_wrap_by_cpus
[cpu_number()]) != NULL
) {
480 oarg
= timer_call_get_cyclic_arg(wrapTC
);
481 timer_call_remove_cyclic(wrapTC
);
482 (omni
->cyo_offline
)(omni
->cyo_arg
, CPU
, oarg
);
487 cyclic_remove_omni(cyclic_id_list_t cyc_list
)
489 ASSERT(cyc_list
!= NULL
);
491 dtrace_xcall(DTRACE_CPUALL
, (dtrace_xcall_t
)_cyclic_remove_omni
, (void *)cyc_list
);
492 _FREE(cyc_list
, M_TEMP
);
495 typedef struct wrap_thread_call
{
500 } wrap_thread_call_t
;
503 * _cyclic_apply will run on some thread under kernel_task. That's OK for the
504 * cleaner and the deadman, but too distant in time and place for the profile provider.
507 _cyclic_apply( void *ignore
, void *vTChdl
)
509 #pragma unused(ignore)
510 wrap_thread_call_t
*wrapTC
= (wrap_thread_call_t
*)vTChdl
;
512 (*(wrapTC
->hdlr
.cyh_func
))( wrapTC
->hdlr
.cyh_arg
);
514 clock_deadline_for_periodic_event( wrapTC
->when
.cyt_interval
, mach_absolute_time(), &(wrapTC
->deadline
));
515 (void)thread_call_enter1_delayed( wrapTC
->TChdl
, (void *)wrapTC
, wrapTC
->deadline
);
517 /* Did cyclic_remove request a wakeup call when this thread call was re-armed? */
518 if (wrapTC
->when
.cyt_interval
== WAKEUP_REAPER
) {
519 thread_wakeup((event_t
)wrapTC
);
524 cyclic_add(cyc_handler_t
*handler
, cyc_time_t
*when
)
528 wrap_thread_call_t
*wrapTC
= _MALLOC(sizeof(wrap_thread_call_t
), M_TEMP
, M_ZERO
| M_WAITOK
);
529 if (NULL
== wrapTC
) {
533 wrapTC
->TChdl
= thread_call_allocate( _cyclic_apply
, NULL
);
534 wrapTC
->hdlr
= *handler
;
535 wrapTC
->when
= *when
;
537 ASSERT(when
->cyt_when
== 0);
538 ASSERT(when
->cyt_interval
< WAKEUP_REAPER
);
540 nanoseconds_to_absolutetime(wrapTC
->when
.cyt_interval
, (uint64_t *)&wrapTC
->when
.cyt_interval
);
542 now
= mach_absolute_time();
543 wrapTC
->deadline
= now
;
545 clock_deadline_for_periodic_event( wrapTC
->when
.cyt_interval
, now
, &(wrapTC
->deadline
));
546 (void)thread_call_enter1_delayed( wrapTC
->TChdl
, (void *)wrapTC
, wrapTC
->deadline
);
548 return (cyclic_id_t
)wrapTC
;
552 noop_cyh_func(void * ignore
)
554 #pragma unused(ignore)
558 cyclic_remove(cyclic_id_t cyclic
)
560 wrap_thread_call_t
*wrapTC
= (wrap_thread_call_t
*)cyclic
;
562 ASSERT(cyclic
!= CYCLIC_NONE
);
564 while (!thread_call_cancel(wrapTC
->TChdl
)) {
565 int ret
= assert_wait(wrapTC
, THREAD_UNINT
);
566 ASSERT(ret
== THREAD_WAITING
);
568 wrapTC
->when
.cyt_interval
= WAKEUP_REAPER
;
570 ret
= thread_block(THREAD_CONTINUE_NULL
);
571 ASSERT(ret
== THREAD_AWAKENED
);
574 if (thread_call_free(wrapTC
->TChdl
)) {
575 _FREE(wrapTC
, M_TEMP
);
577 /* Gut this cyclic and move on ... */
578 wrapTC
->hdlr
.cyh_func
= noop_cyh_func
;
579 wrapTC
->when
.cyt_interval
= NEARLY_FOREVER
;
584 ddi_driver_major(dev_info_t
*devi
)
586 return (int)major(CAST_DOWN_EXPLICIT(int, devi
));
590 ddi_create_minor_node(dev_info_t
*dip
, const char *name
, int spec_type
,
591 minor_t minor_num
, const char *node_type
, int flag
)
593 #pragma unused(spec_type,node_type,flag)
594 dev_t dev
= makedev( ddi_driver_major(dip
), minor_num
);
596 if (NULL
== devfs_make_node( dev
, DEVFS_CHAR
, UID_ROOT
, GID_WHEEL
, 0666, name
, 0 )) {
604 ddi_remove_minor_node(dev_info_t
*dip
, char *name
)
606 #pragma unused(dip,name)
607 /* XXX called from dtrace_detach, so NOTREACHED for now. */
613 return (major_t
) major(d
);
619 return (minor_t
) minor(d
);
622 extern void Debugger(const char*);
635 dt_kmem_alloc_site(size_t size
, int kmflag
, vm_allocation_site_t
*site
)
637 #pragma unused(kmflag)
640 * We ignore the M_NOWAIT bit in kmflag (all of kmflag, in fact).
