]> git.saurik.com Git - apple/xnu.git/blob - bsd/vfs/vfs_subr.c
xnu-4903.231.4.tar.gz
[apple/xnu.git] / bsd / vfs / vfs_subr.c
1 /*
2 * Copyright (c) 2000-2018 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1989, 1993
31 * The Regents of the University of California. All rights reserved.
32 * (c) UNIX System Laboratories, Inc.
33 * All or some portions of this file are derived from material licensed
34 * to the University of California by American Telephone and Telegraph
35 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
36 * the permission of UNIX System Laboratories, Inc.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
67 */
68 /*
69 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
70 * support for mandatory and extensible security protections. This notice
71 * is included in support of clause 2.2 (b) of the Apple Public License,
72 * Version 2.0.
73 */
74
75 /*
76 * External virtual filesystem routines
77 */
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc_internal.h>
82 #include <sys/kauth.h>
83 #include <sys/mount_internal.h>
84 #include <sys/time.h>
85 #include <sys/lock.h>
86 #include <sys/vnode.h>
87 #include <sys/vnode_internal.h>
88 #include <sys/stat.h>
89 #include <sys/namei.h>
90 #include <sys/ucred.h>
91 #include <sys/buf_internal.h>
92 #include <sys/errno.h>
93 #include <sys/malloc.h>
94 #include <sys/uio_internal.h>
95 #include <sys/uio.h>
96 #include <sys/domain.h>
97 #include <sys/mbuf.h>
98 #include <sys/syslog.h>
99 #include <sys/ubc_internal.h>
100 #include <sys/vm.h>
101 #include <sys/sysctl.h>
102 #include <sys/filedesc.h>
103 #include <sys/event.h>
104 #include <sys/kdebug.h>
105 #include <sys/kauth.h>
106 #include <sys/user.h>
107 #include <sys/systm.h>
108 #include <sys/kern_memorystatus.h>
109 #include <sys/lockf.h>
110 #include <miscfs/fifofs/fifo.h>
111
112 #include <string.h>
113 #include <machine/machine_routines.h>
114
115 #include <kern/assert.h>
116 #include <mach/kern_return.h>
117 #include <kern/thread.h>
118 #include <kern/sched_prim.h>
119
120 #include <miscfs/specfs/specdev.h>
121
122 #include <mach/mach_types.h>
123 #include <mach/memory_object_types.h>
124 #include <mach/memory_object_control.h>
125
126 #include <kern/kalloc.h> /* kalloc()/kfree() */
127 #include <kern/clock.h> /* delay_for_interval() */
128 #include <libkern/OSAtomic.h> /* OSAddAtomic() */
129 #if !CONFIG_EMBEDDED
130 #include <console/video_console.h>
131 #endif
132
133 #ifdef JOE_DEBUG
134 #include <libkern/OSDebug.h>
135 #endif
136
137 #include <vm/vm_protos.h> /* vnode_pager_vrele() */
138
139 #if CONFIG_MACF
140 #include <security/mac_framework.h>
141 #endif
142
143 #include <vfs/vfs_disk_conditioner.h>
144 #include <libkern/section_keywords.h>
145
146 extern lck_grp_t *vnode_lck_grp;
147 extern lck_attr_t *vnode_lck_attr;
148
149 #if CONFIG_TRIGGERS
150 extern lck_grp_t *trigger_vnode_lck_grp;
151 extern lck_attr_t *trigger_vnode_lck_attr;
152 #endif
153
154 extern lck_mtx_t * mnt_list_mtx_lock;
155
156 enum vtype iftovt_tab[16] = {
157 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
158 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
159 };
160 int vttoif_tab[9] = {
161 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
162 S_IFSOCK, S_IFIFO, S_IFMT,
163 };
164
165
166 /* XXX These should be in a BSD accessible Mach header, but aren't. */
167 extern void memory_object_mark_used(
168 memory_object_control_t control);
169
170 extern void memory_object_mark_unused(
171 memory_object_control_t control,
172 boolean_t rage);
173
174 extern void memory_object_mark_io_tracking(
175 memory_object_control_t control);
176
177 /* XXX next protptype should be from <nfs/nfs.h> */
178 extern int nfs_vinvalbuf(vnode_t, int, vfs_context_t, int);
179
180 extern int paniclog_append_noflush(const char *format, ...);
181
182 /* XXX next prototytype should be from libsa/stdlib.h> but conflicts libkern */
183 __private_extern__ void qsort(
184 void * array,
185 size_t nmembers,
186 size_t member_size,
187 int (*)(const void *, const void *));
188
189 __private_extern__ void vntblinit(void);
190 __private_extern__ int unlink1(vfs_context_t, vnode_t, user_addr_t,
191 enum uio_seg, int);
192
193 extern int system_inshutdown;
194
195 static void vnode_list_add(vnode_t);
196 static void vnode_async_list_add(vnode_t);
197 static void vnode_list_remove(vnode_t);
198 static void vnode_list_remove_locked(vnode_t);
199
200 static void vnode_abort_advlocks(vnode_t);
201 static errno_t vnode_drain(vnode_t);
202 static void vgone(vnode_t, int flags);
203 static void vclean(vnode_t vp, int flag);
204 static void vnode_reclaim_internal(vnode_t, int, int, int);
205
206 static void vnode_dropiocount (vnode_t);
207
208 static vnode_t checkalias(vnode_t vp, dev_t nvp_rdev);
209 static int vnode_reload(vnode_t);
210 static int vnode_isinuse_locked(vnode_t, int, int);
211
212 static int unmount_callback(mount_t, __unused void *);
213
214 static void insmntque(vnode_t vp, mount_t mp);
215 static int mount_getvfscnt(void);
216 static int mount_fillfsids(fsid_t *, int );
217 static void vnode_iterate_setup(mount_t);
218 int vnode_umount_preflight(mount_t, vnode_t, int);
219 static int vnode_iterate_prepare(mount_t);
220 static int vnode_iterate_reloadq(mount_t);
221 static void vnode_iterate_clear(mount_t);
222 static mount_t vfs_getvfs_locked(fsid_t *);
223 static int vn_create_reg(vnode_t dvp, vnode_t *vpp, struct nameidata *ndp,
224 struct vnode_attr *vap, uint32_t flags, int fmode, uint32_t *statusp, vfs_context_t ctx);
225 static int vnode_authattr_new_internal(vnode_t dvp, struct vnode_attr *vap, int noauth, uint32_t *defaulted_fieldsp, vfs_context_t ctx);
226
227 errno_t rmdir_remove_orphaned_appleDouble(vnode_t, vfs_context_t, int *);
228
229 #ifdef JOE_DEBUG
230 static void record_vp(vnode_t vp, int count);
231 #endif
232
233 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
234 extern int bootarg_no_vnode_jetsam; /* from bsd_init.c default value is 0 */
235 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
236
237 boolean_t root_is_CF_drive = FALSE;
238
239 #if CONFIG_TRIGGERS
240 static int vnode_resolver_create(mount_t, vnode_t, struct vnode_trigger_param *, boolean_t external);
241 static void vnode_resolver_detach(vnode_t);
242 #endif
243
244 TAILQ_HEAD(freelst, vnode) vnode_free_list; /* vnode free list */
245 TAILQ_HEAD(deadlst, vnode) vnode_dead_list; /* vnode dead list */
246 TAILQ_HEAD(async_work_lst, vnode) vnode_async_work_list;
247
248
249 TAILQ_HEAD(ragelst, vnode) vnode_rage_list; /* vnode rapid age list */
250 struct timeval rage_tv;
251 int rage_limit = 0;
252 int ragevnodes = 0;
253
254 #define RAGE_LIMIT_MIN 100
255 #define RAGE_TIME_LIMIT 5
256
257 struct mntlist mountlist; /* mounted filesystem list */
258 static int nummounts = 0;
259
260 #if DIAGNOSTIC
261 #define VLISTCHECK(fun, vp, list) \
262 if ((vp)->v_freelist.tqe_prev == (struct vnode **)0xdeadb) \
263 panic("%s: %s vnode not on %slist", (fun), (list), (list));
264 #else
265 #define VLISTCHECK(fun, vp, list)
266 #endif /* DIAGNOSTIC */
267
268 #define VLISTNONE(vp) \
269 do { \
270 (vp)->v_freelist.tqe_next = (struct vnode *)0; \
271 (vp)->v_freelist.tqe_prev = (struct vnode **)0xdeadb; \
272 } while(0)
273
274 #define VONLIST(vp) \
275 ((vp)->v_freelist.tqe_prev != (struct vnode **)0xdeadb)
276
277 /* remove a vnode from free vnode list */
278 #define VREMFREE(fun, vp) \
279 do { \
280 VLISTCHECK((fun), (vp), "free"); \
281 TAILQ_REMOVE(&vnode_free_list, (vp), v_freelist); \
282 VLISTNONE((vp)); \
283 freevnodes--; \
284 } while(0)
285
286
287 /* remove a vnode from dead vnode list */
288 #define VREMDEAD(fun, vp) \
289 do { \
290 VLISTCHECK((fun), (vp), "dead"); \
291 TAILQ_REMOVE(&vnode_dead_list, (vp), v_freelist); \
292 VLISTNONE((vp)); \
293 vp->v_listflag &= ~VLIST_DEAD; \
294 deadvnodes--; \
295 } while(0)
296
297
298 /* remove a vnode from async work vnode list */
299 #define VREMASYNC_WORK(fun, vp) \
300 do { \
301 VLISTCHECK((fun), (vp), "async_work"); \
302 TAILQ_REMOVE(&vnode_async_work_list, (vp), v_freelist); \
303 VLISTNONE((vp)); \
304 vp->v_listflag &= ~VLIST_ASYNC_WORK; \
305 async_work_vnodes--; \
306 } while(0)
307
308
309 /* remove a vnode from rage vnode list */
310 #define VREMRAGE(fun, vp) \
311 do { \
312 if ( !(vp->v_listflag & VLIST_RAGE)) \
313 panic("VREMRAGE: vp not on rage list"); \
314 VLISTCHECK((fun), (vp), "rage"); \
315 TAILQ_REMOVE(&vnode_rage_list, (vp), v_freelist); \
316 VLISTNONE((vp)); \
317 vp->v_listflag &= ~VLIST_RAGE; \
318 ragevnodes--; \
319 } while(0)
320
321 static void async_work_continue(void);
322
323 /*
324 * Initialize the vnode management data structures.
325 */
326 __private_extern__ void
327 vntblinit(void)
328 {
329 thread_t thread = THREAD_NULL;
330
331 TAILQ_INIT(&vnode_free_list);
332 TAILQ_INIT(&vnode_rage_list);
333 TAILQ_INIT(&vnode_dead_list);
334 TAILQ_INIT(&vnode_async_work_list);
335 TAILQ_INIT(&mountlist);
336
337 microuptime(&rage_tv);
338 rage_limit = desiredvnodes / 100;
339
340 if (rage_limit < RAGE_LIMIT_MIN)
341 rage_limit = RAGE_LIMIT_MIN;
342
343 /*
344 * create worker threads
345 */
346 kernel_thread_start((thread_continue_t)async_work_continue, NULL, &thread);
347 thread_deallocate(thread);
348 }
349
350 /* the timeout is in 10 msecs */
351 int
352 vnode_waitforwrites(vnode_t vp, int output_target, int slpflag, int slptimeout, const char *msg) {
353 int error = 0;
354 struct timespec ts;
355
356 KERNEL_DEBUG(0x3010280 | DBG_FUNC_START, (int)vp, output_target, vp->v_numoutput, 0, 0);
357
358 if (vp->v_numoutput > output_target) {
359
360 slpflag |= PDROP;
361
362 vnode_lock_spin(vp);
363
364 while ((vp->v_numoutput > output_target) && error == 0) {
365 if (output_target)
366 vp->v_flag |= VTHROTTLED;
367 else
368 vp->v_flag |= VBWAIT;
369
370 ts.tv_sec = (slptimeout/100);
371 ts.tv_nsec = (slptimeout % 1000) * 10 * NSEC_PER_USEC * 1000 ;
372 error = msleep((caddr_t)&vp->v_numoutput, &vp->v_lock, (slpflag | (PRIBIO + 1)), msg, &ts);
373
374 vnode_lock_spin(vp);
375 }
376 vnode_unlock(vp);
377 }
378 KERNEL_DEBUG(0x3010280 | DBG_FUNC_END, (int)vp, output_target, vp->v_numoutput, error, 0);
379
380 return error;
381 }
382
383
384 void
385 vnode_startwrite(vnode_t vp) {
386
387 OSAddAtomic(1, &vp->v_numoutput);
388 }
389
390
391 void
392 vnode_writedone(vnode_t vp)
393 {
394 if (vp) {
395 int need_wakeup = 0;
396
397 OSAddAtomic(-1, &vp->v_numoutput);
398
399 vnode_lock_spin(vp);
400
401 if (vp->v_numoutput < 0)
402 panic("vnode_writedone: numoutput < 0");
403
404 if ((vp->v_flag & VTHROTTLED)) {
405 vp->v_flag &= ~VTHROTTLED;
406 need_wakeup = 1;
407 }
408 if ((vp->v_flag & VBWAIT) && (vp->v_numoutput == 0)) {
409 vp->v_flag &= ~VBWAIT;
410 need_wakeup = 1;
411 }
412 vnode_unlock(vp);
413
414 if (need_wakeup)
415 wakeup((caddr_t)&vp->v_numoutput);
416 }
417 }
418
419
420
421 int
422 vnode_hasdirtyblks(vnode_t vp)
423 {
424 struct cl_writebehind *wbp;
425
426 /*
427 * Not taking the buf_mtxp as there is little
428 * point doing it. Even if the lock is taken the
429 * state can change right after that. If their
430 * needs to be a synchronization, it must be driven
431 * by the caller
432 */
433 if (vp->v_dirtyblkhd.lh_first)
434 return (1);
435
436 if (!UBCINFOEXISTS(vp))
437 return (0);
438
439 wbp = vp->v_ubcinfo->cl_wbehind;
440
441 if (wbp && (wbp->cl_number || wbp->cl_scmap))
442 return (1);
443
444 return (0);
445 }
446
447 int
448 vnode_hascleanblks(vnode_t vp)
449 {
450 /*
451 * Not taking the buf_mtxp as there is little
452 * point doing it. Even if the lock is taken the
453 * state can change right after that. If their
454 * needs to be a synchronization, it must be driven
455 * by the caller
456 */
457 if (vp->v_cleanblkhd.lh_first)
458 return (1);
459 return (0);
460 }
461
462 void
463 vnode_iterate_setup(mount_t mp)
464 {
465 mp->mnt_lflag |= MNT_LITER;
466 }
467
468 int
469 vnode_umount_preflight(mount_t mp, vnode_t skipvp, int flags)
470 {
471 vnode_t vp;
472
473 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
474 if (vp->v_type == VDIR)
475 continue;
476 if (vp == skipvp)
477 continue;
478 if ((flags & SKIPSYSTEM) && ((vp->v_flag & VSYSTEM) || (vp->v_flag & VNOFLUSH)))
479 continue;
480 if ((flags & SKIPSWAP) && (vp->v_flag & VSWAP))
481 continue;
482 if ((flags & WRITECLOSE) && (vp->v_writecount == 0 || vp->v_type != VREG))
483 continue;
484
485 /* Look for busy vnode */
486 if ((vp->v_usecount != 0) && ((vp->v_usecount - vp->v_kusecount) != 0)) {
487 return 1;
488
489 } else if (vp->v_iocount > 0) {
490 /* Busy if iocount is > 0 for more than 3 seconds */
491 tsleep(&vp->v_iocount, PVFS, "vnode_drain_network", 3 * hz);
492 if (vp->v_iocount > 0)
493 return 1;
494 continue;
495 }
496 }
497
498 return 0;
499 }
500
501 /*
502 * This routine prepares iteration by moving all the vnodes to worker queue
503 * called with mount lock held
504 */
505 int
506 vnode_iterate_prepare(mount_t mp)
507 {
508 vnode_t vp;
509
510 if (TAILQ_EMPTY(&mp->mnt_vnodelist)) {
511 /* nothing to do */
512 return (0);
513 }
514
515 vp = TAILQ_FIRST(&mp->mnt_vnodelist);
516 vp->v_mntvnodes.tqe_prev = &(mp->mnt_workerqueue.tqh_first);
517 mp->mnt_workerqueue.tqh_first = mp->mnt_vnodelist.tqh_first;
518 mp->mnt_workerqueue.tqh_last = mp->mnt_vnodelist.tqh_last;
519
520 TAILQ_INIT(&mp->mnt_vnodelist);
521 if (mp->mnt_newvnodes.tqh_first != NULL)
522 panic("vnode_iterate_prepare: newvnode when entering vnode");
523 TAILQ_INIT(&mp->mnt_newvnodes);
524
525 return (1);
526 }
527
528
529 /* called with mount lock held */
530 int
531 vnode_iterate_reloadq(mount_t mp)
532 {
533 int moved = 0;
534
535 /* add the remaining entries in workerq to the end of mount vnode list */
536 if (!TAILQ_EMPTY(&mp->mnt_workerqueue)) {
537 struct vnode * mvp;
538 mvp = TAILQ_LAST(&mp->mnt_vnodelist, vnodelst);
539
540 /* Joining the workerque entities to mount vnode list */
541 if (mvp)
542 mvp->v_mntvnodes.tqe_next = mp->mnt_workerqueue.tqh_first;
543 else
544 mp->mnt_vnodelist.tqh_first = mp->mnt_workerqueue.tqh_first;
545 mp->mnt_workerqueue.tqh_first->v_mntvnodes.tqe_prev = mp->mnt_vnodelist.tqh_last;
546 mp->mnt_vnodelist.tqh_last = mp->mnt_workerqueue.tqh_last;
547 TAILQ_INIT(&mp->mnt_workerqueue);
548 }
549
550 /* add the newvnodes to the head of mount vnode list */
551 if (!TAILQ_EMPTY(&mp->mnt_newvnodes)) {
552 struct vnode * nlvp;
553 nlvp = TAILQ_LAST(&mp->mnt_newvnodes, vnodelst);
554
555 mp->mnt_newvnodes.tqh_first->v_mntvnodes.tqe_prev = &mp->mnt_vnodelist.tqh_first;
556 nlvp->v_mntvnodes.tqe_next = mp->mnt_vnodelist.tqh_first;
557 if(mp->mnt_vnodelist.tqh_first)
558 mp->mnt_vnodelist.tqh_first->v_mntvnodes.tqe_prev = &nlvp->v_mntvnodes.tqe_next;
559 else
560 mp->mnt_vnodelist.tqh_last = mp->mnt_newvnodes.tqh_last;
561 mp->mnt_vnodelist.tqh_first = mp->mnt_newvnodes.tqh_first;
562 TAILQ_INIT(&mp->mnt_newvnodes);
563 moved = 1;
564 }
565
566 return(moved);
567 }
568
569
570 void
571 vnode_iterate_clear(mount_t mp)
572 {
573 mp->mnt_lflag &= ~MNT_LITER;
574 }
575
576 #if !CONFIG_EMBEDDED
577
578 #include <i386/panic_hooks.h>
579
580 struct vnode_iterate_panic_hook {
581 panic_hook_t hook;
582 mount_t mp;
583 struct vnode *vp;
584 };
585
586 static void vnode_iterate_panic_hook(panic_hook_t *hook_)
587 {
588 struct vnode_iterate_panic_hook *hook = (struct vnode_iterate_panic_hook *)hook_;
589 panic_phys_range_t range;
590 uint64_t phys;
591
592 if (panic_phys_range_before(hook->mp, &phys, &range)) {
593 paniclog_append_noflush("mp = %p, phys = %p, prev (%p: %p-%p)\n",
594 hook->mp, phys, range.type, range.phys_start,
595 range.phys_start + range.len);
596 } else {
597 paniclog_append_noflush("mp = %p, phys = %p, prev (!)\n", hook->mp, phys);
598 }
599
600 if (panic_phys_range_before(hook->vp, &phys, &range)) {
601 paniclog_append_noflush("vp = %p, phys = %p, prev (%p: %p-%p)\n",
602 hook->vp, phys, range.type, range.phys_start,
603 range.phys_start + range.len);
604 } else {
605 paniclog_append_noflush("vp = %p, phys = %p, prev (!)\n", hook->vp, phys);
606 }
607 panic_dump_mem((void *)(((vm_offset_t)hook->mp -4096) & ~4095), 12288);
608 }
609 #endif //CONFIG_EMBEDDED
610
611 int
612 vnode_iterate(mount_t mp, int flags, int (*callout)(struct vnode *, void *),
613 void *arg)
614 {
615 struct vnode *vp;
616 int vid, retval;
617 int ret = 0;
618
619 /*
620 * The mount iterate mutex is held for the duration of the iteration.
