]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/cpu_data.h
xnu-6153.101.6.tar.gz
[apple/xnu.git] / osfmk / i386 / cpu_data.h
1 /*
2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 *
31 */
32
33 #ifndef I386_CPU_DATA
34 #define I386_CPU_DATA
35
36 #include <mach_assert.h>
37 #include <machine/atomic.h>
38
39 #include <kern/assert.h>
40 #include <kern/kern_types.h>
41 #include <kern/mpqueue.h>
42 #include <kern/queue.h>
43 #include <kern/processor.h>
44 #include <kern/pms.h>
45 #include <pexpert/pexpert.h>
46 #include <mach/i386/thread_status.h>
47 #include <mach/i386/vm_param.h>
48 #include <i386/locks.h>
49 #include <i386/rtclock_protos.h>
50 #include <i386/pmCPU.h>
51 #include <i386/cpu_topology.h>
52 #include <i386/seg.h>
53 #include <i386/mp.h>
54
55 #if CONFIG_VMX
56 #include <i386/vmx/vmx_cpu.h>
57 #endif
58
59 #if MONOTONIC
60 #include <machine/monotonic.h>
61 #endif /* MONOTONIC */
62
63 #include <machine/pal_routines.h>
64
65 /*
66 * Data structures referenced (anonymously) from per-cpu data:
67 */
68 struct cpu_cons_buffer;
69 struct cpu_desc_table;
70 struct mca_state;
71 struct prngContext;
72
73 /*
74 * Data structures embedded in per-cpu data:
75 */
76 typedef struct rtclock_timer {
77 mpqueue_head_t queue;
78 uint64_t deadline;
79 uint64_t when_set;
80 boolean_t has_expired;
81 } rtclock_timer_t;
82
83 typedef struct {
84 /* The 'u' suffixed fields store the double-mapped descriptor addresses */
85 struct x86_64_tss *cdi_ktssu;
86 struct x86_64_tss *cdi_ktssb;
87 x86_64_desc_register_t cdi_gdtu;
88 x86_64_desc_register_t cdi_gdtb;
89 x86_64_desc_register_t cdi_idtu;
90 x86_64_desc_register_t cdi_idtb;
91 struct real_descriptor *cdi_ldtu;
92 struct real_descriptor *cdi_ldtb;
93 vm_offset_t cdi_sstku;
94 vm_offset_t cdi_sstkb;
95 } cpu_desc_index_t;
96
97 typedef enum {
98 TASK_MAP_32BIT, /* 32-bit user, compatibility mode */
99 TASK_MAP_64BIT, /* 64-bit user thread, shared space */
100 } task_map_t;
101
102
103 /*
104 * This structure is used on entry into the (uber-)kernel on syscall from
105 * a 64-bit user. It contains the address of the machine state save area
106 * for the current thread and a temporary place to save the user's rsp
107 * before loading this address into rsp.