641 * Requests larger than 8K with M_NOWAIT fail in kalloc_ext.
643 return kalloc_ext(KHEAP_DTRACE
, size
, Z_WAITOK
, site
).addr
;
647 dt_kmem_zalloc_site(size_t size
, int kmflag
, vm_allocation_site_t
*site
)
649 #pragma unused(kmflag)
652 * We ignore the M_NOWAIT bit in kmflag (all of kmflag, in fact).
653 * Requests larger than 8K with M_NOWAIT fail in kalloc_ext.
655 return kalloc_ext(KHEAP_DTRACE
, size
, Z_WAITOK
| Z_ZERO
, site
).addr
;
659 dt_kmem_free(void *buf
, size_t size
)
661 kheap_free(KHEAP_DTRACE
, buf
, size
);
667 * aligned dt_kmem allocator
668 * align should be a power of two
672 dt_kmem_alloc_aligned_site(size_t size
, size_t align
, int kmflag
, vm_allocation_site_t
*site
)
674 void *mem
, **addr_to_free
;
675 intptr_t mem_aligned
;
676 size_t *size_to_free
, hdr_size
;
678 /* Must be a power of two. */
680 assert((align
& (align
- 1)) == 0);
683 * We are going to add a header to the allocation. It contains
684 * the address to free and the total size of the buffer.
686 hdr_size
= sizeof(size_t) + sizeof(void*);
687 mem
= dt_kmem_alloc_site(size
+ align
+ hdr_size
, kmflag
, site
);
692 mem_aligned
= (intptr_t) (((intptr_t) mem
+ align
+ hdr_size
) & ~(align
- 1));
694 /* Write the address to free in the header. */
695 addr_to_free
= (void**) (mem_aligned
- sizeof(void*));
698 /* Write the size to free in the header. */
699 size_to_free
= (size_t*) (mem_aligned
- hdr_size
);
700 *size_to_free
= size
+ align
+ hdr_size
;
702 return (void*) mem_aligned
;
706 dt_kmem_zalloc_aligned_site(size_t size
, size_t align
, int kmflag
, vm_allocation_site_t
*s
)
710 buf
= dt_kmem_alloc_aligned_site(size
, align
, kmflag
, s
);
722 dt_kmem_free_aligned(void* buf
, size_t size
)
725 intptr_t ptr
= (intptr_t) buf
;
726 void **addr_to_free
= (void**) (ptr
- sizeof(void*));
727 size_t *size_to_free
= (size_t*) (ptr
- (sizeof(size_t) + sizeof(void*)));
733 dt_kmem_free(*addr_to_free
, *size_to_free
);
737 * dtrace wants to manage just a single block: dtrace_state_percpu_t * NCPU, and
738 * doesn't specify constructor, destructor, or reclaim methods.
739 * At present, it always zeroes the block it obtains from kmem_cache_alloc().
740 * We'll manage this constricted use of kmem_cache with ordinary _MALLOC and _FREE.
