]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet6/mld6.c
xnu-3789.41.3.tar.gz
[apple/xnu.git] / bsd / netinet6 / mld6.c
1 /*
2 * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*-
29 * Copyright (c) 2009 Bruce Simpson.
30 *
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
34 * 1. Redistributions of source code must retain the above copyright
35 * notice, this list of conditions and the following disclaimer.
36 * 2. Redistributions in binary form must reproduce the above copyright
37 * notice, this list of conditions and the following disclaimer in the
38 * documentation and/or other materials provided with the distribution.
39 * 3. The name of the author may not be used to endorse or promote
40 * products derived from this software without specific prior written
41 * permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
44 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
45 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
46 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
47 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
48 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
49 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * SUCH DAMAGE.
54 */
55
56 /*
57 * Copyright (c) 1988 Stephen Deering.
58 * Copyright (c) 1992, 1993
59 * The Regents of the University of California. All rights reserved.
60 *
61 * This code is derived from software contributed to Berkeley by
62 * Stephen Deering of Stanford University.
63 *
64 * Redistribution and use in source and binary forms, with or without
65 * modification, are permitted provided that the following conditions
66 * are met:
67 * 1. Redistributions of source code must retain the above copyright
68 * notice, this list of conditions and the following disclaimer.
69 * 2. Redistributions in binary form must reproduce the above copyright
70 * notice, this list of conditions and the following disclaimer in the
71 * documentation and/or other materials provided with the distribution.
72 * 3. All advertising materials mentioning features or use of this software
73 * must display the following acknowledgement:
74 * This product includes software developed by the University of
75 * California, Berkeley and its contributors.
76 * 4. Neither the name of the University nor the names of its contributors
77 * may be used to endorse or promote products derived from this software
78 * without specific prior written permission.
79 *
80 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
81 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
82 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
83 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
84 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
85 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
86 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
87 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
88 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
89 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
90 * SUCH DAMAGE.
91 *
92 * @(#)igmp.c 8.1 (Berkeley) 7/19/93
93 */
94 /*
95 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
96 * support for mandatory and extensible security protections. This notice
97 * is included in support of clause 2.2 (b) of the Apple Public License,
98 * Version 2.0.
99 */
100
101 #include <sys/cdefs.h>
102
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/mbuf.h>
106 #include <sys/socket.h>
107 #include <sys/protosw.h>
108 #include <sys/sysctl.h>
109 #include <sys/kernel.h>
110 #include <sys/malloc.h>
111 #include <sys/mcache.h>
112
113 #include <dev/random/randomdev.h>
114
115 #include <kern/zalloc.h>
116
117 #include <net/if.h>
118 #include <net/route.h>
119
120 #include <netinet/in.h>
121 #include <netinet/in_var.h>
122 #include <netinet6/in6_var.h>
123 #include <netinet/ip6.h>
124 #include <netinet6/ip6_var.h>
125 #include <netinet6/scope6_var.h>
126 #include <netinet/icmp6.h>
127 #include <netinet6/mld6.h>
128 #include <netinet6/mld6_var.h>
129
130 /* Lock group and attribute for mld_mtx */
131 static lck_attr_t *mld_mtx_attr;
132 static lck_grp_t *mld_mtx_grp;
133 static lck_grp_attr_t *mld_mtx_grp_attr;
134
135 /*
136 * Locking and reference counting:
137 *
138 * mld_mtx mainly protects mli_head. In cases where both mld_mtx and
139 * in6_multihead_lock must be held, the former must be acquired first in order
140 * to maintain lock ordering. It is not a requirement that mld_mtx be
141 * acquired first before in6_multihead_lock, but in case both must be acquired
142 * in succession, the correct lock ordering must be followed.
143 *
144 * Instead of walking the if_multiaddrs list at the interface and returning
145 * the ifma_protospec value of a matching entry, we search the global list
146 * of in6_multi records and find it that way; this is done with in6_multihead
147 * lock held. Doing so avoids the race condition issues that many other BSDs
148 * suffer from (therefore in our implementation, ifma_protospec will never be
149 * NULL for as long as the in6_multi is valid.)
150 *
151 * The above creates a requirement for the in6_multi to stay in in6_multihead
152 * list even after the final MLD leave (in MLDv2 mode) until no longer needs
153 * be retransmitted (this is not required for MLDv1.) In order to handle
154 * this, the request and reference counts of the in6_multi are bumped up when
155 * the state changes to MLD_LEAVING_MEMBER, and later dropped in the timeout
156 * handler. Each in6_multi holds a reference to the underlying mld_ifinfo.
157 *
158 * Thus, the permitted lock order is:
159 *
160 * mld_mtx, in6_multihead_lock, inm6_lock, mli_lock
161 *
162 * Any may be taken independently, but if any are held at the same time,
163 * the above lock order must be followed.
164 */
165 static decl_lck_mtx_data(, mld_mtx);
166
167 SLIST_HEAD(mld_in6m_relhead, in6_multi);
168
169 static void mli_initvar(struct mld_ifinfo *, struct ifnet *, int);
170 static struct mld_ifinfo *mli_alloc(int);
171 static void mli_free(struct mld_ifinfo *);
172 static void mli_delete(const struct ifnet *, struct mld_in6m_relhead *);
173 static void mld_dispatch_packet(struct mbuf *);
174 static void mld_final_leave(struct in6_multi *, struct mld_ifinfo *,
175 struct mld_tparams *);
176 static int mld_handle_state_change(struct in6_multi *, struct mld_ifinfo *,
177 struct mld_tparams *);
178 static int mld_initial_join(struct in6_multi *, struct mld_ifinfo *,
179 struct mld_tparams *, const int);
180 #ifdef MLD_DEBUG
181 static const char * mld_rec_type_to_str(const int);
182 #endif
183 static uint32_t mld_set_version(struct mld_ifinfo *, const int);
184 static void mld_flush_relq(struct mld_ifinfo *, struct mld_in6m_relhead *);
185 static void mld_dispatch_queue(struct mld_ifinfo *, struct ifqueue *, int);
186 static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *,
187 /*const*/ struct mld_hdr *);
188 static int mld_v1_input_report(struct ifnet *, struct mbuf *,
189 const struct ip6_hdr *, /*const*/ struct mld_hdr *);
190 static void mld_v1_process_group_timer(struct in6_multi *, const int);
191 static void mld_v1_process_querier_timers(struct mld_ifinfo *);
192 static int mld_v1_transmit_report(struct in6_multi *, const int);
193 static uint32_t mld_v1_update_group(struct in6_multi *, const int);
194 static void mld_v2_cancel_link_timers(struct mld_ifinfo *);
195 static uint32_t mld_v2_dispatch_general_query(struct mld_ifinfo *);
196 static struct mbuf *
197 mld_v2_encap_report(struct ifnet *, struct mbuf *);
198 static int mld_v2_enqueue_filter_change(struct ifqueue *,
199 struct in6_multi *);
200 static int mld_v2_enqueue_group_record(struct ifqueue *,
201 struct in6_multi *, const int, const int, const int,
202 const int);
203 static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *,
204 struct mbuf *, const int, const int);
205 static int mld_v2_merge_state_changes(struct in6_multi *,
206 struct ifqueue *);
207 static void mld_v2_process_group_timers(struct mld_ifinfo *,
208 struct ifqueue *, struct ifqueue *,
209 struct in6_multi *, const int);
210 static int mld_v2_process_group_query(struct in6_multi *,
211 int, struct mbuf *, const int);
212 static int sysctl_mld_gsr SYSCTL_HANDLER_ARGS;
213 static int sysctl_mld_ifinfo SYSCTL_HANDLER_ARGS;
214 static int sysctl_mld_v2enable SYSCTL_HANDLER_ARGS;
215
216 static int mld_timeout_run; /* MLD timer is scheduled to run */
217 static void mld_timeout(void *);
218 static void mld_sched_timeout(void);
219
220 /*
221 * Normative references: RFC 2710, RFC 3590, RFC 3810.
222 */
223 static struct timeval mld_gsrdelay = {10, 0};
224 static LIST_HEAD(, mld_ifinfo) mli_head;
225
226 static int querier_present_timers_running6;
227 static int interface_timers_running6;
228 static int state_change_timers_running6;
229 static int current_state_timers_running6;
230
231 /*
232 * Subsystem lock macros.
233 */
234 #define MLD_LOCK() \
235 lck_mtx_lock(&mld_mtx)
236 #define MLD_LOCK_ASSERT_HELD() \
237 lck_mtx_assert(&mld_mtx, LCK_MTX_ASSERT_OWNED)
238 #define MLD_LOCK_ASSERT_NOTHELD() \
239 lck_mtx_assert(&mld_mtx, LCK_MTX_ASSERT_NOTOWNED)
240 #define MLD_UNLOCK() \
241 lck_mtx_unlock(&mld_mtx)
242
243 #define MLD_ADD_DETACHED_IN6M(_head, _in6m) { \
244 SLIST_INSERT_HEAD(_head, _in6m, in6m_dtle); \
245 }
246
247 #define MLD_REMOVE_DETACHED_IN6M(_head) { \
248 struct in6_multi *_in6m, *_inm_tmp; \
249 SLIST_FOREACH_SAFE(_in6m, _head, in6m_dtle, _inm_tmp) { \
250 SLIST_REMOVE(_head, _in6m, in6_multi, in6m_dtle); \
251 IN6M_REMREF(_in6m); \
252 } \
253 VERIFY(SLIST_EMPTY(_head)); \
254 }
255
256 #define MLI_ZONE_MAX 64 /* maximum elements in zone */
257 #define MLI_ZONE_NAME "mld_ifinfo" /* zone name */
258
259 static unsigned int mli_size; /* size of zone element */
260 static struct zone *mli_zone; /* zone for mld_ifinfo */
261
262 SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */
263
264 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW | CTLFLAG_LOCKED, 0,
265 "IPv6 Multicast Listener Discovery");
266 SYSCTL_PROC(_net_inet6_mld, OID_AUTO, gsrdelay,
267 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
268 &mld_gsrdelay.tv_sec, 0, sysctl_mld_gsr, "I",
269 "Rate limit for MLDv2 Group-and-Source queries in seconds");
270
271 SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, CTLFLAG_RD | CTLFLAG_LOCKED,
272 sysctl_mld_ifinfo, "Per-interface MLDv2 state");
273
274 static int mld_v1enable = 1;
275 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RW | CTLFLAG_LOCKED,
276 &mld_v1enable, 0, "Enable fallback to MLDv1");
277
278 static int mld_v2enable = 1;
279 SYSCTL_PROC(_net_inet6_mld, OID_AUTO, v2enable,
280 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
281 &mld_v2enable, 0, sysctl_mld_v2enable, "I",
282 "Enable MLDv2 (debug purposes only)");
283
284 static int mld_use_allow = 1;
285 SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RW | CTLFLAG_LOCKED,
286 &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves");
287
288 #ifdef MLD_DEBUG
289 int mld_debug = 0;
290 SYSCTL_INT(_net_inet6_mld, OID_AUTO,
291 debug, CTLFLAG_RW | CTLFLAG_LOCKED, &mld_debug, 0, "");
292 #endif
293 /*
294 * Packed Router Alert option structure declaration.
295 */
296 struct mld_raopt {
297 struct ip6_hbh hbh;
298 struct ip6_opt pad;
299 struct ip6_opt_router ra;
300 } __packed;
301
302 /*
303 * Router Alert hop-by-hop option header.
304 */
305 static struct mld_raopt mld_ra = {
306 .hbh = { 0, 0 },
307 .pad = { .ip6o_type = IP6OPT_PADN, 0 },
308 .ra = {
309 .ip6or_type = (u_int8_t)IP6OPT_ROUTER_ALERT,
310 .ip6or_len = (u_int8_t)(IP6OPT_RTALERT_LEN - 2),
311 .ip6or_value = {((IP6OPT_RTALERT_MLD >> 8) & 0xFF),
312 (IP6OPT_RTALERT_MLD & 0xFF) }
313 }
314 };
315 static struct ip6_pktopts mld_po;
316
317 /* Store MLDv2 record count in the module private scratch space */
318 #define vt_nrecs pkt_mpriv.__mpriv_u.__mpriv32[0].__mpriv32_u.__val16[0]
319
320 static __inline void
321 mld_save_context(struct mbuf *m, struct ifnet *ifp)
322 {
323 m->m_pkthdr.rcvif = ifp;
324 }
325
326 static __inline void
327 mld_scrub_context(struct mbuf *m)
328 {
329 m->m_pkthdr.rcvif = NULL;
330 }
331
332 /*
333 * Restore context from a queued output chain.
334 * Return saved ifp.
335 */
336 static __inline struct ifnet *
337 mld_restore_context(struct mbuf *m)
338 {
339 return (m->m_pkthdr.rcvif);
340 }
341
342 /*
343 * Retrieve or set threshold between group-source queries in seconds.
344 */
345 static int
346 sysctl_mld_gsr SYSCTL_HANDLER_ARGS
347 {
348 #pragma unused(arg1, arg2)
349 int error;
350 int i;
351
352 MLD_LOCK();
353
354 i = mld_gsrdelay.tv_sec;
355
356 error = sysctl_handle_int(oidp, &i, 0, req);
357 if (error || !req->newptr)
358 goto out_locked;
359
360 if (i < -1 || i >= 60) {
361 error = EINVAL;
362 goto out_locked;
363 }
364
365 mld_gsrdelay.tv_sec = i;
366
367 out_locked:
368 MLD_UNLOCK();
369 return (error);
370 }
371 /*
372 * Expose struct mld_ifinfo to userland, keyed by ifindex.
373 * For use by ifmcstat(8).
374 *
375 */
376 static int
377 sysctl_mld_ifinfo SYSCTL_HANDLER_ARGS
378 {
379 #pragma unused(oidp)
380 int *name;
381 int error;
382 u_int namelen;
383 struct ifnet *ifp;
384 struct mld_ifinfo *mli;
385 struct mld_ifinfo_u mli_u;
386
387 name = (int *)arg1;
388 namelen = arg2;
389
390 if (req->newptr != USER_ADDR_NULL)
391 return (EPERM);
392
393 if (namelen != 1)
394 return (EINVAL);
395
396 MLD_LOCK();
397
398 if (name[0] <= 0 || name[0] > (u_int)if_index) {
399 error = ENOENT;
400 goto out_locked;
401 }
402
403 error = ENOENT;
404
405 ifnet_head_lock_shared();
406 ifp = ifindex2ifnet[name[0]];
407 ifnet_head_done();
408 if (ifp == NULL)
409 goto out_locked;
410
411 bzero(&mli_u, sizeof (mli_u));
412
413 LIST_FOREACH(mli, &mli_head, mli_link) {
414 MLI_LOCK(mli);
415 if (ifp != mli->mli_ifp) {
416 MLI_UNLOCK(mli);
417 continue;
418 }
419
420 mli_u.mli_ifindex = mli->mli_ifp->if_index;
421 mli_u.mli_version = mli->mli_version;
422 mli_u.mli_v1_timer = mli->mli_v1_timer;
423 mli_u.mli_v2_timer = mli->mli_v2_timer;
424 mli_u.mli_flags = mli->mli_flags;
425 mli_u.mli_rv = mli->mli_rv;
426 mli_u.mli_qi = mli->mli_qi;
427 mli_u.mli_qri = mli->mli_qri;
428 mli_u.mli_uri = mli->mli_uri;
429 MLI_UNLOCK(mli);
430
431 error = SYSCTL_OUT(req, &mli_u, sizeof (mli_u));
432 break;
433 }
434
435 out_locked:
436 MLD_UNLOCK();
437 return (error);
438 }
439
440 static int
441 sysctl_mld_v2enable SYSCTL_HANDLER_ARGS
442 {
443 #pragma unused(arg1, arg2)
444 int error;
445 int i;
446 struct mld_ifinfo *mli;
447 struct mld_tparams mtp = { 0, 0, 0, 0 };
448
449 MLD_LOCK();
450
451 i = mld_v2enable;
452
453 error = sysctl_handle_int(oidp, &i, 0, req);
454 if (error || !req->newptr)
455 goto out_locked;
456
457 if (i < 0 || i > 1) {
458 error = EINVAL;
459 goto out_locked;
460 }
461
462 mld_v2enable = i;
463 /*
464 * If we enabled v2, the state transition will take care of upgrading
465 * the MLD version back to v2. Otherwise, we have to explicitly
466 * downgrade. Note that this functionality is to be used for debugging.
467 */
468 if (mld_v2enable == 1)
469 goto out_locked;
470
471 LIST_FOREACH(mli, &mli_head, mli_link) {
472 MLI_LOCK(mli);
473 if (mld_set_version(mli, MLD_VERSION_1) > 0)
474 mtp.qpt = 1;
475 MLI_UNLOCK(mli);
476 }
477
478 out_locked:
479 MLD_UNLOCK();
480
481 mld_set_timeout(&mtp);
482
483 return (error);
484 }
485
486 /*
487 * Dispatch an entire queue of pending packet chains.
488 *
489 * Must not be called with in6m_lock held.