108 */
109 typedef struct {
110 addr64_t cu_isf; /* thread->pcb->iss.isf */
111 uint64_t cu_tmp; /* temporary scratch */
112 addr64_t cu_user_gs_base;
113 } cpu_uber_t;
114
115 typedef uint16_t pcid_t;
116 typedef uint8_t pcid_ref_t;
117
118 #define CPU_RTIME_BINS (12)
119 #define CPU_ITIME_BINS (CPU_RTIME_BINS)
120
121 #define MAX_TRACE_BTFRAMES (16)
122 typedef struct {
123 boolean_t pltype;
124 int plevel;
125 uint64_t plbt[MAX_TRACE_BTFRAMES];
126 } plrecord_t;
127
128 #if DEVELOPMENT || DEBUG
129 typedef enum {
130 IOTRACE_PHYS_READ = 1,
131 IOTRACE_PHYS_WRITE,
132 IOTRACE_IO_READ,
133 IOTRACE_IO_WRITE,
134 IOTRACE_PORTIO_READ,
135 IOTRACE_PORTIO_WRITE
136 } iotrace_type_e;
137
138 typedef struct {
139 iotrace_type_e iotype;
140 int size;
141 uint64_t vaddr;
142 uint64_t paddr;
143 uint64_t val;
144 uint64_t start_time_abs;
145 uint64_t duration;
146 uint64_t backtrace[MAX_TRACE_BTFRAMES];
147 } iotrace_entry_t;
148
149 typedef struct {
150 int vector; /* Vector number of interrupt */
151 thread_t curthread; /* Current thread at the time of the interrupt */
152 uint64_t interrupted_pc;
153 int curpl; /* Current preemption level */
154 int curil; /* Current interrupt level */
155 uint64_t start_time_abs;
156 uint64_t duration;
157 uint64_t backtrace[MAX_TRACE_BTFRAMES];
158 } traptrace_entry_t;
159
160 #define DEFAULT_IOTRACE_ENTRIES_PER_CPU (64)
161 #define IOTRACE_MAX_ENTRIES_PER_CPU (256)
162 extern volatile int mmiotrace_enabled;
163 extern int iotrace_generators;
164 extern int iotrace_entries_per_cpu;
165 extern int *iotrace_next;
166 extern iotrace_entry_t **iotrace_ring;
167
168 #define TRAPTRACE_INVALID_INDEX (~0U)
169 #define DEFAULT_TRAPTRACE_ENTRIES_PER_CPU (16)
170 #define TRAPTRACE_MAX_ENTRIES_PER_CPU (256)
171 extern volatile int traptrace_enabled;
172 extern int traptrace_generators;
173 extern int traptrace_entries_per_cpu;
174 extern int *traptrace_next;
175 extern traptrace_entry_t **traptrace_ring;
176 #endif /* DEVELOPMENT || DEBUG */
177
178 /*
179 * Per-cpu data.
180 *
181 * Each processor has a per-cpu data area which is dereferenced through the
182 * current_cpu_datap() macro. For speed, the %gs segment is based here, and
183 * using this, inlines provides single-instruction access to frequently used
184 * members - such as get_cpu_number()/cpu_number(), and get_active_thread()/
185 * current_thread().
186 *
187 * Cpu data owned by another processor can be accessed using the
188 * cpu_datap(cpu_number) macro which uses the cpu_data_ptr[] array of per-cpu
189 * pointers.
190 */
191 typedef struct {
192 pcid_t cpu_pcid_free_hint;
193 #define PMAP_PCID_MAX_PCID (0x800)
194 pcid_ref_t cpu_pcid_refcounts[PMAP_PCID_MAX_PCID];
195 pmap_t cpu_pcid_last_pmap_dispatched[PMAP_PCID_MAX_PCID];
196 } pcid_cdata_t;
197
198 typedef struct cpu_data {
199 struct pal_cpu_data cpu_pal_data; /* PAL-specific data */
200 #define cpu_pd cpu_pal_data /* convenience alias */
201 struct cpu_data *cpu_this; /* pointer to myself */
202 thread_t cpu_active_thread;
203 thread_t cpu_nthread;
204 int cpu_number; /* Logical CPU */
205 void *cpu_int_state; /* interrupt state */
206 vm_offset_t cpu_active_stack; /* kernel stack base */
207 vm_offset_t cpu_kernel_stack; /* kernel stack top */
208 vm_offset_t cpu_int_stack_top;
209 volatile int cpu_signals; /* IPI events */
210 volatile int cpu_prior_signals; /* Last set of events,
211 * debugging
212 */
213 ast_t cpu_pending_ast;
214 /*
215 * Note if rearranging fields:
216 * We want cpu_preemption_level on a different
217 * cache line than cpu_active_thread
218 * for optimizing mtx_spin phase.
