2 * Copyright (c) 2009 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
31 #include <sys/kdebug.h>
39 #include <sys/sysctl.h>
43 #include <spawn_private.h>
44 #include <sys/spawn_internal.h>
45 #include <mach-o/dyld.h>
47 #include <mach/mach_time.h>
48 #include <mach/mach.h>
49 #include <mach/task.h>
50 #include <mach/semaphore.h>
52 #include <pthread/qos_private.h>
54 #include <sys/resource.h>
56 #include <stdatomic.h>
60 typedef enum wake_type
{ WAKE_BROADCAST_ONESEM
, WAKE_BROADCAST_PERTHREAD
, WAKE_CHAIN
, WAKE_HOP
} wake_type_t
;
61 typedef enum my_policy_type
{ MY_POLICY_REALTIME
, MY_POLICY_TIMESHARE
, MY_POLICY_FIXEDPRI
} my_policy_type_t
;
63 #define mach_assert_zero(error) do { if ((error) != 0) { fprintf(stderr, "[FAIL] error %d (%s) ", (error), mach_error_string(error)); assert(error == 0); } } while (0)
64 #define mach_assert_zero_t(tid, error) do { if ((error) != 0) { fprintf(stderr, "[FAIL] Thread %d error %d (%s) ", (tid), (error), mach_error_string(error)); assert(error == 0); } } while (0)
65 #define assert_zero_t(tid, error) do { if ((error) != 0) { fprintf(stderr, "[FAIL] Thread %d error %d ", (tid), (error)); assert(error == 0); } } while (0)
67 #define CONSTRAINT_NANOS (20000000ll) /* 20 ms */
68 #define COMPUTATION_NANOS (10000000ll) /* 10 ms */
69 #define RT_CHURN_COMP_NANOS ( 1000000ll) /* 1 ms */
70 #define TRACEWORTHY_NANOS (10000000ll) /* 10 ms */
71 #define TRACEWORTHY_NANOS_TEST ( 2000000ll) /* 2 ms */
74 #define debug_log(args ...) printf(args)
76 #define debug_log(args ...) do { } while(0)
80 static void* worker_thread(void *arg
);
82 static int thread_setup(uint32_t my_id
);
83 static my_policy_type_t
parse_thread_policy(const char *str
);
84 static void selfexec_with_apptype(int argc
, char *argv
[]);
85 static void parse_args(int argc
, char *argv
[]);
87 static __attribute__((aligned(128))) _Atomic
uint32_t g_done_threads
;
88 static __attribute__((aligned(128))) _Atomic boolean_t g_churn_stop
= FALSE
;
89 static __attribute__((aligned(128))) _Atomic
uint64_t g_churn_stopped_at
= 0;
91 /* Global variables (general) */
92 static uint32_t g_numcpus
;
93 static uint32_t g_nphysicalcpu
;
94 static uint32_t g_nlogicalcpu
;
95 static uint32_t g_numthreads
;
96 static wake_type_t g_waketype
;
97 static policy_t g_policy
;
98 static uint32_t g_iterations
;
99 static struct mach_timebase_info g_mti
;
100 static semaphore_t g_main_sem
;
101 static uint64_t *g_thread_endtimes_abs
;
102 static boolean_t g_verbose
= FALSE
;
103 static boolean_t g_do_affinity
= FALSE
;
104 static uint64_t g_starttime_abs
;
105 static uint32_t g_iteration_sleeptime_us
= 0;
106 static uint32_t g_priority
= 0;
107 static uint32_t g_churn_pri
= 0;
108 static uint32_t g_churn_count
= 0;
109 static uint32_t g_rt_churn_count
= 0;
111 static pthread_t
* g_churn_threads
= NULL
;
112 static pthread_t
* g_rt_churn_threads
= NULL
;
114 /* Threshold for dropping a 'bad run' tracepoint */
115 static uint64_t g_traceworthy_latency_ns
= TRACEWORTHY_NANOS
;
117 /* Have we re-execed to set apptype? */
118 static boolean_t g_seen_apptype
= FALSE
;
120 /* usleep in betweeen iterations */
121 static boolean_t g_do_sleep
= TRUE
;
123 /* Every thread spins until all threads have checked in */
124 static boolean_t g_do_all_spin
= FALSE
;
126 /* Every thread backgrounds temporarily before parking */
127 static boolean_t g_drop_priority
= FALSE
;
129 /* Test whether realtime threads are scheduled on the separate CPUs */
130 static boolean_t g_test_rt
= FALSE
;
132 static boolean_t g_rt_churn
= FALSE
;
134 /* On SMT machines, test whether realtime threads are scheduled on the correct CPUs */
135 static boolean_t g_test_rt_smt
= FALSE
;
137 /* Test whether realtime threads are successfully avoiding CPU 0 on Intel */
138 static boolean_t g_test_rt_avoid0
= FALSE
;
140 /* Print a histgram showing how many threads ran on each CPU */
141 static boolean_t g_histogram
= FALSE
;
143 /* One randomly chosen thread holds up the train for a certain duration. */
144 static boolean_t g_do_one_long_spin
= FALSE
;
145 static uint32_t g_one_long_spin_id
= 0;
146 static uint64_t g_one_long_spin_length_abs
= 0;
147 static uint64_t g_one_long_spin_length_ns
= 0;
149 /* Each thread spins for a certain duration after waking up before blocking again. */
