]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_control.c
xnu-1699.24.8.tar.gz
[apple/xnu.git] / bsd / kern / kern_control.c
1 /*
2 * Copyright (c) 1999-2008 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*
30 * Kernel Control domain - allows control connections to
31 * and to read/write data.
32 *
33 * Vincent Lubet, 040506
34 * Christophe Allie, 010928
35 * Justin C. Walker, 990319
36 */
37
38 #include <sys/types.h>
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/syslog.h>
42 #include <sys/socket.h>
43 #include <sys/socketvar.h>
44 #include <sys/protosw.h>
45 #include <sys/domain.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/sys_domain.h>
49 #include <sys/kern_event.h>
50 #include <sys/kern_control.h>
51 #include <sys/kauth.h>
52 #include <net/if_var.h>
53
54 #include <mach/vm_types.h>
55
56 #include <kern/thread.h>
57
58 /*
59 * Definitions and vars for we support
60 */
61
62 #define CTL_SENDSIZE (2 * 1024) /* default buffer size */
63 #define CTL_RECVSIZE (8 * 1024) /* default buffer size */
64
65 /*
66 * Definitions and vars for we support
67 */
68
69 static u_int32_t ctl_maxunit = 65536;
70 static lck_grp_attr_t *ctl_lck_grp_attr = 0;
71 static lck_attr_t *ctl_lck_attr = 0;
72 static lck_grp_t *ctl_lck_grp = 0;
73 static lck_mtx_t *ctl_mtx;
74
75
76 /* all the controllers are chained */
77 TAILQ_HEAD(kctl_list, kctl) ctl_head;
78
79 static int ctl_attach(struct socket *, int, struct proc *);
80 static int ctl_detach(struct socket *);
81 static int ctl_sofreelastref(struct socket *so);
82 static int ctl_connect(struct socket *, struct sockaddr *, struct proc *);
83 static int ctl_disconnect(struct socket *);
84 static int ctl_ioctl(struct socket *so, u_long cmd, caddr_t data,
85 struct ifnet *ifp, struct proc *p);
86 static int ctl_send(struct socket *, int, struct mbuf *,
87 struct sockaddr *, struct mbuf *, struct proc *);
88 static int ctl_ctloutput(struct socket *, struct sockopt *);
89 static int ctl_peeraddr(struct socket *so, struct sockaddr **nam);
90
91 static struct kctl *ctl_find_by_name(const char *);
92 static struct kctl *ctl_find_by_id_unit(u_int32_t id, u_int32_t unit);
93
94 static struct socket *kcb_find_socket(struct kctl *, u_int32_t unit);
95 static struct ctl_cb *kcb_find(struct kctl *, u_int32_t unit);
96 static void ctl_post_msg(u_int32_t event_code, u_int32_t id);
97
98 static int ctl_lock(struct socket *, int, void *);
99 static int ctl_unlock(struct socket *, int, void *);
100 static lck_mtx_t * ctl_getlock(struct socket *, int);
101
102 static struct pr_usrreqs ctl_usrreqs =
103 {
104 pru_abort_notsupp, pru_accept_notsupp, ctl_attach, pru_bind_notsupp,
105 ctl_connect, pru_connect2_notsupp, ctl_ioctl, ctl_detach,
106 ctl_disconnect, pru_listen_notsupp, ctl_peeraddr,
107 pru_rcvd_notsupp, pru_rcvoob_notsupp, ctl_send,
108 pru_sense_null, pru_shutdown_notsupp, pru_sockaddr_notsupp,
109 sosend, soreceive, pru_sopoll_notsupp
110 };
111
112 static struct protosw kctlswk_dgram =
113 {
114 SOCK_DGRAM, &systemdomain, SYSPROTO_CONTROL,
115 PR_ATOMIC|PR_CONNREQUIRED|PR_PCBLOCK,
116 NULL, NULL, NULL, ctl_ctloutput,
117 NULL, NULL,
118 NULL, NULL, NULL, NULL, &ctl_usrreqs,
119 ctl_lock, ctl_unlock, ctl_getlock, { 0, 0 } , 0, { 0 }
120 };
121
122 static struct protosw kctlswk_stream =
123 {
124 SOCK_STREAM, &systemdomain, SYSPROTO_CONTROL,
125 PR_CONNREQUIRED|PR_PCBLOCK,
126 NULL, NULL, NULL, ctl_ctloutput,
127 NULL, NULL,
128 NULL, NULL, NULL, NULL, &ctl_usrreqs,
129 ctl_lock, ctl_unlock, ctl_getlock, { 0, 0 } , 0, { 0 }
130 };
131
132
133 /*
134 * Install the protosw's for the Kernel Control manager.
