]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/ip_input.c
xnu-1699.24.8.tar.gz
[apple/xnu.git] / bsd / netinet / ip_input.c
1 /*
2 * Copyright (c) 2000-2011 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1982, 1986, 1988, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
61 * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.25 2001/08/29 21:41:37 jesper Exp $
62 */
63 /*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2007 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70 #define _IP_VHL
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/mbuf.h>
75 #include <sys/malloc.h>
76 #include <sys/domain.h>
77 #include <sys/protosw.h>
78 #include <sys/socket.h>
79 #include <sys/time.h>
80 #include <sys/kernel.h>
81 #include <sys/syslog.h>
82 #include <sys/sysctl.h>
83 #include <sys/mcache.h>
84 #include <mach/mach_time.h>
85
86 #include <machine/endian.h>
87
88 #include <kern/queue.h>
89 #include <kern/locks.h>
90
91 #include <pexpert/pexpert.h>
92
93 #include <net/if.h>
94 #include <net/if_var.h>
95 #include <net/if_dl.h>
96 #include <net/route.h>
97 #include <net/kpi_protocol.h>
98 #include <net/ntstat.h>
99
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #include <netinet/in_var.h>
103 #include <netinet/in_arp.h>
104 #include <netinet/ip.h>
105 #include <netinet/in_pcb.h>
106 #include <netinet/ip_var.h>
107 #include <netinet/ip_icmp.h>
108 #include <sys/socketvar.h>
109
110 #include <netinet/ip_fw.h>
111 #include <netinet/ip_divert.h>
112
113 #include <netinet/kpi_ipfilter_var.h>
114
115 /* needed for AUTOCONFIGURING: */
116 #include <netinet/udp.h>
117 #include <netinet/udp_var.h>
118 #include <netinet/bootp.h>
119 #include <mach/sdt.h>
120
121 #if CONFIG_MACF_NET
122 #include <security/mac_framework.h>
123 #endif
124
125 #include <sys/kdebug.h>
126 #include <libkern/OSAtomic.h>
127
128 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 0)
129 #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 2)
130 #define DBG_FNC_IP_INPUT NETDBG_CODE(DBG_NETIP, (2 << 8))
131
132
133 #if IPSEC
134 #include <netinet6/ipsec.h>
135 #include <netkey/key.h>
136 #endif
137
138 #include "faith.h"
139 #if defined(NFAITH) && NFAITH > 0
140 #include <net/if_types.h>
141 #endif
142
143 #if DUMMYNET
144 #include <netinet/ip_dummynet.h>
145 #endif
146
147 #if PF
148 #include <net/pfvar.h>
149 #endif /* PF */
150
151 #if IPSEC
152 extern int ipsec_bypass;
153 extern lck_mtx_t *sadb_mutex;
154
155 lck_grp_t *sadb_stat_mutex_grp;
156 lck_grp_attr_t *sadb_stat_mutex_grp_attr;
157 lck_attr_t *sadb_stat_mutex_attr;
158 lck_mtx_t *sadb_stat_mutex;
159
160 #endif
161
162 int rsvp_on = 0;
163 static int ip_rsvp_on;
164 struct socket *ip_rsvpd;
165
166 static int sysctl_ipforwarding SYSCTL_HANDLER_ARGS;
167
168 int ipforwarding = 0;
169 SYSCTL_PROC(_net_inet_ip, IPCTL_FORWARDING, forwarding,
170 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ipforwarding, 0,
171 sysctl_ipforwarding, "I", "Enable IP forwarding between interfaces");
172
173 static int ipsendredirects = 1; /* XXX */
174 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW | CTLFLAG_LOCKED,
175 &ipsendredirects, 0, "Enable sending IP redirects");
176
177 int ip_defttl = IPDEFTTL;
178 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW | CTLFLAG_LOCKED,
179 &ip_defttl, 0, "Maximum TTL on IP packets");
180
181 static int ip_dosourceroute = 0;
182 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW | CTLFLAG_LOCKED,
183 &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
184
185 static int ip_acceptsourceroute = 0;
186 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
187 CTLFLAG_RW | CTLFLAG_LOCKED, &ip_acceptsourceroute, 0,
188 "Enable accepting source routed IP packets");
189
190 static int ip_keepfaith = 0;
191 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW | CTLFLAG_LOCKED,
192 &ip_keepfaith, 0,
193 "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
194
195 static int nipq = 0; /* total # of reass queues */
196 static int maxnipq;
197 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW | CTLFLAG_LOCKED,
198 &maxnipq, 0,
199 "Maximum number of IPv4 fragment reassembly queue entries");
200
201 static int maxfragsperpacket;
202 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW | CTLFLAG_LOCKED,
203 &maxfragsperpacket, 0,
204 "Maximum number of IPv4 fragments allowed per packet");
205
206 static int maxfrags;
207 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfrags, CTLFLAG_RW | CTLFLAG_LOCKED,
208 &maxfrags, 0, "Maximum number of IPv4 fragments allowed");
209
210 static int currentfrags = 0;
211
212 int ip_doscopedroute = 1;
213 SYSCTL_INT(_net_inet_ip, OID_AUTO, scopedroute, CTLFLAG_RD | CTLFLAG_LOCKED,
214 &ip_doscopedroute, 0, "Enable IPv4 scoped routing");
215
216 /*
217 * XXX - Setting ip_checkinterface mostly implements the receive side of
218 * the Strong ES model described in RFC 1122, but since the routing table
219 * and transmit implementation do not implement the Strong ES model,
220 * setting this to 1 results in an odd hybrid.
221 *
222 * XXX - ip_checkinterface currently must be disabled if you use ipnat
223 * to translate the destination address to another local interface.
224 *
225 * XXX - ip_checkinterface must be disabled if you add IP aliases
226 * to the loopback interface instead of the interface where the
227 * packets for those addresses are received.
228 */
229 static int ip_checkinterface = 0;
230 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW | CTLFLAG_LOCKED,
231 &ip_checkinterface, 0, "Verify packet arrives on correct interface");
232
233
234 #if DIAGNOSTIC
235 static int ipprintfs = 0;
236 #endif
237
238 extern int in_proto_count;
239 extern struct domain inetdomain;
240 extern struct protosw inetsw[];
241 struct protosw *ip_protox[IPPROTO_MAX];
242 static int ipqmaxlen = IFQ_MAXLEN;
243
244 static lck_grp_attr_t *in_ifaddr_rwlock_grp_attr;
245 static lck_grp_t *in_ifaddr_rwlock_grp;
246 static lck_attr_t *in_ifaddr_rwlock_attr;
247 lck_rw_t *in_ifaddr_rwlock;
248
249 /* Protected by in_ifaddr_rwlock */
250 struct in_ifaddrhead in_ifaddrhead; /* first inet address */
251 struct in_ifaddrhashhead *in_ifaddrhashtbl; /* inet addr hash table */
252
253 #define INADDR_NHASH 61
254 static u_int32_t inaddr_nhash; /* hash table size */
255 static u_int32_t inaddr_hashp; /* next largest prime */
256
257 struct ifqueue ipintrq;
258 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW | CTLFLAG_LOCKED,
259 &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
260 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD | CTLFLAG_LOCKED,
261 &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
262
263 struct ipstat ipstat;
264 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RD | CTLFLAG_LOCKED,
265 &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
266
267 /* Packet reassembly stuff */
268 #define IPREASS_NHASH_LOG2 6
269 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
270 #define IPREASS_HMASK (IPREASS_NHASH - 1)
271 #define IPREASS_HASH(x,y) \
272 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
273
274 static struct ipq ipq[IPREASS_NHASH];
275 static TAILQ_HEAD(ipq_list, ipq) ipq_list =
276 TAILQ_HEAD_INITIALIZER(ipq_list);
277 const int ipintrq_present = 1;
278 lck_mtx_t *ip_mutex;
279 lck_attr_t *ip_mutex_attr;
280 lck_grp_t *ip_mutex_grp;
281 lck_grp_attr_t *ip_mutex_grp_attr;
282 lck_mtx_t *inet_domain_mutex;
283 extern lck_mtx_t *domain_proto_mtx;
284
285 #if IPCTL_DEFMTU
286 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW | CTLFLAG_LOCKED,
287 &ip_mtu, 0, "Default MTU");
288 #endif
289
290 #if IPSTEALTH
291 static int ipstealth = 0;
292 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW | CTLFLAG_LOCKED,
293 &ipstealth, 0, "");
294 #endif
295
296
297 /* Firewall hooks */
298 #if IPFIREWALL
299 ip_fw_chk_t *ip_fw_chk_ptr;
300 int fw_enable = 1;
301 int fw_bypass = 1;
302 int fw_one_pass = 0;
303
304 #if DUMMYNET
305 ip_dn_io_t *ip_dn_io_ptr;
306 #endif
307
308 int (*fr_checkp)(struct ip *, int, struct ifnet *, int, struct mbuf **) = NULL;
309 #endif /* IPFIREWALL */
310
311 SYSCTL_NODE(_net_inet_ip, OID_AUTO, linklocal, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "link local");
312
313 struct ip_linklocal_stat ip_linklocal_stat;
314 SYSCTL_STRUCT(_net_inet_ip_linklocal, OID_AUTO, stat, CTLFLAG_RD | CTLFLAG_LOCKED,
315 &ip_linklocal_stat, ip_linklocal_stat,
316 "Number of link local packets with TTL less than 255");
317
318 SYSCTL_NODE(_net_inet_ip_linklocal, OID_AUTO, in, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "link local input");
319
320 int ip_linklocal_in_allowbadttl = 1;
321 SYSCTL_INT(_net_inet_ip_linklocal_in, OID_AUTO, allowbadttl, CTLFLAG_RW | CTLFLAG_LOCKED,
322 &ip_linklocal_in_allowbadttl, 0,
323 "Allow incoming link local packets with TTL less than 255");
324
325
326 /*
327 * We need to save the IP options in case a protocol wants to respond
328 * to an incoming packet over the same route if the packet got here
329 * using IP source routing. This allows connection establishment and
330 * maintenance when the remote end is on a network that is not known
331 * to us.
332 */
333 static int ip_nhops = 0;
334 static struct ip_srcrt {
335 struct in_addr dst; /* final destination */
336 char nop; /* one NOP to align */
337 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
338 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
339 } ip_srcrt;
340
341 static void in_ifaddrhashtbl_init(void);
342 static void save_rte(u_char *, struct in_addr);
343 static int ip_dooptions(struct mbuf *, int, struct sockaddr_in *);
344 static void ip_forward(struct mbuf *, int, struct sockaddr_in *);
345 static void ip_freef(struct ipq *);
346 #if IPDIVERT
347 #ifdef IPDIVERT_44
348 static struct mbuf *ip_reass(struct mbuf *,
349 struct ipq *, struct ipq *, u_int32_t *, u_int16_t *);
350 #else
351 static struct mbuf *ip_reass(struct mbuf *,
352 struct ipq *, struct ipq *, u_int16_t *, u_int16_t *);
353 #endif
354 #else
355 static struct mbuf *ip_reass(struct mbuf *, struct ipq *, struct ipq *);
356 #endif
357 static void ip_fwd_route_copyout(struct ifnet *, struct route *);
358 static void ip_fwd_route_copyin(struct ifnet *, struct route *);
359 void ipintr(void);
360 void in_dinit(void);
361
362 #if RANDOM_IP_ID
363 extern u_short ip_id;
364
365 int ip_use_randomid = 1;
366 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW | CTLFLAG_LOCKED,
367 &ip_use_randomid, 0, "Randomize IP packets IDs");
368 #endif
369
370 #define satosin(sa) ((struct sockaddr_in *)(sa))
371 #define ifatoia(ifa) ((struct in_ifaddr *)(ifa))
372
373 /*
374 * IP initialization: fill in IP protocol switch table.
375 * All protocols not implemented in kernel go to raw IP protocol handler.