150 static boolean_t g_do_each_spin
= FALSE
;
151 static uint64_t g_each_spin_duration_abs
= 0;
152 static uint64_t g_each_spin_duration_ns
= 0;
154 /* Global variables (broadcast) */
155 static semaphore_t g_broadcastsem
;
156 static semaphore_t g_leadersem
;
157 static semaphore_t g_readysem
;
158 static semaphore_t g_donesem
;
159 static semaphore_t g_rt_churn_sem
;
160 static semaphore_t g_rt_churn_start_sem
;
162 /* Global variables (chain) */
163 static semaphore_t
*g_semarr
;
166 __attribute__((aligned(128))) uint32_t current
;
170 static histogram_t
*g_cpu_histogram
;
171 static _Atomic
uint64_t *g_cpu_map
;
174 abs_to_nanos(uint64_t abstime
)
176 return (uint64_t)(abstime
* (((double)g_mti
.numer
) / ((double)g_mti
.denom
)));
180 nanos_to_abs(uint64_t ns
)
182 return (uint64_t)(ns
* (((double)g_mti
.denom
) / ((double)g_mti
.numer
)));
188 #if defined(__arm__) || defined(__arm64__)
189 asm volatile ("yield");
190 #elif defined(__x86_64__) || defined(__i386__)
191 asm volatile ("pause");
193 #error Unrecognized architecture
198 churn_thread(__unused
void *arg
)
200 uint64_t spin_count
= 0;
203 * As a safety measure to avoid wedging, we will bail on the spin if
204 * it's been more than 1s after the most recent run start
207 while (g_churn_stop
== FALSE
&&
208 mach_absolute_time() < (g_starttime_abs
+ NSEC_PER_SEC
)) {
213 /* This is totally racy, but only here to detect if anyone stops early */
214 atomic_fetch_add_explicit(&g_churn_stopped_at
, spin_count
, memory_order_relaxed
);
220 create_churn_threads()
222 if (g_churn_count
== 0) {
223 g_churn_count
= g_numcpus
- 1;
228 struct sched_param param
= { .sched_priority
= (int)g_churn_pri
};
231 /* Array for churn threads */
232 g_churn_threads
= (pthread_t
*) valloc(sizeof(pthread_t
) * g_churn_count
);
233 assert(g_churn_threads
);
235 if ((err
= pthread_attr_init(&attr
))) {
236 errc(EX_OSERR
, err
, "pthread_attr_init");
239 if ((err
= pthread_attr_setschedparam(&attr
, ¶m
))) {
240 errc(EX_OSERR
, err
, "pthread_attr_setschedparam");
243 if ((err
= pthread_attr_setschedpolicy(&attr
, SCHED_RR
))) {
244 errc(EX_OSERR
, err
, "pthread_attr_setschedpolicy");
247 for (uint32_t i
= 0; i
< g_churn_count
; i
++) {
248 pthread_t new_thread
;
250 if ((err
= pthread_create(&new_thread
, &attr
, churn_thread
, NULL
))) {
251 errc(EX_OSERR
, err
, "pthread_create");
253 g_churn_threads
[i
] = new_thread
;
256 if ((err
= pthread_attr_destroy(&attr
))) {
257 errc(EX_OSERR
, err
, "pthread_attr_destroy");
262 join_churn_threads(void)
264 if (atomic_load_explicit(&g_churn_stopped_at
, memory_order_seq_cst
) != 0) {
265 printf("Warning: Some of the churn threads may have stopped early: %lld\n",
269 atomic_store_explicit(&g_churn_stop
, TRUE
, memory_order_seq_cst
);
271 /* Rejoin churn threads */
272 for (uint32_t i
= 0; i
< g_churn_count
; i
++) {
273 errno_t err
= pthread_join(g_churn_threads
[i
], NULL
);
275 errc(EX_OSERR
, err
, "pthread_join %d", i
);
284 rt_churn_thread_setup(void)
287 thread_time_constraint_policy_data_t pol
;
289 /* Hard-coded realtime parameters (similar to what Digi uses) */
291 pol
.constraint
= (uint32_t) nanos_to_abs(CONSTRAINT_NANOS
* 2);
292 pol
.computation
= (uint32_t) nanos_to_abs(RT_CHURN_COMP_NANOS
* 2);
293 pol
.preemptible
= 0; /* Ignored by OS */
295 kr
= thread_policy_set(mach_thread_self(), THREAD_TIME_CONSTRAINT_POLICY
,
296 (thread_policy_t
) &pol
, THREAD_TIME_CONSTRAINT_POLICY_COUNT
);
297 mach_assert_zero_t(0, kr
);
303 rt_churn_thread(__unused
void *arg
)
305 rt_churn_thread_setup();
307 for (uint32_t i
= 0; i
< g_iterations
; i
++) {
308 kern_return_t kr
= semaphore_wait_signal(g_rt_churn_start_sem
, g_rt_churn_sem
);
309 mach_assert_zero_t(0, kr
);
311 volatile double x
= 0.0;
312 volatile double y
= 0.0;
314 uint64_t endspin
= mach_absolute_time() + nanos_to_abs(RT_CHURN_COMP_NANOS
);
315 while (mach_absolute_time() < endspin
) {
321 kern_return_t kr
= semaphore_signal(g_rt_churn_sem
);
322 mach_assert_zero_t(0, kr
);
328 wait_for_rt_churn_threads(void)
330 for (uint32_t i
= 0; i
< g_rt_churn_count
; i
++) {
331 kern_return_t kr
= semaphore_wait(g_rt_churn_sem
);
332 mach_assert_zero_t(0, kr
);
337 start_rt_churn_threads(void)
339 for (uint32_t i
= 0; i
< g_rt_churn_count
; i
++) {
340 kern_return_t kr
= semaphore_signal(g_rt_churn_start_sem