219 */
220 int cpu_interrupt_level;
221 volatile int cpu_preemption_level;
222 volatile int cpu_running;
223 #if !MONOTONIC
224 boolean_t cpu_fixed_pmcs_enabled;
225 #endif /* !MONOTONIC */
226 rtclock_timer_t rtclock_timer;
227 uint64_t quantum_timer_deadline;
228 volatile addr64_t cpu_active_cr3 __attribute((aligned(64)));
229 union {
230 volatile uint32_t cpu_tlb_invalid;
231 struct {
232 volatile uint16_t cpu_tlb_invalid_local;
233 volatile uint16_t cpu_tlb_invalid_global;
234 };
235 };
236 uint64_t cpu_ip_desc[2];
237 volatile task_map_t cpu_task_map;
238 volatile addr64_t cpu_task_cr3;
239 addr64_t cpu_kernel_cr3;
240 volatile addr64_t cpu_ucr3;
241 volatile addr64_t cpu_shadowtask_cr3;
242 boolean_t cpu_pagezero_mapped;
243 cpu_uber_t cpu_uber;
244 /* Double-mapped per-CPU exception stack address */
245 uintptr_t cd_estack;
246 int cpu_xstate;
247 int cpu_curtask_has_ldt;
248 int cpu_curthread_do_segchk;
249 /* Address of shadowed, partially mirrored CPU data structures located
250 * in the double mapped PML4
251 */
252 void *cd_shadow;
253 union {
254 volatile uint32_t cpu_tlb_invalid_count;
255 struct {
256 volatile uint16_t cpu_tlb_invalid_local_count;
257 volatile uint16_t cpu_tlb_invalid_global_count;
258 };
259 };
260
261 uint16_t cpu_tlb_gen_counts_local[MAX_CPUS];
262 uint16_t cpu_tlb_gen_counts_global[MAX_CPUS];
263
264 struct processor *cpu_processor;
265 #if NCOPY_WINDOWS > 0
266 struct cpu_pmap *cpu_pmap;
267 #endif
268 struct real_descriptor *cpu_ldtp;
269 struct cpu_desc_table *cpu_desc_tablep;
270 cpu_desc_index_t cpu_desc_index;
271 int cpu_ldt;
272 #if NCOPY_WINDOWS > 0
273 vm_offset_t cpu_copywindow_base;
274 uint64_t *cpu_copywindow_pdp;
275
276 vm_offset_t cpu_physwindow_base;
277 uint64_t *cpu_physwindow_ptep;
278 #endif
279
280 #define HWINTCNT_SIZE 256
281 uint32_t cpu_hwIntCnt[HWINTCNT_SIZE]; /* Interrupt counts */
282 uint64_t cpu_hwIntpexits[HWINTCNT_SIZE];
283 uint64_t cpu_dr7; /* debug control register */
284 uint64_t cpu_int_event_time; /* intr entry/exit time */
285 pal_rtc_nanotime_t *cpu_nanotime; /* Nanotime info */
286 #if KPC
287 /* double-buffered performance counter data */
288 uint64_t *cpu_kpc_buf[2];
289 /* PMC shadow and reload value buffers */
290 uint64_t *cpu_kpc_shadow;
291 uint64_t *cpu_kpc_reload;
292 #endif
293 #if MONOTONIC
294 struct mt_cpu cpu_monotonic;
295 #endif /* MONOTONIC */
296 uint32_t cpu_pmap_pcid_enabled;
297 pcid_t cpu_active_pcid;
298 pcid_t cpu_last_pcid;
299 pcid_t cpu_kernel_pcid;
300 volatile pcid_ref_t *cpu_pmap_pcid_coherentp;
301 volatile pcid_ref_t *cpu_pmap_pcid_coherentp_kernel;
302 pcid_cdata_t *cpu_pcid_data;
303 #ifdef PCID_STATS
304 uint64_t cpu_pmap_pcid_flushes;
305 uint64_t cpu_pmap_pcid_preserves;
306 #endif
307 uint64_t cpu_aperf;
308 uint64_t cpu_mperf;
309 uint64_t cpu_c3res;
310 uint64_t cpu_c6res;
311 uint64_t cpu_c7res;
312 uint64_t cpu_itime_total;
313 uint64_t cpu_rtime_total;
314 uint64_t cpu_ixtime;
315 uint64_t cpu_idle_exits;
316 uint64_t cpu_rtimes[CPU_RTIME_BINS];
317 uint64_t cpu_itimes[CPU_ITIME_BINS];
318 #if !MONOTONIC
319 uint64_t cpu_cur_insns;
320 uint64_t cpu_cur_ucc;
321 uint64_t cpu_cur_urc;
322 #endif /* !MONOTONIC */
323 uint64_t cpu_gpmcs[4];
324 uint64_t cpu_max_observed_int_latency;
325 int cpu_max_observed_int_latency_vector;
326 volatile boolean_t cpu_NMI_acknowledged;
327 uint64_t debugger_entry_time;
328 uint64_t debugger_ipi_time;
329 /* A separate nested interrupt stack flag, to account
330 * for non-nested interrupts arriving while on the interrupt stack
331 * Currently only occurs when AICPM enables interrupts on the
332 * interrupt stack during processor offlining.
