]>
git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_fork.c
2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1982, 1986, 1989, 1991, 1993
31 * The Regents of the University of California. All rights reserved.
32 * (c) UNIX System Laboratories, Inc.
33 * All or some portions of this file are derived from material licensed
34 * to the University of California by American Telephone and Telegraph
35 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
36 * the permission of UNIX System Laboratories, Inc.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
69 * NOTICE: This file was modified by McAfee Research in 2004 to introduce
70 * support for mandatory and extensible security protections. This notice
71 * is included in support of clause 2.2 (b) of the Apple Public License,
75 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
76 * support for mandatory and extensible security protections. This notice
77 * is included in support of clause 2.2 (b) of the Apple Public License,
81 #include <kern/assert.h>
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/filedesc.h>
85 #include <sys/kernel.h>
86 #include <sys/malloc.h>
87 #include <sys/proc_internal.h>
88 #include <sys/kauth.h>
90 #include <sys/resourcevar.h>
91 #include <sys/vnode_internal.h>
92 #include <sys/file_internal.h>
94 #include <sys/codesign.h>
95 #include <sys/sysproto.h>
97 /* Do not include dtrace.h, it redefines kmem_[alloc/free] */
98 extern void dtrace_fasttrap_fork(proc_t
, proc_t
);
99 extern void (*dtrace_helpers_fork
)(proc_t
, proc_t
);
100 extern void dtrace_lazy_dofs_duplicate(proc_t
, proc_t
);
102 #include <sys/dtrace_ptss.h>
105 #include <security/audit/audit.h>
107 #include <mach/mach_types.h>
108 #include <kern/kern_types.h>
109 #include <kern/kalloc.h>
110 #include <kern/mach_param.h>
111 #include <kern/task.h>
112 #include <kern/thread_call.h>
113 #include <kern/zalloc.h>
115 #include <machine/spl.h>
118 #include <security/mac.h>
119 #include <security/mac_mach_internal.h>
122 #include <vm/vm_map.h>
123 #include <vm/vm_protos.h>
124 #include <vm/vm_shared_region.h>
126 #include <sys/shm_internal.h> /* for shmfork() */
127 #include <mach/task.h> /* for thread_create() */
128 #include <mach/thread_act.h> /* for thread_resume() */
132 /* XXX routines which should have Mach prototypes, but don't */
133 void thread_set_parent(thread_t parent
, int pid
);
134 extern void act_thread_catt(void *ctx
);
135 void thread_set_child(thread_t child
, int pid
);
136 void *act_thread_csave(void);
139 thread_t
cloneproc(task_t
, proc_t
, int);
140 proc_t
forkproc(proc_t
);
141 void forkproc_free(proc_t
);
142 thread_t
fork_create_child(task_t parent_task
, proc_t child
, int inherit_memory
, int is64bit
);
143 void proc_vfork_begin(proc_t parent_proc
);
144 void proc_vfork_end(proc_t parent_proc
);
146 #define DOFORK 0x1 /* fork() system call */
147 #define DOVFORK 0x2 /* vfork() system call */
152 * Description: start a vfork on a process
154 * Parameters: parent_proc process (re)entering vfork state
158 * Notes: Although this function increments a count, a count in
159 * excess of 1 is not currently supported. According to the
160 * POSIX standard, calling anything other than execve() or
161 * _exit() fillowing a vfork(), including calling vfork()
162 * itself again, will result in undefned behaviour
165 proc_vfork_begin(proc_t parent_proc
)
167 proc_lock(parent_proc
);
168 parent_proc
->p_lflag
|= P_LVFORK
;
169 parent_proc
->p_vforkcnt
++;
170 proc_unlock(parent_proc
);
176 * Description: stop a vfork on a process
178 * Parameters: parent_proc process leaving vfork state
182 * Notes: Decerements the count; currently, reentrancy of vfork()
183 * is unsupported on the current process
186 proc_vfork_end(proc_t parent_proc
)
188 proc_lock(parent_proc
);
189 parent_proc
->p_vforkcnt
--;
190 if (parent_proc
->p_vforkcnt
< 0)
191 panic("vfork cnt is -ve");
192 /* resude the vfork count; clear the flag when it goes to 0 */
193 if (parent_proc
->p_vforkcnt
== 0)
194 parent_proc
->p_lflag
&= ~P_LVFORK
;
195 proc_unlock(parent_proc
);
202 * Description: vfork system call
204 * Parameters: void [no arguments]
206 * Retval: 0 (to child process)
207 * !0 pid of child (to parent process)
208 * -1 error (see "Returns:")
210 * Returns: EAGAIN Administrative limit reached
211 * EINVAL vfork() called during vfork()
212 * ENOMEM Failed to allocate new process
214 * Note: After a successful call to this function, the parent process
215 * has its task, thread, and uthread lent to the child process,
216 * and control is returned to the caller; if this function is
217 * invoked as a system call, the return is to user space, and
218 * is effectively running on the child process.
220 * Subsequent calls that operate on process state are permitted,
221 * though discouraged, and will operate on the child process; any
222 * operations on the task, thread, or uthread will result in
223 * changes in the parent state, and, if inheritable, the child
224 * state, when a task, thread, and uthread are realized for the
225 * child process at execve() time, will also be effected. Given
226 * this, it's recemmended that people use the posix_spawn() call
229 * BLOCK DIAGRAM OF VFORK
233 * ,----------------. ,-------------.
235 * | parent_thread | ------> | parent_task |
237 * `----------------' `-------------'
238 * uthread | ^ bsd_info | ^
239 * v | vc_thread v | task
240 * ,----------------. ,-------------.
242 * | parent_uthread | <.list. | parent_proc | <-- current_proc()
244 * `----------------' `-------------'
251 * ,----------------. ,-------------.
253 * ,----> | parent_thread | ------> | parent_task |
255 * | `----------------' `-------------'
256 * | uthread | ^ bsd_info | ^
257 * | v | vc_thread v | task
258 * | ,----------------. ,-------------.