376 */
377 void
378 ip_init(void)
379 {
380 struct protosw *pr;
381 int i;
382 static int ip_initialized = 0;
383
384 if (!ip_initialized)
385 {
386 PE_parse_boot_argn("net.inet.ip.scopedroute",
387 &ip_doscopedroute, sizeof (ip_doscopedroute));
388
389 in_ifaddr_init();
390
391 in_ifaddr_rwlock_grp_attr = lck_grp_attr_alloc_init();
392 in_ifaddr_rwlock_grp = lck_grp_alloc_init("in_ifaddr_rwlock",
393 in_ifaddr_rwlock_grp_attr);
394 in_ifaddr_rwlock_attr = lck_attr_alloc_init();
395 in_ifaddr_rwlock = lck_rw_alloc_init(in_ifaddr_rwlock_grp,
396 in_ifaddr_rwlock_attr);
397
398 TAILQ_INIT(&in_ifaddrhead);
399 in_ifaddrhashtbl_init();
400
401 ip_moptions_init();
402
403 pr = pffindproto_locked(PF_INET, IPPROTO_RAW, SOCK_RAW);
404 if (pr == 0)
405 panic("ip_init");
406 for (i = 0; i < IPPROTO_MAX; i++)
407 ip_protox[i] = pr;
408 for (pr = inetdomain.dom_protosw; pr; pr = pr->pr_next) {
409 if (pr->pr_domain == NULL)
410 continue; /* If uninitialized, skip */
411 if (pr->pr_domain->dom_family == PF_INET &&
412 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
413 ip_protox[pr->pr_protocol] = pr;
414 }
415 for (i = 0; i < IPREASS_NHASH; i++)
416 ipq[i].next = ipq[i].prev = &ipq[i];
417
418 maxnipq = nmbclusters / 32;
419 maxfrags = maxnipq * 2;
420 maxfragsperpacket = 128; /* enough for 64k in 512 byte fragments */
421
422 #if RANDOM_IP_ID
423 {
424 struct timeval timenow;
425 getmicrotime(&timenow);
426 ip_id = timenow.tv_sec & 0xffff;
427 }
428 #endif
429 ipintrq.ifq_maxlen = ipqmaxlen;
430
431 ipf_init();
432
433 ip_mutex_grp_attr = lck_grp_attr_alloc_init();
434
435 ip_mutex_grp = lck_grp_alloc_init("ip", ip_mutex_grp_attr);
436
437 ip_mutex_attr = lck_attr_alloc_init();
438
439 if ((ip_mutex = lck_mtx_alloc_init(ip_mutex_grp, ip_mutex_attr)) == NULL) {
440 printf("ip_init: can't alloc ip_mutex\n");
441 return;
442 }
443
444 #if IPSEC
445
446 sadb_stat_mutex_grp_attr = lck_grp_attr_alloc_init();
447 sadb_stat_mutex_grp = lck_grp_alloc_init("sadb_stat", sadb_stat_mutex_grp_attr);
448 sadb_stat_mutex_attr = lck_attr_alloc_init();
449
450 if ((sadb_stat_mutex = lck_mtx_alloc_init(sadb_stat_mutex_grp, sadb_stat_mutex_attr)) == NULL) {
451 printf("ip_init: can't alloc sadb_stat_mutex\n");
452 return;
453 }
454
455 #endif
456 arp_init();
457
458 ip_initialized = 1;
459 }
460 }
461
462 /*
463 * Initialize IPv4 source address hash table.
464 */
465 static void
466 in_ifaddrhashtbl_init(void)
467 {
468 int i, k, p;
469
470 if (in_ifaddrhashtbl != NULL)
471 return;
472
473 PE_parse_boot_argn("inaddr_nhash", &inaddr_nhash, sizeof (inaddr_nhash));
474 if (inaddr_nhash == 0)
475 inaddr_nhash = INADDR_NHASH;
476
477 MALLOC(in_ifaddrhashtbl, struct in_ifaddrhashhead *,
478 inaddr_nhash * sizeof (*in_ifaddrhashtbl),
479 M_IFADDR, M_WAITOK | M_ZERO);
480 if (in_ifaddrhashtbl == NULL)
481 panic("in_ifaddrhashtbl_init allocation failed");
482
483 /*
484 * Generate the next largest prime greater than inaddr_nhash.
485 */
486 k = (inaddr_nhash % 2 == 0) ? inaddr_nhash + 1 : inaddr_nhash + 2;
487 for (;;) {
488 p = 1;
489 for (i = 3; i * i <= k; i += 2) {
490 if (k % i == 0)
491 p = 0;
492 }
493 if (p == 1)
494 break;
495 k += 2;
496 }
497 inaddr_hashp = k;
498 }
499
500 u_int32_t
501 inaddr_hashval(u_int32_t key)
502 {
503 /*
504 * The hash index is the computed prime times the key modulo
505 * the hash size, as documented in "Introduction to Algorithms"
506 * (Cormen, Leiserson, Rivest).
507 */
508 if (inaddr_nhash > 1)
509 return ((key * inaddr_hashp) % inaddr_nhash);
510 else
511 return (0);
512 }
513
514 static void
515 ip_proto_input(
516 protocol_family_t __unused protocol,
517 mbuf_t packet_list)
518 {
519 mbuf_t packet;
520 int how_many = 0 ;
521
522 /* ip_input should handle a list of packets but does not yet */
523
524 for (packet = packet_list; packet; packet = packet_list) {
525 how_many++;
526 packet_list = mbuf_nextpkt(packet);
527 mbuf_setnextpkt(packet, NULL);
528 ip_input(packet);
529 }
530 }
531
532 /* Initialize the PF_INET domain, and add in the pre-defined protos */
533 void
534 in_dinit(void)
535 {
536 int i;
537 struct protosw *pr;
538 struct domain *dp;
539 static int inetdomain_initted = 0;
540
541 if (!inetdomain_initted)
542 {
543 /* kprintf("Initing %d protosw entries\n", in_proto_count); */
544 dp = &inetdomain;
545 dp->dom_flags = DOM_REENTRANT;
546
547 for (i=0, pr = &inetsw[0]; i<in_proto_count; i++, pr++)
548 net_add_proto(pr, dp);
549 inet_domain_mutex = dp->dom_mtx;
550 inetdomain_initted = 1;
551
552 lck_mtx_unlock(domain_proto_mtx);
553 proto_register_input(PF_INET, ip_proto_input, NULL, 1);
554 lck_mtx_lock(domain_proto_mtx);
555 }
556 }
557
558 __private_extern__ void
559 ip_proto_dispatch_in(
560 struct mbuf *m,
561 int hlen,
562 u_int8_t proto,
563 ipfilter_t inject_ipfref)
564 {
565 struct ipfilter *filter;
566 int seen = (inject_ipfref == 0);
567 int changed_header = 0;
568 struct ip *ip;
569 void (*pr_input)(struct mbuf *, int len);
570
571 if (!TAILQ_EMPTY(&ipv4_filters)) {
572 ipf_ref();
573 TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) {
574 if (seen == 0) {
575 if ((struct ipfilter *)inject_ipfref == filter)
576 seen = 1;
577 } else if (filter->ipf_filter.ipf_input) {
578 errno_t result;
579
580 if (changed_header == 0) {
581 changed_header = 1;
582 ip = mtod(m, struct ip *);
583 ip->ip_len = htons(ip->ip_len + hlen);
584 ip->ip_off = htons(ip->ip_off);
585 ip->ip_sum = 0;
586 ip->ip_sum = in_cksum(m, hlen);
587 }
588 result = filter->ipf_filter.ipf_input(
589 filter->ipf_filter.cookie, (mbuf_t*)&m, hlen, proto);
590 if (result == EJUSTRETURN) {
591 ipf_unref();
592 return;
593 }
594 if (result != 0) {
595 ipf_unref();
596 m_freem(m);
597 return;
598 }
599 }
600 }
601 ipf_unref();
602 }
603 /*
604 * If there isn't a specific lock for the protocol
605 * we're about to call, use the generic lock for AF_INET.
606 * otherwise let the protocol deal with its own locking
607 */
608 ip = mtod(m, struct ip *);
609
610 if (changed_header) {
611 ip->ip_len = ntohs(ip->ip_len) - hlen;
612 ip->ip_off = ntohs(ip->ip_off);
613 }
614
615 if ((pr_input = ip_protox[ip->ip_p]->pr_input) == NULL) {
616 m_freem(m);
617 } else if (!(ip_protox[ip->ip_p]->pr_flags & PR_PROTOLOCK)) {
618 lck_mtx_lock(inet_domain_mutex);
619 pr_input(m, hlen);
620 lck_mtx_unlock(inet_domain_mutex);
621 } else {
622 pr_input(m, hlen);
623 }
624 }
625
626 /*
627 * Ip input routine. Checksum and byte swap header. If fragmented
628 * try to reassemble. Process options. Pass to next level.
629 */
630 void
631 ip_input(struct mbuf *m)
632 {
633 struct ip *ip;
634 struct ipq *fp;
635 struct in_ifaddr *ia = NULL;
636 int hlen, checkif;
637 u_short sum;
638 struct in_addr pkt_dst;
639 #if IPFIREWALL
640 int i;
641 u_int32_t div_info = 0; /* packet divert/tee info */
642 struct ip_fw_args args;
643 struct m_tag *tag;
644 #endif
645 ipfilter_t inject_filter_ref = 0;
646
647 /* Check if the mbuf is still valid after interface filter processing */
648 MBUF_INPUT_CHECK(m, m->m_pkthdr.rcvif);
649
650 #if IPFIREWALL
651 args.eh = NULL;
652 args.oif = NULL;
653 args.rule = NULL;
654 args.divert_rule = 0; /* divert cookie */
655 args.next_hop = NULL;
656
657 /*
658 * Don't bother searching for tag(s) if there's none.
659 */
660 if (SLIST_EMPTY(&m->m_pkthdr.tags))
661 goto ipfw_tags_done;
662
663 /* Grab info from mtags prepended to the chain */
664 #if DUMMYNET
665 if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
666 KERNEL_TAG_TYPE_DUMMYNET, NULL)) != NULL) {
667 struct dn_pkt_tag *dn_tag;
668
669 dn_tag = (struct dn_pkt_tag *)(tag+1);
670 args.rule = dn_tag->rule;
671
672 m_tag_delete(m, tag);
673 }
674 #endif /* DUMMYNET */
675
676 #if IPDIVERT
677 if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
678 KERNEL_TAG_TYPE_DIVERT, NULL)) != NULL) {
679 struct divert_tag *div_tag;
680
681 div_tag = (struct divert_tag *)(tag+1);
682 args.divert_rule = div_tag->cookie;
683
684 m_tag_delete(m, tag);
685 }
686 #endif
687
688 if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
689 KERNEL_TAG_TYPE_IPFORWARD, NULL)) != NULL) {
690 struct ip_fwd_tag *ipfwd_tag;
691
692 ipfwd_tag = (struct ip_fwd_tag *)(tag+1);
693 args.next_hop = ipfwd_tag->next_hop;
694
695 m_tag_delete(m, tag);
696 }
697
698 #if DIAGNOSTIC
699 if (m == NULL || (m->m_flags & M_PKTHDR) == 0)
700 panic("ip_input no HDR");
701 #endif
702
703 if (args.rule) { /* dummynet already filtered us */
704 ip = mtod(m, struct ip *);
705 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
706 inject_filter_ref = ipf_get_inject_filter(m);
707 goto iphack ;
708 }
709 ipfw_tags_done:
710 #endif /* IPFIREWALL */
711
712 /*
713 * No need to proccess packet twice if we've already seen it.