490 */
491 static void
492 mld_dispatch_queue(struct mld_ifinfo *mli, struct ifqueue *ifq, int limit)
493 {
494 struct mbuf *m;
495
496 if (mli != NULL)
497 MLI_LOCK_ASSERT_HELD(mli);
498
499 for (;;) {
500 IF_DEQUEUE(ifq, m);
501 if (m == NULL)
502 break;
503 MLD_PRINTF(("%s: dispatch 0x%llx from 0x%llx\n", __func__,
504 (uint64_t)VM_KERNEL_ADDRPERM(ifq),
505 (uint64_t)VM_KERNEL_ADDRPERM(m)));
506 if (mli != NULL)
507 MLI_UNLOCK(mli);
508 mld_dispatch_packet(m);
509 if (mli != NULL)
510 MLI_LOCK(mli);
511 if (--limit == 0)
512 break;
513 }
514
515 if (mli != NULL)
516 MLI_LOCK_ASSERT_HELD(mli);
517 }
518
519 /*
520 * Filter outgoing MLD report state by group.
521 *
522 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1)
523 * and node-local addresses. However, kernel and socket consumers
524 * always embed the KAME scope ID in the address provided, so strip it
525 * when performing comparison.
526 * Note: This is not the same as the *multicast* scope.
527 *
528 * Return zero if the given group is one for which MLD reports
529 * should be suppressed, or non-zero if reports should be issued.
530 */
531 static __inline__ int
532 mld_is_addr_reported(const struct in6_addr *addr)
533 {
534
535 VERIFY(IN6_IS_ADDR_MULTICAST(addr));
536
537 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL)
538 return (0);
539
540 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) {
541 struct in6_addr tmp = *addr;
542 in6_clearscope(&tmp);
543 if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes))
544 return (0);
545 }
546
547 return (1);
548 }
549
550 /*
551 * Attach MLD when PF_INET6 is attached to an interface.
552 */
553 struct mld_ifinfo *
554 mld_domifattach(struct ifnet *ifp, int how)
555 {
556 struct mld_ifinfo *mli;
557
558 MLD_PRINTF(("%s: called for ifp 0x%llx(%s)\n", __func__,
559 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
560
561 mli = mli_alloc(how);
562 if (mli == NULL)
563 return (NULL);
564
565 MLD_LOCK();
566
567 MLI_LOCK(mli);
568 mli_initvar(mli, ifp, 0);
569 mli->mli_debug |= IFD_ATTACHED;
570 MLI_ADDREF_LOCKED(mli); /* hold a reference for mli_head */
571 MLI_ADDREF_LOCKED(mli); /* hold a reference for caller */
572 MLI_UNLOCK(mli);
573 ifnet_lock_shared(ifp);
574 mld6_initsilent(ifp, mli);
575 ifnet_lock_done(ifp);
576
577 LIST_INSERT_HEAD(&mli_head, mli, mli_link);
578
579 MLD_UNLOCK();
580
581 MLD_PRINTF(("%s: allocate mld_ifinfo for ifp 0x%llx(%s)\n",
582 __func__, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
583
584 return (mli);
585 }
586
587 /*
588 * Attach MLD when PF_INET6 is reattached to an interface. Caller is
589 * expected to have an outstanding reference to the mli.
590 */
591 void
592 mld_domifreattach(struct mld_ifinfo *mli)
593 {
594 struct ifnet *ifp;
595
596 MLD_LOCK();
597
598 MLI_LOCK(mli);
599 VERIFY(!(mli->mli_debug & IFD_ATTACHED));
600 ifp = mli->mli_ifp;
601 VERIFY(ifp != NULL);
602 mli_initvar(mli, ifp, 1);
603 mli->mli_debug |= IFD_ATTACHED;
604 MLI_ADDREF_LOCKED(mli); /* hold a reference for mli_head */
605 MLI_UNLOCK(mli);
606 ifnet_lock_shared(ifp);
607 mld6_initsilent(ifp, mli);
608 ifnet_lock_done(ifp);
609
610 LIST_INSERT_HEAD(&mli_head, mli, mli_link);
611
612 MLD_UNLOCK();
613
614 MLD_PRINTF(("%s: reattached mld_ifinfo for ifp 0x%llx(%s)\n",
615 __func__, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
616 }
617
618 /*
619 * Hook for domifdetach.
620 */
621 void
622 mld_domifdetach(struct ifnet *ifp)
623 {
624 SLIST_HEAD(, in6_multi) in6m_dthead;
625
626 SLIST_INIT(&in6m_dthead);
627
628 MLD_PRINTF(("%s: called for ifp 0x%llx(%s)\n", __func__,
629 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
630
631 MLD_LOCK();
632 mli_delete(ifp, (struct mld_in6m_relhead *)&in6m_dthead);
633 MLD_UNLOCK();
634
635 /* Now that we're dropped all locks, release detached records */
636 MLD_REMOVE_DETACHED_IN6M(&in6m_dthead);
637 }
638
639 /*
640 * Called at interface detach time. Note that we only flush all deferred
641 * responses and record releases; all remaining inm records and their source
642 * entries related to this interface are left intact, in order to handle
643 * the reattach case.
644 */
645 static void
646 mli_delete(const struct ifnet *ifp, struct mld_in6m_relhead *in6m_dthead)
647 {
648 struct mld_ifinfo *mli, *tmli;
649
650 MLD_LOCK_ASSERT_HELD();
651
652 LIST_FOREACH_SAFE(mli, &mli_head, mli_link, tmli) {
653 MLI_LOCK(mli);
654 if (mli->mli_ifp == ifp) {
655 /*
656 * Free deferred General Query responses.
657 */
658 IF_DRAIN(&mli->mli_gq);
659 IF_DRAIN(&mli->mli_v1q);
660 mld_flush_relq(mli, in6m_dthead);
661 VERIFY(SLIST_EMPTY(&mli->mli_relinmhead));
662 mli->mli_debug &= ~IFD_ATTACHED;
663 MLI_UNLOCK(mli);
664
665 LIST_REMOVE(mli, mli_link);
666 MLI_REMREF(mli); /* release mli_head reference */
667 return;
668 }
669 MLI_UNLOCK(mli);
670 }
671 panic("%s: mld_ifinfo not found for ifp %p(%s)\n", __func__,
672 ifp, ifp->if_xname);
673 }
674
675 __private_extern__ void
676 mld6_initsilent(struct ifnet *ifp, struct mld_ifinfo *mli)
677 {
678 ifnet_lock_assert(ifp, IFNET_LCK_ASSERT_OWNED);
679
680 MLI_LOCK_ASSERT_NOTHELD(mli);
681 MLI_LOCK(mli);
682 if (!(ifp->if_flags & IFF_MULTICAST) &&
683 (ifp->if_eflags & (IFEF_IPV6_ND6ALT|IFEF_LOCALNET_PRIVATE)))
684 mli->mli_flags |= MLIF_SILENT;
685 else
686 mli->mli_flags &= ~MLIF_SILENT;
687 MLI_UNLOCK(mli);
688 }
689
690 static void
691 mli_initvar(struct mld_ifinfo *mli, struct ifnet *ifp, int reattach)
692 {
693 MLI_LOCK_ASSERT_HELD(mli);
694
695 mli->mli_ifp = ifp;
696 if (mld_v2enable)
697 mli->mli_version = MLD_VERSION_2;
698 else
699 mli->mli_version = MLD_VERSION_1;
700 mli->mli_flags = 0;
701 mli->mli_rv = MLD_RV_INIT;
702 mli->mli_qi = MLD_QI_INIT;
703 mli->mli_qri = MLD_QRI_INIT;
704 mli->mli_uri = MLD_URI_INIT;
705
706 if (mld_use_allow)
707 mli->mli_flags |= MLIF_USEALLOW;
708 if (!reattach)
709 SLIST_INIT(&mli->mli_relinmhead);
710
711 /*
712 * Responses to general queries are subject to bounds.
713 */
714 mli->mli_gq.ifq_maxlen = MLD_MAX_RESPONSE_PACKETS;
715 mli->mli_v1q.ifq_maxlen = MLD_MAX_RESPONSE_PACKETS;
716 }
717
718 static struct mld_ifinfo *
719 mli_alloc(int how)
720 {
721 struct mld_ifinfo *mli;
722
723 mli = (how == M_WAITOK) ? zalloc(mli_zone) : zalloc_noblock(mli_zone);
724 if (mli != NULL) {
725 bzero(mli, mli_size);
726 lck_mtx_init(&mli->mli_lock, mld_mtx_grp, mld_mtx_attr);
727 mli->mli_debug |= IFD_ALLOC;
728 }
729 return (mli);
730 }
731
732 static void
733 mli_free(struct mld_ifinfo *mli)
734 {
735 MLI_LOCK(mli);
736 if (mli->mli_debug & IFD_ATTACHED) {
737 panic("%s: attached mli=%p is being freed", __func__, mli);
738 /* NOTREACHED */
739 } else if (mli->mli_ifp != NULL) {
740 panic("%s: ifp not NULL for mli=%p", __func__, mli);
741 /* NOTREACHED */
742 } else if (!(mli->mli_debug & IFD_ALLOC)) {
743 panic("%s: mli %p cannot be freed", __func__, mli);
744 /* NOTREACHED */
745 } else if (mli->mli_refcnt != 0) {
746 panic("%s: non-zero refcnt mli=%p", __func__, mli);
747 /* NOTREACHED */
748 }
749 mli->mli_debug &= ~IFD_ALLOC;
750 MLI_UNLOCK(mli);
751
752 lck_mtx_destroy(&mli->mli_lock, mld_mtx_grp);
753 zfree(mli_zone, mli);
754 }
755
756 void
757 mli_addref(struct mld_ifinfo *mli, int locked)
758 {
759 if (!locked)
760 MLI_LOCK_SPIN(mli);
761 else
762 MLI_LOCK_ASSERT_HELD(mli);
763
764 if (++mli->mli_refcnt == 0) {
765 panic("%s: mli=%p wraparound refcnt", __func__, mli);
766 /* NOTREACHED */
767 }
768 if (!locked)
769 MLI_UNLOCK(mli);
770 }
771
772 void
773 mli_remref(struct mld_ifinfo *mli)
774 {
775 SLIST_HEAD(, in6_multi) in6m_dthead;
776 struct ifnet *ifp;
777
778 MLI_LOCK_SPIN(mli);
779
780 if (mli->mli_refcnt == 0) {
781 panic("%s: mli=%p negative refcnt", __func__, mli);
782 /* NOTREACHED */
783 }
784
785 --mli->mli_refcnt;
786 if (mli->mli_refcnt > 0) {
787 MLI_UNLOCK(mli);
788 return;
789 }
790
791 ifp = mli->mli_ifp;
792 mli->mli_ifp = NULL;
793 IF_DRAIN(&mli->mli_gq);
794 IF_DRAIN(&mli->mli_v1q);
795 SLIST_INIT(&in6m_dthead);
796 mld_flush_relq(mli, (struct mld_in6m_relhead *)&in6m_dthead);
797 VERIFY(SLIST_EMPTY(&mli->mli_relinmhead));
798 MLI_UNLOCK(mli);
799
800 /* Now that we're dropped all locks, release detached records */
801 MLD_REMOVE_DETACHED_IN6M(&in6m_dthead);
802
803 MLD_PRINTF(("%s: freeing mld_ifinfo for ifp 0x%llx(%s)\n",
804 __func__, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
805
806 mli_free(mli);
807 }
808
809 /*
810 * Process a received MLDv1 general or address-specific query.
811 * Assumes that the query header has been pulled up to sizeof(mld_hdr).
812 *
813 * NOTE: Can't be fully const correct as we temporarily embed scope ID in
814 * mld_addr. This is OK as we own the mbuf chain.
815 */
816 static int
817 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
818 /*const*/ struct mld_hdr *mld)
819 {
820 struct mld_ifinfo *mli;
821 struct in6_multi *inm;
822 int err = 0, is_general_query;
823 uint16_t timer;
824 struct mld_tparams mtp = { 0, 0, 0, 0 };
825
826 MLD_LOCK_ASSERT_NOTHELD();
827
828 is_general_query = 0;
829
830 if (!mld_v1enable) {
831 MLD_PRINTF(("%s: ignore v1 query %s on ifp 0x%llx(%s)\n",
832 __func__, ip6_sprintf(&mld->mld_addr),
833 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
834 goto done;
835 }
836
837 /*
838 * RFC3810 Section 6.2: MLD queries must originate from
839 * a router's link-local address.
840 */
841 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
842 MLD_PRINTF(("%s: ignore v1 query src %s on ifp 0x%llx(%s)\n",
843 __func__, ip6_sprintf(&ip6->ip6_src),
844 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
845 goto done;
846 }
847
848 /*
849 * Do address field validation upfront before we accept
850 * the query.
851 */
852 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
853 /*
854 * MLDv1 General Query.
855 * If this was not sent to the all-nodes group, ignore it.
856 */
857 struct in6_addr dst;
858
859 dst = ip6->ip6_dst;
860 in6_clearscope(&dst);
861 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes)) {
862 err = EINVAL;
863 goto done;
864 }
865 is_general_query = 1;
866 } else {
867 /*
868 * Embed scope ID of receiving interface in MLD query for
869 * lookup whilst we don't hold other locks.
870 */
871 in6_setscope(&mld->mld_addr, ifp, NULL);
872 }
873
874 /*
875 * Switch to MLDv1 host compatibility mode.
876 */
877 mli = MLD_IFINFO(ifp);
878 VERIFY(mli != NULL);
879
880 MLI_LOCK(mli);
881 mtp.qpt = mld_set_version(mli, MLD_VERSION_1);
882 MLI_UNLOCK(mli);
883
884 timer = ntohs(mld->mld_maxdelay) / MLD_TIMER_SCALE;
885 if (timer == 0)
886 timer = 1;
887
888 if (is_general_query) {
889 struct in6_multistep step;
890
891 MLD_PRINTF(("%s: process v1 general query on ifp 0x%llx(%s)\n",
892 __func__, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
893 /*
894 * For each reporting group joined on this
895 * interface, kick the report timer.
896 */
897 in6_multihead_lock_shared();
898 IN6_FIRST_MULTI(step, inm);
899 while (inm != NULL) {
900 IN6M_LOCK(inm);
901 if (inm->in6m_ifp == ifp)
902 mtp.cst += mld_v1_update_group(inm, timer);
903 IN6M_UNLOCK(inm);
904 IN6_NEXT_MULTI(step, inm);
905 }
906 in6_multihead_lock_done();
907 } else {
908 /*
909 * MLDv1 Group-Specific Query.
910 * If this is a group-specific MLDv1 query, we need only
911 * look up the single group to process it.
912 */
913 in6_multihead_lock_shared();
914 IN6_LOOKUP_MULTI(&mld->mld_addr, ifp, inm);
915 in6_multihead_lock_done();
916
917 if (inm != NULL) {
918 IN6M_LOCK(inm);
919 MLD_PRINTF(("%s: process v1 query %s on "
920 "ifp 0x%llx(%s)\n", __func__,
921 ip6_sprintf(&mld->mld_addr),
922 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
923 mtp.cst = mld_v1_update_group(inm, timer);
924 IN6M_UNLOCK(inm);
925 IN6M_REMREF(inm); /* from IN6_LOOKUP_MULTI */
926 }
927 /* XXX Clear embedded scope ID as userland won't expect it. */
928 in6_clearscope(&mld->mld_addr);
929 }
930 done:
931 mld_set_timeout(&mtp);
932
933 return (err);
934 }
935
936 /*
937 * Update the report timer on a group in response to an MLDv1 query.
938 *
939 * If we are becoming the reporting member for this group, start the timer.
940 * If we already are the reporting member for this group, and timer is
941 * below the threshold, reset it.
942 *
943 * We may be updating the group for the first time since we switched
944 * to MLDv2. If we are, then we must clear any recorded source lists,
945 * and transition to REPORTING state; the group timer is overloaded
946 * for group and group-source query responses.
947 *
948 * Unlike MLDv2, the delay per group should be jittered
949 * to avoid bursts of MLDv1 reports.
950 */
951 static uint32_t
952 mld_v1_update_group(struct in6_multi *inm, const int timer)
953 {
954 IN6M_LOCK_ASSERT_HELD(inm);
955
956 MLD_PRINTF(("%s: %s/%s timer=%d\n", __func__,
957 ip6_sprintf(&inm->in6m_addr),
958 if_name(inm->in6m_ifp), timer));
959
960 switch (inm->in6m_state) {
961 case MLD_NOT_MEMBER:
962 case MLD_SILENT_MEMBER:
963 break;
964 case MLD_REPORTING_MEMBER:
965 if (inm->in6m_timer != 0 &&
966 inm->in6m_timer <= timer) {
967 MLD_PRINTF(("%s: REPORTING and timer running, "
968 "skipping.\n", __func__));
969 break;
970 }
971 /* FALLTHROUGH */
972 case MLD_SG_QUERY_PENDING_MEMBER:
973 case MLD_G_QUERY_PENDING_MEMBER:
974 case MLD_IDLE_MEMBER:
975 case MLD_LAZY_MEMBER:
976 case MLD_AWAKENING_MEMBER:
977 MLD_PRINTF(("%s: ->REPORTING\n", __func__));
978 inm->in6m_state = MLD_REPORTING_MEMBER;
979 inm->in6m_timer = MLD_RANDOM_DELAY(timer);
980 break;
981 case MLD_SLEEPING_MEMBER:
982 MLD_PRINTF(("%s: ->AWAKENING\n", __func__));
983 inm->in6m_state = MLD_AWAKENING_MEMBER;
984 break;
985 case MLD_LEAVING_MEMBER:
986 break;
987 }
988
989 return (inm->in6m_timer);
990 }
991
992 /*
993 * Process a received MLDv2 general, group-specific or
994 * group-and-source-specific query.
