2 * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 2009 Bruce Simpson.
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
34 * 1. Redistributions of source code must retain the above copyright
35 * notice, this list of conditions and the following disclaimer.
36 * 2. Redistributions in binary form must reproduce the above copyright
37 * notice, this list of conditions and the following disclaimer in the
38 * documentation and/or other materials provided with the distribution.
39 * 3. The name of the author may not be used to endorse or promote
40 * products derived from this software without specific prior written
43 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
44 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
45 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
46 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
47 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
48 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
49 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * Copyright (c) 1988 Stephen Deering.
58 * Copyright (c) 1992, 1993
59 * The Regents of the University of California. All rights reserved.
61 * This code is derived from software contributed to Berkeley by
62 * Stephen Deering of Stanford University.
64 * Redistribution and use in source and binary forms, with or without
65 * modification, are permitted provided that the following conditions
67 * 1. Redistributions of source code must retain the above copyright
68 * notice, this list of conditions and the following disclaimer.
69 * 2. Redistributions in binary form must reproduce the above copyright
70 * notice, this list of conditions and the following disclaimer in the
71 * documentation and/or other materials provided with the distribution.
72 * 3. All advertising materials mentioning features or use of this software
73 * must display the following acknowledgement:
74 * This product includes software developed by the University of
75 * California, Berkeley and its contributors.
76 * 4. Neither the name of the University nor the names of its contributors
77 * may be used to endorse or promote products derived from this software
78 * without specific prior written permission.
80 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
81 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
82 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
83 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
84 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
85 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
86 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
87 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
88 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
89 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
92 * @(#)igmp.c 8.1 (Berkeley) 7/19/93
95 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
96 * support for mandatory and extensible security protections. This notice
97 * is included in support of clause 2.2 (b) of the Apple Public License,
101 #include <sys/cdefs.h>
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/mbuf.h>
106 #include <sys/socket.h>
107 #include <sys/protosw.h>
108 #include <sys/sysctl.h>
109 #include <sys/kernel.h>
110 #include <sys/malloc.h>
111 #include <sys/mcache.h>
113 #include <dev/random/randomdev.h>
115 #include <kern/zalloc.h>
118 #include <net/route.h>
120 #include <netinet/in.h>
121 #include <netinet/in_var.h>
122 #include <netinet6/in6_var.h>
123 #include <netinet/ip6.h>
124 #include <netinet6/ip6_var.h>
125 #include <netinet6/scope6_var.h>
126 #include <netinet/icmp6.h>
127 #include <netinet6/mld6.h>
128 #include <netinet6/mld6_var.h>
130 /* Lock group and attribute for mld_mtx */
131 static lck_attr_t
*mld_mtx_attr
;
132 static lck_grp_t
*mld_mtx_grp
;
133 static lck_grp_attr_t
*mld_mtx_grp_attr
;
136 * Locking and reference counting:
138 * mld_mtx mainly protects mli_head. In cases where both mld_mtx and
139 * in6_multihead_lock must be held, the former must be acquired first in order
140 * to maintain lock ordering. It is not a requirement that mld_mtx be
141 * acquired first before in6_multihead_lock, but in case both must be acquired
142 * in succession, the correct lock ordering must be followed.
144 * Instead of walking the if_multiaddrs list at the interface and returning
145 * the ifma_protospec value of a matching entry, we search the global list
146 * of in6_multi records and find it that way; this is done with in6_multihead
147 * lock held. Doing so avoids the race condition issues that many other BSDs
148 * suffer from (therefore in our implementation, ifma_protospec will never be
149 * NULL for as long as the in6_multi is valid.)
151 * The above creates a requirement for the in6_multi to stay in in6_multihead
152 * list even after the final MLD leave (in MLDv2 mode) until no longer needs
153 * be retransmitted (this is not required for MLDv1.) In order to handle
154 * this, the request and reference counts of the in6_multi are bumped up when
155 * the state changes to MLD_LEAVING_MEMBER, and later dropped in the timeout
156 * handler. Each in6_multi holds a reference to the underlying mld_ifinfo.
158 * Thus, the permitted lock order is:
160 * mld_mtx, in6_multihead_lock, inm6_lock, mli_lock
162 * Any may be taken independently, but if any are held at the same time,
163 * the above lock order must be followed.
165 static decl_lck_mtx_data(, mld_mtx
);
167 SLIST_HEAD(mld_in6m_relhead
, in6_multi
);
169 static void mli_initvar(struct mld_ifinfo
*, struct ifnet
*, int);
170 static struct mld_ifinfo
*mli_alloc(int);
171 static void mli_free(struct mld_ifinfo
*);
172 static void mli_delete(const struct ifnet
*, struct mld_in6m_relhead
*);
173 static void mld_dispatch_packet(struct mbuf
*);
174 static void mld_final_leave(struct in6_multi
*, struct mld_ifinfo
*,
175 struct mld_tparams
*);
176 static int mld_handle_state_change(struct in6_multi
*, struct mld_ifinfo
*,
177 struct mld_tparams
*);
178 static int mld_initial_join(struct in6_multi
*, struct mld_ifinfo
*,
179 struct mld_tparams
*, const int);
181 static const char * mld_rec_type_to_str(const int);
183 static uint32_t mld_set_version(struct mld_ifinfo
*, const int);
184 static void mld_flush_relq(struct mld_ifinfo
*, struct mld_in6m_relhead
*);
185 static void mld_dispatch_queue(struct mld_ifinfo
*, struct ifqueue
*, int);
186 static int mld_v1_input_query(struct ifnet
*, const struct ip6_hdr
*,
187 /*const*/ struct mld_hdr
*);
188 static int mld_v1_input_report(struct ifnet
*, struct mbuf
*,
189 const struct ip6_hdr
*, /*const*/ struct mld_hdr
*);
190 static void mld_v1_process_group_timer(struct in6_multi
*, const int);
191 static void mld_v1_process_querier_timers(struct mld_ifinfo
*);
192 static int mld_v1_transmit_report(struct in6_multi
*, const int);
193 static uint32_t mld_v1_update_group(struct in6_multi
*, const int);
194 static void mld_v2_cancel_link_timers(struct mld_ifinfo
*);
195 static uint32_t mld_v2_dispatch_general_query(struct mld_ifinfo
*);
197 mld_v2_encap_report(struct ifnet
*, struct mbuf
*);
198 static int mld_v2_enqueue_filter_change(struct ifqueue
*,
200 static int mld_v2_enqueue_group_record(struct ifqueue
*,
201 struct in6_multi
*, const int, const int, const int,
203 static int mld_v2_input_query(struct ifnet
*, const struct ip6_hdr
*,
204 struct mbuf
*, const int, const int);
205 static int mld_v2_merge_state_changes(struct in6_multi
*,
207 static void mld_v2_process_group_timers(struct mld_ifinfo
*,
208 struct ifqueue
*, struct ifqueue
*,
209 struct in6_multi
*, const int);
210 static int mld_v2_process_group_query(struct in6_multi
*,
211 int, struct mbuf
*, const int);
212 static int sysctl_mld_gsr SYSCTL_HANDLER_ARGS
;
213 static int sysctl_mld_ifinfo SYSCTL_HANDLER_ARGS
;
214 static int sysctl_mld_v2enable SYSCTL_HANDLER_ARGS
;
216 static int mld_timeout_run
; /* MLD timer is scheduled to run */
217 static void mld_timeout(void *);
218 static void mld_sched_timeout(void);
221 * Normative references: RFC 2710, RFC 3590, RFC 3810.
223 static struct timeval mld_gsrdelay
= {10, 0};
224 static LIST_HEAD(, mld_ifinfo
) mli_head
;
226 static int querier_present_timers_running6
;
227 static int interface_timers_running6
;
228 static int state_change_timers_running6
;
229 static int current_state_timers_running6
;
232 * Subsystem lock macros.
235 lck_mtx_lock(&mld_mtx)
236 #define MLD_LOCK_ASSERT_HELD() \
237 lck_mtx_assert(&mld_mtx, LCK_MTX_ASSERT_OWNED)
238 #define MLD_LOCK_ASSERT_NOTHELD() \
239 lck_mtx_assert(&mld_mtx, LCK_MTX_ASSERT_NOTOWNED)
240 #define MLD_UNLOCK() \
241 lck_mtx_unlock(&mld_mtx)
243 #define MLD_ADD_DETACHED_IN6M(_head, _in6m) { \
244 SLIST_INSERT_HEAD(_head, _in6m, in6m_dtle); \
247 #define MLD_REMOVE_DETACHED_IN6M(_head) { \
248 struct in6_multi *_in6m, *_inm_tmp; \
249 SLIST_FOREACH_SAFE(_in6m, _head, in6m_dtle, _inm_tmp) { \
250 SLIST_REMOVE(_head, _in6m, in6_multi, in6m_dtle); \
251 IN6M_REMREF(_in6m); \
253 VERIFY(SLIST_EMPTY(_head)); \
256 #define MLI_ZONE_MAX 64 /* maximum elements in zone */
257 #define MLI_ZONE_NAME "mld_ifinfo" /* zone name */
259 static unsigned int mli_size
; /* size of zone element */
260 static struct zone
*mli_zone
; /* zone for mld_ifinfo */
262 SYSCTL_DECL(_net_inet6
); /* Note: Not in any common header. */
264 SYSCTL_NODE(_net_inet6
, OID_AUTO
, mld
, CTLFLAG_RW
| CTLFLAG_LOCKED
, 0,
265 "IPv6 Multicast Listener Discovery");
266 SYSCTL_PROC(_net_inet6_mld
, OID_AUTO
, gsrdelay
,
267 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
268 &mld_gsrdelay
.tv_sec
, 0, sysctl_mld_gsr
, "I",
269 "Rate limit for MLDv2 Group-and-Source queries in seconds");
271 SYSCTL_NODE(_net_inet6_mld
, OID_AUTO
, ifinfo
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
272 sysctl_mld_ifinfo
, "Per-interface MLDv2 state");
274 static int mld_v1enable
= 1;
275 SYSCTL_INT(_net_inet6_mld
, OID_AUTO
, v1enable
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
276 &mld_v1enable
, 0, "Enable fallback to MLDv1");
278 static int mld_v2enable
= 1;
279 SYSCTL_PROC(_net_inet6_mld
, OID_AUTO
, v2enable
,
280 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
281 &mld_v2enable
, 0, sysctl_mld_v2enable
, "I",
282 "Enable MLDv2 (debug purposes only)");
284 static int mld_use_allow
= 1;
285 SYSCTL_INT(_net_inet6_mld
, OID_AUTO
, use_allow
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
286 &mld_use_allow
, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves");
290 SYSCTL_INT(_net_inet6_mld
, OID_AUTO
,
291 debug
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &mld_debug
, 0, "");
294 * Packed Router Alert option structure declaration.
299 struct ip6_opt_router ra
;
303 * Router Alert hop-by-hop option header.
305 static struct mld_raopt mld_ra
= {
307 .pad
= { .ip6o_type
= IP6OPT_PADN
, 0 },
309 .ip6or_type
= (u_int8_t
)IP6OPT_ROUTER_ALERT
,
310 .ip6or_len
= (u_int8_t
)(IP6OPT_RTALERT_LEN
- 2),
311 .ip6or_value
= {((IP6OPT_RTALERT_MLD
>> 8) & 0xFF),
312 (IP6OPT_RTALERT_MLD
& 0xFF) }
315 static struct ip6_pktopts mld_po
;
317 /* Store MLDv2 record count in the module private scratch space */
318 #define vt_nrecs pkt_mpriv.__mpriv_u.__mpriv32[0].__mpriv32_u.__val16[0]
321 mld_save_context(struct mbuf
*m
, struct ifnet
*ifp
)
323 m
->m_pkthdr
.rcvif
= ifp
;
327 mld_scrub_context(struct mbuf
*m
)
329 m
->m_pkthdr
.rcvif
= NULL
;
333 * Restore context from a queued output chain.
336 static __inline
struct ifnet
*
337 mld_restore_context(struct mbuf
*m
)
339 return (m
->m_pkthdr
.rcvif
);
343 * Retrieve or set threshold between group-source queries in seconds.
346 sysctl_mld_gsr SYSCTL_HANDLER_ARGS
348 #pragma unused(arg1, arg2)
354 i
= mld_gsrdelay
.tv_sec
;
356 error
= sysctl_handle_int(oidp
, &i
, 0, req
);
357 if (error
|| !req
->newptr
)
360 if (i
< -1 || i
>= 60) {
365 mld_gsrdelay
.tv_sec
= i
;
372 * Expose struct mld_ifinfo to userland, keyed by ifindex.
373 * For use by ifmcstat(8).
377 sysctl_mld_ifinfo SYSCTL_HANDLER_ARGS
384 struct mld_ifinfo
*mli
;
385 struct mld_ifinfo_u mli_u
;
390 if (req
->newptr
!= USER_ADDR_NULL
)
398 if (name
[0] <= 0 || name
[0] > (u_int
)if_index
) {
405 ifnet_head_lock_shared();
406 ifp
= ifindex2ifnet
[name
[0]];
411 bzero(&mli_u
, sizeof (mli_u
));
413 LIST_FOREACH(mli
, &mli_head
, mli_link
) {
415 if (ifp
!= mli
->mli_ifp
) {
420 mli_u
.mli_ifindex
= mli
->mli_ifp
->if_index
;
421 mli_u
.mli_version
= mli
->mli_version
;
422 mli_u
.mli_v1_timer
= mli
->mli_v1_timer
;
423 mli_u
.mli_v2_timer
= mli
->mli_v2_timer
;
424 mli_u
.mli_flags
= mli
->mli_flags
;
425 mli_u
.mli_rv
= mli
->mli_rv
;
426 mli_u
.mli_qi
= mli
->mli_qi
;
427 mli_u
.mli_qri
= mli
->mli_qri
;
428 mli_u
.mli_uri
= mli
->mli_uri
;
431 error
= SYSCTL_OUT(req
, &mli_u
, sizeof (mli_u
));
441 sysctl_mld_v2enable SYSCTL_HANDLER_ARGS
443 #pragma unused(arg1, arg2)
446 struct mld_ifinfo
*mli
;
447 struct mld_tparams mtp
= { 0, 0, 0, 0 };
453 error
= sysctl_handle_int(oidp
, &i
, 0, req
);
454 if (error
|| !req
->newptr
)
457 if (i
< 0 || i
> 1) {
464 * If we enabled v2, the state transition will take care of upgrading
465 * the MLD version back to v2. Otherwise, we have to explicitly
466 * downgrade. Note that this functionality is to be used for debugging.
468 if (mld_v2enable
== 1)
471 LIST_FOREACH(mli
, &mli_head
, mli_link
) {
473 if (mld_set_version(mli
, MLD_VERSION_1
) > 0)
481 mld_set_timeout(&mtp
);
487 * Dispatch an entire queue of pending packet chains.
489 * Must not be called with in6m_lock held.
492 mld_dispatch_queue(struct mld_ifinfo
*mli
, struct ifqueue
*ifq
, int limit
)
497 MLI_LOCK_ASSERT_HELD(mli
);
503 MLD_PRINTF(("%s: dispatch 0x%llx from 0x%llx\n", __func__
,
504 (uint64_t)VM_KERNEL_ADDRPERM(ifq
),
505 (uint64_t)VM_KERNEL_ADDRPERM(m
)));
508 mld_dispatch_packet(m
);
516 MLI_LOCK_ASSERT_HELD(mli
);
520 * Filter outgoing MLD report state by group.