744 const char *name
, /* descriptive name for this cache */
745 size_t bufsize
, /* size of the objects it manages */
746 size_t align
, /* required object alignment */
747 int (*constructor
)(void *, void *, int), /* object constructor */
748 void (*destructor
)(void *, void *), /* object destructor */
749 void (*reclaim
)(void *), /* memory reclaim callback */
750 void *private, /* pass-thru arg for constr/destr/reclaim */
751 vmem_t
*vmp
, /* vmem source for slab allocation */
752 int cflags
) /* cache creation flags */
754 #pragma unused(name,align,constructor,destructor,reclaim,private,vmp,cflags)
755 return (kmem_cache_t
*)bufsize
; /* A cookie that tracks the single object size. */
759 kmem_cache_alloc(kmem_cache_t
*cp
, int kmflag
)
761 #pragma unused(kmflag)
762 size_t bufsize
= (size_t)cp
;
763 return (void *)_MALLOC(bufsize
, M_TEMP
, M_WAITOK
);
767 kmem_cache_free(kmem_cache_t
*cp
, void *buf
)
774 kmem_cache_destroy(kmem_cache_t
*cp
)
780 * vmem (Solaris "slab" allocator) used by DTrace solely to hand out resource ids
782 typedef unsigned int u_daddr_t
;
785 /* By passing around blist *handles*, the underlying blist can be resized as needed. */
791 vmem_create(const char *name
, void *base
, size_t size
, size_t quantum
, void *ignore5
,
792 void *ignore6
, vmem_t
*source
, size_t qcache_max
, int vmflag
)
794 #pragma unused(name,quantum,ignore5,ignore6,source,qcache_max,vmflag)
796 struct blist_hdl
*p
= _MALLOC(sizeof(struct blist_hdl
), M_TEMP
, M_WAITOK
);
798 ASSERT(quantum
== 1);
799 ASSERT(NULL
== ignore5
);
800 ASSERT(NULL
== ignore6
);
801 ASSERT(NULL
== source
);
802 ASSERT(0 == qcache_max
);
803 ASSERT(size
<= INT32_MAX
);
804 ASSERT(vmflag
& VMC_IDENTIFIER
);
806 size
= MIN(128, size
); /* Clamp to 128 initially, since the underlying data structure is pre-allocated */
808 p
->blist
= bl
= blist_create((daddr_t
)size
);
809 blist_free(bl
, 0, (daddr_t
)size
);
811 blist_alloc( bl
, (daddr_t
)(uintptr_t)base
); /* Chomp off initial ID(s) */
817 vmem_alloc(vmem_t
*vmp
, size_t size
, int vmflag
)
819 #pragma unused(vmflag)
820 struct blist_hdl
*q
= (struct blist_hdl
*)vmp
;
821 blist_t bl
= q
->blist
;
824 p
= blist_alloc(bl
, (daddr_t
)size
);
826 if (p
== SWAPBLK_NONE
) {
827 blist_resize(&bl
, (bl
->bl_blocks
) << 1, 1);
829 p
= blist_alloc(bl
, (daddr_t
)size
);
830 if (p
== SWAPBLK_NONE
) {
831 panic("vmem_alloc: failure after blist_resize!");
835 return (void *)(uintptr_t)p
;
839 vmem_free(vmem_t
*vmp
, void *vaddr
, size_t size
)
841 struct blist_hdl
*p
= (struct blist_hdl
*)vmp
;
843 blist_free( p
->blist
, (daddr_t
)(uintptr_t)vaddr
, (daddr_t
)size
);
847 vmem_destroy(vmem_t
*vmp
)
849 struct blist_hdl
*p
= (struct blist_hdl
*)vmp
;
851 blist_destroy( p
->blist
);
852 _FREE( p
, sizeof(struct blist_hdl
));
860 * dtrace_gethrestime() provides the "walltimestamp", a value that is anchored at
861 * January 1, 1970. Because it can be called from probe context, it must take no locks.
865 dtrace_gethrestime(void)
868 clock_nsec_t nanosecs
;
869 uint64_t secs64
, ns64
;
871 clock_get_calendar_nanotime_nowait(&secs
, &nanosecs
);
872 secs64
= (uint64_t)secs
;
873 ns64
= (uint64_t)nanosecs
;
875 ns64
= ns64
+ (secs64
* 1000000000LL);
880 * dtrace_gethrtime() provides high-resolution timestamps with machine-dependent origin.
881 * Hence its primary use is to specify intervals.
885 dtrace_abs_to_nano(uint64_t elapsed
)
887 static mach_timebase_info_data_t sTimebaseInfo
= { 0, 0 };
890 * If this is the first time we've run, get the timebase.
891 * We can use denom == 0 to indicate that sTimebaseInfo is
892 * uninitialised because it makes no sense to have a zero
893 * denominator in a fraction.