260 * | | parent_uthread | <.list. | parent_proc |
262 * | `----------------' `-------------'
265 * | ,----------------.
267 * p_vforkact | child_proc | <-- current_proc()
272 vfork(proc_t parent_proc
, __unused
struct vfork_args
*uap
, int32_t *retval
)
274 thread_t child_thread
;
277 if ((err
= fork1(parent_proc
, &child_thread
, PROC_CREATE_VFORK
)) != 0) {
281 * kludge: rely on uu_proc being set in the vfork case,
282 * rather than returning the actual thread. We can remove
283 * this when we remove the uu_proc/current_proc() kludge.
285 proc_t child_proc
= current_proc();
287 retval
[0] = child_proc
->p_pid
;
288 retval
[1] = 1; /* flag child return for user space */
291 * Drop the signal lock on the child which was taken on our
292 * behalf by forkproc()/cloneproc() to prevent signals being
293 * received by the child in a partially constructed state.
295 proc_signalend(child_proc
, 0);
296 proc_transend(child_proc
, 0);
298 /* flag the fork has occurred */
299 proc_knote(parent_proc
, NOTE_FORK
| child_proc
->p_pid
);
300 DTRACE_PROC1(create
, proc_t
, child_proc
);
310 * Description: common code used by all new process creation other than the
311 * bootstrap of the initial process on the system
313 * Parameters: parent_proc parent process of the process being
314 * child_threadp pointer to location to receive the
315 * Mach thread_t of the child process
317 * kind kind of creation being requested
319 * Notes: Permissable values for 'kind':
321 * PROC_CREATE_FORK Create a complete process which will
322 * return actively running in both the
323 * parent and the child; the child copies
324 * the parent address space.
325 * PROC_CREATE_SPAWN Create a complete process which will
326 * return actively running in the parent
327 * only after returning actively running
328 * in the child; the child address space
329 * is newly created by an image activator,
330 * after which the child is run.
331 * PROC_CREATE_VFORK Creates a partial process which will
332 * borrow the parent task, thread, and
333 * uthread to return running in the child;
334 * the child address space and other parts
335 * are lazily created at execve() time, or
336 * the child is terminated, and the parent
337 * does not actively run until that
340 * At first it may seem strange that we return the child thread
341 * address rather than process structure, since the process is
342 * the only part guaranteed to be "new"; however, since we do
343 * not actualy adjust other references between Mach and BSD (see
344 * the block diagram above the implementation of vfork()), this
345 * is the only method which guarantees us the ability to get
346 * back to the other information.
349 fork1(proc_t parent_proc
, thread_t
*child_threadp
, int kind
)
351 thread_t parent_thread
= (thread_t
)current_thread();
352 uthread_t parent_uthread
= (uthread_t
)get_bsdthread_info(parent_thread
);
353 proc_t child_proc
= NULL
; /* set in switch, but compiler... */
354 thread_t child_thread
= NULL
;
361 * Although process entries are dynamically created, we still keep
362 * a global limit on the maximum number we will create. Don't allow
363 * a nonprivileged user to use the last process; don't let root
364 * exceed the limit. The variable nprocs is the current number of
365 * processes, maxproc is the limit.
367 uid
= kauth_getruid();
369 if ((nprocs
>= maxproc
- 1 && uid
!= 0) || nprocs
>= maxproc
) {
377 * Increment the count of procs running with this uid. Don't allow
378 * a nonprivileged user to exceed their current limit, which is
379 * always less than what an rlim_t can hold.
380 * (locking protection is provided by list lock held in chgproccnt)
382 count
= chgproccnt(uid
, 1);
384 (rlim_t
)count
> parent_proc
->p_rlimit
[RLIMIT_NPROC
].rlim_cur
) {
391 * Determine if MAC policies applied to the process will allow
392 * it to fork. This is an advisory-only check.
394 err
= mac_proc_check_fork(parent_proc
);
401 case PROC_CREATE_VFORK
:
403 * Prevent a vfork while we are in vfork(); we should
404 * also likely preventing a fork here as well, and this
405 * check should then be outside the switch statement,
406 * since the proc struct contents will copy from the
407 * child and the tash/thread/uthread from the parent in
408 * that case. We do not support vfork() in vfork()
409 * because we don't have to; the same non-requirement
410 * is true of both fork() and posix_spawn() and any
411 * call other than execve() amd _exit(), but we've
412 * been historically lenient, so we continue to be so
415 * <rdar://6640521> Probably a source of random panics
417 if (parent_uthread
->uu_flag
& UT_VFORK
) {
418 printf("fork1 called within vfork by %s\n", parent_proc
->p_comm
);
424 * Flag us in progress; if we chose to support vfork() in
425 * vfork(), we would chain our parent at this point (in
426 * effect, a stack push). We don't, since we actually want
427 * to disallow everything not specified in the standard
429 proc_vfork_begin(parent_proc
);
431 /* The newly created process comes with signal lock held */
432 if ((child_proc
= forkproc(parent_proc
)) == NULL
) {
433 /* Failed to allocate new process */
434 proc_vfork_end(parent_proc
);
439 // XXX BEGIN: wants to move to be common code (and safe)
442 * allow policies to associate the credential/label that
443 * we referenced from the parent ... with the child
444 * JMM - this really isn't safe, as we can drop that
445 * association without informing the policy in other
446 * situations (keep long enough to get policies changed)
448 mac_cred_label_associate_fork(child_proc
->p_ucred
, child_proc
);
452 * Propogate change of PID - may get new cred if auditing.
454 * NOTE: This has no effect in the vfork case, since
455 * child_proc->task != current_task(), but we duplicate it
456 * because this is probably, ultimately, wrong, since we
457 * will be running in the "child" which is the parent task
458 * with the wrong token until we get to the execve() or
459 * _exit() call; a lot of "undefined" can happen before
462 * <rdar://6640530> disallow everything but exeve()/_exit()?