135 */
136 __private_extern__ int
137 kern_control_init(void)
138 {
139 int error = 0;
140
141 ctl_lck_grp_attr = lck_grp_attr_alloc_init();
142 if (ctl_lck_grp_attr == 0) {
143 printf(": lck_grp_attr_alloc_init failed\n");
144 error = ENOMEM;
145 goto done;
146 }
147
148 ctl_lck_grp = lck_grp_alloc_init("Kernel Control Protocol", ctl_lck_grp_attr);
149 if (ctl_lck_grp == 0) {
150 printf("kern_control_init: lck_grp_alloc_init failed\n");
151 error = ENOMEM;
152 goto done;
153 }
154
155 ctl_lck_attr = lck_attr_alloc_init();
156 if (ctl_lck_attr == 0) {
157 printf("kern_control_init: lck_attr_alloc_init failed\n");
158 error = ENOMEM;
159 goto done;
160 }
161
162 ctl_mtx = lck_mtx_alloc_init(ctl_lck_grp, ctl_lck_attr);
163 if (ctl_mtx == 0) {
164 printf("kern_control_init: lck_mtx_alloc_init failed\n");
165 error = ENOMEM;
166 goto done;
167 }
168 TAILQ_INIT(&ctl_head);
169
170 error = net_add_proto(&kctlswk_dgram, &systemdomain);
171 if (error) {
172 log(LOG_WARNING, "kern_control_init: net_add_proto dgram failed (%d)\n", error);
173 }
174 error = net_add_proto(&kctlswk_stream, &systemdomain);
175 if (error) {
176 log(LOG_WARNING, "kern_control_init: net_add_proto stream failed (%d)\n", error);
177 }
178
179 done:
180 if (error != 0) {
181 if (ctl_mtx) {
182 lck_mtx_free(ctl_mtx, ctl_lck_grp);
183 ctl_mtx = 0;
184 }
185 if (ctl_lck_grp) {
186 lck_grp_free(ctl_lck_grp);
187 ctl_lck_grp = 0;
188 }
189 if (ctl_lck_grp_attr) {
190 lck_grp_attr_free(ctl_lck_grp_attr);
191 ctl_lck_grp_attr = 0;
192 }
193 if (ctl_lck_attr) {
194 lck_attr_free(ctl_lck_attr);
195 ctl_lck_attr = 0;
196 }
197 }
198 return error;
199 }
200
201 static void
202 kcb_delete(struct ctl_cb *kcb)
203 {
204 if (kcb != 0) {
205 if (kcb->mtx != 0)
206 lck_mtx_free(kcb->mtx, ctl_lck_grp);
207 FREE(kcb, M_TEMP);
208 }
209 }
210
211
212 /*
213 * Kernel Controller user-request functions
214 * attach function must exist and succeed
215 * detach not necessary
216 * we need a pcb for the per socket mutex
217 */
218 static int
219 ctl_attach(__unused struct socket *so, __unused int proto, __unused struct proc *p)
220 {
221 int error = 0;
222 struct ctl_cb *kcb = 0;
223
224 MALLOC(kcb, struct ctl_cb *, sizeof(struct ctl_cb), M_TEMP, M_WAITOK);
225 if (kcb == NULL) {
226 error = ENOMEM;
227 goto quit;
228 }
229 bzero(kcb, sizeof(struct ctl_cb));
230
231 kcb->mtx = lck_mtx_alloc_init(ctl_lck_grp, ctl_lck_attr);
232 if (kcb->mtx == NULL) {
233 error = ENOMEM;
234 goto quit;
235 }
236 kcb->so = so;
237 so->so_pcb = (caddr_t)kcb;
238
239 quit:
240 if (error != 0) {
241 kcb_delete(kcb);
242 kcb = 0;
243 }
244 return error;
245 }
246
247 static int
248 ctl_sofreelastref(struct socket *so)
249 {
250 struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb;
251
252 so->so_pcb = 0;
253
254 if (kcb != 0) {
255 struct kctl *kctl;
256 if ((kctl = kcb->kctl) != 0) {
257 lck_mtx_lock(ctl_mtx);
258 TAILQ_REMOVE(&kctl->kcb_head, kcb, next);
259 lck_mtx_unlock(ctl_mtx);
260 }
261 kcb_delete(kcb);
262 }
263 sofreelastref(so, 1);
264 return 0;
265 }
266
267 static int
268 ctl_detach(struct socket *so)
269 {
270 struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb;
271
272 if (kcb == 0)
273 return 0;
274
275 soisdisconnected(so);
276 so->so_flags |= SOF_PCBCLEARING;
277 return 0;
278 }
279
280
