2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
36 #include <mach_assert.h>
37 #include <machine/atomic.h>
39 #include <kern/assert.h>
40 #include <kern/kern_types.h>
41 #include <kern/mpqueue.h>
42 #include <kern/queue.h>
43 #include <kern/processor.h>
45 #include <pexpert/pexpert.h>
46 #include <mach/i386/thread_status.h>
47 #include <mach/i386/vm_param.h>
48 #include <i386/locks.h>
49 #include <i386/rtclock_protos.h>
50 #include <i386/pmCPU.h>
51 #include <i386/cpu_topology.h>
56 #include <i386/vmx/vmx_cpu.h>
60 #include <machine/monotonic.h>
61 #endif /* MONOTONIC */
63 #include <machine/pal_routines.h>
66 * Data structures referenced (anonymously) from per-cpu data:
68 struct cpu_cons_buffer
;
69 struct cpu_desc_table
;
74 * Data structures embedded in per-cpu data:
76 typedef struct rtclock_timer
{
80 boolean_t has_expired
;
84 /* The 'u' suffixed fields store the double-mapped descriptor addresses */
85 struct x86_64_tss
*cdi_ktssu
;
86 struct x86_64_tss
*cdi_ktssb
;
87 x86_64_desc_register_t cdi_gdtu
;
88 x86_64_desc_register_t cdi_gdtb
;
89 x86_64_desc_register_t cdi_idtu
;
90 x86_64_desc_register_t cdi_idtb
;
91 struct real_descriptor
*cdi_ldtu
;
92 struct real_descriptor
*cdi_ldtb
;
93 vm_offset_t cdi_sstku
;
94 vm_offset_t cdi_sstkb
;
98 TASK_MAP_32BIT
, /* 32-bit user, compatibility mode */
99 TASK_MAP_64BIT
, /* 64-bit user thread, shared space */
104 * This structure is used on entry into the (uber-)kernel on syscall from
105 * a 64-bit user. It contains the address of the machine state save area
106 * for the current thread and a temporary place to save the user's rsp
107 * before loading this address into rsp.
110 addr64_t cu_isf
; /* thread->pcb->iss.isf */
111 uint64_t cu_tmp
; /* temporary scratch */
112 addr64_t cu_user_gs_base
;
115 typedef uint16_t pcid_t
;
116 typedef uint8_t pcid_ref_t
;
118 #define CPU_RTIME_BINS (12)
119 #define CPU_ITIME_BINS (CPU_RTIME_BINS)
121 #define MAX_TRACE_BTFRAMES (16)
125 uint64_t plbt
[MAX_TRACE_BTFRAMES
];
128 #if DEVELOPMENT || DEBUG
130 IOTRACE_PHYS_READ
= 1,
139 iotrace_type_e iotype
;
144 uint64_t start_time_abs
;
146 uint64_t backtrace
[MAX_TRACE_BTFRAMES
];
150 int vector
; /* Vector number of interrupt */
151 thread_t curthread
; /* Current thread at the time of the interrupt */
152 uint64_t interrupted_pc
;
153 int curpl
; /* Current preemption level */
154 int curil
; /* Current interrupt level */
155 uint64_t start_time_abs
;
157 uint64_t backtrace
[MAX_TRACE_BTFRAMES
];
160 #define DEFAULT_IOTRACE_ENTRIES_PER_CPU (64)
161 #define IOTRACE_MAX_ENTRIES_PER_CPU (256)
162 extern volatile int mmiotrace_enabled
;
163 extern int iotrace_generators
;
164 extern int iotrace_entries_per_cpu
;
165 extern int *iotrace_next
;
166 extern iotrace_entry_t
**iotrace_ring
;
168 #define TRAPTRACE_INVALID_INDEX (~0U)
169 #define DEFAULT_TRAPTRACE_ENTRIES_PER_CPU (16)
170 #define TRAPTRACE_MAX_ENTRIES_PER_CPU (256)
171 extern volatile int traptrace_enabled
;
172 extern int traptrace_generators
;
173 extern int traptrace_entries_per_cpu
;
174 extern int *traptrace_next
;
175 extern traptrace_entry_t
**traptrace_ring
;
176 #endif /* DEVELOPMENT || DEBUG */
181 * Each processor has a per-cpu data area which is dereferenced through the
182 * current_cpu_datap() macro. For speed, the %gs segment is based here, and
183 * using this, inlines provides single-instruction access to frequently used
184 * members - such as get_cpu_number()/cpu_number(), and get_active_thread()/
187 * Cpu data owned by another processor can be accessed using the
188 * cpu_datap(cpu_number) macro which uses the cpu_data_ptr[] array of per-cpu
192 pcid_t cpu_pcid_free_hint
