]> git.saurik.com Git - apple/xnu.git/blob - bsd/sys/dtrace.h
xnu-1699.24.8.tar.gz
[apple/xnu.git] / bsd / sys / dtrace.h
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 #ifndef _SYS_DTRACE_H
28 #define _SYS_DTRACE_H
29
30 /* #pragma ident "@(#)dtrace.h 1.37 07/06/05 SMI" */
31
32 #ifdef __cplusplus
33 extern "C" {
34 #endif
35
36 /*
37 * DTrace Dynamic Tracing Software: Kernel Interfaces
38 *
39 * Note: The contents of this file are private to the implementation of the
40 * Solaris system and DTrace subsystem and are subject to change at any time
41 * without notice. Applications and drivers using these interfaces will fail
42 * to run on future releases. These interfaces should not be used for any
43 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
44 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
45 */
46
47 #ifndef _ASM
48
49 #if !defined(__APPLE__)
50 #include <sys/types.h>
51 #include <sys/modctl.h>
52 #include <sys/processor.h>
53 #include <sys/systm.h>
54 #include <sys/ctf_api.h>
55 #include <sys/cyclic.h>
56 #include <sys/int_limits.h>
57 #else /* is Apple Mac OS X */
58
59 #if defined(__LP64__)
60 #if !defined(_LP64)
61 #define _LP64 /* Solaris vs. Darwin */
62 #endif
63 #else
64 #if !defined(_ILP32)
65 #define _ILP32 /* Solaris vs. Darwin */
66 #endif
67 #endif
68
69 #ifdef KERNEL
70 #ifndef _KERNEL
71 #define _KERNEL /* Solaris vs. Darwin */
72 #endif
73 #endif
74
75 #if defined(__BIG_ENDIAN__)
76 #if !defined(_BIG_ENDIAN)
77 #define _BIG_ENDIAN /* Solaris vs. Darwin */
78 #endif
79 #elif defined(__LITTLE_ENDIAN__)
80 #if !defined(_LITTLE_ENDIAN)
81 #define _LITTLE_ENDIAN /* Solaris vs. Darwin */
82 #endif
83 #else
84 #error Unknown endian-ness
85 #endif
86
87 #include <sys/types.h>
88 #include <stdint.h>
89
90 #ifndef NULL
91 #define NULL ((void *)0) /* quiets many warnings */
92 #endif
93
94 #define SEC 1
95 #define MILLISEC 1000
96 #define MICROSEC 1000000
97 #define NANOSEC 1000000000
98
99 #define S_ROUND(x, a) ((x) + (((a) ? (a) : 1) - 1) & ~(((a) ? (a) : 1) - 1))
100 #define P2ROUNDUP(x, align) (-(-(x) & -(align)))
101
102 #define CTF_MODEL_ILP32 1 /* object data model is ILP32 */
103 #define CTF_MODEL_LP64 2 /* object data model is LP64 */
104 #ifdef __LP64__
105 #define CTF_MODEL_NATIVE CTF_MODEL_LP64
106 #else
107 #define CTF_MODEL_NATIVE CTF_MODEL_ILP32
108 #endif
109
110 typedef uint8_t uchar_t;
111 typedef uint16_t ushort_t;
112 typedef uint32_t uint_t;
113 typedef unsigned long ulong_t;
114 typedef uint64_t u_longlong_t;
115 typedef int64_t longlong_t;
116 typedef int64_t off64_t;
117 typedef int processorid_t;
118 typedef int64_t hrtime_t;
119
120 typedef enum { B_FALSE = 0, B_TRUE = 1 } _dtrace_boolean;
121
122 typedef uint8_t UUID[16]; /* For modctl use in dtrace.h */
123
124 struct modctl; /* In lieu of Solaris <sys/modctl.h> */
125 /* NOTHING */ /* In lieu of Solaris <sys/processor.h> */
126 #include <sys/ioctl.h> /* In lieu of Solaris <sys/systm.h> */
127 #ifdef KERNEL
128 /* NOTHING */ /* In lieu of Solaris <sys/ctf_api.h> */
129 #else
130 /* In lieu of Solaris <sys/ctf_api.h> */
131 typedef struct ctf_file ctf_file_t;
132 typedef long ctf_id_t;
133 #endif
134 /* NOTHING */ /* In lieu of Solaris <sys/cyclic.h> */
135 /* NOTHING */ /* In lieu of Solaris <sys/int_limits.h> */
136
137 typedef uint32_t zoneid_t;
138
139 #include <sys/dtrace_glue.h>
140
141 #include <stdarg.h>
142 typedef va_list __va_list;
143
144 /* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */
145 #define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */
146 #endif /* __APPLE__ */
147
148 /*
149 * DTrace Universal Constants and Typedefs
150 */
151 #define DTRACE_CPUALL -1 /* all CPUs */
152 #define DTRACE_IDNONE 0 /* invalid probe identifier */
153 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */
154 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */
155 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */
156 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */
157 #define DTRACE_PROVNONE 0 /* invalid provider identifier */
158 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */
159 #define DTRACE_ARGNONE -1 /* invalid argument index */
160
161 #define DTRACE_PROVNAMELEN 64
162 #define DTRACE_MODNAMELEN 64
163 #define DTRACE_FUNCNAMELEN 128
164 #define DTRACE_NAMELEN 64
165 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
166 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
167 #define DTRACE_ARGTYPELEN 128
168
169 typedef uint32_t dtrace_id_t; /* probe identifier */
170 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */
171 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */
172 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */
173 typedef uint16_t dtrace_actkind_t; /* action kind */
174 typedef int64_t dtrace_optval_t; /* option value */
175 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */
176
177 typedef enum dtrace_probespec {
178 DTRACE_PROBESPEC_NONE = -1,
179 DTRACE_PROBESPEC_PROVIDER = 0,
180 DTRACE_PROBESPEC_MOD,
181 DTRACE_PROBESPEC_FUNC,
182 DTRACE_PROBESPEC_NAME
183 } dtrace_probespec_t;
184
185 /*
186 * DTrace Intermediate Format (DIF)
187 *
188 * The following definitions describe the DTrace Intermediate Format (DIF), a
189 * a RISC-like instruction set and program encoding used to represent
190 * predicates and actions that can be bound to DTrace probes. The constants
191 * below defining the number of available registers are suggested minimums; the
192 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
193 * registers provided by the current DTrace implementation.
194 */
195 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */
196 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */
197 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */
198 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */
199 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */
200
201 #define DIF_OP_OR 1 /* or r1, r2, rd */
202 #define DIF_OP_XOR 2 /* xor r1, r2, rd */
203 #define DIF_OP_AND 3 /* and r1, r2, rd */
204 #define DIF_OP_SLL 4 /* sll r1, r2, rd */
205 #define DIF_OP_SRL 5 /* srl r1, r2, rd */
206 #define DIF_OP_SUB 6 /* sub r1, r2, rd */
207 #define DIF_OP_ADD 7 /* add r1, r2, rd */
208 #define DIF_OP_MUL 8 /* mul r1, r2, rd */
209 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */
210 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */
211 #define DIF_OP_SREM 11 /* srem r1, r2, rd */
212 #define DIF_OP_UREM 12 /* urem r1, r2, rd */
213 #define DIF_OP_NOT 13 /* not r1, rd */
214 #define DIF_OP_MOV 14 /* mov r1, rd */
215 #define DIF_OP_CMP 15 /* cmp r1, r2 */
216 #define DIF_OP_TST 16 /* tst r1 */
217 #define DIF_OP_BA 17 /* ba label */
218 #define DIF_OP_BE 18 /* be label */
219 #define DIF_OP_BNE 19 /* bne label */
220 #define DIF_OP_BG 20 /* bg label */
221 #define DIF_OP_BGU 21 /* bgu label */
222 #define DIF_OP_BGE 22 /* bge label */
223 #define DIF_OP_BGEU 23 /* bgeu label */
224 #define DIF_OP_BL 24 /* bl label */
225 #define DIF_OP_BLU 25 /* blu label */
226 #define DIF_OP_BLE 26 /* ble label */
227 #define DIF_OP_BLEU 27 /* bleu label */
228 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */
229 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */
230 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */
231 #define DIF_OP_LDUB 31 /* ldub [r1], rd */
232 #define DIF_OP_LDUH 32 /* lduh [r1], rd */
233 #define DIF_OP_LDUW 33 /* lduw [r1], rd */
234 #define DIF_OP_LDX 34 /* ldx [r1], rd */
235 #define DIF_OP_RET 35 /* ret rd */
236 #define DIF_OP_NOP 36 /* nop */
237 #define DIF_OP_SETX 37 /* setx intindex, rd */
238 #define DIF_OP_SETS 38 /* sets strindex, rd */
239 #define DIF_OP_SCMP 39 /* scmp r1, r2 */
240 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */
241 #define DIF_OP_LDGS 41 /* ldgs var, rd */
242 #define DIF_OP_STGS 42 /* stgs var, rs */
243 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */
244 #define DIF_OP_LDTS 44 /* ldts var, rd */
245 #define DIF_OP_STTS 45 /* stts var, rs */
246 #define DIF_OP_SRA 46 /* sra r1, r2, rd */
247 #define DIF_OP_CALL 47 /* call subr, rd */
248 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */
249 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
250 #define DIF_OP_POPTS 50 /* popts */
251 #define DIF_OP_FLUSHTS 51 /* flushts */
252 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */
253 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */
254 #define DIF_OP_STGAA 54 /* stgaa var, rs */
255 #define DIF_OP_STTAA 55 /* sttaa var, rs */
256 #define DIF_OP_LDLS 56 /* ldls var, rd */
257 #define DIF_OP_STLS 57 /* stls var, rs */
258 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */
259 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */
260 #define DIF_OP_STB 60 /* stb r1, [rd] */
261 #define DIF_OP_STH 61 /* sth r1, [rd] */
262 #define DIF_OP_STW 62 /* stw r1, [rd] */
263 #define DIF_OP_STX 63 /* stx r1, [rd] */
264 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */
265 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */
266 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */
267 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */
268 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */
269 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */
270 #define DIF_OP_ULDX 70 /* uldx [r1], rd */
271 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */
272 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */
273 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */
274 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */
275 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */
276 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */
277 #define DIF_OP_RLDX 77 /* rldx [r1], rd */
278 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */
279 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */
280
281 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */
282 #define DIF_STROFF_MAX 0xffff /* highest string table offset */
283 #define DIF_REGISTER_MAX 0xff /* highest register number */
284 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */
285 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */
286
287 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */
288 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */
289 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */
290
291 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */
292 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */
293 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */
294
295 #define DIF_VAR_ARGS 0x0000 /* arguments array */
296 #define DIF_VAR_REGS 0x0001 /* registers array */
297 #define DIF_VAR_UREGS 0x0002 /* user registers array */
298 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */
299 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */
300 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */
301 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */
302 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */
303 #define DIF_VAR_ID 0x0105 /* probe ID */
304 #define DIF_VAR_ARG0 0x0106 /* first argument */
305 #define DIF_VAR_ARG1 0x0107 /* second argument */
306 #define DIF_VAR_ARG2 0x0108 /* third argument */
307 #define DIF_VAR_ARG3 0x0109 /* fourth argument */
308 #define DIF_VAR_ARG4 0x010a /* fifth argument */
309 #define DIF_VAR_ARG5 0x010b /* sixth argument */
310 #define DIF_VAR_ARG6 0x010c /* seventh argument */
311 #define DIF_VAR_ARG7 0x010d /* eighth argument */
312 #define DIF_VAR_ARG8 0x010e /* ninth argument */
313 #define DIF_VAR_ARG9 0x010f /* tenth argument */
314 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */
315 #define DIF_VAR_CALLER 0x0111 /* caller */
316 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */
317 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */
318 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */
319 #define DIF_VAR_PROBENAME 0x0115 /* probe name */
320 #define DIF_VAR_PID 0x0116 /* process ID */
321 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */
322 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */
323 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */
324 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */
325 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */
326 #define DIF_VAR_UCALLER 0x011c /* user-level caller */
327 #define DIF_VAR_PPID 0x011d /* parent process ID */
328 #define DIF_VAR_UID 0x011e /* process user ID */
329 #define DIF_VAR_GID 0x011f /* process group ID */
330 #define DIF_VAR_ERRNO 0x0120 /* thread errno */
331 #if defined(__APPLE__)
332 #define DIF_VAR_PTHREAD_SELF 0x0200 /* Apple specific PTHREAD_SELF (Not currently supported!) */
333 #define DIF_VAR_DISPATCHQADDR 0x0201 /* Apple specific dispatch queue addr */
334 #endif /* __APPLE __ */
335
336 #define DIF_SUBR_RAND 0
337 #define DIF_SUBR_MUTEX_OWNED 1
338 #define DIF_SUBR_MUTEX_OWNER 2
339 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3
340 #define DIF_SUBR_MUTEX_TYPE_SPIN 4
341 #define DIF_SUBR_RW_READ_HELD 5
342 #define DIF_SUBR_RW_WRITE_HELD 6
343 #define DIF_SUBR_RW_ISWRITER 7
344 #define DIF_SUBR_COPYIN 8