714 */
715 if (!SLIST_EMPTY(&m->m_pkthdr.tags))
716 inject_filter_ref = ipf_get_inject_filter(m);
717 if (inject_filter_ref != 0) {
718 ip = mtod(m, struct ip *);
719 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
720
721 DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL,
722 struct ip *, ip, struct ifnet *, m->m_pkthdr.rcvif,
723 struct ip *, ip, struct ip6_hdr *, NULL);
724
725 ip->ip_len = ntohs(ip->ip_len) - hlen;
726 ip->ip_off = ntohs(ip->ip_off);
727 ip_proto_dispatch_in(m, hlen, ip->ip_p, inject_filter_ref);
728 return;
729 }
730
731 OSAddAtomic(1, &ipstat.ips_total);
732
733 if (m->m_pkthdr.len < sizeof(struct ip))
734 goto tooshort;
735
736 if (m->m_len < sizeof (struct ip) &&
737 (m = m_pullup(m, sizeof (struct ip))) == 0) {
738 OSAddAtomic(1, &ipstat.ips_toosmall);
739 return;
740 }
741 ip = mtod(m, struct ip *);
742
743 KERNEL_DEBUG(DBG_LAYER_BEG, ip->ip_dst.s_addr,
744 ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len);
745
746 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
747 OSAddAtomic(1, &ipstat.ips_badvers);
748 goto bad;
749 }
750
751 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
752 if (hlen < sizeof(struct ip)) { /* minimum header length */
753 OSAddAtomic(1, &ipstat.ips_badhlen);
754 goto bad;
755 }
756 if (hlen > m->m_len) {
757 if ((m = m_pullup(m, hlen)) == 0) {
758 OSAddAtomic(1, &ipstat.ips_badhlen);
759 return;
760 }
761 ip = mtod(m, struct ip *);
762 }
763
764 /* 127/8 must not appear on wire - RFC1122 */
765 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
766 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
767 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
768 OSAddAtomic(1, &ipstat.ips_badaddr);
769 goto bad;
770 }
771 }
772
773 /* IPv4 Link-Local Addresses as defined in <draft-ietf-zeroconf-ipv4-linklocal-05.txt> */
774 if ((IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr)) ||
775 IN_LINKLOCAL(ntohl(ip->ip_src.s_addr)))) {
776 ip_linklocal_stat.iplls_in_total++;
777 if (ip->ip_ttl != MAXTTL) {
778 OSAddAtomic(1, &ip_linklocal_stat.iplls_in_badttl);
779 /* Silently drop link local traffic with bad TTL */
780 if (!ip_linklocal_in_allowbadttl)
781 goto bad;
782 }
783 }
784 if ((IF_HWASSIST_CSUM_FLAGS(m->m_pkthdr.rcvif->if_hwassist) == 0)
785 || (apple_hwcksum_rx == 0) ||
786 ((m->m_pkthdr.csum_flags & CSUM_TCP_SUM16) && ip->ip_p != IPPROTO_TCP)) {
787 m->m_pkthdr.csum_flags = 0; /* invalidate HW generated checksum flags */
788 }
789
790 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
791 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
792 } else if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) ||
793 apple_hwcksum_tx == 0) {
794 /*
795 * Either this is not loopback packet coming from an interface
796 * that does not support checksum offloading, or it is loopback
797 * packet that has undergone software checksumming at the send
798 * side because apple_hwcksum_tx was set to 0. In this case,
799 * calculate the checksum in software to validate the packet.
800 */
801 sum = in_cksum(m, hlen);
802 } else {
803 /*
804 * This is a loopback packet without any valid checksum since
805 * the send side has bypassed it (apple_hwcksum_tx set to 1).
806 * We get here because apple_hwcksum_rx was set to 0, and so
807 * we pretend that all is well.
808 */
809 sum = 0;
810 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR |
811 CSUM_IP_CHECKED | CSUM_IP_VALID;
812 m->m_pkthdr.csum_data = 0xffff;
813 }
814 if (sum) {
815 OSAddAtomic(1, &ipstat.ips_badsum);
816 goto bad;
817 }
818
819 DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL,
820 struct ip *, ip, struct ifnet *, m->m_pkthdr.rcvif,
821 struct ip *, ip, struct ip6_hdr *, NULL);
822
823 /*
824 * Naively assume we can attribute inbound data to the route we would
825 * use to send to this destination. Asymetric routing breaks this
826 * assumption, but it still allows us to account for traffic from
827 * a remote node in the routing table.
828 * this has a very significant performance impact so we bypass
829 * if nstat_collect is disabled. We may also bypass if the
830 * protocol is tcp in the future because tcp will have a route that
831 * we can use to attribute the data to. That does mean we would not
832 * account for forwarded tcp traffic.
833 */
834 if (nstat_collect) {
835 struct rtentry *rt =
836 ifnet_cached_rtlookup_inet(m->m_pkthdr.rcvif, ip->ip_src);
837 if (rt != NULL) {
838 nstat_route_rx(rt, 1, m->m_pkthdr.len, 0);
839 rtfree(rt);
840 }
841 }
842
843 /*
844 * Convert fields to host representation.
845 */
846 #if BYTE_ORDER != BIG_ENDIAN
847 NTOHS(ip->ip_len);
848 #endif
849
850 if (ip->ip_len < hlen) {
851 OSAddAtomic(1, &ipstat.ips_badlen);
852 goto bad;
853 }
854
855 #if BYTE_ORDER != BIG_ENDIAN
856 NTOHS(ip->ip_off);
857 #endif
858 /*
859 * Check that the amount of data in the buffers
860 * is as at least much as the IP header would have us expect.
861 * Trim mbufs if longer than we expect.
862 * Drop packet if shorter than we expect.
863 */
864 if (m->m_pkthdr.len < ip->ip_len) {
865 tooshort:
866 OSAddAtomic(1, &ipstat.ips_tooshort);
867 goto bad;
868 }
869 if (m->m_pkthdr.len > ip->ip_len) {
870 /* Invalidate hwcksuming */
871 m->m_pkthdr.csum_flags = 0;
872 m->m_pkthdr.csum_data = 0;
873
874 if (m->m_len == m->m_pkthdr.len) {
875 m->m_len = ip->ip_len;
876 m->m_pkthdr.len = ip->ip_len;
877 } else
878 m_adj(m, ip->ip_len - m->m_pkthdr.len);
879 }
880
881 #if PF
882 /* Invoke inbound packet filter */
883 if (PF_IS_ENABLED) {
884 int error;
885 error = pf_af_hook(m->m_pkthdr.rcvif, NULL, &m, AF_INET, TRUE);
886 if (error != 0) {
887 if (m != NULL) {
888 panic("%s: unexpected packet %p\n", __func__, m);
889 /* NOTREACHED */
890 }
891 /* Already freed by callee */
892 return;
893 }
894 ip = mtod(m, struct ip *);
895 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
896 }
897 #endif /* PF */
898
899 #if IPSEC
900 if (ipsec_bypass == 0 && ipsec_gethist(m, NULL))
901 goto pass;
902 #endif
903
904 #if IPFIREWALL
905 #if DUMMYNET
906 iphack:
907 #endif /* DUMMYNET */
908 /*
909 * Check if we want to allow this packet to be processed.
910 * Consider it to be bad if not.
911 */
912 if (fr_checkp) {
913 struct mbuf *m1 = m;
914
915 if (fr_checkp(ip, hlen, m->m_pkthdr.rcvif, 0, &m1) || !m1) {
916 return;
917 }
918 ip = mtod(m = m1, struct ip *);
919 }
920 if (fw_enable && IPFW_LOADED) {
921 #if IPFIREWALL_FORWARD
922 /*
923 * If we've been forwarded from the output side, then
924 * skip the firewall a second time
925 */
926 if (args.next_hop)
927 goto ours;
928 #endif /* IPFIREWALL_FORWARD */
929
930 args.m = m;
931
932 i = ip_fw_chk_ptr(&args);
933 m = args.m;
934
935 if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
936 if (m)
937 m_freem(m);
938 return;
939 }
940 ip = mtod(m, struct ip *); /* just in case m changed */
941
942 if (i == 0 && args.next_hop == NULL) { /* common case */
943 goto pass;
944 }
945 #if DUMMYNET
946 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
947 /* Send packet to the appropriate pipe */
948 ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
949 return;
950 }
951 #endif /* DUMMYNET */
952 #if IPDIVERT
953 if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
954 /* Divert or tee packet */
955 div_info = i;
956 goto ours;
957 }
958 #endif
959 #if IPFIREWALL_FORWARD
960 if (i == 0 && args.next_hop != NULL) {
961 goto pass;
962 }
963 #endif
964 /*
965 * if we get here, the packet must be dropped
966 */
967 m_freem(m);
968 return;
969 }
970 #endif /* IPFIREWALL */
971 pass:
972
973 /*
974 * Process options and, if not destined for us,
975 * ship it on. ip_dooptions returns 1 when an
976 * error was detected (causing an icmp message
977 * to be sent and the original packet to be freed).
978 */
979 ip_nhops = 0; /* for source routed packets */
980 #if IPFIREWALL
981 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop)) {
982 #else
983 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, NULL)) {
984 #endif
985 return;
986 }
987
988 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
989 * matter if it is destined to another node, or whether it is
990 * a multicast one, RSVP wants it! and prevents it from being forwarded
991 * anywhere else. Also checks if the rsvp daemon is running before
992 * grabbing the packet.
993 */
994 if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
995 goto ours;
996
997 /*
998 * Check our list of addresses, to see if the packet is for us.
999 * If we don't have any addresses, assume any unicast packet
1000 * we receive might be for us (and let the upper layers deal
1001 * with it).
1002 */
1003 if (TAILQ_EMPTY(&in_ifaddrhead) &&
1004 (m->m_flags & (M_MCAST|M_BCAST)) == 0)
1005 goto ours;
1006
1007 /*
1008 * Cache the destination address of the packet; this may be
1009 * changed by use of 'ipfw fwd'.
1010 */
1011 #if IPFIREWALL
1012 pkt_dst = args.next_hop == NULL ?
1013 ip->ip_dst : args.next_hop->sin_addr;
1014 #else
1015 pkt_dst = ip->ip_dst;
1016 #endif
1017
1018 /*
1019 * Enable a consistency check between the destination address
1020 * and the arrival interface for a unicast packet (the RFC 1122
1021 * strong ES model) if IP forwarding is disabled and the packet
1022 * is not locally generated and the packet is not subject to
1023 * 'ipfw fwd'.
1024 *
1025 * XXX - Checking also should be disabled if the destination
1026 * address is ipnat'ed to a different interface.
1027 *
1028 * XXX - Checking is incompatible with IP aliases added
1029 * to the loopback interface instead of the interface where
1030 * the packets are received.
1031 */
1032 checkif = ip_checkinterface && (ipforwarding == 0) &&
1033 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0)
1034 #if IPFIREWALL
1035 && (args.next_hop == NULL);
1036 #else
1037 ;
1038 #endif
1039
1040 /*
1041 * Check for exact addresses in the hash bucket.
1042 */
1043 lck_rw_lock_shared(in_ifaddr_rwlock);
1044 TAILQ_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
1045 /*
1046 * If the address matches, verify that the packet
1047 * arrived via the correct interface if checking is
1048 * enabled.
1049 */
1050 IFA_LOCK_SPIN(&ia->ia_ifa);
1051 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
1052 (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif)) {
1053 IFA_UNLOCK(&ia->ia_ifa);
1054 lck_rw_done(in_ifaddr_rwlock);
1055 goto ours;
1056 }
1057 IFA_UNLOCK(&ia->ia_ifa);
1058 }
1059 lck_rw_done(in_ifaddr_rwlock);
1060
1061 /*
1062 * Check for broadcast addresses.
1063 *
1064 * Only accept broadcast packets that arrive via the matching
1065 * interface. Reception of forwarded directed broadcasts would be
1066 * handled via ip_forward() and ether_frameout() with the loopback
1067 * into the stack for SIMPLEX interfaces handled by ether_frameout().
1068 */
1069 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
1070 struct ifaddr *ifa;
1071 struct ifnet *ifp = m->m_pkthdr.rcvif;
1072
1073 ifnet_lock_shared(ifp);
1074 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1075 IFA_LOCK_SPIN(ifa);
1076 if (ifa->ifa_addr->sa_family != AF_INET) {
1077 IFA_UNLOCK(ifa);
1078 continue;
1079 }
1080 ia = ifatoia(ifa);
1081 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
1082 pkt_dst.s_addr || ia->ia_netbroadcast.s_addr ==
1083 pkt_dst.s_addr) {
1084 IFA_UNLOCK(ifa);
1085 ifnet_lock_done(ifp);
1086 goto ours;
1087 }
1088 IFA_UNLOCK(ifa);
1089 }
1090 ifnet_lock_done(ifp);
1091 }
1092
1093 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
1094 struct in_multi *inm;
1095 struct ifnet *ifp = m->m_pkthdr.rcvif;
1096 #if MROUTING
1097 if (ip_mrouter) {
1098 /*
1099 * If we are acting as a multicast router, all
1100 * incoming multicast packets are passed to the
1101 * kernel-level multicast forwarding function.