522 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1)
523 * and node-local addresses. However, kernel and socket consumers
524 * always embed the KAME scope ID in the address provided, so strip it
525 * when performing comparison.
526 * Note: This is not the same as the *multicast* scope.
528 * Return zero if the given group is one for which MLD reports
529 * should be suppressed, or non-zero if reports should be issued.
531 static __inline__
int
532 mld_is_addr_reported(const struct in6_addr
*addr
)
535 VERIFY(IN6_IS_ADDR_MULTICAST(addr
));
537 if (IPV6_ADDR_MC_SCOPE(addr
) == IPV6_ADDR_SCOPE_NODELOCAL
)
540 if (IPV6_ADDR_MC_SCOPE(addr
) == IPV6_ADDR_SCOPE_LINKLOCAL
) {
541 struct in6_addr tmp
= *addr
;
542 in6_clearscope(&tmp
);
543 if (IN6_ARE_ADDR_EQUAL(&tmp
, &in6addr_linklocal_allnodes
))
551 * Attach MLD when PF_INET6 is attached to an interface.
554 mld_domifattach(struct ifnet
*ifp
, int how
)
556 struct mld_ifinfo
*mli
;
558 MLD_PRINTF(("%s: called for ifp 0x%llx(%s)\n", __func__
,
559 (uint64_t)VM_KERNEL_ADDRPERM(ifp
), if_name(ifp
)));
561 mli
= mli_alloc(how
);
568 mli_initvar(mli
, ifp
, 0);
569 mli
->mli_debug
|= IFD_ATTACHED
;
570 MLI_ADDREF_LOCKED(mli
); /* hold a reference for mli_head */
571 MLI_ADDREF_LOCKED(mli
); /* hold a reference for caller */
573 ifnet_lock_shared(ifp
);
574 mld6_initsilent(ifp
, mli
);
575 ifnet_lock_done(ifp
);
577 LIST_INSERT_HEAD(&mli_head
, mli
, mli_link
);
581 MLD_PRINTF(("%s: allocate mld_ifinfo for ifp 0x%llx(%s)\n",
582 __func__
, (uint64_t)VM_KERNEL_ADDRPERM(ifp
), if_name(ifp
)));
588 * Attach MLD when PF_INET6 is reattached to an interface. Caller is
589 * expected to have an outstanding reference to the mli.
592 mld_domifreattach(struct mld_ifinfo
*mli
)
599 VERIFY(!(mli
->mli_debug
& IFD_ATTACHED
));
602 mli_initvar(mli
, ifp
, 1);
603 mli
->mli_debug
|= IFD_ATTACHED
;
604 MLI_ADDREF_LOCKED(mli
); /* hold a reference for mli_head */
606 ifnet_lock_shared(ifp
);
607 mld6_initsilent(ifp
, mli
);
608 ifnet_lock_done(ifp
);
610 LIST_INSERT_HEAD(&mli_head
, mli
, mli_link
);
614 MLD_PRINTF(("%s: reattached mld_ifinfo for ifp 0x%llx(%s)\n",
615 __func__
, (uint64_t)VM_KERNEL_ADDRPERM(ifp
), if_name(ifp
)));
619 * Hook for domifdetach.
622 mld_domifdetach(struct ifnet
*ifp
)
624 SLIST_HEAD(, in6_multi
) in6m_dthead
;
626 SLIST_INIT(&in6m_dthead
);
628 MLD_PRINTF(("%s: called for ifp 0x%llx(%s)\n", __func__
,
629 (uint64_t)VM_KERNEL_ADDRPERM(ifp
), if_name(ifp
)));
632 mli_delete(ifp
, (struct mld_in6m_relhead
*)&in6m_dthead
);
635 /* Now that we're dropped all locks, release detached records */
636 MLD_REMOVE_DETACHED_IN6M(&in6m_dthead
);
640 * Called at interface detach time. Note that we only flush all deferred
641 * responses and record releases; all remaining inm records and their source
642 * entries related to this interface are left intact, in order to handle
646 mli_delete(const struct ifnet
*ifp
, struct mld_in6m_relhead
*in6m_dthead
)
648 struct mld_ifinfo
*mli
, *tmli
;
650 MLD_LOCK_ASSERT_HELD();
652 LIST_FOREACH_SAFE(mli
, &mli_head
, mli_link
, tmli
) {
654 if (mli
->mli_ifp
== ifp
) {
656 * Free deferred General Query responses.
658 IF_DRAIN(&mli
->mli_gq
);
659 IF_DRAIN(&mli
->mli_v1q
);
660 mld_flush_relq(mli
, in6m_dthead
);
661 VERIFY(SLIST_EMPTY(&mli
->mli_relinmhead
));
662 mli
->mli_debug
&= ~IFD_ATTACHED
;
665 LIST_REMOVE(mli
, mli_link
);
666 MLI_REMREF(mli
); /* release mli_head reference */
671 panic("%s: mld_ifinfo not found for ifp %p(%s)\n", __func__
,
675 __private_extern__
void
676 mld6_initsilent(struct ifnet
*ifp
, struct mld_ifinfo
*mli
)
678 ifnet_lock_assert(ifp
, IFNET_LCK_ASSERT_OWNED
);
680 MLI_LOCK_ASSERT_NOTHELD(mli
);
682 if (!(ifp
->if_flags
& IFF_MULTICAST
) &&
683 (ifp
->if_eflags
& (IFEF_IPV6_ND6ALT
|IFEF_LOCALNET_PRIVATE
)))
684 mli
->mli_flags
|= MLIF_SILENT
;
686 mli
->mli_flags
&= ~MLIF_SILENT
;
691 mli_initvar(struct mld_ifinfo
*mli
, struct ifnet
*ifp
, int reattach
)
693 MLI_LOCK_ASSERT_HELD(mli
);
697 mli
->mli_version
= MLD_VERSION_2
;
699 mli
->mli_version
= MLD_VERSION_1
;
701 mli
->mli_rv
= MLD_RV_INIT
;
702 mli
->mli_qi
= MLD_QI_INIT
;
703 mli
->mli_qri
= MLD_QRI_INIT
;
704 mli
->mli_uri
= MLD_URI_INIT
;
707 mli
->mli_flags
|= MLIF_USEALLOW
;
709 SLIST_INIT(&mli
->mli_relinmhead
);
712 * Responses to general queries are subject to bounds.
714 mli
->mli_gq
.ifq_maxlen
= MLD_MAX_RESPONSE_PACKETS
;
715 mli
->mli_v1q
.ifq_maxlen
= MLD_MAX_RESPONSE_PACKETS
;
718 static struct mld_ifinfo
*
721 struct mld_ifinfo
*mli
;
723 mli
= (how
== M_WAITOK
) ? zalloc(mli_zone
) : zalloc_noblock(mli_zone
);
725 bzero(mli
, mli_size
);
726 lck_mtx_init(&mli
->mli_lock
, mld_mtx_grp
, mld_mtx_attr
);
727 mli
->mli_debug
|= IFD_ALLOC
;
733 mli_free(struct mld_ifinfo
*mli
)
736 if (mli
->mli_debug
& IFD_ATTACHED
) {
737 panic("%s: attached mli=%p is being freed", __func__
, mli
);
739 } else if (mli
->mli_ifp
!= NULL
) {
740 panic("%s: ifp not NULL for mli=%p", __func__
, mli
);
742 } else if (!(mli
->mli_debug
& IFD_ALLOC
)) {
743 panic("%s: mli %p cannot be freed", __func__
, mli
);
745 } else if (mli
->mli_refcnt
!= 0) {
746 panic("%s: non-zero refcnt mli=%p", __func__
, mli
);
749 mli
->mli_debug
&= ~IFD_ALLOC
;
752 lck_mtx_destroy(&mli
->mli_lock
, mld_mtx_grp
);
753 zfree(mli_zone
, mli
);
757 mli_addref(struct mld_ifinfo
*mli
, int locked
)
762 MLI_LOCK_ASSERT_HELD(mli
);
764 if (++mli
->mli_refcnt
== 0) {
765 panic("%s: mli=%p wraparound refcnt", __func__
, mli
);
773 mli_remref(struct mld_ifinfo
*mli
)
775 SLIST_HEAD(, in6_multi
) in6m_dthead
;
780 if (mli
->mli_refcnt
== 0) {
781 panic("%s: mli=%p negative refcnt", __func__
, mli
);
786 if (mli
->mli_refcnt
> 0) {
793 IF_DRAIN(&mli
->mli_gq
);
794 IF_DRAIN(&mli
->mli_v1q
);
795 SLIST_INIT(&in6m_dthead
);
796 mld_flush_relq(mli
, (struct mld_in6m_relhead
*)&in6m_dthead
);
797 VERIFY(SLIST_EMPTY(&mli
->mli_relinmhead
));
800 /* Now that we're dropped all locks, release detached records */
801 MLD_REMOVE_DETACHED_IN6M(&in6m_dthead
);
803 MLD_PRINTF(("%s: freeing mld_ifinfo for ifp 0x%llx(%s)\n",
804 __func__
, (uint64_t)VM_KERNEL_ADDRPERM(ifp
), if_name(ifp
)));
810 * Process a received MLDv1 general or address-specific query.
811 * Assumes that the query header has been pulled up to sizeof(mld_hdr).
813 * NOTE: Can't be fully const correct as we temporarily embed scope ID in
814 * mld_addr. This is OK as we own the mbuf chain.
817 mld_v1_input_query(struct ifnet
*ifp
, const struct ip6_hdr
*ip6
,
818 /*const*/ struct mld_hdr
*mld
)
820 struct mld_ifinfo
*mli
;
821 struct in6_multi
*inm
;
822 int err
= 0, is_general_query
;
824 struct mld_tparams mtp
= { 0, 0, 0, 0 };
826 MLD_LOCK_ASSERT_NOTHELD();
828 is_general_query
= 0;
831 MLD_PRINTF(("%s: ignore v1 query %s on ifp 0x%llx(%s)\n",
832 __func__
, ip6_sprintf(&mld
->mld_addr
),
833 (uint64_t)VM_KERNEL_ADDRPERM(ifp
), if_name(ifp
)));
838 * RFC3810 Section 6.2: MLD queries must originate from
839 * a router's link-local address.
841 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6
->ip6_src
)) {
842 MLD_PRINTF(("%s: ignore v1 query src %s on ifp 0x%llx(%s)\n",
843 __func__
, ip6_sprintf(&ip6
->ip6_src
),
844 (uint64_t)VM_KERNEL_ADDRPERM(ifp
), if_name(ifp
)));
849 * Do address field validation upfront before we accept
852 if (IN6_IS_ADDR_UNSPECIFIED(&mld
->mld_addr
)) {
854 * MLDv1 General Query.
855 * If this was not sent to the all-nodes group, ignore it.
860 in6_clearscope(&dst
);
861 if (!IN6_ARE_ADDR_EQUAL(&dst
, &in6addr_linklocal_allnodes
)) {
865 is_general_query
= 1;
868 * Embed scope ID of receiving interface in MLD query for
869 * lookup whilst we don't hold other locks.
871 in6_setscope(&mld
->mld_addr
, ifp
, NULL
);
875 * Switch to MLDv1 host compatibility mode.
877 mli
= MLD_IFINFO(ifp
);
881 mtp
.qpt
= mld_set_version(mli
, MLD_VERSION_1
);
884 timer
= ntohs(mld
->mld_maxdelay
) / MLD_TIMER_SCALE
;
888 if (is_general_query
) {
889 struct in6_multistep step
;
891 MLD_PRINTF(("%s: process v1 general query on ifp 0x%llx(%s)\n",
892 __func__
, (uint64_t)VM_KERNEL_ADDRPERM(ifp
), if_name(ifp
)));
894 * For each reporting group joined on this
895 * interface, kick the report timer.
897 in6_multihead_lock_shared();
898 IN6_FIRST_MULTI(step
, inm
);
899 while (inm
!= NULL
) {
901 if (inm
->in6m_ifp
== ifp
)
902 mtp
.cst
+= mld_v1_update_group(inm
, timer
);
904 IN6_NEXT_MULTI(step
, inm
);
906 in6_multihead_lock_done();
909 * MLDv1 Group-Specific Query.
910 * If this is a group-specific MLDv1 query, we need only
911 * look up the single group to process it.
913 in6_multihead_lock_shared();
914 IN6_LOOKUP_MULTI(&mld
->mld_addr
, ifp
, inm
);
915 in6_multihead_lock_done();
919 MLD_PRINTF(("%s: process v1 query %s on "
920 "ifp 0x%llx(%s)\n", __func__
,
921 ip6_sprintf(&mld
->mld_addr
),
922 (uint64_t)VM_KERNEL_ADDRPERM(ifp
), if_name(ifp
)));
923 mtp
.cst
= mld_v1_update_group(inm
, timer
);
925 IN6M_REMREF(inm
); /* from IN6_LOOKUP_MULTI */
927 /* XXX Clear embedded scope ID as userland won't expect it. */
928 in6_clearscope(&mld
->mld_addr
);
931 mld_set_timeout(&mtp
);
937 * Update the report timer on a group in response to an MLDv1 query.
939 * If we are becoming the reporting member for this group, start the timer.
940 * If we already are the reporting member for this group, and timer is
941 * below the threshold, reset it.
943 * We may be updating the group for the first time since we switched
944 * to MLDv2. If we are, then we must clear any recorded source lists,
945 * and transition to REPORTING state; the group timer is overloaded
946 * for group and group-source query responses.
948 * Unlike MLDv2, the delay per group should be jittered
949 * to avoid bursts of MLDv1 reports.
952 mld_v1_update_group(struct in6_multi
*inm
, const int timer
)
954 IN6M_LOCK_ASSERT_HELD(inm
);
956 MLD_PRINTF(("%s: %s/%s timer=%d\n", __func__
,
957 ip6_sprintf(&inm
->in6m_addr
),
958 if_name(inm
->in6m_ifp
), timer
));
960 switch (inm
->in6m_state
) {
962 case MLD_SILENT_MEMBER
:
964 case MLD_REPORTING_MEMBER
:
965 if (inm
->in6m_timer
!= 0 &&
966 inm
->in6m_timer
<= timer
) {
967 MLD_PRINTF(("%s: REPORTING and timer running, "
968 "skipping.\n", __func__
));
972 case MLD_SG_QUERY_PENDING_MEMBER
:
973 case MLD_G_QUERY_PENDING_MEMBER
:
974 case MLD_IDLE_MEMBER
:
975 case MLD_LAZY_MEMBER
:
976 case MLD_AWAKENING_MEMBER
:
977 MLD_PRINTF(("%s: ->REPORTING\n", __func__
));
978 inm
->in6m_state
= MLD_REPORTING_MEMBER
;
979 inm
->in6m_timer
= MLD_RANDOM_DELAY(timer
);
981 case MLD_SLEEPING_MEMBER
:
982 MLD_PRINTF(("%s: ->AWAKENING\n", __func__
));
983 inm
->in6m_state
= MLD_AWAKENING_MEMBER
;
985 case MLD_LEAVING_MEMBER
:
989 return (inm
->in6m_timer
);
993 * Process a received MLDv2 general, group-specific or
994 * group-and-source-specific query.