281 static int
282 ctl_connect(struct socket *so, struct sockaddr *nam, __unused struct proc *p)
283 {
284 struct kctl *kctl;
285 int error = 0;
286 struct sockaddr_ctl sa;
287 struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb;
288 struct ctl_cb *kcb_next = NULL;
289
290 if (kcb == 0)
291 panic("ctl_connect so_pcb null\n");
292
293 if (nam->sa_len != sizeof(struct sockaddr_ctl))
294 return(EINVAL);
295
296 bcopy(nam, &sa, sizeof(struct sockaddr_ctl));
297
298 lck_mtx_lock(ctl_mtx);
299 kctl = ctl_find_by_id_unit(sa.sc_id, sa.sc_unit);
300 if (kctl == NULL) {
301 lck_mtx_unlock(ctl_mtx);
302 return ENOENT;
303 }
304
305 if (((kctl->flags & CTL_FLAG_REG_SOCK_STREAM) && (so->so_type != SOCK_STREAM)) ||
306 (!(kctl->flags & CTL_FLAG_REG_SOCK_STREAM) && (so->so_type != SOCK_DGRAM))) {
307 lck_mtx_unlock(ctl_mtx);
308 return EPROTOTYPE;
309 }
310
311 if (kctl->flags & CTL_FLAG_PRIVILEGED) {
312 if (p == 0) {
313 lck_mtx_unlock(ctl_mtx);
314 return(EINVAL);
315 }
316 if (kauth_cred_issuser(kauth_cred_get()) == 0) {
317 lck_mtx_unlock(ctl_mtx);
318 return EPERM;
319 }
320 }
321
322 if ((kctl->flags & CTL_FLAG_REG_ID_UNIT) || sa.sc_unit != 0) {
323 if (kcb_find(kctl, sa.sc_unit) != NULL) {
324 lck_mtx_unlock(ctl_mtx);
325 return EBUSY;
326 }
327 } else {
328 /* Find an unused ID, assumes control IDs are listed in order */
329 u_int32_t unit = 1;
330
331 TAILQ_FOREACH(kcb_next, &kctl->kcb_head, next) {
332 if (kcb_next->unit > unit) {
333 /* Found a gap, lets fill it in */
334 break;
335 }
336 unit = kcb_next->unit + 1;
337 if (unit == ctl_maxunit)
338 break;
339 }
340
341 if (unit == ctl_maxunit) {
342 lck_mtx_unlock(ctl_mtx);
343 return EBUSY;
344 }
345
346 sa.sc_unit = unit;
347 }
348
349 kcb->unit = sa.sc_unit;
350 kcb->kctl = kctl;
351 if (kcb_next != NULL) {
352 TAILQ_INSERT_BEFORE(kcb_next, kcb, next);
353 }
354 else {
355 TAILQ_INSERT_TAIL(&kctl->kcb_head, kcb, next);
356 }
357 lck_mtx_unlock(ctl_mtx);
358
359 error = soreserve(so, kctl->sendbufsize, kctl->recvbufsize);
360 if (error)
361 goto done;
362 soisconnecting(so);
363
364 socket_unlock(so, 0);
365 error = (*kctl->connect)(kctl, &sa, &kcb->userdata);
366 socket_lock(so, 0);
367 if (error)
368 goto end;
369
370 soisconnected(so);
371
372 end:
373 if (error && kctl->disconnect) {
374 socket_unlock(so, 0);
375 (*kctl->disconnect)(kctl, kcb->unit, kcb->userdata);
376 socket_lock(so, 0);
377 }
378 done:
379 if (error) {
380 soisdisconnected(so);
381 lck_mtx_lock(ctl_mtx);
382 kcb->kctl = 0;
383 kcb->unit = 0;
384 TAILQ_REMOVE(&kctl->kcb_head, kcb, next);
385 lck_mtx_unlock(ctl_mtx);
386 }
387 return error;
388 }
389
390 static int
391 ctl_disconnect(struct socket *so)
392 {
393 struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb;
394
395 if ((kcb = (struct ctl_cb *)so->so_pcb)) {
396 struct kctl *kctl = kcb->kctl;
397
398 if (kctl && kctl->disconnect) {
399 socket_unlock(so, 0);
400 (*kctl->disconnect)(kctl, kcb->unit, kcb->userdata);
401 socket_lock(so, 0);
402 }
403
404 soisdisconnected(so);
405
406 socket_unlock(so, 0);
407 lck_mtx_lock(ctl_mtx);
408 kcb->kctl = 0;
409 kcb->unit = 0;
410 while (kcb->usecount != 0) {
411 msleep(&kcb->usecount, ctl_mtx, 0, "kcb->usecount", 0);
412 }
413 TAILQ_REMOVE(&kctl->kcb_head, kcb, next);
414 lck_mtx_unlock(ctl_mtx);
415 socket_lock(so, 0);