);
341 mach_assert_zero_t(0, kr
);
346 create_rt_churn_threads(void)
348 if (g_rt_churn_count
== 0) {
349 /* Leave 1 CPU to ensure that the main thread can make progress */
350 g_rt_churn_count
= g_numcpus
- 1;
355 struct sched_param param
= { .sched_priority
= (int)g_churn_pri
};
358 /* Array for churn threads */
359 g_rt_churn_threads
= (pthread_t
*) valloc(sizeof(pthread_t
) * g_rt_churn_count
);
360 assert(g_rt_churn_threads
);
362 if ((err
= pthread_attr_init(&attr
))) {
363 errc(EX_OSERR
, err
, "pthread_attr_init");
366 if ((err
= pthread_attr_setschedparam(&attr
, ¶m
))) {
367 errc(EX_OSERR
, err
, "pthread_attr_setschedparam");
370 if ((err
= pthread_attr_setschedpolicy(&attr
, SCHED_RR
))) {
371 errc(EX_OSERR
, err
, "pthread_attr_setschedpolicy");
374 for (uint32_t i
= 0; i
< g_rt_churn_count
; i
++) {
375 pthread_t new_thread
;
377 if ((err
= pthread_create(&new_thread
, &attr
, rt_churn_thread
, NULL
))) {
378 errc(EX_OSERR
, err
, "pthread_create");
380 g_rt_churn_threads
[i
] = new_thread
;
383 if ((err
= pthread_attr_destroy(&attr
))) {
384 errc(EX_OSERR
, err
, "pthread_attr_destroy");
387 /* Wait until all threads have checked in */
388 wait_for_rt_churn_threads();
392 join_rt_churn_threads(void)
394 /* Rejoin rt churn threads */
395 for (uint32_t i
= 0; i
< g_rt_churn_count
; i
++) {
396 errno_t err
= pthread_join(g_rt_churn_threads
[i
], NULL
);
398 errc(EX_OSERR
, err
, "pthread_join %d", i
);
404 * Figure out what thread policy to use
406 static my_policy_type_t
407 parse_thread_policy(const char *str
)
409 if (strcmp(str
, "timeshare") == 0) {
410 return MY_POLICY_TIMESHARE
;
411 } else if (strcmp(str
, "realtime") == 0) {
412 return MY_POLICY_REALTIME
;
413 } else if (strcmp(str
, "fixed") == 0) {
414 return MY_POLICY_FIXEDPRI
;
416 errx(EX_USAGE
, "Invalid thread policy \"%s\"", str
);
421 * Figure out what wakeup pattern to use
424 parse_wakeup_pattern(const char *str
)
426 if (strcmp(str
, "chain") == 0) {
428 } else if (strcmp(str
, "hop") == 0) {
430 } else if (strcmp(str
, "broadcast-single-sem") == 0) {
431 return WAKE_BROADCAST_ONESEM
;
432 } else if (strcmp(str
, "broadcast-per-thread") == 0) {
433 return WAKE_BROADCAST_PERTHREAD
;
435 errx(EX_USAGE
, "Invalid wakeup pattern \"%s\"", str
);
443 thread_setup(uint32_t my_id
)
447 thread_time_constraint_policy_data_t pol
;
450 int policy
= SCHED_OTHER
;
451 if (g_policy
== MY_POLICY_FIXEDPRI
) {
455 struct sched_param param
= {.sched_priority
= (int)g_priority
};
456 if ((ret
= pthread_setschedparam(pthread_self(), policy
, ¶m
))) {
457 errc(EX_OSERR
, ret
, "pthread_setschedparam: %d", my_id
);
462 case MY_POLICY_TIMESHARE
:
464 case MY_POLICY_REALTIME
:
465 /* Hard-coded realtime parameters (similar to what Digi uses) */
467 pol
.constraint
= (uint32_t) nanos_to_abs(CONSTRAINT_NANOS
);
468 pol
.computation
= (uint32_t) nanos_to_abs(COMPUTATION_NANOS
);
469 pol
.preemptible
= 0; /* Ignored by OS */
471 kr
= thread_policy_set(mach_thread_self(), THREAD_TIME_CONSTRAINT_POLICY
,
472 (thread_policy_t
) &pol
, THREAD_TIME_CONSTRAINT_POLICY_COUNT
);
473 mach_assert_zero_t(my_id
, kr
);
475 case MY_POLICY_FIXEDPRI
:
476 ret
= pthread_set_fixedpriority_self();
478 errc(EX_OSERR
, ret
, "pthread_set_fixedpriority_self");
482 errx(EX_USAGE
, "invalid policy type %d", g_policy
);
486 thread_affinity_policy_data_t affinity
;
488 affinity
.affinity_tag
= my_id
% 2;
490 kr
= thread_policy_set(mach_thread_self(), THREAD_AFFINITY_POLICY
,
491 (thread_policy_t
)&affinity
, THREAD_AFFINITY_POLICY_COUNT
);
492 mach_assert_zero_t(my_id
, kr
);
499 * Wait for a wakeup, potentially wake up another of the "0-N" threads,
500 * and notify the main thread when done.
503 worker_thread(void *arg
)
505 uint32_t my_id
= (uint32_t)(uintptr_t)arg
;
508 volatile double x
= 0.0;
509 volatile double y
= 0.0;
511 /* Set policy and so forth */
514 for (uint32_t i
= 0; i
< g_iterations
; i
++) {
517 * Leader thread either wakes everyone up or starts the chain going.
520 /* Give the worker threads undisturbed time to finish before waiting on them */
522 usleep(g_iteration_sleeptime_us
);
525 debug_log("%d Leader thread wait for ready\n", i
);
528 * Wait for everyone else to declare ready
529 * Is there a better way to do this that won't interfere with the rest of the chain?