464 set_security_token(child_proc
);
466 AUDIT_ARG(pid
, child_proc
->p_pid
);
468 // XXX END: wants to move to be common code (and safe)
471 * BORROW PARENT TASK, THREAD, UTHREAD FOR CHILD
473 * Note: this is where we would "push" state instead of setting
474 * it for nested vfork() support (see proc_vfork_end() for
475 * description if issues here).
477 child_proc
->task
= parent_proc
->task
;
479 child_proc
->p_lflag
|= P_LINVFORK
;
480 child_proc
->p_vforkact
= parent_thread
;
481 child_proc
->p_stat
= SRUN
;
483 parent_uthread
->uu_flag
|= UT_VFORK
;
484 parent_uthread
->uu_proc
= child_proc
;
485 parent_uthread
->uu_userstate
= (void *)act_thread_csave();
486 parent_uthread
->uu_vforkmask
= parent_uthread
->uu_sigmask
;
488 /* temporarily drop thread-set-id state */
489 if (parent_uthread
->uu_flag
& UT_SETUID
) {
490 parent_uthread
->uu_flag
|= UT_WASSETUID
;
491 parent_uthread
->uu_flag
&= ~UT_SETUID
;
494 /* blow thread state information */
495 /* XXX is this actually necessary, given syscall return? */
496 thread_set_child(parent_thread
, child_proc
->p_pid
);
498 child_proc
->p_acflag
= AFORK
; /* forked but not exec'ed */
501 * Preserve synchronization semantics of vfork. If
502 * waiting for child to exec or exit, set P_PPWAIT
503 * on child, and sleep on our proc (in case of exit).
505 child_proc
->p_lflag
|= P_LPPWAIT
;
506 pinsertchild(parent_proc
, child_proc
); /* set visible */
510 case PROC_CREATE_SPAWN
:
512 * A spawned process differs from a forked process in that
513 * the spawned process does not carry around the parents
514 * baggage with regard to address space copying, dtrace,
521 case PROC_CREATE_FORK
:
523 * When we clone the parent process, we are going to inherit
524 * its task attributes and memory, since when we fork, we
525 * will, in effect, create a duplicate of it, with only minor
526 * differences. Contrarily, spawned processes do not inherit.
528 if ((child_thread
= cloneproc(parent_proc
->task
, parent_proc
, spawn
? FALSE
: TRUE
)) == NULL
) {
529 /* Failed to create thread */
534 /* copy current thread state into the child thread (only for fork) */
536 thread_dup(child_thread
);
539 /* child_proc = child_thread->task->proc; */
540 child_proc
= (proc_t
)(get_bsdtask_info(get_threadtask(child_thread
)));
542 // XXX BEGIN: wants to move to be common code (and safe)
545 * allow policies to associate the credential/label that
546 * we referenced from the parent ... with the child
547 * JMM - this really isn't safe, as we can drop that
548 * association without informing the policy in other
549 * situations (keep long enough to get policies changed)
551 mac_cred_label_associate_fork(child_proc
->p_ucred
, child_proc
);
555 * Propogate change of PID - may get new cred if auditing.
557 * NOTE: This has no effect in the vfork case, since
558 * child_proc->task != current_task(), but we duplicate it
559 * because this is probably, ultimately, wrong, since we
560 * will be running in the "child" which is the parent task
561 * with the wrong token until we get to the execve() or
562 * _exit() call; a lot of "undefined" can happen before
565 * <rdar://6640530> disallow everything but exeve()/_exit()?
567 set_security_token(child_proc
);
569 AUDIT_ARG(pid
, child_proc
->p_pid
);
571 // XXX END: wants to move to be common code (and safe)
574 * Blow thread state information; this is what gives the child
575 * process its "return" value from a fork() call.
577 * Note: this should probably move to fork() proper, since it
578 * is not relevent to spawn, and the value won't matter
579 * until we resume the child there. If you are in here
580 * refactoring code, consider doing this at the same time.
582 thread_set_child(child_thread
, child_proc
->p_pid
);
584 child_proc
->p_acflag
= AFORK
; /* forked but not exec'ed */
586 // <rdar://6598155> dtrace code cleanup needed
589 * This code applies to new processes who are copying the task
590 * and thread state and address spaces of their parent process.
593 // <rdar://6598155> call dtrace specific function here instead of all this...
595 * APPLE NOTE: Solaris does a sprlock() and drops the
596 * proc_lock here. We're cheating a bit and only taking
597 * the p_dtrace_sprlock lock. A full sprlock would
598 * task_suspend the parent.
600 lck_mtx_lock(&parent_proc
->p_dtrace_sprlock
);
603 * Remove all DTrace tracepoints from the child process. We
604 * need to do this _before_ duplicating USDT providers since
605 * any associated probes may be immediately enabled.
607 if (parent_proc
->p_dtrace_count
> 0) {
608 dtrace_fasttrap_fork(parent_proc
, child_proc
);
611 lck_mtx_unlock(&parent_proc
->p_dtrace_sprlock
);
614 * Duplicate any lazy dof(s). This must be done while NOT
615 * holding the parent sprlock! Lock ordering is
616 * dtrace_dof_mode_lock, then sprlock. It is imperative we
617 * always call dtrace_lazy_dofs_duplicate, rather than null
618 * check and call if !NULL. If we NULL test, during lazy dof
619 * faulting we can race with the faulting code and proceed
620 * from here to beyond the helpers copy. The lazy dof
621 * faulting will then fail to copy the helpers to the child
624 dtrace_lazy_dofs_duplicate(parent_proc
, child_proc
);
627 * Duplicate any helper actions and providers. The SFORKING
628 * we set above informs the code to enable USDT probes that
629 * sprlock() may fail because the child is being forked.
632 * APPLE NOTE: As best I can tell, Apple's sprlock() equivalent
633 * never fails to find the child. We do not set SFORKING.