995 *
996 * Assumes that the query header has been pulled up to sizeof(mldv2_query).
997 *
998 * Return 0 if successful, otherwise an appropriate error code is returned.
999 */
1000 static int
1001 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
1002 struct mbuf *m, const int off, const int icmp6len)
1003 {
1004 struct mld_ifinfo *mli;
1005 struct mldv2_query *mld;
1006 struct in6_multi *inm;
1007 uint32_t maxdelay, nsrc, qqi;
1008 int err = 0, is_general_query;
1009 uint16_t timer;
1010 uint8_t qrv;
1011 struct mld_tparams mtp = { 0, 0, 0, 0 };
1012
1013 MLD_LOCK_ASSERT_NOTHELD();
1014
1015 is_general_query = 0;
1016
1017 if (!mld_v2enable) {
1018 MLD_PRINTF(("%s: ignore v2 query %s on ifp 0x%llx(%s)\n",
1019 __func__, ip6_sprintf(&ip6->ip6_src),
1020 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1021 goto done;
1022 }
1023
1024 /*
1025 * RFC3810 Section 6.2: MLD queries must originate from
1026 * a router's link-local address.
1027 */
1028 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
1029 MLD_PRINTF(("%s: ignore v1 query src %s on ifp 0x%llx(%s)\n",
1030 __func__, ip6_sprintf(&ip6->ip6_src),
1031 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1032 goto done;
1033 }
1034
1035 MLD_PRINTF(("%s: input v2 query on ifp 0x%llx(%s)\n", __func__,
1036 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1037
1038 mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off);
1039
1040 maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */
1041 if (maxdelay >= 32768) {
1042 maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) <<
1043 (MLD_MRC_EXP(maxdelay) + 3);
1044 }
1045 timer = maxdelay / MLD_TIMER_SCALE;
1046 if (timer == 0)
1047 timer = 1;
1048
1049 qrv = MLD_QRV(mld->mld_misc);
1050 if (qrv < 2) {
1051 MLD_PRINTF(("%s: clamping qrv %d to %d\n", __func__,
1052 qrv, MLD_RV_INIT));
1053 qrv = MLD_RV_INIT;
1054 }
1055
1056 qqi = mld->mld_qqi;
1057 if (qqi >= 128) {
1058 qqi = MLD_QQIC_MANT(mld->mld_qqi) <<
1059 (MLD_QQIC_EXP(mld->mld_qqi) + 3);
1060 }
1061
1062 nsrc = ntohs(mld->mld_numsrc);
1063 if (nsrc > MLD_MAX_GS_SOURCES) {
1064 err = EMSGSIZE;
1065 goto done;
1066 }
1067 if (icmp6len < sizeof(struct mldv2_query) +
1068 (nsrc * sizeof(struct in6_addr))) {
1069 err = EMSGSIZE;
1070 goto done;
1071 }
1072
1073 /*
1074 * Do further input validation upfront to avoid resetting timers
1075 * should we need to discard this query.
1076 */
1077 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
1078 /*
1079 * A general query with a source list has undefined
1080 * behaviour; discard it.
1081 */
1082 if (nsrc > 0) {
1083 err = EINVAL;
1084 goto done;
1085 }
1086 is_general_query = 1;
1087 } else {
1088 /*
1089 * Embed scope ID of receiving interface in MLD query for
1090 * lookup whilst we don't hold other locks (due to KAME
1091 * locking lameness). We own this mbuf chain just now.
1092 */
1093 in6_setscope(&mld->mld_addr, ifp, NULL);
1094 }
1095
1096 mli = MLD_IFINFO(ifp);
1097 VERIFY(mli != NULL);
1098
1099 MLI_LOCK(mli);
1100 /*
1101 * Discard the v2 query if we're in Compatibility Mode.
1102 * The RFC is pretty clear that hosts need to stay in MLDv1 mode
1103 * until the Old Version Querier Present timer expires.
1104 */
1105 if (mli->mli_version != MLD_VERSION_2) {
1106 MLI_UNLOCK(mli);
1107 goto done;
1108 }
1109
1110 mtp.qpt = mld_set_version(mli, MLD_VERSION_2);
1111 mli->mli_rv = qrv;
1112 mli->mli_qi = qqi;
1113 mli->mli_qri = MAX(timer, MLD_QRI_MIN);
1114
1115 MLD_PRINTF(("%s: qrv %d qi %d qri %d\n", __func__, mli->mli_rv,
1116 mli->mli_qi, mli->mli_qri));
1117
1118 if (is_general_query) {
1119 /*
1120 * MLDv2 General Query.
1121 *
1122 * Schedule a current-state report on this ifp for
1123 * all groups, possibly containing source lists.
1124 *
1125 * If there is a pending General Query response
1126 * scheduled earlier than the selected delay, do
1127 * not schedule any other reports.
1128 * Otherwise, reset the interface timer.
1129 */
1130 MLD_PRINTF(("%s: process v2 general query on ifp 0x%llx(%s)\n",
1131 __func__, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1132 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) {
1133 mtp.it = mli->mli_v2_timer = MLD_RANDOM_DELAY(timer);
1134 }
1135 MLI_UNLOCK(mli);
1136 } else {
1137 MLI_UNLOCK(mli);
1138 /*
1139 * MLDv2 Group-specific or Group-and-source-specific Query.
1140 *
1141 * Group-source-specific queries are throttled on
1142 * a per-group basis to defeat denial-of-service attempts.
1143 * Queries for groups we are not a member of on this
1144 * link are simply ignored.
1145 */
1146 in6_multihead_lock_shared();
1147 IN6_LOOKUP_MULTI(&mld->mld_addr, ifp, inm);
1148 in6_multihead_lock_done();
1149 if (inm == NULL)
1150 goto done;
1151
1152 IN6M_LOCK(inm);
1153 if (nsrc > 0) {
1154 if (!ratecheck(&inm->in6m_lastgsrtv,
1155 &mld_gsrdelay)) {
1156 MLD_PRINTF(("%s: GS query throttled.\n",
1157 __func__));
1158 IN6M_UNLOCK(inm);
1159 IN6M_REMREF(inm); /* from IN6_LOOKUP_MULTI */
1160 goto done;
1161 }
1162 }
1163 MLD_PRINTF(("%s: process v2 group query on ifp 0x%llx(%s)\n",
1164 __func__, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1165 /*
1166 * If there is a pending General Query response
1167 * scheduled sooner than the selected delay, no
1168 * further report need be scheduled.
1169 * Otherwise, prepare to respond to the
1170 * group-specific or group-and-source query.
1171 */
1172 MLI_LOCK(mli);
1173 mtp.it = mli->mli_v2_timer;
1174 MLI_UNLOCK(mli);
1175 if (mtp.it == 0 || mtp.it >= timer) {
1176 (void) mld_v2_process_group_query(inm, timer, m, off);
1177 mtp.cst = inm->in6m_timer;
1178 }
1179 IN6M_UNLOCK(inm);
1180 IN6M_REMREF(inm); /* from IN6_LOOKUP_MULTI */
1181 /* XXX Clear embedded scope ID as userland won't expect it. */
1182 in6_clearscope(&mld->mld_addr);
1183 }
1184 done:
1185 if (mtp.it > 0) {
1186 MLD_PRINTF(("%s: v2 general query response scheduled in "
1187 "T+%d seconds on ifp 0x%llx(%s)\n", __func__, mtp.it,
1188 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1189 }
1190 mld_set_timeout(&mtp);
1191
1192 return (err);
1193 }
1194
1195 /*
1196 * Process a recieved MLDv2 group-specific or group-and-source-specific
1197 * query.
1198 * Return <0 if any error occured. Currently this is ignored.
1199 */
1200 static int
1201 mld_v2_process_group_query(struct in6_multi *inm, int timer, struct mbuf *m0,
1202 const int off)
1203 {
1204 struct mldv2_query *mld;
1205 int retval;
1206 uint16_t nsrc;
1207
1208 IN6M_LOCK_ASSERT_HELD(inm);
1209
1210 retval = 0;
1211 mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off);
1212
1213 switch (inm->in6m_state) {
1214 case MLD_NOT_MEMBER:
1215 case MLD_SILENT_MEMBER:
1216 case MLD_SLEEPING_MEMBER:
1217 case MLD_LAZY_MEMBER:
1218 case MLD_AWAKENING_MEMBER:
1219 case MLD_IDLE_MEMBER:
1220 case MLD_LEAVING_MEMBER:
1221 return (retval);
1222 case MLD_REPORTING_MEMBER:
1223 case MLD_G_QUERY_PENDING_MEMBER:
1224 case MLD_SG_QUERY_PENDING_MEMBER:
1225 break;
1226 }
1227
1228 nsrc = ntohs(mld->mld_numsrc);
1229
1230 /*
1231 * Deal with group-specific queries upfront.
1232 * If any group query is already pending, purge any recorded
1233 * source-list state if it exists, and schedule a query response
1234 * for this group-specific query.
1235 */
1236 if (nsrc == 0) {
1237 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
1238 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) {
1239 in6m_clear_recorded(inm);
1240 timer = min(inm->in6m_timer, timer);
1241 }
1242 inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER;
1243 inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1244 return (retval);
1245 }
1246
1247 /*
1248 * Deal with the case where a group-and-source-specific query has
1249 * been received but a group-specific query is already pending.
1250 */
1251 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) {
1252 timer = min(inm->in6m_timer, timer);
1253 inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1254 return (retval);
1255 }
1256
1257 /*
1258 * Finally, deal with the case where a group-and-source-specific
1259 * query has been received, where a response to a previous g-s-r
1260 * query exists, or none exists.
1261 * In this case, we need to parse the source-list which the Querier
1262 * has provided us with and check if we have any source list filter
1263 * entries at T1 for these sources. If we do not, there is no need
1264 * schedule a report and the query may be dropped.
1265 * If we do, we must record them and schedule a current-state
1266 * report for those sources.
1267 */
1268 if (inm->in6m_nsrc > 0) {
1269 struct mbuf *m;
1270 uint8_t *sp;
1271 int i, nrecorded;
1272 int soff;
1273
1274 m = m0;
1275 soff = off + sizeof(struct mldv2_query);
1276 nrecorded = 0;
1277 for (i = 0; i < nsrc; i++) {
1278 sp = mtod(m, uint8_t *) + soff;
1279 retval = in6m_record_source(inm,
1280 (const struct in6_addr *)(void *)sp);
1281 if (retval < 0)
1282 break;
1283 nrecorded += retval;
1284 soff += sizeof(struct in6_addr);
1285 if (soff >= m->m_len) {
1286 soff = soff - m->m_len;
1287 m = m->m_next;
1288 if (m == NULL)
1289 break;
1290 }
1291 }
1292 if (nrecorded > 0) {
1293 MLD_PRINTF(( "%s: schedule response to SG query\n",
1294 __func__));
1295 inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER;
1296 inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1297 }
1298 }
1299
1300 return (retval);
1301 }
1302
1303 /*
1304 * Process a received MLDv1 host membership report.
1305 * Assumes mld points to mld_hdr in pulled up mbuf chain.
1306 *
1307 * NOTE: Can't be fully const correct as we temporarily embed scope ID in
1308 * mld_addr. This is OK as we own the mbuf chain.
1309 */
1310 static int
1311 mld_v1_input_report(struct ifnet *ifp, struct mbuf *m,
1312 const struct ip6_hdr *ip6, /*const*/ struct mld_hdr *mld)
1313 {
1314 struct in6_addr src, dst;
1315 struct in6_ifaddr *ia;
1316 struct in6_multi *inm;
1317
1318 if (!mld_v1enable) {
1319 MLD_PRINTF(("%s: ignore v1 report %s on ifp 0x%llx(%s)\n",
1320 __func__, ip6_sprintf(&mld->mld_addr),
1321 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1322 return (0);
1323 }
1324
1325 if ((ifp->if_flags & IFF_LOOPBACK) ||
1326 (m->m_pkthdr.pkt_flags & PKTF_LOOP))
1327 return (0);
1328
1329 /*
1330 * MLDv1 reports must originate from a host's link-local address,
1331 * or the unspecified address (when booting).
1332 */
1333 src = ip6->ip6_src;
1334 in6_clearscope(&src);
1335 if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) {
1336 MLD_PRINTF(("%s: ignore v1 query src %s on ifp 0x%llx(%s)\n",
1337 __func__, ip6_sprintf(&ip6->ip6_src),
1338 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1339 return (EINVAL);
1340 }
1341
1342 /*
1343 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast
1344 * group, and must be directed to the group itself.
1345 */
1346 dst = ip6->ip6_dst;
1347 in6_clearscope(&dst);
1348 if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) ||
1349 !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) {
1350 MLD_PRINTF(("%s: ignore v1 query dst %s on ifp 0x%llx(%s)\n",
1351 __func__, ip6_sprintf(&ip6->ip6_dst),
1352 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1353 return (EINVAL);
1354 }
1355
1356 /*
1357 * Make sure we don't hear our own membership report, as fast
1358 * leave requires knowing that we are the only member of a
1359 * group. Assume we used the link-local address if available,
1360 * otherwise look for ::.
1361 *
1362 * XXX Note that scope ID comparison is needed for the address
1363 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be
1364 * performed for the on-wire address.
1365 */
1366 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
1367 if (ia != NULL) {
1368 IFA_LOCK(&ia->ia_ifa);
1369 if ((IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia)))){
1370 IFA_UNLOCK(&ia->ia_ifa);
1371 IFA_REMREF(&ia->ia_ifa);
1372 return (0);
1373 }
1374 IFA_UNLOCK(&ia->ia_ifa);
1375 IFA_REMREF(&ia->ia_ifa);
1376 } else if (IN6_IS_ADDR_UNSPECIFIED(&src)) {
1377 return (0);
1378 }
1379
1380 MLD_PRINTF(("%s: process v1 report %s on ifp 0x%llx(%s)\n",
1381 __func__, ip6_sprintf(&mld->mld_addr),
1382 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1383
1384 /*
1385 * Embed scope ID of receiving interface in MLD query for lookup
1386 * whilst we don't hold other locks (due to KAME locking lameness).
1387 */
1388 if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr))
1389 in6_setscope(&mld->mld_addr, ifp, NULL);
1390
1391 /*
1392 * MLDv1 report suppression.
1393 * If we are a member of this group, and our membership should be
1394 * reported, and our group timer is pending or about to be reset,
1395 * stop our group timer by transitioning to the 'lazy' state.
1396 */
1397 in6_multihead_lock_shared();
1398 IN6_LOOKUP_MULTI(&mld->mld_addr, ifp, inm);
1399 in6_multihead_lock_done();
1400
1401 if (inm != NULL) {
1402 struct mld_ifinfo *mli;
1403
1404 IN6M_LOCK(inm);
1405 mli = inm->in6m_mli;
1406 VERIFY(mli != NULL);
1407
1408 MLI_LOCK(mli);
1409 /*
1410 * If we are in MLDv2 host mode, do not allow the
1411 * other host's MLDv1 report to suppress our reports.
1412 */
1413 if (mli->mli_version == MLD_VERSION_2) {
1414 MLI_UNLOCK(mli);
1415 IN6M_UNLOCK(inm);
1416 IN6M_REMREF(inm); /* from IN6_LOOKUP_MULTI */
1417 goto out;
1418 }
1419 MLI_UNLOCK(mli);
1420
1421 inm->in6m_timer = 0;
1422
1423 switch (inm->in6m_state) {
1424 case MLD_NOT_MEMBER:
1425 case MLD_SILENT_MEMBER:
1426 case MLD_SLEEPING_MEMBER:
1427 break;
1428 case MLD_REPORTING_MEMBER:
1429 case MLD_IDLE_MEMBER:
1430 case MLD_AWAKENING_MEMBER:
1431 MLD_PRINTF(("%s: report suppressed for %s on "
1432 "ifp 0x%llx(%s)\n", __func__,
1433 ip6_sprintf(&mld->mld_addr),
1434 (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1435 case MLD_LAZY_MEMBER:
1436 inm->in6m_state = MLD_LAZY_MEMBER;
1437 break;
1438 case MLD_G_QUERY_PENDING_MEMBER:
1439 case MLD_SG_QUERY_PENDING_MEMBER:
1440 case MLD_LEAVING_MEMBER:
1441 break;
1442 }
1443 IN6M_UNLOCK(inm);
1444 IN6M_REMREF(inm); /* from IN6_LOOKUP_MULTI */
1445 }
1446
1447 out:
1448 /* XXX Clear embedded scope ID as userland won't expect it. */
1449 in6_clearscope(&mld->mld_addr);
1450
1451 return (0);
1452 }
1453
1454 /*
1455 * MLD input path.
