]> git.saurik.com Git - apple/xnu.git/blob - tests/kevent_continuous_time.c
xnu-6153.101.6.tar.gz
[apple/xnu.git] / tests / kevent_continuous_time.c
1 #include <stdio.h>
2 #include <unistd.h>
3
4 #include <mach/mach.h>
5 #include <mach/mach_time.h>
6 #include <sys/time.h>
7 #include <spawn.h>
8 #include <sys/wait.h>
9 #include <stdio.h>
10 #include <unistd.h>
11 #include <stdlib.h>
12 #include <time.h>
13 #include <errno.h>
14 #include <sys/event.h>
15
16 #include <darwintest.h>
17
18 extern char **environ;
19
20 static mach_timebase_info_data_t tb_info;
21 static const uint64_t one_mil = 1000LL * 1000LL;
22
23 #define tick_to_ns(ticks) (((ticks) * tb_info.numer) / (tb_info.denom))
24 #define tick_to_ms(ticks) (tick_to_ns(ticks)/one_mil)
25
26 #define ns_to_tick(ns) ((ns) * tb_info.denom / tb_info.numer)
27 #define ms_to_tick(ms) (ns_to_tick((ms) * one_mil))
28
29 static uint64_t
30 time_delta_ms(void)
31 {
32 uint64_t abs_now = mach_absolute_time();
33 uint64_t cnt_now = mach_continuous_time();;
34 return tick_to_ms(cnt_now) - tick_to_ms(abs_now);
35 }
36
37 static int run_sleep_tests = 0;
38
39 static int
40 trigger_sleep(int for_secs)
41 {
42 if (!run_sleep_tests) {
43 return 0;
44 }
45
46 // sleep for 1 seconds each iteration
47 char buf[10];
48 snprintf(buf, 10, "%d", for_secs);
49
50 T_LOG("Sleepeing for %s seconds...", buf);
51
52 int spawn_ret, pid;
53 char *const pmset1_args[] = {"/usr/bin/pmset", "relative", "wake", buf, NULL};
54 T_ASSERT_POSIX_ZERO((spawn_ret = posix_spawn(&pid, pmset1_args[0], NULL, NULL, pmset1_args, environ)), NULL);
55
56 T_ASSERT_EQ(waitpid(pid, &spawn_ret, 0), pid, NULL);
57 T_ASSERT_EQ(spawn_ret, 0, NULL);
58
59 char *const pmset2_args[] = {"/usr/bin/pmset", "sleepnow", NULL};
60 T_ASSERT_POSIX_ZERO((spawn_ret = posix_spawn(&pid, pmset2_args[0], NULL, NULL, pmset2_args, environ)), NULL);
61
62 T_ASSERT_EQ(waitpid(pid, &spawn_ret, 0), pid, NULL);
63 T_ASSERT_EQ(spawn_ret, 0, NULL);
64
65 return 0;
66 }
67
68 // waits up to 30 seconds for system to sleep
69 // returns number of seconds it took for sleep to be entered
70 // or -1 if sleep wasn't accomplished
71 static int
72 wait_for_sleep()
73 {
74 if (!run_sleep_tests) {
75 return 0;
76 }
77
78 uint64_t before_diff = time_delta_ms();
79
80 for (int i = 0; i < 30; i++) {
81 uint64_t after_diff = time_delta_ms();
82
83 // on OSX, there's enough latency between calls to MCT and MAT
84 // when the system is going down for sleep for values to diverge a few ms
85 if (llabs((int64_t)before_diff - (int64_t)after_diff) > 2) {
86 return i + 1;
87 }
88
89 sleep(1);
90 T_LOG("waited %d seconds for sleep...", i + 1);
91 }
92 return -1;
93 }
94
95 T_DECL(kevent_continuous_time_periodic_tick, "kevent(EVFILT_TIMER with NOTE_MACH_CONTINUOUS_TIME)", T_META_LTEPHASE(LTE_POSTINIT)){
96 mach_timebase_info(&tb_info);
97 int kq;
98 T_ASSERT_POSIX_SUCCESS((kq = kqueue()), NULL);
99
100 struct kevent64_s kev = {
101 .ident = 1,
102 .filter = EVFILT_TIMER,
103 .flags = EV_ADD | EV_RECEIPT,
104 .fflags = NOTE_SECONDS | NOTE_MACH_CONTINUOUS_TIME,
105 .data = 4,
106 };
107 T_LOG("EV_SET(&kev, 1, EVFILT_TIMER, EV_ADD, NOTE_SECONDS | NOTE_MACH_CONTINUOUS_TIME, 4, 0, 0, 0);");
108
109 T_ASSERT_EQ(kevent64(kq, &kev, 1, &kev, 1, 0, NULL), 1, NULL);
110 T_ASSERT_EQ(0ll, kev.data, "No error returned");
111
112 uint64_t abs_then = mach_absolute_time();
