]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/tcp_cubic.c
xnu-3248.50.21.tar.gz
[apple/xnu.git] / bsd / netinet / tcp_cubic.c
1 /*
2 * Copyright (c) 2013-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/kernel.h>
31 #include <sys/protosw.h>
32 #include <sys/socketvar.h>
33 #include <sys/syslog.h>
34
35 #include <net/route.h>
36 #include <netinet/in.h>
37 #include <netinet/in_systm.h>
38 #include <netinet/ip.h>
39
40 #if INET6
41 #include <netinet/ip6.h>
42 #endif /* INET6 */
43
44 #include <netinet/ip_var.h>
45 #include <netinet/tcp.h>
46 #include <netinet/tcp_timer.h>
47 #include <netinet/tcp_var.h>
48 #include <netinet/tcp_fsm.h>
49 #include <netinet/tcp_var.h>
50 #include <netinet/tcp_cc.h>
51 #include <netinet/tcpip.h>
52 #include <netinet/tcp_seq.h>
53 #include <kern/task.h>
54 #include <libkern/OSAtomic.h>
55
56 static int tcp_cubic_init(struct tcpcb *tp);
57 static int tcp_cubic_cleanup(struct tcpcb *tp);
58 static void tcp_cubic_cwnd_init_or_reset(struct tcpcb *tp);
59 static void tcp_cubic_congestion_avd(struct tcpcb *tp, struct tcphdr *th);
60 static void tcp_cubic_ack_rcvd(struct tcpcb *tp, struct tcphdr *th);
61 static void tcp_cubic_pre_fr(struct tcpcb *tp);
62 static void tcp_cubic_post_fr(struct tcpcb *tp, struct tcphdr *th);
63 static void tcp_cubic_after_timeout(struct tcpcb *tp);
64 static int tcp_cubic_delay_ack(struct tcpcb *tp, struct tcphdr *th);
65 static void tcp_cubic_switch_cc(struct tcpcb *tp, u_int16_t old_index);
66 static uint32_t tcp_cubic_update(struct tcpcb *tp, u_int32_t rtt);
67 static uint32_t tcp_cubic_tcpwin(struct tcpcb *tp, struct tcphdr *th);
68 static inline void tcp_cubic_clear_state(struct tcpcb *tp);
69
70
71 extern float cbrtf(float x);
72
73 struct tcp_cc_algo tcp_cc_cubic = {
74 .name = "cubic",
75 .init = tcp_cubic_init,
76 .cleanup = tcp_cubic_cleanup,
77 .cwnd_init = tcp_cubic_cwnd_init_or_reset,
78 .congestion_avd = tcp_cubic_congestion_avd,
79 .ack_rcvd = tcp_cubic_ack_rcvd,
80 .pre_fr = tcp_cubic_pre_fr,
81 .post_fr = tcp_cubic_post_fr,
82 .after_idle = tcp_cubic_cwnd_init_or_reset,
83 .after_timeout = tcp_cubic_after_timeout,
84 .delay_ack = tcp_cubic_delay_ack,
85 .switch_to = tcp_cubic_switch_cc
86 };
87
88 const float tcp_cubic_backoff = 0.2; /* multiplicative decrease factor */
89 const float tcp_cubic_coeff = 0.4;
90 const float tcp_cubic_fast_convergence_factor = 0.875;
91
92 static int tcp_cubic_tcp_friendliness = 0;
93 SYSCTL_INT(_net_inet_tcp, OID_AUTO, cubic_tcp_friendliness,
94 CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_cubic_tcp_friendliness, 0,
95 "Enable TCP friendliness");
96
97 static int tcp_cubic_fast_convergence = 0;
98 SYSCTL_INT(_net_inet_tcp, OID_AUTO, cubic_fast_convergence,
99 CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_cubic_fast_convergence, 0,
100 "Enable fast convergence");
101
102 static int tcp_cubic_use_minrtt = 0;
103 SYSCTL_INT(_net_inet_tcp, OID_AUTO, cubic_use_minrtt,
104 CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_cubic_use_minrtt, 0,
105 "use a min of 5 sec rtt");
106
107 static int tcp_cubic_init(struct tcpcb *tp)
108 {
109 OSIncrementAtomic((volatile SInt32 *)&tcp_cc_cubic.num_sockets);
110
111 VERIFY(tp->t_ccstate != NULL);
112 tcp_cubic_clear_state(tp);
113 return (0);
114 }
115
116 static int tcp_cubic_cleanup(struct tcpcb *tp)
117 {
118 #pragma unused(tp)
119 OSDecrementAtomic((volatile SInt32 *)&tcp_cc_cubic.num_sockets);
120 return (0);
121 }
122
123 /*
124 * Initialize the congestion window at the beginning of a connection or
125 * after idle time
126 */
127 static void tcp_cubic_cwnd_init_or_reset(struct tcpcb *tp)
128 {
129 VERIFY(tp->t_ccstate != NULL);
130
131 tcp_cubic_clear_state(tp);
132 tcp_cc_cwnd_init_or_reset(tp);
133 tp->t_pipeack = 0;
134 tcp_clear_pipeack_state(tp);
135
136 /* Start counting bytes for RFC 3465 again */
137 tp->t_bytes_acked = 0;
138
139 /*
140 * slow start threshold could get initialized to a lower value
141 * when there is a cached value in the route metrics. In this case,
142 * the connection can enter congestion avoidance without any packet
143 * loss and Cubic will enter steady-state too early. It is better
144 * to always probe to find the initial slow-start threshold.