1102 * The packet is returned (relatively) intact; if
1103 * ip_mforward() returns a non-zero value, the packet
1104 * must be discarded, else it may be accepted below.
1105 */
1106 lck_mtx_lock(ip_mutex);
1107 if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
1108 OSAddAtomic(1, &ipstat.ips_cantforward);
1109 m_freem(m);
1110 lck_mtx_unlock(ip_mutex);
1111 return;
1112 }
1113
1114 /*
1115 * The process-level routing daemon needs to receive
1116 * all multicast IGMP packets, whether or not this
1117 * host belongs to their destination groups.
1118 */
1119 if (ip->ip_p == IPPROTO_IGMP)
1120 goto ours;
1121 OSAddAtomic(1, &ipstat.ips_forward);
1122 }
1123 #endif /* MROUTING */
1124 /*
1125 * See if we belong to the destination multicast group on the
1126 * arrival interface.
1127 */
1128 in_multihead_lock_shared();
1129 IN_LOOKUP_MULTI(&ip->ip_dst, ifp, inm);
1130 in_multihead_lock_done();
1131 if (inm == NULL) {
1132 OSAddAtomic(1, &ipstat.ips_notmember);
1133 m_freem(m);
1134 return;
1135 }
1136 INM_REMREF(inm);
1137 goto ours;
1138 }
1139 if (ip->ip_dst.s_addr == (u_int32_t)INADDR_BROADCAST)
1140 goto ours;
1141 if (ip->ip_dst.s_addr == INADDR_ANY)
1142 goto ours;
1143
1144 /* Allow DHCP/BootP responses through */
1145 if (m->m_pkthdr.rcvif != NULL
1146 && (m->m_pkthdr.rcvif->if_eflags & IFEF_AUTOCONFIGURING)
1147 && hlen == sizeof(struct ip)
1148 && ip->ip_p == IPPROTO_UDP) {
1149 struct udpiphdr *ui;
1150 if (m->m_len < sizeof(struct udpiphdr)
1151 && (m = m_pullup(m, sizeof(struct udpiphdr))) == 0) {
1152 OSAddAtomic(1, &udpstat.udps_hdrops);
1153 return;
1154 }
1155 ui = mtod(m, struct udpiphdr *);
1156 if (ntohs(ui->ui_dport) == IPPORT_BOOTPC) {
1157 goto ours;
1158 }
1159 ip = mtod(m, struct ip *); /* in case it changed */
1160 }
1161
1162 #if defined(NFAITH) && 0 < NFAITH
1163 /*
1164 * FAITH(Firewall Aided Internet Translator)
1165 */
1166 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
1167 if (ip_keepfaith) {
1168 if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
1169 goto ours;
1170 }
1171 m_freem(m);
1172 return;
1173 }
1174 #endif
1175 /*
1176 * Not for us; forward if possible and desirable.
1177 */
1178 if (ipforwarding == 0) {
1179 OSAddAtomic(1, &ipstat.ips_cantforward);
1180 m_freem(m);
1181 } else {
1182 #if IPFIREWALL
1183 ip_forward(m, 0, args.next_hop);
1184 #else
1185 ip_forward(m, 0, NULL);
1186 #endif
1187 }
1188 return;
1189
1190 ours:
1191 /*
1192 * If offset or IP_MF are set, must reassemble.
1193 * Otherwise, nothing need be done.
1194 * (We could look in the reassembly queue to see
1195 * if the packet was previously fragmented,
1196 * but it's not worth the time; just let them time out.)
1197 */
1198 if (ip->ip_off & (IP_MF | IP_OFFMASK | IP_RF)) {
1199
1200 /* If maxnipq is 0, never accept fragments. */
1201 if (maxnipq == 0) {
1202
1203 OSAddAtomic(1, &ipstat.ips_fragments);
1204 OSAddAtomic(1, &ipstat.ips_fragdropped);
1205 goto bad;
1206 }
1207
1208 /*
1209 * If we will exceed the number of fragments in queues, timeout the
1210 * oldest fragemented packet to make space.
1211 */
1212 lck_mtx_lock(ip_mutex);
1213 if (currentfrags >= maxfrags) {
1214 fp = TAILQ_LAST(&ipq_list, ipq_list);
1215 OSAddAtomic(fp->ipq_nfrags, &ipstat.ips_fragtimeout);
1216
1217 if (ip->ip_id == fp->ipq_id &&
1218 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
1219 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
1220 ip->ip_p == fp->ipq_p) {
1221 /*
1222 * If we match the fragment queue we were going to
1223 * discard, drop this packet too.
1224 */
1225 OSAddAtomic(1, &ipstat.ips_fragdropped);
1226 ip_freef(fp);
1227 lck_mtx_unlock(ip_mutex);
1228 goto bad;
1229 }
1230
1231 ip_freef(fp);
1232 }
1233
1234 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
1235 /*
1236 * Look for queue of fragments
1237 * of this datagram.
1238 */
1239 for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
1240 if (ip->ip_id == fp->ipq_id &&
1241 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
1242 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
1243 #if CONFIG_MACF_NET
1244 mac_ipq_label_compare(m, fp) &&
1245 #endif
1246 ip->ip_p == fp->ipq_p)
1247 goto found;
1248
1249 /*
1250 * Enforce upper bound on number of fragmented packets
1251 * for which we attempt reassembly;
1252 * If maxnipq is -1, accept all fragments without limitation.
1253 */
1254 if ((nipq > maxnipq) && (maxnipq > 0)) {
1255 /*
1256 * drop the oldest fragment before proceeding further
1257 */
1258 fp = TAILQ_LAST(&ipq_list, ipq_list);
1259 OSAddAtomic(fp->ipq_nfrags, &ipstat.ips_fragtimeout);
1260 ip_freef(fp);
1261 }
1262
1263 fp = NULL;
1264
1265 found:
1266 /*
1267 * Adjust ip_len to not reflect header,
1268 * convert offset of this to bytes.
1269 */
1270 ip->ip_len -= hlen;
1271 if (ip->ip_off & IP_MF) {
1272 /*
1273 * Make sure that fragments have a data length
1274 * that's a non-zero multiple of 8 bytes.
1275 */
1276 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1277 OSAddAtomic(1, &ipstat.ips_toosmall);
1278 lck_mtx_unlock(ip_mutex);
1279 goto bad;
1280 }
1281 m->m_flags |= M_FRAG;
1282 } else {
1283 /* Clear the flag in case packet comes from loopback */
1284 m->m_flags &= ~M_FRAG;
1285 }
1286 ip->ip_off <<= 3;
1287
1288 /*
1289 * Attempt reassembly; if it succeeds, proceed.
1290 * ip_reass() will return a different mbuf, and update
1291 * the divert info in div_info and args.divert_rule.
1292 */
1293 OSAddAtomic(1, &ipstat.ips_fragments);
1294 m->m_pkthdr.header = ip;
1295 #if IPDIVERT
1296 m = ip_reass(m, fp, &ipq[sum],
1297 (u_int16_t *)&div_info, &args.divert_rule);
1298 #else
1299 m = ip_reass(m, fp, &ipq[sum]);
1300 #endif
1301 if (m == 0) {
1302 lck_mtx_unlock(ip_mutex);
1303 return;
1304 }
1305 OSAddAtomic(1, &ipstat.ips_reassembled);
1306 ip = mtod(m, struct ip *);
1307 /* Get the header length of the reassembled packet */
1308 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1309
1310 #if IPDIVERT
1311 /* Restore original checksum before diverting packet */
1312 if (div_info != 0) {
1313 ip->ip_len += hlen;
1314
1315 #if BYTE_ORDER != BIG_ENDIAN
1316 HTONS(ip->ip_len);
1317 HTONS(ip->ip_off);
1318 #endif
1319
1320 ip->ip_sum = 0;
1321 ip->ip_sum = in_cksum(m, hlen);
1322
1323 #if BYTE_ORDER != BIG_ENDIAN
1324 NTOHS(ip->ip_off);
1325 NTOHS(ip->ip_len);
1326 #endif
1327
1328 ip->ip_len -= hlen;
1329 }
1330 #endif
1331 lck_mtx_unlock(ip_mutex);
1332 } else
1333 ip->ip_len -= hlen;
1334
1335 #if IPDIVERT
1336 /*
1337 * Divert or tee packet to the divert protocol if required.
1338 *
1339 * If div_info is zero then cookie should be too, so we shouldn't
1340 * need to clear them here. Assume divert_packet() does so also.
1341 */
1342 if (div_info != 0) {
1343 struct mbuf *clone = NULL;
1344
1345 /* Clone packet if we're doing a 'tee' */
1346 if ((div_info & IP_FW_PORT_TEE_FLAG) != 0)
1347 clone = m_dup(m, M_DONTWAIT);
1348
1349 /* Restore packet header fields to original values */
1350 ip->ip_len += hlen;
1351
1352 #if BYTE_ORDER != BIG_ENDIAN
1353 HTONS(ip->ip_len);
1354 HTONS(ip->ip_off);
1355 #endif
1356 /* Deliver packet to divert input routine */
1357 OSAddAtomic(1, &ipstat.ips_delivered);
1358 divert_packet(m, 1, div_info & 0xffff, args.divert_rule);
1359
1360 /* If 'tee', continue with original packet */
1361 if (clone == NULL) {
1362 return;
1363 }
1364 m = clone;
1365 ip = mtod(m, struct ip *);
1366 }
1367 #endif
1368
1369 #if IPSEC
1370 /*
1371 * enforce IPsec policy checking if we are seeing last header.
1372 * note that we do not visit this with protocols with pcb layer
1373 * code - like udp/tcp/raw ip.
1374 */
1375 if (ipsec_bypass == 0 && (ip_protox[ip->ip_p]->pr_flags & PR_LASTHDR) != 0) {
1376 if (ipsec4_in_reject(m, NULL)) {
1377 IPSEC_STAT_INCREMENT(ipsecstat.in_polvio);
1378 goto bad;
1379 }
1380 }
1381 #endif
1382
1383 /*
1384 * Switch out to protocol's input routine.
1385 */
1386 OSAddAtomic(1, &ipstat.ips_delivered);
1387 {
1388 #if IPFIREWALL
1389 if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
1390 /* TCP needs IPFORWARD info if available */
1391 struct m_tag *fwd_tag;
1392 struct ip_fwd_tag *ipfwd_tag;
1393
1394 fwd_tag = m_tag_create(KERNEL_MODULE_TAG_ID,
1395 KERNEL_TAG_TYPE_IPFORWARD, sizeof (*ipfwd_tag),
1396 M_NOWAIT, m);
1397 if (fwd_tag == NULL) {
1398 goto bad;
1399 }
1400
1401 ipfwd_tag = (struct ip_fwd_tag *)(fwd_tag+1);
1402 ipfwd_tag->next_hop = args.next_hop;
1403
1404 m_tag_prepend(m, fwd_tag);
1405
1406 KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr,
1407 ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len);
1408
1409
1410 /* TCP deals with its own locking */
1411 ip_proto_dispatch_in(m, hlen, ip->ip_p, 0);
1412 } else {
1413 KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr,
1414 ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len);
1415
1416 ip_proto_dispatch_in(m, hlen, ip->ip_p, 0);
1417 }
1418 #else
1419 ip_proto_dispatch_in(m, hlen, ip->ip_p, 0);
1420 #endif
1421
1422 return;
1423 }
1424 bad:
1425 KERNEL_DEBUG(DBG_LAYER_END, 0,0,0,0,0);
1426 m_freem(m);
1427 }
1428
1429 /*
1430 * Take incoming datagram fragment and try to reassemble it into
1431 * whole datagram. If a chain for reassembly of this datagram already
1432 * exists, then it is given as fp; otherwise have to make a chain.
1433 *
1434 * When IPDIVERT enabled, keep additional state with each packet that
1435 * tells us if we need to divert or tee the packet we're building.