530 * TODO: Invent 'semaphore wait for N signals'
533 for (uint32_t j
= 0; j
< g_numthreads
- 1; j
++) {
534 kr
= semaphore_wait(g_readysem
);
535 mach_assert_zero_t(my_id
, kr
);
538 debug_log("%d Leader thread wait\n", i
);
541 for (int cpuid
= 0; cpuid
< g_numcpus
; cpuid
++) {
542 if (g_cpu_histogram
[cpuid
].current
== 1) {
543 atomic_fetch_or_explicit(&g_cpu_map
[i
- 1], (1UL << cpuid
), memory_order_relaxed
);
544 g_cpu_histogram
[cpuid
].current
= 0;
549 /* Signal main thread and wait for start of iteration */
551 kr
= semaphore_wait_signal(g_leadersem
, g_main_sem
);
552 mach_assert_zero_t(my_id
, kr
);
554 g_thread_endtimes_abs
[my_id
] = mach_absolute_time();
556 debug_log("%d Leader thread go\n", i
);
558 assert_zero_t(my_id
, atomic_load_explicit(&g_done_threads
, memory_order_relaxed
));
560 switch (g_waketype
) {
561 case WAKE_BROADCAST_ONESEM
:
562 kr
= semaphore_signal_all(g_broadcastsem
);
563 mach_assert_zero_t(my_id
, kr
);
565 case WAKE_BROADCAST_PERTHREAD
:
566 for (uint32_t j
= 1; j
< g_numthreads
; j
++) {
567 kr
= semaphore_signal(g_semarr
[j
]);
568 mach_assert_zero_t(my_id
, kr
);
572 kr
= semaphore_signal(g_semarr
[my_id
+ 1]);
573 mach_assert_zero_t(my_id
, kr
);
576 kr
= semaphore_wait_signal(g_donesem
, g_semarr
[my_id
+ 1]);
577 mach_assert_zero_t(my_id
, kr
);
582 * Everyone else waits to be woken up,
583 * records when she wakes up, and possibly
586 switch (g_waketype
) {
587 case WAKE_BROADCAST_ONESEM
:
588 kr
= semaphore_wait_signal(g_broadcastsem
, g_readysem
);
589 mach_assert_zero_t(my_id
, kr
);
591 g_thread_endtimes_abs
[my_id
] = mach_absolute_time();
594 case WAKE_BROADCAST_PERTHREAD
:
595 kr
= semaphore_wait_signal(g_semarr
[my_id
], g_readysem
);
596 mach_assert_zero_t(my_id
, kr
);
598 g_thread_endtimes_abs
[my_id
] = mach_absolute_time();
602 kr
= semaphore_wait_signal(g_semarr
[my_id
], g_readysem
);
603 mach_assert_zero_t(my_id
, kr
);
605 /* Signal the next thread *after* recording wake time */
607 g_thread_endtimes_abs
[my_id
] = mach_absolute_time();
609 if (my_id
< (g_numthreads
- 1)) {
610 kr
= semaphore_signal(g_semarr
[my_id
+ 1]);
611 mach_assert_zero_t(my_id
, kr
);
617 kr
= semaphore_wait_signal(g_semarr
[my_id
], g_readysem
);
618 mach_assert_zero_t(my_id
, kr
);
620 /* Signal the next thread *after* recording wake time */
622 g_thread_endtimes_abs
[my_id
] = mach_absolute_time();
624 if (my_id
< (g_numthreads
- 1)) {
625 kr
= semaphore_wait_signal(g_donesem
, g_semarr
[my_id
+ 1]);
626 mach_assert_zero_t(my_id
, kr
);
628 kr
= semaphore_signal_all(g_donesem
);
629 mach_assert_zero_t(my_id
, kr
);
636 unsigned int cpuid
= _os_cpu_number();
637 assert(cpuid
< g_numcpus
);
638 debug_log("Thread %p woke up on CPU %d for iteration %d.\n", pthread_self(), cpuid
, i
);
639 g_cpu_histogram
[cpuid
].current
= 1;
640 g_cpu_histogram
[cpuid
].accum
++;
642 if (g_do_one_long_spin
&& g_one_long_spin_id
== my_id
) {
643 /* One randomly chosen thread holds up the train for a while. */
645 uint64_t endspin
= g_starttime_abs
+ g_one_long_spin_length_abs
;
646 while (mach_absolute_time() < endspin
) {
652 if (g_do_each_spin
) {
653 /* Each thread spins for a certain duration after waking up before blocking again. */
655 uint64_t endspin
= mach_absolute_time() + g_each_spin_duration_abs
;
656 while (mach_absolute_time() < endspin
) {
662 uint32_t done_threads
;
663 done_threads
= atomic_fetch_add_explicit(&g_done_threads
, 1, memory_order_relaxed
) + 1;
665 debug_log("Thread %p new value is %d, iteration %d\n", pthread_self(), done_threads
, i
);
667 if (g_drop_priority
) {
668 /* Drop priority to BG momentarily */
669 errno_t ret
= setpriority(PRIO_DARWIN_THREAD
, 0, PRIO_DARWIN_BG
);
671 errc(EX_OSERR
, ret
, "setpriority PRIO_DARWIN_BG");
676 /* Everyone spins until the last thread checks in. */
678 while (atomic_load_explicit(&g_done_threads
, memory_order_relaxed
) < g_numthreads
) {
684 if (g_drop_priority
) {
685 /* Restore normal priority */
686 errno_t ret
= setpriority(PRIO_DARWIN_THREAD
, 0, 0);
688 errc(EX_OSERR
, ret
, "setpriority 0");
692 debug_log("Thread %p done spinning, iteration %d\n", pthread_self(), i
);
696 /* Give the worker threads undisturbed time to finish before waiting on them */
698 usleep(g_iteration_sleeptime_us
);
701 /* Wait for the worker threads to finish */