333 */
334 uint32_t cpu_nested_istack;
335 uint32_t cpu_nested_istack_events;
336 x86_saved_state64_t *cpu_fatal_trap_state;
337 x86_saved_state64_t *cpu_post_fatal_trap_state;
338 #if CONFIG_VMX
339 vmx_cpu_t cpu_vmx; /* wonderful world of virtualization */
340 #endif
341 #if CONFIG_MCA
342 struct mca_state *cpu_mca_state; /* State at MC fault */
343 #endif
344 int cpu_type;
345 int cpu_subtype;
346 int cpu_threadtype;
347 boolean_t cpu_iflag;
348 boolean_t cpu_boot_complete;
349 int cpu_hibernate;
350 #define MAX_PREEMPTION_RECORDS (8)
351 #if DEVELOPMENT || DEBUG
352 int cpu_plri;
353 plrecord_t plrecords[MAX_PREEMPTION_RECORDS];
354 #endif
355 void *cpu_console_buf;
356 struct x86_lcpu lcpu;
357 int cpu_phys_number; /* Physical CPU */
358 cpu_id_t cpu_id; /* Platform Expert */
359 #if DEBUG
360 uint64_t cpu_entry_cr3;
361 uint64_t cpu_exit_cr3;
362 uint64_t cpu_pcid_last_cr3;
363 #endif
364 boolean_t cpu_rendezvous_in_progress;
365 } cpu_data_t;
366
367 extern cpu_data_t *cpu_data_ptr[];
368
369 /* Macro to generate inline bodies to retrieve per-cpu data fields. */
370 #if defined(__clang__)
371 #define GS_RELATIVE volatile __attribute__((address_space(256)))
372 #ifndef offsetof
373 #define offsetof(TYPE, MEMBER) __builtin_offsetof(TYPE,MEMBER)
374 #endif
375
376 #define CPU_DATA_GET(member, type) \
377 cpu_data_t GS_RELATIVE *cpu_data = \
378 (cpu_data_t GS_RELATIVE *)0UL; \
379 type ret; \
380 ret = cpu_data->member; \
381 return ret;
382
383 #define CPU_DATA_GET_INDEX(member, index, type) \
384 cpu_data_t GS_RELATIVE *cpu_data = \
385 (cpu_data_t GS_RELATIVE *)0UL; \
386 type ret; \
387 ret = cpu_data->member[index]; \
388 return ret;
389
390 #define CPU_DATA_SET(member, value) \
391 cpu_data_t GS_RELATIVE *cpu_data = \
392 (cpu_data_t GS_RELATIVE *)0UL; \
393 cpu_data->member = value;
394
395 #define CPU_DATA_XCHG(member, value, type) \
396 cpu_data_t GS_RELATIVE *cpu_data = \
397 (cpu_data_t GS_RELATIVE *)0UL; \
398 type ret; \
399 ret = cpu_data->member; \
400 cpu_data->member = value; \
401 return ret;
402
403 #else /* !defined(__clang__) */
404
405 #ifndef offsetof
406 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
407 #endif /* offsetof */
408 #define CPU_DATA_GET(member, type) \
409 type ret; \
410 __asm__ volatile ("mov %%gs:%P1,%0" \
411 : "=r" (ret) \
412 : "i" (offsetof(cpu_data_t,member))); \
413 return ret;
414
415 #define CPU_DATA_GET_INDEX(member, index, type) \
416 type ret; \
417 __asm__ volatile ("mov %%gs:(%1),%0" \
418 : "=r" (ret) \
419 : "r" (offsetof(cpu_data_t,member[index]))); \
420 return ret;
421
422 #define CPU_DATA_SET(member, value) \
423 __asm__ volatile ("mov %0,%%gs:%P1" \
424 : \
425 : "r" (value), "i" (offsetof(cpu_data_t,member)));
426
427 #define CPU_DATA_XCHG(member, value, type) \
428 type ret; \
429 __asm__ volatile ("xchg %0,%%gs:%P1" \
430 : "=r" (ret) \
431 : "i" (offsetof(cpu_data_t,member)), "0" (value)); \