896 if (sTimebaseInfo
.denom
== 0) {
897 (void) clock_timebase_info(&sTimebaseInfo
);
901 * Convert to nanoseconds.
902 * return (elapsed * (uint64_t)sTimebaseInfo.numer)/(uint64_t)sTimebaseInfo.denom;
904 * Provided the final result is representable in 64 bits the following maneuver will
905 * deliver that result without intermediate overflow.
907 if (sTimebaseInfo
.denom
== sTimebaseInfo
.numer
) {
909 } else if (sTimebaseInfo
.denom
== 1) {
910 return elapsed
* (uint64_t)sTimebaseInfo
.numer
;
912 /* Decompose elapsed = eta32 * 2^32 + eps32: */
913 uint64_t eta32
= elapsed
>> 32;
914 uint64_t eps32
= elapsed
& 0x00000000ffffffffLL
;
916 uint32_t numer
= sTimebaseInfo
.numer
, denom
= sTimebaseInfo
.denom
;
918 /* Form product of elapsed64 (decomposed) and numer: */
919 uint64_t mu64
= numer
* eta32
;
920 uint64_t lambda64
= numer
* eps32
;
922 /* Divide the constituents by denom: */
923 uint64_t q32
= mu64
/ denom
;
924 uint64_t r32
= mu64
- (q32
* denom
); /* mu64 % denom */
926 return (q32
<< 32) + ((r32
<< 32) + lambda64
) / denom
;
931 dtrace_gethrtime(void)
933 static uint64_t start
= 0;
936 start
= mach_absolute_time();
939 return dtrace_abs_to_nano(mach_absolute_time() - start
);
943 * Atomicity and synchronization
946 dtrace_cas32(uint32_t *target
, uint32_t cmp
, uint32_t new)
948 if (OSCompareAndSwap((UInt32
)cmp
, (UInt32
)new, (volatile UInt32
*)target
)) {
951 return ~cmp
; /* Must return something *other* than cmp */
956 dtrace_casptr(void *target
, void *cmp
, void *new)
958 if (OSCompareAndSwapPtr( cmp
, new, (void**)target
)) {
961 return (void *)(~(uintptr_t)cmp
); /* Must return something *other* than cmp */
966 * Interrupt manipulation
969 dtrace_interrupt_disable(void)
971 return (dtrace_icookie_t
)ml_set_interrupts_enabled(FALSE
);
975 dtrace_interrupt_enable(dtrace_icookie_t reenable
)
977 (void)ml_set_interrupts_enabled((boolean_t
)reenable
);
984 dtrace_sync_func(void)
989 * dtrace_sync() is not called from probe context.
994 dtrace_xcall(DTRACE_CPUALL
, (dtrace_xcall_t
)dtrace_sync_func
, NULL
);
998 * The dtrace_copyin/out/instr and dtrace_fuword* routines can be called from probe context.
1001 extern kern_return_t
dtrace_copyio_preflight(addr64_t
);
1002 extern kern_return_t
dtrace_copyio_postflight(addr64_t
);
1005 dtrace_copycheck(user_addr_t uaddr
, uintptr_t kaddr
, size_t size
)
1007 #pragma unused(kaddr)
1009 vm_offset_t recover
= dtrace_set_thread_recover( current_thread(), 0 ); /* Snare any extant recovery point. */
1010 dtrace_set_thread_recover( current_thread(), recover
); /* Put it back. We *must not* re-enter and overwrite. */
1012 ASSERT(kaddr
+ size
>= kaddr
);
1014 if (uaddr
+ size
< uaddr
|| /* Avoid address wrap. */
1015 KERN_FAILURE
== dtrace_copyio_preflight(uaddr
)) { /* Machine specific setup/constraints. */
1016 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
1017 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= uaddr
;
1024 dtrace_copyin(user_addr_t src
, uintptr_t dst
, size_t len
, volatile uint16_t *flags
)
1026 #pragma unused(flags)
1028 if (dtrace_copycheck( src
, dst
, len
)) {
1029 if (copyin((const user_addr_t
)src
, (char *)dst
, (vm_size_t
)len
)) {
1030 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
1031 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= src
;
1033 dtrace_copyio_postflight(src
);
1038 dtrace_copyinstr(user_addr_t src
, uintptr_t dst
, size_t len
, volatile uint16_t *flags
)
1040 #pragma unused(flags)
1044 if (dtrace_copycheck( src
, dst
, len
)) {
1045 /* copyin as many as 'len' bytes. */
1046 int error
= copyinstr((const user_addr_t
)src
, (char *)dst
, (vm_size_t
)len
, &actual
);
1049 * ENAMETOOLONG is returned when 'len' bytes have been copied in but the NUL terminator was
1050 * not encountered. That does not require raising CPU_DTRACE_BADADDR, and we press on.