145 */
146 if (tp->t_inpcb->inp_stat->txbytes <= TCP_CC_CWND_INIT_BYTES
147 && tp->snd_ssthresh < (TCP_MAXWIN << TCP_MAX_WINSHIFT))
148 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
149
150 /* Initialize cubic last max to be same as ssthresh */
151 tp->t_ccstate->cub_last_max = tp->snd_ssthresh;
152 }
153
154 /*
155 * Compute the target congestion window for the next RTT according to
156 * cubic equation when an ack is received.
157 *
158 * W(t) = C(t-K)^3 + W(last_max)
159 */
160 static uint32_t
161 tcp_cubic_update(struct tcpcb *tp, u_int32_t rtt)
162 {
163 float K, var;
164 u_int32_t elapsed_time, win;
165
166 win = min(tp->snd_cwnd, tp->snd_wnd);
167 if (tp->t_ccstate->cub_last_max == 0)
168 tp->t_ccstate->cub_last_max = tp->snd_ssthresh;
169
170 if (tp->t_ccstate->cub_epoch_start == 0) {
171 /*
172 * This is the beginning of a new epoch, initialize some of
173 * the variables that we need to use for computing the
174 * congestion window later.
175 */
176 tp->t_ccstate->cub_epoch_start = tcp_now;
177 if (tp->t_ccstate->cub_epoch_start == 0)
178 tp->t_ccstate->cub_epoch_start = 1;
179 if (win < tp->t_ccstate->cub_last_max) {
180
181 VERIFY(current_task() == kernel_task);
182
183 /*
184 * Compute cubic epoch period, this is the time
185 * period that the window will take to increase to
186 * last_max again after backoff due to loss.
187 */
188 K = (tp->t_ccstate->cub_last_max - win)
189 / tp->t_maxseg / tcp_cubic_coeff;
190 K = cbrtf(K);
191 tp->t_ccstate->cub_epoch_period = K * TCP_RETRANSHZ;
192 /* Origin point */
193 tp->t_ccstate->cub_origin_point =
194 tp->t_ccstate->cub_last_max;
195 } else {
196 tp->t_ccstate->cub_epoch_period = 0;
197 tp->t_ccstate->cub_origin_point = win;
198 }
199 tp->t_ccstate->cub_target_win = 0;
200 }
201
202 VERIFY(tp->t_ccstate->cub_origin_point > 0);
203 /*
204 * Compute the target window for the next RTT using smoothed RTT
205 * as an estimate for next RTT.
206 */
207 elapsed_time = timer_diff(tcp_now, 0,
208 tp->t_ccstate->cub_epoch_start, 0);
209
210 if (tcp_cubic_use_minrtt)
211 elapsed_time += max(tcp_cubic_use_minrtt, rtt);
212 else
213 elapsed_time += rtt;
214 var = (elapsed_time - tp->t_ccstate->cub_epoch_period) / TCP_RETRANSHZ;
215 var = var * var * var * (tcp_cubic_coeff * tp->t_maxseg);
216
217 tp->t_ccstate->cub_target_win = tp->t_ccstate->cub_origin_point + var;
218 return (tp->t_ccstate->cub_target_win);
219 }
220
221 /*
222 * Standard TCP utilizes bandwidth well in low RTT and low BDP connections
223 * even when there is some packet loss. Enabling TCP mode will help Cubic
224 * to achieve this kind of utilization.