432 return ret;
433
434 #endif /* !defined(__clang__) */
435
436 /*
437 * Everyone within the osfmk part of the kernel can use the fast
438 * inline versions of these routines. Everyone outside, must call
439 * the real thing,
440 */
441
442
443 /*
444 * The "volatile" flavor of current_thread() is intended for use by
445 * scheduler code which may need to update the thread pointer in the
446 * course of a context switch. Any call to current_thread() made
447 * prior to the thread pointer update should be safe to optimize away
448 * as it should be consistent with that thread's state to the extent
449 * the compiler can reason about it. Likewise, the context switch
450 * path will eventually result in an arbitrary branch to the new
451 * thread's pc, about which the compiler won't be able to reason.
452 * Thus any compile-time optimization of current_thread() calls made
453 * within the new thread should be safely encapsulated in its
454 * register/stack state. The volatile form therefore exists to cover
455 * the window between the thread pointer update and the branch to
456 * the new pc.
457 */
458 static inline thread_t
459 get_active_thread_volatile(void)
460 {
461 CPU_DATA_GET(cpu_active_thread, thread_t)
462 }
463
464 static inline __attribute__((const)) thread_t
465 get_active_thread(void)
466 {
467 CPU_DATA_GET(cpu_active_thread, thread_t)
468 }
469
470 #define current_thread_fast() get_active_thread()
471 #define current_thread_volatile() get_active_thread_volatile()
472 #define current_thread() current_thread_fast()
473
474 #define cpu_mode_is64bit() TRUE
475
476 static inline int
477 get_preemption_level(void)
478 {
479 CPU_DATA_GET(cpu_preemption_level, int)
480 }
481 static inline int
482 get_interrupt_level(void)
483 {
484 CPU_DATA_GET(cpu_interrupt_level, int)
485 }
486 static inline int
487 get_cpu_number(void)
488 {
489 CPU_DATA_GET(cpu_number, int)
490 }
491 static inline int
492 get_cpu_phys_number(void)
493 {
494 CPU_DATA_GET(cpu_phys_number, int)
495 }
496
497 static inline cpu_data_t *
498 current_cpu_datap(void)
499 {
500 CPU_DATA_GET(cpu_this, cpu_data_t *);
501 }
502
503 /*
504 * Facility to diagnose preemption-level imbalances, which are otherwise
505 * challenging to debug. On each operation that enables or disables preemption,
506 * we record a backtrace into a per-CPU ring buffer, along with the current
507 * preemption level and operation type. Thus, if an imbalance is observed,
508 * one can examine these per-CPU records to determine which codepath failed
509 * to re-enable preemption, enabled premption without a corresponding
510 * disablement etc. The backtracer determines which stack is currently active,
511 * and uses that to perform bounds checks on unterminated stacks.
512 * To enable, sysctl -w machdep.pltrace=1 on DEVELOPMENT or DEBUG kernels (DRK '15)
513 * The bounds check currently doesn't account for non-default thread stack sizes.