;
193 #define PMAP_PCID_MAX_PCID (0x800)
194 pcid_ref_t cpu_pcid_refcounts
[PMAP_PCID_MAX_PCID
];
195 pmap_t cpu_pcid_last_pmap_dispatched
[PMAP_PCID_MAX_PCID
];
198 typedef struct cpu_data
{
199 struct pal_cpu_data cpu_pal_data
; /* PAL-specific data */
200 #define cpu_pd cpu_pal_data /* convenience alias */
201 struct cpu_data
*cpu_this
; /* pointer to myself */
202 thread_t cpu_active_thread
;
203 thread_t cpu_nthread
;
204 int cpu_number
; /* Logical CPU */
205 void *cpu_int_state
; /* interrupt state */
206 vm_offset_t cpu_active_stack
; /* kernel stack base */
207 vm_offset_t cpu_kernel_stack
; /* kernel stack top */
208 vm_offset_t cpu_int_stack_top
;
209 volatile int cpu_signals
; /* IPI events */
210 volatile int cpu_prior_signals
; /* Last set of events,
213 ast_t cpu_pending_ast
;
215 * Note if rearranging fields:
216 * We want cpu_preemption_level on a different
217 * cache line than cpu_active_thread
218 * for optimizing mtx_spin phase.
220 int cpu_interrupt_level
;
221 volatile int cpu_preemption_level
;
222 volatile int cpu_running
;
224 boolean_t cpu_fixed_pmcs_enabled
;
225 #endif /* !MONOTONIC */
226 rtclock_timer_t rtclock_timer
;
227 uint64_t quantum_timer_deadline
;
228 volatile addr64_t cpu_active_cr3
__attribute((aligned(64)));
230 volatile uint32_t cpu_tlb_invalid
;
232 volatile uint16_t cpu_tlb_invalid_local
;
233 volatile uint16_t cpu_tlb_invalid_global
;
236 uint64_t cpu_ip_desc
[2];
237 volatile task_map_t cpu_task_map
;
238 volatile addr64_t cpu_task_cr3
;
239 addr64_t cpu_kernel_cr3
;
240 volatile addr64_t cpu_ucr3
;
241 volatile addr64_t cpu_shadowtask_cr3
;
242 boolean_t cpu_pagezero_mapped
;
244 /* Double-mapped per-CPU exception stack address */
247 int cpu_curtask_has_ldt
;
248 int cpu_curthread_do_segchk
;
249 /* Address of shadowed, partially mirrored CPU data structures located
250 * in the double mapped PML4
254 volatile uint32_t cpu_tlb_invalid_count
;
256 volatile uint16_t cpu_tlb_invalid_local_count
;
257 volatile uint16_t cpu_tlb_invalid_global_count
;
261 uint16_t cpu_tlb_gen_counts_local
[MAX_CPUS
];
262 uint16_t cpu_tlb_gen_counts_global
[MAX_CPUS
];
264 struct processor
*cpu_processor
;
265 #if NCOPY_WINDOWS > 0
266 struct cpu_pmap
*cpu_pmap
;
268 struct real_descriptor
*cpu_ldtp
;
269 struct cpu_desc_table
*cpu_desc_tablep
;
270 cpu_desc_index_t cpu_desc_index
;
272 #if NCOPY_WINDOWS > 0
273 vm_offset_t cpu_copywindow_base
;
274 uint64_t *cpu_copywindow_pdp
;
276 vm_offset_t cpu_physwindow_base
;
277 uint64_t *cpu_physwindow_ptep
;
280 #define HWINTCNT_SIZE 256
281 uint32_t cpu_hwIntCnt
[HWINTCNT_SIZE
]; /* Interrupt counts */
282 uint64_t cpu_hwIntpexits
[HWINTCNT_SIZE
];
283 uint64_t cpu_dr7
; /* debug control register */
284 uint64_t cpu_int_event_time
; /* intr entry/exit time */
285 pal_rtc_nanotime_t
*cpu_nanotime
; /* Nanotime info */
287 /* double-buffered performance counter data */
288 uint64_t *cpu_kpc_buf
[2];
289 /* PMC shadow and reload value buffers */
290 uint64_t *cpu_kpc_shadow
;
291 uint64_t *cpu_kpc_reload
;
294 struct mt_cpu cpu_monotonic
;
295 #endif /* MONOTONIC */
296 uint32_t cpu_pmap_pcid_enabled
;
297 pcid_t cpu_active_pcid
;
298 pcid_t cpu_last_pcid
;
299 pcid_t cpu_kernel_pcid
;
300 volatile pcid_ref_t
*cpu_pmap_pcid_coherentp
;
301 volatile pcid_ref_t
*cpu_pmap_pcid_coherentp_kernel
;
302 pcid_cdata_t
*cpu_pcid_data
;
304 uint64_t cpu_pmap_pcid_flushes
;
305 uint64_t cpu_pmap_pcid_preserves
;
312 uint64_t cpu_itime_total
;
313 uint64_t cpu_rtime_total
;
315 uint64_t cpu_idle_exits
;
316 uint64_t cpu_rtimes
[CPU_RTIME_BINS
];
317 uint64_t cpu_itimes
[CPU_ITIME_BINS
];
319 uint64_t cpu_cur_insns