621 * This can be done by a state flag on the mount structure but we can
622 * run into priority inversion issues sometimes.
623 * Using a mutex allows us to benefit from the priority donation
624 * mechanisms in the kernel for locks. This mutex should never be
625 * acquired in spin mode and it should be acquired before attempting to
626 * acquire the mount lock.
627 */
628 mount_iterate_lock(mp);
629
630 mount_lock(mp);
631
632 vnode_iterate_setup(mp);
633
634 /* If it returns 0 then there is nothing to do */
635 retval = vnode_iterate_prepare(mp);
636
637 if (retval == 0) {
638 vnode_iterate_clear(mp);
639 mount_unlock(mp);
640 mount_iterate_unlock(mp);
641 return(ret);
642 }
643
644 #if !CONFIG_EMBEDDED
645 struct vnode_iterate_panic_hook hook;
646 hook.mp = mp;
647 hook.vp = NULL;
648 panic_hook(&hook.hook, vnode_iterate_panic_hook);
649 #endif
650 /* iterate over all the vnodes */
651 while (!TAILQ_EMPTY(&mp->mnt_workerqueue)) {
652 vp = TAILQ_FIRST(&mp->mnt_workerqueue);
653 #if !CONFIG_EMBEDDED
654 hook.vp = vp;
655 #endif
656 TAILQ_REMOVE(&mp->mnt_workerqueue, vp, v_mntvnodes);
657 TAILQ_INSERT_TAIL(&mp->mnt_vnodelist, vp, v_mntvnodes);
658 vid = vp->v_id;
659 if ((vp->v_data == NULL) || (vp->v_type == VNON) || (vp->v_mount != mp)) {
660 continue;
661 }
662 mount_unlock(mp);
663
664 if ( vget_internal(vp, vid, (flags | VNODE_NODEAD| VNODE_WITHID | VNODE_NOSUSPEND))) {
665 mount_lock(mp);
666 continue;
667 }
668 if (flags & VNODE_RELOAD) {
669 /*
670 * we're reloading the filesystem
671 * cast out any inactive vnodes...
672 */
673 if (vnode_reload(vp)) {
674 /* vnode will be recycled on the refcount drop */
675 vnode_put(vp);
676 mount_lock(mp);
677 continue;
678 }
679 }
680
681 retval = callout(vp, arg);
682
683 switch (retval) {
684 case VNODE_RETURNED:
685 case VNODE_RETURNED_DONE:
686 vnode_put(vp);
687 if (retval == VNODE_RETURNED_DONE) {
688 mount_lock(mp);
689 ret = 0;
690 goto out;
691 }
692 break;
693
694 case VNODE_CLAIMED_DONE:
695 mount_lock(mp);
696 ret = 0;
697 goto out;
698 case VNODE_CLAIMED:
699 default:
700 break;
701 }
702 mount_lock(mp);
703 }
704
705 out:
706 #if !CONFIG_EMBEDDED
707 panic_unhook(&hook.hook);
708 #endif
709 (void)vnode_iterate_reloadq(mp);
710 vnode_iterate_clear(mp);
711 mount_unlock(mp);
712 mount_iterate_unlock(mp);
713 return (ret);
714 }
715
716 void
717 mount_lock_renames(mount_t mp)
718 {
719 lck_mtx_lock(&mp->mnt_renamelock);
720 }
721
722 void
723 mount_unlock_renames(mount_t mp)
724 {
725 lck_mtx_unlock(&mp->mnt_renamelock);
726 }
727
728 void
729 mount_iterate_lock(mount_t mp)
730 {
731 lck_mtx_lock(&mp->mnt_iter_lock);
732 }
733
734 void
735 mount_iterate_unlock(mount_t mp)
736 {
737 lck_mtx_unlock(&mp->mnt_iter_lock);
738 }
739
740 void
741 mount_lock(mount_t mp)
742 {
743 lck_mtx_lock(&mp->mnt_mlock);
744 }
745
746 void
747 mount_lock_spin(mount_t mp)
748 {
749 lck_mtx_lock_spin(&mp->mnt_mlock);
750 }
751
752 void
753 mount_unlock(mount_t mp)
754 {
755 lck_mtx_unlock(&mp->mnt_mlock);
756 }
757
758
759 void
760 mount_ref(mount_t mp, int locked)
761 {
762 if ( !locked)
763 mount_lock_spin(mp);
764
765 mp->mnt_count++;
766
767 if ( !locked)
768 mount_unlock(mp);
769 }
770
771
772 void
773 mount_drop(mount_t mp, int locked)
774 {
775 if ( !locked)
776 mount_lock_spin(mp);
777
778 mp->mnt_count--;
779
780 if (mp->mnt_count == 0 && (mp->mnt_lflag & MNT_LDRAIN))
781 wakeup(&mp->mnt_lflag);
782
783 if ( !locked)
784 mount_unlock(mp);
785 }
786
787
788 int
789 mount_iterref(mount_t mp, int locked)
790 {
791 int retval = 0;
792
793 if (!locked)
794 mount_list_lock();
795 if (mp->mnt_iterref < 0) {
796 retval = 1;
797 } else {
798 mp->mnt_iterref++;
799 }
800 if (!locked)
801 mount_list_unlock();
802 return(retval);
803 }
804
805 int
806 mount_isdrained(mount_t mp, int locked)
807 {
808 int retval;
809
810 if (!locked)
811 mount_list_lock();
812 if (mp->mnt_iterref < 0)
813 retval = 1;
814 else
815 retval = 0;
816 if (!locked)
817 mount_list_unlock();
818 return(retval);
819 }
820
821 void
822 mount_iterdrop(mount_t mp)
823 {
824 mount_list_lock();
825 mp->mnt_iterref--;
826 wakeup(&mp->mnt_iterref);
827 mount_list_unlock();
828 }
829
830 void
831 mount_iterdrain(mount_t mp)
832 {
833 mount_list_lock();
834 while (mp->mnt_iterref)
835 msleep((caddr_t)&mp->mnt_iterref, mnt_list_mtx_lock, PVFS, "mount_iterdrain", NULL);
836 /* mount iterations drained */
837 mp->mnt_iterref = -1;
838 mount_list_unlock();
839 }
840 void
841 mount_iterreset(mount_t mp)
842 {
843 mount_list_lock();
844 if (mp->mnt_iterref == -1)
845 mp->mnt_iterref = 0;
846 mount_list_unlock();
847 }
848
849 /* always called with mount lock held */
850 int
851 mount_refdrain(mount_t mp)
852 {
853 if (mp->mnt_lflag & MNT_LDRAIN)
854 panic("already in drain");
855 mp->mnt_lflag |= MNT_LDRAIN;
856
857 while (mp->mnt_count)
858 msleep((caddr_t)&mp->mnt_lflag, &mp->mnt_mlock, PVFS, "mount_drain", NULL);
859
860 if (mp->mnt_vnodelist.tqh_first != NULL)
861 panic("mount_refdrain: dangling vnode");
862
863 mp->mnt_lflag &= ~MNT_LDRAIN;
864
865 return(0);
866 }
867
868 /* Tags the mount point as not supportine extended readdir for NFS exports */
869 void
870 mount_set_noreaddirext(mount_t mp) {
871 mount_lock (mp);
872 mp->mnt_kern_flag |= MNTK_DENY_READDIREXT;
873 mount_unlock (mp);
874 }
875
876 /*
877 * Mark a mount point as busy. Used to synchronize access and to delay
878 * unmounting.
879 */
880 int
881 vfs_busy(mount_t mp, int flags)
882 {
883
884 restart:
885 if (mp->mnt_lflag & MNT_LDEAD)
886 return (ENOENT);
887
888 mount_lock(mp);
889
890 if (mp->mnt_lflag & MNT_LUNMOUNT) {
891 if (flags & LK_NOWAIT || mp->mnt_lflag & MNT_LDEAD) {
892 mount_unlock(mp);
893 return (ENOENT);
894 }
895
896 /*
897 * Since all busy locks are shared except the exclusive
898 * lock granted when unmounting, the only place that a
899 * wakeup needs to be done is at the release of the
900 * exclusive lock at the end of dounmount.
901 */
902 mp->mnt_lflag |= MNT_LWAIT;
903 msleep((caddr_t)mp, &mp->mnt_mlock, (PVFS | PDROP), "vfsbusy", NULL);
904 return (ENOENT);
905 }
906
907 mount_unlock(mp);
908
909 lck_rw_lock_shared(&mp->mnt_rwlock);
910
911 /*
912 * Until we are granted the rwlock, it's possible for the mount point to
913 * change state, so re-evaluate before granting the vfs_busy.
914 */
915 if (mp->mnt_lflag & (MNT_LDEAD | MNT_LUNMOUNT)) {
916 lck_rw_done(&mp->mnt_rwlock);
917 goto restart;
918 }
919 return (0);
920 }
921
922 /*
923 * Free a busy filesystem.
924 */
925 void
926 vfs_unbusy(mount_t mp)
927 {
928 lck_rw_done(&mp->mnt_rwlock);
929 }
930
931
932
933 static void
934 vfs_rootmountfailed(mount_t mp) {
935
936 mount_list_lock();
937 mp->mnt_vtable->vfc_refcount--;
938 mount_list_unlock();
939
940 vfs_unbusy(mp);
941
942 mount_lock_destroy(mp);
943
944 #if CONFIG_MACF
945 mac_mount_label_destroy(mp);
946 #endif
947
948 FREE_ZONE(mp, sizeof(struct mount), M_MOUNT);
949 }
950
951 /*
952 * Lookup a filesystem type, and if found allocate and initialize
953 * a mount structure for it.
954 *
955 * Devname is usually updated by mount(8) after booting.
956 */
957 static mount_t
958 vfs_rootmountalloc_internal(struct vfstable *vfsp, const char *devname)
959 {
960 mount_t mp;
961
962 mp = _MALLOC_ZONE(sizeof(struct mount), M_MOUNT, M_WAITOK);
963 bzero((char *)mp, sizeof(struct mount));
964
965 /* Initialize the default IO constraints */
966 mp->mnt_maxreadcnt = mp->mnt_maxwritecnt = MAXPHYS;
967 mp->mnt_segreadcnt = mp->mnt_segwritecnt = 32;
968 mp->mnt_maxsegreadsize = mp->mnt_maxreadcnt;
969 mp->mnt_maxsegwritesize = mp->mnt_maxwritecnt;
970 mp->mnt_devblocksize = DEV_BSIZE;
971 mp->mnt_alignmentmask = PAGE_MASK;
972 mp->mnt_ioqueue_depth = MNT_DEFAULT_IOQUEUE_DEPTH;
973 mp->mnt_ioscale = 1;
974 mp->mnt_ioflags = 0;
975 mp->mnt_realrootvp = NULLVP;
976 mp->mnt_authcache_ttl = CACHED_LOOKUP_RIGHT_TTL;
977 mp->mnt_throttle_mask = LOWPRI_MAX_NUM_DEV - 1;
978 mp->mnt_devbsdunit = 0;
979
980 mount_lock_init(mp);
981 (void)vfs_busy(mp, LK_NOWAIT);
982
983 TAILQ_INIT(&mp->mnt_vnodelist);
984 TAILQ_INIT(&mp->mnt_workerqueue);
985 TAILQ_INIT(&mp->mnt_newvnodes);
986
987 mp->mnt_vtable = vfsp;
988 mp->mnt_op = vfsp->vfc_vfsops;
989 mp->mnt_flag = MNT_RDONLY | MNT_ROOTFS;
990 mp->mnt_vnodecovered = NULLVP;
991 //mp->mnt_stat.f_type = vfsp->vfc_typenum;
992 mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
993
994 mount_list_lock();
995 vfsp->vfc_refcount++;
996 mount_list_unlock();
997
998 strlcpy(mp->mnt_vfsstat.f_fstypename, vfsp->vfc_name, MFSTYPENAMELEN);
999 mp->mnt_vfsstat.f_mntonname[0] = '/';
1000 /* XXX const poisoning layering violation */
1001 (void) copystr((const void *)devname, mp->mnt_vfsstat.f_mntfromname, MAXPATHLEN - 1, NULL);
1002
1003 #if CONFIG_MACF
1004 mac_mount_label_init(mp);
1005 mac_mount_label_associate(vfs_context_kernel(), mp);
1006 #endif
1007 return (mp);
1008 }
1009
1010 errno_t
1011 vfs_rootmountalloc(const char *fstypename, const char *devname, mount_t *mpp)
1012 {
1013 struct vfstable *vfsp;
1014
1015 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1016 if (!strncmp(vfsp->vfc_name, fstypename,
1017 sizeof(vfsp->vfc_name)))
1018 break;
1019 if (vfsp == NULL)
1020 return (ENODEV);
1021
1022 *mpp = vfs_rootmountalloc_internal(vfsp, devname);
1023
1024 if (*mpp)
1025 return (0);
1026
1027 return (ENOMEM);
1028 }
1029
1030 #define DBG_MOUNTROOT (FSDBG_CODE(DBG_MOUNT, 0))
1031
1032 /*
1033 * Find an appropriate filesystem to use for the root. If a filesystem
1034 * has not been preselected, walk through the list of known filesystems
1035 * trying those that have mountroot routines, and try them until one
1036 * works or we have tried them all.
1037 */
1038 extern int (*mountroot)(void);
1039
1040 int
1041 vfs_mountroot(void)
1042 {
1043 #if CONFIG_MACF
1044 struct vnode *vp;
1045 #endif
1046 struct vfstable *vfsp;
1047 vfs_context_t ctx = vfs_context_kernel();
1048 struct vfs_attr vfsattr;
1049 int error;
1050 mount_t mp;
1051 vnode_t bdevvp_rootvp;
1052
1053 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_START);
1054 if (mountroot != NULL) {
1055 /*
1056 * used for netboot which follows a different set of rules
1057 */
1058 error = (*mountroot)();
1059
1060 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_END, error, 0);
1061 return (error);
1062 }
1063 if ((error = bdevvp(rootdev, &rootvp))) {
1064 printf("vfs_mountroot: can't setup bdevvp\n");
1065
1066 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_END, error, 1);
1067 return (error);
1068 }
1069 /*
1070 * 4951998 - code we call in vfc_mountroot may replace rootvp
1071 * so keep a local copy for some house keeping.
1072 */
1073 bdevvp_rootvp = rootvp;
1074
1075 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
1076 if (vfsp->vfc_mountroot == NULL
1077 && !ISSET(vfsp->vfc_vfsflags, VFC_VFSCANMOUNTROOT)) {
1078 continue;
1079 }
1080
1081 mp = vfs_rootmountalloc_internal(vfsp, "root_device");
1082 mp->mnt_devvp = rootvp;
1083
1084 if (vfsp->vfc_mountroot)
1085 error = (*vfsp->vfc_mountroot)(mp, rootvp, ctx);
1086 else
1087 error = VFS_MOUNT(mp, rootvp, 0, ctx);
1088
1089 if (!error) {
1090 if ( bdevvp_rootvp != rootvp ) {
1091 /*
1092 * rootvp changed...
1093 * bump the iocount and fix up mnt_devvp for the
1094 * new rootvp (it will already have a usecount taken)...
1095 * drop the iocount and the usecount on the orignal
1096 * since we are no longer going to use it...
1097 */
1098 vnode_getwithref(rootvp);
1099 mp->mnt_devvp = rootvp;
1100
1101 vnode_rele(bdevvp_rootvp);
1102 vnode_put(bdevvp_rootvp);
1103 }
1104 mp->mnt_devvp->v_specflags |= SI_MOUNTEDON;
1105
1106 vfs_unbusy(mp);
1107
1108 mount_list_add(mp);
1109
1110 /*
1111 * cache the IO attributes for the underlying physical media...
1112 * an error return indicates the underlying driver doesn't
1113 * support all the queries necessary... however, reasonable
1114 * defaults will have been set, so no reason to bail or care
1115 */
1116 vfs_init_io_attributes(rootvp, mp);
1117
1118 if (mp->mnt_ioflags & MNT_IOFLAGS_FUSION_DRIVE) {
1119 root_is_CF_drive = TRUE;
1120 }
1121
1122 /*
1123 * Shadow the VFC_VFSNATIVEXATTR flag to MNTK_EXTENDED_ATTRS.
1124 */
1125 if (mp->mnt_vtable->vfc_vfsflags & VFC_VFSNATIVEXATTR) {
1126 mp->mnt_kern_flag |= MNTK_EXTENDED_ATTRS;
1127 }
1128 if (mp->mnt_vtable->vfc_vfsflags & VFC_VFSPREFLIGHT) {
1129 mp->mnt_kern_flag |= MNTK_UNMOUNT_PREFLIGHT;
1130 }
1131
1132 #if !CONFIG_EMBEDDED
1133 uint32_t speed;
1134
1135 if (MNTK_VIRTUALDEV & mp->mnt_kern_flag) speed = 128;
1136 else if (disk_conditioner_mount_is_ssd(mp)) speed = 7*256;
1137 else speed = 256;
1138 vc_progress_setdiskspeed(speed);
1139 #endif
1140 /*
1141 * Probe root file system for additional features.