1456 *
1457 * Assume query messages which fit in a single ICMPv6 message header
1458 * have been pulled up.
1459 * Assume that userland will want to see the message, even if it
1460 * otherwise fails kernel input validation; do not free it.
1461 * Pullup may however free the mbuf chain m if it fails.
1462 *
1463 * Return IPPROTO_DONE if we freed m. Otherwise, return 0.
1464 */
1465 int
1466 mld_input(struct mbuf *m, int off, int icmp6len)
1467 {
1468 struct ifnet *ifp;
1469 struct ip6_hdr *ip6;
1470 struct mld_hdr *mld;
1471 int mldlen;
1472
1473 MLD_PRINTF(("%s: called w/mbuf (0x%llx,%d)\n", __func__,
1474 (uint64_t)VM_KERNEL_ADDRPERM(m), off));
1475
1476 ifp = m->m_pkthdr.rcvif;
1477
1478 ip6 = mtod(m, struct ip6_hdr *);
1479
1480 /* Pullup to appropriate size. */
1481 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off);
1482 if (mld->mld_type == MLD_LISTENER_QUERY &&
1483 icmp6len >= sizeof(struct mldv2_query)) {
1484 mldlen = sizeof(struct mldv2_query);
1485 } else {
1486 mldlen = sizeof(struct mld_hdr);
1487 }
1488 IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen);
1489 if (mld == NULL) {
1490 icmp6stat.icp6s_badlen++;
1491 return (IPPROTO_DONE);
1492 }
1493
1494 /*
1495 * Userland needs to see all of this traffic for implementing
1496 * the endpoint discovery portion of multicast routing.
1497 */
1498 switch (mld->mld_type) {
1499 case MLD_LISTENER_QUERY:
1500 icmp6_ifstat_inc(ifp, ifs6_in_mldquery);
1501 if (icmp6len == sizeof(struct mld_hdr)) {
1502 if (mld_v1_input_query(ifp, ip6, mld) != 0)
1503 return (0);
1504 } else if (icmp6len >= sizeof(struct mldv2_query)) {
1505 if (mld_v2_input_query(ifp, ip6, m, off,
1506 icmp6len) != 0)
1507 return (0);
1508 }
1509 break;
1510 case MLD_LISTENER_REPORT:
1511 icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
1512 if (mld_v1_input_report(ifp, m, ip6, mld) != 0)
1513 return (0);
1514 break;
1515 case MLDV2_LISTENER_REPORT:
1516 icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
1517 break;
1518 case MLD_LISTENER_DONE:
1519 icmp6_ifstat_inc(ifp, ifs6_in_mlddone);
1520 break;
1521 default:
1522 break;
1523 }
1524
1525 return (0);
1526 }
1527
1528 /*
1529 * Schedule MLD timer based on various parameters; caller must ensure that
1530 * lock ordering is maintained as this routine acquires MLD global lock.
1531 */
1532 void
1533 mld_set_timeout(struct mld_tparams *mtp)
1534 {
1535 MLD_LOCK_ASSERT_NOTHELD();
1536 VERIFY(mtp != NULL);
1537
1538 if (mtp->qpt != 0 || mtp->it != 0 || mtp->cst != 0 || mtp->sct != 0) {
1539 MLD_LOCK();
1540 if (mtp->qpt != 0)
1541 querier_present_timers_running6 = 1;
1542 if (mtp->it != 0)
1543 interface_timers_running6 = 1;
1544 if (mtp->cst != 0)
1545 current_state_timers_running6 = 1;
1546 if (mtp->sct != 0)
1547 state_change_timers_running6 = 1;
1548 mld_sched_timeout();
1549 MLD_UNLOCK();
1550 }
1551 }
1552
1553 /*
1554 * MLD6 timer handler (per 1 second).
1555 */
1556 static void
1557 mld_timeout(void *arg)
1558 {
1559 #pragma unused(arg)
1560 struct ifqueue scq; /* State-change packets */
1561 struct ifqueue qrq; /* Query response packets */
1562 struct ifnet *ifp;
1563 struct mld_ifinfo *mli;
1564 struct in6_multi *inm;
1565 int uri_sec = 0;
1566 SLIST_HEAD(, in6_multi) in6m_dthead;
1567
1568 SLIST_INIT(&in6m_dthead);
1569
1570 /*
1571 * Update coarse-grained networking timestamp (in sec.); the idea
1572 * is to piggy-back on the timeout callout to update the counter
1573 * returnable via net_uptime().
1574 */
1575 net_update_uptime();
1576
1577 MLD_LOCK();
1578
1579 MLD_PRINTF(("%s: qpt %d, it %d, cst %d, sct %d\n", __func__,
1580 querier_present_timers_running6, interface_timers_running6,
1581 current_state_timers_running6, state_change_timers_running6));
1582
1583 /*
1584 * MLDv1 querier present timer processing.
1585 */
1586 if (querier_present_timers_running6) {
1587 querier_present_timers_running6 = 0;
1588 LIST_FOREACH(mli, &mli_head, mli_link) {
1589 MLI_LOCK(mli);
1590 mld_v1_process_querier_timers(mli);
1591 if (mli->mli_v1_timer > 0)
1592 querier_present_timers_running6 = 1;
1593 MLI_UNLOCK(mli);
1594 }
1595 }
1596
1597 /*
1598 * MLDv2 General Query response timer processing.
1599 */
1600 if (interface_timers_running6) {
1601 MLD_PRINTF(("%s: interface timers running\n", __func__));
1602 interface_timers_running6 = 0;
1603 LIST_FOREACH(mli, &mli_head, mli_link) {
1604 MLI_LOCK(mli);
1605 if (mli->mli_version != MLD_VERSION_2) {
1606 MLI_UNLOCK(mli);
1607 continue;
1608 }
1609 if (mli->mli_v2_timer == 0) {
1610 /* Do nothing. */
1611 } else if (--mli->mli_v2_timer == 0) {
1612 if (mld_v2_dispatch_general_query(mli) > 0)
1613 interface_timers_running6 = 1;
1614 } else {
1615 interface_timers_running6 = 1;
1616 }
1617 MLI_UNLOCK(mli);
1618 }
1619 }
1620
1621 if (!current_state_timers_running6 &&
1622 !state_change_timers_running6)
1623 goto out_locked;
1624
1625 current_state_timers_running6 = 0;
1626 state_change_timers_running6 = 0;
1627
1628 MLD_PRINTF(("%s: state change timers running\n", __func__));
1629
1630 memset(&qrq, 0, sizeof(struct ifqueue));
1631 qrq.ifq_maxlen = MLD_MAX_G_GS_PACKETS;
1632
1633 memset(&scq, 0, sizeof(struct ifqueue));
1634 scq.ifq_maxlen = MLD_MAX_STATE_CHANGE_PACKETS;
1635
1636 /*
1637 * MLD host report and state-change timer processing.
1638 * Note: Processing a v2 group timer may remove a node.
1639 */
1640 LIST_FOREACH(mli, &mli_head, mli_link) {
1641 struct in6_multistep step;
1642
1643 MLI_LOCK(mli);
1644 ifp = mli->mli_ifp;
1645 uri_sec = MLD_RANDOM_DELAY(mli->mli_uri);
1646 MLI_UNLOCK(mli);
1647
1648 in6_multihead_lock_shared();
1649 IN6_FIRST_MULTI(step, inm);
1650 while (inm != NULL) {
1651 IN6M_LOCK(inm);
1652 if (inm->in6m_ifp != ifp)
1653 goto next;
1654
1655 MLI_LOCK(mli);
1656 switch (mli->mli_version) {
1657 case MLD_VERSION_1:
1658 mld_v1_process_group_timer(inm,
1659 mli->mli_version);
1660 break;
1661 case MLD_VERSION_2:
1662 mld_v2_process_group_timers(mli, &qrq,
1663 &scq, inm, uri_sec);
1664 break;
1665 }
1666 MLI_UNLOCK(mli);
1667 next:
1668 IN6M_UNLOCK(inm);
1669 IN6_NEXT_MULTI(step, inm);
1670 }
1671 in6_multihead_lock_done();
1672
1673 MLI_LOCK(mli);
1674 if (mli->mli_version == MLD_VERSION_1) {
1675 mld_dispatch_queue(mli, &mli->mli_v1q, 0);
1676 } else if (mli->mli_version == MLD_VERSION_2) {
1677 MLI_UNLOCK(mli);
1678 mld_dispatch_queue(NULL, &qrq, 0);
1679 mld_dispatch_queue(NULL, &scq, 0);
1680 VERIFY(qrq.ifq_len == 0);
1681 VERIFY(scq.ifq_len == 0);
1682 MLI_LOCK(mli);
1683 }
1684 /*
1685 * In case there are still any pending membership reports
1686 * which didn't get drained at version change time.
1687 */
1688 IF_DRAIN(&mli->mli_v1q);
1689 /*
1690 * Release all deferred inm records, and drain any locally
1691 * enqueued packets; do it even if the current MLD version
1692 * for the link is no longer MLDv2, in order to handle the
1693 * version change case.
1694 */
1695 mld_flush_relq(mli, (struct mld_in6m_relhead *)&in6m_dthead);
1696 VERIFY(SLIST_EMPTY(&mli->mli_relinmhead));
1697 MLI_UNLOCK(mli);
1698
1699 IF_DRAIN(&qrq);
1700 IF_DRAIN(&scq);
1701 }
1702
1703 out_locked:
1704 /* re-arm the timer if there's work to do */
1705 mld_timeout_run = 0;
1706 mld_sched_timeout();
1707 MLD_UNLOCK();
1708
1709 /* Now that we're dropped all locks, release detached records */
1710 MLD_REMOVE_DETACHED_IN6M(&in6m_dthead);
1711 }
1712
1713 static void
1714 mld_sched_timeout(void)
1715 {
1716 MLD_LOCK_ASSERT_HELD();
1717
1718 if (!mld_timeout_run &&
1719 (querier_present_timers_running6 || current_state_timers_running6 ||
1720 interface_timers_running6 || state_change_timers_running6)) {
1721 mld_timeout_run = 1;
1722 timeout(mld_timeout, NULL, hz);
1723 }
1724 }
1725
1726 /*
1727 * Free the in6_multi reference(s) for this MLD lifecycle.
1728 *
1729 * Caller must be holding mli_lock.
1730 */
1731 static void
1732 mld_flush_relq(struct mld_ifinfo *mli, struct mld_in6m_relhead *in6m_dthead)
1733 {
1734 struct in6_multi *inm;
1735
1736 again:
1737 MLI_LOCK_ASSERT_HELD(mli);
1738 inm = SLIST_FIRST(&mli->mli_relinmhead);
1739 if (inm != NULL) {
1740 int lastref;
1741
1742 SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele);
1743 MLI_UNLOCK(mli);
1744
1745 in6_multihead_lock_exclusive();
1746 IN6M_LOCK(inm);
1747 VERIFY(inm->in6m_nrelecnt != 0);
1748 inm->in6m_nrelecnt--;
1749 lastref = in6_multi_detach(inm);
1750 VERIFY(!lastref || (!(inm->in6m_debug & IFD_ATTACHED) &&
1751 inm->in6m_reqcnt == 0));
1752 IN6M_UNLOCK(inm);
1753 in6_multihead_lock_done();
1754 /* from mli_relinmhead */
1755 IN6M_REMREF(inm);
1756 /* from in6_multihead_list */
1757 if (lastref) {
1758 /*
1759 * Defer releasing our final reference, as we
1760 * are holding the MLD lock at this point, and
1761 * we could end up with locking issues later on
1762 * (while issuing SIOCDELMULTI) when this is the
1763 * final reference count. Let the caller do it
1764 * when it is safe.
1765 */
1766 MLD_ADD_DETACHED_IN6M(in6m_dthead, inm);
1767 }
1768 MLI_LOCK(mli);
1769 goto again;
1770 }
1771 }
1772
1773 /*
1774 * Update host report group timer.
1775 * Will update the global pending timer flags.
1776 */
1777 static void
1778 mld_v1_process_group_timer(struct in6_multi *inm, const int mld_version)
1779 {
1780 #pragma unused(mld_version)
1781 int report_timer_expired;
1782
1783 MLD_LOCK_ASSERT_HELD();
1784 IN6M_LOCK_ASSERT_HELD(inm);
1785 MLI_LOCK_ASSERT_HELD(inm->in6m_mli);
1786
1787 if (inm->in6m_timer == 0) {
1788 report_timer_expired = 0;
1789 } else if (--inm->in6m_timer == 0) {
1790 report_timer_expired = 1;
1791 } else {
1792 current_state_timers_running6 = 1;
1793 /* caller will schedule timer */
1794 return;
1795 }
1796
1797 switch (inm->in6m_state) {
1798 case MLD_NOT_MEMBER:
1799 case MLD_SILENT_MEMBER:
1800 case MLD_IDLE_MEMBER:
1801 case MLD_LAZY_MEMBER:
1802 case MLD_SLEEPING_MEMBER:
1803 case MLD_AWAKENING_MEMBER:
1804 break;
1805 case MLD_REPORTING_MEMBER:
1806 if (report_timer_expired) {
1807 inm->in6m_state = MLD_IDLE_MEMBER;
1808 (void) mld_v1_transmit_report(inm,
1809 MLD_LISTENER_REPORT);
1810 IN6M_LOCK_ASSERT_HELD(inm);
1811 MLI_LOCK_ASSERT_HELD(inm->in6m_mli);
1812 }
1813 break;
1814 case MLD_G_QUERY_PENDING_MEMBER:
1815 case MLD_SG_QUERY_PENDING_MEMBER:
1816 case MLD_LEAVING_MEMBER:
1817 break;
1818 }
1819 }
1820
1821 /*
1822 * Update a group's timers for MLDv2.
1823 * Will update the global pending timer flags.
1824 * Note: Unlocked read from mli.
1825 */
1826 static void
1827 mld_v2_process_group_timers(struct mld_ifinfo *mli,
1828 struct ifqueue *qrq, struct ifqueue *scq,
1829 struct in6_multi *inm, const int uri_sec)
1830 {
1831 int query_response_timer_expired;
1832 int state_change_retransmit_timer_expired;
1833
1834 MLD_LOCK_ASSERT_HELD();
1835 IN6M_LOCK_ASSERT_HELD(inm);
1836 MLI_LOCK_ASSERT_HELD(mli);
1837 VERIFY(mli == inm->in6m_mli);
1838
1839 query_response_timer_expired = 0;
1840 state_change_retransmit_timer_expired = 0;
1841
1842 /*
1843 * During a transition from compatibility mode back to MLDv2,
1844 * a group record in REPORTING state may still have its group
1845 * timer active. This is a no-op in this function; it is easier
1846 * to deal with it here than to complicate the timeout path.
1847 */
1848 if (inm->in6m_timer == 0) {
1849 query_response_timer_expired = 0;
1850 } else if (--inm->in6m_timer == 0) {
1851 query_response_timer_expired = 1;
1852 } else {
1853 current_state_timers_running6 = 1;
1854 /* caller will schedule timer */
1855 }
1856
1857 if (inm->in6m_sctimer == 0) {
1858 state_change_retransmit_timer_expired = 0;
1859 } else if (--inm->in6m_sctimer == 0) {
1860 state_change_retransmit_timer_expired = 1;
1861 } else {
1862 state_change_timers_running6 = 1;
1863 /* caller will schedule timer */
1864 }
1865
1866 /* We are in timer callback, so be quick about it. */
1867 if (!state_change_retransmit_timer_expired &&
1868 !query_response_timer_expired)
1869 return;
1870
1871 switch (inm->in6m_state) {
1872 case MLD_NOT_MEMBER:
1873 case MLD_SILENT_MEMBER:
1874 case MLD_SLEEPING_MEMBER:
1875 case MLD_LAZY_MEMBER:
1876 case MLD_AWAKENING_MEMBER:
1877 case MLD_IDLE_MEMBER:
1878 break;
1879 case MLD_G_QUERY_PENDING_MEMBER:
1880 case MLD_SG_QUERY_PENDING_MEMBER:
1881 /*
1882 * Respond to a previously pending Group-Specific
1883 * or Group-and-Source-Specific query by enqueueing
1884 * the appropriate Current-State report for
1885 * immediate transmission.
1886 */
1887 if (query_response_timer_expired) {
1888 int retval;
1889
1890 retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1,
1891 (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER),
1892 0);
1893 MLD_PRINTF(("%s: enqueue record = %d\n",
1894 __func__, retval));
1895 inm->in6m_state = MLD_REPORTING_MEMBER;
1896 in6m_clear_recorded(inm);
1897 }
1898 /* FALLTHROUGH */
1899 case MLD_REPORTING_MEMBER:
1900 case MLD_LEAVING_MEMBER:
1901 if (state_change_retransmit_timer_expired) {
1902 /*
1903 * State-change retransmission timer fired.