996 * Assumes that the query header has been pulled up to sizeof(mldv2_query).
998 * Return 0 if successful, otherwise an appropriate error code is returned.
1001 mld_v2_input_query(struct ifnet
*ifp
, const struct ip6_hdr
*ip6
,
1002 struct mbuf
*m
, const int off
, const int icmp6len
)
1004 struct mld_ifinfo
*mli
;
1005 struct mldv2_query
*mld
;
1006 struct in6_multi
*inm
;
1007 uint32_t maxdelay
, nsrc
, qqi
;
1008 int err
= 0, is_general_query
;
1011 struct mld_tparams mtp
= { 0, 0, 0, 0 };
1013 MLD_LOCK_ASSERT_NOTHELD();
1015 is_general_query
= 0;
1017 if (!mld_v2enable
) {
1018 MLD_PRINTF(("%s: ignore v2 query %s on ifp 0x%llx(%s)\n",
1019 __func__
, ip6_sprintf(&ip6
->ip6_src
),
1020 (uint64_t)VM_KERNEL_ADDRPERM(ifp
), if_name(ifp
)));
1025 * RFC3810 Section 6.2: MLD queries must originate from
1026 * a router's link-local address.
1028 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6
->ip6_src
)) {
1029 MLD_PRINTF(("%s: ignore v1 query src %s on ifp 0x%llx(%s)\n",
1030 __func__
, ip6_sprintf(&ip6
->ip6_src
),
1031 (uint64_t)VM_KERNEL_ADDRPERM(ifp
), if_name(ifp
)));
1035 MLD_PRINTF(("%s: input v2 query on ifp 0x%llx(%s)\n", __func__
,
1036 (uint64_t)VM_KERNEL_ADDRPERM(ifp
), if_name(ifp
)));
1038 mld
= (struct mldv2_query
*)(mtod(m
, uint8_t *) + off
);
1040 maxdelay
= ntohs(mld
->mld_maxdelay
); /* in 1/10ths of a second */
1041 if (maxdelay
>= 32768) {
1042 maxdelay
= (MLD_MRC_MANT(maxdelay
) | 0x1000) <<
1043 (MLD_MRC_EXP(maxdelay
) + 3);
1045 timer
= maxdelay
/ MLD_TIMER_SCALE
;
1049 qrv
= MLD_QRV(mld
->mld_misc
);
1051 MLD_PRINTF(("%s: clamping qrv %d to %d\n", __func__
,
1058 qqi
= MLD_QQIC_MANT(mld
->mld_qqi
) <<
1059 (MLD_QQIC_EXP(mld
->mld_qqi
) + 3);
1062 nsrc
= ntohs(mld
->mld_numsrc
);
1063 if (nsrc
> MLD_MAX_GS_SOURCES
) {
1067 if (icmp6len
< sizeof(struct mldv2_query
) +
1068 (nsrc
* sizeof(struct in6_addr
))) {
1074 * Do further input validation upfront to avoid resetting timers
1075 * should we need to discard this query.
1077 if (IN6_IS_ADDR_UNSPECIFIED(&mld
->mld_addr
)) {
1079 * A general query with a source list has undefined
1080 * behaviour; discard it.
1086 is_general_query
= 1;
1089 * Embed scope ID of receiving interface in MLD query for
1090 * lookup whilst we don't hold other locks (due to KAME
1091 * locking lameness). We own this mbuf chain just now.
1093 in6_setscope(&mld
->mld_addr
, ifp
, NULL
);
1096 mli
= MLD_IFINFO(ifp
);
1097 VERIFY(mli
!= NULL
);
1101 * Discard the v2 query if we're in Compatibility Mode.
1102 * The RFC is pretty clear that hosts need to stay in MLDv1 mode
1103 * until the Old Version Querier Present timer expires.
1105 if (mli
->mli_version
!= MLD_VERSION_2
) {
1110 mtp
.qpt
= mld_set_version(mli
, MLD_VERSION_2
);
1113 mli
->mli_qri
= MAX(timer
, MLD_QRI_MIN
);
1115 MLD_PRINTF(("%s: qrv %d qi %d qri %d\n", __func__
, mli
->mli_rv
,
1116 mli
->mli_qi
, mli
->mli_qri
));
1118 if (is_general_query
) {
1120 * MLDv2 General Query.
1122 * Schedule a current-state report on this ifp for
1123 * all groups, possibly containing source lists.
1125 * If there is a pending General Query response
1126 * scheduled earlier than the selected delay, do
1127 * not schedule any other reports.
1128 * Otherwise, reset the interface timer.
1130 MLD_PRINTF(("%s: process v2 general query on ifp 0x%llx(%s)\n",
1131 __func__
, (uint64_t)VM_KERNEL_ADDRPERM(ifp
), if_name(ifp
)));
1132 if (mli
->mli_v2_timer
== 0 || mli
->mli_v2_timer
>= timer
) {
1133 mtp
.it
= mli
->mli_v2_timer
= MLD_RANDOM_DELAY(timer
);
1139 * MLDv2 Group-specific or Group-and-source-specific Query.
1141 * Group-source-specific queries are throttled on
1142 * a per-group basis to defeat denial-of-service attempts.
1143 * Queries for groups we are not a member of on this
1144 * link are simply ignored.
1146 in6_multihead_lock_shared();
1147 IN6_LOOKUP_MULTI(&mld
->mld_addr
, ifp
, inm
);
1148 in6_multihead_lock_done();
1154 if (!ratecheck(&inm
->in6m_lastgsrtv
,
1156 MLD_PRINTF(("%s: GS query throttled.\n",
1159 IN6M_REMREF(inm
); /* from IN6_LOOKUP_MULTI */
1163 MLD_PRINTF(("%s: process v2 group query on ifp 0x%llx(%s)\n",
1164 __func__
, (uint64_t)VM_KERNEL_ADDRPERM(ifp
), if_name(ifp
)));
1166 * If there is a pending General Query response
1167 * scheduled sooner than the selected delay, no
1168 * further report need be scheduled.
1169 * Otherwise, prepare to respond to the
1170 * group-specific or group-and-source query.
1173 mtp
.it
= mli
->mli_v2_timer
;
1175 if (mtp
.it
== 0 || mtp
.it
>= timer
) {
1176 (void) mld_v2_process_group_query(inm
, timer
, m
, off
);
1177 mtp
.cst
= inm
->in6m_timer
;
1180 IN6M_REMREF(inm
); /* from IN6_LOOKUP_MULTI */
1181 /* XXX Clear embedded scope ID as userland won't expect it. */
1182 in6_clearscope(&mld
->mld_addr
);
1186 MLD_PRINTF(("%s: v2 general query response scheduled in "
1187 "T+%d seconds on ifp 0x%llx(%s)\n", __func__
, mtp
.it
,
1188 (uint64_t)VM_KERNEL_ADDRPERM(ifp
), if_name(ifp
)));
1190 mld_set_timeout(&mtp
);
1196 * Process a recieved MLDv2 group-specific or group-and-source-specific
1198 * Return <0 if any error occured. Currently this is ignored.
1201 mld_v2_process_group_query(struct in6_multi
*inm
, int timer
, struct mbuf
*m0
,
1204 struct mldv2_query
*mld
;
1208 IN6M_LOCK_ASSERT_HELD(inm
);
1211 mld
= (struct mldv2_query
*)(mtod(m0
, uint8_t *) + off
);
1213 switch (inm
->in6m_state
) {
1214 case MLD_NOT_MEMBER
:
1215 case MLD_SILENT_MEMBER
:
1216 case MLD_SLEEPING_MEMBER
:
1217 case MLD_LAZY_MEMBER
:
1218 case MLD_AWAKENING_MEMBER
:
1219 case MLD_IDLE_MEMBER
:
1220 case MLD_LEAVING_MEMBER
:
1222 case MLD_REPORTING_MEMBER
:
1223 case MLD_G_QUERY_PENDING_MEMBER
:
1224 case MLD_SG_QUERY_PENDING_MEMBER
:
1228 nsrc
= ntohs(mld
->mld_numsrc
);
1231 * Deal with group-specific queries upfront.
1232 * If any group query is already pending, purge any recorded
1233 * source-list state if it exists, and schedule a query response
1234 * for this group-specific query.
1237 if (inm
->in6m_state
== MLD_G_QUERY_PENDING_MEMBER
||
1238 inm
->in6m_state
== MLD_SG_QUERY_PENDING_MEMBER
) {
1239 in6m_clear_recorded(inm
);
1240 timer
= min(inm
->in6m_timer
, timer
);
1242 inm
->in6m_state
= MLD_G_QUERY_PENDING_MEMBER
;
1243 inm
->in6m_timer
= MLD_RANDOM_DELAY(timer
);
1248 * Deal with the case where a group-and-source-specific query has
1249 * been received but a group-specific query is already pending.
1251 if (inm
->in6m_state
== MLD_G_QUERY_PENDING_MEMBER
) {
1252 timer
= min(inm
->in6m_timer
, timer
);
1253 inm
->in6m_timer
= MLD_RANDOM_DELAY(timer
);
1258 * Finally, deal with the case where a group-and-source-specific
1259 * query has been received, where a response to a previous g-s-r
1260 * query exists, or none exists.
1261 * In this case, we need to parse the source-list which the Querier
1262 * has provided us with and check if we have any source list filter
1263 * entries at T1 for these sources. If we do not, there is no need
1264 * schedule a report and the query may be dropped.
1265 * If we do, we must record them and schedule a current-state
1266 * report for those sources.
1268 if (inm
->in6m_nsrc
> 0) {
1275 soff
= off
+ sizeof(struct mldv2_query
);
1277 for (i
= 0; i
< nsrc
; i
++) {
1278 sp
= mtod(m
, uint8_t *) + soff
;
1279 retval
= in6m_record_source(inm
,
1280 (const struct in6_addr
*)(void *)sp
);
1283 nrecorded
+= retval
;
1284 soff
+= sizeof(struct in6_addr
);
1285 if (soff
>= m
->m_len
) {
1286 soff
= soff
- m
->m_len
;
1292 if (nrecorded
> 0) {
1293 MLD_PRINTF(( "%s: schedule response to SG query\n",
1295 inm
->in6m_state
= MLD_SG_QUERY_PENDING_MEMBER
;
1296 inm
->in6m_timer
= MLD_RANDOM_DELAY(timer
);
1304 * Process a received MLDv1 host membership report.
1305 * Assumes mld points to mld_hdr in pulled up mbuf chain.
1307 * NOTE: Can't be fully const correct as we temporarily embed scope ID in
1308 * mld_addr. This is OK as we own the mbuf chain.
1311 mld_v1_input_report(struct ifnet
*ifp
, struct mbuf
*m
,
1312 const struct ip6_hdr
*ip6
, /*const*/ struct mld_hdr
*mld
)
1314 struct in6_addr src
, dst
;
1315 struct in6_ifaddr
*ia
;
1316 struct in6_multi
*inm
;
1318 if (!mld_v1enable
) {
1319 MLD_PRINTF(("%s: ignore v1 report %s on ifp 0x%llx(%s)\n",
1320 __func__
, ip6_sprintf(&mld
->mld_addr
),
1321 (uint64_t)VM_KERNEL_ADDRPERM(ifp
), if_name(ifp
)));
1325 if ((ifp
->if_flags
& IFF_LOOPBACK
) ||
1326 (m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
))
1330 * MLDv1 reports must originate from a host's link-local address,
1331 * or the unspecified address (when booting).
1334 in6_clearscope(&src
);
1335 if (!IN6_IS_SCOPE_LINKLOCAL(&src
) && !IN6_IS_ADDR_UNSPECIFIED(&src
)) {
1336 MLD_PRINTF(("%s: ignore v1 query src %s on ifp 0x%llx(%s)\n",
1337 __func__
, ip6_sprintf(&ip6
->ip6_src
),
1338 (uint64_t)VM_KERNEL_ADDRPERM(ifp
), if_name(ifp
)));
1343 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast
1344 * group, and must be directed to the group itself.
1347 in6_clearscope(&dst
);
1348 if (!IN6_IS_ADDR_MULTICAST(&mld
->mld_addr
) ||
1349 !IN6_ARE_ADDR_EQUAL(&mld
->mld_addr
, &dst
)) {
1350 MLD_PRINTF(("%s: ignore v1 query dst %s on ifp 0x%llx(%s)\n",
1351 __func__
, ip6_sprintf(&ip6
->ip6_dst
),
1352 (uint64_t)VM_KERNEL_ADDRPERM(ifp
), if_name(ifp
)));
1357 * Make sure we don't hear our own membership report, as fast
1358 * leave requires knowing that we are the only member of a
1359 * group. Assume we used the link-local address if available,
1360 * otherwise look for ::.
1362 * XXX Note that scope ID comparison is needed for the address
1363 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be
1364 * performed for the on-wire address.
1366 ia
= in6ifa_ifpforlinklocal(ifp
, IN6_IFF_NOTREADY
|IN6_IFF_ANYCAST
);
1368 IFA_LOCK(&ia
->ia_ifa
);
1369 if ((IN6_ARE_ADDR_EQUAL(&ip6
->ip6_src
, IA6_IN6(ia
)))){
1370 IFA_UNLOCK(&ia
->ia_ifa
);
1371 IFA_REMREF(&ia
->ia_ifa
);
1374 IFA_UNLOCK(&ia
->ia_ifa
);
1375 IFA_REMREF(&ia
->ia_ifa
);
1376 } else if (IN6_IS_ADDR_UNSPECIFIED(&src
)) {
1380 MLD_PRINTF(("%s: process v1 report %s on ifp 0x%llx(%s)\n",
1381 __func__
, ip6_sprintf(&mld
->mld_addr
),
1382 (uint64_t)VM_KERNEL_ADDRPERM(ifp
), if_name(ifp
)));
1385 * Embed scope ID of receiving interface in MLD query for lookup
1386 * whilst we don't hold other locks (due to KAME locking lameness).
1388 if (!IN6_IS_ADDR_UNSPECIFIED(&mld
->mld_addr
))
1389 in6_setscope(&mld
->mld_addr
, ifp
, NULL
);
1392 * MLDv1 report suppression.
1393 * If we are a member of this group, and our membership should be
1394 * reported, and our group timer is pending or about to be reset,
1395 * stop our group timer by transitioning to the 'lazy' state.
1397 in6_multihead_lock_shared();
1398 IN6_LOOKUP_MULTI(&mld
->mld_addr
, ifp
, inm
);
1399 in6_multihead_lock_done();
1402 struct mld_ifinfo
*mli
;
1405 mli
= inm
->in6m_mli
;
1406 VERIFY(mli
!= NULL
);
1410 * If we are in MLDv2 host mode, do not allow the
1411 * other host's MLDv1 report to suppress our reports.