;
320 uint64_t cpu_cur_ucc
;
321 uint64_t cpu_cur_urc
;
322 #endif /* !MONOTONIC */
323 uint64_t cpu_gpmcs
[4];
324 uint64_t cpu_max_observed_int_latency
;
325 int cpu_max_observed_int_latency_vector
;
326 volatile boolean_t cpu_NMI_acknowledged
;
327 uint64_t debugger_entry_time
;
328 uint64_t debugger_ipi_time
;
329 /* A separate nested interrupt stack flag, to account
330 * for non-nested interrupts arriving while on the interrupt stack
331 * Currently only occurs when AICPM enables interrupts on the
332 * interrupt stack during processor offlining.
334 uint32_t cpu_nested_istack
;
335 uint32_t cpu_nested_istack_events
;
336 x86_saved_state64_t
*cpu_fatal_trap_state
;
337 x86_saved_state64_t
*cpu_post_fatal_trap_state
;
339 vmx_cpu_t cpu_vmx
; /* wonderful world of virtualization */
342 struct mca_state
*cpu_mca_state
; /* State at MC fault */
348 boolean_t cpu_boot_complete
;
350 #define MAX_PREEMPTION_RECORDS (8)
351 #if DEVELOPMENT || DEBUG
353 plrecord_t plrecords
[MAX_PREEMPTION_RECORDS
];
355 void *cpu_console_buf
;
356 struct x86_lcpu lcpu
;
357 int cpu_phys_number
; /* Physical CPU */
358 cpu_id_t cpu_id
; /* Platform Expert */
360 uint64_t cpu_entry_cr3
;
361 uint64_t cpu_exit_cr3
;
362 uint64_t cpu_pcid_last_cr3
;
364 boolean_t cpu_rendezvous_in_progress
;
367 extern cpu_data_t
*cpu_data_ptr
[];
369 /* Macro to generate inline bodies to retrieve per-cpu data fields. */
370 #if defined(__clang__)
371 #define GS_RELATIVE volatile __attribute__((address_space(256)))
373 #define offsetof(TYPE, MEMBER) __builtin_offsetof(TYPE,MEMBER)
376 #define CPU_DATA_GET(member, type) \
377 cpu_data_t GS_RELATIVE *cpu_data = \
378 (cpu_data_t GS_RELATIVE *)0UL; \
380 ret = cpu_data->member; \
383 #define CPU_DATA_GET_INDEX(member, index, type) \
384 cpu_data_t GS_RELATIVE *cpu_data = \
385 (cpu_data_t GS_RELATIVE *)0UL; \
387 ret = cpu_data->member[index]; \
390 #define CPU_DATA_SET(member, value) \
391 cpu_data_t GS_RELATIVE *cpu_data = \
392 (cpu_data_t GS_RELATIVE *)0UL; \
393 cpu_data->member = value;
395 #define CPU_DATA_XCHG(member, value, type) \
396 cpu_data_t GS_RELATIVE *cpu_data = \
397 (cpu_data_t GS_RELATIVE *)0UL; \
399 ret = cpu_data->member; \
400 cpu_data->member = value; \
403 #else /* !defined(__clang__) */
406 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
407 #endif /* offsetof */
408 #define CPU_DATA_GET(member, type) \
410 __asm__ volatile ("mov %%gs:%P1,%0" \
412 : "i" (offsetof(cpu_data_t,member))); \
415 #define CPU_DATA_GET_INDEX(member, index, type) \
417 __asm__ volatile ("mov %%gs:(%1),%0" \
419 : "r" (offsetof(cpu_data_t,member[index]))); \
422 #define CPU_DATA_SET(member, value) \
423 __asm__ volatile ("mov %0,%%gs:%P1" \
425 : "r" (value), "i" (offsetof(cpu_data_t,member)));
427 #define CPU_DATA_XCHG(member, value, type) \
429 __asm__ volatile ("xchg %0,%%gs:%P1" \
431 : "i" (offsetof(cpu_data_t,member)), "0" (value)); \
434 #endif /* !defined(__clang__) */
437 * Everyone within the osfmk part of the kernel can use the fast
438 * inline versions of these routines. Everyone outside, must call
444 * The "volatile" flavor of current_thread() is intended for use by
445 * scheduler code which may need to update the thread pointer in the
446 * course of a context switch. Any call to current_thread() made
447 * prior to the thread pointer update should be safe to optimize away
448 * as it should be consistent with that thread's state to the extent
449 * the compiler can reason about it. Likewise, the context switch
450 * path will eventually result in an arbitrary branch to the new
451 * thread's pc, about which the compiler won't be able to reason.