1142 */
1143 (void)VFS_START(mp, 0, ctx);
1144
1145 VFSATTR_INIT(&vfsattr);
1146 VFSATTR_WANTED(&vfsattr, f_capabilities);
1147 if (vfs_getattr(mp, &vfsattr, ctx) == 0 &&
1148 VFSATTR_IS_SUPPORTED(&vfsattr, f_capabilities)) {
1149 if ((vfsattr.f_capabilities.capabilities[VOL_CAPABILITIES_INTERFACES] & VOL_CAP_INT_EXTENDED_ATTR) &&
1150 (vfsattr.f_capabilities.valid[VOL_CAPABILITIES_INTERFACES] & VOL_CAP_INT_EXTENDED_ATTR)) {
1151 mp->mnt_kern_flag |= MNTK_EXTENDED_ATTRS;
1152 }
1153 #if NAMEDSTREAMS
1154 if ((vfsattr.f_capabilities.capabilities[VOL_CAPABILITIES_INTERFACES] & VOL_CAP_INT_NAMEDSTREAMS) &&
1155 (vfsattr.f_capabilities.valid[VOL_CAPABILITIES_INTERFACES] & VOL_CAP_INT_NAMEDSTREAMS)) {
1156 mp->mnt_kern_flag |= MNTK_NAMED_STREAMS;
1157 }
1158 #endif
1159 if ((vfsattr.f_capabilities.capabilities[VOL_CAPABILITIES_FORMAT] & VOL_CAP_FMT_PATH_FROM_ID) &&
1160 (vfsattr.f_capabilities.valid[VOL_CAPABILITIES_FORMAT] & VOL_CAP_FMT_PATH_FROM_ID)) {
1161 mp->mnt_kern_flag |= MNTK_PATH_FROM_ID;
1162 }
1163
1164 if ((vfsattr.f_capabilities.capabilities[VOL_CAPABILITIES_FORMAT] & VOL_CAP_FMT_DIR_HARDLINKS) &&
1165 (vfsattr.f_capabilities.valid[VOL_CAPABILITIES_FORMAT] & VOL_CAP_FMT_DIR_HARDLINKS)) {
1166 mp->mnt_kern_flag |= MNTK_DIR_HARDLINKS;
1167 }
1168 }
1169
1170 /*
1171 * get rid of iocount reference returned
1172 * by bdevvp (or picked up by us on the substitued
1173 * rootvp)... it (or we) will have also taken
1174 * a usecount reference which we want to keep
1175 */
1176 vnode_put(rootvp);
1177
1178 #if CONFIG_MACF
1179 if ((vfs_flags(mp) & MNT_MULTILABEL) == 0) {
1180 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_END, 0, 2);
1181 return (0);
1182 }
1183
1184 error = VFS_ROOT(mp, &vp, ctx);
1185 if (error) {
1186 printf("%s() VFS_ROOT() returned %d\n",
1187 __func__, error);
1188 dounmount(mp, MNT_FORCE, 0, ctx);
1189 goto fail;
1190 }
1191 error = vnode_label(mp, NULL, vp, NULL, 0, ctx);
1192 /*
1193 * get rid of reference provided by VFS_ROOT
1194 */
1195 vnode_put(vp);
1196
1197 if (error) {
1198 printf("%s() vnode_label() returned %d\n",
1199 __func__, error);
1200 dounmount(mp, MNT_FORCE, 0, ctx);
1201 goto fail;
1202 }
1203 #endif
1204 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_END, 0, 3);
1205 return (0);
1206 }
1207 #if CONFIG_MACF
1208 fail:
1209 #endif
1210 vfs_rootmountfailed(mp);
1211
1212 if (error != EINVAL)
1213 printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
1214 }
1215 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_END, error ? error : ENODEV, 4);
1216 return (ENODEV);
1217 }
1218
1219 /*
1220 * Lookup a mount point by filesystem identifier.
1221 */
1222
1223 struct mount *
1224 vfs_getvfs(fsid_t *fsid)
1225 {
1226 return (mount_list_lookupby_fsid(fsid, 0, 0));
1227 }
1228
1229 static struct mount *
1230 vfs_getvfs_locked(fsid_t *fsid)
1231 {
1232 return(mount_list_lookupby_fsid(fsid, 1, 0));
1233 }
1234
1235 struct mount *
1236 vfs_getvfs_by_mntonname(char *path)
1237 {
1238 mount_t retmp = (mount_t)0;
1239 mount_t mp;
1240
1241 mount_list_lock();
1242 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1243 if (!strncmp(mp->mnt_vfsstat.f_mntonname, path,
1244 sizeof(mp->mnt_vfsstat.f_mntonname))) {
1245 retmp = mp;
1246 if (mount_iterref(retmp, 1))
1247 retmp = NULL;
1248 goto out;
1249 }
1250 }
1251 out:
1252 mount_list_unlock();
1253 return (retmp);
1254 }
1255
1256 /* generation number for creation of new fsids */
1257 u_short mntid_gen = 0;
1258 /*
1259 * Get a new unique fsid
1260 */
1261 void
1262 vfs_getnewfsid(struct mount *mp)
1263 {
1264
1265 fsid_t tfsid;
1266 int mtype;
1267
1268 mount_list_lock();
1269
1270 /* generate a new fsid */
1271 mtype = mp->mnt_vtable->vfc_typenum;
1272 if (++mntid_gen == 0)
1273 mntid_gen++;
1274 tfsid.val[0] = makedev(nblkdev + mtype, mntid_gen);
1275 tfsid.val[1] = mtype;
1276
1277 while (vfs_getvfs_locked(&tfsid)) {
1278 if (++mntid_gen == 0)
1279 mntid_gen++;
1280 tfsid.val[0] = makedev(nblkdev + mtype, mntid_gen);
1281 }
1282
1283 mp->mnt_vfsstat.f_fsid.val[0] = tfsid.val[0];
1284 mp->mnt_vfsstat.f_fsid.val[1] = tfsid.val[1];
1285 mount_list_unlock();
1286 }
1287
1288 /*
1289 * Routines having to do with the management of the vnode table.
1290 */
1291 extern int (**dead_vnodeop_p)(void *);
1292 long numvnodes, freevnodes, deadvnodes, async_work_vnodes;
1293
1294
1295 int async_work_timed_out = 0;
1296 int async_work_handled = 0;
1297 int dead_vnode_wanted = 0;
1298 int dead_vnode_waited = 0;
1299
1300 /*
1301 * Move a vnode from one mount queue to another.
1302 */
1303 static void
1304 insmntque(vnode_t vp, mount_t mp)
1305 {
1306 mount_t lmp;
1307 /*
1308 * Delete from old mount point vnode list, if on one.
1309 */
1310 if ( (lmp = vp->v_mount) != NULL && lmp != dead_mountp) {
1311 if ((vp->v_lflag & VNAMED_MOUNT) == 0)
1312 panic("insmntque: vp not in mount vnode list");
1313 vp->v_lflag &= ~VNAMED_MOUNT;
1314
1315 mount_lock_spin(lmp);
1316
1317 mount_drop(lmp, 1);
1318
1319 if (vp->v_mntvnodes.tqe_next == NULL) {
1320 if (TAILQ_LAST(&lmp->mnt_vnodelist, vnodelst) == vp)
1321 TAILQ_REMOVE(&lmp->mnt_vnodelist, vp, v_mntvnodes);
1322 else if (TAILQ_LAST(&lmp->mnt_newvnodes, vnodelst) == vp)
1323 TAILQ_REMOVE(&lmp->mnt_newvnodes, vp, v_mntvnodes);
1324 else if (TAILQ_LAST(&lmp->mnt_workerqueue, vnodelst) == vp)
1325 TAILQ_REMOVE(&lmp->mnt_workerqueue, vp, v_mntvnodes);
1326 } else {
1327 vp->v_mntvnodes.tqe_next->v_mntvnodes.tqe_prev = vp->v_mntvnodes.tqe_prev;
1328 *vp->v_mntvnodes.tqe_prev = vp->v_mntvnodes.tqe_next;
1329 }
1330 vp->v_mntvnodes.tqe_next = NULL;
1331 vp->v_mntvnodes.tqe_prev = NULL;
1332 mount_unlock(lmp);
1333 return;
1334 }
1335
1336 /*
1337 * Insert into list of vnodes for the new mount point, if available.
1338 */
1339 if ((vp->v_mount = mp) != NULL) {
1340 mount_lock_spin(mp);
1341 if ((vp->v_mntvnodes.tqe_next != 0) && (vp->v_mntvnodes.tqe_prev != 0))
1342 panic("vp already in mount list");
1343 if (mp->mnt_lflag & MNT_LITER)
1344 TAILQ_INSERT_HEAD(&mp->mnt_newvnodes, vp, v_mntvnodes);
1345 else
1346 TAILQ_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes);
1347 if (vp->v_lflag & VNAMED_MOUNT)
1348 panic("insmntque: vp already in mount vnode list");
1349 vp->v_lflag |= VNAMED_MOUNT;
1350 mount_ref(mp, 1);
1351 mount_unlock(mp);
1352 }
1353 }
1354
1355
1356 /*
1357 * Create a vnode for a block device.
1358 * Used for root filesystem, argdev, and swap areas.
1359 * Also used for memory file system special devices.
1360 */
1361 int
1362 bdevvp(dev_t dev, vnode_t *vpp)
1363 {
1364 vnode_t nvp;
1365 int error;
1366 struct vnode_fsparam vfsp;
1367 struct vfs_context context;
1368
1369 if (dev == NODEV) {
1370 *vpp = NULLVP;
1371 return (ENODEV);
1372 }
1373
1374 context.vc_thread = current_thread();
1375 context.vc_ucred = FSCRED;
1376
1377 vfsp.vnfs_mp = (struct mount *)0;
1378 vfsp.vnfs_vtype = VBLK;
1379 vfsp.vnfs_str = "bdevvp";
1380 vfsp.vnfs_dvp = NULL;
1381 vfsp.vnfs_fsnode = NULL;
1382 vfsp.vnfs_cnp = NULL;
1383 vfsp.vnfs_vops = spec_vnodeop_p;
1384 vfsp.vnfs_rdev = dev;
1385 vfsp.vnfs_filesize = 0;
1386
1387 vfsp.vnfs_flags = VNFS_NOCACHE | VNFS_CANTCACHE;
1388
1389 vfsp.vnfs_marksystem = 0;
1390 vfsp.vnfs_markroot = 0;
1391
1392 if ( (error = vnode_create(VNCREATE_FLAVOR, VCREATESIZE, &vfsp, &nvp)) ) {
1393 *vpp = NULLVP;
1394 return (error);
1395 }
1396 vnode_lock_spin(nvp);
1397 nvp->v_flag |= VBDEVVP;
1398 nvp->v_tag = VT_NON; /* set this to VT_NON so during aliasing it can be replaced */
1399 vnode_unlock(nvp);
1400 if ( (error = vnode_ref(nvp)) ) {
1401 panic("bdevvp failed: vnode_ref");
1402 return (error);
1403 }
1404 if ( (error = VNOP_FSYNC(nvp, MNT_WAIT, &context)) ) {
1405 panic("bdevvp failed: fsync");
1406 return (error);
1407 }
1408 if ( (error = buf_invalidateblks(nvp, BUF_WRITE_DATA, 0, 0)) ) {
1409 panic("bdevvp failed: invalidateblks");
1410 return (error);
1411 }
1412
1413 #if CONFIG_MACF
1414 /*
1415 * XXXMAC: We can't put a MAC check here, the system will
1416 * panic without this vnode.
1417 */
1418 #endif /* MAC */
1419
1420 if ( (error = VNOP_OPEN(nvp, FREAD, &context)) ) {
1421 panic("bdevvp failed: open");
1422 return (error);
1423 }
1424 *vpp = nvp;
1425
1426 return (0);
1427 }
1428
1429 /*
1430 * Check to see if the new vnode represents a special device
1431 * for which we already have a vnode (either because of
1432 * bdevvp() or because of a different vnode representing
1433 * the same block device). If such an alias exists, deallocate
1434 * the existing contents and return the aliased vnode. The
1435 * caller is responsible for filling it with its new contents.
1436 */
1437 static vnode_t
1438 checkalias(struct vnode *nvp, dev_t nvp_rdev)
1439 {
1440 struct vnode *vp;
1441 struct vnode **vpp;
1442 struct specinfo *sin = NULL;
1443 int vid = 0;
1444
1445 vpp = &speclisth[SPECHASH(nvp_rdev)];
1446 loop:
1447 SPECHASH_LOCK();
1448
1449 for (vp = *vpp; vp; vp = vp->v_specnext) {
1450 if (nvp_rdev == vp->v_rdev && nvp->v_type == vp->v_type) {
1451 vid = vp->v_id;
1452 break;
1453 }
1454 }
1455 SPECHASH_UNLOCK();
1456
1457 if (vp) {
1458 found_alias:
1459 if (vnode_getwithvid(vp,vid)) {
1460 goto loop;
1461 }
1462 /*
1463 * Termination state is checked in vnode_getwithvid
1464 */
1465 vnode_lock(vp);
1466
1467 /*
1468 * Alias, but not in use, so flush it out.
1469 */
1470 if ((vp->v_iocount == 1) && (vp->v_usecount == 0)) {
1471 vnode_reclaim_internal(vp, 1, 1, 0);
1472 vnode_put_locked(vp);
1473 vnode_unlock(vp);
1474 goto loop;
1475 }
1476
1477 }
1478 if (vp == NULL || vp->v_tag != VT_NON) {
1479 if (sin == NULL) {
1480 MALLOC_ZONE(sin, struct specinfo *, sizeof(struct specinfo),
1481 M_SPECINFO, M_WAITOK);
1482 }
1483
1484 nvp->v_specinfo = sin;
1485 bzero(nvp->v_specinfo, sizeof(struct specinfo));
1486 nvp->v_rdev = nvp_rdev;
1487 nvp->v_specflags = 0;
1488 nvp->v_speclastr = -1;
1489 nvp->v_specinfo->si_opencount = 0;
1490 nvp->v_specinfo->si_initted = 0;
1491 nvp->v_specinfo->si_throttleable = 0;
1492
1493 SPECHASH_LOCK();
1494
1495 /* We dropped the lock, someone could have added */
1496 if (vp == NULLVP) {
1497 for (vp = *vpp; vp; vp = vp->v_specnext) {
1498 if (nvp_rdev == vp->v_rdev && nvp->v_type == vp->v_type) {
1499 vid = vp->v_id;
1500 SPECHASH_UNLOCK();
1501 goto found_alias;
1502 }
1503 }
1504 }
1505
1506 nvp->v_hashchain = vpp;
1507 nvp->v_specnext = *vpp;
1508 *vpp = nvp;
1509
1510 if (vp != NULLVP) {
1511 nvp->v_specflags |= SI_ALIASED;
1512 vp->v_specflags |= SI_ALIASED;
1513 SPECHASH_UNLOCK();
1514 vnode_put_locked(vp);
1515 vnode_unlock(vp);
1516 } else {
1517 SPECHASH_UNLOCK();
1518 }
1519
1520 return (NULLVP);
1521 }
1522
1523 if (sin) {
1524 FREE_ZONE(sin, sizeof(struct specinfo), M_SPECINFO);
1525 }
1526
1527 if ((vp->v_flag & (VBDEVVP | VDEVFLUSH)) != 0)
1528 return(vp);
1529
1530 panic("checkalias with VT_NON vp that shouldn't: %p", vp);
1531
1532 return (vp);
1533 }
1534
1535
1536 /*
1537 * Get a reference on a particular vnode and lock it if requested.
1538 * If the vnode was on the inactive list, remove it from the list.
1539 * If the vnode was on the free list, remove it from the list and
1540 * move it to inactive list as needed.
1541 * The vnode lock bit is set if the vnode is being eliminated in
1542 * vgone. The process is awakened when the transition is completed,
1543 * and an error returned to indicate that the vnode is no longer
1544 * usable (possibly having been changed to a new file system type).
1545 */
1546 int
1547 vget_internal(vnode_t vp, int vid, int vflags)
1548 {
1549 int error = 0;
1550
1551 vnode_lock_spin(vp);
1552
1553 if ((vflags & VNODE_WRITEABLE) && (vp->v_writecount == 0))
1554 /*
1555 * vnode to be returned only if it has writers opened
1556 */
1557 error = EINVAL;
1558 else
1559 error = vnode_getiocount(vp, vid, vflags);
1560
1561 vnode_unlock(vp);
1562
1563 return (error);
1564 }
1565
1566 /*
1567 * Returns: 0 Success
1568 * ENOENT No such file or directory [terminating]
1569 */
1570 int
1571 vnode_ref(vnode_t vp)
1572 {
1573
1574 return (vnode_ref_ext(vp, 0, 0));
1575 }
1576
1577 /*
1578 * Returns: 0 Success
1579 * ENOENT No such file or directory [terminating]
1580 */
1581 int
1582 vnode_ref_ext(vnode_t vp, int fmode, int flags)
1583 {
1584 int error = 0;
1585
1586 vnode_lock_spin(vp);
1587
1588 /*
1589 * once all the current call sites have been fixed to insure they have
1590 * taken an iocount, we can toughen this assert up and insist that the
1591 * iocount is non-zero... a non-zero usecount doesn't insure correctness
1592 */
1593 if (vp->v_iocount <= 0 && vp->v_usecount <= 0)
1594 panic("vnode_ref_ext: vp %p has no valid reference %d, %d", vp, vp->v_iocount, vp->v_usecount);
1595
1596 /*
1597 * if you are the owner of drain/termination, can acquire usecount
1598 */
1599 if ((flags & VNODE_REF_FORCE) == 0) {
1600 if ((vp->v_lflag & (VL_DRAIN | VL_TERMINATE | VL_DEAD))) {
1601 if (vp->v_owner != current_thread()) {
1602 error = ENOENT;
1603 goto out;
1604 }
1605 }
1606 }
1607 vp->v_usecount++;
1608
1609 if (fmode & FWRITE) {
1610 if (++vp->v_writecount <= 0)
1611 panic("vnode_ref_ext: v_writecount");
1612 }
1613 if (fmode & O_EVTONLY) {
1614 if (++vp->v_kusecount <= 0)
1615 panic("vnode_ref_ext: v_kusecount");
1616 }
1617 if (vp->v_flag & VRAGE) {
1618 struct uthread *ut;
1619
1620 ut = get_bsdthread_info(current_thread());
1621
1622 if ( !(current_proc()->p_lflag & P_LRAGE_VNODES) &&
1623 !(ut->uu_flag & UT_RAGE_VNODES)) {
1624 /*
1625 * a 'normal' process accessed this vnode
1626 * so make sure its no longer marked
1627 * for rapid aging... also, make sure
1628 * it gets removed from the rage list...
1629 * when v_usecount drops back to 0, it
1630 * will be put back on the real free list
1631 */
1632 vp->v_flag &= ~VRAGE;
1633 vp->v_references = 0;
1634 vnode_list_remove(vp);
1635 }
1636 }
1637 if (vp->v_usecount == 1 && vp->v_type == VREG && !(vp->v_flag & VSYSTEM)) {
1638
1639 if (vp->v_ubcinfo) {
1640 vnode_lock_convert(vp);
1641 memory_object_mark_used(vp->v_ubcinfo->ui_control);
1642 }
1643 }
1644 out:
1645 vnode_unlock(vp);
1646
1647 return (error);
1648 }
1649
1650
1651 boolean_t
1652 vnode_on_reliable_media(vnode_t vp)
1653 {
1654 if ( !(vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) && (vp->v_mount->mnt_flag & MNT_LOCAL) )
1655 return (TRUE);
1656 return (FALSE);
1657 }
1658
1659 static void
1660 vnode_async_list_add(vnode_t vp)
1661 {
1662 vnode_list_lock();
1663
1664 if (VONLIST(vp) || (vp->v_lflag & (VL_TERMINATE|VL_DEAD)))
1665 panic("vnode_async_list_add: %p is in wrong state", vp);
1666
1667 TAILQ_INSERT_HEAD(&vnode_async_work_list, vp, v_freelist);
1668 vp->v_listflag |= VLIST_ASYNC_WORK;
1669
1670 async_work_vnodes++;
1671
1672 vnode_list_unlock();
1673
1674 wakeup(&vnode_async_work_list);
1675
1676 }
1677
1678
1679 /*
1680 * put the vnode on appropriate free list.