416 }
417 return 0;
418 }
419
420 static int
421 ctl_peeraddr(struct socket *so, struct sockaddr **nam)
422 {
423 struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb;
424 struct kctl *kctl;
425 struct sockaddr_ctl sc;
426
427 if (kcb == NULL) /* sanity check */
428 return(ENOTCONN);
429
430 if ((kctl = kcb->kctl) == NULL)
431 return(EINVAL);
432
433 bzero(&sc, sizeof(struct sockaddr_ctl));
434 sc.sc_len = sizeof(struct sockaddr_ctl);
435 sc.sc_family = AF_SYSTEM;
436 sc.ss_sysaddr = AF_SYS_CONTROL;
437 sc.sc_id = kctl->id;
438 sc.sc_unit = kcb->unit;
439
440 *nam = dup_sockaddr((struct sockaddr *)&sc, 1);
441
442 return 0;
443 }
444
445 static int
446 ctl_send(struct socket *so, int flags, struct mbuf *m,
447 __unused struct sockaddr *addr, struct mbuf *control,
448 __unused struct proc *p)
449 {
450 int error = 0;
451 struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb;
452 struct kctl *kctl;
453
454 if (control) m_freem(control);
455
456 if (kcb == NULL) /* sanity check */
457 error = ENOTCONN;
458
459 if (error == 0 && (kctl = kcb->kctl) == NULL)
460 error = EINVAL;
461
462 if (error == 0 && kctl->send) {
463 socket_unlock(so, 0);
464 error = (*kctl->send)(kctl, kcb->unit, kcb->userdata, m, flags);
465 socket_lock(so, 0);
466 } else {
467 m_freem(m);
468 if (error == 0)
469 error = ENOTSUP;
470 }
471 return error;
472 }
473
474 errno_t
475 ctl_enqueuembuf(void *kctlref, u_int32_t unit, struct mbuf *m, u_int32_t flags)
476 {
477 struct socket *so;
478 errno_t error = 0;
479 struct kctl *kctl = (struct kctl *)kctlref;
480
481 if (kctl == NULL)
482 return EINVAL;
483
484 so = kcb_find_socket(kctl, unit);
485
486 if (so == NULL)
487 return EINVAL;
488
489 if (sbspace(&so->so_rcv) < m->m_pkthdr.len) {
490 error = ENOBUFS;
491 goto bye;
492 }
493 if ((flags & CTL_DATA_EOR))
494 m->m_flags |= M_EOR;
495 if (sbappend(&so->so_rcv, m) && (flags & CTL_DATA_NOWAKEUP) == 0)
496 sorwakeup(so);
497 bye:
498 socket_unlock(so, 1);
499 return error;
500 }
501
502 errno_t
503 ctl_enqueuedata(void *kctlref, u_int32_t unit, void *data, size_t len, u_int32_t flags)
504 {
505 struct socket *so;
506 struct mbuf *m;
507 errno_t error = 0;
508 struct kctl *kctl = (struct kctl *)kctlref;
509 unsigned int num_needed;
510 struct mbuf *n;
511 size_t curlen = 0;
512
513 if (kctlref == NULL)
514 return EINVAL;
515
516 so = kcb_find_socket(kctl, unit);
517 if (so == NULL)
518 return EINVAL;
519
520 if (sbspace(&so->so_rcv) < (int)len) {
521 error = ENOBUFS;
522 goto bye;
523 }
524
525 num_needed = 1;
526 m = m_allocpacket_internal(&num_needed, len, NULL, M_NOWAIT, 1, 0);
527 if (m == NULL) {
528 printf("ctl_enqueuedata: m_allocpacket_internal(%lu) failed\n", len);
529 error = ENOBUFS;
530 goto bye;
531 }
532
533 for (n = m; n != NULL; n = n->m_next) {
534 size_t mlen = mbuf_maxlen(n);
535
536 if (mlen + curlen > len)
537 mlen = len - curlen;
538 n->m_len = mlen;
539 bcopy((char *)data + curlen, n->m_data, mlen);
540 curlen += mlen;
541 }
542 mbuf_pkthdr_setlen(m, curlen);
543
544 if ((flags & CTL_DATA_EOR))
545 m->m_flags |= M_EOR;
546 if (sbappend(&so->so_rcv, m) && (flags & CTL_DATA_NOWAKEUP) == 0)
547 sorwakeup(so);
548 bye:
549 socket_unlock(so, 1);
550 return error;
551 }
552
553
554 errno_t
555 ctl_getenqueuespace(kern_ctl_ref kctlref, u_int32_t unit, size_t *space)