1904 * If there are any further pending retransmissions,
1905 * set the global pending state-change flag, and
1906 * reset the timer.
1907 */
1908 if (--inm->in6m_scrv > 0) {
1909 inm->in6m_sctimer = uri_sec;
1910 state_change_timers_running6 = 1;
1911 /* caller will schedule timer */
1912 }
1913 /*
1914 * Retransmit the previously computed state-change
1915 * report. If there are no further pending
1916 * retransmissions, the mbuf queue will be consumed.
1917 * Update T0 state to T1 as we have now sent
1918 * a state-change.
1919 */
1920 (void) mld_v2_merge_state_changes(inm, scq);
1921
1922 in6m_commit(inm);
1923 MLD_PRINTF(("%s: T1 -> T0 for %s/%s\n", __func__,
1924 ip6_sprintf(&inm->in6m_addr),
1925 if_name(inm->in6m_ifp)));
1926
1927 /*
1928 * If we are leaving the group for good, make sure
1929 * we release MLD's reference to it.
1930 * This release must be deferred using a SLIST,
1931 * as we are called from a loop which traverses
1932 * the in_ifmultiaddr TAILQ.
1933 */
1934 if (inm->in6m_state == MLD_LEAVING_MEMBER &&
1935 inm->in6m_scrv == 0) {
1936 inm->in6m_state = MLD_NOT_MEMBER;
1937 /*
1938 * A reference has already been held in
1939 * mld_final_leave() for this inm, so
1940 * no need to hold another one. We also
1941 * bumped up its request count then, so
1942 * that it stays in in6_multihead. Both
1943 * of them will be released when it is
1944 * dequeued later on.
1945 */
1946 VERIFY(inm->in6m_nrelecnt != 0);
1947 SLIST_INSERT_HEAD(&mli->mli_relinmhead,
1948 inm, in6m_nrele);
1949 }
1950 }
1951 break;
1952 }
1953 }
1954
1955 /*
1956 * Switch to a different version on the given interface,
1957 * as per Section 9.12.
1958 */
1959 static uint32_t
1960 mld_set_version(struct mld_ifinfo *mli, const int mld_version)
1961 {
1962 int old_version_timer;
1963
1964 MLI_LOCK_ASSERT_HELD(mli);
1965
1966 MLD_PRINTF(("%s: switching to v%d on ifp 0x%llx(%s)\n", __func__,
1967 mld_version, (uint64_t)VM_KERNEL_ADDRPERM(mli->mli_ifp),
1968 if_name(mli->mli_ifp)));
1969
1970 if (mld_version == MLD_VERSION_1) {
1971 /*
1972 * Compute the "Older Version Querier Present" timer as per
1973 * Section 9.12, in seconds.
1974 */
1975 old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri;
1976 mli->mli_v1_timer = old_version_timer;
1977 }
1978
1979 if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) {
1980 mli->mli_version = MLD_VERSION_1;
1981 mld_v2_cancel_link_timers(mli);
1982 }
1983
1984 MLI_LOCK_ASSERT_HELD(mli);
1985
1986 return (mli->mli_v1_timer);
1987 }
1988
1989 /*
1990 * Cancel pending MLDv2 timers for the given link and all groups
1991 * joined on it; state-change, general-query, and group-query timers.
1992 *
1993 * Only ever called on a transition from v2 to Compatibility mode. Kill
1994 * the timers stone dead (this may be expensive for large N groups), they
1995 * will be restarted if Compatibility Mode deems that they must be due to
1996 * query processing.
1997 */
1998 static void
1999 mld_v2_cancel_link_timers(struct mld_ifinfo *mli)
2000 {
2001 struct ifnet *ifp;
2002 struct in6_multi *inm;
2003 struct in6_multistep step;
2004
2005 MLI_LOCK_ASSERT_HELD(mli);
2006
2007 MLD_PRINTF(("%s: cancel v2 timers on ifp 0x%llx(%s)\n", __func__,
2008 (uint64_t)VM_KERNEL_ADDRPERM(mli->mli_ifp), if_name(mli->mli_ifp)));
2009
2010 /*
2011 * Stop the v2 General Query Response on this link stone dead.
2012 * If timer is woken up due to interface_timers_running6,
2013 * the flag will be cleared if there are no pending link timers.
2014 */
2015 mli->mli_v2_timer = 0;
2016
2017 /*
2018 * Now clear the current-state and state-change report timers
2019 * for all memberships scoped to this link.
2020 */
2021 ifp = mli->mli_ifp;
2022 MLI_UNLOCK(mli);
2023
2024 in6_multihead_lock_shared();
2025 IN6_FIRST_MULTI(step, inm);
2026 while (inm != NULL) {
2027 IN6M_LOCK(inm);
2028 if (inm->in6m_ifp != ifp)
2029 goto next;
2030
2031 switch (inm->in6m_state) {
2032 case MLD_NOT_MEMBER:
2033 case MLD_SILENT_MEMBER:
2034 case MLD_IDLE_MEMBER:
2035 case MLD_LAZY_MEMBER:
2036 case MLD_SLEEPING_MEMBER:
2037 case MLD_AWAKENING_MEMBER:
2038 /*
2039 * These states are either not relevant in v2 mode,
2040 * or are unreported. Do nothing.
2041 */
2042 break;
2043 case MLD_LEAVING_MEMBER:
2044 /*
2045 * If we are leaving the group and switching
2046 * version, we need to release the final
2047 * reference held for issuing the INCLUDE {}.
2048 * During mld_final_leave(), we bumped up both the
2049 * request and reference counts. Since we cannot
2050 * call in6_multi_detach() here, defer this task to
2051 * the timer routine.
2052 */
2053 VERIFY(inm->in6m_nrelecnt != 0);
2054 MLI_LOCK(mli);
2055 SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm,
2056 in6m_nrele);
2057 MLI_UNLOCK(mli);
2058 /* FALLTHROUGH */
2059 case MLD_G_QUERY_PENDING_MEMBER:
2060 case MLD_SG_QUERY_PENDING_MEMBER:
2061 in6m_clear_recorded(inm);
2062 /* FALLTHROUGH */
2063 case MLD_REPORTING_MEMBER:
2064 inm->in6m_state = MLD_REPORTING_MEMBER;
2065 break;
2066 }
2067 /*
2068 * Always clear state-change and group report timers.
2069 * Free any pending MLDv2 state-change records.
2070 */
2071 inm->in6m_sctimer = 0;
2072 inm->in6m_timer = 0;
2073 IF_DRAIN(&inm->in6m_scq);
2074 next:
2075 IN6M_UNLOCK(inm);
2076 IN6_NEXT_MULTI(step, inm);
2077 }
2078 in6_multihead_lock_done();
2079
2080 MLI_LOCK(mli);
2081 }
2082
2083 /*
2084 * Update the Older Version Querier Present timers for a link.
2085 * See Section 9.12 of RFC 3810.
2086 */
2087 static void
2088 mld_v1_process_querier_timers(struct mld_ifinfo *mli)
2089 {
2090 MLI_LOCK_ASSERT_HELD(mli);
2091
2092 if (mld_v2enable && mli->mli_version != MLD_VERSION_2 &&
2093 --mli->mli_v1_timer == 0) {
2094 /*
2095 * MLDv1 Querier Present timer expired; revert to MLDv2.
2096 */
2097 MLD_PRINTF(("%s: transition from v%d -> v%d on 0x%llx(%s)\n",
2098 __func__, mli->mli_version, MLD_VERSION_2,
2099 (uint64_t)VM_KERNEL_ADDRPERM(mli->mli_ifp),
2100 if_name(mli->mli_ifp)));
2101 mli->mli_version = MLD_VERSION_2;
2102 }
2103 }
2104
2105 /*
2106 * Transmit an MLDv1 report immediately.
2107 */
2108 static int
2109 mld_v1_transmit_report(struct in6_multi *in6m, const int type)
2110 {
2111 struct ifnet *ifp;
2112 struct in6_ifaddr *ia;
2113 struct ip6_hdr *ip6;
2114 struct mbuf *mh, *md;
2115 struct mld_hdr *mld;
2116 int error = 0;
2117
2118 IN6M_LOCK_ASSERT_HELD(in6m);
2119 MLI_LOCK_ASSERT_HELD(in6m->in6m_mli);
2120
2121 ifp = in6m->in6m_ifp;
2122 /* ia may be NULL if link-local address is tentative. */
2123 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
2124
2125 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2126 if (mh == NULL) {
2127 if (ia != NULL)
2128 IFA_REMREF(&ia->ia_ifa);
2129 return (ENOMEM);
2130 }
2131 MGET(md, M_DONTWAIT, MT_DATA);
2132 if (md == NULL) {
2133 m_free(mh);
2134 if (ia != NULL)
2135 IFA_REMREF(&ia->ia_ifa);
2136 return (ENOMEM);
2137 }
2138 mh->m_next = md;
2139
2140 /*
2141 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so
2142 * that ether_output() does not need to allocate another mbuf
2143 * for the header in the most common case.
2144 */
2145 MH_ALIGN(mh, sizeof(struct ip6_hdr));
2146 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr);
2147 mh->m_len = sizeof(struct ip6_hdr);
2148
2149 ip6 = mtod(mh, struct ip6_hdr *);
2150 ip6->ip6_flow = 0;
2151 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
2152 ip6->ip6_vfc |= IPV6_VERSION;
2153 ip6->ip6_nxt = IPPROTO_ICMPV6;
2154 if (ia != NULL)
2155 IFA_LOCK(&ia->ia_ifa);
2156 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
2157 if (ia != NULL) {
2158 IFA_UNLOCK(&ia->ia_ifa);
2159 IFA_REMREF(&ia->ia_ifa);
2160 ia = NULL;
2161 }
2162 ip6->ip6_dst = in6m->in6m_addr;
2163
2164 md->m_len = sizeof(struct mld_hdr);
2165 mld = mtod(md, struct mld_hdr *);
2166 mld->mld_type = type;
2167 mld->mld_code = 0;
2168 mld->mld_cksum = 0;
2169 mld->mld_maxdelay = 0;
2170 mld->mld_reserved = 0;
2171 mld->mld_addr = in6m->in6m_addr;
2172 in6_clearscope(&mld->mld_addr);
2173 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
2174 sizeof(struct ip6_hdr), sizeof(struct mld_hdr));
2175
2176 mld_save_context(mh, ifp);
2177 mh->m_flags |= M_MLDV1;
2178
2179 /*
2180 * Due to the fact that at this point we are possibly holding
2181 * in6_multihead_lock in shared or exclusive mode, we can't call
2182 * mld_dispatch_packet() here since that will eventually call
2183 * ip6_output(), which will try to lock in6_multihead_lock and cause
2184 * a deadlock.
2185 * Instead we defer the work to the mld_timeout() thread, thus
2186 * avoiding unlocking in_multihead_lock here.
2187 */
2188 if (IF_QFULL(&in6m->in6m_mli->mli_v1q)) {
2189 MLD_PRINTF(("%s: v1 outbound queue full\n", __func__));
2190 error = ENOMEM;
2191 m_freem(mh);
2192 } else {
2193 IF_ENQUEUE(&in6m->in6m_mli->mli_v1q, mh);
2194 VERIFY(error == 0);
2195 }
2196
2197 return (error);
2198 }
2199
2200 /*
2201 * Process a state change from the upper layer for the given IPv6 group.
2202 *
2203 * Each socket holds a reference on the in6_multi in its own ip_moptions.
2204 * The socket layer will have made the necessary updates to.the group
2205 * state, it is now up to MLD to issue a state change report if there
2206 * has been any change between T0 (when the last state-change was issued)
2207 * and T1 (now).
2208 *
2209 * We use the MLDv2 state machine at group level. The MLd module
2210 * however makes the decision as to which MLD protocol version to speak.
2211 * A state change *from* INCLUDE {} always means an initial join.
2212 * A state change *to* INCLUDE {} always means a final leave.
2213 *
2214 * If delay is non-zero, and the state change is an initial multicast
2215 * join, the state change report will be delayed by 'delay' ticks
2216 * in units of seconds if MLDv1 is active on the link; otherwise
2217 * the initial MLDv2 state change report will be delayed by whichever
2218 * is sooner, a pending state-change timer or delay itself.
2219 */
2220 int
2221 mld_change_state(struct in6_multi *inm, struct mld_tparams *mtp,
2222 const int delay)
2223 {
2224 struct mld_ifinfo *mli;
2225 struct ifnet *ifp;
2226 int error = 0;
2227
2228 VERIFY(mtp != NULL);
2229 bzero(mtp, sizeof (*mtp));
2230
2231 IN6M_LOCK_ASSERT_HELD(inm);
2232 VERIFY(inm->in6m_mli != NULL);
2233 MLI_LOCK_ASSERT_NOTHELD(inm->in6m_mli);
2234
2235 /*
2236 * Try to detect if the upper layer just asked us to change state
2237 * for an interface which has now gone away.
2238 */
2239 VERIFY(inm->in6m_ifma != NULL);
2240 ifp = inm->in6m_ifma->ifma_ifp;
2241 /*
2242 * Sanity check that netinet6's notion of ifp is the same as net's.
2243 */
2244 VERIFY(inm->in6m_ifp == ifp);
2245
2246 mli = MLD_IFINFO(ifp);
2247 VERIFY(mli != NULL);
2248
2249 /*
2250 * If we detect a state transition to or from MCAST_UNDEFINED
2251 * for this group, then we are starting or finishing an MLD
2252 * life cycle for this group.
2253 */
2254 if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) {
2255 MLD_PRINTF(("%s: inm transition %d -> %d\n", __func__,
2256 inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode));
2257 if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) {
2258 MLD_PRINTF(("%s: initial join\n", __func__));
2259 error = mld_initial_join(inm, mli, mtp, delay);
2260 goto out;
2261 } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) {
2262 MLD_PRINTF(("%s: final leave\n", __func__));
2263 mld_final_leave(inm, mli, mtp);
2264 goto out;
2265 }
2266 } else {
2267 MLD_PRINTF(("%s: filter set change\n", __func__));
2268 }
2269
2270 error = mld_handle_state_change(inm, mli, mtp);
2271 out:
2272 return (error);
2273 }
2274
2275 /*
2276 * Perform the initial join for an MLD group.
2277 *
2278 * When joining a group:
2279 * If the group should have its MLD traffic suppressed, do nothing.
2280 * MLDv1 starts sending MLDv1 host membership reports.
2281 * MLDv2 will schedule an MLDv2 state-change report containing the
2282 * initial state of the membership.
2283 *
2284 * If the delay argument is non-zero, then we must delay sending the
2285 * initial state change for delay ticks (in units of seconds).
2286 */
2287 static int
2288 mld_initial_join(struct in6_multi *inm, struct mld_ifinfo *mli,
2289 struct mld_tparams *mtp, const int delay)
2290 {
2291 struct ifnet *ifp;
2292 struct ifqueue *ifq;
2293 int error, retval, syncstates;
2294 int odelay;
2295
2296 IN6M_LOCK_ASSERT_HELD(inm);
2297 MLI_LOCK_ASSERT_NOTHELD(mli);
2298 VERIFY(mtp != NULL);
2299
2300 MLD_PRINTF(("%s: initial join %s on ifp 0x%llx(%s)\n",
2301 __func__, ip6_sprintf(&inm->in6m_addr),
2302 (uint64_t)VM_KERNEL_ADDRPERM(inm->in6m_ifp),
2303 if_name(inm->in6m_ifp)));
2304
2305 error = 0;
2306 syncstates = 1;
2307
2308 ifp = inm->in6m_ifp;
2309
2310 MLI_LOCK(mli);
2311 VERIFY(mli->mli_ifp == ifp);
2312
2313 /*
2314 * Avoid MLD if group is :
2315 * 1. Joined on loopback, OR
2316 * 2. On a link that is marked MLIF_SILENT
2317 * 3. rdar://problem/19227650 Is link local scoped and
2318 * on cellular interface
2319 * 4. Is a type that should not be reported (node local
2320 * or all node link local multicast.
2321 * All other groups enter the appropriate state machine
2322 * for the version in use on this link.
2323 */
2324 if ((ifp->if_flags & IFF_LOOPBACK) ||
2325 (mli->mli_flags & MLIF_SILENT) ||
2326 (IFNET_IS_CELLULAR(ifp) &&
2327 IN6_IS_ADDR_MC_LINKLOCAL(&inm->in6m_addr)) ||
2328 !mld_is_addr_reported(&inm->in6m_addr)) {
2329 MLD_PRINTF(("%s: not kicking state machine for silent group\n",
2330 __func__));
2331 inm->in6m_state = MLD_SILENT_MEMBER;
2332 inm->in6m_timer = 0;
2333 } else {
2334 /*
2335 * Deal with overlapping in6_multi lifecycle.
2336 * If this group was LEAVING, then make sure
2337 * we drop the reference we picked up to keep the
2338 * group around for the final INCLUDE {} enqueue.