1413 if (mli
->mli_version
== MLD_VERSION_2
) {
1416 IN6M_REMREF(inm
); /* from IN6_LOOKUP_MULTI */
1421 inm
->in6m_timer
= 0;
1423 switch (inm
->in6m_state
) {
1424 case MLD_NOT_MEMBER
:
1425 case MLD_SILENT_MEMBER
:
1426 case MLD_SLEEPING_MEMBER
:
1428 case MLD_REPORTING_MEMBER
:
1429 case MLD_IDLE_MEMBER
:
1430 case MLD_AWAKENING_MEMBER
:
1431 MLD_PRINTF(("%s: report suppressed for %s on "
1432 "ifp 0x%llx(%s)\n", __func__
,
1433 ip6_sprintf(&mld
->mld_addr
),
1434 (uint64_t)VM_KERNEL_ADDRPERM(ifp
), if_name(ifp
)));
1435 case MLD_LAZY_MEMBER
:
1436 inm
->in6m_state
= MLD_LAZY_MEMBER
;
1438 case MLD_G_QUERY_PENDING_MEMBER
:
1439 case MLD_SG_QUERY_PENDING_MEMBER
:
1440 case MLD_LEAVING_MEMBER
:
1444 IN6M_REMREF(inm
); /* from IN6_LOOKUP_MULTI */
1448 /* XXX Clear embedded scope ID as userland won't expect it. */
1449 in6_clearscope(&mld
->mld_addr
);
1457 * Assume query messages which fit in a single ICMPv6 message header
1458 * have been pulled up.
1459 * Assume that userland will want to see the message, even if it
1460 * otherwise fails kernel input validation; do not free it.
1461 * Pullup may however free the mbuf chain m if it fails.
1463 * Return IPPROTO_DONE if we freed m. Otherwise, return 0.
1466 mld_input(struct mbuf
*m
, int off
, int icmp6len
)
1469 struct ip6_hdr
*ip6
;
1470 struct mld_hdr
*mld
;
1473 MLD_PRINTF(("%s: called w/mbuf (0x%llx,%d)\n", __func__
,
1474 (uint64_t)VM_KERNEL_ADDRPERM(m
), off
));
1476 ifp
= m
->m_pkthdr
.rcvif
;
1478 ip6
= mtod(m
, struct ip6_hdr
*);
1480 /* Pullup to appropriate size. */
1481 mld
= (struct mld_hdr
*)(mtod(m
, uint8_t *) + off
);
1482 if (mld
->mld_type
== MLD_LISTENER_QUERY
&&
1483 icmp6len
>= sizeof(struct mldv2_query
)) {
1484 mldlen
= sizeof(struct mldv2_query
);
1486 mldlen
= sizeof(struct mld_hdr
);
1488 IP6_EXTHDR_GET(mld
, struct mld_hdr
*, m
, off
, mldlen
);
1490 icmp6stat
.icp6s_badlen
++;
1491 return (IPPROTO_DONE
);
1495 * Userland needs to see all of this traffic for implementing
1496 * the endpoint discovery portion of multicast routing.
1498 switch (mld
->mld_type
) {
1499 case MLD_LISTENER_QUERY
:
1500 icmp6_ifstat_inc(ifp
, ifs6_in_mldquery
);
1501 if (icmp6len
== sizeof(struct mld_hdr
)) {
1502 if (mld_v1_input_query(ifp
, ip6
, mld
) != 0)
1504 } else if (icmp6len
>= sizeof(struct mldv2_query
)) {
1505 if (mld_v2_input_query(ifp
, ip6
, m
, off
,
1510 case MLD_LISTENER_REPORT
:
1511 icmp6_ifstat_inc(ifp
, ifs6_in_mldreport
);
1512 if (mld_v1_input_report(ifp
, m
, ip6
, mld
) != 0)
1515 case MLDV2_LISTENER_REPORT
:
1516 icmp6_ifstat_inc(ifp
, ifs6_in_mldreport
);
1518 case MLD_LISTENER_DONE
:
1519 icmp6_ifstat_inc(ifp
, ifs6_in_mlddone
);
1529 * Schedule MLD timer based on various parameters; caller must ensure that
1530 * lock ordering is maintained as this routine acquires MLD global lock.
1533 mld_set_timeout(struct mld_tparams
*mtp
)
1535 MLD_LOCK_ASSERT_NOTHELD();
1536 VERIFY(mtp
!= NULL
);
1538 if (mtp
->qpt
!= 0 || mtp
->it
!= 0 || mtp
->cst
!= 0 || mtp
->sct
!= 0) {
1541 querier_present_timers_running6
= 1;
1543 interface_timers_running6
= 1;
1545 current_state_timers_running6
= 1;
1547 state_change_timers_running6
= 1;
1548 mld_sched_timeout();
1554 * MLD6 timer handler (per 1 second).
1557 mld_timeout(void *arg
)
1560 struct ifqueue scq
; /* State-change packets */
1561 struct ifqueue qrq
; /* Query response packets */
1563 struct mld_ifinfo
*mli
;
1564 struct in6_multi
*inm
;
1566 SLIST_HEAD(, in6_multi
) in6m_dthead
;
1568 SLIST_INIT(&in6m_dthead
);
1571 * Update coarse-grained networking timestamp (in sec.); the idea
1572 * is to piggy-back on the timeout callout to update the counter
1573 * returnable via net_uptime().
1575 net_update_uptime();
1579 MLD_PRINTF(("%s: qpt %d, it %d, cst %d, sct %d\n", __func__
,
1580 querier_present_timers_running6
, interface_timers_running6
,
1581 current_state_timers_running6
, state_change_timers_running6
));
1584 * MLDv1 querier present timer processing.
1586 if (querier_present_timers_running6
) {
1587 querier_present_timers_running6
= 0;
1588 LIST_FOREACH(mli
, &mli_head
, mli_link
) {
1590 mld_v1_process_querier_timers(mli
);
1591 if (mli
->mli_v1_timer
> 0)
1592 querier_present_timers_running6
= 1;
1598 * MLDv2 General Query response timer processing.
1600 if (interface_timers_running6
) {
1601 MLD_PRINTF(("%s: interface timers running\n", __func__
));
1602 interface_timers_running6
= 0;
1603 LIST_FOREACH(mli
, &mli_head
, mli_link
) {
1605 if (mli
->mli_version
!= MLD_VERSION_2
) {
1609 if (mli
->mli_v2_timer
== 0) {
1611 } else if (--mli
->mli_v2_timer
== 0) {
1612 if (mld_v2_dispatch_general_query(mli
) > 0)
1613 interface_timers_running6
= 1;
1615 interface_timers_running6
= 1;
1621 if (!current_state_timers_running6
&&
1622 !state_change_timers_running6
)
1625 current_state_timers_running6
= 0;
1626 state_change_timers_running6
= 0;
1628 MLD_PRINTF(("%s: state change timers running\n", __func__
));
1630 memset(&qrq
, 0, sizeof(struct ifqueue
));
1631 qrq
.ifq_maxlen
= MLD_MAX_G_GS_PACKETS
;
1633 memset(&scq
, 0, sizeof(struct ifqueue
));
1634 scq
.ifq_maxlen
= MLD_MAX_STATE_CHANGE_PACKETS
;
1637 * MLD host report and state-change timer processing.
1638 * Note: Processing a v2 group timer may remove a node.
1640 LIST_FOREACH(mli
, &mli_head
, mli_link
) {
1641 struct in6_multistep step
;
1645 uri_sec
= MLD_RANDOM_DELAY(mli
->mli_uri
);
1648 in6_multihead_lock_shared();
1649 IN6_FIRST_MULTI(step
, inm
);
1650 while (inm
!= NULL
) {
1652 if (inm
->in6m_ifp
!= ifp
)
1656 switch (mli
->mli_version
) {
1658 mld_v1_process_group_timer(inm
,
1662 mld_v2_process_group_timers(mli
, &qrq
,
1663 &scq
, inm
, uri_sec
);
1669 IN6_NEXT_MULTI(step
, inm
);
1671 in6_multihead_lock_done();
1674 if (mli
->mli_version
== MLD_VERSION_1
) {
1675 mld_dispatch_queue(mli
, &mli
->mli_v1q
, 0);
1676 } else if (mli
->mli_version
== MLD_VERSION_2
) {
1678 mld_dispatch_queue(NULL
, &qrq
, 0);
1679 mld_dispatch_queue(NULL
, &scq
, 0);
1680 VERIFY(qrq
.ifq_len
== 0);
1681 VERIFY(scq
.ifq_len
== 0);
1685 * In case there are still any pending membership reports
1686 * which didn't get drained at version change time.
1688 IF_DRAIN(&mli
->mli_v1q
);
1690 * Release all deferred inm records, and drain any locally
1691 * enqueued packets; do it even if the current MLD version
1692 * for the link is no longer MLDv2, in order to handle the
1693 * version change case.
1695 mld_flush_relq(mli
, (struct mld_in6m_relhead
*)&in6m_dthead
);
1696 VERIFY(SLIST_EMPTY(&mli
->mli_relinmhead
));
1704 /* re-arm the timer if there's work to do */
1705 mld_timeout_run
= 0;
1706 mld_sched_timeout();
1709 /* Now that we're dropped all locks, release detached records */
1710 MLD_REMOVE_DETACHED_IN6M(&in6m_dthead
);
1714 mld_sched_timeout(void)
1716 MLD_LOCK_ASSERT_HELD();
1718 if (!mld_timeout_run
&&
1719 (querier_present_timers_running6
|| current_state_timers_running6
||
1720 interface_timers_running6
|| state_change_timers_running6
)) {
1721 mld_timeout_run
= 1;
1722 timeout(mld_timeout
, NULL
, hz
);
1727 * Free the in6_multi reference(s) for this MLD lifecycle.
1729 * Caller must be holding mli_lock.
1732 mld_flush_relq(struct mld_ifinfo
*mli
, struct mld_in6m_relhead
*in6m_dthead
)
1734 struct in6_multi
*inm
;
1737 MLI_LOCK_ASSERT_HELD(mli
);
1738 inm
= SLIST_FIRST(&mli
->mli_relinmhead
);
1742 SLIST_REMOVE_HEAD(&mli
->mli_relinmhead
, in6m_nrele
);
1745 in6_multihead_lock_exclusive();
1747 VERIFY(inm
->in6m_nrelecnt
!= 0);
1748 inm
->in6m_nrelecnt
--;
1749 lastref
= in6_multi_detach(inm
);
1750 VERIFY(!lastref
|| (!(inm
->in6m_debug
& IFD_ATTACHED
) &&
1751 inm
->in6m_reqcnt
== 0));
1753 in6_multihead_lock_done();
1754 /* from mli_relinmhead */
1756 /* from in6_multihead_list */
1759 * Defer releasing our final reference, as we
1760 * are holding the MLD lock at this point, and
1761 * we could end up with locking issues later on
1762 * (while issuing SIOCDELMULTI) when this is the
1763 * final reference count. Let the caller do it
1766 MLD_ADD_DETACHED_IN6M(in6m_dthead
, inm
);
1774 * Update host report group timer.
1775 * Will update the global pending timer flags.
1778 mld_v1_process_group_timer(struct in6_multi
*inm
, const int mld_version
)
1780 #pragma unused(mld_version)
1781 int report_timer_expired
;
1783 MLD_LOCK_ASSERT_HELD();
1784 IN6M_LOCK_ASSERT_HELD(inm
);
1785 MLI_LOCK_ASSERT_HELD(inm
->in6m_mli
);
1787 if (inm
->in6m_timer
== 0) {
1788 report_timer_expired
= 0;
1789 } else if (--inm
->in6m_timer
== 0) {
1790 report_timer_expired
= 1;
1792 current_state_timers_running6
= 1;
1793 /* caller will schedule timer */
1797 switch (inm
->in6m_state
) {
1798 case MLD_NOT_MEMBER
:
1799 case MLD_SILENT_MEMBER
:
1800 case MLD_IDLE_MEMBER
:
1801 case MLD_LAZY_MEMBER
:
1802 case MLD_SLEEPING_MEMBER
:
1803 case MLD_AWAKENING_MEMBER
:
1805 case MLD_REPORTING_MEMBER
:
1806 if (report_timer_expired
) {
1807 inm
->in6m_state
= MLD_IDLE_MEMBER
;
1808 (void) mld_v1_transmit_report(inm
,
1809 MLD_LISTENER_REPORT
);
1810 IN6M_LOCK_ASSERT_HELD(inm
);
1811 MLI_LOCK_ASSERT_HELD(inm
->in6m_mli
);
1814 case MLD_G_QUERY_PENDING_MEMBER
:
1815 case MLD_SG_QUERY_PENDING_MEMBER
:
1816 case MLD_LEAVING_MEMBER
:
1822 * Update a group's timers for MLDv2.
1823 * Will update the global pending timer flags.
1824 * Note: Unlocked read from mli.
1827 mld_v2_process_group_timers(struct mld_ifinfo
*mli
,
1828 struct ifqueue
*qrq
, struct ifqueue
*scq
,
1829 struct in6_multi
*inm
, const int uri_sec
)
1831 int query_response_timer_expired
;
1832 int state_change_retransmit_timer_expired
;
1834 MLD_LOCK_ASSERT_HELD();
1835 IN6M_LOCK_ASSERT_HELD(inm
);
1836 MLI_LOCK_ASSERT_HELD(mli
);
1837 VERIFY(mli
== inm
->in6m_mli
);
1839 query_response_timer_expired
= 0;
1840 state_change_retransmit_timer_expired
= 0;
1843 * During a transition from compatibility mode back to MLDv2,
1844 * a group record in REPORTING state may still have its group
1845 * timer active. This is a no-op in this function; it is easier
1846 * to deal with it here than to complicate the timeout path.
1848 if (inm
->in6m_timer
== 0) {
1849 query_response_timer_expired
= 0;
1850 } else if (--inm
->in6m_timer
== 0) {
1851 query_response_timer_expired
= 1;
1853 current_state_timers_running6
= 1;
1854 /* caller will schedule timer */
1857 if (inm
->in6m_sctimer
== 0) {
1858 state_change_retransmit_timer_expired
= 0;
1859 } else if (--inm
->in6m_sctimer
== 0) {
1860 state_change_retransmit_timer_expired
= 1;
1862 state_change_timers_running6
= 1;
1863 /* caller will schedule timer */
1866 /* We are in timer callback, so be quick about it. */
1867 if (!state_change_retransmit_timer_expired
&&
1868 !query_response_timer_expired
)
1871 switch (inm
->in6m_state
) {
1872 case MLD_NOT_MEMBER
:
1873 case MLD_SILENT_MEMBER
:
1874 case MLD_SLEEPING_MEMBER
:
1875 case MLD_LAZY_MEMBER
:
1876 case MLD_AWAKENING_MEMBER
:
1877 case MLD_IDLE_MEMBER
:
1879 case MLD_G_QUERY_PENDING_MEMBER
:
1880 case MLD_SG_QUERY_PENDING_MEMBER
:
1882 * Respond to a previously pending Group-Specific
1883 * or Group-and-Source-Specific query by enqueueing
1884 * the appropriate Current-State report for
1885 * immediate transmission.
1887 if (query_response_timer_expired
) {
1890 retval
= mld_v2_enqueue_group_record(qrq
, inm
, 0, 1,
1891 (inm
->in6m_state
== MLD_SG_QUERY_PENDING_MEMBER
),
1893 MLD_PRINTF(("%s: enqueue record = %d\n",
1895 inm
->in6m_state
= MLD_REPORTING_MEMBER
;
1896 in6m_clear_recorded(inm
);
1899 case MLD_REPORTING_MEMBER
:
1900 case MLD_LEAVING_MEMBER
:
1901 if (state_change_retransmit_timer_expired
) {
1903 * State-change retransmission timer fired.
