2 * Copyright (c) 2013 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <mach/mach_types.h>
30 #include <mach/machine.h>
32 #include <machine/machine_routines.h>
33 #include <machine/sched_param.h>
34 #include <machine/machine_cpu.h>
36 #include <kern/kern_types.h>
37 #include <kern/debug.h>
38 #include <kern/mach_param.h>
39 #include <kern/machine.h>
40 #include <kern/misc_protos.h>
41 #include <kern/processor.h>
42 #include <kern/queue.h>
43 #include <kern/sched.h>
44 #include <kern/sched_prim.h>
45 #include <kern/task.h>
46 #include <kern/thread.h>
48 #include <sys/kdebug.h>
53 * How does the task scheduler work?
55 * It schedules threads across a few levels.
57 * RT threads are dealt with above us
58 * Bound threads go into the per-processor runq
59 * Non-bound threads are linked on their task's sched_group's runq
60 * sched_groups' sched_entries are linked on the pset's runq
62 * TODO: make this explicit - bound threads should have a different enqueue fxn
64 * When we choose a new thread, we will decide whether to look at the bound runqueue, the global runqueue
65 * or the current group's runqueue, then dequeue the next thread in that runqueue.
67 * We then manipulate the sched_entries to reflect the invariant that:
68 * Each non-empty priority level in a group's runq is represented by one sched_entry enqueued in the global
71 * A sched_entry represents a chance at running - for each priority in each task, there is one chance of getting
72 * to run. This reduces the excess contention bonus given to processes which have work spread among many threads
73 * as compared to processes which do the same amount of work under fewer threads.
75 * NOTE: Currently, the multiq scheduler only supports one pset.
77 * NOTE ABOUT thread->sched_pri:
79 * It can change after enqueue - it's changed without pset lock but with thread lock if thread->runq is 0.
80 * Therefore we can only depend on it not changing during the enqueue and remove path, not the dequeue.
82 * TODO: Future features:
84 * Decouple the task priority from the sched_entry priority, allowing for:
85 * fast task priority change without having to iterate and re-dispatch all threads in the task.
86 * i.e. task-wide priority, task-wide boosting
87 * fancier group decay features
89 * Group (or task) decay:
90 * Decay is used for a few different things:
91 * Prioritizing latency-needing threads over throughput-needing threads for time-to-running
92 * Balancing work between threads in a process
93 * Balancing work done at the same priority between different processes
94 * Recovering from priority inversions between two threads in the same process
95 * Recovering from priority inversions between two threads in different processes
96 * Simulating a proportional share scheduler by allowing lower priority threads
97 * to run for a certain percentage of the time
99 * Task decay lets us separately address the 'same process' and 'different process' needs,
100 * which will allow us to make smarter tradeoffs in different cases.
101 * For example, we could resolve priority inversion in the same process by reordering threads without dropping the
102 * process below low priority threads in other processes.
104 * One lock to rule them all (or at least all the runqueues) instead of the pset locks
106 * Shrink sched_entry size to the size of a queue_chain_t by inferring priority, group, and perhaps runq field.
107 * The entries array is 5K currently so it'd be really great to reduce.
108 * One way to get sched_group below 4K without a new runq structure would be to remove the extra queues above realtime.
110 * When preempting a processor, store a flag saying if the preemption
111 * was from a thread in the same group or different group,
112 * and tell choose_thread about it.
114 * When choosing a processor, bias towards those running in the same
115 * group as I am running (at the same priority, or within a certain band?).
117 * Decide if we need to support psets.
118 * Decide how to support psets - do we need duplicate entries for each pset,
119 * or can we get away with putting the entry in either one or the other pset?
121 * Consider the right way to handle runq count - I don't want to iterate groups.
122 * Perhaps keep a global counter.
123 * Alternate option - remove it from choose_processor. It doesn't add much value
124 * now that we have global runq.
126 * Need a better way of finding group to target instead of looking at current_task.
127 * Perhaps choose_thread could pass in the current thread?
129 * Consider unifying runq copy-pastes.
131 * Thoughts on having a group central quantum bucket:
133 * I see two algorithms to decide quanta:
134 * A) Hand off only when switching thread to thread in the same group
135 * B) Allocate and return quanta to the group's pool
138 * If a task blocks completely, should it come back with the leftover quanta
139 * or brand new quanta?
141 * Should I put a flag saying zero out a quanta you grab when youre dispatched'?
144 * Handing off quanta between threads will help with jumping around in the current task
145 * but will not help when a thread from a different task is involved.
146 * Need an algorithm that works with round robin-ing between threads in different tasks
148 * But wait - round robining can only be triggered by quantum expire or blocking.
149 * We need something that works with preemption or yielding - that's the more interesting idea.
151 * Existing algorithm - preemption doesn't re-set quantum, puts thread on head of runq.
152 * Blocking or quantum expiration does re-set quantum, puts thread on tail of runq.
155 * Hand off quanta when hopping between threads with same sched_group
156 * Even if thread was blocked it uses last thread remaining quanta when it starts.
158 * If we use the only cycle entry at quantum algorithm, then the quantum pool starts getting
161 * A thought - perhaps the handoff approach doesn't work so well in the presence of
162 * non-handoff wakeups i.e. wake other thread then wait then block - doesn't mean that
163 * woken thread will be what I switch to - other processor may have stolen it.
164 * What do we do there?
167 * We currently don't know of a scenario where quantum buckets on the task is beneficial.