2339 * Since we cannot call in6_multi_detach() here,
2340 * defer this task to the timer routine.
2341 */
2342 if (mli->mli_version == MLD_VERSION_2 &&
2343 inm->in6m_state == MLD_LEAVING_MEMBER) {
2344 VERIFY(inm->in6m_nrelecnt != 0);
2345 SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm,
2346 in6m_nrele);
2347 }
2348
2349 inm->in6m_state = MLD_REPORTING_MEMBER;
2350
2351 switch (mli->mli_version) {
2352 case MLD_VERSION_1:
2353 /*
2354 * If a delay was provided, only use it if
2355 * it is greater than the delay normally
2356 * used for an MLDv1 state change report,
2357 * and delay sending the initial MLDv1 report
2358 * by not transitioning to the IDLE state.
2359 */
2360 odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI);
2361 if (delay) {
2362 inm->in6m_timer = max(delay, odelay);
2363 mtp->cst = 1;
2364 } else {
2365 inm->in6m_state = MLD_IDLE_MEMBER;
2366 error = mld_v1_transmit_report(inm,
2367 MLD_LISTENER_REPORT);
2368
2369 IN6M_LOCK_ASSERT_HELD(inm);
2370 MLI_LOCK_ASSERT_HELD(mli);
2371
2372 if (error == 0) {
2373 inm->in6m_timer = odelay;
2374 mtp->cst = 1;
2375 }
2376 }
2377 break;
2378
2379 case MLD_VERSION_2:
2380 /*
2381 * Defer update of T0 to T1, until the first copy
2382 * of the state change has been transmitted.
2383 */
2384 syncstates = 0;
2385
2386 /*
2387 * Immediately enqueue a State-Change Report for
2388 * this interface, freeing any previous reports.
2389 * Don't kick the timers if there is nothing to do,
2390 * or if an error occurred.
2391 */
2392 ifq = &inm->in6m_scq;
2393 IF_DRAIN(ifq);
2394 retval = mld_v2_enqueue_group_record(ifq, inm, 1,
2395 0, 0, (mli->mli_flags & MLIF_USEALLOW));
2396 mtp->cst = (ifq->ifq_len > 0);
2397 MLD_PRINTF(("%s: enqueue record = %d\n",
2398 __func__, retval));
2399 if (retval <= 0) {
2400 error = retval * -1;
2401 break;
2402 }
2403
2404 /*
2405 * Schedule transmission of pending state-change
2406 * report up to RV times for this link. The timer
2407 * will fire at the next mld_timeout (1 second)),
2408 * giving us an opportunity to merge the reports.
2409 *
2410 * If a delay was provided to this function, only
2411 * use this delay if sooner than the existing one.
2412 */
2413 VERIFY(mli->mli_rv > 1);
2414 inm->in6m_scrv = mli->mli_rv;
2415 if (delay) {
2416 if (inm->in6m_sctimer > 1) {
2417 inm->in6m_sctimer =
2418 min(inm->in6m_sctimer, delay);
2419 } else
2420 inm->in6m_sctimer = delay;
2421 } else {
2422 inm->in6m_sctimer = 1;
2423 }
2424 mtp->sct = 1;
2425 error = 0;
2426 break;
2427 }
2428 }
2429 MLI_UNLOCK(mli);
2430
2431 /*
2432 * Only update the T0 state if state change is atomic,
2433 * i.e. we don't need to wait for a timer to fire before we
2434 * can consider the state change to have been communicated.
2435 */
2436 if (syncstates) {
2437 in6m_commit(inm);
2438 MLD_PRINTF(("%s: T1 -> T0 for %s/%s\n", __func__,
2439 ip6_sprintf(&inm->in6m_addr),
2440 if_name(inm->in6m_ifp)));
2441 }
2442
2443 return (error);
2444 }
2445
2446 /*
2447 * Issue an intermediate state change during the life-cycle.
2448 */
2449 static int
2450 mld_handle_state_change(struct in6_multi *inm, struct mld_ifinfo *mli,
2451 struct mld_tparams *mtp)
2452 {
2453 struct ifnet *ifp;
2454 int retval = 0;
2455
2456 IN6M_LOCK_ASSERT_HELD(inm);
2457 MLI_LOCK_ASSERT_NOTHELD(mli);
2458 VERIFY(mtp != NULL);
2459
2460 MLD_PRINTF(("%s: state change for %s on ifp 0x%llx(%s)\n",
2461 __func__, ip6_sprintf(&inm->in6m_addr),
2462 (uint64_t)VM_KERNEL_ADDRPERM(inm->in6m_ifp),
2463 if_name(inm->in6m_ifp)));
2464
2465 ifp = inm->in6m_ifp;
2466
2467 MLI_LOCK(mli);
2468 VERIFY(mli->mli_ifp == ifp);
2469
2470 if ((ifp->if_flags & IFF_LOOPBACK) ||
2471 (mli->mli_flags & MLIF_SILENT) ||
2472 !mld_is_addr_reported(&inm->in6m_addr) ||
2473 (mli->mli_version != MLD_VERSION_2)) {
2474 MLI_UNLOCK(mli);
2475 if (!mld_is_addr_reported(&inm->in6m_addr)) {
2476 MLD_PRINTF(("%s: not kicking state machine for silent "
2477 "group\n", __func__));
2478 }
2479 MLD_PRINTF(("%s: nothing to do\n", __func__));
2480 in6m_commit(inm);
2481 MLD_PRINTF(("%s: T1 -> T0 for %s/%s\n", __func__,
2482 ip6_sprintf(&inm->in6m_addr),
2483 if_name(inm->in6m_ifp)));
2484 goto done;
2485 }
2486
2487 IF_DRAIN(&inm->in6m_scq);
2488
2489 retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0,
2490 (mli->mli_flags & MLIF_USEALLOW));
2491 mtp->cst = (inm->in6m_scq.ifq_len > 0);
2492 MLD_PRINTF(("%s: enqueue record = %d\n", __func__, retval));
2493 if (retval <= 0) {
2494 MLI_UNLOCK(mli);
2495 retval *= -1;
2496 goto done;
2497 } else {
2498 retval = 0;
2499 }
2500
2501 /*
2502 * If record(s) were enqueued, start the state-change
2503 * report timer for this group.
2504 */
2505 inm->in6m_scrv = mli->mli_rv;
2506 inm->in6m_sctimer = 1;
2507 mtp->sct = 1;
2508 MLI_UNLOCK(mli);
2509
2510 done:
2511 return (retval);
2512 }
2513
2514 /*
2515 * Perform the final leave for a multicast address.
2516 *
2517 * When leaving a group:
2518 * MLDv1 sends a DONE message, if and only if we are the reporter.
2519 * MLDv2 enqueues a state-change report containing a transition
2520 * to INCLUDE {} for immediate transmission.
2521 */
2522 static void
2523 mld_final_leave(struct in6_multi *inm, struct mld_ifinfo *mli,
2524 struct mld_tparams *mtp)
2525 {
2526 int syncstates = 1;
2527
2528 IN6M_LOCK_ASSERT_HELD(inm);
2529 MLI_LOCK_ASSERT_NOTHELD(mli);
2530 VERIFY(mtp != NULL);
2531
2532 MLD_PRINTF(("%s: final leave %s on ifp 0x%llx(%s)\n",
2533 __func__, ip6_sprintf(&inm->in6m_addr),
2534 (uint64_t)VM_KERNEL_ADDRPERM(inm->in6m_ifp),
2535 if_name(inm->in6m_ifp)));
2536
2537 switch (inm->in6m_state) {
2538 case MLD_NOT_MEMBER:
2539 case MLD_SILENT_MEMBER:
2540 case MLD_LEAVING_MEMBER:
2541 /* Already leaving or left; do nothing. */
2542 MLD_PRINTF(("%s: not kicking state machine for silent group\n",
2543 __func__));
2544 break;
2545 case MLD_REPORTING_MEMBER:
2546 case MLD_IDLE_MEMBER:
2547 case MLD_G_QUERY_PENDING_MEMBER:
2548 case MLD_SG_QUERY_PENDING_MEMBER:
2549 MLI_LOCK(mli);
2550 if (mli->mli_version == MLD_VERSION_1) {
2551 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
2552 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) {
2553 panic("%s: MLDv2 state reached, not MLDv2 "
2554 "mode\n", __func__);
2555 /* NOTREACHED */
2556 }
2557 /* scheduler timer if enqueue is successful */
2558 mtp->cst = (mld_v1_transmit_report(inm,
2559 MLD_LISTENER_DONE) == 0);
2560
2561 IN6M_LOCK_ASSERT_HELD(inm);
2562 MLI_LOCK_ASSERT_HELD(mli);
2563
2564 inm->in6m_state = MLD_NOT_MEMBER;
2565 } else if (mli->mli_version == MLD_VERSION_2) {
2566 /*
2567 * Stop group timer and all pending reports.
2568 * Immediately enqueue a state-change report
2569 * TO_IN {} to be sent on the next timeout,
2570 * giving us an opportunity to merge reports.
2571 */
2572 IF_DRAIN(&inm->in6m_scq);
2573 inm->in6m_timer = 0;
2574 inm->in6m_scrv = mli->mli_rv;
2575 MLD_PRINTF(("%s: Leaving %s/%s with %d "
2576 "pending retransmissions.\n", __func__,
2577 ip6_sprintf(&inm->in6m_addr),
2578 if_name(inm->in6m_ifp),
2579 inm->in6m_scrv));
2580 if (inm->in6m_scrv == 0) {
2581 inm->in6m_state = MLD_NOT_MEMBER;
2582 inm->in6m_sctimer = 0;
2583 } else {
2584 int retval;
2585 /*
2586 * Stick around in the in6_multihead list;
2587 * the final detach will be issued by
2588 * mld_v2_process_group_timers() when
2589 * the retransmit timer expires.
2590 */
2591 IN6M_ADDREF_LOCKED(inm);
2592 VERIFY(inm->in6m_debug & IFD_ATTACHED);
2593 inm->in6m_reqcnt++;
2594 VERIFY(inm->in6m_reqcnt >= 1);
2595 inm->in6m_nrelecnt++;
2596 VERIFY(inm->in6m_nrelecnt != 0);
2597
2598 retval = mld_v2_enqueue_group_record(
2599 &inm->in6m_scq, inm, 1, 0, 0,
2600 (mli->mli_flags & MLIF_USEALLOW));
2601 mtp->cst = (inm->in6m_scq.ifq_len > 0);
2602 KASSERT(retval != 0,
2603 ("%s: enqueue record = %d\n", __func__,
2604 retval));
2605
2606 inm->in6m_state = MLD_LEAVING_MEMBER;
2607 inm->in6m_sctimer = 1;
2608 mtp->sct = 1;
2609 syncstates = 0;
2610 }
2611 }
2612 MLI_UNLOCK(mli);
2613 break;
2614 case MLD_LAZY_MEMBER:
2615 case MLD_SLEEPING_MEMBER:
2616 case MLD_AWAKENING_MEMBER:
2617 /* Our reports are suppressed; do nothing. */
2618 break;
2619 }
2620
2621 if (syncstates) {
2622 in6m_commit(inm);
2623 MLD_PRINTF(("%s: T1 -> T0 for %s/%s\n", __func__,
2624 ip6_sprintf(&inm->in6m_addr),
2625 if_name(inm->in6m_ifp)));
2626 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
2627 MLD_PRINTF(("%s: T1 now MCAST_UNDEFINED for 0x%llx/%s\n",
2628 __func__, (uint64_t)VM_KERNEL_ADDRPERM(&inm->in6m_addr),
2629 if_name(inm->in6m_ifp)));
2630 }
2631 }
2632
2633 /*
2634 * Enqueue an MLDv2 group record to the given output queue.
2635 *
2636 * If is_state_change is zero, a current-state record is appended.
2637 * If is_state_change is non-zero, a state-change report is appended.
2638 *
2639 * If is_group_query is non-zero, an mbuf packet chain is allocated.
2640 * If is_group_query is zero, and if there is a packet with free space
2641 * at the tail of the queue, it will be appended to providing there
2642 * is enough free space.
2643 * Otherwise a new mbuf packet chain is allocated.
2644 *
2645 * If is_source_query is non-zero, each source is checked to see if
2646 * it was recorded for a Group-Source query, and will be omitted if
2647 * it is not both in-mode and recorded.
2648 *
2649 * If use_block_allow is non-zero, state change reports for initial join
2650 * and final leave, on an inclusive mode group with a source list, will be
2651 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively.
2652 *
2653 * The function will attempt to allocate leading space in the packet
2654 * for the IPv6+ICMP headers to be prepended without fragmenting the chain.
2655 *
2656 * If successful the size of all data appended to the queue is returned,
2657 * otherwise an error code less than zero is returned, or zero if
2658 * no record(s) were appended.
2659 */
2660 static int
2661 mld_v2_enqueue_group_record(struct ifqueue *ifq, struct in6_multi *inm,
2662 const int is_state_change, const int is_group_query,
2663 const int is_source_query, const int use_block_allow)
2664 {
2665 struct mldv2_record mr;
2666 struct mldv2_record *pmr;
2667 struct ifnet *ifp;
2668 struct ip6_msource *ims, *nims;
2669 struct mbuf *m0, *m, *md;
2670 int error, is_filter_list_change;
2671 int minrec0len, m0srcs, msrcs, nbytes, off;
2672 int record_has_sources;
2673 int now;
2674 int type;
2675 uint8_t mode;
2676
2677 IN6M_LOCK_ASSERT_HELD(inm);
2678 MLI_LOCK_ASSERT_HELD(inm->in6m_mli);
2679
2680 error = 0;
2681 ifp = inm->in6m_ifp;
2682 is_filter_list_change = 0;
2683 m = NULL;
2684 m0 = NULL;
2685 m0srcs = 0;
2686 msrcs = 0;
2687 nbytes = 0;
2688 nims = NULL;
2689 record_has_sources = 1;
2690 pmr = NULL;
2691 type = MLD_DO_NOTHING;
2692 mode = inm->in6m_st[1].iss_fmode;
2693
2694 /*
2695 * If we did not transition out of ASM mode during t0->t1,
2696 * and there are no source nodes to process, we can skip
2697 * the generation of source records.
2698 */
2699 if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 &&
2700 inm->in6m_nsrc == 0)
2701 record_has_sources = 0;
2702
2703 if (is_state_change) {
2704 /*
2705 * Queue a state change record.
2706 * If the mode did not change, and there are non-ASM
2707 * listeners or source filters present,
2708 * we potentially need to issue two records for the group.
2709 * If there are ASM listeners, and there was no filter
2710 * mode transition of any kind, do nothing.
2711 *
2712 * If we are transitioning to MCAST_UNDEFINED, we need
2713 * not send any sources. A transition to/from this state is
2714 * considered inclusive with some special treatment.
2715 *
2716 * If we are rewriting initial joins/leaves to use
2717 * ALLOW/BLOCK, and the group's membership is inclusive,
2718 * we need to send sources in all cases.
2719 */
2720 if (mode != inm->in6m_st[0].iss_fmode) {
2721 if (mode == MCAST_EXCLUDE) {
2722 MLD_PRINTF(("%s: change to EXCLUDE\n",
2723 __func__));
2724 type = MLD_CHANGE_TO_EXCLUDE_MODE;
2725 } else {
2726 MLD_PRINTF(("%s: change to INCLUDE\n",
2727 __func__));
2728 if (use_block_allow) {
2729 /*
2730 * XXX
2731 * Here we're interested in state
2732 * edges either direction between
2733 * MCAST_UNDEFINED and MCAST_INCLUDE.
2734 * Perhaps we should just check
2735 * the group state, rather than
2736 * the filter mode.
2737 */
2738 if (mode == MCAST_UNDEFINED) {
2739 type = MLD_BLOCK_OLD_SOURCES;
2740 } else {
2741 type = MLD_ALLOW_NEW_SOURCES;
2742 }
2743 } else {
2744 type = MLD_CHANGE_TO_INCLUDE_MODE;
2745 if (mode == MCAST_UNDEFINED)
2746 record_has_sources = 0;
2747 }
2748 }
2749 } else {
2750 if (record_has_sources) {
2751 is_filter_list_change = 1;
2752 } else {
2753 type = MLD_DO_NOTHING;
2754 }
2755 }
2756 } else {
2757 /*
2758 * Queue a current state record.
2759 */
2760 if (mode == MCAST_EXCLUDE) {
2761 type = MLD_MODE_IS_EXCLUDE;
2762 } else if (mode == MCAST_INCLUDE) {
2763 type = MLD_MODE_IS_INCLUDE;
2764 VERIFY(inm->in6m_st[1].iss_asm == 0);
2765 }
2766 }
2767
2768 /*
2769 * Generate the filter list changes using a separate function.