635 if (parent_proc
->p_dtrace_helpers
!= NULL
&& dtrace_helpers_fork
) {
636 (*dtrace_helpers_fork
)(parent_proc
, child_proc
);
640 #endif /* CONFIG_DTRACE */
645 panic("fork1 called with unknown kind %d", kind
);
650 /* return the thread pointer to the caller */
651 *child_threadp
= child_thread
;
655 * In the error case, we return a 0 value for the returned pid (but
656 * it is ignored in the trampoline due to the error return); this
657 * is probably not necessary.
660 (void)chgproccnt(uid
, -1);
670 * Description: "Return" to parent vfork thread() following execve/_exit;
671 * this is done by reassociating the parent process structure
672 * with the task, thread, and uthread.
674 * Parameters: child_proc Child process
675 * retval System call return value array
676 * rval Return value to present to parent
680 * Note: The caller resumes or exits the parent, as appropriate, after
681 * callling this function.
684 vfork_return(proc_t child_proc
, int32_t *retval
, int rval
)
686 proc_t parent_proc
= child_proc
->p_pptr
;
687 thread_t parent_thread
= (thread_t
)current_thread();
688 uthread_t parent_uthread
= (uthread_t
)get_bsdthread_info(parent_thread
);
690 act_thread_catt(parent_uthread
->uu_userstate
);
692 /* end vfork in parent */
693 proc_vfork_end(parent_proc
);
695 /* REPATRIATE PARENT TASK, THREAD, UTHREAD */
696 parent_uthread
->uu_userstate
= 0;
697 parent_uthread
->uu_flag
&= ~UT_VFORK
;
698 /* restore thread-set-id state */
699 if (parent_uthread
->uu_flag
& UT_WASSETUID
) {
700 parent_uthread
->uu_flag
|= UT_SETUID
;
701 parent_uthread
->uu_flag
&= UT_WASSETUID
;
703 parent_uthread
->uu_proc
= 0;
704 parent_uthread
->uu_sigmask
= parent_uthread
->uu_vforkmask
;
705 child_proc
->p_lflag
&= ~P_LINVFORK
;
706 child_proc
->p_vforkact
= (void *)0;
708 thread_set_parent(parent_thread
, rval
);
712 retval
[1] = 0; /* mark parent */
722 * Description: Common operations associated with the creation of a child
725 * Parameters: parent_task parent task
726 * child_proc child process
727 * inherit_memory TRUE, if the parents address space is
728 * to be inherited by the child
729 * is64bit TRUE, if the child being created will
730 * be associated with a 64 bit process
731 * rather than a 32 bit process
733 * Note: This code is called in the fork() case, from the execve() call
734 * graph, if implementing an execve() following a vfork(), from
735 * the posix_spawn() call graph (which implicitly includes a
736 * vfork() equivalent call, and in the system bootstrap case.
738 * It creates a new task and thread (and as a side effect of the
739 * thread creation, a uthread), which is then associated with the
740 * process 'child'. If the parent process address space is to
741 * be inherited, then a flag indicates that the newly created
742 * task should inherit this from the child task.
744 * As a special concession to bootstrapping the initial process
745 * in the system, it's possible for 'parent_task' to be TASK_NULL;
746 * in this case, 'inherit_memory' MUST be FALSE.
749 fork_create_child(task_t parent_task
, proc_t child_proc
, int inherit_memory
, int is64bit
)
751 thread_t child_thread
= NULL
;
753 kern_return_t result
;
755 /* Create a new task for the child process */
756 result
= task_create_internal(parent_task
,
760 if (result
!= KERN_SUCCESS
) {
761 printf("execve: task_create_internal failed. Code: %d\n", result
);
765 /* Set the child process task to the new task */
766 child_proc
->task
= child_task
;
768 /* Set child task process to child proc */
769 set_bsdtask_info(child_task
, child_proc
);
771 /* Propagate CPU limit timer from parent */
772 if (timerisset(&child_proc
->p_rlim_cpu
))
773 task_vtimer_set(child_task
, TASK_VTIMER_RLIM
);
775 /* Set/clear 64 bit vm_map flag */
777 vm_map_set_64bit(get_task_map(child_task
));
779 vm_map_set_32bit(get_task_map(child_task
));
782 /* Update task for MAC framework */
783 /* valid to use p_ucred as child is still not running ... */
784 mac_task_label_update_cred(child_proc
->p_ucred
, child_task
);
788 * Set child process BSD visible scheduler priority if nice value
789 * inherited from parent
791 if (child_proc
->p_nice
!= 0)
792 resetpriority(child_proc
);
794 /* Create a new thread for the child process */
795 result
= thread_create(child_task
, &child_thread
);
796 if (result
!= KERN_SUCCESS
) {
797 printf("execve: thread_create failed. Code: %d\n", result
);
798 task_deallocate(child_task
);
802 thread_yield_internal(1);
804 return(child_thread
);
811 * Description: fork system call.
813 * Parameters: parent Parent process to fork
814 * uap (void) [unused]
815 * retval Return value
818 * EAGAIN Resource unavailable, try again
820 * Notes: Attempts to create a new child process which inherits state
821 * from the parent process. If successful, the call returns
822 * having created an initially suspended child process with an
823 * extra Mach task and thread reference, for which the thread
824 * is initially suspended. Until we resume the child process,
825 * it is not yet running.
827 * The return information to the child is contained in the
828 * thread state structure of the new child, and does not
829 * become visible to the child through a normal return process,
830 * since it never made the call into the kernel itself in the
833 * After resuming the thread, this function returns directly to
834 * the parent process which invoked the fork() system call.
836 * Important: The child thread_resume occurs before the parent returns;
837 * depending on scheduling latency, this means that it is not
838 * deterministic as to whether the parent or child is scheduled
839 * to run first. It is entirely possible that the child could
840 * run to completion prior to the parent running.