113 uint64_t cnt_then = mach_continuous_time();;
114
115 trigger_sleep(1);
116 int sleep_secs = wait_for_sleep();
117
118 T_WITH_ERRNO; T_ASSERT_EQ(kevent64(kq, NULL, 0, &kev, 1, 0, NULL), 1, "kevent() should have returned one event");
119 T_LOG("event = {.ident = %llx, .filter = %d, .flags = %d, .fflags = %d, .data = %lld, .udata = %lld}", kev.ident, kev.filter, kev.flags, kev.fflags, kev.data, kev.udata);
120 T_ASSERT_EQ(kev.flags & EV_ERROR, 0, "event should not have EV_ERROR set: %s", kev.flags & EV_ERROR ? strerror((int)kev.data) : "no error");
121
122 uint64_t abs_now = mach_absolute_time();
123 uint64_t cnt_now = mach_continuous_time();;
124 uint64_t ct_ms_progressed = tick_to_ms(cnt_now - cnt_then);
125 uint64_t ab_ms_progressed = tick_to_ms(abs_now - abs_then);
126
127 T_LOG("ct progressed %llu ms, abs progressed %llu ms", ct_ms_progressed, tick_to_ms(abs_now - abs_then));
128
129 if (run_sleep_tests) {
130 T_ASSERT_GT(llabs((int64_t)ct_ms_progressed - (int64_t)ab_ms_progressed), 500LL, "should have > 500ms difference between MCT and MAT");
131 } else {
132 T_ASSERT_LT(llabs((int64_t)ct_ms_progressed - (int64_t)ab_ms_progressed), 10LL, "should have < 10ms difference between MCT and MAT");
133 }
134
135 if (sleep_secs < 4) {
136 T_ASSERT_LT(llabs((int64_t)ct_ms_progressed - 4000), 100LL, "mach_continuous_time should progress ~4 seconds (+/- 100ms) between sleeps");
137 }
138
139 sleep(1);
140
141 kev = (struct kevent64_s){
142 .ident = 1,
143 .filter = EVFILT_TIMER,
144 .flags = EV_DELETE | EV_RECEIPT,
145 };
146 T_LOG("EV_SET(&kev, 1, EVFILT_TIMER, EV_DELETE, 0, 0, 0);");
147 T_ASSERT_EQ(kevent64(kq, &kev, 1, &kev, 1, 0, NULL), 1, NULL);
148 T_ASSERT_EQ(0ll, kev.data, "No error returned");
149
150 T_ASSERT_POSIX_ZERO(close(kq), NULL);
151 }
152
153 T_DECL(kevent_continuous_time_absolute, "kevent(EVFILT_TIMER with NOTE_MACH_CONTINUOUS_TIME and NOTE_ABSOLUTE)", T_META_LTEPHASE(LTE_POSTINIT)){
154 mach_timebase_info(&tb_info);
155
156 int kq;
157 T_ASSERT_POSIX_SUCCESS((kq = kqueue()), NULL);
158
159 struct timeval tv;
160 gettimeofday(&tv, NULL);
161 int64_t nowus = (int64_t)tv.tv_sec * USEC_PER_SEC + (int64_t)tv.tv_usec;
162 int64_t fire_at = (3 * USEC_PER_SEC) + nowus;
163
164 uint64_t cnt_now = mach_continuous_time();
165 uint64_t cnt_then = cnt_now + ms_to_tick(3000);
166
167 T_LOG("currently is %llu, firing at %llu", nowus, fire_at);
168
169 struct kevent64_s kev = {
170 .ident = 2,
171 .filter = EVFILT_TIMER,
172 .flags = EV_ADD | EV_RECEIPT,
173 .fflags = NOTE_MACH_CONTINUOUS_TIME | NOTE_ABSOLUTE | NOTE_USECONDS,
174 .data = fire_at,
175 };
176 T_LOG("EV_SET(&kev, 2, EVFILT_TIMER, EV_ADD, NOTE_MACH_CONTINUOUS_TIME | NOTE_ABSOLUTE | NOTE_USECONDS, fire_at, 0);");
177
178 T_ASSERT_EQ(kevent64(kq, &kev, 1, &kev, 1, 0, NULL), 1, NULL);
179 T_ASSERT_EQ(0ll, kev.data, "No error returned");
180
181 T_LOG("testing NOTE_MACH_CONTINUOUS_TIME | NOTE_ABSOLUTE between sleep");
182
183 trigger_sleep(1);
184
185 struct timespec timeout = {
186 .tv_sec = 10,
187 .tv_nsec = 0,
188 };
189 struct kevent64_s event = {0};
190 T_ASSERT_EQ(kevent64(kq, NULL, 0, &event, 1, 0, &timeout), 1, "kevent() should have returned one event");
191 T_LOG("event = {.ident = %llx, .filter = %d, .flags = %d, .fflags = %d, .data = %lld, .udata = %lld}", event.ident, event.filter, event.flags, event.fflags, event.data, event.udata);