514 */
515 #if DEVELOPMENT || DEBUG
516 static inline void
517 rbtrace_bt(uint64_t *rets, int maxframes, cpu_data_t *cdata, uint64_t frameptr, bool use_cursp)
518 {
519 extern uint32_t low_intstack[]; /* bottom */
520 extern uint32_t low_eintstack[]; /* top */
521 extern char mp_slave_stack[];
522 int btidx = 0;
523
524 uint64_t kstackb, kstackt;
525
526 /* Obtain the 'current' program counter, initial backtrace
527 * element. This will also indicate if we were unable to
528 * trace further up the stack for some reason
529 */
530 if (use_cursp) {
531 __asm__ volatile ("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:"
532 : "=m" (rets[btidx++])
533 :
534 : "rax");
535 }
536
537 thread_t cplthread = cdata->cpu_active_thread;
538 if (cplthread) {
539 uintptr_t csp;
540 if (use_cursp == true) {
541 __asm__ __volatile__ ("movq %%rsp, %0": "=r" (csp):);
542 } else {
543 csp = frameptr;
544 }
545 /* Determine which stack we're on to populate stack bounds.
546 * We don't need to trace across stack boundaries for this
547 * routine.
548 */
549 kstackb = cdata->cpu_active_stack;
550 kstackt = kstackb + KERNEL_STACK_SIZE;
551 if (csp < kstackb || csp > kstackt) {
552 kstackt = cdata->cpu_kernel_stack;
553 kstackb = kstackt - KERNEL_STACK_SIZE;
554 if (csp < kstackb || csp > kstackt) {
555 kstackt = cdata->cpu_int_stack_top;
556 kstackb = kstackt - INTSTACK_SIZE;
557 if (csp < kstackb || csp > kstackt) {
558 kstackt = (uintptr_t)low_eintstack;
559 kstackb = kstackt - INTSTACK_SIZE;
560 if (csp < kstackb || csp > kstackt) {
561 kstackb = (uintptr_t) mp_slave_stack;
562 kstackt = kstackb + PAGE_SIZE;
563 } else {
564 kstackb = 0;
565 kstackt = 0;
566 }
567 }
568 }
569 }
570
571 if (__probable(kstackb && kstackt)) {
572 uint64_t *cfp = (uint64_t *) frameptr;
573 int rbbtf;
574
575 for (rbbtf = btidx; rbbtf < maxframes; rbbtf++) {
576 if (((uint64_t)cfp == 0) || (((uint64_t)cfp < kstackb) || ((uint64_t)cfp > kstackt))) {
577 rets[rbbtf] = 0;
578 continue;
579 }
580 rets[rbbtf] = *(cfp + 1);
581 cfp = (uint64_t *) (*cfp);
582 }
583 }
584 }
585 }
586
587 static inline void
588 pltrace_internal(boolean_t enable)
589 {
590 cpu_data_t *cdata = current_cpu_datap();
591 int cpli = cdata->cpu_preemption_level;
592 int cplrecord = cdata->cpu_plri;
593 uint64_t *plbts;
594
595 assert(cpli >= 0);
596
597 cdata->plrecords[cplrecord].pltype = enable;
598 cdata->plrecords[cplrecord].plevel = cpli;
599
600 plbts = &cdata->plrecords[cplrecord].plbt[0];
601
602 cplrecord++;
603
604 if (cplrecord >= MAX_PREEMPTION_RECORDS) {
605 cplrecord = 0;
606 }
607
608 cdata->cpu_plri = cplrecord;
609
610 rbtrace_bt(plbts, MAX_TRACE_BTFRAMES - 1, cdata, (uint64_t)__builtin_frame_address(0), true);
611 }
612
613 extern int plctrace_enabled;
614
615 static inline void
616 iotrace(iotrace_type_e type, uint64_t vaddr, uint64_t paddr, int size, uint64_t val,
617 uint64_t sabs, uint64_t duration)
618 {
619 cpu_data_t *cdata;