843 fork(proc_t parent_proc
, __unused
struct fork_args
*uap
, int32_t *retval
)
845 thread_t child_thread
;
848 retval
[1] = 0; /* flag parent return for user space */
850 if ((err
= fork1(parent_proc
, &child_thread
, PROC_CREATE_FORK
)) == 0) {
854 /* Return to the parent */
855 child_proc
= (proc_t
)get_bsdthreadtask_info(child_thread
);
856 retval
[0] = child_proc
->p_pid
;
859 * Drop the signal lock on the child which was taken on our
860 * behalf by forkproc()/cloneproc() to prevent signals being
861 * received by the child in a partially constructed state.
863 proc_signalend(child_proc
, 0);
864 proc_transend(child_proc
, 0);
866 /* flag the fork has occurred */
867 proc_knote(parent_proc
, NOTE_FORK
| child_proc
->p_pid
);
868 DTRACE_PROC1(create
, proc_t
, child_proc
);
870 /* "Return" to the child */
871 (void)thread_resume(child_thread
);
873 /* drop the extra references we got during the creation */
874 if ((child_task
= (task_t
)get_threadtask(child_thread
)) != NULL
) {
875 task_deallocate(child_task
);
877 thread_deallocate(child_thread
);
887 * Description: Create a new process from a specified process.
889 * Parameters: parent_task The parent task to be cloned, or
890 * TASK_NULL is task characteristics
891 * are not to be inherited
892 * be cloned, or TASK_NULL if the new
893 * task is not to inherit the VM
894 * characteristics of the parent
895 * parent_proc The parent process to be cloned
896 * inherit_memory True if the child is to inherit
897 * memory from the parent; if this is
898 * non-NULL, then the parent_task must
901 * Returns: !NULL pointer to new child thread
902 * NULL Failure (unspecified)
904 * Note: On return newly created child process has signal lock held
905 * to block delivery of signal to it if called with lock set.
906 * fork() code needs to explicity remove this lock before
907 * signals can be delivered
909 * In the case of bootstrap, this function can be called from
910 * bsd_utaskbootstrap() in order to bootstrap the first process;
911 * the net effect is to provide a uthread structure for the
912 * kernel process associated with the kernel task.
914 * XXX: Tristating using the value parent_task as the major key
915 * and inherit_memory as the minor key is something we should
916 * refactor later; we owe the current semantics, ultimately,
917 * to the semantics of task_create_internal. For now, we will
918 * live with this being somewhat awkward.
921 cloneproc(task_t parent_task
, proc_t parent_proc
, int inherit_memory
)
925 thread_t child_thread
= NULL
;
927 if ((child_proc
= forkproc(parent_proc
)) == NULL
) {
928 /* Failed to allocate new process */
932 child_thread
= fork_create_child(parent_task
, child_proc
, inherit_memory
, (parent_task
== TASK_NULL
) ? FALSE
: (parent_proc
->p_flag
& P_LP64
));
934 if (child_thread
== NULL
) {
936 * Failed to create thread; now we must deconstruct the new
937 * process previously obtained from forkproc().
939 forkproc_free(child_proc
);
943 child_task
= get_threadtask(child_thread
);
944 if (parent_proc
->p_flag
& P_LP64
) {
945 task_set_64bit(child_task
, TRUE
);
946 OSBitOrAtomic(P_LP64
, (UInt32
*)&child_proc
->p_flag
);
948 task_set_64bit(child_task
, FALSE
);
949 OSBitAndAtomic(~((uint32_t)P_LP64
), (UInt32
*)&child_proc
->p_flag
);
952 /* make child visible */
953 pinsertchild(parent_proc
, child_proc
);
956 * Make child runnable, set start time.
958 child_proc
->p_stat
= SRUN
;
960 return(child_thread
);
965 * Destroy a process structure that resulted from a call to forkproc(), but
966 * which must be returned to the system because of a subsequent failure
967 * preventing it from becoming active.
969 * Parameters: p The incomplete process from forkproc()
973 * Note: This function should only be used in an error handler following
974 * a call to forkproc().
976 * Operations occur in reverse order of those in forkproc().
979 forkproc_free(proc_t p
)
982 /* We held signal and a transition locks; drop them */
983 proc_signalend(p
, 0);
987 * If we have our own copy of the resource limits structure, we
988 * need to free it. If it's a shared copy, we need to drop our
991 proc_limitdrop(p
, 0);
995 /* Need to drop references to the shared memory segment(s), if any */
998 * Use shmexec(): we have no address space, so no mappings
1000 * XXX Yes, the routine is badly named.
1006 /* Need to undo the effects of the fdcopy(), if any */
1010 * Drop the reference on a text vnode pointer, if any
1011 * XXX This code is broken in forkproc(); see <rdar://4256419>;
1012 * XXX if anyone ever uses this field, we will be extremely unhappy.
1015 vnode_rele(p
->p_textvp
);
1019 /* Stop the profiling clock */
1022 /* Update the audit session proc count */
1023 AUDIT_SESSION_PROCEXIT(p
);
1025 /* Release the credential reference */
1026 kauth_cred_unref(&p
->p_ucred
);
1029 /* Decrement the count of processes in the system */
1033 thread_call_free(p
->p_rcall
);
1035 /* Free allocated memory */
1036 FREE_ZONE(p
->p_sigacts
, sizeof *p
->p_sigacts
, M_SIGACTS
);
1037 FREE_ZONE(p
->p_stats
, sizeof *p
->p_stats
, M_PSTATS
);
1038 proc_checkdeadrefs(p
);
1039 FREE_ZONE(p
, sizeof *p
, M_PROC
);
1046 * Description: Create a new process structure, given a parent process
1049 * Parameters: parent_proc The parent process
1051 * Returns: !NULL The new process structure
1052 * NULL Error (insufficient free memory)
1054 * Note: When successful, the newly created process structure is
1055 * partially initialized; if a caller needs to deconstruct the
1056 * returned structure, they must call forkproc_free() to do so.