345 #define DIF_SUBR_COPYINSTR 9
346 #define DIF_SUBR_SPECULATION 10
347 #define DIF_SUBR_PROGENYOF 11
348 #define DIF_SUBR_STRLEN 12
349 #define DIF_SUBR_COPYOUT 13
350 #define DIF_SUBR_COPYOUTSTR 14
351 #define DIF_SUBR_ALLOCA 15
352 #define DIF_SUBR_BCOPY 16
353 #define DIF_SUBR_COPYINTO 17
354 #define DIF_SUBR_MSGDSIZE 18
355 #define DIF_SUBR_MSGSIZE 19
356 #define DIF_SUBR_GETMAJOR 20
357 #define DIF_SUBR_GETMINOR 21
358 #define DIF_SUBR_DDI_PATHNAME 22
359 #define DIF_SUBR_STRJOIN 23
360 #define DIF_SUBR_LLTOSTR 24
361 #define DIF_SUBR_BASENAME 25
362 #define DIF_SUBR_DIRNAME 26
363 #define DIF_SUBR_CLEANPATH 27
364 #define DIF_SUBR_STRCHR 28
365 #define DIF_SUBR_STRRCHR 29
366 #define DIF_SUBR_STRSTR 30
367 #define DIF_SUBR_STRTOK 31
368 #define DIF_SUBR_SUBSTR 32
369 #define DIF_SUBR_INDEX 33
370 #define DIF_SUBR_RINDEX 34
371 #define DIF_SUBR_HTONS 35
372 #define DIF_SUBR_HTONL 36
373 #define DIF_SUBR_HTONLL 37
374 #define DIF_SUBR_NTOHS 38
375 #define DIF_SUBR_NTOHL 39
376 #define DIF_SUBR_NTOHLL 40
377 #define DIF_SUBR_INET_NTOP 41
378 #define DIF_SUBR_INET_NTOA 42
379 #define DIF_SUBR_INET_NTOA6 43
380 #if !defined(__APPLE__)
381
382 #define DIF_SUBR_MAX 43 /* max subroutine value */
383 #else
384 #define DIF_SUBR_COREPROFILE 44
385
386 #define DIF_SUBR_MAX 44 /* max subroutine value */
387 #endif /* __APPLE__ */
388
389 typedef uint32_t dif_instr_t;
390
391 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff)
392 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff)
393 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff)
394 #define DIF_INSTR_RD(i) ((i) & 0xff)
395 #define DIF_INSTR_RS(i) ((i) & 0xff)
396 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff)
397 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff)
398 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff)
399 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff)
400 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff)
401 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff)
402 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff)
403
404 #define DIF_INSTR_FMT(op, r1, r2, d) \
405 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
406
407 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
408 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
409 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0))
410 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
411 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label))
412 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
413 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
414 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
415 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
416 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
417 #define DIF_INSTR_NOP (DIF_OP_NOP << 24)
418 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d))
419 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))
420 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))
421 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
422 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs))
423 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24)
424 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24)
425 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
426 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
427 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))
428
429 #define DIF_REG_R0 0 /* %r0 is always set to zero */
430
431 /*
432 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
433 * of variables, function and associative array arguments, and the return type
434 * for each DIF object (shown below). It contains a description of the type,
435 * its size in bytes, and a module identifier.
436 */
437 typedef struct dtrace_diftype {
438 uint8_t dtdt_kind; /* type kind (see below) */
439 uint8_t dtdt_ckind; /* type kind in CTF */
440 uint8_t dtdt_flags; /* type flags (see below) */
441 uint8_t dtdt_pad; /* reserved for future use */
442 uint32_t dtdt_size; /* type size in bytes (unless string) */
443 } dtrace_diftype_t;
444
445 #define DIF_TYPE_CTF 0 /* type is a CTF type */
446 #define DIF_TYPE_STRING 1 /* type is a D string */
447
448 #define DIF_TF_BYREF 0x1 /* type is passed by reference */
449
450 /*
451 * A DTrace Intermediate Format variable record is used to describe each of the
452 * variables referenced by a given DIF object. It contains an integer variable
453 * identifier along with variable scope and properties, as shown below. The
454 * size of this structure must be sizeof (int) aligned.
455 */
456 typedef struct dtrace_difv {
457 uint32_t dtdv_name; /* variable name index in dtdo_strtab */
458 uint32_t dtdv_id; /* variable reference identifier */
459 uint8_t dtdv_kind; /* variable kind (see below) */
460 uint8_t dtdv_scope; /* variable scope (see below) */
461 uint16_t dtdv_flags; /* variable flags (see below) */
462 dtrace_diftype_t dtdv_type; /* variable type (see above) */
463 } dtrace_difv_t;
464
465 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */
466 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */
467
468 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */
469 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */
470 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */
471
472 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */
473 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */
474
475 /*
476 * DTrace Actions
477 *
478 * The upper byte determines the class of the action; the low bytes determines
479 * the specific action within that class. The classes of actions are as
480 * follows:
481 *
482 * [ no class ] <= May record process- or kernel-related data
483 * DTRACEACT_PROC <= Only records process-related data
484 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes
485 * DTRACEACT_KERNEL <= Only records kernel-related data
486 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel
487 * DTRACEACT_SPECULATIVE <= Speculation-related action
488 * DTRACEACT_AGGREGATION <= Aggregating action
489 */
490 #define DTRACEACT_NONE 0 /* no action */
491 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */
492 #define DTRACEACT_EXIT 2 /* exit() action */
493 #define DTRACEACT_PRINTF 3 /* printf() action */
494 #define DTRACEACT_PRINTA 4 /* printa() action */
495 #define DTRACEACT_LIBACT 5 /* library-controlled action */
496
497 #if defined(__APPLE__)
498 #define DTRACEACT_APPLEBINARY 50 /* Apple DT perf. tool action */
499 #endif /* __APPLE__ */
500
501 #define DTRACEACT_PROC 0x0100
502 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1)
503 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2)
504 #define DTRACEACT_USYM (DTRACEACT_PROC + 3)
505 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4)
506 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5)
507
508 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200
509 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1)
510 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2)
511 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3)
512 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4)
513
514 #if defined(__APPLE__)
515 /*
516 * Dtrace stop() will task_suspend the currently running process.
517 * Dtrace pidresume(pid) will task_resume it.
518 */
519
520 #define DTRACEACT_PIDRESUME (DTRACEACT_PROC_DESTRUCTIVE + 50)
521 #endif /* __APPLE__ */
522
523 #define DTRACEACT_PROC_CONTROL 0x0300
524
525 #define DTRACEACT_KERNEL 0x0400
526 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1)
527 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2)
528 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3)
529
530 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500
531 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1)
532 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2)
533 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3)
534
535 #define DTRACEACT_SPECULATIVE 0x0600
536 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1)
537 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2)
538 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3)
539
540 #define DTRACEACT_CLASS(x) ((x) & 0xff00)
541
542 #define DTRACEACT_ISDESTRUCTIVE(x) \
543 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
544 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
545
546 #define DTRACEACT_ISSPECULATIVE(x) \
547 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
548
549 #define DTRACEACT_ISPRINTFLIKE(x) \
550 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
551 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
552
553 /*
554 * DTrace Aggregating Actions
555 *
556 * These are functions f(x) for which the following is true:
557 *
558 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
559 *
560 * where x_n is a set of arbitrary data. Aggregating actions are in their own
561 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow
562 * for easier processing of the aggregation argument and data payload for a few
563 * aggregating actions (notably: quantize(), lquantize(), and ustack()).
564 */
565 #define DTRACEACT_AGGREGATION 0x0700
566 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1)
567 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2)
568 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3)
569 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4)
570 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5)
571 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6)
572 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7)
573 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8)
574
575 #define DTRACEACT_ISAGG(x) \
576 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
577
578 #if !defined(__APPLE__) /* Quiet compiler warning. */
579 #define DTRACE_QUANTIZE_NBUCKETS \
580 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
581
582 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1)
583 #else
584 #define DTRACE_QUANTIZE_NBUCKETS \
585 (int)(((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
586
587 #define DTRACE_QUANTIZE_ZEROBUCKET (int64_t)((sizeof (uint64_t) * NBBY) - 1)
588 #endif /* __APPLE __*/
589
590 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \
591 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \
592 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \
593 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \
594 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
595
596 #define DTRACE_LQUANTIZE_STEPSHIFT 48
597 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48)
598 #define DTRACE_LQUANTIZE_LEVELSHIFT 32
599 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32)
600 #define DTRACE_LQUANTIZE_BASESHIFT 0
601 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX
602
603 #define DTRACE_LQUANTIZE_STEP(x) \
604 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
605 DTRACE_LQUANTIZE_STEPSHIFT)
606
607 #define DTRACE_LQUANTIZE_LEVELS(x) \
608 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
609 DTRACE_LQUANTIZE_LEVELSHIFT)
610
611 #define DTRACE_LQUANTIZE_BASE(x) \
612 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
613 DTRACE_LQUANTIZE_BASESHIFT)
614
615 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX)
616 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32)
617 #define DTRACE_USTACK_ARG(x, y) \
618 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
619
620 #if !defined(__APPLE__)
621
622 #ifndef _LP64
623 #ifndef _LITTLE_ENDIAN
624 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name
625 #else
626 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad
627 #endif
628 #else
629 #define DTRACE_PTR(type, name) type *name
630 #endif
631
632 #else
633
634 #ifndef _LP64
635 #define DTRACE_PTR(type, name) user_addr_t name
636 #else
637 #define DTRACE_PTR(type, name) type *name
638 #endif
639
640 #endif /* __APPLE__ */
641
642 /*
643 * DTrace Object Format (DOF)
644 *
645 * DTrace programs can be persistently encoded in the DOF format so that they
646 * may be embedded in other programs (for example, in an ELF file) or in the
647 * dtrace driver configuration file for use in anonymous tracing. The DOF
648 * format is versioned and extensible so that it can be revised and so that
649 * internal data structures can be modified or extended compatibly. All DOF
650 * structures use fixed-size types, so the 32-bit and 64-bit representations
651 * are identical and consumers can use either data model transparently.
652 *
653 * The file layout is structured as follows:
654 *
655 * +---------------+-------------------+----- ... ----+---- ... ------+
656 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable |
657 * | (file header) | (section headers) | section data | section data |
658 * +---------------+-------------------+----- ... ----+---- ... ------+
659 * |<------------ dof_hdr.dofh_loadsz --------------->| |
660 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
661 *
662 * The file header stores meta-data including a magic number, data model for
663 * the instrumentation, data encoding, and properties of the DIF code within.