168 * We will instead handoff quantum between threads in the task, and keep quantum
169 * on the preempted thread if it's preempted by something outside the task.
173 #if DEBUG || DEVELOPMENT
174 #define MULTIQ_SANITY_CHECK
177 typedef struct sched_entry
{
178 queue_chain_t entry_links
;
179 int16_t sched_pri
; /* scheduled (current) priority */
184 typedef run_queue_t entry_queue_t
; /* A run queue that holds sched_entries instead of threads */
185 typedef run_queue_t group_runq_t
; /* A run queue that is part of a sched_group */
187 #define SCHED_ENTRY_NULL ((sched_entry_t) 0)
188 #define MULTIQ_ERUNQ (-4) /* Indicates entry is on the main runq */
190 /* Each level in the run queue corresponds to one entry in the entries array */
192 struct sched_entry entries
[NRQS
];
193 struct run_queue runq
;
194 queue_chain_t sched_groups
;
198 * Keep entry on the head of the runqueue while dequeueing threads.
199 * Only cycle it to the end of the runqueue when a thread in the task
202 static boolean_t deep_drain
= FALSE
;
204 /* Verify the consistency of the runq before touching it */
205 static boolean_t multiq_sanity_check
= FALSE
;
208 * Draining threads from the current task is preferred
209 * when they're less than X steps below the current
210 * global highest priority
212 #define DEFAULT_DRAIN_BAND_LIMIT MAXPRI
213 static integer_t drain_band_limit
;
216 * Don't go below this priority level if there is something above it in another task
218 #define DEFAULT_DRAIN_DEPTH_LIMIT MAXPRI_THROTTLE
219 static integer_t drain_depth_limit
;
222 * Don't favor the task when there's something above this priority in another task.
224 #define DEFAULT_DRAIN_CEILING BASEPRI_FOREGROUND
225 static integer_t drain_ceiling
;
227 static struct zone
*sched_group_zone
;
229 static uint64_t num_sched_groups
= 0;
230 static queue_head_t sched_groups
;
232 static lck_attr_t sched_groups_lock_attr
;
233 static lck_grp_t sched_groups_lock_grp
;
234 static lck_grp_attr_t sched_groups_lock_grp_attr
;
236 static lck_mtx_t sched_groups_lock
;
240 sched_multiq_init(void);
243 sched_multiq_steal_thread(processor_set_t pset
);
246 sched_multiq_thread_update_scan(sched_update_scan_context_t scan_context
);
249 sched_multiq_processor_enqueue(processor_t processor
, thread_t thread
, integer_t options
);
252 sched_multiq_processor_queue_remove(processor_t processor
, thread_t thread
);
255 sched_multiq_quantum_expire(thread_t thread
);
258 sched_multiq_processor_csw_check(processor_t processor
);
261 sched_multiq_processor_queue_has_priority(processor_t processor
, int priority
, boolean_t gte
);
264 sched_multiq_runq_count(processor_t processor
);
267 sched_multiq_processor_queue_empty(processor_t processor
);
270 sched_multiq_runq_stats_count_sum(processor_t processor
);
273 sched_multiq_processor_bound_count(processor_t processor
);
276 sched_multiq_pset_init(processor_set_t pset
);
279 sched_multiq_processor_init(processor_t processor
);
282 sched_multiq_choose_thread(processor_t processor
, int priority
, ast_t reason
);
285 sched_multiq_processor_queue_shutdown(processor_t processor
);
288 sched_multiq_initial_thread_sched_mode(task_t parent_task
);
291 sched_multiq_thread_avoid_processor(processor_t processor
, thread_t thread
);
293 const struct sched_dispatch_table sched_multiq_dispatch
= {
294 .sched_name
= "multiq",
295 .init
= sched_multiq_init
,
296 .timebase_init
= sched_timeshare_timebase_init
,
297 .processor_init
= sched_multiq_processor_init
,
298 .pset_init
= sched_multiq_pset_init
,
299 .maintenance_continuation
= sched_timeshare_maintenance_continue
,
300 .choose_thread
= sched_multiq_choose_thread
,
301 .steal_thread_enabled
= FALSE
,
302 .steal_thread
= sched_multiq_steal_thread
,
303 .compute_timeshare_priority
= sched_compute_timeshare_priority
,
304 .choose_processor
= choose_processor
,
305 .processor_enqueue
= sched_multiq_processor_enqueue
,
306 .processor_queue_shutdown
= sched_multiq_processor_queue_shutdown
,
307 .processor_queue_remove
= sched_multiq_processor_queue_remove
,
308 .processor_queue_empty
= sched_multiq_processor_queue_empty
,
309 .priority_is_urgent
= priority_is_urgent
,
310 .processor_csw_check
= sched_multiq_processor_csw_check
,
311 .processor_queue_has_priority
= sched_multiq_processor_queue_has_priority
,
312 .initial_quantum_size