1059 forkproc(proc_t parent_proc
)
1061 proc_t child_proc
; /* Our new process */
1062 static int nextpid
= 0, pidwrap
= 0, nextpidversion
= 0;
1063 static uint64_t nextuniqueid
= 0;
1065 struct session
*sessp
;
1066 uthread_t parent_uthread
= (uthread_t
)get_bsdthread_info(current_thread());
1068 MALLOC_ZONE(child_proc
, proc_t
, sizeof *child_proc
, M_PROC
, M_WAITOK
);
1069 if (child_proc
== NULL
) {
1070 printf("forkproc: M_PROC zone exhausted\n");
1073 /* zero it out as we need to insert in hash */
1074 bzero(child_proc
, sizeof *child_proc
);
1076 MALLOC_ZONE(child_proc
->p_stats
, struct pstats
*,
1077 sizeof *child_proc
->p_stats
, M_PSTATS
, M_WAITOK
);
1078 if (child_proc
->p_stats
== NULL
) {
1079 printf("forkproc: M_SUBPROC zone exhausted (p_stats)\n");
1080 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1084 MALLOC_ZONE(child_proc
->p_sigacts
, struct sigacts
*,
1085 sizeof *child_proc
->p_sigacts
, M_SIGACTS
, M_WAITOK
);
1086 if (child_proc
->p_sigacts
== NULL
) {
1087 printf("forkproc: M_SUBPROC zone exhausted (p_sigacts)\n");
1088 FREE_ZONE(child_proc
->p_stats
, sizeof *child_proc
->p_stats
, M_PSTATS
);
1089 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1094 /* allocate a callout for use by interval timers */
1095 child_proc
->p_rcall
= thread_call_allocate((thread_call_func_t
)realitexpire
, child_proc
);
1096 if (child_proc
->p_rcall
== NULL
) {
1097 FREE_ZONE(child_proc
->p_sigacts
, sizeof *child_proc
->p_sigacts
, M_SIGACTS
);
1098 FREE_ZONE(child_proc
->p_stats
, sizeof *child_proc
->p_stats
, M_PSTATS
);
1099 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1106 * Find an unused PID.
1114 * If the process ID prototype has wrapped around,
1115 * restart somewhat above 0, as the low-numbered procs
1116 * tend to include daemons that don't exit.
1118 if (nextpid
>= PID_MAX
) {
1124 /* if the pid stays in hash both for zombie and runniing state */
1125 if (pfind_locked(nextpid
) != PROC_NULL
) {
1130 if (pgfind_internal(nextpid
) != PGRP_NULL
) {
1134 if (session_find_internal(nextpid
) != SESSION_NULL
) {
1140 child_proc
->p_pid
= nextpid
;
1141 child_proc
->p_idversion
= nextpidversion
++;
1142 /* kernel process is handcrafted and not from fork, so start from 1 */
1143 child_proc
->p_uniqueid
= ++nextuniqueid
;
1145 if (child_proc
->p_pid
!= 0) {
1146 if (pfind_locked(child_proc
->p_pid
) != PROC_NULL
)
1147 panic("proc in the list already\n");
1150 /* Insert in the hash */
1151 child_proc
->p_listflag
|= (P_LIST_INHASH
| P_LIST_INCREATE
);
1152 LIST_INSERT_HEAD(PIDHASH(child_proc
->p_pid
), child_proc
, p_hash
);
1157 * We've identified the PID we are going to use; initialize the new
1158 * process structure.
1160 child_proc
->p_stat
= SIDL
;
1161 child_proc
->p_pgrpid
= PGRPID_DEAD
;
1164 * The zero'ing of the proc was at the allocation time due to need
1165 * for insertion to hash. Copy the section that is to be copied
1166 * directly from the parent.
1168 bcopy(&parent_proc
->p_startcopy
, &child_proc
->p_startcopy
,
1169 (unsigned) ((caddr_t
)&child_proc
->p_endcopy
- (caddr_t
)&child_proc
->p_startcopy
));
1172 * Some flags are inherited from the parent.
1173 * Duplicate sub-structures as needed.
1174 * Increase reference counts on shared objects.
1175 * The p_stats and p_sigacts substructs are set in vm_fork.
1177 child_proc
->p_flag
= (parent_proc
->p_flag
& (P_LP64
| P_TRANSLATED
| P_AFFINITY
| P_DISABLE_ASLR
));
1178 if (parent_proc
->p_flag
& P_PROFIL
)
1179 startprofclock(child_proc
);
1181 * Note that if the current thread has an assumed identity, this
1182 * credential will be granted to the new process.