1681 * called with vnode LOCKED
1682 */
1683 static void
1684 vnode_list_add(vnode_t vp)
1685 {
1686 boolean_t need_dead_wakeup = FALSE;
1687
1688 #if DIAGNOSTIC
1689 lck_mtx_assert(&vp->v_lock, LCK_MTX_ASSERT_OWNED);
1690 #endif
1691
1692 again:
1693
1694 /*
1695 * if it is already on a list or non zero references return
1696 */
1697 if (VONLIST(vp) || (vp->v_usecount != 0) || (vp->v_iocount != 0) || (vp->v_lflag & VL_TERMINATE))
1698 return;
1699
1700 /*
1701 * In vclean, we might have deferred ditching locked buffers
1702 * because something was still referencing them (indicated by
1703 * usecount). We can ditch them now.
1704 */
1705 if (ISSET(vp->v_lflag, VL_DEAD)
1706 && (!LIST_EMPTY(&vp->v_cleanblkhd) || !LIST_EMPTY(&vp->v_dirtyblkhd))) {
1707 ++vp->v_iocount; // Probably not necessary, but harmless
1708 #ifdef JOE_DEBUG
1709 record_vp(vp, 1);
1710 #endif
1711 vnode_unlock(vp);
1712 buf_invalidateblks(vp, BUF_INVALIDATE_LOCKED, 0, 0);
1713 vnode_lock(vp);
1714 vnode_dropiocount(vp);
1715 goto again;
1716 }
1717
1718 vnode_list_lock();
1719
1720 if ((vp->v_flag & VRAGE) && !(vp->v_lflag & VL_DEAD)) {
1721 /*
1722 * add the new guy to the appropriate end of the RAGE list
1723 */
1724 if ((vp->v_flag & VAGE))
1725 TAILQ_INSERT_HEAD(&vnode_rage_list, vp, v_freelist);
1726 else
1727 TAILQ_INSERT_TAIL(&vnode_rage_list, vp, v_freelist);
1728
1729 vp->v_listflag |= VLIST_RAGE;
1730 ragevnodes++;
1731
1732 /*
1733 * reset the timestamp for the last inserted vp on the RAGE
1734 * queue to let new_vnode know that its not ok to start stealing
1735 * from this list... as long as we're actively adding to this list
1736 * we'll push out the vnodes we want to donate to the real free list
1737 * once we stop pushing, we'll let some time elapse before we start
1738 * stealing them in the new_vnode routine
1739 */
1740 microuptime(&rage_tv);
1741 } else {
1742 /*
1743 * if VL_DEAD, insert it at head of the dead list
1744 * else insert at tail of LRU list or at head if VAGE is set
1745 */
1746 if ( (vp->v_lflag & VL_DEAD)) {
1747 TAILQ_INSERT_HEAD(&vnode_dead_list, vp, v_freelist);
1748 vp->v_listflag |= VLIST_DEAD;
1749 deadvnodes++;
1750
1751 if (dead_vnode_wanted) {
1752 dead_vnode_wanted--;
1753 need_dead_wakeup = TRUE;
1754 }
1755
1756 } else if ( (vp->v_flag & VAGE) ) {
1757 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1758 vp->v_flag &= ~VAGE;
1759 freevnodes++;
1760 } else {
1761 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1762 freevnodes++;
1763 }
1764 }
1765 vnode_list_unlock();
1766
1767 if (need_dead_wakeup == TRUE)
1768 wakeup_one((caddr_t)&dead_vnode_wanted);
1769 }
1770
1771
1772 /*
1773 * remove the vnode from appropriate free list.
1774 * called with vnode LOCKED and
1775 * the list lock held
1776 */
1777 static void
1778 vnode_list_remove_locked(vnode_t vp)
1779 {
1780 if (VONLIST(vp)) {
1781 /*
1782 * the v_listflag field is
1783 * protected by the vnode_list_lock
1784 */
1785 if (vp->v_listflag & VLIST_RAGE)
1786 VREMRAGE("vnode_list_remove", vp);
1787 else if (vp->v_listflag & VLIST_DEAD)
1788 VREMDEAD("vnode_list_remove", vp);
1789 else if (vp->v_listflag & VLIST_ASYNC_WORK)
1790 VREMASYNC_WORK("vnode_list_remove", vp);
1791 else
1792 VREMFREE("vnode_list_remove", vp);
1793 }
1794 }
1795
1796
1797 /*
1798 * remove the vnode from appropriate free list.
1799 * called with vnode LOCKED
1800 */
1801 static void
1802 vnode_list_remove(vnode_t vp)
1803 {
1804 #if DIAGNOSTIC
1805 lck_mtx_assert(&vp->v_lock, LCK_MTX_ASSERT_OWNED);
1806 #endif
1807 /*
1808 * we want to avoid taking the list lock
1809 * in the case where we're not on the free
1810 * list... this will be true for most
1811 * directories and any currently in use files
1812 *
1813 * we're guaranteed that we can't go from
1814 * the not-on-list state to the on-list
1815 * state since we hold the vnode lock...
1816 * all calls to vnode_list_add are done
1817 * under the vnode lock... so we can
1818 * check for that condition (the prevelant one)
1819 * without taking the list lock
1820 */
1821 if (VONLIST(vp)) {
1822 vnode_list_lock();
1823 /*
1824 * however, we're not guaranteed that
1825 * we won't go from the on-list state
1826 * to the not-on-list state until we
1827 * hold the vnode_list_lock... this
1828 * is due to "new_vnode" removing vnodes
1829 * from the free list uder the list_lock
1830 * w/o the vnode lock... so we need to
1831 * check again whether we're currently
1832 * on the free list
1833 */
1834 vnode_list_remove_locked(vp);
1835
1836 vnode_list_unlock();
1837 }
1838 }
1839
1840
1841 void
1842 vnode_rele(vnode_t vp)
1843 {
1844 vnode_rele_internal(vp, 0, 0, 0);
1845 }
1846
1847
1848 void
1849 vnode_rele_ext(vnode_t vp, int fmode, int dont_reenter)
1850 {
1851 vnode_rele_internal(vp, fmode, dont_reenter, 0);
1852 }
1853
1854
1855 void
1856 vnode_rele_internal(vnode_t vp, int fmode, int dont_reenter, int locked)
1857 {
1858
1859 if ( !locked)
1860 vnode_lock_spin(vp);
1861 #if DIAGNOSTIC
1862 else
1863 lck_mtx_assert(&vp->v_lock, LCK_MTX_ASSERT_OWNED);
1864 #endif
1865 if (--vp->v_usecount < 0)
1866 panic("vnode_rele_ext: vp %p usecount -ve : %d. v_tag = %d, v_type = %d, v_flag = %x.", vp, vp->v_usecount, vp->v_tag, vp->v_type, vp->v_flag);
1867
1868 if (fmode & FWRITE) {
1869 if (--vp->v_writecount < 0)
1870 panic("vnode_rele_ext: vp %p writecount -ve : %d. v_tag = %d, v_type = %d, v_flag = %x.", vp, vp->v_writecount, vp->v_tag, vp->v_type, vp->v_flag);
1871 }
1872 if (fmode & O_EVTONLY) {
1873 if (--vp->v_kusecount < 0)
1874 panic("vnode_rele_ext: vp %p kusecount -ve : %d. v_tag = %d, v_type = %d, v_flag = %x.", vp, vp->v_kusecount, vp->v_tag, vp->v_type, vp->v_flag);
1875 }
1876 if (vp->v_kusecount > vp->v_usecount)
1877 panic("vnode_rele_ext: vp %p kusecount(%d) out of balance with usecount(%d). v_tag = %d, v_type = %d, v_flag = %x.",vp, vp->v_kusecount, vp->v_usecount, vp->v_tag, vp->v_type, vp->v_flag);
1878
1879 if ((vp->v_iocount > 0) || (vp->v_usecount > 0)) {
1880 /*
1881 * vnode is still busy... if we're the last
1882 * usecount, mark for a future call to VNOP_INACTIVE
1883 * when the iocount finally drops to 0
1884 */
1885 if (vp->v_usecount == 0) {
1886 vp->v_lflag |= VL_NEEDINACTIVE;
1887 vp->v_flag &= ~(VNOCACHE_DATA | VRAOFF | VOPENEVT);
1888 }
1889 goto done;
1890 }
1891 vp->v_flag &= ~(VNOCACHE_DATA | VRAOFF | VOPENEVT);
1892
1893 if (ISSET(vp->v_lflag, VL_TERMINATE | VL_DEAD) || dont_reenter) {
1894 /*
1895 * vnode is being cleaned, or
1896 * we've requested that we don't reenter
1897 * the filesystem on this release...in
1898 * the latter case, we'll mark the vnode aged
1899 */
1900 if (dont_reenter) {
1901 if ( !(vp->v_lflag & (VL_TERMINATE | VL_DEAD | VL_MARKTERM)) ) {
1902 vp->v_lflag |= VL_NEEDINACTIVE;
1903
1904 if (vnode_on_reliable_media(vp) == FALSE || vp->v_flag & VISDIRTY) {
1905 vnode_async_list_add(vp);
1906 goto done;
1907 }
1908 }
1909 vp->v_flag |= VAGE;
1910 }
1911 vnode_list_add(vp);
1912
1913 goto done;
1914 }
1915 /*
1916 * at this point both the iocount and usecount
1917 * are zero
1918 * pick up an iocount so that we can call
1919 * VNOP_INACTIVE with the vnode lock unheld
1920 */
1921 vp->v_iocount++;
1922 #ifdef JOE_DEBUG
1923 record_vp(vp, 1);
1924 #endif
1925 vp->v_lflag &= ~VL_NEEDINACTIVE;
1926 vnode_unlock(vp);
1927
1928 VNOP_INACTIVE(vp, vfs_context_current());
1929
1930 vnode_lock_spin(vp);
1931 /*
1932 * because we dropped the vnode lock to call VNOP_INACTIVE
1933 * the state of the vnode may have changed... we may have
1934 * picked up an iocount, usecount or the MARKTERM may have
1935 * been set... we need to reevaluate the reference counts
1936 * to determine if we can call vnode_reclaim_internal at
1937 * this point... if the reference counts are up, we'll pick
1938 * up the MARKTERM state when they get subsequently dropped
1939 */
1940 if ( (vp->v_iocount == 1) && (vp->v_usecount == 0) &&
1941 ((vp->v_lflag & (VL_MARKTERM | VL_TERMINATE | VL_DEAD)) == VL_MARKTERM)) {
1942 struct uthread *ut;
1943
1944 ut = get_bsdthread_info(current_thread());
1945
1946 if (ut->uu_defer_reclaims) {
1947 vp->v_defer_reclaimlist = ut->uu_vreclaims;
1948 ut->uu_vreclaims = vp;
1949 goto done;
1950 }
1951 vnode_lock_convert(vp);
1952 vnode_reclaim_internal(vp, 1, 1, 0);
1953 }
1954 vnode_dropiocount(vp);
1955 vnode_list_add(vp);
1956 done:
1957 if (vp->v_usecount == 0 && vp->v_type == VREG && !(vp->v_flag & VSYSTEM)) {
1958
1959 if (vp->v_ubcinfo) {
1960 vnode_lock_convert(vp);
1961 memory_object_mark_unused(vp->v_ubcinfo->ui_control, (vp->v_flag & VRAGE) == VRAGE);
1962 }
1963 }
1964 if ( !locked)
1965 vnode_unlock(vp);
1966 return;
1967 }
1968
1969 /*
1970 * Remove any vnodes in the vnode table belonging to mount point mp.
1971 *
1972 * If MNT_NOFORCE is specified, there should not be any active ones,
1973 * return error if any are found (nb: this is a user error, not a
1974 * system error). If MNT_FORCE is specified, detach any active vnodes
1975 * that are found.
1976 */
1977 #if DIAGNOSTIC
1978 int busyprt = 0; /* print out busy vnodes */
1979 #endif
1980
1981 int
1982 vflush(struct mount *mp, struct vnode *skipvp, int flags)
1983 {
1984 struct vnode *vp;
1985 int busy = 0;
1986 int reclaimed = 0;
1987 int retval;
1988 unsigned int vid;
1989
1990 /*
1991 * See comments in vnode_iterate() for the rationale for this lock
1992 */
1993 mount_iterate_lock(mp);
1994
1995 mount_lock(mp);
1996 vnode_iterate_setup(mp);
1997 /*
1998 * On regular unmounts(not forced) do a
1999 * quick check for vnodes to be in use. This
2000 * preserves the caching of vnodes. automounter
2001 * tries unmounting every so often to see whether
2002 * it is still busy or not.
2003 */
2004 if (((flags & FORCECLOSE)==0) && ((mp->mnt_kern_flag & MNTK_UNMOUNT_PREFLIGHT) != 0)) {
2005 if (vnode_umount_preflight(mp, skipvp, flags)) {
2006 vnode_iterate_clear(mp);
2007 mount_unlock(mp);
2008 mount_iterate_unlock(mp);
2009 return(EBUSY);
2010 }
2011 }
2012 loop:
2013 /* If it returns 0 then there is nothing to do */
2014 retval = vnode_iterate_prepare(mp);
2015
2016 if (retval == 0) {
2017 vnode_iterate_clear(mp);
2018 mount_unlock(mp);
2019 mount_iterate_unlock(mp);
2020 return(retval);
2021 }
2022
2023 /* iterate over all the vnodes */
2024 while (!TAILQ_EMPTY(&mp->mnt_workerqueue)) {
2025
2026 vp = TAILQ_FIRST(&mp->mnt_workerqueue);
2027 TAILQ_REMOVE(&mp->mnt_workerqueue, vp, v_mntvnodes);
2028 TAILQ_INSERT_TAIL(&mp->mnt_vnodelist, vp, v_mntvnodes);
2029
2030 if ( (vp->v_mount != mp) || (vp == skipvp)) {
2031 continue;
2032 }
2033 vid = vp->v_id;
2034 mount_unlock(mp);
2035
2036 vnode_lock_spin(vp);
2037
2038 // If vnode is already terminating, wait for it...
2039 while (vp->v_id == vid && ISSET(vp->v_lflag, VL_TERMINATE)) {
2040 vp->v_lflag |= VL_TERMWANT;
2041 msleep(&vp->v_lflag, &vp->v_lock, PVFS, "vflush", NULL);
2042 }
2043
2044 if ((vp->v_id != vid) || ISSET(vp->v_lflag, VL_DEAD)) {
2045 vnode_unlock(vp);
2046 mount_lock(mp);
2047 continue;
2048 }
2049
2050 /*
2051 * If requested, skip over vnodes marked VSYSTEM.
2052 * Skip over all vnodes marked VNOFLUSH.
2053 */
2054 if ((flags & SKIPSYSTEM) && ((vp->v_flag & VSYSTEM) ||
2055 (vp->v_flag & VNOFLUSH))) {
2056 vnode_unlock(vp);
2057 mount_lock(mp);
2058 continue;
2059 }
2060 /*
2061 * If requested, skip over vnodes marked VSWAP.
2062 */
2063 if ((flags & SKIPSWAP) && (vp->v_flag & VSWAP)) {
2064 vnode_unlock(vp);
2065 mount_lock(mp);
2066 continue;
2067 }
2068 /*
2069 * If requested, skip over vnodes marked VROOT.
2070 */
2071 if ((flags & SKIPROOT) && (vp->v_flag & VROOT)) {
2072 vnode_unlock(vp);
2073 mount_lock(mp);
2074 continue;
2075 }
2076 /*
2077 * If WRITECLOSE is set, only flush out regular file
2078 * vnodes open for writing.
2079 */
2080 if ((flags & WRITECLOSE) &&
2081 (vp->v_writecount == 0 || vp->v_type != VREG)) {
2082 vnode_unlock(vp);
2083 mount_lock(mp);
2084 continue;
2085 }
2086 /*
2087 * If the real usecount is 0, all we need to do is clear
2088 * out the vnode data structures and we are done.
2089 */
2090 if (((vp->v_usecount == 0) ||
2091 ((vp->v_usecount - vp->v_kusecount) == 0))) {
2092
2093 vnode_lock_convert(vp);
2094 vp->v_iocount++; /* so that drain waits for * other iocounts */
2095 #ifdef JOE_DEBUG
2096 record_vp(vp, 1);
2097 #endif
2098 vnode_reclaim_internal(vp, 1, 1, 0);
2099 vnode_dropiocount(vp);
2100 vnode_list_add(vp);
2101 vnode_unlock(vp);
2102
2103 reclaimed++;
2104 mount_lock(mp);
2105 continue;
2106 }
2107 /*
2108 * If FORCECLOSE is set, forcibly close the vnode.
2109 * For block or character devices, revert to an
2110 * anonymous device. For all other files, just kill them.
2111 */
2112 if (flags & FORCECLOSE) {
2113 vnode_lock_convert(vp);
2114
2115 if (vp->v_type != VBLK && vp->v_type != VCHR) {
2116 vp->v_iocount++; /* so that drain waits * for other iocounts */
2117 #ifdef JOE_DEBUG
2118 record_vp(vp, 1);
2119 #endif
2120 vnode_abort_advlocks(vp);
2121 vnode_reclaim_internal(vp, 1, 1, 0);
2122 vnode_dropiocount(vp);
2123 vnode_list_add(vp);
2124 vnode_unlock(vp);
2125 } else {
2126 vclean(vp, 0);
2127 vp->v_lflag &= ~VL_DEAD;
2128 vp->v_op = spec_vnodeop_p;
2129 vp->v_flag |= VDEVFLUSH;
2130 vnode_unlock(vp);
2131 }
2132 mount_lock(mp);
2133 continue;
2134 }
2135 #if DIAGNOSTIC
2136 if (busyprt)
2137 vprint("vflush: busy vnode", vp);
2138 #endif
2139 vnode_unlock(vp);
2140 mount_lock(mp);
2141 busy++;
2142 }
2143
2144 /* At this point the worker queue is completed */
2145 if (busy && ((flags & FORCECLOSE)==0) && reclaimed) {
2146 busy = 0;
2147 reclaimed = 0;
2148 (void)vnode_iterate_reloadq(mp);
2149 /* returned with mount lock held */
2150 goto loop;
2151 }
2152
2153 /* if new vnodes were created in between retry the reclaim */
2154 if ( vnode_iterate_reloadq(mp) != 0) {
2155 if (!(busy && ((flags & FORCECLOSE)==0)))
2156 goto loop;
2157 }
2158 vnode_iterate_clear(mp);
2159 mount_unlock(mp);
2160 mount_iterate_unlock(mp);
2161
2162 if (busy && ((flags & FORCECLOSE)==0))
2163 return (EBUSY);
2164 return (0);
2165 }
2166
2167 long num_recycledvnodes = 0;
2168 /*
2169 * Disassociate the underlying file system from a vnode.
2170 * The vnode lock is held on entry.
2171 */
2172 static void
2173 vclean(vnode_t vp, int flags)
2174 {
2175 vfs_context_t ctx = vfs_context_current();
2176 int active;
2177 int need_inactive;
2178 int already_terminating;
2179 int clflags = 0;
2180 #if NAMEDSTREAMS
2181 int is_namedstream;
2182 #endif
2183
2184 /*
2185 * Check to see if the vnode is in use.
2186 * If so we have to reference it before we clean it out
2187 * so that its count cannot fall to zero and generate a
2188 * race against ourselves to recycle it.