702 for (uint32_t i
= 0; i
< g_numthreads
- 1; i
++) {
703 kr
= semaphore_wait(g_readysem
);
704 mach_assert_zero_t(my_id
, kr
);
707 /* Tell everyone and the main thread that the last iteration is done */
708 debug_log("%d Leader thread done\n", g_iterations
- 1);
710 for (int cpuid
= 0; cpuid
< g_numcpus
; cpuid
++) {
711 if (g_cpu_histogram
[cpuid
].current
== 1) {
712 atomic_fetch_or_explicit(&g_cpu_map
[g_iterations
- 1], (1UL << cpuid
), memory_order_relaxed
);
713 g_cpu_histogram
[cpuid
].current
= 0;
717 kr
= semaphore_signal_all(g_main_sem
);
718 mach_assert_zero_t(my_id
, kr
);
720 /* Hold up thread teardown so it doesn't affect the last iteration */
721 kr
= semaphore_wait_signal(g_main_sem
, g_readysem
);
722 mach_assert_zero_t(my_id
, kr
);
729 * Given an array of uint64_t values, compute average, max, min, and standard deviation
732 compute_stats(uint64_t *values
, uint64_t count
, float *averagep
, uint64_t *maxp
, uint64_t *minp
, float *stddevp
)
737 uint64_t _min
= UINT64_MAX
;
741 for (i
= 0; i
< count
; i
++) {
743 _max
= values
[i
] > _max
? values
[i
] : _max
;
744 _min
= values
[i
] < _min
? values
[i
] : _min
;
747 _avg
= ((float)_sum
) / ((float)count
);
750 for (i
= 0; i
< count
; i
++) {
751 _dev
+= powf((((float)values
[i
]) - _avg
), 2);
764 main(int argc
, char **argv
)
770 uint64_t *worst_latencies_ns
;
771 uint64_t *worst_latencies_from_first_ns
;
775 bool test_fail
= false;
777 for (int i
= 0; i
< argc
; i
++) {
778 if (strcmp(argv
[i
], "--switched_apptype") == 0) {
779 g_seen_apptype
= TRUE
;
783 if (!g_seen_apptype
) {
784 selfexec_with_apptype(argc
, argv
);
787 parse_args(argc
, argv
);
789 srand((unsigned int)time(NULL
));
791 mach_timebase_info(&g_mti
);
793 size_t ncpu_size
= sizeof(g_numcpus
);
794 ret
= sysctlbyname("hw.ncpu", &g_numcpus
, &ncpu_size
, NULL
, 0);
796 err(EX_OSERR
, "Failed sysctlbyname(hw.ncpu)");
798 assert(g_numcpus
<= 64); /* g_cpu_map needs to be extended for > 64 cpus */
800 size_t physicalcpu_size
= sizeof(g_nphysicalcpu
);
801 ret
= sysctlbyname("hw.physicalcpu", &g_nphysicalcpu
, &physicalcpu_size
, NULL
, 0);
803 err(EX_OSERR
, "Failed sysctlbyname(hw.physicalcpu)");
806 size_t logicalcpu_size
= sizeof(g_nlogicalcpu
);
807 ret
= sysctlbyname("hw.logicalcpu", &g_nlogicalcpu
, &logicalcpu_size
, NULL
, 0);
809 err(EX_OSERR
, "Failed sysctlbyname(hw.logicalcpu)");
813 if (g_numthreads
== 0) {
814 g_numthreads
= g_numcpus
;
816 g_policy
= MY_POLICY_REALTIME
;
817 g_do_all_spin
= TRUE
;
819 /* Don't change g_traceworthy_latency_ns if it's explicity been set to something other than the default */
820 if (g_traceworthy_latency_ns
== TRACEWORTHY_NANOS
) {
821 g_traceworthy_latency_ns
= TRACEWORTHY_NANOS_TEST
;
823 } else if (g_test_rt_smt
) {
824 if (g_nlogicalcpu
!= 2 * g_nphysicalcpu
) {
826 printf("Attempt to run --test-rt-smt on a non-SMT device\n");
830 if (g_numthreads
== 0) {
831 g_numthreads
= g_nphysicalcpu
;
833 g_policy
= MY_POLICY_REALTIME
;
834 g_do_all_spin
= TRUE
;
836 } else if (g_test_rt_avoid0
) {
837 #if defined(__x86_64__) || defined(__i386__)
838 if (g_numthreads
== 0) {
839 g_numthreads
= g_nphysicalcpu
- 1;
841 if (g_numthreads
== 0) {
842 printf("Attempt to run --test-rt-avoid0 on a uniprocessor\n");
845 g_policy
= MY_POLICY_REALTIME
;
846 g_do_all_spin
= TRUE
;
849 printf("Attempt to run --test-rt-avoid0 on a non-Intel device\n");
852 } else if (g_numthreads
== 0) {
853 g_numthreads
= g_numcpus
;
856 if (g_do_each_spin
) {
857 g_each_spin_duration_abs
= nanos_to_abs(g_each_spin_duration_ns
);
860 /* Configure the long-spin thread to take up half of its computation */
861 if (g_do_one_long_spin
) {
862 g_one_long_spin_length_ns
= COMPUTATION_NANOS
/ 2;
863 g_one_long_spin_length_abs
= nanos_to_abs(g_one_long_spin_length_ns
);
866 /* Estimate the amount of time the cleanup phase needs to back off */
867 g_iteration_sleeptime_us
= g_numthreads
* 20;
869 uint32_t threads_per_core
= (g_numthreads
/ g_numcpus
) + 1;
870 if (g_do_each_spin
) {
871 g_iteration_sleeptime_us
+= threads_per_core
* (g_each_spin_duration_ns
/ NSEC_PER_USEC
);
873 if (g_do_one_long_spin
) {
874 g_iteration_sleeptime_us
+= g_one_long_spin_length_ns
/ NSEC_PER_USEC
;
877 /* Arrays for threads and their wakeup times */
878 threads
= (pthread_t
*) valloc(sizeof(pthread_t
) * g_numthreads
);