1184 child_proc
->p_ucred
= kauth_cred_get_with_ref();
1185 /* update cred on proc */
1186 PROC_UPDATE_CREDS_ONPROC(child_proc
);
1187 /* update audit session proc count */
1188 AUDIT_SESSION_PROCNEW(child_proc
);
1190 #if CONFIG_FINE_LOCK_GROUPS
1191 lck_mtx_init(&child_proc
->p_mlock
, proc_mlock_grp
, proc_lck_attr
);
1192 lck_mtx_init(&child_proc
->p_fdmlock
, proc_fdmlock_grp
, proc_lck_attr
);
1194 lck_mtx_init(&child_proc
->p_dtrace_sprlock
, proc_lck_grp
, proc_lck_attr
);
1196 lck_spin_init(&child_proc
->p_slock
, proc_slock_grp
, proc_lck_attr
);
1197 #else /* !CONFIG_FINE_LOCK_GROUPS */
1198 lck_mtx_init(&child_proc
->p_mlock
, proc_lck_grp
, proc_lck_attr
);
1199 lck_mtx_init(&child_proc
->p_fdmlock
, proc_lck_grp
, proc_lck_attr
);
1201 lck_mtx_init(&child_proc
->p_dtrace_sprlock
, proc_lck_grp
, proc_lck_attr
);
1203 lck_spin_init(&child_proc
->p_slock
, proc_lck_grp
, proc_lck_attr
);
1204 #endif /* !CONFIG_FINE_LOCK_GROUPS */
1205 klist_init(&child_proc
->p_klist
);
1207 if (child_proc
->p_textvp
!= NULLVP
) {
1208 /* bump references to the text vnode */
1209 /* Need to hold iocount across the ref call */
1210 if (vnode_getwithref(child_proc
->p_textvp
) == 0) {
1211 error
= vnode_ref(child_proc
->p_textvp
);
1212 vnode_put(child_proc
->p_textvp
);
1214 child_proc
->p_textvp
= NULLVP
;
1219 * Copy the parents per process open file table to the child; if
1220 * there is a per-thread current working directory, set the childs
1221 * per-process current working directory to that instead of the
1224 * XXX may fail to copy descriptors to child
1226 child_proc
->p_fd
= fdcopy(parent_proc
, parent_uthread
->uu_cdir
);
1229 if (parent_proc
->vm_shm
) {
1230 /* XXX may fail to attach shm to child */
1231 (void)shmfork(parent_proc
, child_proc
);
1235 * inherit the limit structure to child
1237 proc_limitfork(parent_proc
, child_proc
);
1239 if (child_proc
->p_limit
->pl_rlimit
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
1240 uint64_t rlim_cur
= child_proc
->p_limit
->pl_rlimit
[RLIMIT_CPU
].rlim_cur
;
1241 child_proc
->p_rlim_cpu
.tv_sec
= (rlim_cur
> __INT_MAX__
) ? __INT_MAX__
: rlim_cur
;
1244 /* Intialize new process stats, including start time */
1245 /* <rdar://6640543> non-zeroed portion contains garbage AFAICT */
1246 bzero(&child_proc
->p_stats
->pstat_startzero
,
1247 (unsigned) ((caddr_t
)&child_proc
->p_stats
->pstat_endzero
-
1248 (caddr_t
)&child_proc
->p_stats
->pstat_startzero
));
1249 bzero(&child_proc
->p_stats
->user_p_prof
, sizeof(struct user_uprof
));
1250 microtime(&child_proc
->p_start
);
1251 child_proc
->p_stats
->p_start
= child_proc
->p_start
; /* for compat */
1253 if (parent_proc
->p_sigacts
!= NULL
)
1254 (void)memcpy(child_proc
->p_sigacts
,
1255 parent_proc
->p_sigacts
, sizeof *child_proc
->p_sigacts
);
1257 (void)memset(child_proc
->p_sigacts
, 0, sizeof *child_proc
->p_sigacts
);
1259 sessp
= proc_session(parent_proc
);
1260 if (sessp
->s_ttyvp
!= NULL
&& parent_proc
->p_flag
& P_CONTROLT
)
1261 OSBitOrAtomic(P_CONTROLT
, &child_proc
->p_flag
);
1262 session_rele(sessp
);
1265 * block all signals to reach the process.
1266 * no transition race should be occuring with the child yet,
1267 * but indicate that the process is in (the creation) transition.
1269 proc_signalstart(child_proc
, 0);
1270 proc_transstart(child_proc
, 0);
1272 child_proc
->p_pcaction
= (parent_proc
->p_pcaction
) & P_PCMAX
;
1273 TAILQ_INIT(&child_proc
->p_uthlist
);
1274 TAILQ_INIT(&child_proc
->p_aio_activeq
);
1275 TAILQ_INIT(&child_proc
->p_aio_doneq
);
1277 /* Inherit the parent flags for code sign */
1278 child_proc
->p_csflags
= (parent_proc
->p_csflags
& ~CS_KILLED
);
1281 * All processes have work queue locks; cleaned up by
1282 * reap_child_locked()
1284 workqueue_init_lock(child_proc
);
1287 * Copy work queue information
1289 * Note: This should probably only happen in the case where we are
1290 * creating a child that is a copy of the parent; since this
1291 * routine is called in the non-duplication case of vfork()
1292 * or posix_spawn(), then this information should likely not
1295 * <rdar://6640553> Work queue pointers that no longer point to code
1297 child_proc
->p_wqthread
= parent_proc
->p_wqthread
;
1298 child_proc
->p_threadstart
= parent_proc
->p_threadstart
;
1299 child_proc
->p_pthsize
= parent_proc
->p_pthsize
;
1300 child_proc
->p_targconc
= parent_proc
->p_targconc
;
1301 if ((parent_proc
->p_lflag
& P_LREGISTER
) != 0) {
1302 child_proc
->p_lflag
|= P_LREGISTER
;
1304 child_proc
->p_dispatchqueue_offset
= parent_proc
->p_dispatchqueue_offset
;
1306 pth_proc_hashinit(child_proc
);
1310 child_proc
->p_lctx
= NULL
;
1311 /* Add new process to login context (if any). */
1312 if (parent_proc
->p_lctx
!= NULL
) {
1314 * <rdar://6640564> This should probably be delayed in the
1315 * vfork() or posix_spawn() cases.
1317 LCTX_LOCK(parent_proc
->p_lctx
);
1318 enterlctx(child_proc
, parent_proc
->p_lctx
, 0);
1329 lck_mtx_lock(&p
->p_mlock
);
1333 proc_unlock(proc_t p
)
1335 lck_mtx_unlock(&p
->p_mlock
);
1339 proc_spinlock(proc_t p
)
1341 lck_spin_lock(&p
->p_slock
);
1345 proc_spinunlock(proc_t p
)
1347 lck_spin_unlock(&p
->p_slock
);
1351 proc_list_lock(void)
1353 lck_mtx_lock(proc_list_mlock
);
1357 proc_list_unlock(void)
1359 lck_mtx_unlock(proc_list_mlock
);
1362 #include <kern/zalloc.h>
1364 struct zone
*uthread_zone
;
1365 static int uthread_zone_inited
= 0;
1368 uthread_zone_init(void)
1370 if (!uthread_zone_inited
) {
1371 uthread_zone
= zinit(sizeof(struct uthread
),
1372 thread_max
* sizeof(struct uthread
),
1373 THREAD_CHUNK
* sizeof(struct uthread
),
1375 uthread_zone_inited
= 1;
1377 zone_change(uthread_zone
, Z_NOENCRYPT
, TRUE
);
1382 uthread_alloc(task_t task
, thread_t thread
, int noinherit
)
1386 uthread_t uth_parent
;
1389 if (!uthread_zone_inited
)
1390 uthread_zone_init();
1392 ut
= (void *)zalloc(uthread_zone
);
1393 bzero(ut
, sizeof(struct uthread
));
1395 p
= (proc_t
) get_bsdtask_info(task
);
1396 uth
= (uthread_t
)ut
;
1397 uth
->uu_kwe
.kwe_uth
= uth
;
1400 * Thread inherits credential from the creating thread, if both
1401 * are in the same task.