556 {
557 struct kctl *kctl = (struct kctl *)kctlref;
558 struct socket *so;
559 long avail;
560
561 if (kctlref == NULL || space == NULL)
562 return EINVAL;
563
564 so = kcb_find_socket(kctl, unit);
565 if (so == NULL)
566 return EINVAL;
567
568 avail = sbspace(&so->so_rcv);
569 *space = (avail < 0) ? 0 : avail;
570 socket_unlock(so, 1);
571
572 return 0;
573 }
574
575 static int
576 ctl_ctloutput(struct socket *so, struct sockopt *sopt)
577 {
578 struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb;
579 struct kctl *kctl;
580 int error = 0;
581 void *data;
582 size_t len;
583
584 if (sopt->sopt_level != SYSPROTO_CONTROL) {
585 return(EINVAL);
586 }
587
588 if (kcb == NULL) /* sanity check */
589 return(ENOTCONN);
590
591 if ((kctl = kcb->kctl) == NULL)
592 return(EINVAL);
593
594 switch (sopt->sopt_dir) {
595 case SOPT_SET:
596 if (kctl->setopt == NULL)
597 return(ENOTSUP);
598 if (sopt->sopt_valsize == 0) {
599 data = NULL;
600 } else {
601 MALLOC(data, void *, sopt->sopt_valsize, M_TEMP, M_WAITOK);
602 if (data == NULL)
603 return(ENOMEM);
604 error = sooptcopyin(sopt, data, sopt->sopt_valsize, sopt->sopt_valsize);
605 }
606 if (error == 0) {
607 socket_unlock(so, 0);
608 error = (*kctl->setopt)(kcb->kctl, kcb->unit, kcb->userdata, sopt->sopt_name,
609 data, sopt->sopt_valsize);
610 socket_lock(so, 0);
611 }
612 FREE(data, M_TEMP);
613 break;
614
615 case SOPT_GET:
616 if (kctl->getopt == NULL)
617 return(ENOTSUP);
618 data = NULL;
619 if (sopt->sopt_valsize && sopt->sopt_val) {
620 MALLOC(data, void *, sopt->sopt_valsize, M_TEMP, M_WAITOK);
621 if (data == NULL)
622 return(ENOMEM);
623 /* 4108337 - copy in data for get socket option */
624 error = sooptcopyin(sopt, data, sopt->sopt_valsize, sopt->sopt_valsize);
625 }
626 len = sopt->sopt_valsize;
627 socket_unlock(so, 0);
628 error = (*kctl->getopt)(kcb->kctl, kcb->unit, kcb->userdata, sopt->sopt_name,
629 data, &len);
630 if (data != NULL && len > sopt->sopt_valsize)
631 panic_plain("ctl_ctloutput: ctl %s returned len (%lu) > sopt_valsize (%lu)\n",
632 kcb->kctl->name, len, sopt->sopt_valsize);
633 socket_lock(so, 0);
634 if (error == 0) {
635 if (data != NULL)
636 error = sooptcopyout(sopt, data, len);
637 else
638 sopt->sopt_valsize = len;
639 }
640 if (data != NULL)
641 FREE(data, M_TEMP);
642 break;
643 }
644 return error;
645 }
646
647 static int
648 ctl_ioctl(__unused struct socket *so, u_long cmd, caddr_t data,
649 __unused struct ifnet *ifp, __unused struct proc *p)
650 {
651 int error = ENOTSUP;
652
653 switch (cmd) {
654 /* get the number of controllers */
655 case CTLIOCGCOUNT: {
656 struct kctl *kctl;
657 int n = 0;
658
659 lck_mtx_lock(ctl_mtx);
660 TAILQ_FOREACH(kctl, &ctl_head, next)
661 n++;
662 lck_mtx_unlock(ctl_mtx);
663
664 *(u_int32_t *)data = n;
665 error = 0;
666 break;
667 }
668 case CTLIOCGINFO: {
669 struct ctl_info *ctl_info = (struct ctl_info *)data;
670 struct kctl *kctl = 0;
671 size_t name_len = strlen(ctl_info->ctl_name);
672
673 if (name_len == 0 || name_len + 1 > MAX_KCTL_NAME) {
674 error = EINVAL;
675 break;
676 }
677 lck_mtx_lock(ctl_mtx);
678 kctl = ctl_find_by_name(ctl_info->ctl_name);
679 lck_mtx_unlock(ctl_mtx);
680 if (kctl == 0) {
681 error = ENOENT;
682 break;
683 }
684 ctl_info->ctl_id = kctl->id;
685 error = 0;