620 int cpu_num, nextidx;
621 iotrace_entry_t *cur_iotrace_ring;
622
623 if (__improbable(mmiotrace_enabled == 0 || iotrace_generators == 0)) {
624 return;
625 }
626
627 cdata = current_cpu_datap();
628 cpu_num = cdata->cpu_number;
629 nextidx = iotrace_next[cpu_num];
630 cur_iotrace_ring = iotrace_ring[cpu_num];
631
632 cur_iotrace_ring[nextidx].iotype = type;
633 cur_iotrace_ring[nextidx].vaddr = vaddr;
634 cur_iotrace_ring[nextidx].paddr = paddr;
635 cur_iotrace_ring[nextidx].size = size;
636 cur_iotrace_ring[nextidx].val = val;
637 cur_iotrace_ring[nextidx].start_time_abs = sabs;
638 cur_iotrace_ring[nextidx].duration = duration;
639
640 iotrace_next[cpu_num] = ((nextidx + 1) >= iotrace_entries_per_cpu) ? 0 : (nextidx + 1);
641
642 rbtrace_bt(&cur_iotrace_ring[nextidx].backtrace[0],
643 MAX_TRACE_BTFRAMES - 1, cdata, (uint64_t)__builtin_frame_address(0), true);
644 }
645
646 static inline uint32_t
647 traptrace_start(int vecnum, uint64_t ipc, uint64_t sabs, uint64_t frameptr)
648 {
649 cpu_data_t *cdata;
650 int cpu_num, nextidx;
651 traptrace_entry_t *cur_traptrace_ring;
652
653 if (__improbable(traptrace_enabled == 0 || traptrace_generators == 0)) {
654 return TRAPTRACE_INVALID_INDEX;
655 }
656
657 assert(ml_get_interrupts_enabled() == FALSE);
658 cdata = current_cpu_datap();
659 cpu_num = cdata->cpu_number;
660 nextidx = traptrace_next[cpu_num];
661 /* prevent nested interrupts from clobbering this record */
662 traptrace_next[cpu_num] = ((nextidx + 1) >= traptrace_entries_per_cpu) ? 0 : (nextidx + 1);
663
664 cur_traptrace_ring = traptrace_ring[cpu_num];
665
666 cur_traptrace_ring[nextidx].vector = vecnum;
667 cur_traptrace_ring[nextidx].curthread = current_thread();
668 cur_traptrace_ring[nextidx].interrupted_pc = ipc;
669 cur_traptrace_ring[nextidx].curpl = cdata->cpu_preemption_level;
670 cur_traptrace_ring[nextidx].curil = cdata->cpu_interrupt_level;
671 cur_traptrace_ring[nextidx].start_time_abs = sabs;
672 cur_traptrace_ring[nextidx].duration = ~0ULL;
673
674 rbtrace_bt(&cur_traptrace_ring[nextidx].backtrace[0],
675 MAX_TRACE_BTFRAMES - 1, cdata, frameptr, false);
676
677 assert(nextidx <= 0xFFFF);
678
679 return ((unsigned)cpu_num << 16) | nextidx;
680 }
681
682 static inline void
683 traptrace_end(uint32_t index, uint64_t eabs)
684 {
685 if (index != TRAPTRACE_INVALID_INDEX) {
686 traptrace_entry_t *ttentp = &traptrace_ring[index >> 16][index & 0xFFFF];
687
688 ttentp->duration = eabs - ttentp->start_time_abs;
689 }
690 }
691
692 #endif /* DEVELOPMENT || DEBUG */
693
694 static inline void
695 pltrace(boolean_t plenable)
696 {
697 #if DEVELOPMENT || DEBUG
698 if (__improbable(plctrace_enabled != 0)) {
699 pltrace_internal(plenable);
700 }
701 #else
702 (void)plenable;
703 #endif
704 }
705
706 static inline void
707 disable_preemption_internal(void)
708 {
709 assert(get_preemption_level() >= 0);
710
711 os_compiler_barrier(release);
712 #if defined(__clang__)