2189 */
2190 active = vp->v_usecount;
2191
2192 /*
2193 * just in case we missed sending a needed
2194 * VNOP_INACTIVE, we'll do it now
2195 */
2196 need_inactive = (vp->v_lflag & VL_NEEDINACTIVE);
2197
2198 vp->v_lflag &= ~VL_NEEDINACTIVE;
2199
2200 /*
2201 * Prevent the vnode from being recycled or
2202 * brought into use while we clean it out.
2203 */
2204 already_terminating = (vp->v_lflag & VL_TERMINATE);
2205
2206 vp->v_lflag |= VL_TERMINATE;
2207
2208 #if NAMEDSTREAMS
2209 is_namedstream = vnode_isnamedstream(vp);
2210 #endif
2211
2212 vnode_unlock(vp);
2213
2214 OSAddAtomicLong(1, &num_recycledvnodes);
2215
2216 if (flags & DOCLOSE)
2217 clflags |= IO_NDELAY;
2218 if (flags & REVOKEALL)
2219 clflags |= IO_REVOKE;
2220
2221 if (active && (flags & DOCLOSE))
2222 VNOP_CLOSE(vp, clflags, ctx);
2223
2224 /*
2225 * Clean out any buffers associated with the vnode.
2226 */
2227 if (flags & DOCLOSE) {
2228 #if NFSCLIENT
2229 if (vp->v_tag == VT_NFS)
2230 nfs_vinvalbuf(vp, V_SAVE, ctx, 0);
2231 else
2232 #endif
2233 {
2234 VNOP_FSYNC(vp, MNT_WAIT, ctx);
2235
2236 /*
2237 * If the vnode is still in use (by the journal for
2238 * example) we don't want to invalidate locked buffers
2239 * here. In that case, either the journal will tidy them
2240 * up, or we will deal with it when the usecount is
2241 * finally released in vnode_rele_internal.
2242 */
2243 buf_invalidateblks(vp, BUF_WRITE_DATA | (active ? 0 : BUF_INVALIDATE_LOCKED), 0, 0);
2244 }
2245 if (UBCINFOEXISTS(vp))
2246 /*
2247 * Clean the pages in VM.
2248 */
2249 (void)ubc_msync(vp, (off_t)0, ubc_getsize(vp), NULL, UBC_PUSHALL | UBC_INVALIDATE | UBC_SYNC);
2250 }
2251 if (active || need_inactive)
2252 VNOP_INACTIVE(vp, ctx);
2253
2254 #if NAMEDSTREAMS
2255 if ((is_namedstream != 0) && (vp->v_parent != NULLVP)) {
2256 vnode_t pvp = vp->v_parent;
2257
2258 /* Delete the shadow stream file before we reclaim its vnode */
2259 if (vnode_isshadow(vp)) {
2260 vnode_relenamedstream(pvp, vp);
2261 }
2262
2263 /*
2264 * No more streams associated with the parent. We
2265 * have a ref on it, so its identity is stable.
2266 * If the parent is on an opaque volume, then we need to know
2267 * whether it has associated named streams.
2268 */
2269 if (vfs_authopaque(pvp->v_mount)) {
2270 vnode_lock_spin(pvp);
2271 pvp->v_lflag &= ~VL_HASSTREAMS;
2272 vnode_unlock(pvp);
2273 }
2274 }
2275 #endif
2276
2277 /*
2278 * Destroy ubc named reference
2279 * cluster_release is done on this path
2280 * along with dropping the reference on the ucred
2281 * (and in the case of forced unmount of an mmap-ed file,
2282 * the ubc reference on the vnode is dropped here too).
2283 */
2284 ubc_destroy_named(vp);
2285
2286 #if CONFIG_TRIGGERS
2287 /*
2288 * cleanup trigger info from vnode (if any)
2289 */
2290 if (vp->v_resolve)
2291 vnode_resolver_detach(vp);
2292 #endif
2293
2294 /*
2295 * Reclaim the vnode.
2296 */
2297 if (VNOP_RECLAIM(vp, ctx))
2298 panic("vclean: cannot reclaim");
2299
2300 // make sure the name & parent ptrs get cleaned out!
2301 vnode_update_identity(vp, NULLVP, NULL, 0, 0, VNODE_UPDATE_PARENT | VNODE_UPDATE_NAME | VNODE_UPDATE_PURGE);
2302
2303 vnode_lock(vp);
2304
2305 /*
2306 * Remove the vnode from any mount list it might be on. It is not
2307 * safe to do this any earlier because unmount needs to wait for
2308 * any vnodes to terminate and it cannot do that if it cannot find
2309 * them.
2310 */
2311 insmntque(vp, (struct mount *)0);
2312
2313 vp->v_mount = dead_mountp;
2314 vp->v_op = dead_vnodeop_p;
2315 vp->v_tag = VT_NON;
2316 vp->v_data = NULL;
2317
2318 vp->v_lflag |= VL_DEAD;
2319 vp->v_flag &= ~VISDIRTY;
2320
2321 if (already_terminating == 0) {
2322 vp->v_lflag &= ~VL_TERMINATE;
2323 /*
2324 * Done with purge, notify sleepers of the grim news.
2325 */
2326 if (vp->v_lflag & VL_TERMWANT) {
2327 vp->v_lflag &= ~VL_TERMWANT;
2328 wakeup(&vp->v_lflag);
2329 }
2330 }
2331 }
2332
2333 /*
2334 * Eliminate all activity associated with the requested vnode
2335 * and with all vnodes aliased to the requested vnode.
2336 */
2337 int
2338 #if DIAGNOSTIC
2339 vn_revoke(vnode_t vp, int flags, __unused vfs_context_t a_context)
2340 #else
2341 vn_revoke(vnode_t vp, __unused int flags, __unused vfs_context_t a_context)
2342 #endif
2343 {
2344 struct vnode *vq;
2345 int vid;
2346
2347 #if DIAGNOSTIC
2348 if ((flags & REVOKEALL) == 0)
2349 panic("vnop_revoke");
2350 #endif
2351
2352 if (vnode_isaliased(vp)) {
2353 /*
2354 * If a vgone (or vclean) is already in progress,
2355 * return an immediate error
2356 */
2357 if (vp->v_lflag & VL_TERMINATE)
2358 return(ENOENT);
2359
2360 /*
2361 * Ensure that vp will not be vgone'd while we
2362 * are eliminating its aliases.
2363 */
2364 SPECHASH_LOCK();
2365 while ((vp->v_specflags & SI_ALIASED)) {
2366 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
2367 if (vq->v_rdev != vp->v_rdev ||
2368 vq->v_type != vp->v_type || vp == vq)
2369 continue;
2370 vid = vq->v_id;
2371 SPECHASH_UNLOCK();
2372 if (vnode_getwithvid(vq,vid)){
2373 SPECHASH_LOCK();
2374 break;
2375 }
2376 vnode_lock(vq);
2377 if (!(vq->v_lflag & VL_TERMINATE)) {
2378 vnode_reclaim_internal(vq, 1, 1, 0);
2379 }
2380 vnode_put_locked(vq);
2381 vnode_unlock(vq);
2382 SPECHASH_LOCK();
2383 break;
2384 }
2385 }
2386 SPECHASH_UNLOCK();
2387 }
2388 vnode_lock(vp);
2389 if (vp->v_lflag & VL_TERMINATE) {
2390 vnode_unlock(vp);
2391 return (ENOENT);
2392 }
2393 vnode_reclaim_internal(vp, 1, 0, REVOKEALL);
2394 vnode_unlock(vp);
2395
2396 return (0);
2397 }
2398
2399 /*
2400 * Recycle an unused vnode to the front of the free list.
2401 * Release the passed interlock if the vnode will be recycled.
2402 */
2403 int
2404 vnode_recycle(struct vnode *vp)
2405 {
2406 vnode_lock_spin(vp);
2407
2408 if (vp->v_iocount || vp->v_usecount) {
2409 vp->v_lflag |= VL_MARKTERM;
2410 vnode_unlock(vp);
2411 return(0);
2412 }
2413 vnode_lock_convert(vp);
2414 vnode_reclaim_internal(vp, 1, 0, 0);
2415
2416 vnode_unlock(vp);
2417
2418 return (1);
2419 }
2420
2421 static int
2422 vnode_reload(vnode_t vp)
2423 {
2424 vnode_lock_spin(vp);
2425
2426 if ((vp->v_iocount > 1) || vp->v_usecount) {
2427 vnode_unlock(vp);
2428 return(0);
2429 }
2430 if (vp->v_iocount <= 0)
2431 panic("vnode_reload with no iocount %d", vp->v_iocount);
2432
2433 /* mark for release when iocount is dopped */
2434 vp->v_lflag |= VL_MARKTERM;
2435 vnode_unlock(vp);
2436
2437 return (1);
2438 }
2439
2440
2441 static void
2442 vgone(vnode_t vp, int flags)
2443 {
2444 struct vnode *vq;
2445 struct vnode *vx;
2446
2447 /*
2448 * Clean out the filesystem specific data.
2449 * vclean also takes care of removing the
2450 * vnode from any mount list it might be on
2451 */
2452 vclean(vp, flags | DOCLOSE);
2453
2454 /*
2455 * If special device, remove it from special device alias list
2456 * if it is on one.
2457 */
2458 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_specinfo != 0) {
2459 SPECHASH_LOCK();
2460 if (*vp->v_hashchain == vp) {
2461 *vp->v_hashchain = vp->v_specnext;
2462 } else {
2463 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
2464 if (vq->v_specnext != vp)
2465 continue;
2466 vq->v_specnext = vp->v_specnext;
2467 break;
2468 }
2469 if (vq == NULL)
2470 panic("missing bdev");
2471 }
2472 if (vp->v_specflags & SI_ALIASED) {
2473 vx = NULL;
2474 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
2475 if (vq->v_rdev != vp->v_rdev ||
2476 vq->v_type != vp->v_type)
2477 continue;
2478 if (vx)
2479 break;
2480 vx = vq;
2481 }
2482 if (vx == NULL)
2483 panic("missing alias");
2484 if (vq == NULL)
2485 vx->v_specflags &= ~SI_ALIASED;
2486 vp->v_specflags &= ~SI_ALIASED;
2487 }
2488 SPECHASH_UNLOCK();
2489 {
2490 struct specinfo *tmp = vp->v_specinfo;
2491 vp->v_specinfo = NULL;
2492 FREE_ZONE((void *)tmp, sizeof(struct specinfo), M_SPECINFO);
2493 }
2494 }
2495 }
2496
2497 /*
2498 * Lookup a vnode by device number.
2499 */
2500 int
2501 check_mountedon(dev_t dev, enum vtype type, int *errorp)
2502 {
2503 vnode_t vp;
2504 int rc = 0;
2505 int vid;
2506
2507 loop:
2508 SPECHASH_LOCK();
2509 for (vp = speclisth[SPECHASH(dev)]; vp; vp = vp->v_specnext) {
2510 if (dev != vp->v_rdev || type != vp->v_type)
2511 continue;
2512 vid = vp->v_id;
2513 SPECHASH_UNLOCK();
2514 if (vnode_getwithvid(vp,vid))
2515 goto loop;
2516 vnode_lock_spin(vp);
2517 if ((vp->v_usecount > 0) || (vp->v_iocount > 1)) {
2518 vnode_unlock(vp);
2519 if ((*errorp = vfs_mountedon(vp)) != 0)
2520 rc = 1;
2521 } else
2522 vnode_unlock(vp);
2523 vnode_put(vp);
2524 return(rc);
2525 }
2526 SPECHASH_UNLOCK();
2527 return (0);
2528 }
2529
2530 /*
2531 * Calculate the total number of references to a special device.
2532 */
2533 int
2534 vcount(vnode_t vp)
2535 {
2536 vnode_t vq, vnext;
2537 int count;
2538 int vid;
2539
2540 if (!vnode_isspec(vp)) {
2541 return (vp->v_usecount - vp->v_kusecount);
2542 }
2543
2544 loop:
2545 if (!vnode_isaliased(vp))
2546 return (vp->v_specinfo->si_opencount);
2547 count = 0;
2548
2549 SPECHASH_LOCK();
2550 /*
2551 * Grab first vnode and its vid.
2552 */
2553 vq = *vp->v_hashchain;
2554 vid = vq ? vq->v_id : 0;
2555
2556 SPECHASH_UNLOCK();
2557
2558 while (vq) {
2559 /*
2560 * Attempt to get the vnode outside the SPECHASH lock.
2561 */
2562 if (vnode_getwithvid(vq, vid)) {
2563 goto loop;
2564 }
2565 vnode_lock(vq);
2566
2567 if (vq->v_rdev == vp->v_rdev && vq->v_type == vp->v_type) {
2568 if ((vq->v_usecount == 0) && (vq->v_iocount == 1) && vq != vp) {
2569 /*
2570 * Alias, but not in use, so flush it out.
2571 */
2572 vnode_reclaim_internal(vq, 1, 1, 0);
2573 vnode_put_locked(vq);
2574 vnode_unlock(vq);
2575 goto loop;
2576 }
2577 count += vq->v_specinfo->si_opencount;
2578 }
2579 vnode_unlock(vq);
2580
2581 SPECHASH_LOCK();
2582 /*
2583 * must do this with the reference still held on 'vq'
2584 * so that it can't be destroyed while we're poking
2585 * through v_specnext
2586 */
2587 vnext = vq->v_specnext;
2588 vid = vnext ? vnext->v_id : 0;
2589
2590 SPECHASH_UNLOCK();
2591
2592 vnode_put(vq);
2593
2594 vq = vnext;
2595 }
2596
2597 return (count);
2598 }
2599
2600 int prtactive = 0; /* 1 => print out reclaim of active vnodes */
2601
2602 /*
2603 * Print out a description of a vnode.
2604 */
2605 static const char *typename[] =
2606 { "VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD" };
2607
2608 void
2609 vprint(const char *label, struct vnode *vp)
2610 {
2611 char sbuf[64];
2612
2613 if (label != NULL)
2614 printf("%s: ", label);
2615 printf("type %s, usecount %d, writecount %d",
2616 typename[vp->v_type], vp->v_usecount, vp->v_writecount);
2617 sbuf[0] = '\0';
2618 if (vp->v_flag & VROOT)
2619 strlcat(sbuf, "|VROOT", sizeof(sbuf));
2620 if (vp->v_flag & VTEXT)
2621 strlcat(sbuf, "|VTEXT", sizeof(sbuf));
2622 if (vp->v_flag & VSYSTEM)
2623 strlcat(sbuf, "|VSYSTEM", sizeof(sbuf));
2624 if (vp->v_flag & VNOFLUSH)
2625 strlcat(sbuf, "|VNOFLUSH", sizeof(sbuf));
2626 if (vp->v_flag & VBWAIT)
2627 strlcat(sbuf, "|VBWAIT", sizeof(sbuf));
2628 if (vnode_isaliased(vp))
2629 strlcat(sbuf, "|VALIASED", sizeof(sbuf));
2630 if (sbuf[0] != '\0')
2631 printf(" flags (%s)", &sbuf[1]);
2632 }
2633
2634
2635 int
2636 vn_getpath(struct vnode *vp, char *pathbuf, int *len)
2637 {
2638 return build_path(vp, pathbuf, *len, len, BUILDPATH_NO_FS_ENTER, vfs_context_current());
2639 }
2640
2641 int
2642 vn_getpath_fsenter(struct vnode *vp, char *pathbuf, int *len)
2643 {
2644 return build_path(vp, pathbuf, *len, len, 0, vfs_context_current());
2645 }
2646
2647 /*
2648 * vn_getpath_fsenter_with_parent will reenter the file system to fine the path of the
2649 * vnode. It requires that there are IO counts on both the vnode and the directory vnode.
2650 *
2651 * vn_getpath_fsenter is called by MAC hooks to authorize operations for every thing, but
2652 * unlink, rmdir and rename. For these operation the MAC hook calls vn_getpath. This presents
2653 * problems where if the path can not be found from the name cache, those operations can
2654 * erroneously fail with EPERM even though the call should succeed. When removing or moving
2655 * file system objects with operations such as unlink or rename, those operations need to
2656 * take IO counts on the target and containing directory. Calling vn_getpath_fsenter from a
2657 * MAC hook from these operations during forced unmount operations can lead to dead
2658 * lock. This happens when the operation starts, IO counts are taken on the containing
2659 * directories and targets. Before the MAC hook is called a forced unmount from another
2660 * thread takes place and blocks on the on going operation's directory vnode in vdrain.
2661 * After which, the MAC hook gets called and calls vn_getpath_fsenter. vn_getpath_fsenter
2662 * is called with the understanding that there is an IO count on the target. If in
2663 * build_path the directory vnode is no longer in the cache, then the parent object id via
2664 * vnode_getattr from the target is obtain and used to call VFS_VGET to get the parent
2665 * vnode. The file system's VFS_VGET then looks up by inode in its hash and tries to get
2666 * an IO count. But VFS_VGET "sees" the directory vnode is in vdrain and can block
2667 * depending on which version and how it calls the vnode_get family of interfaces.
2668 *
2669 * N.B. A reasonable interface to use is vnode_getwithvid. This interface was modified to
2670 * call vnode_getiocount with VNODE_DRAINO, so it will happily get an IO count and not
2671 * cause issues, but there is no guarantee that all or any file systems are doing that.
2672 *
2673 * vn_getpath_fsenter_with_parent can enter the file system safely since there is a known
2674 * IO count on the directory vnode by calling build_path_with_parent.
2675 */
2676
2677 int
2678 vn_getpath_fsenter_with_parent(struct vnode *dvp, struct vnode *vp, char *pathbuf, int *len)
2679 {
2680 return build_path_with_parent(vp, dvp, pathbuf, *len, len, 0, vfs_context_current());
2681 }
2682
2683 int
2684 vn_getcdhash(struct vnode *vp, off_t offset, unsigned char *cdhash)
2685 {
2686 return ubc_cs_getcdhash(vp, offset, cdhash);
2687 }
2688
2689
2690 static char *extension_table=NULL;
2691 static int nexts;
2692 static int max_ext_width;
2693
2694 static int
2695 extension_cmp(const void *a, const void *b)
2696 {
2697 return (strlen((const char *)a) - strlen((const char *)b));
2698 }
2699
2700
2701 //
2702 // This is the api LaunchServices uses to inform the kernel
2703 // the list of package extensions to ignore.
2704 //
2705 // Internally we keep the list sorted by the length of the
2706 // the extension (from longest to shortest). We sort the
2707 // list of extensions so that we can speed up our searches
2708 // when comparing file names -- we only compare extensions
2709 // that could possibly fit into the file name, not all of
2710 // them (i.e. a short 8 character name can't have an 8
2711 // character extension).