686 break;
687 }
688
689 /* add controls to get list of NKEs */
690
691 }
692
693 return error;
694 }
695
696 /*
697 * Register/unregister a NKE
698 */
699 errno_t
700 ctl_register(struct kern_ctl_reg *userkctl, kern_ctl_ref *kctlref)
701 {
702 struct kctl *kctl = NULL;
703 struct kctl *kctl_next = NULL;
704 u_int32_t id = 1;
705 size_t name_len;
706
707 if (userkctl == NULL) /* sanity check */
708 return(EINVAL);
709 if (userkctl->ctl_connect == NULL)
710 return(EINVAL);
711 name_len = strlen(userkctl->ctl_name);
712 if (name_len == 0 || name_len + 1 > MAX_KCTL_NAME)
713 return(EINVAL);
714
715 MALLOC(kctl, struct kctl *, sizeof(*kctl), M_TEMP, M_WAITOK);
716 if (kctl == NULL)
717 return(ENOMEM);
718 bzero((char *)kctl, sizeof(*kctl));
719
720 lck_mtx_lock(ctl_mtx);
721
722 /*
723 * Kernel Control IDs
724 *
725 * CTL_FLAG_REG_ID_UNIT indicates the control ID and unit number are
726 * static. If they do not exist, add them to the list in order. If the
727 * flag is not set, we must find a new unique value. We assume the
728 * list is in order. We find the last item in the list and add one. If
729 * this leads to wrapping the id around, we start at the front of the
730 * list and look for a gap.
731 */
732
733 if ((userkctl->ctl_flags & CTL_FLAG_REG_ID_UNIT) == 0) {
734 /* Must dynamically assign an unused ID */
735
736 /* Verify the same name isn't already registered */
737 if (ctl_find_by_name(userkctl->ctl_name) != NULL) {
738 lck_mtx_unlock(ctl_mtx);
739 FREE(kctl, M_TEMP);
740 return(EEXIST);
741 }
742
743 /* Start with 1 in case the list is empty */
744 id = 1;
745 kctl_next = TAILQ_LAST(&ctl_head, kctl_list);
746
747 if (kctl_next != NULL) {
748 /* List was not empty, add one to the last item in the list */
749 id = kctl_next->id + 1;
750 kctl_next = NULL;
751
752 /*
753 * If this wrapped the id number, start looking at the front
754 * of the list for an unused id.
755 */
756 if (id == 0) {
757 /* Find the next unused ID */
758 id = 1;
759
760 TAILQ_FOREACH(kctl_next, &ctl_head, next) {
761 if (kctl_next->id > id) {
762 /* We found a gap */
763 break;
764 }
765
766 id = kctl_next->id + 1;
767 }
768 }
769 }
770
771 userkctl->ctl_id = id;
772 kctl->id = id;
773 kctl->reg_unit = -1;
774 } else {
775 TAILQ_FOREACH(kctl_next, &ctl_head, next) {
776 if (kctl_next->id > userkctl->ctl_id)
777 break;
778 }
779
780 if (ctl_find_by_id_unit(userkctl->ctl_id, userkctl->ctl_unit) != NULL) {
781 lck_mtx_unlock(ctl_mtx);
782 FREE(kctl, M_TEMP);
783 return(EEXIST);
784 }
785 kctl->id = userkctl->ctl_id;
786 kctl->reg_unit = userkctl->ctl_unit;
787 }
788 strlcpy(kctl->name, userkctl->ctl_name, MAX_KCTL_NAME);
789 kctl->flags = userkctl->ctl_flags;
790
791 /* Let the caller know the default send and receive sizes */
792 if (userkctl->ctl_sendsize == 0)
793 userkctl->ctl_sendsize = CTL_SENDSIZE;
794 kctl->sendbufsize = userkctl->ctl_sendsize;
795
796 if (userkctl->ctl_recvsize == 0)
797 userkctl->ctl_recvsize = CTL_RECVSIZE;
798 kctl->recvbufsize = userkctl->ctl_recvsize;
799
800 kctl->connect = userkctl->ctl_connect;
801 kctl->disconnect = userkctl->ctl_disconnect;
802 kctl->send = userkctl->ctl_send;
803 kctl->setopt = userkctl->ctl_setopt;
804 kctl->getopt = userkctl->ctl_getopt;
805
806 TAILQ_INIT(&kctl->kcb_head);
807
808 if (kctl_next)