1904 * If there are any further pending retransmissions,
1905 * set the global pending state-change flag, and
1908 if (--inm
->in6m_scrv
> 0) {
1909 inm
->in6m_sctimer
= uri_sec
;
1910 state_change_timers_running6
= 1;
1911 /* caller will schedule timer */
1914 * Retransmit the previously computed state-change
1915 * report. If there are no further pending
1916 * retransmissions, the mbuf queue will be consumed.
1917 * Update T0 state to T1 as we have now sent
1920 (void) mld_v2_merge_state_changes(inm
, scq
);
1923 MLD_PRINTF(("%s: T1 -> T0 for %s/%s\n", __func__
,
1924 ip6_sprintf(&inm
->in6m_addr
),
1925 if_name(inm
->in6m_ifp
)));
1928 * If we are leaving the group for good, make sure
1929 * we release MLD's reference to it.
1930 * This release must be deferred using a SLIST,
1931 * as we are called from a loop which traverses
1932 * the in_ifmultiaddr TAILQ.
1934 if (inm
->in6m_state
== MLD_LEAVING_MEMBER
&&
1935 inm
->in6m_scrv
== 0) {
1936 inm
->in6m_state
= MLD_NOT_MEMBER
;
1938 * A reference has already been held in
1939 * mld_final_leave() for this inm, so
1940 * no need to hold another one. We also
1941 * bumped up its request count then, so
1942 * that it stays in in6_multihead. Both
1943 * of them will be released when it is
1944 * dequeued later on.
1946 VERIFY(inm
->in6m_nrelecnt
!= 0);
1947 SLIST_INSERT_HEAD(&mli
->mli_relinmhead
,
1956 * Switch to a different version on the given interface,
1957 * as per Section 9.12.
1960 mld_set_version(struct mld_ifinfo
*mli
, const int mld_version
)
1962 int old_version_timer
;
1964 MLI_LOCK_ASSERT_HELD(mli
);
1966 MLD_PRINTF(("%s: switching to v%d on ifp 0x%llx(%s)\n", __func__
,
1967 mld_version
, (uint64_t)VM_KERNEL_ADDRPERM(mli
->mli_ifp
),
1968 if_name(mli
->mli_ifp
)));
1970 if (mld_version
== MLD_VERSION_1
) {
1972 * Compute the "Older Version Querier Present" timer as per
1973 * Section 9.12, in seconds.
1975 old_version_timer
= (mli
->mli_rv
* mli
->mli_qi
) + mli
->mli_qri
;
1976 mli
->mli_v1_timer
= old_version_timer
;
1979 if (mli
->mli_v1_timer
> 0 && mli
->mli_version
!= MLD_VERSION_1
) {
1980 mli
->mli_version
= MLD_VERSION_1
;
1981 mld_v2_cancel_link_timers(mli
);
1984 MLI_LOCK_ASSERT_HELD(mli
);
1986 return (mli
->mli_v1_timer
);
1990 * Cancel pending MLDv2 timers for the given link and all groups
1991 * joined on it; state-change, general-query, and group-query timers.
1993 * Only ever called on a transition from v2 to Compatibility mode. Kill
1994 * the timers stone dead (this may be expensive for large N groups), they
1995 * will be restarted if Compatibility Mode deems that they must be due to
1999 mld_v2_cancel_link_timers(struct mld_ifinfo
*mli
)
2002 struct in6_multi
*inm
;
2003 struct in6_multistep step
;
2005 MLI_LOCK_ASSERT_HELD(mli
);
2007 MLD_PRINTF(("%s: cancel v2 timers on ifp 0x%llx(%s)\n", __func__
,
2008 (uint64_t)VM_KERNEL_ADDRPERM(mli
->mli_ifp
), if_name(mli
->mli_ifp
)));
2011 * Stop the v2 General Query Response on this link stone dead.
2012 * If timer is woken up due to interface_timers_running6,
2013 * the flag will be cleared if there are no pending link timers.
2015 mli
->mli_v2_timer
= 0;
2018 * Now clear the current-state and state-change report timers
2019 * for all memberships scoped to this link.
2024 in6_multihead_lock_shared();
2025 IN6_FIRST_MULTI(step
, inm
);
2026 while (inm
!= NULL
) {
2028 if (inm
->in6m_ifp
!= ifp
)
2031 switch (inm
->in6m_state
) {
2032 case MLD_NOT_MEMBER
:
2033 case MLD_SILENT_MEMBER
:
2034 case MLD_IDLE_MEMBER
:
2035 case MLD_LAZY_MEMBER
:
2036 case MLD_SLEEPING_MEMBER
:
2037 case MLD_AWAKENING_MEMBER
:
2039 * These states are either not relevant in v2 mode,
2040 * or are unreported. Do nothing.
2043 case MLD_LEAVING_MEMBER
:
2045 * If we are leaving the group and switching
2046 * version, we need to release the final
2047 * reference held for issuing the INCLUDE {}.
2048 * During mld_final_leave(), we bumped up both the
2049 * request and reference counts. Since we cannot
2050 * call in6_multi_detach() here, defer this task to
2051 * the timer routine.
2053 VERIFY(inm
->in6m_nrelecnt
!= 0);
2055 SLIST_INSERT_HEAD(&mli
->mli_relinmhead
, inm
,
2059 case MLD_G_QUERY_PENDING_MEMBER
:
2060 case MLD_SG_QUERY_PENDING_MEMBER
:
2061 in6m_clear_recorded(inm
);
2063 case MLD_REPORTING_MEMBER
:
2064 inm
->in6m_state
= MLD_REPORTING_MEMBER
;
2068 * Always clear state-change and group report timers.
2069 * Free any pending MLDv2 state-change records.
2071 inm
->in6m_sctimer
= 0;
2072 inm
->in6m_timer
= 0;
2073 IF_DRAIN(&inm
->in6m_scq
);
2076 IN6_NEXT_MULTI(step
, inm
);
2078 in6_multihead_lock_done();
2084 * Update the Older Version Querier Present timers for a link.
2085 * See Section 9.12 of RFC 3810.
2088 mld_v1_process_querier_timers(struct mld_ifinfo
*mli
)
2090 MLI_LOCK_ASSERT_HELD(mli
);
2092 if (mld_v2enable
&& mli
->mli_version
!= MLD_VERSION_2
&&
2093 --mli
->mli_v1_timer
== 0) {
2095 * MLDv1 Querier Present timer expired; revert to MLDv2.
2097 MLD_PRINTF(("%s: transition from v%d -> v%d on 0x%llx(%s)\n",
2098 __func__
, mli
->mli_version
, MLD_VERSION_2
,
2099 (uint64_t)VM_KERNEL_ADDRPERM(mli
->mli_ifp
),
2100 if_name(mli
->mli_ifp
)));
2101 mli
->mli_version
= MLD_VERSION_2
;
2106 * Transmit an MLDv1 report immediately.
2109 mld_v1_transmit_report(struct in6_multi
*in6m
, const int type
)
2112 struct in6_ifaddr
*ia
;
2113 struct ip6_hdr
*ip6
;
2114 struct mbuf
*mh
, *md
;
2115 struct mld_hdr
*mld
;
2118 IN6M_LOCK_ASSERT_HELD(in6m
);
2119 MLI_LOCK_ASSERT_HELD(in6m
->in6m_mli
);
2121 ifp
= in6m
->in6m_ifp
;
2122 /* ia may be NULL if link-local address is tentative. */
2123 ia
= in6ifa_ifpforlinklocal(ifp
, IN6_IFF_NOTREADY
|IN6_IFF_ANYCAST
);
2125 MGETHDR(mh
, M_DONTWAIT
, MT_HEADER
);
2128 IFA_REMREF(&ia
->ia_ifa
);
2131 MGET(md
, M_DONTWAIT
, MT_DATA
);
2135 IFA_REMREF(&ia
->ia_ifa
);
2141 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so
2142 * that ether_output() does not need to allocate another mbuf
2143 * for the header in the most common case.
2145 MH_ALIGN(mh
, sizeof(struct ip6_hdr
));
2146 mh
->m_pkthdr
.len
= sizeof(struct ip6_hdr
) + sizeof(struct mld_hdr
);
2147 mh
->m_len
= sizeof(struct ip6_hdr
);
2149 ip6
= mtod(mh
, struct ip6_hdr
*);
2151 ip6
->ip6_vfc
&= ~IPV6_VERSION_MASK
;
2152 ip6
->ip6_vfc
|= IPV6_VERSION
;
2153 ip6
->ip6_nxt
= IPPROTO_ICMPV6
;
2155 IFA_LOCK(&ia
->ia_ifa
);
2156 ip6
->ip6_src
= ia
? ia
->ia_addr
.sin6_addr
: in6addr_any
;
2158 IFA_UNLOCK(&ia
->ia_ifa
);
2159 IFA_REMREF(&ia
->ia_ifa
);
2162 ip6
->ip6_dst
= in6m
->in6m_addr
;
2164 md
->m_len
= sizeof(struct mld_hdr
);
2165 mld
= mtod(md
, struct mld_hdr
*);
2166 mld
->mld_type
= type
;
2169 mld
->mld_maxdelay
= 0;
2170 mld
->mld_reserved
= 0;
2171 mld
->mld_addr
= in6m
->in6m_addr
;
2172 in6_clearscope(&mld
->mld_addr
);
2173 mld
->mld_cksum
= in6_cksum(mh
, IPPROTO_ICMPV6
,
2174 sizeof(struct ip6_hdr
), sizeof(struct mld_hdr
));
2176 mld_save_context(mh
, ifp
);
2177 mh
->m_flags
|= M_MLDV1
;
2180 * Due to the fact that at this point we are possibly holding
2181 * in6_multihead_lock in shared or exclusive mode, we can't call
2182 * mld_dispatch_packet() here since that will eventually call
2183 * ip6_output(), which will try to lock in6_multihead_lock and cause
2185 * Instead we defer the work to the mld_timeout() thread, thus
2186 * avoiding unlocking in_multihead_lock here.
2188 if (IF_QFULL(&in6m
->in6m_mli
->mli_v1q
)) {
2189 MLD_PRINTF(("%s: v1 outbound queue full\n", __func__
));
2193 IF_ENQUEUE(&in6m
->in6m_mli
->mli_v1q
, mh
);
2201 * Process a state change from the upper layer for the given IPv6 group.
2203 * Each socket holds a reference on the in6_multi in its own ip_moptions.
2204 * The socket layer will have made the necessary updates to.the group
2205 * state, it is now up to MLD to issue a state change report if there
2206 * has been any change between T0 (when the last state-change was issued)
2209 * We use the MLDv2 state machine at group level. The MLd module
2210 * however makes the decision as to which MLD protocol version to speak.
2211 * A state change *from* INCLUDE {} always means an initial join.
2212 * A state change *to* INCLUDE {} always means a final leave.
2214 * If delay is non-zero, and the state change is an initial multicast
2215 * join, the state change report will be delayed by 'delay' ticks
2216 * in units of seconds if MLDv1 is active on the link; otherwise
2217 * the initial MLDv2 state change report will be delayed by whichever
2218 * is sooner, a pending state-change timer or delay itself.
2221 mld_change_state(struct in6_multi
*inm
, struct mld_tparams
*mtp
,
2224 struct mld_ifinfo
*mli
;
2228 VERIFY(mtp
!= NULL
);
2229 bzero(mtp
, sizeof (*mtp
));
2231 IN6M_LOCK_ASSERT_HELD(inm
);
2232 VERIFY(inm
->in6m_mli
!= NULL
);
2233 MLI_LOCK_ASSERT_NOTHELD(inm
->in6m_mli
);
2236 * Try to detect if the upper layer just asked us to change state
2237 * for an interface which has now gone away.
2239 VERIFY(inm
->in6m_ifma
!= NULL
);
2240 ifp
= inm
->in6m_ifma
->ifma_ifp
;
2242 * Sanity check that netinet6's notion of ifp is the same as net's.
2244 VERIFY(inm
->in6m_ifp
== ifp
);
2246 mli
= MLD_IFINFO(ifp
);
2247 VERIFY(mli
!= NULL
);
2250 * If we detect a state transition to or from MCAST_UNDEFINED
2251 * for this group, then we are starting or finishing an MLD
2252 * life cycle for this group.
2254 if (inm
->in6m_st
[1].iss_fmode
!= inm
->in6m_st
[0].iss_fmode
) {
2255 MLD_PRINTF(("%s: inm transition %d -> %d\n", __func__
,
2256 inm
->in6m_st
[0].iss_fmode
, inm
->in6m_st
[1].iss_fmode
));
2257 if (inm
->in6m_st
[0].iss_fmode
== MCAST_UNDEFINED
) {
2258 MLD_PRINTF(("%s: initial join\n", __func__
));
2259 error
= mld_initial_join(inm
, mli
, mtp
, delay
);
2261 } else if (inm
->in6m_st
[1].iss_fmode
== MCAST_UNDEFINED
) {
2262 MLD_PRINTF(("%s: final leave\n", __func__
));
2263 mld_final_leave(inm
, mli
, mtp
);
2267 MLD_PRINTF(("%s: filter set change\n", __func__
));
2270 error
= mld_handle_state_change(inm
, mli
, mtp
);
2276 * Perform the initial join for an MLD group.
2278 * When joining a group:
2279 * If the group should have its MLD traffic suppressed, do nothing.
2280 * MLDv1 starts sending MLDv1 host membership reports.
2281 * MLDv2 will schedule an MLDv2 state-change report containing the
2282 * initial state of the membership.
2284 * If the delay argument is non-zero, then we must delay sending the
2285 * initial state change for delay ticks (in units of seconds).
2288 mld_initial_join(struct in6_multi
*inm
, struct mld_ifinfo
*mli
,
2289 struct mld_tparams
*mtp
, const int delay
)
2292 struct ifqueue
*ifq
;
2293 int error
, retval
, syncstates
;
2296 IN6M_LOCK_ASSERT_HELD(inm
);
2297 MLI_LOCK_ASSERT_NOTHELD(mli
);
2298 VERIFY(mtp
!= NULL
);
2300 MLD_PRINTF(("%s: initial join %s on ifp 0x%llx(%s)\n",
2301 __func__
, ip6_sprintf(&inm
->in6m_addr
),
2302 (uint64_t)VM_KERNEL_ADDRPERM(inm
->in6m_ifp
),
2303 if_name(inm
->in6m_ifp
)));
2308 ifp
= inm
->in6m_ifp
;
2311 VERIFY(mli
->mli_ifp
== ifp
);
2314 * Avoid MLD if group is :
2315 * 1. Joined on loopback, OR
2316 * 2. On a link that is marked MLIF_SILENT
2317 * 3. rdar://problem/19227650 Is link local scoped and
2318 * on cellular interface
2319 * 4. Is a type that should not be reported (node local
2320 * or all node link local multicast.
2321 * All other groups enter the appropriate state machine
2322 * for the version in use on this link.