881 size_t endtimes_size
= sizeof(uint64_t) * g_numthreads
;
883 g_thread_endtimes_abs
= (uint64_t*) valloc(endtimes_size
);
884 assert(g_thread_endtimes_abs
);
886 /* Ensure the allocation is pre-faulted */
887 ret
= memset_s(g_thread_endtimes_abs
, endtimes_size
, 0, endtimes_size
);
889 errc(EX_OSERR
, ret
, "memset_s endtimes");
892 size_t latencies_size
= sizeof(uint64_t) * g_iterations
;
894 worst_latencies_ns
= (uint64_t*) valloc(latencies_size
);
895 assert(worst_latencies_ns
);
897 /* Ensure the allocation is pre-faulted */
898 ret
= memset_s(worst_latencies_ns
, latencies_size
, 0, latencies_size
);
900 errc(EX_OSERR
, ret
, "memset_s latencies");
903 worst_latencies_from_first_ns
= (uint64_t*) valloc(latencies_size
);
904 assert(worst_latencies_from_first_ns
);
906 /* Ensure the allocation is pre-faulted */
907 ret
= memset_s(worst_latencies_from_first_ns
, latencies_size
, 0, latencies_size
);
909 errc(EX_OSERR
, ret
, "memset_s latencies_from_first");
912 size_t histogram_size
= sizeof(histogram_t
) * g_numcpus
;
913 g_cpu_histogram
= (histogram_t
*)valloc(histogram_size
);
914 assert(g_cpu_histogram
);
915 /* Ensure the allocation is pre-faulted */
916 ret
= memset_s(g_cpu_histogram
, histogram_size
, 0, histogram_size
);
918 errc(EX_OSERR
, ret
, "memset_s g_cpu_histogram");
921 size_t map_size
= sizeof(uint64_t) * g_iterations
;
922 g_cpu_map
= (_Atomic
uint64_t *)valloc(map_size
);
924 /* Ensure the allocation is pre-faulted */
925 ret
= memset_s(g_cpu_map
, map_size
, 0, map_size
);
927 errc(EX_OSERR
, ret
, "memset_s g_cpu_map");
930 kr
= semaphore_create(mach_task_self(), &g_main_sem
, SYNC_POLICY_FIFO
, 0);
931 mach_assert_zero(kr
);
933 /* Either one big semaphore or one per thread */
934 if (g_waketype
== WAKE_CHAIN
||
935 g_waketype
== WAKE_BROADCAST_PERTHREAD
||
936 g_waketype
== WAKE_HOP
) {
937 g_semarr
= valloc(sizeof(semaphore_t
) * g_numthreads
);
940 for (uint32_t i
= 0; i
< g_numthreads
; i
++) {
941 kr
= semaphore_create(mach_task_self(), &g_semarr
[i
], SYNC_POLICY_FIFO
, 0);
942 mach_assert_zero(kr
);
945 g_leadersem
= g_semarr
[0];
947 kr
= semaphore_create(mach_task_self(), &g_broadcastsem
, SYNC_POLICY_FIFO
, 0);
948 mach_assert_zero(kr
);
949 kr
= semaphore_create(mach_task_self(), &g_leadersem
, SYNC_POLICY_FIFO
, 0);
950 mach_assert_zero(kr
);
953 if (g_waketype
== WAKE_HOP
) {
954 kr
= semaphore_create(mach_task_self(), &g_donesem
, SYNC_POLICY_FIFO
, 0);
955 mach_assert_zero(kr
);
958 kr
= semaphore_create(mach_task_self(), &g_readysem
, SYNC_POLICY_FIFO
, 0);
959 mach_assert_zero(kr
);
961 kr
= semaphore_create(mach_task_self(), &g_rt_churn_sem
, SYNC_POLICY_FIFO
, 0);
962 mach_assert_zero(kr
);
964 kr
= semaphore_create(mach_task_self(), &g_rt_churn_start_sem
, SYNC_POLICY_FIFO
, 0);
965 mach_assert_zero(kr
);
967 atomic_store_explicit(&g_done_threads
, 0, memory_order_relaxed
);
969 /* Create the threads */
970 for (uint32_t i
= 0; i
< g_numthreads
; i
++) {
971 ret
= pthread_create(&threads
[i
], NULL
, worker_thread
, (void*)(uintptr_t)i
);
973 errc(EX_OSERR
, ret
, "pthread_create %d", i
);
977 ret
= setpriority(PRIO_DARWIN_ROLE
, 0, PRIO_DARWIN_ROLE_UI_FOCAL
);
979 errc(EX_OSERR
, ret
, "setpriority");
984 g_starttime_abs
= mach_absolute_time();
987 create_churn_threads();
990 create_rt_churn_threads();
993 /* Let everyone get settled */
994 kr
= semaphore_wait(g_main_sem
);
995 mach_assert_zero(kr
);
997 /* Give the system a bit more time to settle */
999 usleep(g_iteration_sleeptime_us
);
1003 for (uint32_t i
= 0; i
< g_iterations
; i
++) {
1005 uint64_t worst_abs
= 0, best_abs
= UINT64_MAX
;
1007 if (g_do_one_long_spin
) {
1008 g_one_long_spin_id
= (uint32_t)rand() % g_numthreads
;
1012 start_rt_churn_threads();
1016 debug_log("%d Main thread reset\n", i
);
1018 atomic_store_explicit(&g_done_threads
, 0, memory_order_seq_cst
);
1020 g_starttime_abs
= mach_absolute_time();
1022 /* Fire them off and wait for worker threads to finish */
1023 kr
= semaphore_wait_signal(g_main_sem
, g_leadersem
);
1024 mach_assert_zero(kr
);
1026 debug_log("%d Main thread return\n", i
);
1028 assert(atomic_load_explicit(&g_done_threads
, memory_order_relaxed
) == g_numthreads
);
1031 wait_for_rt_churn_threads();
1035 * We report the worst latencies relative to start time
1036 * and relative to the lead worker thread.