452 * Thus any compile-time optimization of current_thread() calls made
453 * within the new thread should be safely encapsulated in its
454 * register/stack state. The volatile form therefore exists to cover
455 * the window between the thread pointer update and the branch to
458 static inline thread_t
459 get_active_thread_volatile(void)
461 CPU_DATA_GET(cpu_active_thread
, thread_t
)
464 static inline __attribute__((const)) thread_t
465 get_active_thread(void)
467 CPU_DATA_GET(cpu_active_thread
, thread_t
)
470 #define current_thread_fast() get_active_thread()
471 #define current_thread_volatile() get_active_thread_volatile()
472 #define current_thread() current_thread_fast()
474 #define cpu_mode_is64bit() TRUE
477 get_preemption_level(void)
479 CPU_DATA_GET(cpu_preemption_level
, int)
482 get_interrupt_level(void)
484 CPU_DATA_GET(cpu_interrupt_level
, int)
489 CPU_DATA_GET(cpu_number
, int)
492 get_cpu_phys_number(void)
494 CPU_DATA_GET(cpu_phys_number
, int)
497 static inline cpu_data_t
*
498 current_cpu_datap(void)
500 CPU_DATA_GET(cpu_this
, cpu_data_t
*);
504 * Facility to diagnose preemption-level imbalances, which are otherwise
505 * challenging to debug. On each operation that enables or disables preemption,
506 * we record a backtrace into a per-CPU ring buffer, along with the current
507 * preemption level and operation type. Thus, if an imbalance is observed,
508 * one can examine these per-CPU records to determine which codepath failed
509 * to re-enable preemption, enabled premption without a corresponding
510 * disablement etc. The backtracer determines which stack is currently active,
511 * and uses that to perform bounds checks on unterminated stacks.
512 * To enable, sysctl -w machdep.pltrace=1 on DEVELOPMENT or DEBUG kernels (DRK '15)
513 * The bounds check currently doesn't account for non-default thread stack sizes.
515 #if DEVELOPMENT || DEBUG
517 rbtrace_bt(uint64_t *rets
, int maxframes
, cpu_data_t
*cdata
, uint64_t frameptr
, bool use_cursp
)
519 extern uint32_t low_intstack
[]; /* bottom */
520 extern uint32_t low_eintstack
[]; /* top */
521 extern char mp_slave_stack
[];
524 uint64_t kstackb
, kstackt
;
526 /* Obtain the 'current' program counter, initial backtrace
527 * element. This will also indicate if we were unable to
528 * trace further up the stack for some reason
531 __asm__
volatile ("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:"
532 : "=m" (rets
[btidx
++])
537 thread_t cplthread
= cdata
->cpu_active_thread
;
540 if (use_cursp
== true) {
541 __asm__
__volatile__ ("movq %%rsp, %0": "=r" (csp
):);
545 /* Determine which stack we're on to populate stack bounds.