2324 if ((ifp
->if_flags
& IFF_LOOPBACK
) ||
2325 (mli
->mli_flags
& MLIF_SILENT
) ||
2326 (IFNET_IS_CELLULAR(ifp
) &&
2327 IN6_IS_ADDR_MC_LINKLOCAL(&inm
->in6m_addr
)) ||
2328 !mld_is_addr_reported(&inm
->in6m_addr
)) {
2329 MLD_PRINTF(("%s: not kicking state machine for silent group\n",
2331 inm
->in6m_state
= MLD_SILENT_MEMBER
;
2332 inm
->in6m_timer
= 0;
2335 * Deal with overlapping in6_multi lifecycle.
2336 * If this group was LEAVING, then make sure
2337 * we drop the reference we picked up to keep the
2338 * group around for the final INCLUDE {} enqueue.
2339 * Since we cannot call in6_multi_detach() here,
2340 * defer this task to the timer routine.
2342 if (mli
->mli_version
== MLD_VERSION_2
&&
2343 inm
->in6m_state
== MLD_LEAVING_MEMBER
) {
2344 VERIFY(inm
->in6m_nrelecnt
!= 0);
2345 SLIST_INSERT_HEAD(&mli
->mli_relinmhead
, inm
,
2349 inm
->in6m_state
= MLD_REPORTING_MEMBER
;
2351 switch (mli
->mli_version
) {
2354 * If a delay was provided, only use it if
2355 * it is greater than the delay normally
2356 * used for an MLDv1 state change report,
2357 * and delay sending the initial MLDv1 report
2358 * by not transitioning to the IDLE state.
2360 odelay
= MLD_RANDOM_DELAY(MLD_V1_MAX_RI
);
2362 inm
->in6m_timer
= max(delay
, odelay
);
2365 inm
->in6m_state
= MLD_IDLE_MEMBER
;
2366 error
= mld_v1_transmit_report(inm
,
2367 MLD_LISTENER_REPORT
);
2369 IN6M_LOCK_ASSERT_HELD(inm
);
2370 MLI_LOCK_ASSERT_HELD(mli
);
2373 inm
->in6m_timer
= odelay
;
2381 * Defer update of T0 to T1, until the first copy
2382 * of the state change has been transmitted.
2387 * Immediately enqueue a State-Change Report for
2388 * this interface, freeing any previous reports.
2389 * Don't kick the timers if there is nothing to do,
2390 * or if an error occurred.
2392 ifq
= &inm
->in6m_scq
;
2394 retval
= mld_v2_enqueue_group_record(ifq
, inm
, 1,
2395 0, 0, (mli
->mli_flags
& MLIF_USEALLOW
));
2396 mtp
->cst
= (ifq
->ifq_len
> 0);
2397 MLD_PRINTF(("%s: enqueue record = %d\n",
2400 error
= retval
* -1;
2405 * Schedule transmission of pending state-change
2406 * report up to RV times for this link. The timer
2407 * will fire at the next mld_timeout (1 second)),
2408 * giving us an opportunity to merge the reports.
2410 * If a delay was provided to this function, only
2411 * use this delay if sooner than the existing one.
2413 VERIFY(mli
->mli_rv
> 1);
2414 inm
->in6m_scrv
= mli
->mli_rv
;
2416 if (inm
->in6m_sctimer
> 1) {
2418 min(inm
->in6m_sctimer
, delay
);
2420 inm
->in6m_sctimer
= delay
;
2422 inm
->in6m_sctimer
= 1;
2432 * Only update the T0 state if state change is atomic,
2433 * i.e. we don't need to wait for a timer to fire before we
2434 * can consider the state change to have been communicated.
2438 MLD_PRINTF(("%s: T1 -> T0 for %s/%s\n", __func__
,
2439 ip6_sprintf(&inm
->in6m_addr
),
2440 if_name(inm
->in6m_ifp
)));
2447 * Issue an intermediate state change during the life-cycle.
2450 mld_handle_state_change(struct in6_multi
*inm
, struct mld_ifinfo
*mli
,
2451 struct mld_tparams
*mtp
)
2456 IN6M_LOCK_ASSERT_HELD(inm
);
2457 MLI_LOCK_ASSERT_NOTHELD(mli
);
2458 VERIFY(mtp
!= NULL
);
2460 MLD_PRINTF(("%s: state change for %s on ifp 0x%llx(%s)\n",
2461 __func__
, ip6_sprintf(&inm
->in6m_addr
),
2462 (uint64_t)VM_KERNEL_ADDRPERM(inm
->in6m_ifp
),
2463 if_name(inm
->in6m_ifp
)));
2465 ifp
= inm
->in6m_ifp
;
2468 VERIFY(mli
->mli_ifp
== ifp
);
2470 if ((ifp
->if_flags
& IFF_LOOPBACK
) ||
2471 (mli
->mli_flags
& MLIF_SILENT
) ||
2472 !mld_is_addr_reported(&inm
->in6m_addr
) ||
2473 (mli
->mli_version
!= MLD_VERSION_2
)) {
2475 if (!mld_is_addr_reported(&inm
->in6m_addr
)) {
2476 MLD_PRINTF(("%s: not kicking state machine for silent "
2477 "group\n", __func__
));
2479 MLD_PRINTF(("%s: nothing to do\n", __func__
));
2481 MLD_PRINTF(("%s: T1 -> T0 for %s/%s\n", __func__
,
2482 ip6_sprintf(&inm
->in6m_addr
),
2483 if_name(inm
->in6m_ifp
)));
2487 IF_DRAIN(&inm
->in6m_scq
);
2489 retval
= mld_v2_enqueue_group_record(&inm
->in6m_scq
, inm
, 1, 0, 0,
2490 (mli
->mli_flags
& MLIF_USEALLOW
));
2491 mtp
->cst
= (inm
->in6m_scq
.ifq_len
> 0);
2492 MLD_PRINTF(("%s: enqueue record = %d\n", __func__
, retval
));
2502 * If record(s) were enqueued, start the state-change
2503 * report timer for this group.
2505 inm
->in6m_scrv
= mli
->mli_rv
;
2506 inm
->in6m_sctimer
= 1;
2515 * Perform the final leave for a multicast address.
2517 * When leaving a group:
2518 * MLDv1 sends a DONE message, if and only if we are the reporter.
2519 * MLDv2 enqueues a state-change report containing a transition
2520 * to INCLUDE {} for immediate transmission.
2523 mld_final_leave(struct in6_multi
*inm
, struct mld_ifinfo
*mli
,
2524 struct mld_tparams
*mtp
)
2528 IN6M_LOCK_ASSERT_HELD(inm
);
2529 MLI_LOCK_ASSERT_NOTHELD(mli
);
2530 VERIFY(mtp
!= NULL
);
2532 MLD_PRINTF(("%s: final leave %s on ifp 0x%llx(%s)\n",
2533 __func__
, ip6_sprintf(&inm
->in6m_addr
),
2534 (uint64_t)VM_KERNEL_ADDRPERM(inm
->in6m_ifp
),
2535 if_name(inm
->in6m_ifp
)));
2537 switch (inm
->in6m_state
) {
2538 case MLD_NOT_MEMBER
:
2539 case MLD_SILENT_MEMBER
:
2540 case MLD_LEAVING_MEMBER
:
2541 /* Already leaving or left; do nothing. */
2542 MLD_PRINTF(("%s: not kicking state machine for silent group\n",
2545 case MLD_REPORTING_MEMBER
:
2546 case MLD_IDLE_MEMBER
:
2547 case MLD_G_QUERY_PENDING_MEMBER
:
2548 case MLD_SG_QUERY_PENDING_MEMBER
:
2550 if (mli
->mli_version
== MLD_VERSION_1
) {
2551 if (inm
->in6m_state
== MLD_G_QUERY_PENDING_MEMBER
||
2552 inm
->in6m_state
== MLD_SG_QUERY_PENDING_MEMBER
) {
2553 panic("%s: MLDv2 state reached, not MLDv2 "
2554 "mode\n", __func__
);
2557 /* scheduler timer if enqueue is successful */
2558 mtp
->cst
= (mld_v1_transmit_report(inm
,
2559 MLD_LISTENER_DONE
) == 0);
2561 IN6M_LOCK_ASSERT_HELD(inm
);
2562 MLI_LOCK_ASSERT_HELD(mli
);
2564 inm
->in6m_state
= MLD_NOT_MEMBER
;
2565 } else if (mli
->mli_version
== MLD_VERSION_2
) {
2567 * Stop group timer and all pending reports.
2568 * Immediately enqueue a state-change report
2569 * TO_IN {} to be sent on the next timeout,
2570 * giving us an opportunity to merge reports.
2572 IF_DRAIN(&inm
->in6m_scq
);
2573 inm
->in6m_timer
= 0;
2574 inm
->in6m_scrv
= mli
->mli_rv
;
2575 MLD_PRINTF(("%s: Leaving %s/%s with %d "
2576 "pending retransmissions.\n", __func__
,
2577 ip6_sprintf(&inm
->in6m_addr
),
2578 if_name(inm
->in6m_ifp
),
2580 if (inm
->in6m_scrv
== 0) {
2581 inm
->in6m_state
= MLD_NOT_MEMBER
;
2582 inm
->in6m_sctimer
= 0;
2586 * Stick around in the in6_multihead list;
2587 * the final detach will be issued by
2588 * mld_v2_process_group_timers() when
2589 * the retransmit timer expires.
2591 IN6M_ADDREF_LOCKED(inm
);
2592 VERIFY(inm
->in6m_debug
& IFD_ATTACHED
);
2594 VERIFY(inm
->in6m_reqcnt
>= 1);
2595 inm
->in6m_nrelecnt
++;
2596 VERIFY(inm
->in6m_nrelecnt
!= 0);
2598 retval
= mld_v2_enqueue_group_record(
2599 &inm
->in6m_scq
, inm
, 1, 0, 0,
2600 (mli
->mli_flags
& MLIF_USEALLOW
));
2601 mtp
->cst
= (inm
->in6m_scq
.ifq_len
> 0);
2602 KASSERT(retval
!= 0,
2603 ("%s: enqueue record = %d\n", __func__
,
2606 inm
->in6m_state
= MLD_LEAVING_MEMBER
;
2607 inm
->in6m_sctimer
= 1;
2614 case MLD_LAZY_MEMBER
:
2615 case MLD_SLEEPING_MEMBER
:
2616 case MLD_AWAKENING_MEMBER
:
2617 /* Our reports are suppressed; do nothing. */
2623 MLD_PRINTF(("%s: T1 -> T0 for %s/%s\n", __func__
,
2624 ip6_sprintf(&inm
->in6m_addr
),
2625 if_name(inm
->in6m_ifp
)));
2626 inm
->in6m_st
[1].iss_fmode
= MCAST_UNDEFINED
;
2627 MLD_PRINTF(("%s: T1 now MCAST_UNDEFINED for 0x%llx/%s\n",
2628 __func__
, (uint64_t)VM_KERNEL_ADDRPERM(&inm
->in6m_addr
),
2629 if_name(inm
->in6m_ifp
)));
2634 * Enqueue an MLDv2 group record to the given output queue.
2636 * If is_state_change is zero, a current-state record is appended.
2637 * If is_state_change is non-zero, a state-change report is appended.
2639 * If is_group_query is non-zero, an mbuf packet chain is allocated.
2640 * If is_group_query is zero, and if there is a packet with free space
2641 * at the tail of the queue, it will be appended to providing there
2642 * is enough free space.
2643 * Otherwise a new mbuf packet chain is allocated.
2645 * If is_source_query is non-zero, each source is checked to see if
2646 * it was recorded for a Group-Source query, and will be omitted if
2647 * it is not both in-mode and recorded.
2649 * If use_block_allow is non-zero, state change reports for initial join
2650 * and final leave, on an inclusive mode group with a source list, will be
2651 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively.
2653 * The function will attempt to allocate leading space in the packet
2654 * for the IPv6+ICMP headers to be prepended without fragmenting the chain.
2656 * If successful the size of all data appended to the queue is returned,
2657 * otherwise an error code less than zero is returned, or zero if
2658 * no record(s) were appended.
2661 mld_v2_enqueue_group_record(struct ifqueue
*ifq
, struct in6_multi
*inm
,
2662 const int is_state_change
, const int is_group_query
,
2663 const int is_source_query
, const int use_block_allow
)
2665 struct mldv2_record mr
;
2666 struct mldv2_record
*pmr
;
2668 struct ip6_msource
*ims
, *nims
;
2669 struct mbuf
*m0
, *m
, *md
;
2670 int error
, is_filter_list_change
;
2671 int minrec0len
, m0srcs
, msrcs
, nbytes
, off
;
2672 int record_has_sources
;
2677 IN6M_LOCK_ASSERT_HELD(inm
);
2678 MLI_LOCK_ASSERT_HELD(inm
->in6m_mli
);
2681 ifp
= inm
->in6m_ifp
;
2682 is_filter_list_change
= 0;
2689 record_has_sources
= 1;
2691 type
= MLD_DO_NOTHING
;
2692 mode
= inm
->in6m_st
[1].iss_fmode
;
2695 * If we did not transition out of ASM mode during t0->t1,
2696 * and there are no source nodes to process, we can skip
2697 * the generation of source records.
2699 if (inm
->in6m_st
[0].iss_asm
> 0 && inm
->in6m_st
[1].iss_asm
> 0 &&
2700 inm
->in6m_nsrc
== 0)
2701 record_has_sources
= 0;
2703 if (is_state_change
) {
2705 * Queue a state change record.
2706 * If the mode did not change, and there are non-ASM
2707 * listeners or source filters present,
2708 * we potentially need to issue two records for the group.
2709 * If there are ASM listeners, and there was no filter
2710 * mode transition of any kind, do nothing.
2712 * If we are transitioning to MCAST_UNDEFINED, we need
2713 * not send any sources. A transition to/from this state is
2714 * considered inclusive with some special treatment.
2716 * If we are rewriting initial joins/leaves to use
2717 * ALLOW/BLOCK, and the group's membership is inclusive,
2718 * we need to send sources in all cases.
2720 if (mode
!= inm
->in6m_st
[0].iss_fmode
) {
2721 if (mode
== MCAST_EXCLUDE
) {
2722 MLD_PRINTF(("%s: change to EXCLUDE\n",
2724 type
= MLD_CHANGE_TO_EXCLUDE_MODE
;
2726 MLD_PRINTF(("%s: change to INCLUDE\n",
2728 if (use_block_allow
) {
2731 * Here we're interested in state
2732 * edges either direction between
2733 * MCAST_UNDEFINED and MCAST_INCLUDE.
2734 * Perhaps we should just check
2735 * the group state, rather than
2738 if (mode
== MCAST_UNDEFINED
) {
2739 type
= MLD_BLOCK_OLD_SOURCES
;
2741 type
= MLD_ALLOW_NEW_SOURCES
;
2744 type
= MLD_CHANGE_TO_INCLUDE_MODE
;
2745 if (mode
== MCAST_UNDEFINED
)
2746 record_has_sources
= 0;
2750 if (record_has_sources
) {
2751 is_filter_list_change
= 1;
2753 type
= MLD_DO_NOTHING
;
2758 * Queue a current state record.
2760 if (mode
== MCAST_EXCLUDE
) {
2761 type
= MLD_MODE_IS_EXCLUDE
;
2762 } else if (mode
== MCAST_INCLUDE
) {
2763 type
= MLD_MODE_IS_INCLUDE
;
2764 VERIFY(inm
->in6m_st
[1].iss_asm
== 0);
2769 * Generate the filter list changes using a separate function.