664 * The header describes its own size and the size of the section headers. By
665 * convention, an array of section headers follows the file header, and then
666 * the data for all loadable sections and unloadable sections. This permits
667 * consumer code to easily download the headers and all loadable data into the
668 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
669 *
670 * The section headers describe the size, offset, alignment, and section type
671 * for each section. Sections are described using a set of #defines that tell
672 * the consumer what kind of data is expected. Sections can contain links to
673 * other sections by storing a dof_secidx_t, an index into the section header
674 * array, inside of the section data structures. The section header includes
675 * an entry size so that sections with data arrays can grow their structures.
676 *
677 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
678 * are represented themselves as a collection of related DOF sections. This
679 * permits us to change the set of sections associated with a DIFO over time,
680 * and also permits us to encode DIFOs that contain different sets of sections.
681 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
682 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of
683 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
684 *
685 * This loose coupling of the file structure (header and sections) to the
686 * structure of the DTrace program itself (ECB descriptions, action
687 * descriptions, and DIFOs) permits activities such as relocation processing
688 * to occur in a single pass without having to understand D program structure.
689 *
690 * Finally, strings are always stored in ELF-style string tables along with a
691 * string table section index and string table offset. Therefore strings in
692 * DOF are always arbitrary-length and not bound to the current implementation.
693 */
694
695 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */
696
697 typedef struct dof_hdr {
698 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
699 uint32_t dofh_flags; /* file attribute flags (if any) */
700 uint32_t dofh_hdrsize; /* size of file header in bytes */
701 uint32_t dofh_secsize; /* size of section header in bytes */
702 uint32_t dofh_secnum; /* number of section headers */
703 uint64_t dofh_secoff; /* file offset of section headers */
704 uint64_t dofh_loadsz; /* file size of loadable portion */
705 uint64_t dofh_filesz; /* file size of entire DOF file */
706 uint64_t dofh_pad; /* reserved for future use */
707 } dof_hdr_t;
708
709 #define DOF_ID_MAG0 0 /* first byte of magic number */
710 #define DOF_ID_MAG1 1 /* second byte of magic number */
711 #define DOF_ID_MAG2 2 /* third byte of magic number */
712 #define DOF_ID_MAG3 3 /* fourth byte of magic number */
713 #define DOF_ID_MODEL 4 /* DOF data model (see below) */
714 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */
715 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */
716 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */
717 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */
718 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */
719 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */
720
721 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */
722 #define DOF_MAG_MAG1 'D'
723 #define DOF_MAG_MAG2 'O'
724 #define DOF_MAG_MAG3 'F'
725
726 #define DOF_MAG_STRING "\177DOF"
727 #define DOF_MAG_STRLEN 4
728
729 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */
730 #define DOF_MODEL_ILP32 1
731 #define DOF_MODEL_LP64 2
732
733 #ifdef _LP64
734 #define DOF_MODEL_NATIVE DOF_MODEL_LP64
735 #else
736 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32
737 #endif
738
739 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */
740 #define DOF_ENCODE_LSB 1
741 #define DOF_ENCODE_MSB 2
742
743 #ifdef _BIG_ENDIAN
744 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB
745 #else
746 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB
747 #endif
748
749 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */
750 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */
751 #if !defined(__APPLE__)
752 #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */
753 #else
754 #define DOF_VERSION_3 3 /* DOF version 3: Minimum version for Leopard */
755 #define DOF_VERSION DOF_VERSION_3 /* Latest DOF version */
756 #endif /* __APPLE__ */
757
758 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */
759
760 typedef uint32_t dof_secidx_t; /* section header table index type */
761 typedef uint32_t dof_stridx_t; /* string table index type */
762
763 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */
764 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */
765
766 typedef struct dof_sec {
767 uint32_t dofs_type; /* section type (see below) */
768 uint32_t dofs_align; /* section data memory alignment */
769 uint32_t dofs_flags; /* section flags (if any) */
770 uint32_t dofs_entsize; /* size of section entry (if table) */
771 uint64_t dofs_offset; /* offset of section data within file */
772 uint64_t dofs_size; /* size of section data in bytes */
773 } dof_sec_t;
774
775 #define DOF_SECT_NONE 0 /* null section */
776 #define DOF_SECT_COMMENTS 1 /* compiler comments */
777 #define DOF_SECT_SOURCE 2 /* D program source code */
778 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */
779 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */
780 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */
781 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */
782 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */
783 #define DOF_SECT_STRTAB 8 /* string table */
784 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */
785 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */
786 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */
787 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */
788 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */
789 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */
790 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */
791 #define DOF_SECT_PROBES 16 /* dof_probe_t array */
792 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */
793 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */
794 #define DOF_SECT_INTTAB 19 /* uint64_t array */
795 #define DOF_SECT_UTSNAME 20 /* struct utsname */
796 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */
797 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */
798 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */
799 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */
800 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */
801 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */
802
803 #define DOF_SECF_LOAD 1 /* section should be loaded */
804
805 typedef struct dof_ecbdesc {
806 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */
807 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */
808 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */
809 uint32_t dofe_pad; /* reserved for future use */
810 uint64_t dofe_uarg; /* user-supplied library argument */
811 } dof_ecbdesc_t;
812
813 typedef struct dof_probedesc {
814 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */
815 dof_stridx_t dofp_provider; /* provider string */
816 dof_stridx_t dofp_mod; /* module string */
817 dof_stridx_t dofp_func; /* function string */
818 dof_stridx_t dofp_name; /* name string */
819 uint32_t dofp_id; /* probe identifier (or zero) */
820 } dof_probedesc_t;
821
822 typedef struct dof_actdesc {
823 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */
824 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */
825 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */
826 uint32_t dofa_ntuple; /* number of subsequent tuple actions */
827 uint64_t dofa_arg; /* kind-specific argument */
828 uint64_t dofa_uarg; /* user-supplied argument */
829 } dof_actdesc_t;
830
831 typedef struct dof_difohdr {
832 dtrace_diftype_t dofd_rtype; /* return type for this fragment */
833 dof_secidx_t dofd_links[1]; /* variable length array of indices */
834 } dof_difohdr_t;
835
836 typedef struct dof_relohdr {
837 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */
838 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */
839 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */
840 } dof_relohdr_t;
841
842 typedef struct dof_relodesc {
843 dof_stridx_t dofr_name; /* string name of relocation symbol */
844 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */
845 uint64_t dofr_offset; /* byte offset for relocation */
846 uint64_t dofr_data; /* additional type-specific data */
847 } dof_relodesc_t;
848
849 #define DOF_RELO_NONE 0 /* empty relocation entry */
850 #define DOF_RELO_SETX 1 /* relocate setx value */
851
852 typedef struct dof_optdesc {
853 uint32_t dofo_option; /* option identifier */
854 dof_secidx_t dofo_strtab; /* string table, if string option */
855 uint64_t dofo_value; /* option value or string index */
856 } dof_optdesc_t;
857
858 typedef uint32_t dof_attr_t; /* encoded stability attributes */
859
860 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8))
861 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff)
862 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff)
863 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff)
864
865 typedef struct dof_provider {
866 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */
867 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */
868 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */
869 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */
870 dof_stridx_t dofpv_name; /* provider name string */
871 dof_attr_t dofpv_provattr; /* provider attributes */
872 dof_attr_t dofpv_modattr; /* module attributes */
873 dof_attr_t dofpv_funcattr; /* function attributes */
874 dof_attr_t dofpv_nameattr; /* name attributes */
875 dof_attr_t dofpv_argsattr; /* args attributes */
876 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */
877 } dof_provider_t;
878
879 typedef struct dof_probe {
880 uint64_t dofpr_addr; /* probe base address or offset */
881 dof_stridx_t dofpr_func; /* probe function string */
882 dof_stridx_t dofpr_name; /* probe name string */
883 dof_stridx_t dofpr_nargv; /* native argument type strings */
884 dof_stridx_t dofpr_xargv; /* translated argument type strings */
885 uint32_t dofpr_argidx; /* index of first argument mapping */
886 uint32_t dofpr_offidx; /* index of first offset entry */
887 uint8_t dofpr_nargc; /* native argument count */
888 uint8_t dofpr_xargc; /* translated argument count */
889 uint16_t dofpr_noffs; /* number of offset entries for probe */
890 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */
891 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */
892 uint16_t dofpr_pad1; /* reserved for future use */
893 uint32_t dofpr_pad2; /* reserved for future use */
894 } dof_probe_t;
895
896 typedef struct dof_xlator {
897 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */
898 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */
899 dof_stridx_t dofxl_argv; /* input parameter type strings */
900 uint32_t dofxl_argc; /* input parameter list length */
901 dof_stridx_t dofxl_type; /* output type string name */
902 dof_attr_t dofxl_attr; /* output stability attributes */
903 } dof_xlator_t;
904
905 typedef struct dof_xlmember {
906 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */
907 dof_stridx_t dofxm_name; /* member name */
908 dtrace_diftype_t dofxm_type; /* member type */
909 } dof_xlmember_t;
910
911 typedef struct dof_xlref {
912 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */
913 uint32_t dofxr_member; /* index of referenced dof_xlmember */
914 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */
915 } dof_xlref_t;
916
917 /*
918 * DTrace Intermediate Format Object (DIFO)
919 *
920 * A DIFO is used to store the compiled DIF for a D expression, its return
921 * type, and its string and variable tables. The string table is a single
922 * buffer of character data into which sets instructions and variable
923 * references can reference strings using a byte offset. The variable table
924 * is an array of dtrace_difv_t structures that describe the name and type of
925 * each variable and the id used in the DIF code. This structure is described
926 * above in the DIF section of this header file. The DIFO is used at both
927 * user-level (in the library) and in the kernel, but the structure is never
928 * passed between the two: the DOF structures form the only interface. As a
929 * result, the definition can change depending on the presence of _KERNEL.
930 */
931 typedef struct dtrace_difo {
932 dif_instr_t *dtdo_buf; /* instruction buffer */
933 uint64_t *dtdo_inttab; /* integer table (optional) */
934 char *dtdo_strtab; /* string table (optional) */
935 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */
936 uint_t dtdo_len; /* length of instruction buffer */
937 uint_t dtdo_intlen; /* length of integer table */
938 uint_t dtdo_strlen; /* length of string table */
939 uint_t dtdo_varlen; /* length of variable table */
940 dtrace_diftype_t dtdo_rtype; /* return type */
941 uint_t dtdo_refcnt; /* owner reference count */
942 uint_t dtdo_destructive; /* invokes destructive subroutines */
943 #ifndef _KERNEL
944 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */
945 dof_relodesc_t *dtdo_ureltab; /* user relocations */
946 struct dt_node **dtdo_xlmtab; /* translator references */
947 uint_t dtdo_krelen; /* length of krelo table */
948 uint_t dtdo_urelen; /* length of urelo table */
949 uint_t dtdo_xlmlen; /* length of translator table */
950 #endif
951 } dtrace_difo_t;
952
953 /*
954 * DTrace Enabling Description Structures
955 *
956 * When DTrace is tracking the description of a DTrace enabling entity (probe,
957 * predicate, action, ECB, record, etc.), it does so in a description
958 * structure. These structures all end in "desc", and are used at both
959 * user-level and in the kernel -- but (with the exception of
960 * dtrace_probedesc_t) they are never passed between them. Typically,
961 * user-level will use the description structures when assembling an enabling.
962 * It will then distill those description structures into a DOF object (see
963 * above), and send it into the kernel. The kernel will again use the
964 * description structures to create a description of the enabling as it reads
965 * the DOF. When the description is complete, the enabling will be actually
966 * created -- turning it into the structures that represent the enabling
967 * instead of merely describing it. Not surprisingly, the description
968 * structures bear a strong resemblance to the DOF structures that act as their
969 * conduit.