= sched_timeshare_initial_quantum_size
,
313 .initial_thread_sched_mode
= sched_multiq_initial_thread_sched_mode
,
314 .can_update_priority
= can_update_priority
,
315 .update_priority
= update_priority
,
316 .lightweight_update_priority
= lightweight_update_priority
,
317 .quantum_expire
= sched_multiq_quantum_expire
,
318 .processor_runq_count
= sched_multiq_runq_count
,
319 .processor_runq_stats_count_sum
= sched_multiq_runq_stats_count_sum
,
320 .processor_bound_count
= sched_multiq_processor_bound_count
,
321 .thread_update_scan
= sched_multiq_thread_update_scan
,
322 .direct_dispatch_to_idle_processors
= FALSE
,
323 .multiple_psets_enabled
= FALSE
,
324 .sched_groups_enabled
= TRUE
,
325 .avoid_processor_enabled
= TRUE
,
326 .thread_avoid_processor
= sched_multiq_thread_avoid_processor
,
327 .processor_balance
= sched_SMT_balance
,
329 .rt_runq
= sched_rtglobal_runq
,
330 .rt_init
= sched_rtglobal_init
,
331 .rt_queue_shutdown
= sched_rtglobal_queue_shutdown
,
332 .rt_runq_scan
= sched_rtglobal_runq_scan
,
333 .rt_runq_count_sum
= sched_rtglobal_runq_count_sum
,
335 .qos_max_parallelism
= sched_qos_max_parallelism
,
336 .check_spill
= sched_check_spill
,
337 .ipi_policy
= sched_ipi_policy
,
338 .thread_should_yield
= sched_thread_should_yield
,
343 sched_multiq_init(void)
345 #if defined(MULTIQ_SANITY_CHECK)
346 PE_parse_boot_argn("-multiq-sanity-check", &multiq_sanity_check
, sizeof(multiq_sanity_check
));
349 PE_parse_boot_argn("-multiq-deep-drain", &deep_drain
, sizeof(deep_drain
));
351 if (!PE_parse_boot_argn("multiq_drain_ceiling", &drain_ceiling
, sizeof(drain_ceiling
))) {
352 drain_ceiling
= DEFAULT_DRAIN_CEILING
;
355 if (!PE_parse_boot_argn("multiq_drain_depth_limit", &drain_depth_limit
, sizeof(drain_depth_limit
))) {
356 drain_depth_limit
= DEFAULT_DRAIN_DEPTH_LIMIT
;
359 if (!PE_parse_boot_argn("multiq_drain_band_limit", &drain_band_limit
, sizeof(drain_band_limit
))) {
360 drain_band_limit
= DEFAULT_DRAIN_BAND_LIMIT
;
363 printf("multiq scheduler config: deep-drain %d, ceiling %d, depth limit %d, band limit %d, sanity check %d\n",
364 deep_drain
, drain_ceiling
, drain_depth_limit
, drain_band_limit
, multiq_sanity_check
);
366 sched_group_zone
= zinit(
367 sizeof(struct sched_group
),
368 task_max
* sizeof(struct sched_group
),
372 zone_change(sched_group_zone
, Z_NOENCRYPT
, TRUE
);
373 zone_change(sched_group_zone
, Z_NOCALLOUT
, TRUE
);
375 queue_init(&sched_groups
);
377 lck_grp_attr_setdefault(&sched_groups_lock_grp_attr
);
378 lck_grp_init(&sched_groups_lock_grp
, "sched_groups", &sched_groups_lock_grp_attr
);
379 lck_attr_setdefault(&sched_groups_lock_attr
);
380 lck_mtx_init(&sched_groups_lock
, &sched_groups_lock_grp
, &sched_groups_lock_attr
);
382 sched_timeshare_init();
386 sched_multiq_processor_init(processor_t processor
)
388 run_queue_init(&processor
->runq
);
392 sched_multiq_pset_init(processor_set_t pset
)
394 run_queue_init(&pset
->pset_runq
);
398 sched_multiq_initial_thread_sched_mode(task_t parent_task
)
400 if (parent_task
== kernel_task
)
401 return TH_MODE_FIXED
;
403 return TH_MODE_TIMESHARE
;
407 sched_group_create(void)
409 sched_group_t sched_group
;
411 if (!SCHED(sched_groups_enabled
))
412 return SCHED_GROUP_NULL
;
414 sched_group
= (sched_group_t
)zalloc(sched_group_zone
);
416 bzero(sched_group
, sizeof(struct sched_group
));
418 run_queue_init(&sched_group
->runq
);
420 for (int i
= 0; i
< NRQS
; i
++) {
421 sched_group
->entries
[i
].runq
= 0;
422 sched_group
->entries
[i
].sched_pri
= i
;
425 lck_mtx_lock(&sched_groups_lock
);
426 queue_enter(&sched_groups
, sched_group
, sched_group_t
, sched_groups
);
428 lck_mtx_unlock(&sched_groups_lock
);
430 return (sched_group
);
434 sched_group_destroy(sched_group_t sched_group
)
436 if (!SCHED(sched_groups_enabled
)) {
437 assert(sched_group
== SCHED_GROUP_NULL
);
441 assert(sched_group
!= SCHED_GROUP_NULL
);
442 assert(sched_group
->runq
.count
== 0);
444 for (int i
= 0; i
< NRQS
; i
++) {
445 assert(sched_group
->entries
[i
].runq
== 0);
446 assert(sched_group
->entries
[i
].sched_pri
== i
);
449 lck_mtx_lock(&sched_groups_lock
);
450 queue_remove(&sched_groups
, sched_group
, sched_group_t
, sched_groups
);
452 lck_mtx_unlock(&sched_groups_lock
);
454 zfree(sched_group_zone
, sched_group
);
457 __attribute__((always_inline
))