2770 */
2771 if (is_filter_list_change)
2772 return (mld_v2_enqueue_filter_change(ifq, inm));
2773
2774 if (type == MLD_DO_NOTHING) {
2775 MLD_PRINTF(("%s: nothing to do for %s/%s\n",
2776 __func__, ip6_sprintf(&inm->in6m_addr),
2777 if_name(inm->in6m_ifp)));
2778 return (0);
2779 }
2780
2781 /*
2782 * If any sources are present, we must be able to fit at least
2783 * one in the trailing space of the tail packet's mbuf,
2784 * ideally more.
2785 */
2786 minrec0len = sizeof(struct mldv2_record);
2787 if (record_has_sources)
2788 minrec0len += sizeof(struct in6_addr);
2789 MLD_PRINTF(("%s: queueing %s for %s/%s\n", __func__,
2790 mld_rec_type_to_str(type),
2791 ip6_sprintf(&inm->in6m_addr),
2792 if_name(inm->in6m_ifp)));
2793
2794 /*
2795 * Check if we have a packet in the tail of the queue for this
2796 * group into which the first group record for this group will fit.
2797 * Otherwise allocate a new packet.
2798 * Always allocate leading space for IP6+RA+ICMPV6+REPORT.
2799 * Note: Group records for G/GSR query responses MUST be sent
2800 * in their own packet.
2801 */
2802 m0 = ifq->ifq_tail;
2803 if (!is_group_query &&
2804 m0 != NULL &&
2805 (m0->m_pkthdr.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) &&
2806 (m0->m_pkthdr.len + minrec0len) <
2807 (ifp->if_mtu - MLD_MTUSPACE)) {
2808 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
2809 sizeof(struct mldv2_record)) /
2810 sizeof(struct in6_addr);
2811 m = m0;
2812 MLD_PRINTF(("%s: use existing packet\n", __func__));
2813 } else {
2814 if (IF_QFULL(ifq)) {
2815 MLD_PRINTF(("%s: outbound queue full\n", __func__));
2816 return (-ENOMEM);
2817 }
2818 m = NULL;
2819 m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2820 sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
2821 if (!is_state_change && !is_group_query)
2822 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2823 if (m == NULL)
2824 m = m_gethdr(M_DONTWAIT, MT_DATA);
2825 if (m == NULL)
2826 return (-ENOMEM);
2827
2828 mld_save_context(m, ifp);
2829
2830 MLD_PRINTF(("%s: allocated first packet\n", __func__));
2831 }
2832
2833 /*
2834 * Append group record.
2835 * If we have sources, we don't know how many yet.
2836 */
2837 mr.mr_type = type;
2838 mr.mr_datalen = 0;
2839 mr.mr_numsrc = 0;
2840 mr.mr_addr = inm->in6m_addr;
2841 in6_clearscope(&mr.mr_addr);
2842 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
2843 if (m != m0)
2844 m_freem(m);
2845 MLD_PRINTF(("%s: m_append() failed.\n", __func__));
2846 return (-ENOMEM);
2847 }
2848 nbytes += sizeof(struct mldv2_record);
2849
2850 /*
2851 * Append as many sources as will fit in the first packet.
2852 * If we are appending to a new packet, the chain allocation
2853 * may potentially use clusters; use m_getptr() in this case.
2854 * If we are appending to an existing packet, we need to obtain
2855 * a pointer to the group record after m_append(), in case a new
2856 * mbuf was allocated.
2857 *
2858 * Only append sources which are in-mode at t1. If we are
2859 * transitioning to MCAST_UNDEFINED state on the group, and
2860 * use_block_allow is zero, do not include source entries.
2861 * Otherwise, we need to include this source in the report.
2862 *
2863 * Only report recorded sources in our filter set when responding
2864 * to a group-source query.
2865 */
2866 if (record_has_sources) {
2867 if (m == m0) {
2868 md = m_last(m);
2869 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
2870 md->m_len - nbytes);
2871 } else {
2872 md = m_getptr(m, 0, &off);
2873 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
2874 off);
2875 }
2876 msrcs = 0;
2877 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs,
2878 nims) {
2879 MLD_PRINTF(("%s: visit node %s\n", __func__,
2880 ip6_sprintf(&ims->im6s_addr)));
2881 now = im6s_get_mode(inm, ims, 1);
2882 MLD_PRINTF(("%s: node is %d\n", __func__, now));
2883 if ((now != mode) ||
2884 (now == mode &&
2885 (!use_block_allow && mode == MCAST_UNDEFINED))) {
2886 MLD_PRINTF(("%s: skip node\n", __func__));
2887 continue;
2888 }
2889 if (is_source_query && ims->im6s_stp == 0) {
2890 MLD_PRINTF(("%s: skip unrecorded node\n",
2891 __func__));
2892 continue;
2893 }
2894 MLD_PRINTF(("%s: append node\n", __func__));
2895 if (!m_append(m, sizeof(struct in6_addr),
2896 (void *)&ims->im6s_addr)) {
2897 if (m != m0)
2898 m_freem(m);
2899 MLD_PRINTF(("%s: m_append() failed.\n",
2900 __func__));
2901 return (-ENOMEM);
2902 }
2903 nbytes += sizeof(struct in6_addr);
2904 ++msrcs;
2905 if (msrcs == m0srcs)
2906 break;
2907 }
2908 MLD_PRINTF(("%s: msrcs is %d this packet\n", __func__,
2909 msrcs));
2910 pmr->mr_numsrc = htons(msrcs);
2911 nbytes += (msrcs * sizeof(struct in6_addr));
2912 }
2913
2914 if (is_source_query && msrcs == 0) {
2915 MLD_PRINTF(("%s: no recorded sources to report\n", __func__));
2916 if (m != m0)
2917 m_freem(m);
2918 return (0);
2919 }
2920
2921 /*
2922 * We are good to go with first packet.
2923 */
2924 if (m != m0) {
2925 MLD_PRINTF(("%s: enqueueing first packet\n", __func__));
2926 m->m_pkthdr.vt_nrecs = 1;
2927 IF_ENQUEUE(ifq, m);
2928 } else {
2929 m->m_pkthdr.vt_nrecs++;
2930 }
2931 /*
2932 * No further work needed if no source list in packet(s).
2933 */
2934 if (!record_has_sources)
2935 return (nbytes);
2936
2937 /*
2938 * Whilst sources remain to be announced, we need to allocate
2939 * a new packet and fill out as many sources as will fit.
2940 * Always try for a cluster first.
2941 */
2942 while (nims != NULL) {
2943 if (IF_QFULL(ifq)) {
2944 MLD_PRINTF(("%s: outbound queue full\n", __func__));
2945 return (-ENOMEM);
2946 }
2947 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2948 if (m == NULL)
2949 m = m_gethdr(M_DONTWAIT, MT_DATA);
2950 if (m == NULL)
2951 return (-ENOMEM);
2952 mld_save_context(m, ifp);
2953 md = m_getptr(m, 0, &off);
2954 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off);
2955 MLD_PRINTF(("%s: allocated next packet\n", __func__));
2956
2957 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
2958 if (m != m0)
2959 m_freem(m);
2960 MLD_PRINTF(("%s: m_append() failed.\n", __func__));
2961 return (-ENOMEM);
2962 }
2963 m->m_pkthdr.vt_nrecs = 1;
2964 nbytes += sizeof(struct mldv2_record);
2965
2966 m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2967 sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
2968
2969 msrcs = 0;
2970 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
2971 MLD_PRINTF(("%s: visit node %s\n",
2972 __func__, ip6_sprintf(&ims->im6s_addr)));
2973 now = im6s_get_mode(inm, ims, 1);
2974 if ((now != mode) ||
2975 (now == mode &&
2976 (!use_block_allow && mode == MCAST_UNDEFINED))) {
2977 MLD_PRINTF(("%s: skip node\n", __func__));
2978 continue;
2979 }
2980 if (is_source_query && ims->im6s_stp == 0) {
2981 MLD_PRINTF(("%s: skip unrecorded node\n",
2982 __func__));
2983 continue;
2984 }
2985 MLD_PRINTF(("%s: append node\n", __func__));
2986 if (!m_append(m, sizeof(struct in6_addr),
2987 (void *)&ims->im6s_addr)) {
2988 if (m != m0)
2989 m_freem(m);
2990 MLD_PRINTF(("%s: m_append() failed.\n",
2991 __func__));
2992 return (-ENOMEM);
2993 }
2994 ++msrcs;
2995 if (msrcs == m0srcs)
2996 break;
2997 }
2998 pmr->mr_numsrc = htons(msrcs);
2999 nbytes += (msrcs * sizeof(struct in6_addr));
3000
3001 MLD_PRINTF(("%s: enqueueing next packet\n", __func__));
3002 IF_ENQUEUE(ifq, m);
3003 }
3004
3005 return (nbytes);
3006 }
3007
3008 /*
3009 * Type used to mark record pass completion.
3010 * We exploit the fact we can cast to this easily from the
3011 * current filter modes on each ip_msource node.
3012 */
3013 typedef enum {
3014 REC_NONE = 0x00, /* MCAST_UNDEFINED */
3015 REC_ALLOW = 0x01, /* MCAST_INCLUDE */
3016 REC_BLOCK = 0x02, /* MCAST_EXCLUDE */
3017 REC_FULL = REC_ALLOW | REC_BLOCK
3018 } rectype_t;
3019
3020 /*
3021 * Enqueue an MLDv2 filter list change to the given output queue.
3022 *
3023 * Source list filter state is held in an RB-tree. When the filter list
3024 * for a group is changed without changing its mode, we need to compute
3025 * the deltas between T0 and T1 for each source in the filter set,
3026 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records.
3027 *
3028 * As we may potentially queue two record types, and the entire R-B tree
3029 * needs to be walked at once, we break this out into its own function
3030 * so we can generate a tightly packed queue of packets.
3031 *
3032 * XXX This could be written to only use one tree walk, although that makes
3033 * serializing into the mbuf chains a bit harder. For now we do two walks
3034 * which makes things easier on us, and it may or may not be harder on
3035 * the L2 cache.
3036 *
3037 * If successful the size of all data appended to the queue is returned,
3038 * otherwise an error code less than zero is returned, or zero if
3039 * no record(s) were appended.
3040 */
3041 static int
3042 mld_v2_enqueue_filter_change(struct ifqueue *ifq, struct in6_multi *inm)
3043 {
3044 static const int MINRECLEN =
3045 sizeof(struct mldv2_record) + sizeof(struct in6_addr);
3046 struct ifnet *ifp;
3047 struct mldv2_record mr;
3048 struct mldv2_record *pmr;
3049 struct ip6_msource *ims, *nims;
3050 struct mbuf *m, *m0, *md;
3051 int m0srcs, nbytes, npbytes, off, rsrcs, schanged;
3052 int nallow, nblock;
3053 uint8_t mode, now, then;
3054 rectype_t crt, drt, nrt;
3055
3056 IN6M_LOCK_ASSERT_HELD(inm);
3057
3058 if (inm->in6m_nsrc == 0 ||
3059 (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0))
3060 return (0);
3061
3062 ifp = inm->in6m_ifp; /* interface */
3063 mode = inm->in6m_st[1].iss_fmode; /* filter mode at t1 */
3064 crt = REC_NONE; /* current group record type */
3065 drt = REC_NONE; /* mask of completed group record types */
3066 nrt = REC_NONE; /* record type for current node */
3067 m0srcs = 0; /* # source which will fit in current mbuf chain */
3068 npbytes = 0; /* # of bytes appended this packet */
3069 nbytes = 0; /* # of bytes appended to group's state-change queue */
3070 rsrcs = 0; /* # sources encoded in current record */
3071 schanged = 0; /* # nodes encoded in overall filter change */
3072 nallow = 0; /* # of source entries in ALLOW_NEW */
3073 nblock = 0; /* # of source entries in BLOCK_OLD */
3074 nims = NULL; /* next tree node pointer */
3075
3076 /*
3077 * For each possible filter record mode.
3078 * The first kind of source we encounter tells us which
3079 * is the first kind of record we start appending.
3080 * If a node transitioned to UNDEFINED at t1, its mode is treated
3081 * as the inverse of the group's filter mode.
3082 */
3083 while (drt != REC_FULL) {
3084 do {
3085 m0 = ifq->ifq_tail;
3086 if (m0 != NULL &&
3087 (m0->m_pkthdr.vt_nrecs + 1 <=
3088 MLD_V2_REPORT_MAXRECS) &&
3089 (m0->m_pkthdr.len + MINRECLEN) <
3090 (ifp->if_mtu - MLD_MTUSPACE)) {
3091 m = m0;
3092 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
3093 sizeof(struct mldv2_record)) /
3094 sizeof(struct in6_addr);
3095 MLD_PRINTF(("%s: use previous packet\n",
3096 __func__));
3097 } else {
3098 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3099 if (m == NULL)
3100 m = m_gethdr(M_DONTWAIT, MT_DATA);
3101 if (m == NULL) {
3102 MLD_PRINTF(("%s: m_get*() failed\n",
3103 __func__));
3104 return (-ENOMEM);
3105 }
3106 m->m_pkthdr.vt_nrecs = 0;
3107 mld_save_context(m, ifp);
3108 m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
3109 sizeof(struct mldv2_record)) /
3110 sizeof(struct in6_addr);
3111 npbytes = 0;
3112 MLD_PRINTF(("%s: allocated new packet\n",
3113 __func__));
3114 }
3115 /*
3116 * Append the MLD group record header to the
3117 * current packet's data area.
3118 * Recalculate pointer to free space for next
3119 * group record, in case m_append() allocated
3120 * a new mbuf or cluster.
3121 */
3122 memset(&mr, 0, sizeof(mr));
3123 mr.mr_addr = inm->in6m_addr;
3124 in6_clearscope(&mr.mr_addr);
3125 if (!m_append(m, sizeof(mr), (void *)&mr)) {
3126 if (m != m0)
3127 m_freem(m);
3128 MLD_PRINTF(("%s: m_append() failed\n",
3129 __func__));
3130 return (-ENOMEM);
3131 }
3132 npbytes += sizeof(struct mldv2_record);
3133 if (m != m0) {
3134 /* new packet; offset in chain */
3135 md = m_getptr(m, npbytes -
3136 sizeof(struct mldv2_record), &off);
3137 pmr = (struct mldv2_record *)(mtod(md,
3138 uint8_t *) + off);
3139 } else {
3140 /* current packet; offset from last append */
3141 md = m_last(m);
3142 pmr = (struct mldv2_record *)(mtod(md,
3143 uint8_t *) + md->m_len -
3144 sizeof(struct mldv2_record));
3145 }
3146 /*
3147 * Begin walking the tree for this record type
3148 * pass, or continue from where we left off
3149 * previously if we had to allocate a new packet.
3150 * Only report deltas in-mode at t1.
3151 * We need not report included sources as allowed
3152 * if we are in inclusive mode on the group,
3153 * however the converse is not true.
3154 */
3155 rsrcs = 0;
3156 if (nims == NULL) {
3157 nims = RB_MIN(ip6_msource_tree,
3158 &inm->in6m_srcs);
3159 }
3160 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
3161 MLD_PRINTF(("%s: visit node %s\n", __func__,
3162 ip6_sprintf(&ims->im6s_addr)));
3163 now = im6s_get_mode(inm, ims, 1);
3164 then = im6s_get_mode(inm, ims, 0);
3165 MLD_PRINTF(("%s: mode: t0 %d, t1 %d\n",
3166 __func__, then, now));
3167 if (now == then) {
3168 MLD_PRINTF(("%s: skip unchanged\n",
3169 __func__));
3170 continue;
3171 }
3172 if (mode == MCAST_EXCLUDE &&
3173 now == MCAST_INCLUDE) {
3174 MLD_PRINTF(("%s: skip IN src on EX "
3175 "group\n", __func__));
3176 continue;
3177 }
3178 nrt = (rectype_t)now;
3179 if (nrt == REC_NONE)
3180 nrt = (rectype_t)(~mode & REC_FULL);
3181 if (schanged++ == 0) {
3182 crt = nrt;
3183 } else if (crt != nrt)
3184 continue;
3185 if (!m_append(m, sizeof(struct in6_addr),
3186 (void *)&ims->im6s_addr)) {
3187 if (m != m0)
3188 m_freem(m);
3189 MLD_PRINTF(("%s: m_append() failed\n",
3190 __func__));
3191 return (-ENOMEM);
3192 }
3193 nallow += !!(crt == REC_ALLOW);
3194 nblock += !!(crt == REC_BLOCK);
3195 if (++rsrcs == m0srcs)
3196 break;
3197 }
3198 /*
3199 * If we did not append any tree nodes on this
3200 * pass, back out of allocations.
3201 */
3202 if (rsrcs == 0) {
3203 npbytes -= sizeof(struct mldv2_record);
3204 if (m != m0) {
3205 MLD_PRINTF(("%s: m_free(m)\n",
3206 __func__));
3207 m_freem(m);
3208 } else {
3209 MLD_PRINTF(("%s: m_adj(m, -mr)\n",
3210 __func__));
3211 m_adj(m, -((int)sizeof(
3212 struct mldv2_record)));
3213 }
3214 continue;
3215 }
3216 npbytes += (rsrcs * sizeof(struct in6_addr));
3217 if (crt == REC_ALLOW)
3218 pmr->mr_type = MLD_ALLOW_NEW_SOURCES;
3219 else if (crt == REC_BLOCK)
3220 pmr->mr_type = MLD_BLOCK_OLD_SOURCES;
3221 pmr->mr_numsrc = htons(rsrcs);
3222 /*
3223 * Count the new group record, and enqueue this
3224 * packet if it wasn't already queued.