970 */
971 struct dtrace_predicate;
972
973 typedef struct dtrace_probedesc {
974 dtrace_id_t dtpd_id; /* probe identifier */
975 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
976 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */
977 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */
978 char dtpd_name[DTRACE_NAMELEN]; /* probe name */
979 } dtrace_probedesc_t;
980
981 typedef struct dtrace_repldesc {
982 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */
983 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */
984 } dtrace_repldesc_t;
985
986 typedef struct dtrace_preddesc {
987 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */
988 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
989 } dtrace_preddesc_t;
990
991 typedef struct dtrace_actdesc {
992 dtrace_difo_t *dtad_difo; /* pointer to DIF object */
993 struct dtrace_actdesc *dtad_next; /* next action */
994 dtrace_actkind_t dtad_kind; /* kind of action */
995 uint32_t dtad_ntuple; /* number in tuple */
996 uint64_t dtad_arg; /* action argument */
997 uint64_t dtad_uarg; /* user argument */
998 int dtad_refcnt; /* reference count */
999 } dtrace_actdesc_t;
1000
1001 typedef struct dtrace_ecbdesc {
1002 dtrace_actdesc_t *dted_action; /* action description(s) */
1003 dtrace_preddesc_t dted_pred; /* predicate description */
1004 dtrace_probedesc_t dted_probe; /* probe description */
1005 uint64_t dted_uarg; /* library argument */
1006 int dted_refcnt; /* reference count */
1007 } dtrace_ecbdesc_t;
1008
1009 /*
1010 * DTrace Metadata Description Structures
1011 *
1012 * DTrace separates the trace data stream from the metadata stream. The only
1013 * metadata tokens placed in the data stream are enabled probe identifiers
1014 * (EPIDs) or (in the case of aggregations) aggregation identifiers. In order
1015 * to determine the structure of the data, DTrace consumers pass the token to
1016 * the kernel, and receive in return a corresponding description of the enabled
1017 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
1018 * dtrace_aggdesc structure). Both of these structures are expressed in terms
1019 * of record descriptions (via the dtrace_recdesc structure) that describe the
1020 * exact structure of the data. Some record descriptions may also contain a
1021 * format identifier; this additional bit of metadata can be retrieved from the
1022 * kernel, for which a format description is returned via the dtrace_fmtdesc
1023 * structure. Note that all four of these structures must be bitness-neutral
1024 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
1025 */
1026 typedef struct dtrace_recdesc {
1027 dtrace_actkind_t dtrd_action; /* kind of action */
1028 uint32_t dtrd_size; /* size of record */
1029 uint32_t dtrd_offset; /* offset in ECB's data */
1030 uint16_t dtrd_alignment; /* required alignment */
1031 uint16_t dtrd_format; /* format, if any */
1032 uint64_t dtrd_arg; /* action argument */
1033 uint64_t dtrd_uarg; /* user argument */
1034 } dtrace_recdesc_t;
1035
1036 typedef struct dtrace_eprobedesc {
1037 dtrace_epid_t dtepd_epid; /* enabled probe ID */
1038 dtrace_id_t dtepd_probeid; /* probe ID */
1039 uint64_t dtepd_uarg; /* library argument */
1040 uint32_t dtepd_size; /* total size */
1041 int dtepd_nrecs; /* number of records */
1042 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */
1043 } dtrace_eprobedesc_t;
1044
1045 typedef struct dtrace_aggdesc {
1046 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */
1047 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */
1048 int dtagd_flags; /* not filled in by kernel */
1049 dtrace_aggid_t dtagd_id; /* aggregation ID */
1050 dtrace_epid_t dtagd_epid; /* enabled probe ID */
1051 uint32_t dtagd_size; /* size in bytes */
1052 int dtagd_nrecs; /* number of records */
1053 uint32_t dtagd_pad; /* explicit padding */
1054 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */
1055 } dtrace_aggdesc_t;
1056
1057 typedef struct dtrace_fmtdesc {
1058 DTRACE_PTR(char, dtfd_string); /* format string */
1059 int dtfd_length; /* length of format string */
1060 uint16_t dtfd_format; /* format identifier */
1061 } dtrace_fmtdesc_t;
1062
1063 #define DTRACE_SIZEOF_EPROBEDESC(desc) \
1064 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \
1065 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
1066
1067 #define DTRACE_SIZEOF_AGGDESC(desc) \
1068 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \
1069 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
1070
1071 /*
1072 * DTrace Option Interface
1073 *
1074 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
1075 * in a DOF image. The dof_optdesc structure contains an option identifier and
1076 * an option value. The valid option identifiers are found below; the mapping
1077 * between option identifiers and option identifying strings is maintained at
1078 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the
1079 * following are potentially valid option values: all positive integers, zero
1080 * and negative one. Some options (notably "bufpolicy" and "bufresize") take
1081 * predefined tokens as their values; these are defined with
1082 * DTRACEOPT_{option}_{token}.
1083 */
1084 #define DTRACEOPT_BUFSIZE 0 /* buffer size */
1085 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */
1086 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */
1087 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */
1088 #define DTRACEOPT_SPECSIZE 4 /* speculation size */
1089 #define DTRACEOPT_NSPEC 5 /* number of speculations */
1090 #define DTRACEOPT_STRSIZE 6 /* string size */
1091 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */
1092 #define DTRACEOPT_CPU 8 /* CPU to trace */
1093 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */
1094 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */
1095 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */
1096 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */
1097 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */
1098 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */
1099 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */
1100 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */
1101 #define DTRACEOPT_STATUSRATE 17 /* status rate */
1102 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */
1103 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */
1104 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */
1105 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */
1106 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */
1107 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */
1108 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */
1109 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */
1110 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */
1111 #if !defined(__APPLE__)
1112 #define DTRACEOPT_MAX 27 /* number of options */
1113 #else
1114 #define DTRACEOPT_STACKSYMBOLS 27 /* clear to prevent stack symbolication */
1115 #define DTRACEOPT_MAX 28 /* number of options */
1116 #endif /* __APPLE__ */
1117
1118 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */
1119
1120 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */
1121 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */
1122 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */
1123
1124 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */
1125 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */
1126
1127 /*
1128 * DTrace Buffer Interface
1129 *
1130 * In order to get a snapshot of the principal or aggregation buffer,
1131 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1132 * structure. This describes which CPU user-level is interested in, and
1133 * where user-level wishes the kernel to snapshot the buffer to (the
1134 * dtbd_data field). The kernel uses the same structure to pass back some
1135 * information regarding the buffer: the size of data actually copied out, the
1136 * number of drops, the number of errors, and the offset of the oldest record.
1137 * If the buffer policy is a "switch" policy, taking a snapshot of the
1138 * principal buffer has the additional effect of switching the active and
1139 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has
1140 * the additional effect of switching the active and inactive buffers.
1141 */
1142 typedef struct dtrace_bufdesc {
1143 uint64_t dtbd_size; /* size of buffer */
1144 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */
1145 uint32_t dtbd_errors; /* number of errors */
1146 uint64_t dtbd_drops; /* number of drops */
1147 DTRACE_PTR(char, dtbd_data); /* data */
1148 uint64_t dtbd_oldest; /* offset of oldest record */
1149 } dtrace_bufdesc_t;
1150
1151 /*
1152 * DTrace Status
1153 *
1154 * The status of DTrace is relayed via the dtrace_status structure. This
1155 * structure contains members to count drops other than the capacity drops
1156 * available via the buffer interface (see above). This consists of dynamic
1157 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1158 * speculative drops (including capacity speculative drops, drops due to busy
1159 * speculative buffers and drops due to unavailable speculative buffers).
1160 * Additionally, the status structure contains a field to indicate the number
1161 * of "fill"-policy buffers have been filled and a boolean field to indicate
1162 * that exit() has been called. If the dtst_exiting field is non-zero, no
1163 * further data will be generated until tracing is stopped (at which time any
1164 * enablings of the END action will be processed); if user-level sees that
1165 * this field is non-zero, tracing should be stopped as soon as possible.
1166 */
1167 typedef struct dtrace_status {
1168 uint64_t dtst_dyndrops; /* dynamic drops */
1169 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */
1170 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */
1171 uint64_t dtst_specdrops; /* speculative drops */
1172 uint64_t dtst_specdrops_busy; /* spec drops due to busy */
1173 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */
1174 uint64_t dtst_errors; /* total errors */
1175 uint64_t dtst_filled; /* number of filled bufs */
1176 uint64_t dtst_stkstroverflows; /* stack string tab overflows */
1177 uint64_t dtst_dblerrors; /* errors in ERROR probes */
1178 char dtst_killed; /* non-zero if killed */
1179 char dtst_exiting; /* non-zero if exit() called */
1180 char dtst_pad[6]; /* pad out to 64-bit align */
1181 } dtrace_status_t;
1182
1183 /*
1184 * DTrace Configuration
1185 *
1186 * User-level may need to understand some elements of the kernel DTrace
1187 * configuration in order to generate correct DIF. This information is
1188 * conveyed via the dtrace_conf structure.
1189 */
1190 typedef struct dtrace_conf {
1191 uint_t dtc_difversion; /* supported DIF version */
1192 uint_t dtc_difintregs; /* # of DIF integer registers */
1193 uint_t dtc_diftupregs; /* # of DIF tuple registers */
1194 uint_t dtc_ctfmodel; /* CTF data model */
1195 uint_t dtc_pad[8]; /* reserved for future use */
1196 } dtrace_conf_t;
1197
1198 /*
1199 * DTrace Faults
1200 *
1201 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1202 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1203 * postprocessing at user-level. Probe processing faults induce an ERROR
1204 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1205 * the error condition using thse symbolic labels.
1206 */
1207 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */
1208 #define DTRACEFLT_BADADDR 1 /* Bad address */
1209 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */
1210 #define DTRACEFLT_ILLOP 3 /* Illegal operation */
1211 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */
1212 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */
1213 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */
1214 #define DTRACEFLT_UPRIV 7 /* Illegal user access */
1215 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */
1216 #define DTRACEFLT_BADSTACK 9 /* Bad stack */
1217
1218 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */
1219
1220 /*
1221 * DTrace Argument Types
1222 *
1223 * Because it would waste both space and time, argument types do not reside
1224 * with the probe. In order to determine argument types for args[X]
1225 * variables, the D compiler queries for argument types on a probe-by-probe
1226 * basis. (This optimizes for the common case that arguments are either not
1227 * used or used in an untyped fashion.) Typed arguments are specified with a
1228 * string of the type name in the dtragd_native member of the argument
1229 * description structure. Typed arguments may be further translated to types
1230 * of greater stability; the provider indicates such a translated argument by
1231 * filling in the dtargd_xlate member with the string of the translated type.
1232 * Finally, the provider may indicate which argument value a given argument
1233 * maps to by setting the dtargd_mapping member -- allowing a single argument
1234 * to map to multiple args[X] variables.
1235 */
1236 typedef struct dtrace_argdesc {
1237 dtrace_id_t dtargd_id; /* probe identifier */
1238 int dtargd_ndx; /* arg number (-1 iff none) */
1239 int dtargd_mapping; /* value mapping */
1240 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */
1241 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */
1242 } dtrace_argdesc_t;
1243
1244 /*
1245 * DTrace Stability Attributes
1246 *
1247 * Each DTrace provider advertises the name and data stability of each of its
1248 * probe description components, as well as its architectural dependencies.
1249 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1250 * order to compute the properties of an input program and report them.