458 static inline entry_queue_t
459 multiq_main_entryq(processor_t processor
)
461 return (entry_queue_t
)&processor
->processor_set
->pset_runq
;
464 __attribute__((always_inline
))
465 static inline run_queue_t
466 multiq_bound_runq(processor_t processor
)
468 return &processor
->runq
;
471 __attribute__((always_inline
))
472 static inline sched_entry_t
473 group_entry_for_pri(sched_group_t group
, integer_t pri
)
475 return &group
->entries
[pri
];
478 __attribute__((always_inline
))
479 static inline sched_group_t
480 group_for_entry(sched_entry_t entry
)
482 #pragma clang diagnostic push
483 #pragma clang diagnostic ignored "-Wcast-align"
484 sched_group_t group
= (sched_group_t
)(entry
- entry
->sched_pri
);
485 #pragma clang diagnostic pop
489 /* Peek at the head of the runqueue */
491 entry_queue_first_entry(entry_queue_t rq
)
493 assert(rq
->count
!= 0);
495 queue_t queue
= &rq
->queues
[rq
->highq
];
497 sched_entry_t entry
= qe_queue_first(queue
, struct sched_entry
, entry_links
);
499 assert(entry
->sched_pri
== rq
->highq
);
504 #if defined(MULTIQ_SANITY_CHECK)
507 __attribute__((always_inline
))
508 static inline boolean_t
509 queue_chain_linked(queue_chain_t
* chain
)
511 if (chain
->next
!= NULL
) {
512 assert(chain
->prev
!= NULL
);
515 assert(chain
->prev
== NULL
);
519 #endif /* MACH_ASSERT */
522 group_first_thread(sched_group_t group
)
524 group_runq_t rq
= &group
->runq
;
526 assert(rq
->count
!= 0);
528 queue_t queue
= &rq
->queues
[rq
->highq
];
530 thread_t thread
= qe_queue_first(queue
, struct thread
, runq_links
);
532 assert(thread
!= THREAD_NULL
);
533 assert_thread_magic(thread
);
535 assert(thread
->sched_group
== group
);
537 /* TODO: May not be safe */
538 assert(thread
->sched_pri
== rq
->highq
);
543 /* Asserts if entry is not in entry runq at pri */
545 entry_queue_check_entry(entry_queue_t runq
, sched_entry_t entry
, int expected_pri
)
550 assert(queue_chain_linked(&entry
->entry_links
));
551 assert(entry
->runq
== MULTIQ_ERUNQ
);
553 q
= &runq
->queues
[expected_pri
];
555 qe_foreach_element(elem
, q
, entry_links
) {
560 panic("runq %p doesn't contain entry %p at pri %d", runq
, entry
, expected_pri
);
563 /* Asserts if thread is not in group at its priority */
565 sched_group_check_thread(sched_group_t group
, thread_t thread
)
569 int pri
= thread
->sched_pri
;
571 assert(thread
->runq
!= PROCESSOR_NULL
);
573 q
= &group
->runq
.queues
[pri
];
575 qe_foreach_element(elem
, q
, runq_links
) {
580 panic("group %p doesn't contain thread %p at pri %d", group
, thread
, pri
);
584 global_check_entry_queue(entry_queue_t main_entryq
)
586 if (main_entryq
->count
== 0)
589 sched_entry_t entry
= entry_queue_first_entry(main_entryq
);
591 assert(entry
->runq
== MULTIQ_ERUNQ
);
593 sched_group_t group
= group_for_entry(entry
);
595 thread_t thread
= group_first_thread(group
);
597 __assert_only sched_entry_t thread_entry
= group_entry_for_pri(thread
->sched_group
, thread
->sched_pri
);
599 assert(entry
->sched_pri
== group
->runq
.highq
);
601 assert(entry
== thread_entry
);
602 assert(thread
->runq
!= PROCESSOR_NULL
);
606 group_check_run_queue(entry_queue_t main_entryq
, sched_group_t group
)
608 if (group
->runq
.count
== 0)
611 thread_t thread
= group_first_thread(group
);
613 assert(thread
->runq
!= PROCESSOR_NULL
);
615 sched_entry_t sched_entry
= group_entry_for_pri(thread
->sched_group
, thread
->sched_pri
);
617 entry_queue_check_entry(main_entryq
, sched_entry
, thread
->sched_pri
);
619 assert(sched_entry
->sched_pri
== thread
->sched_pri
);
620 assert(sched_entry
->runq
== MULTIQ_ERUNQ
);
623 #endif /* defined(MULTIQ_SANITY_CHECK) */
626 * The run queue must not be empty.
629 entry_queue_dequeue_entry(entry_queue_t rq
)
631 sched_entry_t sched_entry
;
632 queue_t queue
= &rq
->queues
[rq
->highq
];
634 assert(rq
->count
> 0);
635 assert(!queue_empty(queue
));
637 sched_entry
= qe_dequeue_head(queue
, struct sched_entry
, entry_links
);
639 SCHED_STATS_RUNQ_CHANGE(&rq
->runq_stats
, rq
->count
);
641 if (SCHED(priority_is_urgent
)(rq
->highq
)) {
642 rq
->urgency
--; assert(rq
->urgency
>= 0);
644 if (queue_empty(queue
)) {
645 rq_bitmap_clear(rq
->bitmap
, rq
->highq
);
646 rq
->highq
= bitmap_first(rq
->bitmap
, NRQS
);
649 sched_entry
->runq
= 0;
651 return (sched_entry
);
655 * The run queue must not be empty.