2771 if (is_filter_list_change
)
2772 return (mld_v2_enqueue_filter_change(ifq
, inm
));
2774 if (type
== MLD_DO_NOTHING
) {
2775 MLD_PRINTF(("%s: nothing to do for %s/%s\n",
2776 __func__
, ip6_sprintf(&inm
->in6m_addr
),
2777 if_name(inm
->in6m_ifp
)));
2782 * If any sources are present, we must be able to fit at least
2783 * one in the trailing space of the tail packet's mbuf,
2786 minrec0len
= sizeof(struct mldv2_record
);
2787 if (record_has_sources
)
2788 minrec0len
+= sizeof(struct in6_addr
);
2789 MLD_PRINTF(("%s: queueing %s for %s/%s\n", __func__
,
2790 mld_rec_type_to_str(type
),
2791 ip6_sprintf(&inm
->in6m_addr
),
2792 if_name(inm
->in6m_ifp
)));
2795 * Check if we have a packet in the tail of the queue for this
2796 * group into which the first group record for this group will fit.
2797 * Otherwise allocate a new packet.
2798 * Always allocate leading space for IP6+RA+ICMPV6+REPORT.
2799 * Note: Group records for G/GSR query responses MUST be sent
2800 * in their own packet.
2803 if (!is_group_query
&&
2805 (m0
->m_pkthdr
.vt_nrecs
+ 1 <= MLD_V2_REPORT_MAXRECS
) &&
2806 (m0
->m_pkthdr
.len
+ minrec0len
) <
2807 (ifp
->if_mtu
- MLD_MTUSPACE
)) {
2808 m0srcs
= (ifp
->if_mtu
- m0
->m_pkthdr
.len
-
2809 sizeof(struct mldv2_record
)) /
2810 sizeof(struct in6_addr
);
2812 MLD_PRINTF(("%s: use existing packet\n", __func__
));
2814 if (IF_QFULL(ifq
)) {
2815 MLD_PRINTF(("%s: outbound queue full\n", __func__
));
2819 m0srcs
= (ifp
->if_mtu
- MLD_MTUSPACE
-
2820 sizeof(struct mldv2_record
)) / sizeof(struct in6_addr
);
2821 if (!is_state_change
&& !is_group_query
)
2822 m
= m_getcl(M_DONTWAIT
, MT_DATA
, M_PKTHDR
);
2824 m
= m_gethdr(M_DONTWAIT
, MT_DATA
);
2828 mld_save_context(m
, ifp
);
2830 MLD_PRINTF(("%s: allocated first packet\n", __func__
));
2834 * Append group record.
2835 * If we have sources, we don't know how many yet.
2840 mr
.mr_addr
= inm
->in6m_addr
;
2841 in6_clearscope(&mr
.mr_addr
);
2842 if (!m_append(m
, sizeof(struct mldv2_record
), (void *)&mr
)) {
2845 MLD_PRINTF(("%s: m_append() failed.\n", __func__
));
2848 nbytes
+= sizeof(struct mldv2_record
);
2851 * Append as many sources as will fit in the first packet.
2852 * If we are appending to a new packet, the chain allocation
2853 * may potentially use clusters; use m_getptr() in this case.
2854 * If we are appending to an existing packet, we need to obtain
2855 * a pointer to the group record after m_append(), in case a new
2856 * mbuf was allocated.
2858 * Only append sources which are in-mode at t1. If we are
2859 * transitioning to MCAST_UNDEFINED state on the group, and
2860 * use_block_allow is zero, do not include source entries.
2861 * Otherwise, we need to include this source in the report.
2863 * Only report recorded sources in our filter set when responding
2864 * to a group-source query.
2866 if (record_has_sources
) {
2869 pmr
= (struct mldv2_record
*)(mtod(md
, uint8_t *) +
2870 md
->m_len
- nbytes
);
2872 md
= m_getptr(m
, 0, &off
);
2873 pmr
= (struct mldv2_record
*)(mtod(md
, uint8_t *) +
2877 RB_FOREACH_SAFE(ims
, ip6_msource_tree
, &inm
->in6m_srcs
,
2879 MLD_PRINTF(("%s: visit node %s\n", __func__
,
2880 ip6_sprintf(&ims
->im6s_addr
)));
2881 now
= im6s_get_mode(inm
, ims
, 1);
2882 MLD_PRINTF(("%s: node is %d\n", __func__
, now
));
2883 if ((now
!= mode
) ||
2885 (!use_block_allow
&& mode
== MCAST_UNDEFINED
))) {
2886 MLD_PRINTF(("%s: skip node\n", __func__
));
2889 if (is_source_query
&& ims
->im6s_stp
== 0) {
2890 MLD_PRINTF(("%s: skip unrecorded node\n",
2894 MLD_PRINTF(("%s: append node\n", __func__
));
2895 if (!m_append(m
, sizeof(struct in6_addr
),
2896 (void *)&ims
->im6s_addr
)) {
2899 MLD_PRINTF(("%s: m_append() failed.\n",
2903 nbytes
+= sizeof(struct in6_addr
);
2905 if (msrcs
== m0srcs
)
2908 MLD_PRINTF(("%s: msrcs is %d this packet\n", __func__
,
2910 pmr
->mr_numsrc
= htons(msrcs
);
2911 nbytes
+= (msrcs
* sizeof(struct in6_addr
));
2914 if (is_source_query
&& msrcs
== 0) {
2915 MLD_PRINTF(("%s: no recorded sources to report\n", __func__
));
2922 * We are good to go with first packet.
2925 MLD_PRINTF(("%s: enqueueing first packet\n", __func__
));
2926 m
->m_pkthdr
.vt_nrecs
= 1;
2929 m
->m_pkthdr
.vt_nrecs
++;
2932 * No further work needed if no source list in packet(s).
2934 if (!record_has_sources
)
2938 * Whilst sources remain to be announced, we need to allocate
2939 * a new packet and fill out as many sources as will fit.
2940 * Always try for a cluster first.
2942 while (nims
!= NULL
) {
2943 if (IF_QFULL(ifq
)) {
2944 MLD_PRINTF(("%s: outbound queue full\n", __func__
));
2947 m
= m_getcl(M_DONTWAIT
, MT_DATA
, M_PKTHDR
);
2949 m
= m_gethdr(M_DONTWAIT
, MT_DATA
);
2952 mld_save_context(m
, ifp
);
2953 md
= m_getptr(m
, 0, &off
);
2954 pmr
= (struct mldv2_record
*)(mtod(md
, uint8_t *) + off
);
2955 MLD_PRINTF(("%s: allocated next packet\n", __func__
));
2957 if (!m_append(m
, sizeof(struct mldv2_record
), (void *)&mr
)) {
2960 MLD_PRINTF(("%s: m_append() failed.\n", __func__
));
2963 m
->m_pkthdr
.vt_nrecs
= 1;
2964 nbytes
+= sizeof(struct mldv2_record
);
2966 m0srcs
= (ifp
->if_mtu
- MLD_MTUSPACE
-
2967 sizeof(struct mldv2_record
)) / sizeof(struct in6_addr
);
2970 RB_FOREACH_FROM(ims
, ip6_msource_tree
, nims
) {
2971 MLD_PRINTF(("%s: visit node %s\n",
2972 __func__
, ip6_sprintf(&ims
->im6s_addr
)));
2973 now
= im6s_get_mode(inm
, ims
, 1);
2974 if ((now
!= mode
) ||
2976 (!use_block_allow
&& mode
== MCAST_UNDEFINED
))) {
2977 MLD_PRINTF(("%s: skip node\n", __func__
));
2980 if (is_source_query
&& ims
->im6s_stp
== 0) {
2981 MLD_PRINTF(("%s: skip unrecorded node\n",
2985 MLD_PRINTF(("%s: append node\n", __func__
));
2986 if (!m_append(m
, sizeof(struct in6_addr
),
2987 (void *)&ims
->im6s_addr
)) {
2990 MLD_PRINTF(("%s: m_append() failed.\n",
2995 if (msrcs
== m0srcs
)
2998 pmr
->mr_numsrc
= htons(msrcs
);
2999 nbytes
+= (msrcs
* sizeof(struct in6_addr
));
3001 MLD_PRINTF(("%s: enqueueing next packet\n", __func__
));
3009 * Type used to mark record pass completion.
3010 * We exploit the fact we can cast to this easily from the
3011 * current filter modes on each ip_msource node.
3014 REC_NONE
= 0x00, /* MCAST_UNDEFINED */
3015 REC_ALLOW
= 0x01, /* MCAST_INCLUDE */
3016 REC_BLOCK
= 0x02, /* MCAST_EXCLUDE */
3017 REC_FULL
= REC_ALLOW
| REC_BLOCK
3021 * Enqueue an MLDv2 filter list change to the given output queue.
3023 * Source list filter state is held in an RB-tree. When the filter list
3024 * for a group is changed without changing its mode, we need to compute
3025 * the deltas between T0 and T1 for each source in the filter set,
3026 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records.
3028 * As we may potentially queue two record types, and the entire R-B tree
3029 * needs to be walked at once, we break this out into its own function
3030 * so we can generate a tightly packed queue of packets.
3032 * XXX This could be written to only use one tree walk, although that makes
3033 * serializing into the mbuf chains a bit harder. For now we do two walks
3034 * which makes things easier on us, and it may or may not be harder on
3037 * If successful the size of all data appended to the queue is returned,
3038 * otherwise an error code less than zero is returned, or zero if
3039 * no record(s) were appended.
3042 mld_v2_enqueue_filter_change(struct ifqueue
*ifq
, struct in6_multi
*inm
)
3044 static const int MINRECLEN
=
3045 sizeof(struct mldv2_record
) + sizeof(struct in6_addr
);
3047 struct mldv2_record mr
;
3048 struct mldv2_record
*pmr
;
3049 struct ip6_msource
*ims
, *nims
;
3050 struct mbuf
*m
, *m0
, *md
;
3051 int m0srcs
, nbytes
, npbytes
, off
, rsrcs
, schanged
;
3053 uint8_t mode
, now
, then
;
3054 rectype_t crt
, drt
, nrt
;
3056 IN6M_LOCK_ASSERT_HELD(inm
);
3058 if (inm
->in6m_nsrc
== 0 ||
3059 (inm
->in6m_st
[0].iss_asm
> 0 && inm
->in6m_st
[1].iss_asm
> 0))
3062 ifp
= inm
->in6m_ifp
; /* interface */
3063 mode
= inm
->in6m_st
[1].iss_fmode
; /* filter mode at t1 */
3064 crt
= REC_NONE
; /* current group record type */
3065 drt
= REC_NONE
; /* mask of completed group record types */
3066 nrt
= REC_NONE
; /* record type for current node */
3067 m0srcs
= 0; /* # source which will fit in current mbuf chain */
3068 npbytes
= 0; /* # of bytes appended this packet */
3069 nbytes
= 0; /* # of bytes appended to group's state-change queue */
3070 rsrcs
= 0; /* # sources encoded in current record */
3071 schanged
= 0; /* # nodes encoded in overall filter change */
3072 nallow
= 0; /* # of source entries in ALLOW_NEW */
3073 nblock
= 0; /* # of source entries in BLOCK_OLD */
3074 nims
= NULL
; /* next tree node pointer */
3077 * For each possible filter record mode.
3078 * The first kind of source we encounter tells us which
3079 * is the first kind of record we start appending.
3080 * If a node transitioned to UNDEFINED at t1, its mode is treated
3081 * as the inverse of the group's filter mode.
3083 while (drt
!= REC_FULL
) {
3087 (m0
->m_pkthdr
.vt_nrecs
+ 1 <=
3088 MLD_V2_REPORT_MAXRECS
) &&
3089 (m0
->m_pkthdr
.len
+ MINRECLEN
) <
3090 (ifp
->if_mtu
- MLD_MTUSPACE
)) {
3092 m0srcs
= (ifp
->if_mtu
- m0
->m_pkthdr
.len
-
3093 sizeof(struct mldv2_record
)) /
3094 sizeof(struct in6_addr
);
3095 MLD_PRINTF(("%s: use previous packet\n",
3098 m
= m_getcl(M_DONTWAIT
, MT_DATA
, M_PKTHDR
);
3100 m
= m_gethdr(M_DONTWAIT
, MT_DATA
);
3102 MLD_PRINTF(("%s: m_get*() failed\n",
3106 m
->m_pkthdr
.vt_nrecs
= 0;
3107 mld_save_context(m
, ifp
);
3108 m0srcs
= (ifp
->if_mtu
- MLD_MTUSPACE
-
3109 sizeof(struct mldv2_record
)) /
3110 sizeof(struct in6_addr
);
3112 MLD_PRINTF(("%s: allocated new packet\n",
3116 * Append the MLD group record header to the
3117 * current packet's data area.
3118 * Recalculate pointer to free space for next
3119 * group record, in case m_append() allocated
3120 * a new mbuf or cluster.
3122 memset(&mr
, 0, sizeof(mr
));
3123 mr
.mr_addr
= inm
->in6m_addr
;
3124 in6_clearscope(&mr
.mr_addr
);
3125 if (!m_append(m
, sizeof(mr
), (void *)&mr
)) {
3128 MLD_PRINTF(("%s: m_append() failed\n",
3132 npbytes
+= sizeof(struct mldv2_record
);
3134 /* new packet; offset in chain */
3135 md
= m_getptr(m
, npbytes
-
3136 sizeof(struct mldv2_record
), &off
);
3137 pmr
= (struct mldv2_record
*)(mtod(md
,
3140 /* current packet; offset from last append */
3142 pmr
= (struct mldv2_record
*)(mtod(md
,
3143 uint8_t *) + md
->m_len
-
3144 sizeof(struct mldv2_record
));
3147 * Begin walking the tree for this record type
3148 * pass, or continue from where we left off
3149 * previously if we had to allocate a new packet.
3150 * Only report deltas in-mode at t1.
3151 * We need not report included sources as allowed
3152 * if we are in inclusive mode on the group,
3153 * however the converse is not true.
3157 nims
= RB_MIN(ip6_msource_tree
,
3160 RB_FOREACH_FROM(ims
, ip6_msource_tree
, nims
) {
3161 MLD_PRINTF(("%s: visit node %s\n", __func__
,
3162 ip6_sprintf(&ims
->im6s_addr
)));
3163 now
= im6s_get_mode(inm
, ims
, 1);
3164 then
= im6s_get_mode(inm
, ims
, 0);
3165 MLD_PRINTF(("%s: mode: t0 %d, t1 %d\n",
3166 __func__
, then
, now
));
3168 MLD_PRINTF(("%s: skip unchanged\n",
3172 if (mode
== MCAST_EXCLUDE
&&
3173 now
== MCAST_INCLUDE
) {
3174 MLD_PRINTF(("%s: skip IN src on EX "
3175 "group\n", __func__
));
3178 nrt
= (rectype_t
)now
;
3179 if (nrt
== REC_NONE
)
3180 nrt
= (rectype_t
)(~mode
& REC_FULL
);
3181 if (schanged
++ == 0) {
3183 } else if (crt
!= nrt
)
3185 if (!m_append(m
, sizeof(struct in6_addr
),
3186 (void *)&ims
->im6s_addr
)) {
3189 MLD_PRINTF(("%s: m_append() failed\n",
3193 nallow
+= !!(crt
== REC_ALLOW
);
3194 nblock
+= !!(crt
== REC_BLOCK
);
3195 if (++rsrcs
== m0srcs
)
3199 * If we did not append any tree nodes on this
3200 * pass, back out of allocations.