1251 */
1252 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */
1253 typedef uint8_t dtrace_class_t; /* architectural dependency class */
1254
1255 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */
1256 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */
1257 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */
1258 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */
1259 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */
1260 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */
1261 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */
1262 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */
1263 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */
1264
1265 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */
1266 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */
1267 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */
1268 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */
1269 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */
1270 #define DTRACE_CLASS_COMMON 5 /* common to all systems */
1271 #define DTRACE_CLASS_MAX 5 /* maximum valid class */
1272
1273 #define DTRACE_PRIV_NONE 0x0000
1274 #define DTRACE_PRIV_KERNEL 0x0001
1275 #define DTRACE_PRIV_USER 0x0002
1276 #define DTRACE_PRIV_PROC 0x0004
1277 #define DTRACE_PRIV_OWNER 0x0008
1278 #define DTRACE_PRIV_ZONEOWNER 0x0010
1279
1280 #define DTRACE_PRIV_ALL \
1281 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1282 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1283
1284 typedef struct dtrace_ppriv {
1285 uint32_t dtpp_flags; /* privilege flags */
1286 uid_t dtpp_uid; /* user ID */
1287 zoneid_t dtpp_zoneid; /* zone ID */
1288 } dtrace_ppriv_t;
1289
1290 typedef struct dtrace_attribute {
1291 dtrace_stability_t dtat_name; /* entity name stability */
1292 dtrace_stability_t dtat_data; /* entity data stability */
1293 dtrace_class_t dtat_class; /* entity data dependency */
1294 } dtrace_attribute_t;
1295
1296 typedef struct dtrace_pattr {
1297 dtrace_attribute_t dtpa_provider; /* provider attributes */
1298 dtrace_attribute_t dtpa_mod; /* module attributes */
1299 dtrace_attribute_t dtpa_func; /* function attributes */
1300 dtrace_attribute_t dtpa_name; /* name attributes */
1301 dtrace_attribute_t dtpa_args; /* args[] attributes */
1302 } dtrace_pattr_t;
1303
1304 typedef struct dtrace_providerdesc {
1305 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */
1306 dtrace_pattr_t dtvd_attr; /* stability attributes */
1307 dtrace_ppriv_t dtvd_priv; /* privileges required */
1308 } dtrace_providerdesc_t;
1309
1310 /*
1311 * DTrace Pseudodevice Interface
1312 *
1313 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1314 * pseudodevice driver. These ioctls comprise the user-kernel interface to
1315 * DTrace.
1316 */
1317 #if !defined(__APPLE__)
1318 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8))
1319 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1320 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1321 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1322 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1323 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1324 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1325 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1326 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1327 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1328 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1329 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1330 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1331 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1332 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1333 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1334 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1335 #else
1336 /* coding this as IOC_VOID allows this driver to handle its own copyin/copuout */
1337 #define DTRACEIOC _IO('d',0)
1338 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1339 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1340 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1341 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1342 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1343 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1344 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1345 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1346 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1347 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1348 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1349 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1350 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1351 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1352 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1353 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1354 #define DTRACEIOC_MODUUIDSLIST (DTRACEIOC | 30) /* APPLE ONLY, query for modules with missing symbols */
1355 #define DTRACEIOC_PROVMODSYMS (DTRACEIOC | 31) /* APPLE ONLY, provide missing symbols for a given module */
1356
1357 /*
1358 * The following structs are used to provide symbol information to the kernel from userspace.
1359 */
1360
1361 typedef struct dtrace_symbol {
1362 uint64_t dtsym_addr; /* address of the symbol */
1363 uint64_t dtsym_size; /* size of the symbol, must be uint64_t to maintain alignment when called by 64b uproc in i386 kernel */
1364 char dtsym_name[DTRACE_FUNCNAMELEN]; /* symbol name */
1365 } dtrace_symbol_t;
1366
1367 typedef struct dtrace_module_symbols {
1368 UUID dtmodsyms_uuid;
1369 uint64_t dtmodsyms_count;
1370 dtrace_symbol_t dtmodsyms_symbols[1];
1371 } dtrace_module_symbols_t;
1372
1373 #define DTRACE_MODULE_SYMBOLS_SIZE(count) (sizeof(dtrace_module_symbols_t) + ((count - 1) * sizeof(dtrace_symbol_t)))
1374
1375 typedef struct dtrace_module_uuids_list {
1376 uint64_t dtmul_count;
1377 UUID dtmul_uuid[1];
1378 } dtrace_module_uuids_list_t;
1379
1380 #define DTRACE_MODULE_UUIDS_LIST_SIZE(count) (sizeof(dtrace_module_uuids_list_t) + ((count - 1) * sizeof(UUID)))
1381
1382 #endif /* __APPLE__ */
1383
1384 /*
1385 * DTrace Helpers
1386 *
1387 * In general, DTrace establishes probes in processes and takes actions on
1388 * processes without knowing their specific user-level structures. Instead of
1389 * existing in the framework, process-specific knowledge is contained by the
1390 * enabling D program -- which can apply process-specific knowledge by making
1391 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1392 * operate on user-level data. However, there may exist some specific probes
1393 * of particular semantic relevance that the application developer may wish to
1394 * explicitly export. For example, an application may wish to export a probe
1395 * at the point that it begins and ends certain well-defined transactions. In
1396 * addition to providing probes, programs may wish to offer assistance for
1397 * certain actions. For example, in highly dynamic environments (e.g., Java),
1398 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1399 * names (the translation from instruction addresses to corresponding symbol
1400 * names may only be possible in situ); these environments may wish to define
1401 * a series of actions to be applied in situ to obtain a meaningful stack
1402 * trace.
1403 *
1404 * These two mechanisms -- user-level statically defined tracing and assisting
1405 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified
1406 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1407 * providers, probes and their arguments. If a helper wishes to provide
1408 * action assistance, probe descriptions and corresponding DIF actions may be
1409 * specified in the helper DOF. For such helper actions, however, the probe
1410 * description describes the specific helper: all DTrace helpers have the
1411 * provider name "dtrace" and the module name "helper", and the name of the
1412 * helper is contained in the function name (for example, the ustack() helper
1413 * is named "ustack"). Any helper-specific name may be contained in the name
1414 * (for example, if a helper were to have a constructor, it might be named
1415 * "dtrace:helper:<helper>:init"). Helper actions are only called when the
1416 * action that they are helping is taken. Helper actions may only return DIF
1417 * expressions, and may only call the following subroutines:
1418 *
1419 * alloca() <= Allocates memory out of the consumer's scratch space
1420 * bcopy() <= Copies memory to scratch space
1421 * copyin() <= Copies memory from user-level into consumer's scratch
1422 * copyinto() <= Copies memory into a specific location in scratch
1423 * copyinstr() <= Copies a string into a specific location in scratch
1424 *
1425 * Helper actions may only access the following built-in variables:
1426 *
1427 * curthread <= Current kthread_t pointer
1428 * tid <= Current thread identifier
1429 * pid <= Current process identifier
1430 * ppid <= Parent process identifier
1431 * uid <= Current user ID
1432 * gid <= Current group ID
1433 * execname <= Current executable name
1434 * zonename <= Current zone name
1435 *
1436 * Helper actions may not manipulate or allocate dynamic variables, but they
1437 * may have clause-local and statically-allocated global variables. The
1438 * helper action variable state is specific to the helper action -- variables
1439 * used by the helper action may not be accessed outside of the helper
1440 * action, and the helper action may not access variables that like outside
1441 * of it. Helper actions may not load from kernel memory at-large; they are
1442 * restricting to loading current user state (via copyin() and variants) and
1443 * scratch space. As with probe enablings, helper actions are executed in
1444 * program order. The result of the helper action is the result of the last
1445 * executing helper expression.
1446 *
1447 * Helpers -- composed of either providers/probes or probes/actions (or both)
1448 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1449 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1450 * encapsulates the name and base address of the user-level library or
1451 * executable publishing the helpers and probes as well as the DOF that
1452 * contains the definitions of those helpers and probes.
1453 *
1454 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1455 * helpers and should no longer be used. No other ioctls are valid on the
1456 * helper minor node.
1457 */
1458 #if !defined(__APPLE__)
1459 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8))
1460 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */
1461 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */
1462 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */
1463 #else
1464 #define DTRACEHIOC_REMOVE _IO('h', 2) /* remove helper */
1465 #define DTRACEHIOC_ADDDOF _IOW('h', 4, user_addr_t) /* add helper DOF */
1466 #endif /* __APPLE__ */
1467
1468 typedef struct dof_helper {
1469 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */
1470 uint64_t dofhp_addr; /* base address of object */
1471 uint64_t dofhp_dof; /* address of helper DOF */
1472 } dof_helper_t;
1473
1474 #if defined(__APPLE__)
1475 /*
1476 * This structure is used to register one or more dof_helper_t(s).
1477 * For counts greater than one, malloc the structure as if the
1478 * dofiod_helpers field was "count" sized. The kernel will copyin
1479 * data of size:
1480 *
1481 * sizeof(dof_ioctl_data_t) + ((count - 1) * sizeof(dof_helper_t))
1482 */
1483 typedef struct dof_ioctl_data {
1484 /*
1485 * This field must be 64 bits to keep the alignment the same
1486 * when 64 bit user procs are sending data to 32 bit xnu
1487 */
1488 uint64_t dofiod_count;
1489 dof_helper_t dofiod_helpers[1];
1490 } dof_ioctl_data_t;
1491
1492 #define DOF_IOCTL_DATA_T_SIZE(count) (sizeof(dof_ioctl_data_t) + ((count - 1) * sizeof(dof_helper_t)))
1493
1494 #endif
1495
1496 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
1497 #if !defined(__APPLE__)
1498 #define DTRACEMNR_HELPER "helper" /* node for helpers */
1499 #else
1500 #define DTRACEMNR_HELPER "dtracehelper" /* node for helpers */
1501 #endif /* __APPLE__ */
1502 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */
1503 #define DTRACEMNRN_HELPER 1 /* minor for helpers */
1504 #define DTRACEMNRN_CLONE 2 /* first clone minor */
1505
1506 #ifdef _KERNEL
1507
1508 /*
1509 * DTrace Provider API
1510 *
1511 * The following functions are implemented by the DTrace framework and are
1512 * used to implement separate in-kernel DTrace providers. Common functions
1513 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are
1514 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1515 *
1516 * The provider API has two halves: the API that the providers consume from
1517 * DTrace, and the API that providers make available to DTrace.
1518 *
1519 * 1 Framework-to-Provider API
1520 *
1521 * 1.1 Overview
1522 *
1523 * The Framework-to-Provider API is represented by the dtrace_pops structure
1524 * that the provider passes to the framework when registering itself. This
1525 * structure consists of the following members:
1526 *
1527 * dtps_provide() <-- Provide all probes, all modules
1528 * dtps_provide_module() <-- Provide all probes in specified module
1529 * dtps_enable() <-- Enable specified probe
1530 * dtps_disable() <-- Disable specified probe
1531 * dtps_suspend() <-- Suspend specified probe
1532 * dtps_resume() <-- Resume specified probe
1533 * dtps_getargdesc() <-- Get the argument description for args[X]
1534 * dtps_getargval() <-- Get the value for an argX or args[X] variable
1535 * dtps_usermode() <-- Find out if the probe was fired in user mode
1536 * dtps_destroy() <-- Destroy all state associated with this probe
1537 *
1538 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1539 *
1540 * 1.2.1 Overview
1541 *
1542 * Called to indicate that the provider should provide all probes. If the
1543 * specified description is non-NULL, dtps_provide() is being called because
1544 * no probe matched a specified probe -- if the provider has the ability to
1545 * create custom probes, it may wish to create a probe that matches the
1546 * specified description.
1547 *
1548 * 1.2.2 Arguments and notes
1549 *
1550 * The first argument is the cookie as passed to dtrace_register(). The
1551 * second argument is a pointer to a probe description that the provider may
1552 * wish to consider when creating custom probes. The provider is expected to
1553 * call back into the DTrace framework via dtrace_probe_create() to create
1554 * any necessary probes. dtps_provide() may be called even if the provider
1555 * has made available all probes; the provider should check the return value
1556 * of dtrace_probe_create() to handle this case. Note that the provider need
1557 * not implement both dtps_provide() and dtps_provide_module(); see
1558 * "Arguments and Notes" for dtrace_register(), below.
1559 *
1560 * 1.2.3 Return value
1561 *
1562 * None.
1563 *
1564 * 1.2.4 Caller's context
1565 *
1566 * dtps_provide() is typically called from open() or ioctl() context, but may
1567 * be called from other contexts as well. The DTrace framework is locked in
1568 * such a way that providers may not register or unregister. This means that
1569 * the provider may not call any DTrace API that affects its registration with
1570 * the framework, including dtrace_register(), dtrace_unregister(),
1571 * dtrace_invalidate(), and dtrace_condense(). However, the context is such
1572 * that the provider may (and indeed, is expected to) call probe-related
1573 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1574 * and dtrace_probe_arg().