192 T_ASSERT_EQ(event.flags & EV_ERROR, 0, "event should not have EV_ERROR set: %s", event.flags & EV_ERROR ? strerror((int)event.data) : "no error");
193
194 uint64_t elapsed_ms = tick_to_ms(mach_continuous_time() - cnt_now);
195 int64_t missed_by = tick_to_ns((int64_t)mach_continuous_time() - (int64_t)cnt_then) / 1000000;
196
197 // ~1/2 second is about as good as we'll get
198 T_ASSERT_LT(llabs(missed_by), 500LL, "timer should pop 3 sec in the future, popped after %lldms", elapsed_ms);
199
200 T_ASSERT_EQ(event.data, 1LL, NULL);
201
202 T_ASSERT_EQ(event.ident, 2ULL, NULL);
203
204 // try getting a periodic tick out of kq
205 T_ASSERT_EQ(kevent64(kq, NULL, 0, &event, 1, 0, &timeout), 0, NULL);
206 T_ASSERT_EQ(event.flags & EV_ERROR, 0, "event should not have EV_ERROR set: %s", event.flags & EV_ERROR ? strerror((int)event.data) : "no error");
207
208 T_ASSERT_POSIX_ZERO(close(kq), NULL);
209 }
210
211 T_DECL(kevent_continuous_time_pops, "kevent(EVFILT_TIMER with NOTE_MACH_CONTINUOUS_TIME with multiple pops)", T_META_LTEPHASE(LTE_POSTINIT)){
212 // have to throttle rate at which pmset is called
213 sleep(2);
214
215 mach_timebase_info(&tb_info);
216
217 int kq;
218 T_ASSERT_POSIX_SUCCESS((kq = kqueue()), NULL);
219
220 // test that periodic ticks accumulate while asleep
221 struct kevent64_s kev = {
222 .ident = 3,
223 .filter = EVFILT_TIMER,
224 .flags = EV_ADD | EV_RECEIPT,
225 .fflags = NOTE_MACH_CONTINUOUS_TIME,
226 .data = 100,
227 };
228 T_LOG("EV_SET(&kev, 3, EVFILT_TIMER, EV_ADD, NOTE_MACH_CONTINUOUS_TIME, 100, 0);");
229
230 // wait for first pop, then sleep
231 T_ASSERT_EQ(kevent64(kq, &kev, 1, &kev, 1, 0, NULL), 1, NULL);
232 T_ASSERT_EQ(0ll, kev.data, "No error returned");
233
234 struct kevent64_s event = {0};
235 T_ASSERT_EQ(kevent64(kq, NULL, 0, &event, 1, 0, NULL), 1, "kevent() should have returned one event");
236 T_LOG("event = {.ident = %llx, .filter = %d, .flags = %d, .fflags = %d, .data = %lld, .udata = %llu}", event.ident, event.filter, event.flags, event.fflags, event.data, event.udata);
237 T_ASSERT_EQ(event.flags & EV_ERROR, 0, "should not have EV_ERROR set: %s", event.flags & EV_ERROR ? strerror((int)event.data) : "no error");
238 T_ASSERT_EQ(event.ident, 3ULL, NULL);
239
240 uint64_t cnt_then = mach_continuous_time();
241 trigger_sleep(2);
242
243 int sleep_secs = 0;
244 if (run_sleep_tests) {
245 sleep_secs = wait_for_sleep();
246 } else {
247 // simulate 2 seconds of system "sleep"
248 sleep(2);
249 }
250
251 uint64_t cnt_now = mach_continuous_time();
252
253 uint64_t ms_elapsed = tick_to_ms(cnt_now - cnt_then);
254 if (run_sleep_tests) {
255 T_ASSERT_LT(llabs((int64_t)ms_elapsed - 2000LL), 500LL, "slept for %llums, expected 2000ms (astris is connected?)", ms_elapsed);
256 }
257
258 T_ASSERT_EQ(kevent64(kq, NULL, 0, &event, 1, 0, NULL), 1, "kevent() should have returned one event");
259 T_LOG("event = {.ident = %llx, .filter = %d, .flags = %d, .fflags = %d, .data = %lld, .udata = %llu}", event.ident, event.filter, event.flags, event.fflags, event.data, event.udata);
260 T_ASSERT_EQ(event.ident, 3ULL, NULL);
261
262 uint64_t expected_pops = ms_elapsed / 100;
263 uint64_t got_pops = (uint64_t)event.data;
264
265 T_ASSERT_GE(got_pops, expected_pops - 1, "tracking pops while asleep");
266 T_ASSERT_POSIX_ZERO(close(kq), NULL);
267 }