1038 for (j
= 0; j
< g_numthreads
; j
++) {
1039 uint64_t latency_abs
;
1041 latency_abs
= g_thread_endtimes_abs
[j
] - g_starttime_abs
;
1042 worst_abs
= worst_abs
< latency_abs
? latency_abs
: worst_abs
;
1045 worst_latencies_ns
[i
] = abs_to_nanos(worst_abs
);
1048 for (j
= 1; j
< g_numthreads
; j
++) {
1049 uint64_t latency_abs
;
1051 latency_abs
= g_thread_endtimes_abs
[j
] - g_thread_endtimes_abs
[0];
1052 worst_abs
= worst_abs
< latency_abs
? latency_abs
: worst_abs
;
1053 best_abs
= best_abs
> latency_abs
? latency_abs
: best_abs
;
1056 worst_latencies_from_first_ns
[i
] = abs_to_nanos(worst_abs
);
1059 * In the event of a bad run, cut a trace point.
1061 if (worst_latencies_from_first_ns
[i
] > g_traceworthy_latency_ns
) {
1062 /* Ariadne's ad-hoc test signpost */
1063 kdebug_trace(ARIADNEDBG_CODE(0, 0), worst_latencies_from_first_ns
[i
], g_traceworthy_latency_ns
, 0, 0);
1066 printf("Worst on this round was %.2f us.\n", ((float)worst_latencies_from_first_ns
[i
]) / 1000.0);
1070 /* Give the system a bit more time to settle */
1072 usleep(g_iteration_sleeptime_us
);
1076 /* Rejoin threads */
1077 for (uint32_t i
= 0; i
< g_numthreads
; i
++) {
1078 ret
= pthread_join(threads
[i
], NULL
);
1080 errc(EX_OSERR
, ret
, "pthread_join %d", i
);
1085 join_rt_churn_threads();
1089 join_churn_threads();
1092 compute_stats(worst_latencies_ns
, g_iterations
, &avg
, &max
, &min
, &stddev
);
1093 printf("Results (from a stop):\n");
1094 printf("Max:\t\t%.2f us\n", ((float)max
) / 1000.0);
1095 printf("Min:\t\t%.2f us\n", ((float)min
) / 1000.0);
1096 printf("Avg:\t\t%.2f us\n", avg
/ 1000.0);
1097 printf("Stddev:\t\t%.2f us\n", stddev
/ 1000.0);
1101 compute_stats(worst_latencies_from_first_ns
, g_iterations
, &avg
, &max
, &min
, &stddev
);
1102 printf("Results (relative to first thread):\n");
1103 printf("Max:\t\t%.2f us\n", ((float)max
) / 1000.0);
1104 printf("Min:\t\t%.2f us\n", ((float)min
) / 1000.0);
1105 printf("Avg:\t\t%.2f us\n", avg
/ 1000.0);
1106 printf("Stddev:\t\t%.2f us\n", stddev
/ 1000.0);
1109 for (uint32_t i
= 0; i
< g_iterations
; i
++) {
1110 printf("Iteration %d: %f us\n", i
, worst_latencies_ns
[i
] / 1000.0);
1117 for (uint32_t i
= 0; i
< g_numcpus
; i
++) {
1118 printf("%d\t%d\n", i
, g_cpu_histogram
[i
].accum
);
1122 if (g_test_rt
|| g_test_rt_smt
|| g_test_rt_avoid0
) {
1123 #define PRIMARY 0x5555555555555555ULL
1124 #define SECONDARY 0xaaaaaaaaaaaaaaaaULL
1128 for (uint32_t i
= 0; i
< g_iterations
; i
++) {
1129 bool secondary
= false;
1131 uint64_t map
= g_cpu_map
[i
];
1132 if (g_test_rt_smt
) {
1133 /* Test for one or more threads running on secondary cores unexpectedly (WARNING) */
1134 secondary
= (map
& SECONDARY
);
1135 /* Test for threads running on both primary and secondary cpus of the same core (FAIL) */
1136 fail
= ((map
& PRIMARY
) & ((map
& SECONDARY
) >> 1));
1137 } else if (g_test_rt
) {
1138 fail
= (__builtin_popcountll(map
) != g_numthreads
) && (worst_latencies_ns
[i
] > g_traceworthy_latency_ns
);
1139 } else if (g_test_rt_avoid0
) {
1140 fail
= ((map
& 0x1) == 0x1);
1142 if (secondary
|| fail
) {
1143 printf("Iteration %d: 0x%llx%s%s\n", i
, map
,
1144 secondary
? " SECONDARY" : "",
1145 fail
? " FAIL" : "");
1151 if (test_fail
&& (g_iterations
>= 100) && (fail_count
<= g_iterations
/ 100)) {
1152 printf("99%% or better success rate\n");
1158 free(g_thread_endtimes_abs
);
1159 free(worst_latencies_ns
);
1160 free(worst_latencies_from_first_ns
);
1161 free(g_cpu_histogram
);
1168 * WARNING: This is SPI specifically intended for use by launchd to start UI
1169 * apps. We use it here for a test tool only to opt into QoS using the same
1170 * policies. Do not use this outside xnu or libxpc/launchd.
1173 selfexec_with_apptype(int argc
, char *argv
[])
1176 posix_spawnattr_t attr
;
1177 extern char **environ
;
1178 char *new_argv
[argc
+ 1 + 1 /* NULL */];
1180 char prog
[PATH_MAX
];
1181 uint32_t prog_size
= PATH_MAX
;
1183 ret
= _NSGetExecutablePath(prog
, &prog_size
);
1185 err(EX_OSERR
, "_NSGetExecutablePath");
1188 for (i
= 0; i
< argc
; i
++) {
1189 new_argv
[i
] = argv
[i
];
1192 new_argv
[i
] = "--switched_apptype";
1193 new_argv
[i
+ 1] = NULL
;
1195 ret
= posix_spawnattr_init(&attr
);
1197 errc(EX_OSERR
, ret
, "posix_spawnattr_init");
1200 ret
= posix_spawnattr_setflags(&attr
, POSIX_SPAWN_SETEXEC
);
1202 errc(EX_OSERR
, ret
, "posix_spawnattr_setflags");
1205 ret
= posix_spawnattr_setprocesstype_np(&attr
, POSIX_SPAWN_PROC_TYPE_APP_DEFAULT
);
1207 errc(EX_OSERR
, ret
, "posix_spawnattr_setprocesstype_np");
1210 ret
= posix_spawn(NULL
, prog
, NULL
, &attr
, new_argv
, environ
);
1212 errc(EX_OSERR
, ret
, "posix_spawn");
1217 * Admittedly not very attractive.