1575 *
1576 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp)
1577 *
1578 * 1.3.1 Overview
1579 *
1580 * Called to indicate that the provider should provide all probes in the
1581 * specified module.
1582 *
1583 * 1.3.2 Arguments and notes
1584 *
1585 * The first argument is the cookie as passed to dtrace_register(). The
1586 * second argument is a pointer to a modctl structure that indicates the
1587 * module for which probes should be created.
1588 *
1589 * 1.3.3 Return value
1590 *
1591 * None.
1592 *
1593 * 1.3.4 Caller's context
1594 *
1595 * dtps_provide_module() may be called from open() or ioctl() context, but
1596 * may also be called from a module loading context. mod_lock is held, and
1597 * the DTrace framework is locked in such a way that providers may not
1598 * register or unregister. This means that the provider may not call any
1599 * DTrace API that affects its registration with the framework, including
1600 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1601 * dtrace_condense(). However, the context is such that the provider may (and
1602 * indeed, is expected to) call probe-related DTrace routines, including
1603 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note
1604 * that the provider need not implement both dtps_provide() and
1605 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1606 * below.
1607 *
1608 * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1609 *
1610 * 1.4.1 Overview
1611 *
1612 * Called to enable the specified probe.
1613 *
1614 * 1.4.2 Arguments and notes
1615 *
1616 * The first argument is the cookie as passed to dtrace_register(). The
1617 * second argument is the identifier of the probe to be enabled. The third
1618 * argument is the probe argument as passed to dtrace_probe_create().
1619 * dtps_enable() will be called when a probe transitions from not being
1620 * enabled at all to having one or more ECB. The number of ECBs associated
1621 * with the probe may change without subsequent calls into the provider.
1622 * When the number of ECBs drops to zero, the provider will be explicitly
1623 * told to disable the probe via dtps_disable(). dtrace_probe() should never
1624 * be called for a probe identifier that hasn't been explicitly enabled via
1625 * dtps_enable().
1626 *
1627 * 1.4.3 Return value
1628 *
1629 * On success, dtps_enable() should return 0. On failure, -1 should be
1630 * returned.
1631 *
1632 * 1.4.4 Caller's context
1633 *
1634 * The DTrace framework is locked in such a way that it may not be called
1635 * back into at all. cpu_lock is held. mod_lock is not held and may not
1636 * be acquired.
1637 *
1638 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1639 *
1640 * 1.5.1 Overview
1641 *
1642 * Called to disable the specified probe.
1643 *
1644 * 1.5.2 Arguments and notes
1645 *
1646 * The first argument is the cookie as passed to dtrace_register(). The
1647 * second argument is the identifier of the probe to be disabled. The third
1648 * argument is the probe argument as passed to dtrace_probe_create().
1649 * dtps_disable() will be called when a probe transitions from being enabled
1650 * to having zero ECBs. dtrace_probe() should never be called for a probe
1651 * identifier that has been explicitly enabled via dtps_disable().
1652 *
1653 * 1.5.3 Return value
1654 *
1655 * None.
1656 *
1657 * 1.5.4 Caller's context
1658 *
1659 * The DTrace framework is locked in such a way that it may not be called
1660 * back into at all. cpu_lock is held. mod_lock is not held and may not
1661 * be acquired.
1662 *
1663 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1664 *
1665 * 1.6.1 Overview
1666 *
1667 * Called to suspend the specified enabled probe. This entry point is for
1668 * providers that may need to suspend some or all of their probes when CPUs
1669 * are being powered on or when the boot monitor is being entered for a
1670 * prolonged period of time.
1671 *
1672 * 1.6.2 Arguments and notes
1673 *
1674 * The first argument is the cookie as passed to dtrace_register(). The
1675 * second argument is the identifier of the probe to be suspended. The
1676 * third argument is the probe argument as passed to dtrace_probe_create().
1677 * dtps_suspend will only be called on an enabled probe. Providers that
1678 * provide a dtps_suspend entry point will want to take roughly the action
1679 * that it takes for dtps_disable.
1680 *
1681 * 1.6.3 Return value
1682 *
1683 * None.
1684 *
1685 * 1.6.4 Caller's context
1686 *
1687 * Interrupts are disabled. The DTrace framework is in a state such that the
1688 * specified probe cannot be disabled or destroyed for the duration of
1689 * dtps_suspend(). As interrupts are disabled, the provider is afforded
1690 * little latitude; the provider is expected to do no more than a store to
1691 * memory.
1692 *
1693 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1694 *
1695 * 1.7.1 Overview
1696 *
1697 * Called to resume the specified enabled probe. This entry point is for
1698 * providers that may need to resume some or all of their probes after the
1699 * completion of an event that induced a call to dtps_suspend().
1700 *
1701 * 1.7.2 Arguments and notes
1702 *
1703 * The first argument is the cookie as passed to dtrace_register(). The
1704 * second argument is the identifier of the probe to be resumed. The
1705 * third argument is the probe argument as passed to dtrace_probe_create().
1706 * dtps_resume will only be called on an enabled probe. Providers that
1707 * provide a dtps_resume entry point will want to take roughly the action
1708 * that it takes for dtps_enable.
1709 *
1710 * 1.7.3 Return value
1711 *
1712 * None.
1713 *
1714 * 1.7.4 Caller's context
1715 *
1716 * Interrupts are disabled. The DTrace framework is in a state such that the
1717 * specified probe cannot be disabled or destroyed for the duration of
1718 * dtps_resume(). As interrupts are disabled, the provider is afforded
1719 * little latitude; the provider is expected to do no more than a store to
1720 * memory.
1721 *
1722 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1723 * dtrace_argdesc_t *desc)
1724 *
1725 * 1.8.1 Overview
1726 *
1727 * Called to retrieve the argument description for an args[X] variable.
1728 *
1729 * 1.8.2 Arguments and notes
1730 *
1731 * The first argument is the cookie as passed to dtrace_register(). The
1732 * second argument is the identifier of the current probe. The third
1733 * argument is the probe argument as passed to dtrace_probe_create(). The
1734 * fourth argument is a pointer to the argument description. This
1735 * description is both an input and output parameter: it contains the
1736 * index of the desired argument in the dtargd_ndx field, and expects
1737 * the other fields to be filled in upon return. If there is no argument
1738 * corresponding to the specified index, the dtargd_ndx field should be set
1739 * to DTRACE_ARGNONE.
1740 *
1741 * 1.8.3 Return value
1742 *
1743 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1744 * members of the dtrace_argdesc_t structure are all output values.
1745 *
1746 * 1.8.4 Caller's context
1747 *
1748 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1749 * the DTrace framework is locked in such a way that providers may not
1750 * register or unregister. This means that the provider may not call any
1751 * DTrace API that affects its registration with the framework, including
1752 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1753 * dtrace_condense().
1754 *
1755 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1756 * int argno, int aframes)
1757 *
1758 * 1.9.1 Overview
1759 *
1760 * Called to retrieve a value for an argX or args[X] variable.
1761 *
1762 * 1.9.2 Arguments and notes
1763 *
1764 * The first argument is the cookie as passed to dtrace_register(). The
1765 * second argument is the identifier of the current probe. The third
1766 * argument is the probe argument as passed to dtrace_probe_create(). The
1767 * fourth argument is the number of the argument (the X in the example in
1768 * 1.9.1). The fifth argument is the number of stack frames that were used
1769 * to get from the actual place in the code that fired the probe to
1770 * dtrace_probe() itself, the so-called artificial frames. This argument may
1771 * be used to descend an appropriate number of frames to find the correct
1772 * values. If this entry point is left NULL, the dtrace_getarg() built-in
1773 * function is used.
1774 *
1775 * 1.9.3 Return value
1776 *
1777 * The value of the argument.
1778 *
1779 * 1.9.4 Caller's context
1780 *
1781 * This is called from within dtrace_probe() meaning that interrupts
1782 * are disabled. No locks should be taken within this entry point.
1783 *
1784 * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1785 *
1786 * 1.10.1 Overview
1787 *
1788 * Called to determine if the probe was fired in a user context.
1789 *
1790 * 1.10.2 Arguments and notes
1791 *
1792 * The first argument is the cookie as passed to dtrace_register(). The
1793 * second argument is the identifier of the current probe. The third
1794 * argument is the probe argument as passed to dtrace_probe_create(). This
1795 * entry point must not be left NULL for providers whose probes allow for
1796 * mixed mode tracing, that is to say those probes that can fire during
1797 * kernel- _or_ user-mode execution
1798 *
1799 * 1.10.3 Return value
1800 *
1801 * A boolean value.
1802 *
1803 * 1.10.4 Caller's context
1804 *
1805 * This is called from within dtrace_probe() meaning that interrupts
1806 * are disabled. No locks should be taken within this entry point.
1807 *
1808 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1809 *
1810 * 1.11.1 Overview
1811 *
1812 * Called to destroy the specified probe.
1813 *
1814 * 1.11.2 Arguments and notes
1815 *
1816 * The first argument is the cookie as passed to dtrace_register(). The
1817 * second argument is the identifier of the probe to be destroyed. The third
1818 * argument is the probe argument as passed to dtrace_probe_create(). The
1819 * provider should free all state associated with the probe. The framework
1820 * guarantees that dtps_destroy() is only called for probes that have either
1821 * been disabled via dtps_disable() or were never enabled via dtps_enable().
1822 * Once dtps_disable() has been called for a probe, no further call will be
1823 * made specifying the probe.
1824 *
1825 * 1.11.3 Return value
1826 *
1827 * None.
1828 *
1829 * 1.11.4 Caller's context
1830 *
1831 * The DTrace framework is locked in such a way that it may not be called
1832 * back into at all. mod_lock is held. cpu_lock is not held, and may not be
1833 * acquired.
1834 *
1835 *
1836 * 2 Provider-to-Framework API
1837 *
1838 * 2.1 Overview
1839 *
1840 * The Provider-to-Framework API provides the mechanism for the provider to
1841 * register itself with the DTrace framework, to create probes, to lookup
1842 * probes and (most importantly) to fire probes. The Provider-to-Framework
1843 * consists of:
1844 *
1845 * dtrace_register() <-- Register a provider with the DTrace framework
1846 * dtrace_unregister() <-- Remove a provider's DTrace registration
1847 * dtrace_invalidate() <-- Invalidate the specified provider
1848 * dtrace_condense() <-- Remove a provider's unenabled probes
1849 * dtrace_attached() <-- Indicates whether or not DTrace has attached
1850 * dtrace_probe_create() <-- Create a DTrace probe
1851 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name
1852 * dtrace_probe_arg() <-- Return the probe argument for a specific probe
1853 * dtrace_probe() <-- Fire the specified probe
1854 *
1855 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1856 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1857 * dtrace_provider_id_t *idp)
1858 *
1859 * 2.2.1 Overview
1860 *
1861 * dtrace_register() registers the calling provider with the DTrace
1862 * framework. It should generally be called by DTrace providers in their
1863 * attach(9E) entry point.
1864 *
1865 * 2.2.2 Arguments and Notes
1866 *
1867 * The first argument is the name of the provider. The second argument is a
1868 * pointer to the stability attributes for the provider. The third argument
1869 * is the privilege flags for the provider, and must be some combination of:
1870 *
1871 * DTRACE_PRIV_NONE <= All users may enable probes from this provider
1872 *
1873 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may
1874 * enable probes from this provider
1875 *
1876 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may
1877 * enable probes from this provider
1878 *
1879 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL
1880 * may enable probes from this provider
1881 *
1882 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on
1883 * the privilege requirements above. These probes
1884 * require either (a) a user ID matching the user
1885 * ID of the cred passed in the fourth argument
1886 * or (b) the PRIV_PROC_OWNER privilege.
1887 *
1888 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1889 * the privilege requirements above. These probes
1890 * require either (a) a zone ID matching the zone
1891 * ID of the cred passed in the fourth argument
1892 * or (b) the PRIV_PROC_ZONE privilege.