1403 * If the creating thread has no credential or is from another
1404 * task we can leave the new thread credential NULL. If it needs
1405 * one later, it will be lazily assigned from the task's process.
1407 uth_parent
= (uthread_t
)get_bsdthread_info(current_thread());
1408 if ((noinherit
== 0) && task
== current_task() &&
1409 uth_parent
!= NULL
&&
1410 IS_VALID_CRED(uth_parent
->uu_ucred
)) {
1412 * XXX The new thread is, in theory, being created in context
1413 * XXX of parent thread, so a direct reference to the parent
1416 kauth_cred_ref(uth_parent
->uu_ucred
);
1417 uth
->uu_ucred
= uth_parent
->uu_ucred
;
1418 /* the credential we just inherited is an assumed credential */
1419 if (uth_parent
->uu_flag
& UT_SETUID
)
1420 uth
->uu_flag
|= UT_SETUID
;
1422 /* sometimes workqueue threads are created out task context */
1423 if ((task
!= kernel_task
) && (p
!= PROC_NULL
))
1424 uth
->uu_ucred
= kauth_cred_proc_ref(p
);
1426 uth
->uu_ucred
= NOCRED
;
1430 if ((task
!= kernel_task
) && p
) {
1433 if (noinherit
!= 0) {
1434 /* workq threads will not inherit masks */
1435 uth
->uu_sigmask
= ~workq_threadmask
;
1436 } else if (uth_parent
) {
1437 if (uth_parent
->uu_flag
& UT_SAS_OLDMASK
)
1438 uth
->uu_sigmask
= uth_parent
->uu_oldmask
;
1440 uth
->uu_sigmask
= uth_parent
->uu_sigmask
;
1442 uth
->uu_context
.vc_thread
= thread
;
1443 TAILQ_INSERT_TAIL(&p
->p_uthlist
, uth
, uu_list
);
1447 if (p
->p_dtrace_ptss_pages
!= NULL
) {
1448 uth
->t_dtrace_scratch
= dtrace_ptss_claim_entry(p
);
1458 * This routine frees all the BSD context in uthread except the credential.
1459 * It does not free the uthread structure as well
1462 uthread_cleanup(task_t task
, void *uthread
, void * bsd_info
)
1464 struct _select
*sel
;
1465 uthread_t uth
= (uthread_t
)uthread
;
1466 proc_t p
= (proc_t
)bsd_info
;
1469 if (uth
->uu_lowpri_window
|| uth
->uu_throttle_info
) {
1471 * task is marked as a low priority I/O type
1472 * and we've somehow managed to not dismiss the throttle
1473 * through the normal exit paths back to user space...
1474 * no need to throttle this thread since its going away
1475 * but we do need to update our bookeeping w/r to throttled threads
1477 * Calling this routine will clean up any throttle info reference
1478 * still inuse by the thread.
1480 throttle_lowpri_io(FALSE
);
1483 * Per-thread audit state should never last beyond system
1484 * call return. Since we don't audit the thread creation/
1485 * removal, the thread state pointer should never be
1486 * non-NULL when we get here.
1488 assert(uth
->uu_ar
== NULL
);
1490 sel
= &uth
->uu_select
;
1491 /* cleanup the select bit space */
1493 FREE(sel
->ibits
, M_TEMP
);
1494 FREE(sel
->obits
, M_TEMP
);
1499 vnode_rele(uth
->uu_cdir
);
1500 uth
->uu_cdir
= NULLVP
;
1503 if (uth
->uu_allocsize
&& uth
->uu_wqset
){
1504 kfree(uth
->uu_wqset
, uth
->uu_allocsize
);
1506 uth
->uu_allocsize
= 0;
1511 if(uth
->pth_name
!= NULL
)
1513 kfree(uth
->pth_name
, MAXTHREADNAMESIZE
);
1516 if ((task
!= kernel_task
) && p
) {
1518 if (((uth
->uu_flag
& UT_VFORK
) == UT_VFORK
) && (uth
->uu_proc
!= PROC_NULL
)) {
1519 vfork_exit_internal(uth
->uu_proc
, 0, 1);
1522 * Remove the thread from the process list and
1523 * transfer [appropriate] pending signals to the process.
1525 if (get_bsdtask_info(task
) == p
) {
1527 TAILQ_REMOVE(&p
->p_uthlist
, uth
, uu_list
);
1528 p
->p_siglist
|= (uth
->uu_siglist
& execmask
& (~p
->p_sigignore
| sigcantmask
));
1532 struct dtrace_ptss_page_entry
*tmpptr
= uth
->t_dtrace_scratch
;
1533 uth
->t_dtrace_scratch
= NULL
;
1534 if (tmpptr
!= NULL
) {
1535 dtrace_ptss_release_entry(p
, tmpptr
);
1541 /* This routine releases the credential stored in uthread */
1543 uthread_cred_free(void *uthread
)
1545 uthread_t uth
= (uthread_t
)uthread
;
1547 /* and free the uthread itself */
1548 if (IS_VALID_CRED(uth
->uu_ucred
)) {
1549 kauth_cred_t oldcred
= uth
->uu_ucred
;
1550 uth
->uu_ucred
= NOCRED
;
1551 kauth_cred_unref(&oldcred
);
1555 /* This routine frees the uthread structure held in thread structure */
1557 uthread_zone_free(void *uthread
)
1559 /* and free the uthread itself */
1560 zfree(uthread_zone
, uthread
);