809 TAILQ_INSERT_BEFORE(kctl_next, kctl, next);
810 else
811 TAILQ_INSERT_TAIL(&ctl_head, kctl, next);
812
813 lck_mtx_unlock(ctl_mtx);
814
815 *kctlref = kctl;
816
817 ctl_post_msg(KEV_CTL_REGISTERED, kctl->id);
818 return(0);
819 }
820
821 errno_t
822 ctl_deregister(void *kctlref)
823 {
824 struct kctl *kctl;
825
826 if (kctlref == NULL) /* sanity check */
827 return(EINVAL);
828
829 lck_mtx_lock(ctl_mtx);
830 TAILQ_FOREACH(kctl, &ctl_head, next) {
831 if (kctl == (struct kctl *)kctlref)
832 break;
833 }
834 if (kctl != (struct kctl *)kctlref) {
835 lck_mtx_unlock(ctl_mtx);
836 return EINVAL;
837 }
838 if (!TAILQ_EMPTY(&kctl->kcb_head)) {
839 lck_mtx_unlock(ctl_mtx);
840 return EBUSY;
841 }
842
843 TAILQ_REMOVE(&ctl_head, kctl, next);
844
845 lck_mtx_unlock(ctl_mtx);
846
847 ctl_post_msg(KEV_CTL_DEREGISTERED, kctl->id);
848 FREE(kctl, M_TEMP);
849 return(0);
850 }
851
852 /*
853 * Must be called with global ctl_mtx lock taked
854 */
855 static struct kctl *
856 ctl_find_by_name(const char *name)
857 {
858 struct kctl *kctl;
859
860 TAILQ_FOREACH(kctl, &ctl_head, next)
861 if (strncmp(kctl->name, name, sizeof(kctl->name)) == 0)
862 return kctl;
863
864 return NULL;
865 }
866
867 u_int32_t
868 ctl_id_by_name(const char *name)
869 {
870 u_int32_t ctl_id = 0;
871
872 lck_mtx_lock(ctl_mtx);
873 struct kctl *kctl = ctl_find_by_name(name);
874 if (kctl) ctl_id = kctl->id;
875 lck_mtx_unlock(ctl_mtx);
876
877 return ctl_id;
878 }
879
880 errno_t
881 ctl_name_by_id(
882 u_int32_t id,
883 char *out_name,
884 size_t maxsize)
885 {
886 int found = 0;
887
888 lck_mtx_lock(ctl_mtx);
889 struct kctl *kctl;
890 TAILQ_FOREACH(kctl, &ctl_head, next) {
891 if (kctl->id == id)
892 break;
893 }
894
895 if (kctl && kctl->name)
896 {
897 if (maxsize > MAX_KCTL_NAME)
898 maxsize = MAX_KCTL_NAME;
899 strlcpy(out_name, kctl->name, maxsize);
900 found = 1;
901 }
902 lck_mtx_unlock(ctl_mtx);
903
904 return found ? 0 : ENOENT;
905 }
906
907 /*
908 * Must be called with global ctl_mtx lock taked
909 *
910 */
911 static struct kctl *
912 ctl_find_by_id_unit(u_int32_t id, u_int32_t unit)
913 {
914 struct kctl *kctl;
915
916 TAILQ_FOREACH(kctl, &ctl_head, next) {
917 if (kctl->id == id && (kctl->flags & CTL_FLAG_REG_ID_UNIT) == 0)
918 return kctl;
919 else if (kctl->id == id && kctl->reg_unit == unit)
920 return kctl;
921 }
922 return NULL;
923 }
924
925 /*
926 * Must be called with kernel controller lock taken
927 */
928 static struct ctl_cb *
929 kcb_find(struct kctl *kctl, u_int32_t unit)
930 {
931 struct ctl_cb *kcb;
932
933 TAILQ_FOREACH(kcb, &kctl->kcb_head, next)
934 if (kcb->unit == unit)
935 return kcb;
936
937 return NULL;
938 }
939
940 static struct socket *
941 kcb_find_socket(struct kctl *kctl, u_int32_t unit)
942 {
943 struct socket *so = NULL;
944
945 lck_mtx_lock(ctl_mtx);
946 struct ctl_cb *kcb = kcb_find(kctl, unit);
947 if (kcb && kcb->kctl == kctl) {
948 so = kcb->so;
949 if (so) {
950 kcb->usecount++;
951 }
952 }
953 lck_mtx_unlock(ctl_mtx);
954
955 if (so == NULL) {
956 return NULL;
957 }
958
959 socket_lock(so, 1);
960
961 lck_mtx_lock(ctl_mtx);
962 if (kcb->kctl == NULL)
963 {
964 lck_mtx_unlock(ctl_mtx);
965 socket_unlock(so, 1);
966 so = NULL;
967 lck_mtx_lock(ctl_mtx);
968 }
969 kcb->usecount--;
970 if (kcb->usecount == 0)
971 wakeup((event_t)&kcb->usecount);