1893 *
1894 * Note that these flags designate the _visibility_ of the probes, not
1895 * the conditions under which they may or may not fire.
1896 *
1897 * The fourth argument is the credential that is associated with the
1898 * provider. This argument should be NULL if the privilege flags don't
1899 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the
1900 * framework stashes the uid and zoneid represented by this credential
1901 * for use at probe-time, in implicit predicates. These limit visibility
1902 * of the probes to users and/or zones which have sufficient privilege to
1903 * access them.
1904 *
1905 * The fifth argument is a DTrace provider operations vector, which provides
1906 * the implementation for the Framework-to-Provider API. (See Section 1,
1907 * above.) This must be non-NULL, and each member must be non-NULL. The
1908 * exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1909 * members (if the provider so desires, _one_ of these members may be left
1910 * NULL -- denoting that the provider only implements the other) and (2)
1911 * the dtps_suspend() and dtps_resume() members, which must either both be
1912 * NULL or both be non-NULL.
1913 *
1914 * The sixth argument is a cookie to be specified as the first argument for
1915 * each function in the Framework-to-Provider API. This argument may have
1916 * any value.
1917 *
1918 * The final argument is a pointer to dtrace_provider_id_t. If
1919 * dtrace_register() successfully completes, the provider identifier will be
1920 * stored in the memory pointed to be this argument. This argument must be
1921 * non-NULL.
1922 *
1923 * 2.2.3 Return value
1924 *
1925 * On success, dtrace_register() returns 0 and stores the new provider's
1926 * identifier into the memory pointed to by the idp argument. On failure,
1927 * dtrace_register() returns an errno:
1928 *
1929 * EINVAL The arguments passed to dtrace_register() were somehow invalid.
1930 * This may because a parameter that must be non-NULL was NULL,
1931 * because the name was invalid (either empty or an illegal
1932 * provider name) or because the attributes were invalid.
1933 *
1934 * No other failure code is returned.
1935 *
1936 * 2.2.4 Caller's context
1937 *
1938 * dtrace_register() may induce calls to dtrace_provide(); the provider must
1939 * hold no locks across dtrace_register() that may also be acquired by
1940 * dtrace_provide(). cpu_lock and mod_lock must not be held.
1941 *
1942 * 2.3 int dtrace_unregister(dtrace_provider_t id)
1943 *
1944 * 2.3.1 Overview
1945 *
1946 * Unregisters the specified provider from the DTrace framework. It should
1947 * generally be called by DTrace providers in their detach(9E) entry point.
1948 *
1949 * 2.3.2 Arguments and Notes
1950 *
1951 * The only argument is the provider identifier, as returned from a
1952 * successful call to dtrace_register(). As a result of calling
1953 * dtrace_unregister(), the DTrace framework will call back into the provider
1954 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
1955 * completes, however, the DTrace framework will no longer make calls through
1956 * the Framework-to-Provider API.
1957 *
1958 * 2.3.3 Return value
1959 *
1960 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister()
1961 * returns an errno:
1962 *
1963 * EBUSY There are currently processes that have the DTrace pseudodevice
1964 * open, or there exists an anonymous enabling that hasn't yet
1965 * been claimed.
1966 *
1967 * No other failure code is returned.
1968 *
1969 * 2.3.4 Caller's context
1970 *
1971 * Because a call to dtrace_unregister() may induce calls through the
1972 * Framework-to-Provider API, the caller may not hold any lock across
1973 * dtrace_register() that is also acquired in any of the Framework-to-
1974 * Provider API functions. Additionally, mod_lock may not be held.
1975 *
1976 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id)
1977 *
1978 * 2.4.1 Overview
1979 *
1980 * Invalidates the specified provider. All subsequent probe lookups for the
1981 * specified provider will fail, but its probes will not be removed.
1982 *
1983 * 2.4.2 Arguments and note
1984 *
1985 * The only argument is the provider identifier, as returned from a
1986 * successful call to dtrace_register(). In general, a provider's probes
1987 * always remain valid; dtrace_invalidate() is a mechanism for invalidating
1988 * an entire provider, regardless of whether or not probes are enabled or
1989 * not. Note that dtrace_invalidate() will _not_ prevent already enabled
1990 * probes from firing -- it will merely prevent any new enablings of the
1991 * provider's probes.
1992 *
1993 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1994 *
1995 * 2.5.1 Overview
1996 *
1997 * Removes all the unenabled probes for the given provider. This function is
1998 * not unlike dtrace_unregister(), except that it doesn't remove the
1999 * provider just as many of its associated probes as it can.
2000 *
2001 * 2.5.2 Arguments and Notes
2002 *
2003 * As with dtrace_unregister(), the sole argument is the provider identifier
2004 * as returned from a successful call to dtrace_register(). As a result of
2005 * calling dtrace_condense(), the DTrace framework will call back into the
2006 * given provider's dtps_destroy() entry point for each of the provider's
2007 * unenabled probes.
2008 *
2009 * 2.5.3 Return value
2010 *
2011 * Currently, dtrace_condense() always returns 0. However, consumers of this
2012 * function should check the return value as appropriate; its behavior may
2013 * change in the future.
2014 *
2015 * 2.5.4 Caller's context
2016 *
2017 * As with dtrace_unregister(), the caller may not hold any lock across
2018 * dtrace_condense() that is also acquired in the provider's entry points.
2019 * Also, mod_lock may not be held.
2020 *
2021 * 2.6 int dtrace_attached()
2022 *
2023 * 2.6.1 Overview
2024 *
2025 * Indicates whether or not DTrace has attached.
2026 *
2027 * 2.6.2 Arguments and Notes
2028 *
2029 * For most providers, DTrace makes initial contact beyond registration.
2030 * That is, once a provider has registered with DTrace, it waits to hear
2031 * from DTrace to create probes. However, some providers may wish to
2032 * proactively create probes without first being told by DTrace to do so.
2033 * If providers wish to do this, they must first call dtrace_attached() to
2034 * determine if DTrace itself has attached. If dtrace_attached() returns 0,
2035 * the provider must not make any other Provider-to-Framework API call.
2036 *
2037 * 2.6.3 Return value
2038 *
2039 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
2040 *
2041 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod,
2042 * const char *func, const char *name, int aframes, void *arg)
2043 *
2044 * 2.7.1 Overview
2045 *
2046 * Creates a probe with specified module name, function name, and name.
2047 *
2048 * 2.7.2 Arguments and Notes
2049 *
2050 * The first argument is the provider identifier, as returned from a
2051 * successful call to dtrace_register(). The second, third, and fourth
2052 * arguments are the module name, function name, and probe name,
2053 * respectively. Of these, module name and function name may both be NULL
2054 * (in which case the probe is considered to be unanchored), or they may both
2055 * be non-NULL. The name must be non-NULL, and must point to a non-empty
2056 * string.
2057 *
2058 * The fifth argument is the number of artificial stack frames that will be
2059 * found on the stack when dtrace_probe() is called for the new probe. These
2060 * artificial frames will be automatically be pruned should the stack() or
2061 * stackdepth() functions be called as part of one of the probe's ECBs. If
2062 * the parameter doesn't add an artificial frame, this parameter should be
2063 * zero.
2064 *
2065 * The final argument is a probe argument that will be passed back to the
2066 * provider when a probe-specific operation is called. (e.g., via
2067 * dtps_enable(), dtps_disable(), etc.)
2068 *
2069 * Note that it is up to the provider to be sure that the probe that it
2070 * creates does not already exist -- if the provider is unsure of the probe's
2071 * existence, it should assure its absence with dtrace_probe_lookup() before
2072 * calling dtrace_probe_create().
2073 *
2074 * 2.7.3 Return value
2075 *
2076 * dtrace_probe_create() always succeeds, and always returns the identifier
2077 * of the newly-created probe.
2078 *
2079 * 2.7.4 Caller's context
2080 *
2081 * While dtrace_probe_create() is generally expected to be called from
2082 * dtps_provide() and/or dtps_provide_module(), it may be called from other
2083 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2084 *
2085 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
2086 * const char *func, const char *name)
2087 *
2088 * 2.8.1 Overview
2089 *
2090 * Looks up a probe based on provdider and one or more of module name,
2091 * function name and probe name.
2092 *
2093 * 2.8.2 Arguments and Notes
2094 *
2095 * The first argument is the provider identifier, as returned from a
2096 * successful call to dtrace_register(). The second, third, and fourth
2097 * arguments are the module name, function name, and probe name,
2098 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return
2099 * the identifier of the first probe that is provided by the specified
2100 * provider and matches all of the non-NULL matching criteria.
2101 * dtrace_probe_lookup() is generally used by a provider to be check the
2102 * existence of a probe before creating it with dtrace_probe_create().
2103 *
2104 * 2.8.3 Return value
2105 *
2106 * If the probe exists, returns its identifier. If the probe does not exist,
2107 * return DTRACE_IDNONE.
2108 *
2109 * 2.8.4 Caller's context
2110 *
2111 * While dtrace_probe_lookup() is generally expected to be called from
2112 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2113 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2114 *
2115 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
2116 *
2117 * 2.9.1 Overview
2118 *
2119 * Returns the probe argument associated with the specified probe.
2120 *
2121 * 2.9.2 Arguments and Notes
2122 *
2123 * The first argument is the provider identifier, as returned from a
2124 * successful call to dtrace_register(). The second argument is a probe
2125 * identifier, as returned from dtrace_probe_lookup() or
2126 * dtrace_probe_create(). This is useful if a probe has multiple
2127 * provider-specific components to it: the provider can create the probe
2128 * once with provider-specific state, and then add to the state by looking
2129 * up the probe based on probe identifier.
2130 *
2131 * 2.9.3 Return value
2132 *
2133 * Returns the argument associated with the specified probe. If the
2134 * specified probe does not exist, or if the specified probe is not provided
2135 * by the specified provider, NULL is returned.
2136 *
2137 * 2.9.4 Caller's context
2138 *
2139 * While dtrace_probe_arg() is generally expected to be called from
2140 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2141 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2142 *
2143 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2144 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2145 *
2146 * 2.10.1 Overview
2147 *
2148 * The epicenter of DTrace: fires the specified probes with the specified
2149 * arguments.
2150 *
2151 * 2.10.2 Arguments and Notes
2152 *
2153 * The first argument is a probe identifier as returned by
2154 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth
2155 * arguments are the values to which the D variables "arg0" through "arg4"
2156 * will be mapped.
2157 *
2158 * dtrace_probe() should be called whenever the specified probe has fired --
2159 * however the provider defines it.
2160 *
2161 * 2.10.3 Return value
2162 *
2163 * None.
2164 *
2165 * 2.10.4 Caller's context
2166 *
2167 * dtrace_probe() may be called in virtually any context: kernel, user,
2168 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2169 * dispatcher locks held, with interrupts disabled, etc. The only latitude
2170 * that must be afforded to DTrace is the ability to make calls within
2171 * itself (and to its in-kernel subroutines) and the ability to access
2172 * arbitrary (but mapped) memory. On some platforms, this constrains
2173 * context. For example, on UltraSPARC, dtrace_probe() cannot be called
2174 * from any context in which TL is greater than zero. dtrace_probe() may
2175 * also not be called from any routine which may be called by dtrace_probe()
2176 * -- which includes functions in the DTrace framework and some in-kernel
2177 * DTrace subroutines. All such functions "dtrace_"; providers that
2178 * instrument the kernel arbitrarily should be sure to not instrument these
2179 * routines.