713 cpu_data_t GS_RELATIVE *cpu_data = (cpu_data_t GS_RELATIVE *)0UL;
714 cpu_data->cpu_preemption_level++;
715 #else
716 __asm__ volatile ("incl %%gs:%P0"
717 :
718 : "i" (offsetof(cpu_data_t, cpu_preemption_level)));
719 #endif
720 os_compiler_barrier(acquire);
721 pltrace(FALSE);
722 }
723
724 static inline void
725 enable_preemption_internal(void)
726 {
727 assert(get_preemption_level() > 0);
728 pltrace(TRUE);
729 os_compiler_barrier(release);
730 #if defined(__clang__)
731 cpu_data_t GS_RELATIVE *cpu_data = (cpu_data_t GS_RELATIVE *)0UL;
732 if (0 == --cpu_data->cpu_preemption_level) {
733 kernel_preempt_check();
734 }
735 #else
736 __asm__ volatile ("decl %%gs:%P0 \n\t"
737 "jne 1f \n\t"
738 "call _kernel_preempt_check \n\t"
739 "1:"
740 : /* no outputs */
741 : "i" (offsetof(cpu_data_t, cpu_preemption_level))
742 : "eax", "ecx", "edx", "cc", "memory");
743 #endif
744 os_compiler_barrier(acquire);
745 }
746
747 static inline void
748 enable_preemption_no_check(void)
749 {
750 assert(get_preemption_level() > 0);
751
752 pltrace(TRUE);
753 os_compiler_barrier(release);
754 #if defined(__clang__)
755 cpu_data_t GS_RELATIVE *cpu_data = (cpu_data_t GS_RELATIVE *)0UL;
756 cpu_data->cpu_preemption_level--;
757 #else
758 __asm__ volatile ("decl %%gs:%P0"
759 : /* no outputs */
760 : "i" (offsetof(cpu_data_t, cpu_preemption_level))
761 : "cc", "memory");
762 #endif
763 os_compiler_barrier(acquire);
764 }
765
766 static inline void
767 _enable_preemption_no_check(void)
768 {
769 enable_preemption_no_check();
770 }
771
772 static inline void
773 mp_disable_preemption(void)
774 {
775 disable_preemption_internal();
776 }
777
778 static inline void
779 _mp_disable_preemption(void)
780 {
781 disable_preemption_internal();
782 }
783
784 static inline void
785 mp_enable_preemption(void)
786 {
787 enable_preemption_internal();
788 }
789
790 static inline void
791 _mp_enable_preemption(void)
792 {
793 enable_preemption_internal();
794 }
795
796 static inline void
797 mp_enable_preemption_no_check(void)
798 {
799 enable_preemption_no_check();
800 }
801
802 static inline void
803 _mp_enable_preemption_no_check(void)
804 {
805 enable_preemption_no_check();
806 }
807
808 #ifdef XNU_KERNEL_PRIVATE
809 #define disable_preemption() disable_preemption_internal()
810 #define enable_preemption() enable_preemption_internal()
811 #define MACHINE_PREEMPTION_MACROS (1)
812 #endif
813
814 static inline cpu_data_t *
815 cpu_datap(int cpu)
816 {
817 return cpu_data_ptr[cpu];
818 }
819
820 static inline int
821 cpu_is_running(int cpu)
822 {
823 return (cpu_datap(cpu) != NULL) && (cpu_datap(cpu)->cpu_running);
824 }
825
826 #ifdef MACH_KERNEL_PRIVATE
827 static inline cpu_data_t *
828 cpu_shadowp(int cpu)
829 {
830 return cpu_data_ptr[cpu]->cd_shadow;
831 }
832
833 #endif
834 extern cpu_data_t *cpu_data_alloc(boolean_t is_boot_cpu);
835 extern void cpu_data_realloc(void);
836
837 #endif /* I386_CPU_DATA */