1051 * Note that we do *not* stuff a NUL terminator when returning ENAMETOOLONG, that's left
1054 if (error
&& error
!= ENAMETOOLONG
) {
1055 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
1056 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= src
;
1058 dtrace_copyio_postflight(src
);
1063 dtrace_copyout(uintptr_t src
, user_addr_t dst
, size_t len
, volatile uint16_t *flags
)
1065 #pragma unused(flags)
1067 if (dtrace_copycheck( dst
, src
, len
)) {
1068 if (copyout((const void *)src
, dst
, (vm_size_t
)len
)) {
1069 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
1070 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= dst
;
1072 dtrace_copyio_postflight(dst
);
1077 dtrace_copyoutstr(uintptr_t src
, user_addr_t dst
, size_t len
, volatile uint16_t *flags
)
1079 #pragma unused(flags)
1083 if (dtrace_copycheck( dst
, src
, len
)) {
1085 * ENAMETOOLONG is returned when 'len' bytes have been copied out but the NUL terminator was
1086 * not encountered. We raise CPU_DTRACE_BADADDR in that case.
1087 * Note that we do *not* stuff a NUL terminator when returning ENAMETOOLONG, that's left
1090 if (copyoutstr((const void *)src
, dst
, (size_t)len
, &actual
)) {
1091 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
1092 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= dst
;
1094 dtrace_copyio_postflight(dst
);
1098 extern const int copysize_limit_panic
;
1101 dtrace_copy_maxsize(void)
1103 return copysize_limit_panic
;
1108 dtrace_buffer_copyout(const void *kaddr
, user_addr_t uaddr
, vm_size_t nbytes
)
1110 int maxsize
= dtrace_copy_maxsize();
1112 * Partition the copyout in copysize_limit_panic-sized chunks
1114 while (nbytes
>= (vm_size_t
)maxsize
) {
1115 if (copyout(kaddr
, uaddr
, maxsize
) != 0) {
1124 if (copyout(kaddr
, uaddr
, nbytes
) != 0) {
1133 dtrace_fuword8(user_addr_t uaddr
)
1137 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
1138 if (dtrace_copycheck( uaddr
, (uintptr_t)&ret
, sizeof(ret
))) {
1139 if (copyin((const user_addr_t
)uaddr
, (char *)&ret
, sizeof(ret
))) {
1140 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
1141 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= uaddr
;
1143 dtrace_copyio_postflight(uaddr
);
1145 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
1151 dtrace_fuword16(user_addr_t uaddr
)
1155 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
1156 if (dtrace_copycheck( uaddr
, (uintptr_t)&ret
, sizeof(ret
))) {
1157 if (copyin((const user_addr_t
)uaddr
, (char *)&ret
, sizeof(ret
))) {
1158 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
1159 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= uaddr
;
1161 dtrace_copyio_postflight(uaddr
);
1163 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
1169 dtrace_fuword32(user_addr_t uaddr
)
1173 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
1174 if (dtrace_copycheck( uaddr
, (uintptr_t)&ret
, sizeof(ret
))) {
1175 if (copyin((const user_addr_t
)uaddr
, (char *)&ret
, sizeof(ret
))) {
1176 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
1177 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= uaddr
;
1179 dtrace_copyio_postflight(uaddr
);
1181 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
1187 dtrace_fuword64(user_addr_t uaddr
)
1191 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
1192 if (dtrace_copycheck( uaddr
, (uintptr_t)&ret
, sizeof(ret
))) {
1193 if (copyin((const user_addr_t
)uaddr
, (char *)&ret
, sizeof(ret
))) {
1194 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
1195 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= uaddr
;
1197 dtrace_copyio_postflight(uaddr
);
1199 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
1205 * Emulation of Solaris fuword / suword
1206 * Called from the fasttrap provider, so the use of copyin/out requires fewer safegaurds.