3225 */
3226 m->m_pkthdr.vt_nrecs++;
3227 if (m != m0)
3228 IF_ENQUEUE(ifq, m);
3229 nbytes += npbytes;
3230 } while (nims != NULL);
3231 drt |= crt;
3232 crt = (~crt & REC_FULL);
3233 }
3234
3235 MLD_PRINTF(("%s: queued %d ALLOW_NEW, %d BLOCK_OLD\n", __func__,
3236 nallow, nblock));
3237
3238 return (nbytes);
3239 }
3240
3241 static int
3242 mld_v2_merge_state_changes(struct in6_multi *inm, struct ifqueue *ifscq)
3243 {
3244 struct ifqueue *gq;
3245 struct mbuf *m; /* pending state-change */
3246 struct mbuf *m0; /* copy of pending state-change */
3247 struct mbuf *mt; /* last state-change in packet */
3248 struct mbuf *n;
3249 int docopy, domerge;
3250 u_int recslen;
3251
3252 IN6M_LOCK_ASSERT_HELD(inm);
3253
3254 docopy = 0;
3255 domerge = 0;
3256 recslen = 0;
3257
3258 /*
3259 * If there are further pending retransmissions, make a writable
3260 * copy of each queued state-change message before merging.
3261 */
3262 if (inm->in6m_scrv > 0)
3263 docopy = 1;
3264
3265 gq = &inm->in6m_scq;
3266 #ifdef MLD_DEBUG
3267 if (gq->ifq_head == NULL) {
3268 MLD_PRINTF(("%s: WARNING: queue for inm 0x%llx is empty\n",
3269 __func__, (uint64_t)VM_KERNEL_ADDRPERM(inm)));
3270 }
3271 #endif
3272
3273 /*
3274 * Use IF_REMQUEUE() instead of IF_DEQUEUE() below, since the
3275 * packet might not always be at the head of the ifqueue.
3276 */
3277 m = gq->ifq_head;
3278 while (m != NULL) {
3279 /*
3280 * Only merge the report into the current packet if
3281 * there is sufficient space to do so; an MLDv2 report
3282 * packet may only contain 65,535 group records.
3283 * Always use a simple mbuf chain concatentation to do this,
3284 * as large state changes for single groups may have
3285 * allocated clusters.
3286 */
3287 domerge = 0;
3288 mt = ifscq->ifq_tail;
3289 if (mt != NULL) {
3290 recslen = m_length(m);
3291
3292 if ((mt->m_pkthdr.vt_nrecs +
3293 m->m_pkthdr.vt_nrecs <=
3294 MLD_V2_REPORT_MAXRECS) &&
3295 (mt->m_pkthdr.len + recslen <=
3296 (inm->in6m_ifp->if_mtu - MLD_MTUSPACE)))
3297 domerge = 1;
3298 }
3299
3300 if (!domerge && IF_QFULL(gq)) {
3301 MLD_PRINTF(("%s: outbound queue full, skipping whole "
3302 "packet 0x%llx\n", __func__,
3303 (uint64_t)VM_KERNEL_ADDRPERM(m)));
3304 n = m->m_nextpkt;
3305 if (!docopy) {
3306 IF_REMQUEUE(gq, m);
3307 m_freem(m);
3308 }
3309 m = n;
3310 continue;
3311 }
3312
3313 if (!docopy) {
3314 MLD_PRINTF(("%s: dequeueing 0x%llx\n", __func__,
3315 (uint64_t)VM_KERNEL_ADDRPERM(m)));
3316 n = m->m_nextpkt;
3317 IF_REMQUEUE(gq, m);
3318 m0 = m;
3319 m = n;
3320 } else {
3321 MLD_PRINTF(("%s: copying 0x%llx\n", __func__,
3322 (uint64_t)VM_KERNEL_ADDRPERM(m)));
3323 m0 = m_dup(m, M_NOWAIT);
3324 if (m0 == NULL)
3325 return (ENOMEM);
3326 m0->m_nextpkt = NULL;
3327 m = m->m_nextpkt;
3328 }
3329
3330 if (!domerge) {
3331 MLD_PRINTF(("%s: queueing 0x%llx to ifscq 0x%llx)\n",
3332 __func__, (uint64_t)VM_KERNEL_ADDRPERM(m0),
3333 (uint64_t)VM_KERNEL_ADDRPERM(ifscq)));
3334 IF_ENQUEUE(ifscq, m0);
3335 } else {
3336 struct mbuf *mtl; /* last mbuf of packet mt */
3337
3338 MLD_PRINTF(("%s: merging 0x%llx with ifscq tail "
3339 "0x%llx)\n", __func__,
3340 (uint64_t)VM_KERNEL_ADDRPERM(m0),
3341 (uint64_t)VM_KERNEL_ADDRPERM(mt)));
3342
3343 mtl = m_last(mt);
3344 m0->m_flags &= ~M_PKTHDR;
3345 mt->m_pkthdr.len += recslen;
3346 mt->m_pkthdr.vt_nrecs +=
3347 m0->m_pkthdr.vt_nrecs;
3348
3349 mtl->m_next = m0;
3350 }
3351 }
3352
3353 return (0);
3354 }
3355
3356 /*
3357 * Respond to a pending MLDv2 General Query.
3358 */
3359 static uint32_t
3360 mld_v2_dispatch_general_query(struct mld_ifinfo *mli)
3361 {
3362 struct ifnet *ifp;
3363 struct in6_multi *inm;
3364 struct in6_multistep step;
3365 int retval;
3366
3367 MLI_LOCK_ASSERT_HELD(mli);
3368
3369 VERIFY(mli->mli_version == MLD_VERSION_2);
3370
3371 ifp = mli->mli_ifp;
3372 MLI_UNLOCK(mli);
3373
3374 in6_multihead_lock_shared();
3375 IN6_FIRST_MULTI(step, inm);
3376 while (inm != NULL) {
3377 IN6M_LOCK(inm);
3378 if (inm->in6m_ifp != ifp)
3379 goto next;
3380
3381 switch (inm->in6m_state) {
3382 case MLD_NOT_MEMBER:
3383 case MLD_SILENT_MEMBER:
3384 break;
3385 case MLD_REPORTING_MEMBER:
3386 case MLD_IDLE_MEMBER:
3387 case MLD_LAZY_MEMBER:
3388 case MLD_SLEEPING_MEMBER:
3389 case MLD_AWAKENING_MEMBER:
3390 inm->in6m_state = MLD_REPORTING_MEMBER;
3391 MLI_LOCK(mli);
3392 retval = mld_v2_enqueue_group_record(&mli->mli_gq,
3393 inm, 0, 0, 0, 0);
3394 MLI_UNLOCK(mli);
3395 MLD_PRINTF(("%s: enqueue record = %d\n",
3396 __func__, retval));
3397 break;
3398 case MLD_G_QUERY_PENDING_MEMBER:
3399 case MLD_SG_QUERY_PENDING_MEMBER:
3400 case MLD_LEAVING_MEMBER:
3401 break;
3402 }
3403 next:
3404 IN6M_UNLOCK(inm);
3405 IN6_NEXT_MULTI(step, inm);
3406 }
3407 in6_multihead_lock_done();
3408
3409 MLI_LOCK(mli);
3410 mld_dispatch_queue(mli, &mli->mli_gq, MLD_MAX_RESPONSE_BURST);
3411 MLI_LOCK_ASSERT_HELD(mli);
3412
3413 /*
3414 * Slew transmission of bursts over 1 second intervals.
3415 */
3416 if (mli->mli_gq.ifq_head != NULL) {
3417 mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY(
3418 MLD_RESPONSE_BURST_INTERVAL);
3419 }
3420
3421 return (mli->mli_v2_timer);
3422 }
3423
3424 /*
3425 * Transmit the next pending message in the output queue.
3426 *
3427 * Must not be called with in6m_lockm or mli_lock held.
3428 */
3429 static void
3430 mld_dispatch_packet(struct mbuf *m)
3431 {
3432 struct ip6_moptions *im6o;
3433 struct ifnet *ifp;
3434 struct ifnet *oifp = NULL;
3435 struct mbuf *m0;
3436 struct mbuf *md;
3437 struct ip6_hdr *ip6;
3438 struct mld_hdr *mld;
3439 int error;
3440 int off;
3441 int type;
3442
3443 MLD_PRINTF(("%s: transmit 0x%llx\n", __func__,
3444 (uint64_t)VM_KERNEL_ADDRPERM(m)));
3445
3446 /*
3447 * Check if the ifnet is still attached.
3448 */
3449 ifp = mld_restore_context(m);
3450 if (ifp == NULL || !ifnet_is_attached(ifp, 0)) {
3451 MLD_PRINTF(("%s: dropped 0x%llx as ifindex %u went away.\n",
3452 __func__, (uint64_t)VM_KERNEL_ADDRPERM(m),
3453 (u_int)if_index));
3454 m_freem(m);
3455 ip6stat.ip6s_noroute++;
3456 return;
3457 }
3458
3459 im6o = ip6_allocmoptions(M_WAITOK);
3460 if (im6o == NULL) {
3461 m_freem(m);
3462 return;
3463 }
3464
3465 im6o->im6o_multicast_hlim = 1;
3466 im6o->im6o_multicast_loop = 0;
3467 im6o->im6o_multicast_ifp = ifp;
3468
3469 if (m->m_flags & M_MLDV1) {
3470 m0 = m;
3471 } else {
3472 m0 = mld_v2_encap_report(ifp, m);
3473 if (m0 == NULL) {
3474 MLD_PRINTF(("%s: dropped 0x%llx\n", __func__,
3475 (uint64_t)VM_KERNEL_ADDRPERM(m)));
3476 /*
3477 * mld_v2_encap_report() has already freed our mbuf.
3478 */
3479 IM6O_REMREF(im6o);
3480 ip6stat.ip6s_odropped++;
3481 return;
3482 }
3483 }
3484
3485 mld_scrub_context(m0);
3486 m->m_flags &= ~(M_PROTOFLAGS);
3487 m0->m_pkthdr.rcvif = lo_ifp;
3488
3489 ip6 = mtod(m0, struct ip6_hdr *);
3490 (void) in6_setscope(&ip6->ip6_dst, ifp, NULL);
3491
3492 /*
3493 * Retrieve the ICMPv6 type before handoff to ip6_output(),
3494 * so we can bump the stats.
3495 */
3496 md = m_getptr(m0, sizeof(struct ip6_hdr), &off);
3497 mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off);
3498 type = mld->mld_type;
3499
3500 if (ifp->if_eflags & IFEF_TXSTART) {
3501 /*
3502 * Use control service class if the outgoing
3503 * interface supports transmit-start model.
3504 */
3505 (void) m_set_service_class(m0, MBUF_SC_CTL);
3506 }
3507
3508 error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, im6o,
3509 &oifp, NULL);
3510
3511 IM6O_REMREF(im6o);
3512
3513 if (error) {
3514 MLD_PRINTF(("%s: ip6_output(0x%llx) = %d\n", __func__,
3515 (uint64_t)VM_KERNEL_ADDRPERM(m0), error));
3516 if (oifp != NULL)
3517 ifnet_release(oifp);
3518 return;
3519 }
3520
3521 icmp6stat.icp6s_outhist[type]++;
3522 if (oifp != NULL) {
3523 icmp6_ifstat_inc(oifp, ifs6_out_msg);
3524 switch (type) {
3525 case MLD_LISTENER_REPORT:
3526 case MLDV2_LISTENER_REPORT:
3527 icmp6_ifstat_inc(oifp, ifs6_out_mldreport);
3528 break;
3529 case MLD_LISTENER_DONE:
3530 icmp6_ifstat_inc(oifp, ifs6_out_mlddone);
3531 break;
3532 }
3533 ifnet_release(oifp);
3534 }
3535 }
3536
3537 /*
3538 * Encapsulate an MLDv2 report.
3539 *
3540 * KAME IPv6 requires that hop-by-hop options be passed separately,
3541 * and that the IPv6 header be prepended in a separate mbuf.
3542 *
3543 * Returns a pointer to the new mbuf chain head, or NULL if the
3544 * allocation failed.
3545 */
3546 static struct mbuf *
3547 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m)
3548 {
3549 struct mbuf *mh;
3550 struct mldv2_report *mld;
3551 struct ip6_hdr *ip6;
3552 struct in6_ifaddr *ia;
3553 int mldreclen;
3554
3555 VERIFY(m->m_flags & M_PKTHDR);
3556
3557 /*
3558 * RFC3590: OK to send as :: or tentative during DAD.
3559 */
3560 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
3561 if (ia == NULL)
3562 MLD_PRINTF(("%s: warning: ia is NULL\n", __func__));
3563
3564 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3565 if (mh == NULL) {
3566 if (ia != NULL)
3567 IFA_REMREF(&ia->ia_ifa);
3568 m_freem(m);
3569 return (NULL);
3570 }
3571 MH_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report));
3572
3573 mldreclen = m_length(m);
3574 MLD_PRINTF(("%s: mldreclen is %d\n", __func__, mldreclen));
3575
3576 mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report);
3577 mh->m_pkthdr.len = sizeof(struct ip6_hdr) +
3578 sizeof(struct mldv2_report) + mldreclen;
3579
3580 ip6 = mtod(mh, struct ip6_hdr *);
3581 ip6->ip6_flow = 0;
3582 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3583 ip6->ip6_vfc |= IPV6_VERSION;
3584 ip6->ip6_nxt = IPPROTO_ICMPV6;
3585 if (ia != NULL)
3586 IFA_LOCK(&ia->ia_ifa);
3587 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
3588 if (ia != NULL) {
3589 IFA_UNLOCK(&ia->ia_ifa);
3590 IFA_REMREF(&ia->ia_ifa);
3591 ia = NULL;
3592 }
3593 ip6->ip6_dst = in6addr_linklocal_allv2routers;
3594 /* scope ID will be set in netisr */
3595
3596 mld = (struct mldv2_report *)(ip6 + 1);
3597 mld->mld_type = MLDV2_LISTENER_REPORT;
3598 mld->mld_code = 0;
3599 mld->mld_cksum = 0;
3600 mld->mld_v2_reserved = 0;
3601 mld->mld_v2_numrecs = htons(m->m_pkthdr.vt_nrecs);
3602 m->m_pkthdr.vt_nrecs = 0;
3603 m->m_flags &= ~M_PKTHDR;
3604
3605 mh->m_next = m;
3606 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
3607 sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen);
3608 return (mh);
3609 }
3610
3611 #ifdef MLD_DEBUG
3612 static const char *
3613 mld_rec_type_to_str(const int type)
3614 {
3615 switch (type) {
3616 case MLD_CHANGE_TO_EXCLUDE_MODE:
3617 return "TO_EX";
3618 case MLD_CHANGE_TO_INCLUDE_MODE:
3619 return "TO_IN";
3620 case MLD_MODE_IS_EXCLUDE:
3621 return "MODE_EX";
3622 case MLD_MODE_IS_INCLUDE:
3623 return "MODE_IN";
3624 case MLD_ALLOW_NEW_SOURCES:
3625 return "ALLOW_NEW";
3626 case MLD_BLOCK_OLD_SOURCES:
3627 return "BLOCK_OLD";
3628 default:
3629 break;
3630 }
3631 return "unknown";
3632 }
3633 #endif
3634
3635 void
3636 mld_init(void)
3637 {
3638
3639 MLD_PRINTF(("%s: initializing\n", __func__));
3640
3641 /* Setup lock group and attribute for mld_mtx */
3642 mld_mtx_grp_attr = lck_grp_attr_alloc_init();
3643 mld_mtx_grp = lck_grp_alloc_init("mld_mtx\n", mld_mtx_grp_attr);
3644 mld_mtx_attr = lck_attr_alloc_init();
3645 lck_mtx_init(&mld_mtx, mld_mtx_grp, mld_mtx_attr);
3646
3647 ip6_initpktopts(&mld_po);
3648 mld_po.ip6po_hlim = 1;
3649 mld_po.ip6po_hbh = &mld_ra.hbh;
3650 mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER;
3651 mld_po.ip6po_flags = IP6PO_DONTFRAG;
3652 LIST_INIT(&mli_head);
3653
3654 mli_size = sizeof (struct mld_ifinfo);
3655 mli_zone = zinit(mli_size, MLI_ZONE_MAX * mli_size,
3656 0, MLI_ZONE_NAME);
3657 if (mli_zone == NULL) {
3658 panic("%s: failed allocating %s", __func__, MLI_ZONE_NAME);
3659 /* NOTREACHED */
3660 }
3661 zone_change(mli_zone, Z_EXPAND, TRUE);
3662 zone_change(mli_zone, Z_CALLERACCT, FALSE);
3663 }