225 *
226 * But if there is a bottleneck link in the path with a fixed size queue
227 * and fixed bandwidth, TCP Cubic will help to reduce packet loss at this
228 * link because of the steady-state behavior. Using average and mean
229 * absolute deviation of W(lastmax), we try to detect if the congestion
230 * window is close to the bottleneck bandwidth. In that case, disabling
231 * TCP mode will help to minimize packet loss at this link.
232 *
233 * Disable TCP mode if the W(lastmax) (the window where previous packet
234 * loss happened) is within a small range from the average last max
235 * calculated.
236 */
237 #define TCP_CUBIC_ENABLE_TCPMODE(_tp_) \
238 ((!soissrcrealtime((_tp_)->t_inpcb->inp_socket) && \
239 (_tp_)->t_ccstate->cub_mean_dev > (tp->t_maxseg << 1)) ? 1 : 0)
240
241 /*
242 * Compute the window growth if standard TCP (AIMD) was used with
243 * a backoff of 0.5 and additive increase of 1 packet per RTT.
244 *
245 * TCP window at time t can be calculated using the following equation
246 * with beta as 0.8
247 *
248 * W(t) <- Wmax * beta + 3 * ((1 - beta)/(1 + beta)) * t/RTT
249 *
250 */
251 static uint32_t
252 tcp_cubic_tcpwin(struct tcpcb *tp, struct tcphdr *th)
253 {
254 if (tp->t_ccstate->cub_tcp_win == 0) {
255 tp->t_ccstate->cub_tcp_win = min(tp->snd_cwnd, tp->snd_wnd);
256 tp->t_ccstate->cub_tcp_bytes_acked = 0;
257 } else {
258 tp->t_ccstate->cub_tcp_bytes_acked +=
259 BYTES_ACKED(th, tp);
260 if (tp->t_ccstate->cub_tcp_bytes_acked >=
261 tp->t_ccstate->cub_tcp_win) {
262 tp->t_ccstate->cub_tcp_bytes_acked -=
263 tp->t_ccstate->cub_tcp_win;
264 tp->t_ccstate->cub_tcp_win += tp->t_maxseg;
265 }
266 }
267 return (tp->t_ccstate->cub_tcp_win);
268 }
269
270 /*
271 * Handle an in-sequence ack during congestion avoidance phase.
272 */
273 static void
274 tcp_cubic_congestion_avd(struct tcpcb *tp, struct tcphdr *th)
275 {
276 u_int32_t cubic_target_win, tcp_win, rtt;
277
278 /* Do not increase congestion window in non-validated phase */
279 if (tcp_cc_is_cwnd_nonvalidated(tp) != 0)
280 return;
281
282 tp->t_bytes_acked += BYTES_ACKED(th, tp);
283
284 rtt = get_base_rtt(tp);
285 /*
286 * First compute cubic window. If cubic variables are not
287 * initialized (after coming out of recovery), this call will
288 * initialize them.
289 */
290 cubic_target_win = tcp_cubic_update(tp, rtt);
291
292 /* Compute TCP window if a multiplicative decrease of 0.2 is used */
293 tcp_win = tcp_cubic_tcpwin(tp, th);
294
295 if (tp->snd_cwnd < tcp_win &&
296 (tcp_cubic_tcp_friendliness == 1 ||
297 TCP_CUBIC_ENABLE_TCPMODE(tp))) {
298 /* this connection is in TCP-friendly region */
299 if (tp->t_bytes_acked >= tp->snd_cwnd) {
300 tp->t_bytes_acked -= tp->snd_cwnd;
301 tp->snd_cwnd = min(tcp_win, TCP_MAXWIN << tp->snd_scale);
302 }
303 } else {
304 if (cubic_target_win > tp->snd_cwnd) {
305 /*
306 * The target win is computed for the next RTT.
307 * To reach this value, cwnd will have to be updated
308 * one segment at a time. Compute how many bytes
309 * need to be acknowledged before we can increase
310 * the cwnd by one segment.