1210 fuword8(user_addr_t uaddr
, uint8_t *value
)
1212 if (copyin((const user_addr_t
)uaddr
, (char *)value
, sizeof(uint8_t)) != 0) {
1220 fuword16(user_addr_t uaddr
, uint16_t *value
)
1222 if (copyin((const user_addr_t
)uaddr
, (char *)value
, sizeof(uint16_t)) != 0) {
1230 fuword32(user_addr_t uaddr
, uint32_t *value
)
1232 if (copyin((const user_addr_t
)uaddr
, (char *)value
, sizeof(uint32_t)) != 0) {
1240 fuword64(user_addr_t uaddr
, uint64_t *value
)
1242 if (copyin((const user_addr_t
)uaddr
, (char *)value
, sizeof(uint64_t)) != 0) {
1250 fuword32_noerr(user_addr_t uaddr
, uint32_t *value
)
1252 if (copyin((const user_addr_t
)uaddr
, (char *)value
, sizeof(uint32_t))) {
1258 fuword64_noerr(user_addr_t uaddr
, uint64_t *value
)
1260 if (copyin((const user_addr_t
)uaddr
, (char *)value
, sizeof(uint64_t))) {
1266 suword64(user_addr_t addr
, uint64_t value
)
1268 if (copyout((const void *)&value
, addr
, sizeof(value
)) != 0) {
1276 suword32(user_addr_t addr
, uint32_t value
)
1278 if (copyout((const void *)&value
, addr
, sizeof(value
)) != 0) {
1288 extern boolean_t
dtrace_tally_fault(user_addr_t
);
1291 dtrace_tally_fault(user_addr_t uaddr
)
1293 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
1294 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= uaddr
;
1295 return DTRACE_CPUFLAG_ISSET(CPU_DTRACE_NOFAULT
) ? TRUE
: FALSE
;
1299 extern int prf(const char *, va_list, int, struct tty
*); /* bsd/kern/subr_prf.h */
1302 vuprintf(const char *format
, va_list ap
)
1304 return prf(format
, ap
, TOTTY
, NULL
);
1307 /* Not called from probe context */
1309 cmn_err( int level
, const char *format
, ... )
1311 #pragma unused(level)
1314 va_start(alist
, format
);
1315 vuprintf(format
, alist
);
1321 bsearch(const void *key
, const void *base0
, size_t nmemb
, size_t size
, int (*compar
)(const void *, const void *))
1323 const char *base
= base0
;
1327 for (lim
= nmemb
; lim
!= 0; lim
>>= 1) {
1328 p
= base
+ (lim
>> 1) * size
;
1329 cmp
= (*compar
)(key
, p
);
1333 if (cmp
> 0) { /* key > p: move right */
1334 base
= (const char *)p
+ size
;
1336 } /* else move left */
1345 dtrace_caller(int ignore
)
1347 #pragma unused(ignore)
1348 return -1; /* Just as in Solaris dtrace_asm.s */
1352 dtrace_getstackdepth(int aframes
)
1354 struct frame
*fp
= (struct frame
*)__builtin_frame_address(0);
1355 struct frame
*nextfp
, *minfp
, *stacktop
;
1359 if ((on_intr
= CPU_ON_INTR(CPU
)) != 0) {
1360 stacktop
= (struct frame
*)dtrace_get_cpu_int_stack_top();
1362 stacktop
= (struct frame
*)(dtrace_get_kernel_stack(current_thread()) + kernel_stack_size
);
1372 nextfp
= *(struct frame
**)fp
;
1374 if (nextfp
<= minfp
|| nextfp
>= stacktop
) {
1377 * Hop from interrupt stack to thread stack.
1379 vm_offset_t kstack_base
= dtrace_get_kernel_stack(current_thread());
1381 minfp
= (struct frame
*)kstack_base
;
1382 stacktop
= (struct frame
*)(kstack_base
+ kernel_stack_size
);
1394 if (depth
<= aframes
) {
1398 return depth
- aframes
;
1402 dtrace_addr_in_module(void* addr
, struct modctl
*ctl
)
1404 return OSKextKextForAddress(addr
) == (void*)ctl
->mod_address
;
1411 dtrace_vtime_enable(void)
1416 dtrace_vtime_disable(void)