1436 */
1437
1438 static struct mbuf *
1439 #if IPDIVERT
1440 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
1441 #ifdef IPDIVERT_44
1442 u_int32_t *divinfo,
1443 #else /* IPDIVERT_44 */
1444 u_int16_t *divinfo,
1445 #endif /* IPDIVERT_44 */
1446 u_int16_t *divcookie)
1447 #else /* IPDIVERT */
1448 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where)
1449 #endif /* IPDIVERT */
1450 {
1451 struct ip *ip = mtod(m, struct ip *);
1452 struct mbuf *p = 0, *q, *nq;
1453 struct mbuf *t;
1454 int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1455 int i, next;
1456 u_int8_t ecn, ecn0;
1457
1458 lck_mtx_assert(ip_mutex, LCK_MTX_ASSERT_OWNED);
1459 /*
1460 * Presence of header sizes in mbufs
1461 * would confuse code below.
1462 */
1463 m->m_data += hlen;
1464 m->m_len -= hlen;
1465
1466 if (m->m_pkthdr.csum_flags & CSUM_TCP_SUM16)
1467 m->m_pkthdr.csum_flags = 0;
1468 /*
1469 * If first fragment to arrive, create a reassembly queue.
1470 */
1471 if (fp == 0) {
1472 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
1473 goto dropfrag;
1474 fp = mtod(t, struct ipq *);
1475 #if CONFIG_MACF_NET
1476 if (mac_ipq_label_init(fp, M_NOWAIT) != 0) {
1477 m_free(t);
1478 fp = NULL;
1479 goto dropfrag;
1480 }
1481 mac_ipq_label_associate(m, fp);
1482 #endif
1483 insque((void*)fp, (void*)where);
1484 nipq++;
1485 fp->ipq_nfrags = 1;
1486 fp->ipq_ttl = IPFRAGTTL;
1487 fp->ipq_p = ip->ip_p;
1488 fp->ipq_id = ip->ip_id;
1489 fp->ipq_src = ip->ip_src;
1490 fp->ipq_dst = ip->ip_dst;
1491 fp->ipq_frags = m;
1492 m->m_nextpkt = NULL;
1493 #if IPDIVERT
1494 #ifdef IPDIVERT_44
1495 fp->ipq_div_info = 0;
1496 #else
1497 fp->ipq_divert = 0;
1498 #endif
1499 fp->ipq_div_cookie = 0;
1500 #endif
1501 TAILQ_INSERT_HEAD(&ipq_list, fp, ipq_list);
1502 goto inserted;
1503 } else {
1504 fp->ipq_nfrags++;
1505 #if CONFIG_MACF_NET
1506 mac_ipq_label_update(m, fp);
1507 #endif
1508 }
1509
1510 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
1511
1512 /*
1513 * Handle ECN by comparing this segment with the first one;
1514 * if CE is set, do not lose CE.
1515 * drop if CE and not-ECT are mixed for the same packet.
1516 */
1517 ecn = ip->ip_tos & IPTOS_ECN_MASK;
1518 ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1519 if (ecn == IPTOS_ECN_CE) {
1520 if (ecn0 == IPTOS_ECN_NOTECT)
1521 goto dropfrag;
1522 if (ecn0 != IPTOS_ECN_CE)
1523 GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1524 }
1525 if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1526 goto dropfrag;
1527
1528 /*
1529 * Find a segment which begins after this one does.
1530 */
1531 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1532 if (GETIP(q)->ip_off > ip->ip_off)
1533 break;
1534
1535 /*
1536 * If there is a preceding segment, it may provide some of
1537 * our data already. If so, drop the data from the incoming
1538 * segment. If it provides all of our data, drop us, otherwise
1539 * stick new segment in the proper place.
1540 *
1541 * If some of the data is dropped from the the preceding
1542 * segment, then it's checksum is invalidated.
1543 */
1544 if (p) {
1545 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1546 if (i > 0) {
1547 if (i >= ip->ip_len)
1548 goto dropfrag;
1549 m_adj(m, i);
1550 m->m_pkthdr.csum_flags = 0;
1551 ip->ip_off += i;
1552 ip->ip_len -= i;
1553 }
1554 m->m_nextpkt = p->m_nextpkt;
1555 p->m_nextpkt = m;
1556 } else {
1557 m->m_nextpkt = fp->ipq_frags;
1558 fp->ipq_frags = m;
1559 }
1560
1561 /*
1562 * While we overlap succeeding segments trim them or,
1563 * if they are completely covered, dequeue them.
1564 */
1565 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1566 q = nq) {
1567 i = (ip->ip_off + ip->ip_len) -
1568 GETIP(q)->ip_off;
1569 if (i < GETIP(q)->ip_len) {
1570 GETIP(q)->ip_len -= i;
1571 GETIP(q)->ip_off += i;
1572 m_adj(q, i);
1573 q->m_pkthdr.csum_flags = 0;
1574 break;
1575 }
1576 nq = q->m_nextpkt;
1577 m->m_nextpkt = nq;
1578 OSAddAtomic(1, &ipstat.ips_fragdropped);
1579 fp->ipq_nfrags--;
1580 m_freem(q);
1581 }
1582
1583 inserted:
1584 currentfrags++;
1585
1586 #if IPDIVERT
1587 /*
1588 * Transfer firewall instructions to the fragment structure.
1589 * Only trust info in the fragment at offset 0.
1590 */
1591 if (ip->ip_off == 0) {
1592 #ifdef IPDIVERT_44
1593 fp->ipq_div_info = *divinfo;
1594 #else
1595 fp->ipq_divert = *divinfo;
1596 #endif
1597 fp->ipq_div_cookie = *divcookie;
1598 }
1599 *divinfo = 0;
1600 *divcookie = 0;
1601 #endif
1602
1603 /*
1604 * Check for complete reassembly and perform frag per packet
1605 * limiting.
1606 *
1607 * Frag limiting is performed here so that the nth frag has
1608 * a chance to complete the packet before we drop the packet.
1609 * As a result, n+1 frags are actually allowed per packet, but
1610 * only n will ever be stored. (n = maxfragsperpacket.)
1611 *
1612 */
1613 next = 0;
1614 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1615 if (GETIP(q)->ip_off != next) {
1616 if (fp->ipq_nfrags > maxfragsperpacket) {
1617 OSAddAtomic(fp->ipq_nfrags, &ipstat.ips_fragdropped);
1618 ip_freef(fp);
1619 }
1620 return (0);
1621 }
1622 next += GETIP(q)->ip_len;
1623 }
1624 /* Make sure the last packet didn't have the IP_MF flag */
1625 if (p->m_flags & M_FRAG) {
1626 if (fp->ipq_nfrags > maxfragsperpacket) {
1627 OSAddAtomic(fp->ipq_nfrags, &ipstat.ips_fragdropped);
1628 ip_freef(fp);
1629 }
1630 return (0);
1631 }
1632
1633 /*
1634 * Reassembly is complete. Make sure the packet is a sane size.
1635 */
1636 q = fp->ipq_frags;
1637 ip = GETIP(q);
1638 if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1639 OSAddAtomic(1, &ipstat.ips_toolong);
1640 OSAddAtomic(fp->ipq_nfrags, &ipstat.ips_fragdropped);
1641 ip_freef(fp);
1642 return (0);
1643 }
1644
1645 /*
1646 * Concatenate fragments.
1647 */
1648 m = q;
1649 t = m->m_next;
1650 m->m_next = 0;
1651 m_cat(m, t);
1652 nq = q->m_nextpkt;
1653 q->m_nextpkt = 0;
1654 for (q = nq; q != NULL; q = nq) {
1655 nq = q->m_nextpkt;
1656 q->m_nextpkt = NULL;
1657 if (q->m_pkthdr.csum_flags & CSUM_TCP_SUM16)
1658 m->m_pkthdr.csum_flags = 0;
1659 else {
1660 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1661 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1662 }
1663 m_cat(m, q);
1664 }
1665
1666 #if IPDIVERT
1667 /*
1668 * Extract firewall instructions from the fragment structure.
1669 */
1670 #ifdef IPDIVERT_44
1671 *divinfo = fp->ipq_div_info;
1672 #else
1673 *divinfo = fp->ipq_divert;
1674 #endif
1675 *divcookie = fp->ipq_div_cookie;
1676 #endif
1677
1678 #if CONFIG_MACF_NET
1679 mac_mbuf_label_associate_ipq(fp, m);
1680 mac_ipq_label_destroy(fp);
1681 #endif
1682 /*
1683 * Create header for new ip packet by
1684 * modifying header of first packet;
1685 * dequeue and discard fragment reassembly header.
1686 * Make header visible.
1687 */
1688 ip->ip_len = next;
1689 ip->ip_src = fp->ipq_src;
1690 ip->ip_dst = fp->ipq_dst;
1691 remque((void*)fp);
1692 TAILQ_REMOVE(&ipq_list, fp, ipq_list);
1693 currentfrags -= fp->ipq_nfrags;
1694 nipq--;
1695 (void) m_free(dtom(fp));
1696 m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1697 m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1698 /* some debugging cruft by sklower, below, will go away soon */
1699 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1700 int plen = 0;
1701 for (t = m; t; t = t->m_next)
1702 plen += t->m_len;
1703 m->m_pkthdr.len = plen;
1704 }
1705 return (m);
1706
1707 dropfrag:
1708 #if IPDIVERT
1709 *divinfo = 0;
1710 *divcookie = 0;
1711 #endif
1712 OSAddAtomic(1, &ipstat.ips_fragdropped);
1713 if (fp != 0)
1714 fp->ipq_nfrags--;
1715 m_freem(m);
1716 return (0);
1717
1718 #undef GETIP
1719 }
1720
1721 /*
1722 * Free a fragment reassembly header and all
1723 * associated datagrams.
1724 */
1725 static void
1726 ip_freef(struct ipq *fp)
1727 {
1728 lck_mtx_assert(ip_mutex, LCK_MTX_ASSERT_OWNED);
1729 currentfrags -= fp->ipq_nfrags;
1730 m_freem_list(fp->ipq_frags);
1731 remque((void*)fp);
1732 TAILQ_REMOVE(&ipq_list, fp, ipq_list);
1733 (void) m_free(dtom(fp));
1734 nipq--;
1735 }
1736
1737 /*
1738 * IP timer processing;
1739 * if a timer expires on a reassembly
1740 * queue, discard it.
1741 */
1742 void
1743 ip_slowtimo(void)
1744 {
1745 struct ipq *fp;
1746 int i;
1747 lck_mtx_lock(ip_mutex);
1748 for (i = 0; i < IPREASS_NHASH; i++) {
1749 fp = ipq[i].next;
1750 if (fp == 0)
1751 continue;
1752 while (fp != &ipq[i]) {
1753 --fp->ipq_ttl;
1754 fp = fp->next;
1755 if (fp->prev->ipq_ttl == 0) {
1756 OSAddAtomic(fp->ipq_nfrags, &ipstat.ips_fragtimeout);
1757 ip_freef(fp->prev);
1758 }
1759 }
1760 }
1761 /*
1762 * If we are over the maximum number of fragments
1763 * (due to the limit being lowered), drain off
1764 * enough to get down to the new limit.
1765 */
1766 if (maxnipq >= 0 && nipq > maxnipq) {
1767 for (i = 0; i < IPREASS_NHASH; i++) {
1768 while (nipq > maxnipq &&
1769 (ipq[i].next != &ipq[i])) {
1770 OSAddAtomic(ipq[i].next->ipq_nfrags, &ipstat.ips_fragdropped);
1771 ip_freef(ipq[i].next);
1772 }
1773 }
1774 }
1775 lck_mtx_unlock(ip_mutex);
1776 }
1777
1778 /*
1779 * Drain off all datagram fragments.
1780 */
1781 void
1782 ip_drain(void)
1783 {
1784 int i;
1785
1786 lck_mtx_lock(ip_mutex);
1787 for (i = 0; i < IPREASS_NHASH; i++) {
1788 while (ipq[i].next != &ipq[i]) {
1789 OSAddAtomic(ipq[i].next->ipq_nfrags, &ipstat.ips_fragdropped);
1790 ip_freef(ipq[i].next);
1791 }
1792 }
1793 lck_mtx_unlock(ip_mutex);
1794 in_rtqdrain();
1795 }
1796
1797 /*
1798 * Do option processing on a datagram,
1799 * possibly discarding it if bad options are encountered,
1800 * or forwarding it if source-routed.