2712 //
2713 extern lck_mtx_t *pkg_extensions_lck;
2714
2715 __private_extern__ int
2716 set_package_extensions_table(user_addr_t data, int nentries, int maxwidth)
2717 {
2718 char *new_exts, *old_exts;
2719 int error;
2720
2721 if (nentries <= 0 || nentries > 1024 || maxwidth <= 0 || maxwidth > 255) {
2722 return EINVAL;
2723 }
2724
2725
2726 // allocate one byte extra so we can guarantee null termination
2727 MALLOC(new_exts, char *, (nentries * maxwidth) + 1, M_TEMP, M_WAITOK);
2728 if (new_exts == NULL) {
2729 return ENOMEM;
2730 }
2731
2732 error = copyin(data, new_exts, nentries * maxwidth);
2733 if (error) {
2734 FREE(new_exts, M_TEMP);
2735 return error;
2736 }
2737
2738 new_exts[(nentries * maxwidth)] = '\0'; // guarantee null termination of the block
2739
2740 qsort(new_exts, nentries, maxwidth, extension_cmp);
2741
2742 lck_mtx_lock(pkg_extensions_lck);
2743
2744 old_exts = extension_table;
2745 extension_table = new_exts;
2746 nexts = nentries;
2747 max_ext_width = maxwidth;
2748
2749 lck_mtx_unlock(pkg_extensions_lck);
2750
2751 if (old_exts) {
2752 FREE(old_exts, M_TEMP);
2753 }
2754
2755 return 0;
2756 }
2757
2758
2759 int is_package_name(const char *name, int len)
2760 {
2761 int i, extlen;
2762 const char *ptr, *name_ext;
2763
2764 if (len <= 3) {
2765 return 0;
2766 }
2767
2768 name_ext = NULL;
2769 for(ptr=name; *ptr != '\0'; ptr++) {
2770 if (*ptr == '.') {
2771 name_ext = ptr;
2772 }
2773 }
2774
2775 // if there is no "." extension, it can't match
2776 if (name_ext == NULL) {
2777 return 0;
2778 }
2779
2780 // advance over the "."
2781 name_ext++;
2782
2783 lck_mtx_lock(pkg_extensions_lck);
2784
2785 // now iterate over all the extensions to see if any match
2786 ptr = &extension_table[0];
2787 for(i=0; i < nexts; i++, ptr+=max_ext_width) {
2788 extlen = strlen(ptr);
2789 if (strncasecmp(name_ext, ptr, extlen) == 0 && name_ext[extlen] == '\0') {
2790 // aha, a match!
2791 lck_mtx_unlock(pkg_extensions_lck);
2792 return 1;
2793 }
2794 }
2795
2796 lck_mtx_unlock(pkg_extensions_lck);
2797
2798 // if we get here, no extension matched
2799 return 0;
2800 }
2801
2802 int
2803 vn_path_package_check(__unused vnode_t vp, char *path, int pathlen, int *component)
2804 {
2805 char *ptr, *end;
2806 int comp=0;
2807
2808 *component = -1;
2809 if (*path != '/') {
2810 return EINVAL;
2811 }
2812
2813 end = path + 1;
2814 while(end < path + pathlen && *end != '\0') {
2815 while(end < path + pathlen && *end == '/' && *end != '\0') {
2816 end++;
2817 }
2818
2819 ptr = end;
2820
2821 while(end < path + pathlen && *end != '/' && *end != '\0') {
2822 end++;
2823 }
2824
2825 if (end > path + pathlen) {
2826 // hmm, string wasn't null terminated
2827 return EINVAL;
2828 }
2829
2830 *end = '\0';
2831 if (is_package_name(ptr, end - ptr)) {
2832 *component = comp;
2833 break;
2834 }
2835
2836 end++;
2837 comp++;
2838 }
2839
2840 return 0;
2841 }
2842
2843 /*
2844 * Determine if a name is inappropriate for a searchfs query.
2845 * This list consists of /System currently.
2846 */
2847
2848 int vn_searchfs_inappropriate_name(const char *name, int len) {
2849 const char *bad_names[] = { "System" };
2850 int bad_len[] = { 6 };
2851 int i;
2852
2853 for(i=0; i < (int) (sizeof(bad_names) / sizeof(bad_names[0])); i++) {
2854 if (len == bad_len[i] && strncmp(name, bad_names[i], strlen(bad_names[i]) + 1) == 0) {
2855 return 1;
2856 }
2857 }
2858
2859 // if we get here, no name matched
2860 return 0;
2861 }
2862
2863 /*
2864 * Top level filesystem related information gathering.
2865 */
2866 extern unsigned int vfs_nummntops;
2867
2868 /*
2869 * The VFS_NUMMNTOPS shouldn't be at name[1] since
2870 * is a VFS generic variable. Since we no longer support
2871 * VT_UFS, we reserve its value to support this sysctl node.
2872 *
2873 * It should have been:
2874 * name[0]: VFS_GENERIC
2875 * name[1]: VFS_NUMMNTOPS
2876 */
2877 SYSCTL_INT(_vfs, VFS_NUMMNTOPS, nummntops,
2878 CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
2879 &vfs_nummntops, 0, "");
2880
2881 int
2882 vfs_sysctl(int *name __unused, u_int namelen __unused,
2883 user_addr_t oldp __unused, size_t *oldlenp __unused,
2884 user_addr_t newp __unused, size_t newlen __unused, proc_t p __unused);
2885
2886 int
2887 vfs_sysctl(int *name __unused, u_int namelen __unused,
2888 user_addr_t oldp __unused, size_t *oldlenp __unused,
2889 user_addr_t newp __unused, size_t newlen __unused, proc_t p __unused)
2890 {
2891 return (EINVAL);
2892 }
2893
2894
2895 //
2896 // The following code disallows specific sysctl's that came through
2897 // the direct sysctl interface (vfs_sysctl_node) instead of the newer
2898 // sysctl_vfs_ctlbyfsid() interface. We can not allow these selectors
2899 // through vfs_sysctl_node() because it passes the user's oldp pointer
2900 // directly to the file system which (for these selectors) casts it
2901 // back to a struct sysctl_req and then proceed to use SYSCTL_IN()
2902 // which jumps through an arbitrary function pointer. When called
2903 // through the sysctl_vfs_ctlbyfsid() interface this does not happen
2904 // and so it's safe.
2905 //
2906 // Unfortunately we have to pull in definitions from AFP and SMB and
2907 // perform explicit name checks on the file system to determine if
2908 // these selectors are being used.
2909 //
2910
2911 #define AFPFS_VFS_CTL_GETID 0x00020001
2912 #define AFPFS_VFS_CTL_NETCHANGE 0x00020002
2913 #define AFPFS_VFS_CTL_VOLCHANGE 0x00020003
2914
2915 #define SMBFS_SYSCTL_REMOUNT 1
2916 #define SMBFS_SYSCTL_REMOUNT_INFO 2
2917 #define SMBFS_SYSCTL_GET_SERVER_SHARE 3
2918
2919
2920 static int
2921 is_bad_sysctl_name(struct vfstable *vfsp, int selector_name)
2922 {
2923 switch(selector_name) {
2924 case VFS_CTL_QUERY:
2925 case VFS_CTL_TIMEO:
2926 case VFS_CTL_NOLOCKS:
2927 case VFS_CTL_NSTATUS:
2928 case VFS_CTL_SADDR:
2929 case VFS_CTL_DISC:
2930 case VFS_CTL_SERVERINFO:
2931 return 1;
2932
2933 default:
2934 break;
2935 }
2936
2937 // the more complicated check for some of SMB's special values
2938 if (strcmp(vfsp->vfc_name, "smbfs") == 0) {
2939 switch(selector_name) {
2940 case SMBFS_SYSCTL_REMOUNT:
2941 case SMBFS_SYSCTL_REMOUNT_INFO:
2942 case SMBFS_SYSCTL_GET_SERVER_SHARE:
2943 return 1;
2944 }
2945 } else if (strcmp(vfsp->vfc_name, "afpfs") == 0) {
2946 switch(selector_name) {
2947 case AFPFS_VFS_CTL_GETID:
2948 case AFPFS_VFS_CTL_NETCHANGE:
2949 case AFPFS_VFS_CTL_VOLCHANGE:
2950 return 1;
2951 }
2952 }
2953
2954 //
2955 // If we get here we passed all the checks so the selector is ok
2956 //
2957 return 0;
2958 }
2959
2960
2961 int vfs_sysctl_node SYSCTL_HANDLER_ARGS
2962 {
2963 int *name, namelen;
2964 struct vfstable *vfsp;
2965 int error;
2966 int fstypenum;
2967
2968 fstypenum = oidp->oid_number;
2969 name = arg1;
2970 namelen = arg2;
2971
2972 /* all sysctl names at this level should have at least one name slot for the FS */
2973 if (namelen < 1)
2974 return (EISDIR); /* overloaded */
2975
2976 mount_list_lock();
2977 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2978 if (vfsp->vfc_typenum == fstypenum) {
2979 vfsp->vfc_refcount++;
2980 break;
2981 }
2982 mount_list_unlock();
2983
2984 if (vfsp == NULL) {
2985 return (ENOTSUP);
2986 }
2987
2988 if (is_bad_sysctl_name(vfsp, name[0])) {
2989 printf("vfs: bad selector 0x%.8x for old-style sysctl(). use the sysctl-by-fsid interface instead\n", name[0]);
2990 return EPERM;
2991 }
2992
2993 error = (vfsp->vfc_vfsops->vfs_sysctl)(name, namelen, req->oldptr, &req->oldlen, req->newptr, req->newlen, vfs_context_current());
2994
2995 mount_list_lock();
2996 vfsp->vfc_refcount--;
2997 mount_list_unlock();
2998
2999 return error;
3000 }
3001
3002 /*
3003 * Check to see if a filesystem is mounted on a block device.
3004 */
3005 int
3006 vfs_mountedon(struct vnode *vp)
3007 {
3008 struct vnode *vq;
3009 int error = 0;
3010
3011 SPECHASH_LOCK();
3012 if (vp->v_specflags & SI_MOUNTEDON) {
3013 error = EBUSY;
3014 goto out;
3015 }
3016 if (vp->v_specflags & SI_ALIASED) {
3017 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
3018 if (vq->v_rdev != vp->v_rdev ||
3019 vq->v_type != vp->v_type)
3020 continue;
3021 if (vq->v_specflags & SI_MOUNTEDON) {
3022 error = EBUSY;
3023 break;
3024 }
3025 }
3026 }
3027 out:
3028 SPECHASH_UNLOCK();
3029 return (error);
3030 }
3031
3032 struct unmount_info {
3033 int u_errs; // Total failed unmounts
3034 int u_busy; // EBUSY failed unmounts
3035 };
3036
3037 static int
3038 unmount_callback(mount_t mp, void *arg)
3039 {
3040 int error;
3041 char *mntname;
3042 struct unmount_info *uip = arg;
3043
3044 mount_ref(mp, 0);
3045 mount_iterdrop(mp); // avoid vfs_iterate deadlock in dounmount()
3046
3047 MALLOC_ZONE(mntname, void *, MAXPATHLEN, M_NAMEI, M_WAITOK);
3048 if (mntname)
3049 strlcpy(mntname, mp->mnt_vfsstat.f_mntonname, MAXPATHLEN);
3050
3051 error = dounmount(mp, MNT_FORCE, 1, vfs_context_current());
3052 if (error) {
3053 uip->u_errs++;
3054 printf("Unmount of %s failed (%d)\n", mntname ? mntname:"?", error);
3055 if (error == EBUSY)
3056 uip->u_busy++;
3057 }
3058 if (mntname)
3059 FREE_ZONE(mntname, MAXPATHLEN, M_NAMEI);
3060
3061 return (VFS_RETURNED);
3062 }
3063
3064 /*
3065 * Unmount all filesystems. The list is traversed in reverse order
3066 * of mounting to avoid dependencies.
3067 * Busy mounts are retried.
3068 */
3069 __private_extern__ void
3070 vfs_unmountall(void)
3071 {
3072 int mounts, sec = 1;
3073 struct unmount_info ui;
3074
3075 retry:
3076 ui.u_errs = ui.u_busy = 0;
3077 vfs_iterate(VFS_ITERATE_CB_DROPREF | VFS_ITERATE_TAIL_FIRST, unmount_callback, &ui);
3078 mounts = mount_getvfscnt();
3079 if (mounts == 0)
3080 return;
3081
3082 if (ui.u_busy > 0) { // Busy mounts - wait & retry
3083 tsleep(&nummounts, PVFS, "busy mount", sec * hz);
3084 sec *= 2;
3085 if (sec <= 32)
3086 goto retry;
3087 printf("Unmounting timed out\n");
3088 } else if (ui.u_errs < mounts) {
3089 // If the vfs_iterate missed mounts in progress - wait a bit
3090 tsleep(&nummounts, PVFS, "missed mount", 2 * hz);
3091 }
3092 }
3093
3094 /*
3095 * This routine is called from vnode_pager_deallocate out of the VM
3096 * The path to vnode_pager_deallocate can only be initiated by ubc_destroy_named
3097 * on a vnode that has a UBCINFO
3098 */
3099 __private_extern__ void
3100 vnode_pager_vrele(vnode_t vp)
3101 {
3102 struct ubc_info *uip;
3103
3104 vnode_lock_spin(vp);
3105
3106 vp->v_lflag &= ~VNAMED_UBC;
3107 if (vp->v_usecount != 0) {
3108 /*
3109 * At the eleventh hour, just before the ubcinfo is
3110 * destroyed, ensure the ubc-specific v_usecount
3111 * reference has gone. We use v_usecount != 0 as a hint;
3112 * ubc_unmap() does nothing if there's no mapping.
3113 *
3114 * This case is caused by coming here via forced unmount,
3115 * versus the usual vm_object_deallocate() path.
3116 * In the forced unmount case, ubc_destroy_named()
3117 * releases the pager before memory_object_last_unmap()
3118 * can be called.
3119 */
3120 vnode_unlock(vp);
3121 ubc_unmap(vp);
3122 vnode_lock_spin(vp);
3123 }
3124
3125 uip = vp->v_ubcinfo;
3126 vp->v_ubcinfo = UBC_INFO_NULL;
3127
3128 vnode_unlock(vp);
3129
3130 ubc_info_deallocate(uip);
3131 }
3132
3133
3134 #include <sys/disk.h>
3135
3136 u_int32_t rootunit = (u_int32_t)-1;
3137
3138 #if CONFIG_IOSCHED
3139 extern int lowpri_throttle_enabled;
3140 extern int iosched_enabled;
3141 #endif
3142
3143 errno_t
3144 vfs_init_io_attributes(vnode_t devvp, mount_t mp)
3145 {
3146 int error;
3147 off_t readblockcnt = 0;
3148 off_t writeblockcnt = 0;
3149 off_t readmaxcnt = 0;
3150 off_t writemaxcnt = 0;
3151 off_t readsegcnt = 0;
3152 off_t writesegcnt = 0;
3153 off_t readsegsize = 0;
3154 off_t writesegsize = 0;
3155 off_t alignment = 0;
3156 u_int32_t minsaturationbytecount = 0;
3157 u_int32_t ioqueue_depth = 0;
3158 u_int32_t blksize;
3159 u_int64_t temp;
3160 u_int32_t features;
3161 vfs_context_t ctx = vfs_context_current();
3162 dk_corestorage_info_t cs_info;
3163 boolean_t cs_present = FALSE;;
3164 int isssd = 0;
3165 int isvirtual = 0;
3166
3167
3168 VNOP_IOCTL(devvp, DKIOCGETTHROTTLEMASK, (caddr_t)&mp->mnt_throttle_mask, 0, NULL);
3169 /*
3170 * as a reasonable approximation, only use the lowest bit of the mask
3171 * to generate a disk unit number
3172 */
3173 mp->mnt_devbsdunit = num_trailing_0(mp->mnt_throttle_mask);
3174
3175 if (devvp == rootvp)
3176 rootunit = mp->mnt_devbsdunit;
3177
3178 if (mp->mnt_devbsdunit == rootunit) {
3179 /*
3180 * this mount point exists on the same device as the root
3181 * partition, so it comes under the hard throttle control...