311 */
312 u_int64_t incr_win;
313 incr_win = tp->snd_cwnd * tp->t_maxseg;
314 incr_win /= (cubic_target_win - tp->snd_cwnd);
315 if (incr_win > 0 &&
316 tp->t_bytes_acked >= incr_win) {
317 tp->t_bytes_acked -= incr_win;
318 tp->snd_cwnd =
319 min((tp->snd_cwnd + tp->t_maxseg),
320 TCP_MAXWIN << tp->snd_scale);
321 }
322 }
323 }
324 }
325
326 static void
327 tcp_cubic_ack_rcvd(struct tcpcb *tp, struct tcphdr *th)
328 {
329 /* Do not increase the congestion window in non-validated phase */
330 if (tcp_cc_is_cwnd_nonvalidated(tp) != 0)
331 return;
332
333 if (tp->snd_cwnd >= tp->snd_ssthresh) {
334 /* Congestion avoidance phase */
335 tcp_cubic_congestion_avd(tp, th);
336 } else {
337 /*
338 * Use 2*SMSS as limit on increment as suggested
339 * by RFC 3465 section 2.3
340 */
341 uint32_t acked, abc_lim, incr;
342
343 acked = BYTES_ACKED(th, tp);
344 abc_lim = (tcp_do_rfc3465_lim2 &&
345 tp->snd_nxt == tp->snd_max) ?
346 2 * tp->t_maxseg : tp->t_maxseg;
347 incr = min(acked, abc_lim);
348
349 tp->snd_cwnd += incr;
350 tp->snd_cwnd = min(tp->snd_cwnd,
351 TCP_MAXWIN << tp->snd_scale);
352 }
353 }
354
355 static void
356 tcp_cubic_pre_fr(struct tcpcb *tp)
357 {
358 uint32_t win, avg;
359 int32_t dev;
360 tp->t_ccstate->cub_epoch_start = 0;
361 tp->t_ccstate->cub_tcp_win = 0;
362 tp->t_ccstate->cub_target_win = 0;
363 tp->t_ccstate->cub_tcp_bytes_acked = 0;
364
365 win = min(tp->snd_cwnd, tp->snd_wnd);
366 if (tp->t_flagsext & TF_CWND_NONVALIDATED) {
367 tp->t_lossflightsize = tp->snd_max - tp->snd_una;
368 win = (max(tp->t_pipeack, tp->t_lossflightsize)) >> 1;
369 } else {
370 tp->t_lossflightsize = 0;
371 }
372 /*
373 * Note the congestion window at which packet loss occurred as
374 * cub_last_max.
375 *
376 * If the congestion window is less than the last max window when
377 * loss occurred, it indicates that capacity available in the
378 * network has gone down. This can happen if a new flow has started
379 * and it is capturing some of the bandwidth. To reach convergence
380 * quickly, backoff a little more. Disable fast convergence to
381 * disable this behavior.
382 */
383 if (win < tp->t_ccstate->cub_last_max &&
384 tcp_cubic_fast_convergence == 1)
385 tp->t_ccstate->cub_last_max = win *
386 tcp_cubic_fast_convergence_factor;
387 else
388 tp->t_ccstate->cub_last_max = win;
389
390 if (tp->t_ccstate->cub_last_max == 0) {
391 /*
392 * If last_max is zero because snd_wnd is zero or for
393 * any other reason, initialize it to the amount of data
394 * in flight
395 */
396 tp->t_ccstate->cub_last_max = tp->snd_max - tp->snd_una;
397 }
398
399 /*
400 * Compute average and mean absolute deviation of the
401 * window at which packet loss occurred.
402 */
403 if (tp->t_ccstate->cub_avg_lastmax == 0) {
404 tp->t_ccstate->cub_avg_lastmax = tp->t_ccstate->cub_last_max;
405 } else {
406 /*
407 * Average is computed by taking 63 parts of
408 * history and one part of the most recent value
409 */
410 avg = tp->t_ccstate->cub_avg_lastmax;
411 avg = (avg << 6) - avg;
412 tp->t_ccstate->cub_avg_lastmax =
413 (avg + tp->t_ccstate->cub_last_max) >> 6;
414 }
415
416 /* caluclate deviation from average */
417 dev = tp->t_ccstate->cub_avg_lastmax - tp->t_ccstate->cub_last_max;
418
419 /* Take the absolute value */
420 if (dev < 0)
421 dev = -dev;
422
423 if (tp->t_ccstate->cub_mean_dev == 0) {
424 tp->t_ccstate->cub_mean_dev = dev;
425 } else {
426 dev = dev + ((tp->t_ccstate->cub_mean_dev << 4)
427 - tp->t_ccstate->cub_mean_dev);
428 tp->t_ccstate->cub_mean_dev = dev >> 4;
429 }
430
431 /* Backoff congestion window by tcp_cubic_backoff factor */
432 win = win - (win * tcp_cubic_backoff);
433 win = (win / tp->t_maxseg);
434 if (win < 2)
435 win = 2;
436 tp->snd_ssthresh = win * tp->t_maxseg;
437 tcp_cc_resize_sndbuf(tp);
438 }
439
440 static void
441 tcp_cubic_post_fr(struct tcpcb *tp, struct tcphdr *th)
442 {
443 uint32_t flight_size = 0;
444
445 if (SEQ_LEQ(th->th_ack, tp->snd_max))
446 flight_size = tp->snd_max - th->th_ack;
447
448 if (SACK_ENABLED(tp) && tp->t_lossflightsize > 0) {
449 u_int32_t total_rxt_size = 0, ncwnd;
450 /*
451 * When SACK is enabled, the number of retransmitted bytes
452 * can be counted more accurately.