1801 * The pass argument is used when operating in the IPSTEALTH
1802 * mode to tell what options to process:
1803 * [LS]SRR (pass 0) or the others (pass 1).
1804 * The reason for as many as two passes is that when doing IPSTEALTH,
1805 * non-routing options should be processed only if the packet is for us.
1806 * Returns 1 if packet has been forwarded/freed,
1807 * 0 if the packet should be processed further.
1808 */
1809 static int
1810 ip_dooptions(struct mbuf *m, __unused int pass, struct sockaddr_in *next_hop)
1811 {
1812 struct ip *ip = mtod(m, struct ip *);
1813 u_char *cp;
1814 struct ip_timestamp *ipt;
1815 struct in_ifaddr *ia;
1816 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1817 struct in_addr *sin, dst;
1818 n_time ntime;
1819 struct sockaddr_in ipaddr = {
1820 sizeof (ipaddr), AF_INET , 0 , { 0 }, { 0, } };
1821
1822 dst = ip->ip_dst;
1823 cp = (u_char *)(ip + 1);
1824 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1825 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1826 opt = cp[IPOPT_OPTVAL];
1827 if (opt == IPOPT_EOL)
1828 break;
1829 if (opt == IPOPT_NOP)
1830 optlen = 1;
1831 else {
1832 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1833 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1834 goto bad;
1835 }
1836 optlen = cp[IPOPT_OLEN];
1837 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1838 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1839 goto bad;
1840 }
1841 }
1842 switch (opt) {
1843
1844 default:
1845 break;
1846
1847 /*
1848 * Source routing with record.
1849 * Find interface with current destination address.
1850 * If none on this machine then drop if strictly routed,
1851 * or do nothing if loosely routed.
1852 * Record interface address and bring up next address
1853 * component. If strictly routed make sure next
1854 * address is on directly accessible net.
1855 */
1856 case IPOPT_LSRR:
1857 case IPOPT_SSRR:
1858 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1859 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1860 goto bad;
1861 }
1862 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1863 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1864 goto bad;
1865 }
1866 ipaddr.sin_addr = ip->ip_dst;
1867 ia = (struct in_ifaddr *)
1868 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1869 if (ia == 0) {
1870 if (opt == IPOPT_SSRR) {
1871 type = ICMP_UNREACH;
1872 code = ICMP_UNREACH_SRCFAIL;
1873 goto bad;
1874 }
1875 if (!ip_dosourceroute)
1876 goto nosourcerouting;
1877 /*
1878 * Loose routing, and not at next destination
1879 * yet; nothing to do except forward.
1880 */
1881 break;
1882 }
1883 else {
1884 IFA_REMREF(&ia->ia_ifa);
1885 ia = NULL;
1886 }
1887 off--; /* 0 origin */
1888 if (off > optlen - (int)sizeof(struct in_addr)) {
1889 /*
1890 * End of source route. Should be for us.
1891 */
1892 if (!ip_acceptsourceroute)
1893 goto nosourcerouting;
1894 save_rte(cp, ip->ip_src);
1895 break;
1896 }
1897
1898 if (!ip_dosourceroute) {
1899 if (ipforwarding) {
1900 char buf[MAX_IPv4_STR_LEN];
1901 char buf2[MAX_IPv4_STR_LEN];
1902 /*
1903 * Acting as a router, so generate ICMP
1904 */
1905 nosourcerouting:
1906 log(LOG_WARNING,
1907 "attempted source route from %s to %s\n",
1908 inet_ntop(AF_INET, &ip->ip_src, buf, sizeof(buf)),
1909 inet_ntop(AF_INET, &ip->ip_dst, buf2, sizeof(buf2)));
1910 type = ICMP_UNREACH;
1911 code = ICMP_UNREACH_SRCFAIL;
1912 goto bad;
1913 } else {
1914 /*
1915 * Not acting as a router, so silently drop.
1916 */
1917 OSAddAtomic(1, &ipstat.ips_cantforward);
1918 m_freem(m);
1919 return (1);
1920 }
1921 }
1922
1923 /*
1924 * locate outgoing interface
1925 */
1926 (void)memcpy(&ipaddr.sin_addr, cp + off,
1927 sizeof(ipaddr.sin_addr));
1928
1929 if (opt == IPOPT_SSRR) {
1930 #define INA struct in_ifaddr *
1931 #define SA struct sockaddr *
1932 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0) {
1933 ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1934 }
1935 } else {
1936 ia = ip_rtaddr(ipaddr.sin_addr);
1937 }
1938 if (ia == 0) {
1939 type = ICMP_UNREACH;
1940 code = ICMP_UNREACH_SRCFAIL;
1941 goto bad;
1942 }
1943 ip->ip_dst = ipaddr.sin_addr;
1944 IFA_LOCK(&ia->ia_ifa);
1945 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1946 sizeof(struct in_addr));
1947 IFA_UNLOCK(&ia->ia_ifa);
1948 IFA_REMREF(&ia->ia_ifa);
1949 ia = NULL;
1950 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1951 /*
1952 * Let ip_intr's mcast routing check handle mcast pkts
1953 */
1954 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1955 break;
1956
1957 case IPOPT_RR:
1958 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1959 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1960 goto bad;
1961 }
1962 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1963 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1964 goto bad;
1965 }
1966 /*
1967 * If no space remains, ignore.
1968 */
1969 off--; /* 0 origin */
1970 if (off > optlen - (int)sizeof(struct in_addr))
1971 break;
1972 (void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1973 sizeof(ipaddr.sin_addr));
1974 /*
1975 * locate outgoing interface; if we're the destination,
1976 * use the incoming interface (should be same).
1977 */
1978 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0) {
1979 if ((ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
1980 type = ICMP_UNREACH;
1981 code = ICMP_UNREACH_HOST;
1982 goto bad;
1983 }
1984 }
1985 IFA_LOCK(&ia->ia_ifa);
1986 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1987 sizeof(struct in_addr));
1988 IFA_UNLOCK(&ia->ia_ifa);
1989 IFA_REMREF(&ia->ia_ifa);
1990 ia = NULL;
1991 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1992 break;
1993
1994 case IPOPT_TS:
1995 code = cp - (u_char *)ip;
1996 ipt = (struct ip_timestamp *)cp;
1997 if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1998 code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1999 goto bad;
2000 }
2001 if (ipt->ipt_ptr < 5) {
2002 code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
2003 goto bad;
2004 }
2005 if (ipt->ipt_ptr >
2006 ipt->ipt_len - (int)sizeof(int32_t)) {
2007 if (++ipt->ipt_oflw == 0) {
2008 code = (u_char *)&ipt->ipt_ptr -
2009 (u_char *)ip;
2010 goto bad;
2011 }
2012 break;
2013 }
2014 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
2015 switch (ipt->ipt_flg) {
2016
2017 case IPOPT_TS_TSONLY:
2018 break;
2019
2020 case IPOPT_TS_TSANDADDR:
2021 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
2022 sizeof(struct in_addr) > ipt->ipt_len) {
2023 code = (u_char *)&ipt->ipt_ptr -
2024 (u_char *)ip;
2025 goto bad;
2026 }
2027 ipaddr.sin_addr = dst;
2028 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
2029 m->m_pkthdr.rcvif);
2030 if (ia == 0)
2031 continue;
2032 IFA_LOCK(&ia->ia_ifa);
2033 (void)memcpy(sin, &IA_SIN(ia)->sin_addr,
2034 sizeof(struct in_addr));
2035 IFA_UNLOCK(&ia->ia_ifa);
2036 ipt->ipt_ptr += sizeof(struct in_addr);
2037 IFA_REMREF(&ia->ia_ifa);
2038 ia = NULL;
2039 break;
2040
2041 case IPOPT_TS_PRESPEC:
2042 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
2043 sizeof(struct in_addr) > ipt->ipt_len) {
2044 code = (u_char *)&ipt->ipt_ptr -
2045 (u_char *)ip;
2046 goto bad;
2047 }
2048 (void)memcpy(&ipaddr.sin_addr, sin,
2049 sizeof(struct in_addr));
2050 if ((ia = (struct in_ifaddr*)ifa_ifwithaddr((SA)&ipaddr)) == 0)
2051 continue;
2052 IFA_REMREF(&ia->ia_ifa);
2053 ia = NULL;
2054 ipt->ipt_ptr += sizeof(struct in_addr);
2055 break;
2056
2057 default:
2058 /* XXX can't take &ipt->ipt_flg */
2059 code = (u_char *)&ipt->ipt_ptr -
2060 (u_char *)ip + 1;
2061 goto bad;
2062 }
2063 ntime = iptime();
2064 (void)memcpy(cp + ipt->ipt_ptr - 1, &ntime,
2065 sizeof(n_time));
2066 ipt->ipt_ptr += sizeof(n_time);
2067 }
2068 }
2069 if (forward && ipforwarding) {
2070 ip_forward(m, 1, next_hop);
2071 return (1);
2072 }
2073 return (0);
2074 bad:
2075 ip->ip_len -= IP_VHL_HL(ip->ip_vhl) << 2; /* XXX icmp_error adds in hdr length */
2076 icmp_error(m, type, code, 0, 0);
2077 OSAddAtomic(1, &ipstat.ips_badoptions);
2078 return (1);
2079 }
2080
2081 /*
2082 * Given address of next destination (final or next hop),
2083 * return internet address info of interface to be used to get there.
2084 */
2085 struct in_ifaddr *
2086 ip_rtaddr(struct in_addr dst)
2087 {
2088 struct sockaddr_in *sin;
2089 struct ifaddr *rt_ifa;
2090 struct route ro;
2091
2092 bzero(&ro, sizeof (ro));
2093 sin = (struct sockaddr_in *)&ro.ro_dst;
2094 sin->sin_family = AF_INET;
2095 sin->sin_len = sizeof (*sin);
2096 sin->sin_addr = dst;
2097
2098 rtalloc_ign(&ro, RTF_PRCLONING);
2099 if (ro.ro_rt == NULL)
2100 return (NULL);
2101
2102 RT_LOCK(ro.ro_rt);
2103 if ((rt_ifa = ro.ro_rt->rt_ifa) != NULL)
2104 IFA_ADDREF(rt_ifa);
2105 RT_UNLOCK(ro.ro_rt);
2106 rtfree(ro.ro_rt);
2107
2108 return ((struct in_ifaddr *)rt_ifa);
2109 }
2110
2111 /*
2112 * Save incoming source route for use in replies,
2113 * to be picked up later by ip_srcroute if the receiver is interested.
2114 */
2115 void
2116 save_rte(u_char *option, struct in_addr dst)
2117 {
2118 unsigned olen;
2119
2120 olen = option[IPOPT_OLEN];
2121 #if DIAGNOSTIC
2122 if (ipprintfs)
2123 printf("save_rte: olen %d\n", olen);
2124 #endif
2125 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
2126 return;
2127 bcopy(option, ip_srcrt.srcopt, olen);
2128 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
2129 ip_srcrt.dst = dst;
2130 }
2131
2132 /*
2133 * Retrieve incoming source route for use in replies,
2134 * in the same form used by setsockopt.
2135 * The first hop is placed before the options, will be removed later.
2136 */
2137 struct mbuf *
2138 ip_srcroute(void)
2139 {
2140 struct in_addr *p, *q;
2141 struct mbuf *m;
2142
2143 if (ip_nhops == 0)
2144 return ((struct mbuf *)0);
2145 m = m_get(M_DONTWAIT, MT_HEADER);
2146 if (m == 0)
2147 return ((struct mbuf *)0);
2148
2149 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
2150
2151 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
2152 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
2153 OPTSIZ;
2154 #if DIAGNOSTIC
2155 if (ipprintfs)
2156 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
2157 #endif
2158
2159 /*
2160 * First save first hop for return route
2161 */
2162 p = &ip_srcrt.route[ip_nhops - 1];
2163 *(mtod(m, struct in_addr *)) = *p--;
2164 #if DIAGNOSTIC
2165 if (ipprintfs)
2166 printf(" hops %lx", (u_int32_t)ntohl(mtod(m, struct in_addr *)->s_addr));
2167 #endif
2168
2169 /*
2170 * Copy option fields and padding (nop) to mbuf.