546 * We don't need to trace across stack boundaries for this
549 kstackb
= cdata
->cpu_active_stack
;
550 kstackt
= kstackb
+ KERNEL_STACK_SIZE
;
551 if (csp
< kstackb
|| csp
> kstackt
) {
552 kstackt
= cdata
->cpu_kernel_stack
;
553 kstackb
= kstackt
- KERNEL_STACK_SIZE
;
554 if (csp
< kstackb
|| csp
> kstackt
) {
555 kstackt
= cdata
->cpu_int_stack_top
;
556 kstackb
= kstackt
- INTSTACK_SIZE
;
557 if (csp
< kstackb
|| csp
> kstackt
) {
558 kstackt
= (uintptr_t)low_eintstack
;
559 kstackb
= kstackt
- INTSTACK_SIZE
;
560 if (csp
< kstackb
|| csp
> kstackt
) {
561 kstackb
= (uintptr_t) mp_slave_stack
;
562 kstackt
= kstackb
+ PAGE_SIZE
;
571 if (__probable(kstackb
&& kstackt
)) {
572 uint64_t *cfp
= (uint64_t *) frameptr
;
575 for (rbbtf
= btidx
; rbbtf
< maxframes
; rbbtf
++) {
576 if (((uint64_t)cfp
== 0) || (((uint64_t)cfp
< kstackb
) || ((uint64_t)cfp
> kstackt
))) {
580 rets
[rbbtf
] = *(cfp
+ 1);
581 cfp
= (uint64_t *) (*cfp
);
588 pltrace_internal(boolean_t enable
)
590 cpu_data_t
*cdata
= current_cpu_datap();
591 int cpli
= cdata
->cpu_preemption_level
;
592 int cplrecord
= cdata
->cpu_plri
;
597 cdata
->plrecords
[cplrecord
].pltype
= enable
;
598 cdata
->plrecords
[cplrecord
].plevel
= cpli
;
600 plbts
= &cdata
->plrecords
[cplrecord
].plbt
[0];
604 if (cplrecord
>= MAX_PREEMPTION_RECORDS
) {
608 cdata
->cpu_plri
= cplrecord
;
610 rbtrace_bt(plbts
, MAX_TRACE_BTFRAMES
- 1, cdata
, (uint64_t)__builtin_frame_address(0), true);
613 extern int plctrace_enabled
;
616 iotrace(iotrace_type_e type
, uint64_t vaddr
, uint64_t paddr
, int size
, uint64_t val
,
617 uint64_t sabs
, uint64_t duration
)
620 int cpu_num
, nextidx
;
621 iotrace_entry_t
*cur_iotrace_ring
;
623 if (__improbable(mmiotrace_enabled
== 0 || iotrace_generators
== 0)) {
627 cdata
= current_cpu_datap();
628 cpu_num
= cdata
->cpu_number
;
629 nextidx
= iotrace_next
[cpu_num
];
630 cur_iotrace_ring
= iotrace_ring
[cpu_num
];
632 cur_iotrace_ring
[nextidx
].iotype
= type
;
633 cur_iotrace_ring
[nextidx
].vaddr
= vaddr
;
634 cur_iotrace_ring
[nextidx
].paddr
= paddr
;
635 cur_iotrace_ring
[nextidx
].size
= size
;
636 cur_iotrace_ring
[nextidx
].val
= val
;
637 cur_iotrace_ring
[nextidx
].start_time_abs
= sabs
;
638 cur_iotrace_ring
[nextidx
].duration
= duration
;
640 iotrace_next
[cpu_num
] = ((nextidx
+ 1) >= iotrace_entries_per_cpu
) ? 0 : (nextidx
+ 1);
642 rbtrace_bt(&cur_iotrace_ring
[nextidx
].backtrace
[0],
643 MAX_TRACE_BTFRAMES
- 1, cdata
, (uint64_t)__builtin_frame_address(0), true);
646 static inline uint32_t
647 traptrace_start(int vecnum
, uint64_t ipc
, uint64_t sabs
, uint64_t frameptr
)
650 int cpu_num
, nextidx
;
651 traptrace_entry_t
*cur_traptrace_ring
;
653 if (__improbable(traptrace_enabled
== 0 || traptrace_generators
== 0)) {
654 return TRAPTRACE_INVALID_INDEX
;
657 assert(ml_get_interrupts_enabled() == FALSE
);
658 cdata
= current_cpu_datap();
659 cpu_num
= cdata
->cpu_number
;
660 nextidx
= traptrace_next
[cpu_num
];
661 /* prevent nested interrupts from clobbering this record */
662 traptrace_next
[cpu_num
] = ((nextidx
+ 1) >= traptrace_entries_per_cpu
) ? 0 : (nextidx
+ 1);
664 cur_traptrace_ring
= traptrace_ring
[cpu_num
];
666 cur_traptrace_ring
[nextidx
].vector
= vecnum
;
667 cur_traptrace_ring
[nextidx
].curthread
= current_thread();