658 entry_queue_enqueue_entry(
663 int sched_pri
= entry
->sched_pri
;
664 queue_t queue
= &rq
->queues
[sched_pri
];
665 boolean_t result
= FALSE
;
667 assert(entry
->runq
== 0);
669 if (queue_empty(queue
)) {
670 enqueue_tail(queue
, &entry
->entry_links
);
672 rq_bitmap_set(rq
->bitmap
, sched_pri
);
673 if (sched_pri
> rq
->highq
) {
674 rq
->highq
= sched_pri
;
678 if (options
& SCHED_TAILQ
)
679 enqueue_tail(queue
, &entry
->entry_links
);
681 enqueue_head(queue
, &entry
->entry_links
);
683 if (SCHED(priority_is_urgent
)(sched_pri
))
685 SCHED_STATS_RUNQ_CHANGE(&rq
->runq_stats
, rq
->count
);
688 entry
->runq
= MULTIQ_ERUNQ
;
694 * The entry must be in this runqueue.
697 entry_queue_remove_entry(
701 int sched_pri
= entry
->sched_pri
;
703 #if defined(MULTIQ_SANITY_CHECK)
704 if (multiq_sanity_check
) {
705 entry_queue_check_entry(rq
, entry
, sched_pri
);
709 remqueue(&entry
->entry_links
);
711 SCHED_STATS_RUNQ_CHANGE(&rq
->runq_stats
, rq
->count
);
713 if (SCHED(priority_is_urgent
)(sched_pri
)) {
714 rq
->urgency
--; assert(rq
->urgency
>= 0);
717 if (queue_empty(&rq
->queues
[sched_pri
])) {
718 /* update run queue status */
719 rq_bitmap_clear(rq
->bitmap
, sched_pri
);
720 rq
->highq
= bitmap_first(rq
->bitmap
, NRQS
);
727 entry_queue_change_entry(
732 int sched_pri
= entry
->sched_pri
;
733 queue_t queue
= &rq
->queues
[sched_pri
];
735 #if defined(MULTIQ_SANITY_CHECK)
736 if (multiq_sanity_check
) {
737 entry_queue_check_entry(rq
, entry
, sched_pri
);
741 if (options
& SCHED_TAILQ
)
742 re_queue_tail(queue
, &entry
->entry_links
);
744 re_queue_head(queue
, &entry
->entry_links
);
747 * The run queue must not be empty.
749 * sets queue_empty to TRUE if queue is now empty at thread_pri
752 group_run_queue_dequeue_thread(
754 integer_t
*thread_pri
,
755 boolean_t
*queue_empty
)
758 queue_t queue
= &rq
->queues
[rq
->highq
];
760 assert(rq
->count
> 0);
761 assert(!queue_empty(queue
));
763 *thread_pri
= rq
->highq
;
765 thread
= qe_dequeue_head(queue
, struct thread
, runq_links
);
766 assert_thread_magic(thread
);
768 SCHED_STATS_RUNQ_CHANGE(&rq
->runq_stats
, rq
->count
);
770 if (SCHED(priority_is_urgent
)(rq
->highq
)) {
771 rq
->urgency
--; assert(rq
->urgency
>= 0);
773 if (queue_empty(queue
)) {
774 rq_bitmap_clear(rq
->bitmap
, rq
->highq
);
775 rq
->highq
= bitmap_first(rq
->bitmap
, NRQS
);
778 *queue_empty
= FALSE
;
785 * The run queue must not be empty.
786 * returns TRUE if queue was empty at thread_pri
789 group_run_queue_enqueue_thread(
792 integer_t thread_pri
,
795 queue_t queue
= &rq
->queues
[thread_pri
];
796 boolean_t result
= FALSE
;
798 assert(thread
->runq
== PROCESSOR_NULL
);
799 assert_thread_magic(thread
);
801 if (queue_empty(queue
)) {
802 enqueue_tail(queue
, &thread
->runq_links
);
804 rq_bitmap_set(rq
->bitmap
, thread_pri
);
805 if (thread_pri
> rq
->highq
) {
806 rq
->highq
= thread_pri
;
810 if (options
& SCHED_TAILQ
)
811 enqueue_tail(queue
, &thread
->runq_links
);
813 enqueue_head(queue
, &thread
->runq_links
);
815 if (SCHED(priority_is_urgent
)(thread_pri
))
817 SCHED_STATS_RUNQ_CHANGE(&rq
->runq_stats
, rq
->count
);
824 * The thread must be in this runqueue.
825 * returns TRUE if queue is now empty at thread_pri
828 group_run_queue_remove_thread(
831 integer_t thread_pri
)
833 boolean_t result
= FALSE
;
835 assert_thread_magic(thread
);
836 assert(thread
->runq
!= PROCESSOR_NULL
);
838 remqueue(&thread
->runq_links
);
840 SCHED_STATS_RUNQ_CHANGE(&rq
->runq_stats
, rq
->count
);
842 if (SCHED(priority_is_urgent
)(thread_pri
)) {
843 rq
->urgency
--; assert(rq
->urgency
>= 0);
846 if (queue_empty(&rq
->queues
[thread_pri
])) {
847 /* update run queue status */
848 rq_bitmap_clear(rq
->bitmap
, thread_pri
);
849 rq
->highq
= bitmap_first(rq
->bitmap
, NRQS
);
853 thread
->runq
= PROCESSOR_NULL
;
859 * A thread's sched pri may change out from under us because
860 * we're clearing thread->runq here without the thread locked.
861 * Do not rely on it to be the same as when we enqueued.