3182 * this is true even for the root mount point itself
3183 */
3184 mp->mnt_kern_flag |= MNTK_ROOTDEV;
3185 }
3186 /*
3187 * force the spec device to re-cache
3188 * the underlying block size in case
3189 * the filesystem overrode the initial value
3190 */
3191 set_fsblocksize(devvp);
3192
3193
3194 if ((error = VNOP_IOCTL(devvp, DKIOCGETBLOCKSIZE,
3195 (caddr_t)&blksize, 0, ctx)))
3196 return (error);
3197
3198 mp->mnt_devblocksize = blksize;
3199
3200 /*
3201 * set the maximum possible I/O size
3202 * this may get clipped to a smaller value
3203 * based on which constraints are being advertised
3204 * and if those advertised constraints result in a smaller
3205 * limit for a given I/O
3206 */
3207 mp->mnt_maxreadcnt = MAX_UPL_SIZE_BYTES;
3208 mp->mnt_maxwritecnt = MAX_UPL_SIZE_BYTES;
3209
3210 if (VNOP_IOCTL(devvp, DKIOCISVIRTUAL, (caddr_t)&isvirtual, 0, ctx) == 0) {
3211 if (isvirtual)
3212 mp->mnt_kern_flag |= MNTK_VIRTUALDEV;
3213 }
3214 if (VNOP_IOCTL(devvp, DKIOCISSOLIDSTATE, (caddr_t)&isssd, 0, ctx) == 0) {
3215 if (isssd)
3216 mp->mnt_kern_flag |= MNTK_SSD;
3217 }
3218 if ((error = VNOP_IOCTL(devvp, DKIOCGETFEATURES,
3219 (caddr_t)&features, 0, ctx)))
3220 return (error);
3221
3222 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXBLOCKCOUNTREAD,
3223 (caddr_t)&readblockcnt, 0, ctx)))
3224 return (error);
3225
3226 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXBLOCKCOUNTWRITE,
3227 (caddr_t)&writeblockcnt, 0, ctx)))
3228 return (error);
3229
3230 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXBYTECOUNTREAD,
3231 (caddr_t)&readmaxcnt, 0, ctx)))
3232 return (error);
3233
3234 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXBYTECOUNTWRITE,
3235 (caddr_t)&writemaxcnt, 0, ctx)))
3236 return (error);
3237
3238 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXSEGMENTCOUNTREAD,
3239 (caddr_t)&readsegcnt, 0, ctx)))
3240 return (error);
3241
3242 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXSEGMENTCOUNTWRITE,
3243 (caddr_t)&writesegcnt, 0, ctx)))
3244 return (error);
3245
3246 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXSEGMENTBYTECOUNTREAD,
3247 (caddr_t)&readsegsize, 0, ctx)))
3248 return (error);
3249
3250 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXSEGMENTBYTECOUNTWRITE,
3251 (caddr_t)&writesegsize, 0, ctx)))
3252 return (error);
3253
3254 if ((error = VNOP_IOCTL(devvp, DKIOCGETMINSEGMENTALIGNMENTBYTECOUNT,
3255 (caddr_t)&alignment, 0, ctx)))
3256 return (error);
3257
3258 if ((error = VNOP_IOCTL(devvp, DKIOCGETCOMMANDPOOLSIZE,
3259 (caddr_t)&ioqueue_depth, 0, ctx)))
3260 return (error);
3261
3262 if (readmaxcnt)
3263 mp->mnt_maxreadcnt = (readmaxcnt > UINT32_MAX) ? UINT32_MAX : readmaxcnt;
3264
3265 if (readblockcnt) {
3266 temp = readblockcnt * blksize;
3267 temp = (temp > UINT32_MAX) ? UINT32_MAX : temp;
3268
3269 if (temp < mp->mnt_maxreadcnt)
3270 mp->mnt_maxreadcnt = (u_int32_t)temp;
3271 }
3272
3273 if (writemaxcnt)
3274 mp->mnt_maxwritecnt = (writemaxcnt > UINT32_MAX) ? UINT32_MAX : writemaxcnt;
3275
3276 if (writeblockcnt) {
3277 temp = writeblockcnt * blksize;
3278 temp = (temp > UINT32_MAX) ? UINT32_MAX : temp;
3279
3280 if (temp < mp->mnt_maxwritecnt)
3281 mp->mnt_maxwritecnt = (u_int32_t)temp;
3282 }
3283
3284 if (readsegcnt) {
3285 temp = (readsegcnt > UINT16_MAX) ? UINT16_MAX : readsegcnt;
3286 } else {
3287 temp = mp->mnt_maxreadcnt / PAGE_SIZE;
3288
3289 if (temp > UINT16_MAX)
3290 temp = UINT16_MAX;
3291 }
3292 mp->mnt_segreadcnt = (u_int16_t)temp;
3293
3294 if (writesegcnt) {
3295 temp = (writesegcnt > UINT16_MAX) ? UINT16_MAX : writesegcnt;
3296 } else {
3297 temp = mp->mnt_maxwritecnt / PAGE_SIZE;
3298
3299 if (temp > UINT16_MAX)
3300 temp = UINT16_MAX;
3301 }
3302 mp->mnt_segwritecnt = (u_int16_t)temp;
3303
3304 if (readsegsize)
3305 temp = (readsegsize > UINT32_MAX) ? UINT32_MAX : readsegsize;
3306 else
3307 temp = mp->mnt_maxreadcnt;
3308 mp->mnt_maxsegreadsize = (u_int32_t)temp;
3309
3310 if (writesegsize)
3311 temp = (writesegsize > UINT32_MAX) ? UINT32_MAX : writesegsize;
3312 else
3313 temp = mp->mnt_maxwritecnt;
3314 mp->mnt_maxsegwritesize = (u_int32_t)temp;
3315
3316 if (alignment)
3317 temp = (alignment > PAGE_SIZE) ? PAGE_MASK : alignment - 1;
3318 else
3319 temp = 0;
3320 mp->mnt_alignmentmask = temp;
3321
3322
3323 if (ioqueue_depth > MNT_DEFAULT_IOQUEUE_DEPTH)
3324 temp = ioqueue_depth;
3325 else
3326 temp = MNT_DEFAULT_IOQUEUE_DEPTH;
3327
3328 mp->mnt_ioqueue_depth = temp;
3329 mp->mnt_ioscale = MNT_IOSCALE(mp->mnt_ioqueue_depth);
3330
3331 if (mp->mnt_ioscale > 1)
3332 printf("ioqueue_depth = %d, ioscale = %d\n", (int)mp->mnt_ioqueue_depth, (int)mp->mnt_ioscale);
3333
3334 if (features & DK_FEATURE_FORCE_UNIT_ACCESS)
3335 mp->mnt_ioflags |= MNT_IOFLAGS_FUA_SUPPORTED;
3336
3337 if (VNOP_IOCTL(devvp, DKIOCGETIOMINSATURATIONBYTECOUNT, (caddr_t)&minsaturationbytecount, 0, ctx) == 0) {
3338 mp->mnt_minsaturationbytecount = minsaturationbytecount;
3339 } else {
3340 mp->mnt_minsaturationbytecount = 0;
3341 }
3342
3343 if (VNOP_IOCTL(devvp, DKIOCCORESTORAGE, (caddr_t)&cs_info, 0, ctx) == 0)
3344 cs_present = TRUE;
3345
3346 if (features & DK_FEATURE_UNMAP) {
3347 mp->mnt_ioflags |= MNT_IOFLAGS_UNMAP_SUPPORTED;
3348
3349 if (cs_present == TRUE)
3350 mp->mnt_ioflags |= MNT_IOFLAGS_CSUNMAP_SUPPORTED;
3351 }
3352 if (cs_present == TRUE) {
3353 /*
3354 * for now we'll use the following test as a proxy for
3355 * the underlying drive being FUSION in nature
3356 */
3357 if ((cs_info.flags & DK_CORESTORAGE_PIN_YOUR_METADATA))
3358 mp->mnt_ioflags |= MNT_IOFLAGS_FUSION_DRIVE;
3359 } else {
3360 /* Check for APFS Fusion */
3361 dk_apfs_flavour_t flavour;
3362 if ((VNOP_IOCTL(devvp, DKIOCGETAPFSFLAVOUR, (caddr_t)&flavour, 0, ctx) == 0) &&
3363 (flavour == DK_APFS_FUSION)) {
3364 mp->mnt_ioflags |= MNT_IOFLAGS_FUSION_DRIVE;
3365 }
3366 }
3367
3368 #if CONFIG_IOSCHED
3369 if (iosched_enabled && (features & DK_FEATURE_PRIORITY)) {
3370 mp->mnt_ioflags |= MNT_IOFLAGS_IOSCHED_SUPPORTED;
3371 throttle_info_disable_throttle(mp->mnt_devbsdunit, (mp->mnt_ioflags & MNT_IOFLAGS_FUSION_DRIVE) != 0);
3372 }
3373 #endif /* CONFIG_IOSCHED */
3374 return (error);
3375 }
3376
3377 static struct klist fs_klist;
3378 lck_grp_t *fs_klist_lck_grp;
3379 lck_mtx_t *fs_klist_lock;
3380
3381 void
3382 vfs_event_init(void)
3383 {
3384
3385 klist_init(&fs_klist);
3386 fs_klist_lck_grp = lck_grp_alloc_init("fs_klist", NULL);
3387 fs_klist_lock = lck_mtx_alloc_init(fs_klist_lck_grp, NULL);
3388 }
3389
3390 void
3391 vfs_event_signal(fsid_t *fsid, u_int32_t event, intptr_t data)
3392 {
3393 if (event == VQ_DEAD || event == VQ_NOTRESP) {
3394 struct mount *mp = vfs_getvfs(fsid);
3395 if (mp) {
3396 mount_lock_spin(mp);
3397 if (data)
3398 mp->mnt_kern_flag &= ~MNT_LNOTRESP; // Now responding
3399 else
3400 mp->mnt_kern_flag |= MNT_LNOTRESP; // Not responding
3401 mount_unlock(mp);
3402 }
3403 }
3404
3405 lck_mtx_lock(fs_klist_lock);
3406 KNOTE(&fs_klist, event);
3407 lck_mtx_unlock(fs_klist_lock);
3408 }
3409
3410 /*
3411 * return the number of mounted filesystems.
3412 */
3413 static int
3414 sysctl_vfs_getvfscnt(void)
3415 {
3416 return(mount_getvfscnt());
3417 }
3418
3419
3420 static int
3421 mount_getvfscnt(void)
3422 {
3423 int ret;
3424
3425 mount_list_lock();
3426 ret = nummounts;
3427 mount_list_unlock();
3428 return (ret);
3429
3430 }
3431
3432
3433
3434 static int
3435 mount_fillfsids(fsid_t *fsidlst, int count)
3436 {
3437 struct mount *mp;
3438 int actual=0;
3439
3440 actual = 0;
3441 mount_list_lock();
3442 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3443 if (actual <= count) {
3444 fsidlst[actual] = mp->mnt_vfsstat.f_fsid;
3445 actual++;
3446 }
3447 }
3448 mount_list_unlock();
3449 return (actual);
3450
3451 }
3452
3453 /*
3454 * fill in the array of fsid_t's up to a max of 'count', the actual
3455 * number filled in will be set in '*actual'. If there are more fsid_t's
3456 * than room in fsidlst then ENOMEM will be returned and '*actual' will
3457 * have the actual count.
3458 * having *actual filled out even in the error case is depended upon.
3459 */
3460 static int
3461 sysctl_vfs_getvfslist(fsid_t *fsidlst, int count, int *actual)
3462 {
3463 struct mount *mp;
3464
3465 *actual = 0;
3466 mount_list_lock();
3467 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3468 (*actual)++;
3469 if (*actual <= count)
3470 fsidlst[(*actual) - 1] = mp->mnt_vfsstat.f_fsid;
3471 }
3472 mount_list_unlock();
3473 return (*actual <= count ? 0 : ENOMEM);
3474 }
3475
3476 static int
3477 sysctl_vfs_vfslist(__unused struct sysctl_oid *oidp, __unused void *arg1,
3478 __unused int arg2, struct sysctl_req *req)
3479 {
3480 int actual, error;
3481 size_t space;
3482 fsid_t *fsidlst;
3483
3484 /* This is a readonly node. */
3485 if (req->newptr != USER_ADDR_NULL)
3486 return (EPERM);
3487
3488 /* they are querying us so just return the space required. */
3489 if (req->oldptr == USER_ADDR_NULL) {
3490 req->oldidx = sysctl_vfs_getvfscnt() * sizeof(fsid_t);
3491 return 0;
3492 }
3493 again:
3494 /*
3495 * Retrieve an accurate count of the amount of space required to copy
3496 * out all the fsids in the system.
3497 */
3498 space = req->oldlen;
3499 req->oldlen = sysctl_vfs_getvfscnt() * sizeof(fsid_t);
3500
3501 /* they didn't give us enough space. */
3502 if (space < req->oldlen)
3503 return (ENOMEM);
3504
3505 MALLOC(fsidlst, fsid_t *, req->oldlen, M_TEMP, M_WAITOK | M_ZERO);
3506 if (fsidlst == NULL) {
3507 return (ENOMEM);
3508 }
3509
3510 error = sysctl_vfs_getvfslist(fsidlst, req->oldlen / sizeof(fsid_t),
3511 &actual);
3512 /*
3513 * If we get back ENOMEM, then another mount has been added while we
3514 * slept in malloc above. If this is the case then try again.
3515 */
3516 if (error == ENOMEM) {
3517 FREE(fsidlst, M_TEMP);
3518 req->oldlen = space;
3519 goto again;
3520 }
3521 if (error == 0) {
3522 error = SYSCTL_OUT(req, fsidlst, actual * sizeof(fsid_t));
3523 }
3524 FREE(fsidlst, M_TEMP);
3525 return (error);
3526 }
3527
3528 /*
3529 * Do a sysctl by fsid.
3530 */
3531 static int
3532 sysctl_vfs_ctlbyfsid(__unused struct sysctl_oid *oidp, void *arg1, int arg2,
3533 struct sysctl_req *req)
3534 {
3535 union union_vfsidctl vc;
3536 struct mount *mp;
3537 struct vfsstatfs *sp;
3538 int *name, flags, namelen;
3539 int error=0, gotref=0;
3540 vfs_context_t ctx = vfs_context_current();
3541 proc_t p = req->p; /* XXX req->p != current_proc()? */
3542 boolean_t is_64_bit;
3543
3544 name = arg1;
3545 namelen = arg2;
3546 is_64_bit = proc_is64bit(p);
3547
3548 error = SYSCTL_IN(req, &vc, is_64_bit? sizeof(vc.vc64):sizeof(vc.vc32));
3549 if (error)
3550 goto out;
3551 if (vc.vc32.vc_vers != VFS_CTL_VERS1) { /* works for 32 and 64 */
3552 error = EINVAL;
3553 goto out;
3554 }
3555 mp = mount_list_lookupby_fsid(&vc.vc32.vc_fsid, 0, 1); /* works for 32 and 64 */
3556 if (mp == NULL) {
3557 error = ENOENT;
3558 goto out;
3559 }
3560 gotref = 1;
3561 /* reset so that the fs specific code can fetch it. */
3562 req->newidx = 0;
3563 /*
3564 * Note if this is a VFS_CTL then we pass the actual sysctl req
3565 * in for "oldp" so that the lower layer can DTRT and use the
3566 * SYSCTL_IN/OUT routines.
3567 */
3568 if (mp->mnt_op->vfs_sysctl != NULL) {
3569 if (is_64_bit) {
3570 if (vfs_64bitready(mp)) {
3571 error = mp->mnt_op->vfs_sysctl(name, namelen,
3572 CAST_USER_ADDR_T(req),
3573 NULL, USER_ADDR_NULL, 0,
3574 ctx);
3575 }
3576 else {
3577 error = ENOTSUP;
3578 }
3579 }
3580 else {
3581 error = mp->mnt_op->vfs_sysctl(name, namelen,
3582 CAST_USER_ADDR_T(req),
3583 NULL, USER_ADDR_NULL, 0,
3584 ctx);
3585 }
3586 if (error != ENOTSUP) {
3587 goto out;
3588 }
3589 }
3590 switch (name[0]) {
3591 case VFS_CTL_UMOUNT:
3592 req->newidx = 0;
3593 if (is_64_bit) {
3594 req->newptr = vc.vc64.vc_ptr;
3595 req->newlen = (size_t)vc.vc64.vc_len;
3596 }
3597 else {
3598 req->newptr = CAST_USER_ADDR_T(vc.vc32.vc_ptr);
3599 req->newlen = vc.vc32.vc_len;
3600 }
3601 error = SYSCTL_IN(req, &flags, sizeof(flags));
3602 if (error)
3603 break;
3604
3605 mount_ref(mp, 0);
3606 mount_iterdrop(mp);
3607 gotref = 0;
3608 /* safedounmount consumes a ref */
3609 error = safedounmount(mp, flags, ctx);
3610 break;
3611 case VFS_CTL_STATFS:
3612 req->newidx = 0;
3613 if (is_64_bit) {
3614 req->newptr = vc.vc64.vc_ptr;
3615 req->newlen = (size_t)vc.vc64.vc_len;
3616 }
3617 else {
3618 req->newptr = CAST_USER_ADDR_T(vc.vc32.vc_ptr);
3619 req->newlen = vc.vc32.vc_len;
3620 }
3621 error = SYSCTL_IN(req, &flags, sizeof(flags));
3622 if (error)
3623 break;
3624 sp = &mp->mnt_vfsstat;
3625 if (((flags & MNT_NOWAIT) == 0 || (flags & (MNT_WAIT | MNT_DWAIT))) &&
3626 (error = vfs_update_vfsstat(mp, ctx, VFS_USER_EVENT)))
3627 goto out;
3628 if (is_64_bit) {
3629 struct user64_statfs sfs;
3630 bzero(&sfs, sizeof(sfs));
3631 sfs.f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3632 sfs.f_type = mp->mnt_vtable->vfc_typenum;
3633 sfs.f_bsize = (user64_long_t)sp->f_bsize;
3634 sfs.f_iosize = (user64_long_t)sp->f_iosize;
3635 sfs.f_blocks = (user64_long_t)sp->f_blocks;
3636 sfs.f_bfree = (user64_long_t)sp->f_bfree;
3637 sfs.f_bavail = (user64_long_t)sp->f_bavail;
3638 sfs.f_files = (user64_long_t)sp->f_files;
3639 sfs.f_ffree = (user64_long_t)sp->f_ffree;
3640 sfs.f_fsid = sp->f_fsid;
3641 sfs.f_owner = sp->f_owner;
3642 #ifdef NFSCLIENT
3643 if (mp->mnt_kern_flag & MNTK_TYPENAME_OVERRIDE) {
3644 strlcpy(&sfs.f_fstypename[0], &mp->fstypename_override[0], MFSNAMELEN);
3645 } else
3646 #endif
3647 {
3648 strlcpy(sfs.f_fstypename, sp->f_fstypename, MFSNAMELEN);
3649 }
3650 strlcpy(sfs.f_mntonname, sp->f_mntonname, MNAMELEN);
3651 strlcpy(sfs.f_mntfromname, sp->f_mntfromname, MNAMELEN);
3652
3653 error = SYSCTL_OUT(req, &sfs, sizeof(sfs));
3654 }
3655 else {
3656 struct user32_statfs sfs;
3657 bzero(&sfs, sizeof(sfs));
3658 sfs.f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3659 sfs.f_type = mp->mnt_vtable->vfc_typenum;
3660
3661 /*
3662 * It's possible for there to be more than 2^^31 blocks in the filesystem, so we
3663 * have to fudge the numbers here in that case. We inflate the blocksize in order
3664 * to reflect the filesystem size as best we can.
3665 */
3666 if (sp->f_blocks > INT_MAX) {
3667 int shift;
3668
3669 /*
3670 * Work out how far we have to shift the block count down to make it fit.
3671 * Note that it's possible to have to shift so far that the resulting
3672 * blocksize would be unreportably large. At that point, we will clip
3673 * any values that don't fit.
3674 *
3675 * For safety's sake, we also ensure that f_iosize is never reported as
3676 * being smaller than f_bsize.
3677 */
3678 for (shift = 0; shift < 32; shift++) {
3679 if ((sp->f_blocks >> shift) <= INT_MAX)
3680 break;
3681 if ((((long long)sp->f_bsize) << (shift + 1)) > INT_MAX)
3682 break;
3683 }
3684 #define __SHIFT_OR_CLIP(x, s) ((((x) >> (s)) > INT_MAX) ? INT_MAX : ((x) >> (s)))
3685 sfs.f_blocks = (user32_long_t)__SHIFT_OR_CLIP(sp->f_blocks, shift);
3686 sfs.f_bfree = (user32_long_t)__SHIFT_OR_CLIP(sp->f_bfree, shift);
3687 sfs.f_bavail = (user32_long_t)__SHIFT_OR_CLIP(sp->f_bavail, shift);
3688 #undef __SHIFT_OR_CLIP
3689 sfs.f_bsize = (user32_long_t)(sp->f_bsize << shift);
3690 sfs.f_iosize = lmax(sp->f_iosize, sp->f_bsize);
3691 } else {
3692 sfs.f_bsize = (user32_long_t)sp->f_bsize;
3693 sfs.f_iosize = (user32_long_t)sp->f_iosize;
3694 sfs.f_blocks = (user32_long_t)sp->f_blocks;
3695 sfs.f_bfree = (user32_long_t)sp->f_bfree;
3696 sfs.f_bavail = (user32_long_t)sp->f_bavail;
3697 }
3698 sfs.f_files = (user32_long_t)sp->f_files;
3699 sfs.f_ffree = (user32_long_t)sp->f_ffree;
3700 sfs.f_fsid = sp->f_fsid;
3701 sfs.f_owner = sp->f_owner;
3702
3703 #ifdef NFSCLIENT
3704 if (mp->mnt_kern_flag & MNTK_TYPENAME_OVERRIDE) {
3705 strlcpy(&sfs.f_fstypename[0], &mp->fstypename_override[0], MFSNAMELEN);
3706 } else
3707 #endif
3708 {
3709 strlcpy(sfs.f_fstypename, sp->f_fstypename, MFSNAMELEN);
3710 }
3711 strlcpy(sfs.f_mntonname, sp->f_mntonname, MNAMELEN);
3712 strlcpy(sfs.f_mntfromname, sp->f_mntfromname, MNAMELEN);
3713
3714 error = SYSCTL_OUT(req, &sfs, sizeof(sfs));
3715 }
3716 break;
3717 default:
3718 error = ENOTSUP;
3719 goto out;
3720 }
3721 out:
3722 if(gotref != 0)
3723 mount_iterdrop(mp);
3724 return (error);
3725 }
3726
3727 static int filt_fsattach(struct knote *kn, struct kevent_internal_s *kev);
3728 static void filt_fsdetach(struct knote *kn);
3729 static int filt_fsevent(struct knote *kn, long hint);
3730 static int filt_fstouch(struct knote *kn, struct kevent_internal_s *kev);
3731 static int filt_fsprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev);
3732 SECURITY_READ_ONLY_EARLY(struct filterops) fs_filtops = {
3733 .f_attach = filt_fsattach,
3734 .f_detach = filt_fsdetach,
3735 .f_event = filt_fsevent,
3736 .f_touch = filt_fstouch,
3737 .f_process = filt_fsprocess,
3738 };
3739
3740 static int
3741 filt_fsattach(struct knote *kn, __unused struct kevent_internal_s *kev)
3742 {
3743 lck_mtx_lock(fs_klist_lock);
3744 KNOTE_ATTACH(&fs_klist, kn);
3745 lck_mtx_unlock(fs_klist_lock);
3746
3747 /*
3748 * filter only sees future events,
3749 * so it can't be fired already.