668 cur_traptrace_ring
[nextidx
].interrupted_pc
= ipc
;
669 cur_traptrace_ring
[nextidx
].curpl
= cdata
->cpu_preemption_level
;
670 cur_traptrace_ring
[nextidx
].curil
= cdata
->cpu_interrupt_level
;
671 cur_traptrace_ring
[nextidx
].start_time_abs
= sabs
;
672 cur_traptrace_ring
[nextidx
].duration
= ~0ULL;
674 rbtrace_bt(&cur_traptrace_ring
[nextidx
].backtrace
[0],
675 MAX_TRACE_BTFRAMES
- 1, cdata
, frameptr
, false);
677 assert(nextidx
<= 0xFFFF);
679 return ((unsigned)cpu_num
<< 16) | nextidx
;
683 traptrace_end(uint32_t index
, uint64_t eabs
)
685 if (index
!= TRAPTRACE_INVALID_INDEX
) {
686 traptrace_entry_t
*ttentp
= &traptrace_ring
[index
>> 16][index
& 0xFFFF];
688 ttentp
->duration
= eabs
- ttentp
->start_time_abs
;
692 #endif /* DEVELOPMENT || DEBUG */
695 pltrace(boolean_t plenable
)
697 #if DEVELOPMENT || DEBUG
698 if (__improbable(plctrace_enabled
!= 0)) {
699 pltrace_internal(plenable
);
707 disable_preemption_internal(void)
709 assert(get_preemption_level() >= 0);
711 os_compiler_barrier(release
);
712 #if defined(__clang__)
713 cpu_data_t GS_RELATIVE
*cpu_data
= (cpu_data_t GS_RELATIVE
*)0UL;
714 cpu_data
->cpu_preemption_level
++;
716 __asm__
volatile ("incl %%gs:%P0"
718 : "i" (offsetof(cpu_data_t
, cpu_preemption_level
)));
720 os_compiler_barrier(acquire
);
725 enable_preemption_internal(void)
727 assert(get_preemption_level() > 0);
729 os_compiler_barrier(release
);
730 #if defined(__clang__)
731 cpu_data_t GS_RELATIVE
*cpu_data
= (cpu_data_t GS_RELATIVE
*)0UL;
732 if (0 == --cpu_data
->cpu_preemption_level
) {
733 kernel_preempt_check();
736 __asm__
volatile ("decl %%gs:%P0 \n\t"
738 "call _kernel_preempt_check \n\t"
741 : "i" (offsetof(cpu_data_t
, cpu_preemption_level
))
742 : "eax", "ecx", "edx", "cc", "memory");
744 os_compiler_barrier(acquire
);
748 enable_preemption_no_check(void)
750 assert(get_preemption_level() > 0);
753 os_compiler_barrier(release
);
754 #if defined(__clang__)
755 cpu_data_t GS_RELATIVE
*cpu_data
= (cpu_data_t GS_RELATIVE
*)0UL;
756 cpu_data
->cpu_preemption_level
--;
758 __asm__
volatile ("decl %%gs:%P0"
760 : "i" (offsetof(cpu_data_t
, cpu_preemption_level
))
763 os_compiler_barrier(acquire
);
767 _enable_preemption_no_check(void)
769 enable_preemption_no_check();
773 mp_disable_preemption(void)
775 disable_preemption_internal();
779 _mp_disable_preemption(void)
781 disable_preemption_internal();
785 mp_enable_preemption(void)
787 enable_preemption_internal();
791 _mp_enable_preemption(void)
793 enable_preemption_internal();
797 mp_enable_preemption_no_check(void)
799 enable_preemption_no_check();
803 _mp_enable_preemption_no_check(void)
805 enable_preemption_no_check();
808 #ifdef XNU_KERNEL_PRIVATE
809 #define disable_preemption() disable_preemption_internal()
810 #define enable_preemption() enable_preemption_internal()
811 #define MACHINE_PREEMPTION_MACROS (1)
814 static inline cpu_data_t
*
817 return cpu_data_ptr
[cpu
];
821 cpu_is_running(int cpu
)
823 return (cpu_datap(cpu
) != NULL
) && (cpu_datap(cpu
)->cpu_running
);
826 #ifdef MACH_KERNEL_PRIVATE
827 static inline cpu_data_t
*
830 return cpu_data_ptr
[cpu
]->cd_shadow
;
834 extern cpu_data_t
*cpu_data_alloc(boolean_t is_boot_cpu
);
835 extern void cpu_data_realloc(void);
837 #endif /* I386_CPU_DATA */