2171 */
2172 ip_srcrt.nop = IPOPT_NOP;
2173 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
2174 (void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
2175 &ip_srcrt.nop, OPTSIZ);
2176 q = (struct in_addr *)(mtod(m, caddr_t) +
2177 sizeof(struct in_addr) + OPTSIZ);
2178 #undef OPTSIZ
2179 /*
2180 * Record return path as an IP source route,
2181 * reversing the path (pointers are now aligned).
2182 */
2183 while (p >= ip_srcrt.route) {
2184 #if DIAGNOSTIC
2185 if (ipprintfs)
2186 printf(" %lx", (u_int32_t)ntohl(q->s_addr));
2187 #endif
2188 *q++ = *p--;
2189 }
2190 /*
2191 * Last hop goes to final destination.
2192 */
2193 *q = ip_srcrt.dst;
2194 #if DIAGNOSTIC
2195 if (ipprintfs)
2196 printf(" %lx\n", (u_int32_t)ntohl(q->s_addr));
2197 #endif
2198 return (m);
2199 }
2200
2201 /*
2202 * Strip out IP options, at higher
2203 * level protocol in the kernel.
2204 * Second argument is buffer to which options
2205 * will be moved, and return value is their length.
2206 * XXX should be deleted; last arg currently ignored.
2207 */
2208 void
2209 ip_stripoptions(struct mbuf *m, __unused struct mbuf *mopt)
2210 {
2211 int i;
2212 struct ip *ip = mtod(m, struct ip *);
2213 caddr_t opts;
2214 int olen;
2215
2216 olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
2217 opts = (caddr_t)(ip + 1);
2218 i = m->m_len - (sizeof (struct ip) + olen);
2219 bcopy(opts + olen, opts, (unsigned)i);
2220 m->m_len -= olen;
2221 if (m->m_flags & M_PKTHDR)
2222 m->m_pkthdr.len -= olen;
2223 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
2224 }
2225
2226 u_char inetctlerrmap[PRC_NCMDS] = {
2227 0, 0, 0, 0,
2228 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
2229 ENETUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
2230 EMSGSIZE, EHOSTUNREACH, 0, 0,
2231 0, 0, 0, 0,
2232 ENOPROTOOPT, ECONNREFUSED
2233 };
2234
2235 static int
2236 sysctl_ipforwarding SYSCTL_HANDLER_ARGS
2237 {
2238 #pragma unused(arg1, arg2)
2239 int i, was_ipforwarding = ipforwarding;
2240
2241 i = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
2242 if (i != 0 || req->newptr == USER_ADDR_NULL)
2243 return (i);
2244
2245 if (was_ipforwarding && !ipforwarding) {
2246 /* clean up IPv4 forwarding cached routes */
2247 ifnet_head_lock_shared();
2248 for (i = 0; i <= if_index; i++) {
2249 struct ifnet *ifp = ifindex2ifnet[i];
2250 if (ifp != NULL) {
2251 lck_mtx_lock(&ifp->if_cached_route_lock);
2252 if (ifp->if_fwd_route.ro_rt != NULL)
2253 rtfree(ifp->if_fwd_route.ro_rt);
2254 bzero(&ifp->if_fwd_route,
2255 sizeof (ifp->if_fwd_route));
2256 lck_mtx_unlock(&ifp->if_cached_route_lock);
2257 }
2258 }
2259 ifnet_head_done();
2260 }
2261
2262 return (0);
2263 }
2264
2265 /*
2266 * Similar to inp_route_{copyout,copyin} routines except that these copy
2267 * out the cached IPv4 forwarding route from struct ifnet instead of the
2268 * inpcb. See comments for those routines for explanations.
2269 */
2270 static void
2271 ip_fwd_route_copyout(struct ifnet *ifp, struct route *dst)
2272 {
2273 struct route *src = &ifp->if_fwd_route;
2274
2275 lck_mtx_lock_spin(&ifp->if_cached_route_lock);
2276 lck_mtx_convert_spin(&ifp->if_cached_route_lock);
2277
2278 /* Minor sanity check */
2279 if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET)
2280 panic("%s: wrong or corrupted route: %p", __func__, src);
2281
2282 route_copyout(dst, src, sizeof(*dst));
2283
2284 lck_mtx_unlock(&ifp->if_cached_route_lock);
2285 }
2286
2287 static void
2288 ip_fwd_route_copyin(struct ifnet *ifp, struct route *src)
2289 {
2290 struct route *dst = &ifp->if_fwd_route;
2291
2292 lck_mtx_lock_spin(&ifp->if_cached_route_lock);
2293 lck_mtx_convert_spin(&ifp->if_cached_route_lock);
2294
2295 /* Minor sanity check */
2296 if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET)
2297 panic("%s: wrong or corrupted route: %p", __func__, src);
2298
2299 if (ifp->if_fwd_cacheok)
2300 route_copyin(src, dst, sizeof(*src));
2301
2302 lck_mtx_unlock(&ifp->if_cached_route_lock);
2303 }
2304
2305 /*
2306 * Forward a packet. If some error occurs return the sender
2307 * an icmp packet. Note we can't always generate a meaningful
2308 * icmp message because icmp doesn't have a large enough repertoire
2309 * of codes and types.
2310 *
2311 * If not forwarding, just drop the packet. This could be confusing
2312 * if ipforwarding was zero but some routing protocol was advancing
2313 * us as a gateway to somewhere. However, we must let the routing
2314 * protocol deal with that.
2315 *
2316 * The srcrt parameter indicates whether the packet is being forwarded
2317 * via a source route.
2318 */
2319 static void
2320 ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
2321 {
2322 #if !IPFIREWALL
2323 #pragma unused(next_hop)
2324 #endif
2325 struct ip *ip = mtod(m, struct ip *);
2326 struct sockaddr_in *sin;
2327 struct rtentry *rt;
2328 struct route fwd_rt;
2329 int error, type = 0, code = 0;
2330 struct mbuf *mcopy;
2331 n_long dest;
2332 struct in_addr pkt_dst;
2333 u_int32_t nextmtu = 0;
2334 struct ip_out_args ipoa = { IFSCOPE_NONE, 0 };
2335 struct ifnet *ifp = m->m_pkthdr.rcvif;
2336 #if PF
2337 struct pf_mtag *pf_mtag;
2338 #endif /* PF */
2339
2340 dest = 0;
2341 #if IPFIREWALL
2342 /*
2343 * Cache the destination address of the packet; this may be
2344 * changed by use of 'ipfw fwd'.
2345 */
2346 pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
2347 #else
2348 pkt_dst = ip->ip_dst;
2349 #endif
2350
2351 #if DIAGNOSTIC
2352 if (ipprintfs)
2353 printf("forward: src %lx dst %lx ttl %x\n",
2354 (u_int32_t)ip->ip_src.s_addr, (u_int32_t)pkt_dst.s_addr,
2355 ip->ip_ttl);
2356 #endif
2357
2358 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
2359 OSAddAtomic(1, &ipstat.ips_cantforward);
2360 m_freem(m);
2361 return;
2362 }
2363 #if IPSTEALTH
2364 if (!ipstealth) {
2365 #endif
2366 if (ip->ip_ttl <= IPTTLDEC) {
2367 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
2368 dest, 0);
2369 return;
2370 }
2371 #if IPSTEALTH
2372 }
2373 #endif
2374
2375 #if PF
2376 pf_mtag = pf_find_mtag(m);
2377 if (pf_mtag != NULL && pf_mtag->rtableid != IFSCOPE_NONE)
2378 ipoa.ipoa_boundif = pf_mtag->rtableid;
2379 #endif /* PF */
2380
2381 ip_fwd_route_copyout(ifp, &fwd_rt);
2382
2383 sin = (struct sockaddr_in *)&fwd_rt.ro_dst;
2384 if (fwd_rt.ro_rt == NULL ||
2385 fwd_rt.ro_rt->generation_id != route_generation ||
2386 pkt_dst.s_addr != sin->sin_addr.s_addr) {
2387 if (fwd_rt.ro_rt != NULL) {
2388 rtfree(fwd_rt.ro_rt);
2389 fwd_rt.ro_rt = NULL;
2390 }
2391 sin->sin_family = AF_INET;
2392 sin->sin_len = sizeof (*sin);
2393 sin->sin_addr = pkt_dst;
2394
2395 rtalloc_scoped_ign(&fwd_rt, RTF_PRCLONING, ipoa.ipoa_boundif);
2396 if (fwd_rt.ro_rt == NULL) {
2397 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
2398 goto done;
2399 }
2400 }
2401 rt = fwd_rt.ro_rt;
2402
2403 /*
2404 * Save the IP header and at most 8 bytes of the payload,
2405 * in case we need to generate an ICMP message to the src.
2406 *
2407 * We don't use m_copy() because it might return a reference
2408 * to a shared cluster. Both this function and ip_output()
2409 * assume exclusive access to the IP header in `m', so any
2410 * data in a cluster may change before we reach icmp_error().
2411 */
2412 MGET(mcopy, M_DONTWAIT, m->m_type);
2413 if (mcopy != NULL) {
2414 M_COPY_PKTHDR(mcopy, m);
2415 mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
2416 (int)ip->ip_len);
2417 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
2418 }
2419
2420 #if IPSTEALTH
2421 if (!ipstealth) {
2422 #endif
2423 ip->ip_ttl -= IPTTLDEC;
2424 #if IPSTEALTH
2425 }
2426 #endif
2427
2428 /*
2429 * If forwarding packet using same interface that it came in on,
2430 * perhaps should send a redirect to sender to shortcut a hop.
2431 * Only send redirect if source is sending directly to us,
2432 * and if packet was not source routed (or has any options).
2433 * Also, don't send redirect if forwarding using a default route
2434 * or a route modified by a redirect.
2435 */
2436 RT_LOCK_SPIN(rt);
2437 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
2438 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
2439 satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
2440 ipsendredirects && !srcrt && rt->rt_ifa != NULL) {
2441 struct in_ifaddr *ia = (struct in_ifaddr *)rt->rt_ifa;
2442 u_int32_t src = ntohl(ip->ip_src.s_addr);
2443
2444 /* Become a regular mutex */
2445 RT_CONVERT_LOCK(rt);
2446 IFA_LOCK_SPIN(&ia->ia_ifa);
2447 if ((src & ia->ia_subnetmask) == ia->ia_subnet) {
2448 if (rt->rt_flags & RTF_GATEWAY)
2449 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
2450 else
2451 dest = pkt_dst.s_addr;
2452 /* Router requirements says to only send host redirects */
2453 type = ICMP_REDIRECT;
2454 code = ICMP_REDIRECT_HOST;
2455 #if DIAGNOSTIC
2456 if (ipprintfs)
2457 printf("redirect (%d) to %lx\n", code, (u_int32_t)dest);
2458 #endif
2459 }
2460 IFA_UNLOCK(&ia->ia_ifa);
2461 }
2462 RT_UNLOCK(rt);
2463
2464 #if IPFIREWALL
2465 if (next_hop) {
2466 /* Pass IPFORWARD info if available */
2467 struct m_tag *tag;
2468 struct ip_fwd_tag *ipfwd_tag;
2469
2470 tag = m_tag_create(KERNEL_MODULE_TAG_ID,
2471 KERNEL_TAG_TYPE_IPFORWARD,
2472 sizeof (*ipfwd_tag), M_NOWAIT, m);
2473 if (tag == NULL) {
2474 error = ENOBUFS;
2475 m_freem(m);
2476 goto done;
2477 }
2478
2479 ipfwd_tag = (struct ip_fwd_tag *)(tag+1);
2480 ipfwd_tag->next_hop = next_hop;
2481
2482 m_tag_prepend(m, tag);
2483 }
2484 #endif
2485 error = ip_output_list(m, 0, NULL, &fwd_rt,
2486 IP_FORWARDING | IP_OUTARGS, 0, &ipoa);
2487
2488 /* Refresh rt since the route could have changed while in IP */
2489 rt = fwd_rt.ro_rt;
2490
2491 if (error) {
2492 OSAddAtomic(1, &ipstat.ips_cantforward);
2493 } else {
2494 OSAddAtomic(1, &ipstat.ips_forward);
2495 if (type)
2496 OSAddAtomic(1, &ipstat.ips_redirectsent);
2497 else {
2498 if (mcopy) {
2499 /*
2500 * If we didn't have to go thru ipflow and
2501 * the packet was successfully consumed by
2502 * ip_output, the mcopy is rather a waste;
2503 * this could be further optimized.