972 lck_mtx_unlock(ctl_mtx);
973
974 return so;
975 }
976
977 static void
978 ctl_post_msg(u_int32_t event_code, u_int32_t id)
979 {
980 struct ctl_event_data ctl_ev_data;
981 struct kev_msg ev_msg;
982
983 lck_mtx_assert(ctl_mtx, LCK_MTX_ASSERT_NOTOWNED);
984
985 bzero(&ev_msg, sizeof(struct kev_msg));
986 ev_msg.vendor_code = KEV_VENDOR_APPLE;
987
988 ev_msg.kev_class = KEV_SYSTEM_CLASS;
989 ev_msg.kev_subclass = KEV_CTL_SUBCLASS;
990 ev_msg.event_code = event_code;
991
992 /* common nke subclass data */
993 bzero(&ctl_ev_data, sizeof(ctl_ev_data));
994 ctl_ev_data.ctl_id = id;
995 ev_msg.dv[0].data_ptr = &ctl_ev_data;
996 ev_msg.dv[0].data_length = sizeof(ctl_ev_data);
997
998 ev_msg.dv[1].data_length = 0;
999
1000 kev_post_msg(&ev_msg);
1001 }
1002
1003 static int
1004 ctl_lock(struct socket *so, int refcount, void *lr)
1005 {
1006 void *lr_saved;
1007
1008 if (lr == NULL)
1009 lr_saved = __builtin_return_address(0);
1010 else
1011 lr_saved = lr;
1012
1013 if (so->so_pcb != NULL) {
1014 lck_mtx_lock(((struct ctl_cb *)so->so_pcb)->mtx);
1015 } else {
1016 panic("ctl_lock: so=%p NO PCB! lr=%p lrh= %s\n",
1017 so, lr_saved, solockhistory_nr(so));
1018 /* NOTREACHED */
1019 }
1020
1021 if (so->so_usecount < 0) {
1022 panic("ctl_lock: so=%p so_pcb=%p lr=%p ref=%x lrh= %s\n",
1023 so, so->so_pcb, lr_saved, so->so_usecount, solockhistory_nr(so));
1024 /* NOTREACHED */
1025 }
1026
1027 if (refcount)
1028 so->so_usecount++;
1029
1030 so->lock_lr[so->next_lock_lr] = lr_saved;
1031 so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX;
1032 return (0);
1033 }
1034
1035 static int
1036 ctl_unlock(struct socket *so, int refcount, void *lr)
1037 {
1038 void *lr_saved;
1039 lck_mtx_t *mutex_held;
1040
1041 if (lr == NULL)
1042 lr_saved = __builtin_return_address(0);
1043 else
1044 lr_saved = lr;
1045
1046 #ifdef MORE_KCTLLOCK_DEBUG
1047 printf("ctl_unlock: so=%x sopcb=%x lock=%x ref=%x lr=%p\n",
1048 so, so->so_pcb, ((struct ctl_cb *)so->so_pcb)->mtx,
1049 so->so_usecount, lr_saved);
1050 #endif
1051 if (refcount)
1052 so->so_usecount--;
1053
1054 if (so->so_usecount < 0) {
1055 panic("ctl_unlock: so=%p usecount=%x lrh= %s\n",
1056 so, so->so_usecount, solockhistory_nr(so));
1057 /* NOTREACHED */
1058 }
1059 if (so->so_pcb == NULL) {
1060 panic("ctl_unlock: so=%p NO PCB usecount=%x lr=%p lrh= %s\n",
1061 so, so->so_usecount, (void *)lr_saved, solockhistory_nr(so));
1062 /* NOTREACHED */
1063 }
1064 mutex_held = ((struct ctl_cb *)so->so_pcb)->mtx;
1065
1066 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
1067 so->unlock_lr[so->next_unlock_lr] = lr_saved;
1068 so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX;
1069 lck_mtx_unlock(mutex_held);
1070
1071 if (so->so_usecount == 0)
1072 ctl_sofreelastref(so);
1073
1074 return (0);
1075 }
1076
1077 static lck_mtx_t *
1078 ctl_getlock(struct socket *so, __unused int locktype)
1079 {
1080 struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb;
1081
1082 if (so->so_pcb) {
1083 if (so->so_usecount < 0)
1084 panic("ctl_getlock: so=%p usecount=%x lrh= %s\n",
1085 so, so->so_usecount, solockhistory_nr(so));
1086 return(kcb->mtx);
1087 } else {
1088 panic("ctl_getlock: so=%p NULL NO so_pcb %s\n",
1089 so, solockhistory_nr(so));
1090 return (so->so_proto->pr_domain->dom_mtx);
1091 }
1092 }