1219 static void __attribute__((noreturn
))
1222 errx(EX_USAGE
, "Usage: %s <threads> <chain | hop | broadcast-single-sem | broadcast-per-thread> "
1223 "<realtime | timeshare | fixed> <iterations>\n\t\t"
1224 "[--trace <traceworthy latency in ns>] "
1225 "[--verbose] [--spin-one] [--spin-all] [--spin-time <nanos>] [--affinity]\n\t\t"
1226 "[--no-sleep] [--drop-priority] [--churn-pri <pri>] [--churn-count <n>]",
1230 static struct option
* g_longopts
;
1231 static int option_index
;
1237 /* char* optarg is a magic global */
1239 uint32_t arg_val
= (uint32_t)strtoull(optarg
, &cp
, 10);
1241 if (cp
== optarg
|| *cp
) {
1242 errx(EX_USAGE
, "arg --%s requires a decimal number, found \"%s\"",
1243 g_longopts
[option_index
].name
, optarg
);
1250 parse_args(int argc
, char *argv
[])
1262 static struct option longopts
[] = {
1263 /* BEGIN IGNORE CODESTYLE */
1264 { "spin-time", required_argument
, NULL
, OPT_SPIN_TIME
},
1265 { "trace", required_argument
, NULL
, OPT_TRACE
},
1266 { "priority", required_argument
, NULL
, OPT_PRIORITY
},
1267 { "churn-pri", required_argument
, NULL
, OPT_CHURN_PRI
},
1268 { "churn-count", required_argument
, NULL
, OPT_CHURN_COUNT
},
1269 { "rt-churn-count", required_argument
, NULL
, OPT_RT_CHURN_COUNT
},
1270 { "switched_apptype", no_argument
, (int*)&g_seen_apptype
, TRUE
},
1271 { "spin-one", no_argument
, (int*)&g_do_one_long_spin
, TRUE
},
1272 { "spin-all", no_argument
, (int*)&g_do_all_spin
, TRUE
},
1273 { "affinity", no_argument
, (int*)&g_do_affinity
, TRUE
},
1274 { "no-sleep", no_argument
, (int*)&g_do_sleep
, FALSE
},
1275 { "drop-priority", no_argument
, (int*)&g_drop_priority
, TRUE
},
1276 { "test-rt", no_argument
, (int*)&g_test_rt
, TRUE
},
1277 { "test-rt-smt", no_argument
, (int*)&g_test_rt_smt
, TRUE
},
1278 { "test-rt-avoid0", no_argument
, (int*)&g_test_rt_avoid0
, TRUE
},
1279 { "rt-churn", no_argument
, (int*)&g_rt_churn
, TRUE
},
1280 { "histogram", no_argument
, (int*)&g_histogram
, TRUE
},
1281 { "verbose", no_argument
, (int*)&g_verbose
, TRUE
},
1282 { "help", no_argument
, NULL
, 'h' },
1283 { NULL
, 0, NULL
, 0 }
1284 /* END IGNORE CODESTYLE */
1287 g_longopts
= longopts
;
1290 while ((ch
= getopt_long(argc
, argv
, "h", longopts
, &option_index
)) != -1) {
1293 /* getopt_long set a variable */
1296 g_do_each_spin
= TRUE
;
1297 g_each_spin_duration_ns
= read_dec_arg();
1300 g_traceworthy_latency_ns
= read_dec_arg();
1303 g_priority
= read_dec_arg();
1306 g_churn_pri
= read_dec_arg();
1308 case OPT_CHURN_COUNT
:
1309 g_churn_count
= read_dec_arg();
1311 case OPT_RT_CHURN_COUNT
:
1312 g_rt_churn_count
= read_dec_arg();
1323 * getopt_long reorders all the options to the beginning of the argv array.
1324 * Jump past them to the non-option arguments.
1331 warnx("Too many non-option arguments passed");
1336 warnx("Missing required <threads> <waketype> <policy> <iterations> arguments");
1342 /* How many threads? */
1343 g_numthreads
= (uint32_t)strtoull(argv
[0], &cp
, 10);
1345 if (cp
== argv
[0] || *cp
) {
1346 errx(EX_USAGE
, "numthreads requires a decimal number, found \"%s\"", argv
[0]);
1349 /* What wakeup pattern? */
1350 g_waketype
= parse_wakeup_pattern(argv
[1]);
1353 g_policy
= parse_thread_policy(argv
[2]);
1356 g_iterations
= (uint32_t)strtoull(argv
[3], &cp
, 10);
1358 if (cp
== argv
[3] || *cp
) {
1359 errx(EX_USAGE
, "numthreads requires a decimal number, found \"%s\"", argv
[3]);
1362 if (g_iterations
< 1) {
1363 errx(EX_USAGE
, "Must have at least one iteration");
1366 if (g_numthreads
== 1 && g_waketype
== WAKE_CHAIN
) {
1367 errx(EX_USAGE
, "chain mode requires more than one thread");
1370 if (g_numthreads
== 1 && g_waketype
== WAKE_HOP
) {
1371 errx(EX_USAGE
, "hop mode requires more than one thread");