2180 */
2181 typedef struct dtrace_pops {
2182 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
2183 void (*dtps_provide_module)(void *arg, struct modctl *mp);
2184 int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2185 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2186 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2187 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2188 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2189 dtrace_argdesc_t *desc);
2190 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2191 int argno, int aframes);
2192 int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg);
2193 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2194 } dtrace_pops_t;
2195
2196 typedef uintptr_t dtrace_provider_id_t;
2197
2198 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2199 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2200 extern int dtrace_unregister(dtrace_provider_id_t);
2201 extern int dtrace_condense(dtrace_provider_id_t);
2202 extern void dtrace_invalidate(dtrace_provider_id_t);
2203 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
2204 const char *, const char *);
2205 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2206 const char *, const char *, int, void *);
2207 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2208 #if !defined(__APPLE__)
2209 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2210 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2211 #else
2212 extern void dtrace_probe(dtrace_id_t, uint64_t arg0, uint64_t arg1,
2213 uint64_t arg2, uint64_t arg3, uint64_t arg4);
2214 #endif /* __APPLE__ */
2215
2216 /*
2217 * DTrace Meta Provider API
2218 *
2219 * The following functions are implemented by the DTrace framework and are
2220 * used to implement meta providers. Meta providers plug into the DTrace
2221 * framework and are used to instantiate new providers on the fly. At
2222 * present, there is only one type of meta provider and only one meta
2223 * provider may be registered with the DTrace framework at a time. The
2224 * sole meta provider type provides user-land static tracing facilities
2225 * by taking meta probe descriptions and adding a corresponding provider
2226 * into the DTrace framework.
2227 *
2228 * 1 Framework-to-Provider
2229 *
2230 * 1.1 Overview
2231 *
2232 * The Framework-to-Provider API is represented by the dtrace_mops structure
2233 * that the meta provider passes to the framework when registering itself as
2234 * a meta provider. This structure consists of the following members:
2235 *
2236 * dtms_create_probe() <-- Add a new probe to a created provider
2237 * dtms_provide_pid() <-- Create a new provider for a given process
2238 * dtms_remove_pid() <-- Remove a previously created provider
2239 *
2240 * 1.2 void dtms_create_probe(void *arg, void *parg,
2241 * dtrace_helper_probedesc_t *probedesc);
2242 *
2243 * 1.2.1 Overview
2244 *
2245 * Called by the DTrace framework to create a new probe in a provider
2246 * created by this meta provider.
2247 *
2248 * 1.2.2 Arguments and notes
2249 *
2250 * The first argument is the cookie as passed to dtrace_meta_register().
2251 * The second argument is the provider cookie for the associated provider;
2252 * this is obtained from the return value of dtms_provide_pid(). The third
2253 * argument is the helper probe description.
2254 *
2255 * 1.2.3 Return value
2256 *
2257 * None
2258 *
2259 * 1.2.4 Caller's context
2260 *
2261 * dtms_create_probe() is called from either ioctl() or module load context.
2262 * The DTrace framework is locked in such a way that meta providers may not
2263 * register or unregister. This means that the meta provider cannot call
2264 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2265 * such that the provider may (and is expected to) call provider-related
2266 * DTrace provider APIs including dtrace_probe_create().
2267 *
2268 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2269 * pid_t pid)
2270 *
2271 * 1.3.1 Overview
2272 *
2273 * Called by the DTrace framework to instantiate a new provider given the
2274 * description of the provider and probes in the mprov argument. The
2275 * meta provider should call dtrace_register() to insert the new provider
2276 * into the DTrace framework.
2277 *
2278 * 1.3.2 Arguments and notes
2279 *
2280 * The first argument is the cookie as passed to dtrace_meta_register().
2281 * The second argument is a pointer to a structure describing the new
2282 * helper provider. The third argument is the process identifier for
2283 * process associated with this new provider. Note that the name of the
2284 * provider as passed to dtrace_register() should be the contatenation of
2285 * the dtmpb_provname member of the mprov argument and the processs
2286 * identifier as a string.
2287 *
2288 * 1.3.3 Return value
2289 *
2290 * The cookie for the provider that the meta provider creates. This is
2291 * the same value that it passed to dtrace_register().
2292 *
2293 * 1.3.4 Caller's context
2294 *
2295 * dtms_provide_pid() is called from either ioctl() or module load context.
2296 * The DTrace framework is locked in such a way that meta providers may not
2297 * register or unregister. This means that the meta provider cannot call
2298 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2299 * is such that the provider may -- and is expected to -- call
2300 * provider-related DTrace provider APIs including dtrace_register().
2301 *
2302 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2303 * pid_t pid)
2304 *
2305 * 1.4.1 Overview
2306 *
2307 * Called by the DTrace framework to remove a provider that had previously
2308 * been instantiated via the dtms_provide_pid() entry point. The meta
2309 * provider need not remove the provider immediately, but this entry
2310 * point indicates that the provider should be removed as soon as possible
2311 * using the dtrace_unregister() API.
2312 *
2313 * 1.4.2 Arguments and notes
2314 *
2315 * The first argument is the cookie as passed to dtrace_meta_register().
2316 * The second argument is a pointer to a structure describing the helper
2317 * provider. The third argument is the process identifier for process
2318 * associated with this new provider.
2319 *
2320 * 1.4.3 Return value
2321 *
2322 * None
2323 *
2324 * 1.4.4 Caller's context
2325 *
2326 * dtms_remove_pid() is called from either ioctl() or exit() context.
2327 * The DTrace framework is locked in such a way that meta providers may not
2328 * register or unregister. This means that the meta provider cannot call
2329 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2330 * is such that the provider may -- and is expected to -- call
2331 * provider-related DTrace provider APIs including dtrace_unregister().
2332 */
2333 typedef struct dtrace_helper_probedesc {
2334 char *dthpb_mod; /* probe module */
2335 char *dthpb_func; /* probe function */
2336 char *dthpb_name; /* probe name */
2337 uint64_t dthpb_base; /* base address */
2338 #if !defined(__APPLE__)
2339 uint32_t *dthpb_offs; /* offsets array */
2340 uint32_t *dthpb_enoffs; /* is-enabled offsets array */
2341 #else
2342 int32_t *dthpb_offs; /* (signed) offsets array */
2343 int32_t *dthpb_enoffs; /* (signed) is-enabled offsets array */
2344 #endif
2345 uint32_t dthpb_noffs; /* offsets count */
2346 uint32_t dthpb_nenoffs; /* is-enabled offsets count */
2347 uint8_t *dthpb_args; /* argument mapping array */
2348 uint8_t dthpb_xargc; /* translated argument count */
2349 uint8_t dthpb_nargc; /* native argument count */
2350 char *dthpb_xtypes; /* translated types strings */
2351 char *dthpb_ntypes; /* native types strings */
2352 } dtrace_helper_probedesc_t;
2353
2354 typedef struct dtrace_helper_provdesc {
2355 char *dthpv_provname; /* provider name */
2356 dtrace_pattr_t dthpv_pattr; /* stability attributes */
2357 } dtrace_helper_provdesc_t;
2358
2359 typedef struct dtrace_mops {
2360 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2361 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2362 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2363 } dtrace_mops_t;
2364
2365 typedef uintptr_t dtrace_meta_provider_id_t;
2366
2367 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2368 dtrace_meta_provider_id_t *);
2369 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2370
2371 /*
2372 * DTrace Kernel Hooks
2373 *
2374 * The following functions are implemented by the base kernel and form a set of
2375 * hooks used by the DTrace framework. DTrace hooks are implemented in either
2376 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2377 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2378 */
2379
2380 typedef enum dtrace_vtime_state {
2381 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */
2382 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */
2383 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */
2384 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */
2385 } dtrace_vtime_state_t;
2386
2387 extern dtrace_vtime_state_t dtrace_vtime_active;
2388 extern void dtrace_vtime_switch(kthread_t *next);
2389 extern void dtrace_vtime_enable_tnf(void);
2390 extern void dtrace_vtime_disable_tnf(void);
2391 extern void dtrace_vtime_enable(void);
2392 extern void dtrace_vtime_disable(void);
2393
2394 #if !defined(__APPLE__)
2395 struct regs;
2396
2397 extern int (*dtrace_pid_probe_ptr)(struct regs *);
2398 extern int (*dtrace_return_probe_ptr)(struct regs *);
2399 #else
2400 #if defined (__i386__) || defined(__x86_64__)
2401 extern int (*dtrace_pid_probe_ptr)(x86_saved_state_t *regs);
2402 extern int (*dtrace_return_probe_ptr)(x86_saved_state_t* regs);
2403 #else
2404 #error architecture not supported
2405 #endif
2406 #endif /* __APPLE__ */
2407 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2408 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2409 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2410 extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2411
2412 typedef uintptr_t dtrace_icookie_t;
2413 typedef void (*dtrace_xcall_t)(void *);
2414
2415 extern dtrace_icookie_t dtrace_interrupt_disable(void);
2416 extern void dtrace_interrupt_enable(dtrace_icookie_t);
2417
2418 extern void dtrace_membar_producer(void);
2419 extern void dtrace_membar_consumer(void);
2420
2421 extern void (*dtrace_cpu_init)(processorid_t);
2422 #if !defined(__APPLE__)
2423 extern void (*dtrace_modload)(struct modctl *);
2424 extern void (*dtrace_modunload)(struct modctl *);
2425 #else
2426 extern int (*dtrace_modload)(struct kmod_info *);
2427 extern int (*dtrace_modunload)(struct kmod_info *);
2428 #endif /* __APPLE__ */
2429 extern void (*dtrace_helpers_cleanup)(proc_t*);
2430 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2431 extern void (*dtrace_cpustart_init)(void);
2432 extern void (*dtrace_cpustart_fini)(void);
2433
2434 extern void (*dtrace_kreloc_init)(void);
2435 extern void (*dtrace_kreloc_fini)(void);
2436
2437 extern void (*dtrace_debugger_init)(void);
2438 extern void (*dtrace_debugger_fini)(void);
2439 extern dtrace_cacheid_t dtrace_predcache_id;
2440
2441 extern hrtime_t dtrace_gethrtime(void);
2442 extern void dtrace_sync(void);
2443 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2444 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2445 extern void dtrace_vpanic(const char *, __va_list);
2446 extern void dtrace_panic(const char *, ...);
2447
2448 extern int dtrace_safe_defer_signal(void);
2449 extern void dtrace_safe_synchronous_signal(void);
2450
2451 extern int dtrace_mach_aframes(void);
2452
2453 #if !defined(__APPLE__)
2454 #if defined(__i386) || defined(__amd64)
2455 extern int dtrace_instr_size(uchar_t *instr);
2456 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2457 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2458 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2459 extern void dtrace_invop_callsite(void);
2460 #endif
2461
2462 #ifdef __sparc
2463 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2464 extern void dtrace_getfsr(uint64_t *);
2465 #endif
2466 #else
2467 #if defined(__i386__) || defined(__x86_64__)
2468 extern int dtrace_instr_size(uchar_t *instr);
2469 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2470 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2471 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2472 extern void *dtrace_invop_callsite_pre;
2473 extern void *dtrace_invop_callsite_post;
2474 #endif
2475
2476
2477 #undef proc_t
2478 #endif /* __APPLE__ */
2479
2480 #define DTRACE_CPUFLAG_ISSET(flag) \
2481 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
2482
2483 #define DTRACE_CPUFLAG_SET(flag) \
2484 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2485
2486 #define DTRACE_CPUFLAG_CLEAR(flag) \
2487 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
2488
2489 #endif /* _KERNEL */
2490
2491 #endif /* _ASM */
2492
2493 #if !defined(__APPLE__)
2494 #if defined(__i386) || defined(__amd64)
2495
2496 #define DTRACE_INVOP_PUSHL_EBP 1
2497 #define DTRACE_INVOP_POPL_EBP 2
2498 #define DTRACE_INVOP_LEAVE 3
2499 #define DTRACE_INVOP_NOP 4
2500 #define DTRACE_INVOP_RET 5
2501
2502 #endif
2503 #else
2504 #if defined(__i386__) || defined(__x86_64__)
2505
2506 #define DTRACE_INVOP_PUSHL_EBP 1
2507 #define DTRACE_INVOP_POPL_EBP 2
2508 #define DTRACE_INVOP_LEAVE 3
2509 #define DTRACE_INVOP_NOP 4
2510 #define DTRACE_INVOP_RET 5
2511
2512 #endif
2513
2514
2515 #endif /* __APPLE__ */
2516
2517 #ifdef __cplusplus
2518 }
2519 #endif
2520
2521 #endif /* _SYS_DTRACE_H */