3203 npbytes
-= sizeof(struct mldv2_record
);
3205 MLD_PRINTF(("%s: m_free(m)\n",
3209 MLD_PRINTF(("%s: m_adj(m, -mr)\n",
3211 m_adj(m
, -((int)sizeof(
3212 struct mldv2_record
)));
3216 npbytes
+= (rsrcs
* sizeof(struct in6_addr
));
3217 if (crt
== REC_ALLOW
)
3218 pmr
->mr_type
= MLD_ALLOW_NEW_SOURCES
;
3219 else if (crt
== REC_BLOCK
)
3220 pmr
->mr_type
= MLD_BLOCK_OLD_SOURCES
;
3221 pmr
->mr_numsrc
= htons(rsrcs
);
3223 * Count the new group record, and enqueue this
3224 * packet if it wasn't already queued.
3226 m
->m_pkthdr
.vt_nrecs
++;
3230 } while (nims
!= NULL
);
3232 crt
= (~crt
& REC_FULL
);
3235 MLD_PRINTF(("%s: queued %d ALLOW_NEW, %d BLOCK_OLD\n", __func__
,
3242 mld_v2_merge_state_changes(struct in6_multi
*inm
, struct ifqueue
*ifscq
)
3245 struct mbuf
*m
; /* pending state-change */
3246 struct mbuf
*m0
; /* copy of pending state-change */
3247 struct mbuf
*mt
; /* last state-change in packet */
3249 int docopy
, domerge
;
3252 IN6M_LOCK_ASSERT_HELD(inm
);
3259 * If there are further pending retransmissions, make a writable
3260 * copy of each queued state-change message before merging.
3262 if (inm
->in6m_scrv
> 0)
3265 gq
= &inm
->in6m_scq
;
3267 if (gq
->ifq_head
== NULL
) {
3268 MLD_PRINTF(("%s: WARNING: queue for inm 0x%llx is empty\n",
3269 __func__
, (uint64_t)VM_KERNEL_ADDRPERM(inm
)));
3274 * Use IF_REMQUEUE() instead of IF_DEQUEUE() below, since the
3275 * packet might not always be at the head of the ifqueue.
3280 * Only merge the report into the current packet if
3281 * there is sufficient space to do so; an MLDv2 report
3282 * packet may only contain 65,535 group records.
3283 * Always use a simple mbuf chain concatentation to do this,
3284 * as large state changes for single groups may have
3285 * allocated clusters.
3288 mt
= ifscq
->ifq_tail
;
3290 recslen
= m_length(m
);
3292 if ((mt
->m_pkthdr
.vt_nrecs
+
3293 m
->m_pkthdr
.vt_nrecs
<=
3294 MLD_V2_REPORT_MAXRECS
) &&
3295 (mt
->m_pkthdr
.len
+ recslen
<=
3296 (inm
->in6m_ifp
->if_mtu
- MLD_MTUSPACE
)))
3300 if (!domerge
&& IF_QFULL(gq
)) {
3301 MLD_PRINTF(("%s: outbound queue full, skipping whole "
3302 "packet 0x%llx\n", __func__
,
3303 (uint64_t)VM_KERNEL_ADDRPERM(m
)));
3314 MLD_PRINTF(("%s: dequeueing 0x%llx\n", __func__
,
3315 (uint64_t)VM_KERNEL_ADDRPERM(m
)));
3321 MLD_PRINTF(("%s: copying 0x%llx\n", __func__
,
3322 (uint64_t)VM_KERNEL_ADDRPERM(m
)));
3323 m0
= m_dup(m
, M_NOWAIT
);
3326 m0
->m_nextpkt
= NULL
;
3331 MLD_PRINTF(("%s: queueing 0x%llx to ifscq 0x%llx)\n",
3332 __func__
, (uint64_t)VM_KERNEL_ADDRPERM(m0
),
3333 (uint64_t)VM_KERNEL_ADDRPERM(ifscq
)));
3334 IF_ENQUEUE(ifscq
, m0
);
3336 struct mbuf
*mtl
; /* last mbuf of packet mt */
3338 MLD_PRINTF(("%s: merging 0x%llx with ifscq tail "
3339 "0x%llx)\n", __func__
,
3340 (uint64_t)VM_KERNEL_ADDRPERM(m0
),
3341 (uint64_t)VM_KERNEL_ADDRPERM(mt
)));
3344 m0
->m_flags
&= ~M_PKTHDR
;
3345 mt
->m_pkthdr
.len
+= recslen
;
3346 mt
->m_pkthdr
.vt_nrecs
+=
3347 m0
->m_pkthdr
.vt_nrecs
;
3357 * Respond to a pending MLDv2 General Query.
3360 mld_v2_dispatch_general_query(struct mld_ifinfo
*mli
)
3363 struct in6_multi
*inm
;
3364 struct in6_multistep step
;
3367 MLI_LOCK_ASSERT_HELD(mli
);
3369 VERIFY(mli
->mli_version
== MLD_VERSION_2
);
3374 in6_multihead_lock_shared();
3375 IN6_FIRST_MULTI(step
, inm
);
3376 while (inm
!= NULL
) {
3378 if (inm
->in6m_ifp
!= ifp
)
3381 switch (inm
->in6m_state
) {
3382 case MLD_NOT_MEMBER
:
3383 case MLD_SILENT_MEMBER
:
3385 case MLD_REPORTING_MEMBER
:
3386 case MLD_IDLE_MEMBER
:
3387 case MLD_LAZY_MEMBER
:
3388 case MLD_SLEEPING_MEMBER
:
3389 case MLD_AWAKENING_MEMBER
:
3390 inm
->in6m_state
= MLD_REPORTING_MEMBER
;
3392 retval
= mld_v2_enqueue_group_record(&mli
->mli_gq
,
3395 MLD_PRINTF(("%s: enqueue record = %d\n",
3398 case MLD_G_QUERY_PENDING_MEMBER
:
3399 case MLD_SG_QUERY_PENDING_MEMBER
:
3400 case MLD_LEAVING_MEMBER
:
3405 IN6_NEXT_MULTI(step
, inm
);
3407 in6_multihead_lock_done();
3410 mld_dispatch_queue(mli
, &mli
->mli_gq
, MLD_MAX_RESPONSE_BURST
);
3411 MLI_LOCK_ASSERT_HELD(mli
);
3414 * Slew transmission of bursts over 1 second intervals.
3416 if (mli
->mli_gq
.ifq_head
!= NULL
) {
3417 mli
->mli_v2_timer
= 1 + MLD_RANDOM_DELAY(
3418 MLD_RESPONSE_BURST_INTERVAL
);
3421 return (mli
->mli_v2_timer
);
3425 * Transmit the next pending message in the output queue.
3427 * Must not be called with in6m_lockm or mli_lock held.
3430 mld_dispatch_packet(struct mbuf
*m
)
3432 struct ip6_moptions
*im6o
;
3434 struct ifnet
*oifp
= NULL
;
3437 struct ip6_hdr
*ip6
;
3438 struct mld_hdr
*mld
;
3443 MLD_PRINTF(("%s: transmit 0x%llx\n", __func__
,
3444 (uint64_t)VM_KERNEL_ADDRPERM(m
)));
3447 * Check if the ifnet is still attached.
3449 ifp
= mld_restore_context(m
);
3450 if (ifp
== NULL
|| !ifnet_is_attached(ifp
, 0)) {
3451 MLD_PRINTF(("%s: dropped 0x%llx as ifindex %u went away.\n",
3452 __func__
, (uint64_t)VM_KERNEL_ADDRPERM(m
),
3455 ip6stat
.ip6s_noroute
++;
3459 im6o
= ip6_allocmoptions(M_WAITOK
);
3465 im6o
->im6o_multicast_hlim
= 1;
3466 im6o
->im6o_multicast_loop
= 0;
3467 im6o
->im6o_multicast_ifp
= ifp
;
3469 if (m
->m_flags
& M_MLDV1
) {
3472 m0
= mld_v2_encap_report(ifp
, m
);
3474 MLD_PRINTF(("%s: dropped 0x%llx\n", __func__
,
3475 (uint64_t)VM_KERNEL_ADDRPERM(m
)));
3477 * mld_v2_encap_report() has already freed our mbuf.
3480 ip6stat
.ip6s_odropped
++;
3485 mld_scrub_context(m0
);
3486 m
->m_flags
&= ~(M_PROTOFLAGS
);
3487 m0
->m_pkthdr
.rcvif
= lo_ifp
;
3489 ip6
= mtod(m0
, struct ip6_hdr
*);
3490 (void) in6_setscope(&ip6
->ip6_dst
, ifp
, NULL
);
3493 * Retrieve the ICMPv6 type before handoff to ip6_output(),
3494 * so we can bump the stats.
3496 md
= m_getptr(m0
, sizeof(struct ip6_hdr
), &off
);
3497 mld
= (struct mld_hdr
*)(mtod(md
, uint8_t *) + off
);
3498 type
= mld
->mld_type
;
3500 if (ifp
->if_eflags
& IFEF_TXSTART
) {
3502 * Use control service class if the outgoing
3503 * interface supports transmit-start model.
3505 (void) m_set_service_class(m0
, MBUF_SC_CTL
);
3508 error
= ip6_output(m0
, &mld_po
, NULL
, IPV6_UNSPECSRC
, im6o
,
3514 MLD_PRINTF(("%s: ip6_output(0x%llx) = %d\n", __func__
,
3515 (uint64_t)VM_KERNEL_ADDRPERM(m0
), error
));
3517 ifnet_release(oifp
);
3521 icmp6stat
.icp6s_outhist
[type
]++;
3523 icmp6_ifstat_inc(oifp
, ifs6_out_msg
);
3525 case MLD_LISTENER_REPORT
:
3526 case MLDV2_LISTENER_REPORT
:
3527 icmp6_ifstat_inc(oifp
, ifs6_out_mldreport
);
3529 case MLD_LISTENER_DONE
:
3530 icmp6_ifstat_inc(oifp
, ifs6_out_mlddone
);
3533 ifnet_release(oifp
);
3538 * Encapsulate an MLDv2 report.
3540 * KAME IPv6 requires that hop-by-hop options be passed separately,
3541 * and that the IPv6 header be prepended in a separate mbuf.
3543 * Returns a pointer to the new mbuf chain head, or NULL if the
3544 * allocation failed.
3546 static struct mbuf
*
3547 mld_v2_encap_report(struct ifnet
*ifp
, struct mbuf
*m
)
3550 struct mldv2_report
*mld
;
3551 struct ip6_hdr
*ip6
;
3552 struct in6_ifaddr
*ia
;
3555 VERIFY(m
->m_flags
& M_PKTHDR
);
3558 * RFC3590: OK to send as :: or tentative during DAD.
3560 ia
= in6ifa_ifpforlinklocal(ifp
, IN6_IFF_NOTREADY
|IN6_IFF_ANYCAST
);
3562 MLD_PRINTF(("%s: warning: ia is NULL\n", __func__
));
3564 MGETHDR(mh
, M_DONTWAIT
, MT_HEADER
);
3567 IFA_REMREF(&ia
->ia_ifa
);
3571 MH_ALIGN(mh
, sizeof(struct ip6_hdr
) + sizeof(struct mldv2_report
));
3573 mldreclen
= m_length(m
);
3574 MLD_PRINTF(("%s: mldreclen is %d\n", __func__
, mldreclen
));
3576 mh
->m_len
= sizeof(struct ip6_hdr
) + sizeof(struct mldv2_report
);
3577 mh
->m_pkthdr
.len
= sizeof(struct ip6_hdr
) +
3578 sizeof(struct mldv2_report
) + mldreclen
;
3580 ip6
= mtod(mh
, struct ip6_hdr
*);
3582 ip6
->ip6_vfc
&= ~IPV6_VERSION_MASK
;
3583 ip6
->ip6_vfc
|= IPV6_VERSION
;
3584 ip6
->ip6_nxt
= IPPROTO_ICMPV6
;
3586 IFA_LOCK(&ia
->ia_ifa
);
3587 ip6
->ip6_src
= ia
? ia
->ia_addr
.sin6_addr
: in6addr_any
;
3589 IFA_UNLOCK(&ia
->ia_ifa
);
3590 IFA_REMREF(&ia
->ia_ifa
);
3593 ip6
->ip6_dst
= in6addr_linklocal_allv2routers
;
3594 /* scope ID will be set in netisr */
3596 mld
= (struct mldv2_report
*)(ip6
+ 1);
3597 mld
->mld_type
= MLDV2_LISTENER_REPORT
;
3600 mld
->mld_v2_reserved
= 0;
3601 mld
->mld_v2_numrecs
= htons(m
->m_pkthdr
.vt_nrecs
);
3602 m
->m_pkthdr
.vt_nrecs
= 0;
3603 m
->m_flags
&= ~M_PKTHDR
;
3606 mld
->mld_cksum
= in6_cksum(mh
, IPPROTO_ICMPV6
,
3607 sizeof(struct ip6_hdr
), sizeof(struct mldv2_report
) + mldreclen
);
3613 mld_rec_type_to_str(const int type
)
3616 case MLD_CHANGE_TO_EXCLUDE_MODE
:
3618 case MLD_CHANGE_TO_INCLUDE_MODE
:
3620 case MLD_MODE_IS_EXCLUDE
:
3622 case MLD_MODE_IS_INCLUDE
:
3624 case MLD_ALLOW_NEW_SOURCES
:
3626 case MLD_BLOCK_OLD_SOURCES
:
3639 MLD_PRINTF(("%s: initializing\n", __func__
));
3641 /* Setup lock group and attribute for mld_mtx */
3642 mld_mtx_grp_attr
= lck_grp_attr_alloc_init();
3643 mld_mtx_grp
= lck_grp_alloc_init("mld_mtx\n", mld_mtx_grp_attr
);
3644 mld_mtx_attr
= lck_attr_alloc_init();
3645 lck_mtx_init(&mld_mtx
, mld_mtx_grp
, mld_mtx_attr
);
3647 ip6_initpktopts(&mld_po
);
3648 mld_po
.ip6po_hlim
= 1;
3649 mld_po
.ip6po_hbh
= &mld_ra
.hbh
;
3650 mld_po
.ip6po_prefer_tempaddr
= IP6PO_TEMPADDR_NOTPREFER
;
3651 mld_po
.ip6po_flags
= IP6PO_DONTFRAG
;
3652 LIST_INIT(&mli_head
);
3654 mli_size
= sizeof (struct mld_ifinfo
);
3655 mli_zone
= zinit(mli_size
, MLI_ZONE_MAX
* mli_size
,
3657 if (mli_zone
== NULL
) {
3658 panic("%s: failed allocating %s", __func__
, MLI_ZONE_NAME
);
3661 zone_change(mli_zone
, Z_EXPAND
, TRUE
);
3662 zone_change(mli_zone
, Z_CALLERACCT
, FALSE
);