864 sched_global_dequeue_thread(entry_queue_t main_entryq
)
866 boolean_t pri_level_empty
= FALSE
;
868 group_runq_t group_runq
;
870 integer_t thread_pri
;
873 assert(main_entryq
->count
> 0);
875 entry
= entry_queue_dequeue_entry(main_entryq
);
877 group
= group_for_entry(entry
);
878 group_runq
= &group
->runq
;
880 thread
= group_run_queue_dequeue_thread(group_runq
, &thread_pri
, &pri_level_empty
);
882 thread
->runq
= PROCESSOR_NULL
;
884 if (!pri_level_empty
) {
885 entry_queue_enqueue_entry(main_entryq
, entry
, SCHED_TAILQ
);
891 /* Dequeue a thread from the global runq without moving the entry */
893 sched_global_deep_drain_dequeue_thread(entry_queue_t main_entryq
)
895 boolean_t pri_level_empty
= FALSE
;
897 group_runq_t group_runq
;
899 integer_t thread_pri
;
902 assert(main_entryq
->count
> 0);
904 entry
= entry_queue_first_entry(main_entryq
);
906 group
= group_for_entry(entry
);
907 group_runq
= &group
->runq
;
909 thread
= group_run_queue_dequeue_thread(group_runq
, &thread_pri
, &pri_level_empty
);
911 thread
->runq
= PROCESSOR_NULL
;
913 if (pri_level_empty
) {
914 entry_queue_remove_entry(main_entryq
, entry
);
922 sched_group_dequeue_thread(
923 entry_queue_t main_entryq
,
926 group_runq_t group_runq
= &group
->runq
;
927 boolean_t pri_level_empty
= FALSE
;
929 integer_t thread_pri
;
931 thread
= group_run_queue_dequeue_thread(group_runq
, &thread_pri
, &pri_level_empty
);
933 thread
->runq
= PROCESSOR_NULL
;
935 if (pri_level_empty
) {
936 entry_queue_remove_entry(main_entryq
, group_entry_for_pri(group
, thread_pri
));
943 sched_group_remove_thread(
944 entry_queue_t main_entryq
,
948 integer_t thread_pri
= thread
->sched_pri
;
949 sched_entry_t sched_entry
= group_entry_for_pri(group
, thread_pri
);
951 #if defined(MULTIQ_SANITY_CHECK)
952 if (multiq_sanity_check
) {
953 global_check_entry_queue(main_entryq
);
954 group_check_run_queue(main_entryq
, group
);
956 sched_group_check_thread(group
, thread
);
957 entry_queue_check_entry(main_entryq
, sched_entry
, thread_pri
);
961 boolean_t pri_level_empty
= group_run_queue_remove_thread(&group
->runq
, thread
, thread_pri
);
963 if (pri_level_empty
) {
964 entry_queue_remove_entry(main_entryq
, sched_entry
);
967 #if defined(MULTIQ_SANITY_CHECK)
968 if (multiq_sanity_check
) {
969 global_check_entry_queue(main_entryq
);
970 group_check_run_queue(main_entryq
, group
);
976 sched_group_enqueue_thread(
977 entry_queue_t main_entryq
,
982 #if defined(MULTIQ_SANITY_CHECK)
983 if (multiq_sanity_check
) {
984 global_check_entry_queue(main_entryq
);
985 group_check_run_queue(main_entryq
, group
);
989 int sched_pri
= thread
->sched_pri
;
991 boolean_t pri_level_was_empty
= group_run_queue_enqueue_thread(&group
->runq
, thread
, sched_pri
, options
);
993 if (pri_level_was_empty
) {
995 * TODO: Need to figure out if passing options here is a good idea or not
996 * What effects would it have?
998 entry_queue_enqueue_entry(main_entryq
, &group
->entries
[sched_pri
], options
);
999 } else if (options
& SCHED_HEADQ
) {
1000 /* The thread should be at the head of the line - move its entry to the front */
1001 entry_queue_change_entry(main_entryq
, &group
->entries
[sched_pri
], options
);
1006 * Locate a thread to execute from the run queue and return it.
1007 * Only choose a thread with greater or equal priority.
1009 * pset is locked, thread is not locked.
1011 * Returns THREAD_NULL if it cannot find a valid thread.
1013 * Note: we cannot rely on the value of thread->sched_pri in this path because
1014 * we don't have the thread locked.
1016 * TODO: Remove tracepoints
1019 sched_multiq_choose_thread(
1020 processor_t processor
,
1024 entry_queue_t main_entryq
= multiq_main_entryq(processor
);
1025 run_queue_t bound_runq
= multiq_bound_runq(processor
);
1027 boolean_t choose_bound_runq
= FALSE
;
1029 if (bound_runq
->highq
< priority
&&
1030 main_entryq
->highq
< priority
)
1033 if (bound_runq
->count
&& main_entryq
->count
) {
1034 if (bound_runq
->highq
>= main_entryq
->highq
) {
1035 choose_bound_runq
= TRUE
;
1039 } else if (bound_runq
->count
) {
1040 choose_bound_runq
= TRUE
;
1041 } else if (main_entryq
->count
) {
1044 return (THREAD_NULL
);
1047 if (choose_bound_runq
) {
1048 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1049 MACHDBG_CODE(DBG_MACH_SCHED
, MACH_MULTIQ_DEQUEUE
) | DBG_FUNC_NONE
,
1050 MACH_MULTIQ_BOUND
, main_entryq
->highq
, bound_runq
->highq
, 0, 0);
1052 return run_queue_dequeue(bound_runq
, SCHED_HEADQ
);
1055 sched_group_t group
= current_thread()->sched_group
;
1057 #if defined(MULTIQ_SANITY_CHECK)
1058 if (multiq_sanity_check
) {
1059 global_check_entry_queue(main_entryq
);
1060 group_check_run_queue(main_entryq
, group
);
1065 * Determine if we should look at the group or the global queue
1068 * Perhaps pass reason as a 'should look inside' argument to choose_thread
1069 * Should YIELD AST override drain limit?