2504 */
2505 m_freem(mcopy);
2506 }
2507 goto done;
2508 }
2509 }
2510 if (mcopy == NULL)
2511 goto done;
2512
2513 switch (error) {
2514
2515 case 0: /* forwarded, but need redirect */
2516 /* type, code set above */
2517 break;
2518
2519 case ENETUNREACH: /* shouldn't happen, checked above */
2520 case EHOSTUNREACH:
2521 case ENETDOWN:
2522 case EHOSTDOWN:
2523 default:
2524 type = ICMP_UNREACH;
2525 code = ICMP_UNREACH_HOST;
2526 break;
2527
2528 case EMSGSIZE:
2529 type = ICMP_UNREACH;
2530 code = ICMP_UNREACH_NEEDFRAG;
2531 #ifndef IPSEC
2532 if (rt != NULL) {
2533 RT_LOCK_SPIN(rt);
2534 if (rt->rt_ifp != NULL)
2535 nextmtu = rt->rt_ifp->if_mtu;
2536 RT_UNLOCK(rt);
2537 }
2538 #else
2539 /*
2540 * If the packet is routed over IPsec tunnel, tell the
2541 * originator the tunnel MTU.
2542 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2543 * XXX quickhack!!!
2544 */
2545 if (rt != NULL) {
2546 struct secpolicy *sp = NULL;
2547 int ipsecerror;
2548 int ipsechdr;
2549 struct route *ro;
2550
2551 RT_LOCK_SPIN(rt);
2552 if (rt->rt_ifp != NULL)
2553 nextmtu = rt->rt_ifp->if_mtu;
2554 RT_UNLOCK(rt);
2555
2556 if (ipsec_bypass) {
2557 OSAddAtomic(1, &ipstat.ips_cantfrag);
2558 break;
2559 }
2560 sp = ipsec4_getpolicybyaddr(mcopy,
2561 IPSEC_DIR_OUTBOUND,
2562 IP_FORWARDING,
2563 &ipsecerror);
2564
2565 if (sp != NULL) {
2566 /* count IPsec header size */
2567 ipsechdr = ipsec_hdrsiz(sp);
2568
2569 /*
2570 * find the correct route for outer IPv4
2571 * header, compute tunnel MTU.
2572 */
2573 nextmtu = 0;
2574
2575 if (sp->req != NULL) {
2576 if (sp->req->saidx.mode == IPSEC_MODE_TUNNEL) {
2577 struct secasindex saidx;
2578 struct ip *ipm;
2579 struct secasvar *sav;
2580
2581 ipm = mtod(mcopy, struct ip *);
2582 bcopy(&sp->req->saidx, &saidx, sizeof(saidx));
2583 saidx.mode = sp->req->saidx.mode;
2584 saidx.reqid = sp->req->saidx.reqid;
2585 sin = (struct sockaddr_in *)&saidx.src;
2586 if (sin->sin_len == 0) {
2587 sin->sin_len = sizeof(*sin);
2588 sin->sin_family = AF_INET;
2589 sin->sin_port = IPSEC_PORT_ANY;
2590 bcopy(&ipm->ip_src, &sin->sin_addr,
2591 sizeof(sin->sin_addr));
2592 }
2593 sin = (struct sockaddr_in *)&saidx.dst;
2594 if (sin->sin_len == 0) {
2595 sin->sin_len = sizeof(*sin);
2596 sin->sin_family = AF_INET;
2597 sin->sin_port = IPSEC_PORT_ANY;
2598 bcopy(&ipm->ip_dst, &sin->sin_addr,
2599 sizeof(sin->sin_addr));
2600 }
2601 sav = key_allocsa_policy(&saidx);
2602 if (sav != NULL) {
2603 lck_mtx_lock(sadb_mutex);
2604 if (sav->sah != NULL) {
2605 ro = &sav->sah->sa_route;
2606 if (ro->ro_rt != NULL) {
2607 RT_LOCK(ro->ro_rt);
2608 if (ro->ro_rt->rt_ifp != NULL) {
2609 nextmtu = ro->ro_rt->rt_ifp->if_mtu;
2610 nextmtu -= ipsechdr;
2611 }
2612 RT_UNLOCK(ro->ro_rt);
2613 }
2614 }
2615 key_freesav(sav, KEY_SADB_LOCKED);
2616 lck_mtx_unlock(sadb_mutex);
2617 }
2618 }
2619 }
2620 key_freesp(sp, KEY_SADB_UNLOCKED);
2621 }
2622 }
2623 #endif /*IPSEC*/
2624 OSAddAtomic(1, &ipstat.ips_cantfrag);
2625 break;
2626
2627 case ENOBUFS:
2628 type = ICMP_SOURCEQUENCH;
2629 code = 0;
2630 break;
2631
2632 case EACCES: /* ipfw denied packet */
2633 m_freem(mcopy);
2634 goto done;
2635 }
2636
2637 icmp_error(mcopy, type, code, dest, nextmtu);
2638 done:
2639 ip_fwd_route_copyin(ifp, &fwd_rt);
2640 }
2641
2642 int
2643 ip_savecontrol(
2644 struct inpcb *inp,
2645 struct mbuf **mp,
2646 struct ip *ip,
2647 struct mbuf *m)
2648 {
2649 *mp = NULL;
2650 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2651 struct timeval tv;
2652
2653 microtime(&tv);
2654 mp = sbcreatecontrol_mbuf((caddr_t) &tv, sizeof(tv),
2655 SCM_TIMESTAMP, SOL_SOCKET, mp);
2656 if (*mp == NULL) {
2657 goto no_mbufs;
2658 }
2659 }
2660 if ((inp->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0) {
2661 uint64_t time;
2662
2663 time = mach_absolute_time();
2664 mp = sbcreatecontrol_mbuf((caddr_t) &time, sizeof(time),
2665 SCM_TIMESTAMP_MONOTONIC, SOL_SOCKET, mp);
2666
2667 if (*mp == NULL) {
2668 goto no_mbufs;
2669 }
2670 }
2671 if (inp->inp_flags & INP_RECVDSTADDR) {
2672 mp = sbcreatecontrol_mbuf((caddr_t) &ip->ip_dst,
2673 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP, mp);
2674 if (*mp == NULL) {
2675 goto no_mbufs;
2676 }
2677 }
2678 #ifdef notyet
2679 /* XXX
2680 * Moving these out of udp_input() made them even more broken
2681 * than they already were.
2682 */
2683 /* options were tossed already */
2684 if (inp->inp_flags & INP_RECVOPTS) {
2685 mp = sbcreatecontrol_mbuf((caddr_t) opts_deleted_above,
2686 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP, mp);
2687 if (*mp == NULL) {
2688 goto no_mbufs;
2689 }
2690 }
2691 /* ip_srcroute doesn't do what we want here, need to fix */
2692 if (inp->inp_flags & INP_RECVRETOPTS) {
2693 mp = sbcreatecontrol_mbuf((caddr_t) ip_srcroute(),
2694 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP, mp);
2695 if (*mp == NULL) {
2696 goto no_mbufs;
2697 }
2698 }
2699 #endif
2700 if (inp->inp_flags & INP_RECVIF) {
2701 struct ifnet *ifp;
2702 struct sdlbuf {
2703 struct sockaddr_dl sdl;
2704 u_char pad[32];
2705 } sdlbuf;
2706 struct sockaddr_dl *sdp;
2707 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2708
2709 ifnet_head_lock_shared();
2710 if ((ifp = m->m_pkthdr.rcvif) != NULL &&
2711 ifp->if_index && (ifp->if_index <= if_index)) {
2712 struct ifaddr *ifa = ifnet_addrs[ifp->if_index - 1];
2713
2714 if (!ifa || !ifa->ifa_addr)
2715 goto makedummy;
2716
2717 IFA_LOCK_SPIN(ifa);
2718 sdp = (struct sockaddr_dl *)ifa->ifa_addr;
2719 /*
2720 * Change our mind and don't try copy.
2721 */
2722 if ((sdp->sdl_family != AF_LINK) ||
2723 (sdp->sdl_len > sizeof(sdlbuf))) {
2724 IFA_UNLOCK(ifa);
2725 goto makedummy;
2726 }
2727 bcopy(sdp, sdl2, sdp->sdl_len);
2728 IFA_UNLOCK(ifa);
2729 } else {
2730 makedummy:
2731 sdl2->sdl_len
2732 = offsetof(struct sockaddr_dl, sdl_data[0]);
2733 sdl2->sdl_family = AF_LINK;
2734 sdl2->sdl_index = 0;
2735 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2736 }
2737 ifnet_head_done();
2738 mp = sbcreatecontrol_mbuf((caddr_t) sdl2, sdl2->sdl_len,
2739 IP_RECVIF, IPPROTO_IP, mp);
2740 if (*mp == NULL) {
2741 goto no_mbufs;
2742 }
2743 }
2744 if (inp->inp_flags & INP_RECVTTL) {
2745 mp = sbcreatecontrol_mbuf((caddr_t)&ip->ip_ttl, sizeof(ip->ip_ttl),
2746 IP_RECVTTL, IPPROTO_IP, mp);
2747 if (*mp == NULL) {
2748 goto no_mbufs;
2749 }
2750 }
2751 if ((inp->inp_socket->so_flags & SOF_RECV_TRAFFIC_CLASS) != 0) {
2752 int tc = m->m_pkthdr.prio;
2753
2754 mp = sbcreatecontrol_mbuf((caddr_t) &tc, sizeof(tc),
2755 SO_TRAFFIC_CLASS, SOL_SOCKET, mp);
2756 if (*mp == NULL) {
2757 goto no_mbufs;
2758 }
2759 }
2760 if (inp->inp_flags & INP_PKTINFO) {
2761 struct in_pktinfo pi;
2762
2763 bzero(&pi, sizeof(struct in_pktinfo));
2764 bcopy(&ip->ip_dst, &pi.ipi_addr, sizeof(struct in_addr));
2765 pi.ipi_ifindex = (m && m->m_pkthdr.rcvif) ? m->m_pkthdr.rcvif->if_index : 0;
2766
2767 mp = sbcreatecontrol_mbuf((caddr_t)&pi, sizeof(struct in_pktinfo),
2768 IP_RECVPKTINFO, IPPROTO_IP, mp);
2769 if (*mp == NULL) {
2770 goto no_mbufs;
2771 }
2772 }
2773 return 0;
2774
2775 no_mbufs:
2776 ipstat.ips_pktdropcntrl++;
2777 return ENOBUFS;
2778 }
2779
2780 int
2781 ip_rsvp_init(struct socket *so)
2782 {
2783 if (so->so_type != SOCK_RAW ||
2784 so->so_proto->pr_protocol != IPPROTO_RSVP)
2785 return EOPNOTSUPP;
2786
2787 if (ip_rsvpd != NULL)
2788 return EADDRINUSE;
2789
2790 ip_rsvpd = so;
2791 /*
2792 * This may seem silly, but we need to be sure we don't over-increment
2793 * the RSVP counter, in case something slips up.
2794 */
2795 if (!ip_rsvp_on) {
2796 ip_rsvp_on = 1;
2797 rsvp_on++;
2798 }
2799
2800 return 0;
2801 }
2802
2803 int
2804 ip_rsvp_done(void)
2805 {
2806 ip_rsvpd = NULL;
2807 /*
2808 * This may seem silly, but we need to be sure we don't over-decrement
2809 * the RSVP counter, in case something slips up.
2810 */
2811 if (ip_rsvp_on) {
2812 ip_rsvp_on = 0;
2813 rsvp_on--;
2814 }
2815 return 0;
2816 }