453 */
454 total_rxt_size = tcp_rxtseg_total_size(tp);
455 ncwnd = max(tp->t_pipeack, tp->t_lossflightsize);
456 if (total_rxt_size <= ncwnd) {
457 ncwnd = ncwnd - total_rxt_size;
458 }
459
460 /*
461 * To avoid sending a large burst at the end of recovery
462 * set a max limit on ncwnd
463 */
464 ncwnd = min(ncwnd, (tp->t_maxseg << 6));
465 ncwnd = ncwnd >> 1;
466 flight_size = max(ncwnd, flight_size);
467 }
468 /*
469 * Complete ack. The current window was inflated for fast recovery.
470 * It has to be deflated post recovery.
471 *
472 * Window inflation should have left us with approx snd_ssthresh
473 * outstanding data. If the flight size is zero or one segment,
474 * make congestion window to be at least as big as 2 segments to
475 * avoid delayed acknowledgements. This is according to RFC 6582.
476 */
477 if (flight_size < tp->snd_ssthresh)
478 tp->snd_cwnd = max(flight_size, tp->t_maxseg)
479 + tp->t_maxseg;
480 else
481 tp->snd_cwnd = tp->snd_ssthresh;
482 tp->t_ccstate->cub_tcp_win = 0;
483 tp->t_ccstate->cub_target_win = 0;
484 tp->t_ccstate->cub_tcp_bytes_acked = 0;
485 }
486
487 static void
488 tcp_cubic_after_timeout(struct tcpcb *tp)
489 {
490 VERIFY(tp->t_ccstate != NULL);
491
492 /*
493 * Avoid adjusting congestion window due to SYN retransmissions.
494 * If more than one byte (SYN) is outstanding then it is still
495 * needed to adjust the window.
496 */
497 if (tp->t_state < TCPS_ESTABLISHED &&
498 ((int)(tp->snd_max - tp->snd_una) <= 1))
499 return;
500
501 if (!IN_FASTRECOVERY(tp)) {
502 tcp_cubic_clear_state(tp);
503 tcp_cubic_pre_fr(tp);
504 }
505
506 /*
507 * Close the congestion window down to one segment as a retransmit
508 * timeout might indicate severe congestion.
509 */
510 tp->snd_cwnd = tp->t_maxseg;
511 }
512
513 static int
514 tcp_cubic_delay_ack(struct tcpcb *tp, struct tcphdr *th)
515 {
516 return (tcp_cc_delay_ack(tp, th));
517 }
518
519 /*
520 * When switching from a different CC it is better for Cubic to start
521 * fresh. The state required for Cubic calculation might be stale and it
522 * might not represent the current state of the network. If it starts as
523 * a new connection it will probe and learn the existing network conditions.
524 */
525 static void
526 tcp_cubic_switch_cc(struct tcpcb *tp, uint16_t old_cc_index)
527 {
528 #pragma unused(old_cc_index)
529 tcp_cubic_cwnd_init_or_reset(tp);
530
531 OSIncrementAtomic((volatile SInt32 *)&tcp_cc_cubic.num_sockets);
532 }
533
534 static inline void tcp_cubic_clear_state(struct tcpcb *tp)
535 {
536 tp->t_ccstate->cub_last_max = 0;
537 tp->t_ccstate->cub_epoch_start = 0;
538 tp->t_ccstate->cub_origin_point = 0;
539 tp->t_ccstate->cub_tcp_win = 0;
540 tp->t_ccstate->cub_tcp_bytes_acked = 0;
541 tp->t_ccstate->cub_epoch_period = 0;
542 tp->t_ccstate->cub_target_win = 0;
543 }