1071 if (group
->runq
.count
!= 0 && (reason
& AST_PREEMPTION
) == 0) {
1072 boolean_t favor_group
= TRUE
;
1074 integer_t global_pri
= main_entryq
->highq
;
1075 integer_t group_pri
= group
->runq
.highq
;
1078 * Favor the current group if the group is still the globally highest.
1080 * Otherwise, consider choosing a thread from the current group
1081 * even if it's lower priority than the global highest priority.
1083 if (global_pri
> group_pri
) {
1085 * If there's something elsewhere above the depth limit,
1086 * don't pick a thread below the limit.
1088 if (global_pri
> drain_depth_limit
&& group_pri
<= drain_depth_limit
)
1089 favor_group
= FALSE
;
1092 * If there's something at or above the ceiling,
1093 * don't favor the group.
1095 if (global_pri
>= drain_ceiling
)
1096 favor_group
= FALSE
;
1099 * Don't go more than X steps below the global highest
1101 if ((global_pri
- group_pri
) >= drain_band_limit
)
1102 favor_group
= FALSE
;
1106 /* Pull from local runq */
1107 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1108 MACHDBG_CODE(DBG_MACH_SCHED
, MACH_MULTIQ_DEQUEUE
) | DBG_FUNC_NONE
,
1109 MACH_MULTIQ_GROUP
, global_pri
, group_pri
, 0, 0);
1111 return sched_group_dequeue_thread(main_entryq
, group
);
1115 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1116 MACHDBG_CODE(DBG_MACH_SCHED
, MACH_MULTIQ_DEQUEUE
) | DBG_FUNC_NONE
,
1117 MACH_MULTIQ_GLOBAL
, main_entryq
->highq
, group
->runq
.highq
, 0, 0);
1119 /* Couldn't pull from local runq, pull from global runq instead */
1121 return sched_global_deep_drain_dequeue_thread(main_entryq
);
1123 return sched_global_dequeue_thread(main_entryq
);
1129 * Thread must be locked, and not already be on a run queue.
1133 sched_multiq_processor_enqueue(
1134 processor_t processor
,
1140 assert(processor
== thread
->chosen_processor
);
1142 if (thread
->bound_processor
!= PROCESSOR_NULL
) {
1143 assert(thread
->bound_processor
== processor
);
1145 result
= run_queue_enqueue(multiq_bound_runq(processor
), thread
, options
);
1146 thread
->runq
= processor
;
1151 sched_group_enqueue_thread(multiq_main_entryq(processor
),
1152 thread
->sched_group
,
1155 thread
->runq
= processor
;
1161 * Called in the context of thread with thread and pset unlocked,
1162 * after updating thread priority but before propagating that priority
1166 sched_multiq_quantum_expire(thread_t thread
)
1170 * Move the entry at this priority to the end of the queue,
1171 * to allow the next task a shot at running.
1174 processor_t processor
= thread
->last_processor
;
1175 processor_set_t pset
= processor
->processor_set
;
1176 entry_queue_t entryq
= multiq_main_entryq(processor
);
1180 sched_entry_t entry
= group_entry_for_pri(thread
->sched_group
, processor
->current_pri
);
1182 if (entry
->runq
== MULTIQ_ERUNQ
) {
1183 entry_queue_change_entry(entryq
, entry
, SCHED_TAILQ
);
1191 sched_multiq_processor_queue_empty(processor_t processor
)
1193 return multiq_main_entryq(processor
)->count
== 0 &&
1194 multiq_bound_runq(processor
)->count
== 0;
1198 sched_multiq_processor_csw_check(processor_t processor
)
1200 boolean_t has_higher
;
1203 if (sched_multiq_thread_avoid_processor(processor
, current_thread())) {
1204 return (AST_PREEMPT
| AST_URGENT
);
1207 entry_queue_t main_entryq
= multiq_main_entryq(processor
);
1208 run_queue_t bound_runq
= multiq_bound_runq(processor
);
1210 assert(processor
->active_thread
!= NULL
);
1212 pri
= MAX(main_entryq
->highq
, bound_runq
->highq
);
1214 if (processor
->first_timeslice
) {
1215 has_higher
= (pri
> processor
->current_pri
);
1217 has_higher
= (pri
>= processor
->current_pri
);
1221 if (main_entryq
->urgency
> 0)
1222 return (AST_PREEMPT
| AST_URGENT
);
1224 if (bound_runq
->urgency
> 0)
1225 return (AST_PREEMPT
| AST_URGENT
);
1234 sched_multiq_processor_queue_has_priority(
1235 processor_t processor
,
1239 run_queue_t main_runq
= multiq_main_entryq(processor
);
1240 run_queue_t bound_runq
= multiq_bound_runq(processor
);
1242 int qpri
= MAX(main_runq
->highq
, bound_runq
->highq
);
1245 return qpri
>= priority
;
1247 return qpri
> priority
;
1251 sched_multiq_runq_count(processor_t processor
)
1254 * TODO: Decide whether to keep a count of runnable threads in the pset
1255 * or just return something less than the true count.
1257 * This needs to be fast, so no iterating the whole runq.
1259 * Another possible decision is to remove this - with global runq
1260 * it doesn't make much sense.
1262 return multiq_main_entryq(processor
)->count
+ multiq_bound_runq(processor
)->count
;
1266 sched_multiq_runq_stats_count_sum(processor_t processor
)
1269 * TODO: This one does need to go through all the runqueues, but it's only needed for
1270 * the sched stats tool
1273 uint64_t bound_sum
= multiq_bound_runq(processor
)->runq_stats
.count_sum
;
1275 if (processor
->cpu_id
== processor
->processor_set
->cpu_set_low
)
1276 return bound_sum
+ multiq_main_entryq(processor
)->runq_stats
.count_sum
;
1282 sched_multiq_processor_bound_count(processor_t processor
)
1284 return multiq_bound_runq(processor
)->count
;
1288 sched_multiq_processor_queue_shutdown(processor_t processor
)
1290 processor_set_t pset
= processor
->processor_set
;
1291 entry_queue_t main_entryq
= multiq_main_entryq(processor
);
1293 queue_head_t tqueue
;
1295 /* We only need to migrate threads if this is the last active processor in the pset */
1296 if (pset
->online_processor_count
> 0) {
1301 queue_init(&tqueue
);
1303 /* Note that we do not remove bound threads from the queues here */
1305 while (main_entryq
->count
> 0) {
1306 thread
= sched_global_dequeue_thread(main_entryq
);
1307 enqueue_tail(&tqueue
, &thread
->runq_links
);
1312 qe_foreach_element_safe(thread
, &tqueue
, runq_links
) {
1314 remqueue(&thread
->runq_links
);
1316 thread_lock(thread
);
1318 thread_setrun(thread
, SCHED_TAILQ
);
1320 thread_unlock(thread
);
1327 * This is why we can never read sched_pri unless we have the thread locked.
1328 * Which we do in the enqueue and remove cases, but not the dequeue case.
1331 sched_multiq_processor_queue_remove(
1332 processor_t processor
,
1335 boolean_t removed
= FALSE
;
1336 processor_set_t pset
= processor
->processor_set
;
1340 if (thread
->runq
!= PROCESSOR_NULL
) {
1342 * Thread is on a run queue and we have a lock on
1346 assert(thread
->runq
== processor
);
1348 if (thread
->bound_processor
!= PROCESSOR_NULL
) {
1349 assert(processor
== thread
->bound_processor
);
1350 run_queue_remove(multiq_bound_runq(processor
), thread
);
1351 thread
->runq
= PROCESSOR_NULL
;
1353 sched_group_remove_thread(multiq_main_entryq(processor
),
1354 thread
->sched_group
,
1366 /* pset is locked, returned unlocked */
1368 sched_multiq_steal_thread(processor_set_t pset
)
1371 return (THREAD_NULL
);
1375 * Scan the global queue for candidate groups, and scan those groups for
1376 * candidate threads.
1378 * TODO: This iterates every group runq in its entirety for each entry it has in the runq, which is O(N^2)
1379 * Instead, iterate only the queue in the group runq matching the priority of the entry.
1381 * Returns TRUE if retry is needed.
1384 group_scan(entry_queue_t runq
, sched_update_scan_context_t scan_context
) {
1385 int count
= runq
->count
;
1393 for (queue_index
= bitmap_first(runq
->bitmap
, NRQS
);
1395 queue_index
= bitmap_next(runq
->bitmap
, queue_index
)) {
1397 sched_entry_t entry
;
1399 qe_foreach_element(entry
, &runq
->queues
[queue_index
], entry_links
) {
1402 sched_group_t group
= group_for_entry(entry
);
1403 if (group
->runq
.count
> 0) {
1404 if (runq_scan(&group
->runq
, scan_context
))
1415 sched_multiq_thread_update_scan(sched_update_scan_context_t scan_context
)
1417 boolean_t restart_needed
= FALSE
;
1418 processor_t processor
= processor_list
;
1419 processor_set_t pset
;
1424 * We update the threads associated with each processor (bound and idle threads)
1425 * and then update the threads in each pset runqueue.
1430 pset
= processor
->processor_set
;
1435 restart_needed
= runq_scan(multiq_bound_runq(processor
), scan_context
);
1443 thread
= processor
->idle_thread
;
1444 if (thread
!= THREAD_NULL
&& thread
->sched_stamp
!= sched_tick
) {
1445 if (thread_update_add_thread(thread
) == FALSE
) {
1446 restart_needed
= TRUE
;
1450 } while ((processor
= processor
->processor_list
) != NULL
);
1452 /* Ok, we now have a collection of candidates -- fix them. */
1453 thread_update_process_threads();
1455 } while (restart_needed
);
1464 restart_needed
= group_scan(&pset
->pset_runq
, scan_context
);
1471 } while ((pset
= pset
->pset_list
) != NULL
);
1473 /* Ok, we now have a collection of candidates -- fix them. */
1474 thread_update_process_threads();
1476 } while (restart_needed
);
1479 extern int sched_allow_rt_smt
;
1481 /* Return true if this thread should not continue running on this processor */
1483 sched_multiq_thread_avoid_processor(processor_t processor
, thread_t thread
)
1485 if (processor
->processor_primary
!= processor
) {
1487 * This is a secondary SMT processor. If the primary is running
1488 * a realtime thread, only allow realtime threads on the secondary.
1490 if ((processor
->processor_primary
->current_pri
>= BASEPRI_RTQUEUES
) && ((thread
->sched_pri
< BASEPRI_RTQUEUES
) || !sched_allow_rt_smt
)) {