3750 */
3751 return (0);
3752 }
3753
3754 static void
3755 filt_fsdetach(struct knote *kn)
3756 {
3757 lck_mtx_lock(fs_klist_lock);
3758 KNOTE_DETACH(&fs_klist, kn);
3759 lck_mtx_unlock(fs_klist_lock);
3760 }
3761
3762 static int
3763 filt_fsevent(struct knote *kn, long hint)
3764 {
3765 /*
3766 * Backwards compatibility:
3767 * Other filters would do nothing if kn->kn_sfflags == 0
3768 */
3769
3770 if ((kn->kn_sfflags == 0) || (kn->kn_sfflags & hint)) {
3771 kn->kn_fflags |= hint;
3772 }
3773
3774 return (kn->kn_fflags != 0);
3775 }
3776
3777 static int
3778 filt_fstouch(struct knote *kn, struct kevent_internal_s *kev)
3779 {
3780 int res;
3781
3782 lck_mtx_lock(fs_klist_lock);
3783
3784 kn->kn_sfflags = kev->fflags;
3785
3786 /*
3787 * the above filter function sets bits even if nobody is looking for them.
3788 * Just preserve those bits even in the new mask is more selective
3789 * than before.
3790 *
3791 * For compatibility with previous implementations, we leave kn_fflags
3792 * as they were before.
3793 */
3794 //if (kn->kn_sfflags)
3795 // kn->kn_fflags &= kn->kn_sfflags;
3796 res = (kn->kn_fflags != 0);
3797
3798 lck_mtx_unlock(fs_klist_lock);
3799
3800 return res;
3801 }
3802
3803 static int
3804 filt_fsprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev)
3805 {
3806 #pragma unused(data)
3807 int res;
3808
3809 lck_mtx_lock(fs_klist_lock);
3810 res = (kn->kn_fflags != 0);
3811 if (res) {
3812 *kev = kn->kn_kevent;
3813 kn->kn_flags |= EV_CLEAR; /* automatic */
3814 kn->kn_fflags = 0;
3815 kn->kn_data = 0;
3816 }
3817 lck_mtx_unlock(fs_klist_lock);
3818 return res;
3819 }
3820
3821 static int
3822 sysctl_vfs_noremotehang(__unused struct sysctl_oid *oidp,
3823 __unused void *arg1, __unused int arg2, struct sysctl_req *req)
3824 {
3825 int out, error;
3826 pid_t pid;
3827 proc_t p;
3828
3829 /* We need a pid. */
3830 if (req->newptr == USER_ADDR_NULL)
3831 return (EINVAL);
3832
3833 error = SYSCTL_IN(req, &pid, sizeof(pid));
3834 if (error)
3835 return (error);
3836
3837 p = proc_find(pid < 0 ? -pid : pid);
3838 if (p == NULL)
3839 return (ESRCH);
3840
3841 /*
3842 * Fetching the value is ok, but we only fetch if the old
3843 * pointer is given.
3844 */
3845 if (req->oldptr != USER_ADDR_NULL) {
3846 out = !((p->p_flag & P_NOREMOTEHANG) == 0);
3847 proc_rele(p);
3848 error = SYSCTL_OUT(req, &out, sizeof(out));
3849 return (error);
3850 }
3851
3852 /* cansignal offers us enough security. */
3853 if (p != req->p && proc_suser(req->p) != 0) {
3854 proc_rele(p);
3855 return (EPERM);
3856 }
3857
3858 if (pid < 0)
3859 OSBitAndAtomic(~((uint32_t)P_NOREMOTEHANG), &p->p_flag);
3860 else
3861 OSBitOrAtomic(P_NOREMOTEHANG, &p->p_flag);
3862 proc_rele(p);
3863
3864 return (0);
3865 }
3866
3867 static int
3868 sysctl_vfs_generic_conf SYSCTL_HANDLER_ARGS
3869 {
3870 int *name, namelen;
3871 struct vfstable *vfsp;
3872 struct vfsconf vfsc = {};
3873
3874 (void)oidp;
3875 name = arg1;
3876 namelen = arg2;
3877
3878 if (namelen < 1) {
3879 return (EISDIR);
3880 } else if (namelen > 1) {
3881 return (ENOTDIR);
3882 }
3883
3884 mount_list_lock();
3885 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
3886 if (vfsp->vfc_typenum == name[0])
3887 break;
3888
3889 if (vfsp == NULL) {
3890 mount_list_unlock();
3891 return (ENOTSUP);
3892 }
3893
3894 vfsc.vfc_reserved1 = 0;
3895 bcopy(vfsp->vfc_name, vfsc.vfc_name, sizeof(vfsc.vfc_name));
3896 vfsc.vfc_typenum = vfsp->vfc_typenum;
3897 vfsc.vfc_refcount = vfsp->vfc_refcount;
3898 vfsc.vfc_flags = vfsp->vfc_flags;
3899 vfsc.vfc_reserved2 = 0;
3900 vfsc.vfc_reserved3 = 0;
3901
3902 mount_list_unlock();
3903 return (SYSCTL_OUT(req, &vfsc, sizeof(struct vfsconf)));
3904 }
3905
3906 /* the vfs.generic. branch. */
3907 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RW | CTLFLAG_LOCKED, NULL, "vfs generic hinge");
3908 /* retreive a list of mounted filesystem fsid_t */
3909 SYSCTL_PROC(_vfs_generic, OID_AUTO, vfsidlist,
3910 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
3911 NULL, 0, sysctl_vfs_vfslist, "S,fsid", "List of mounted filesystem ids");
3912 /* perform operations on filesystem via fsid_t */
3913 SYSCTL_NODE(_vfs_generic, OID_AUTO, ctlbyfsid, CTLFLAG_RW | CTLFLAG_LOCKED,
3914 sysctl_vfs_ctlbyfsid, "ctlbyfsid");
3915 SYSCTL_PROC(_vfs_generic, OID_AUTO, noremotehang, CTLFLAG_RW | CTLFLAG_ANYBODY,
3916 NULL, 0, sysctl_vfs_noremotehang, "I", "noremotehang");
3917 SYSCTL_INT(_vfs_generic, VFS_MAXTYPENUM, maxtypenum,
3918 CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
3919 &maxvfstypenum, 0, "");
3920 SYSCTL_INT(_vfs_generic, OID_AUTO, sync_timeout, CTLFLAG_RW | CTLFLAG_LOCKED, &sync_timeout_seconds, 0, "");
3921 SYSCTL_NODE(_vfs_generic, VFS_CONF, conf,
3922 CTLFLAG_RD | CTLFLAG_LOCKED,
3923 sysctl_vfs_generic_conf, "");
3924
3925 /* Indicate that the root file system unmounted cleanly */
3926 static int vfs_root_unmounted_cleanly = 0;
3927 SYSCTL_INT(_vfs_generic, OID_AUTO, root_unmounted_cleanly, CTLFLAG_RD, &vfs_root_unmounted_cleanly, 0, "Root filesystem was unmounted cleanly");
3928
3929 void
3930 vfs_set_root_unmounted_cleanly(void)
3931 {
3932 vfs_root_unmounted_cleanly = 1;
3933 }
3934
3935 /*
3936 * Print vnode state.
3937 */
3938 void
3939 vn_print_state(struct vnode *vp, const char *fmt, ...)
3940 {
3941 va_list ap;
3942 char perm_str[] = "(VM_KERNEL_ADDRPERM pointer)";
3943 char fs_name[MFSNAMELEN];
3944
3945 va_start(ap, fmt);
3946 vprintf(fmt, ap);
3947 va_end(ap);
3948 printf("vp 0x%0llx %s: ", (uint64_t)VM_KERNEL_ADDRPERM(vp), perm_str);
3949 printf("tag %d, type %d\n", vp->v_tag, vp->v_type);
3950 /* Counts .. */
3951 printf(" iocount %d, usecount %d, kusecount %d references %d\n",
3952 vp->v_iocount, vp->v_usecount, vp->v_kusecount, vp->v_references);
3953 printf(" writecount %d, numoutput %d\n", vp->v_writecount,
3954 vp->v_numoutput);
3955 /* Flags */
3956 printf(" flag 0x%x, lflag 0x%x, listflag 0x%x\n", vp->v_flag,
3957 vp->v_lflag, vp->v_listflag);
3958
3959 if (vp->v_mount == NULL || vp->v_mount == dead_mountp) {
3960 strlcpy(fs_name, "deadfs", MFSNAMELEN);
3961 } else {
3962 vfs_name(vp->v_mount, fs_name);
3963 }
3964
3965 printf(" v_data 0x%0llx %s\n",
3966 (vp->v_data ? (uint64_t)VM_KERNEL_ADDRPERM(vp->v_data) : 0),
3967 perm_str);
3968 printf(" v_mount 0x%0llx %s vfs_name %s\n",
3969 (vp->v_mount ? (uint64_t)VM_KERNEL_ADDRPERM(vp->v_mount) : 0),
3970 perm_str, fs_name);
3971 }
3972
3973 long num_reusedvnodes = 0;
3974
3975
3976 static vnode_t
3977 process_vp(vnode_t vp, int want_vp, int *deferred)
3978 {
3979 unsigned int vpid;
3980
3981 *deferred = 0;
3982
3983 vpid = vp->v_id;
3984
3985 vnode_list_remove_locked(vp);
3986
3987 vnode_list_unlock();
3988
3989 vnode_lock_spin(vp);
3990
3991 /*
3992 * We could wait for the vnode_lock after removing the vp from the freelist
3993 * and the vid is bumped only at the very end of reclaim. So it is possible
3994 * that we are looking at a vnode that is being terminated. If so skip it.
3995 */
3996 if ((vpid != vp->v_id) || (vp->v_usecount != 0) || (vp->v_iocount != 0) ||
3997 VONLIST(vp) || (vp->v_lflag & VL_TERMINATE)) {
3998 /*
3999 * we lost the race between dropping the list lock
4000 * and picking up the vnode_lock... someone else
4001 * used this vnode and it is now in a new state
4002 */
4003 vnode_unlock(vp);
4004
4005 return (NULLVP);
4006 }
4007 if ( (vp->v_lflag & (VL_NEEDINACTIVE | VL_MARKTERM)) == VL_NEEDINACTIVE ) {
4008 /*
4009 * we did a vnode_rele_ext that asked for
4010 * us not to reenter the filesystem during
4011 * the release even though VL_NEEDINACTIVE was
4012 * set... we'll do it here by doing a
4013 * vnode_get/vnode_put
4014 *
4015 * pick up an iocount so that we can call
4016 * vnode_put and drive the VNOP_INACTIVE...
4017 * vnode_put will either leave us off
4018 * the freelist if a new ref comes in,
4019 * or put us back on the end of the freelist
4020 * or recycle us if we were marked for termination...
4021 * so we'll just go grab a new candidate
4022 */
4023 vp->v_iocount++;
4024 #ifdef JOE_DEBUG
4025 record_vp(vp, 1);
4026 #endif
4027 vnode_put_locked(vp);
4028 vnode_unlock(vp);
4029
4030 return (NULLVP);
4031 }
4032 /*
4033 * Checks for anyone racing us for recycle
4034 */
4035 if (vp->v_type != VBAD) {
4036 if (want_vp && (vnode_on_reliable_media(vp) == FALSE || (vp->v_flag & VISDIRTY))) {
4037 vnode_async_list_add(vp);
4038 vnode_unlock(vp);
4039
4040 *deferred = 1;
4041
4042 return (NULLVP);
4043 }
4044 if (vp->v_lflag & VL_DEAD)
4045 panic("new_vnode(%p): the vnode is VL_DEAD but not VBAD", vp);
4046
4047 vnode_lock_convert(vp);
4048 (void)vnode_reclaim_internal(vp, 1, want_vp, 0);
4049
4050 if (want_vp) {
4051 if ((VONLIST(vp)))
4052 panic("new_vnode(%p): vp on list", vp);
4053 if (vp->v_usecount || vp->v_iocount || vp->v_kusecount ||
4054 (vp->v_lflag & (VNAMED_UBC | VNAMED_MOUNT | VNAMED_FSHASH)))
4055 panic("new_vnode(%p): free vnode still referenced", vp);
4056 if ((vp->v_mntvnodes.tqe_prev != 0) && (vp->v_mntvnodes.tqe_next != 0))
4057 panic("new_vnode(%p): vnode seems to be on mount list", vp);
4058 if ( !LIST_EMPTY(&vp->v_nclinks) || !TAILQ_EMPTY(&vp->v_ncchildren))
4059 panic("new_vnode(%p): vnode still hooked into the name cache", vp);
4060 } else {
4061 vnode_unlock(vp);
4062 vp = NULLVP;
4063 }
4064 }
4065 return (vp);
4066 }
4067
4068 __attribute__((noreturn))
4069 static void
4070 async_work_continue(void)
4071 {
4072 struct async_work_lst *q;
4073 int deferred;
4074 vnode_t vp;
4075
4076 q = &vnode_async_work_list;
4077
4078 for (;;) {
4079
4080 vnode_list_lock();
4081
4082 if ( TAILQ_EMPTY(q) ) {
4083 assert_wait(q, (THREAD_UNINT));
4084
4085 vnode_list_unlock();
4086
4087 thread_block((thread_continue_t)async_work_continue);
4088
4089 continue;
4090 }
4091 async_work_handled++;
4092
4093 vp = TAILQ_FIRST(q);
4094
4095 vp = process_vp(vp, 0, &deferred);
4096
4097 if (vp != NULLVP)
4098 panic("found VBAD vp (%p) on async queue", vp);
4099 }
4100 }
4101
4102
4103 static int
4104 new_vnode(vnode_t *vpp)
4105 {
4106 vnode_t vp;
4107 uint32_t retries = 0, max_retries = 100; /* retry incase of tablefull */
4108 int force_alloc = 0, walk_count = 0;
4109 boolean_t need_reliable_vp = FALSE;
4110 int deferred;
4111 struct timeval initial_tv;
4112 struct timeval current_tv;
4113 proc_t curproc = current_proc();
4114
4115 initial_tv.tv_sec = 0;
4116 retry:
4117 vp = NULLVP;
4118
4119 vnode_list_lock();
4120
4121 if (need_reliable_vp == TRUE)
4122 async_work_timed_out++;
4123
4124 if ((numvnodes - deadvnodes) < desiredvnodes || force_alloc) {
4125 struct timespec ts;
4126
4127 if ( !TAILQ_EMPTY(&vnode_dead_list)) {
4128 /*
4129 * Can always reuse a dead one
4130 */
4131 vp = TAILQ_FIRST(&vnode_dead_list);
4132 goto steal_this_vp;
4133 }
4134 /*
4135 * no dead vnodes available... if we're under
4136 * the limit, we'll create a new vnode
4137 */
4138 numvnodes++;
4139 vnode_list_unlock();
4140
4141 MALLOC_ZONE(vp, struct vnode *, sizeof(*vp), M_VNODE, M_WAITOK);
4142 bzero((char *)vp, sizeof(*vp));
4143 VLISTNONE(vp); /* avoid double queue removal */
4144 lck_mtx_init(&vp->v_lock, vnode_lck_grp, vnode_lck_attr);
4145
4146 TAILQ_INIT(&vp->v_ncchildren);
4147
4148 klist_init(&vp->v_knotes);
4149 nanouptime(&ts);
4150 vp->v_id = ts.tv_nsec;
4151 vp->v_flag = VSTANDARD;
4152
4153 #if CONFIG_MACF
4154 if (mac_vnode_label_init_needed(vp))
4155 mac_vnode_label_init(vp);
4156 #endif /* MAC */
4157
4158 vp->v_iocount = 1;
4159 goto done;
4160 }
4161 microuptime(&current_tv);
4162
4163 #define MAX_WALK_COUNT 1000
4164
4165 if ( !TAILQ_EMPTY(&vnode_rage_list) &&
4166 (ragevnodes >= rage_limit ||
4167 (current_tv.tv_sec - rage_tv.tv_sec) >= RAGE_TIME_LIMIT)) {
4168
4169 TAILQ_FOREACH(vp, &vnode_rage_list, v_freelist) {
4170 if ( !(vp->v_listflag & VLIST_RAGE))
4171 panic("new_vnode: vp (%p) on RAGE list not marked VLIST_RAGE", vp);
4172
4173 // if we're a dependency-capable process, skip vnodes that can
4174 // cause recycling deadlocks. (i.e. this process is diskimages
4175 // helper and the vnode is in a disk image). Querying the
4176 // mnt_kern_flag for the mount's virtual device status
4177 // is safer than checking the mnt_dependent_process, which
4178 // may not be updated if there are multiple devnode layers
4179 // in between the disk image and the final consumer.
4180
4181 if ((curproc->p_flag & P_DEPENDENCY_CAPABLE) == 0 || vp->v_mount == NULL ||
4182 (vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) == 0) {
4183 /*
4184 * if need_reliable_vp == TRUE, then we've already sent one or more
4185 * non-reliable vnodes to the async thread for processing and timed
4186 * out waiting for a dead vnode to show up. Use the MAX_WALK_COUNT
4187 * mechanism to first scan for a reliable vnode before forcing
4188 * a new vnode to be created
4189 */
4190 if (need_reliable_vp == FALSE || vnode_on_reliable_media(vp) == TRUE)
4191 break;
4192 }
4193
4194 // don't iterate more than MAX_WALK_COUNT vnodes to
4195 // avoid keeping the vnode list lock held for too long.
4196
4197 if (walk_count++ > MAX_WALK_COUNT) {
4198 vp = NULL;
4199 break;
4200 }
4201 }
4202 }
4203
4204 if (vp == NULL && !TAILQ_EMPTY(&vnode_free_list)) {
4205 /*
4206 * Pick the first vp for possible reuse
4207 */
4208 walk_count = 0;
4209 TAILQ_FOREACH(vp, &vnode_free_list, v_freelist) {
4210
4211 // if we're a dependency-capable process, skip vnodes that can
4212 // cause recycling deadlocks. (i.e. this process is diskimages
4213 // helper and the vnode is in a disk image). Querying the
4214 // mnt_kern_flag for the mount's virtual device status
4215 // is safer than checking the mnt_dependent_process, which
4216 // may not be updated if there are multiple devnode layers
4217 // in between the disk image and the final consumer.
4218
4219 if ((curproc->p_flag & P_DEPENDENCY_CAPABLE) == 0 || vp->v_mount == NULL ||
4220 (vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) == 0) {
4221 /*
4222 * if need_reliable_vp == TRUE, then we've already sent one or more
4223 * non-reliable vnodes to the async thread for processing and timed
4224 * out waiting for a dead vnode to show up. Use the MAX_WALK_COUNT
4225 * mechanism to first scan for a reliable vnode before forcing
4226 * a new vnode to be created
4227 */
4228 if (need_reliable_vp == FALSE || vnode_on_reliable_media(vp) == TRUE)
4229 break;
4230 }
4231
4232 // don't iterate more than MAX_WALK_COUNT vnodes to
4233 // avoid keeping the vnode list lock held for too long.
4234
4235 if (walk_count++ > MAX_WALK_COUNT) {
4236 vp = NULL;
4237 break;
4238 }
4239 }
4240 }
4241
4242 //
4243 // if we don't have a vnode and the walk_count is >= MAX_WALK_COUNT
4244 // then we're trying to create a vnode on behalf of a
4245 // process like diskimages-helper that has file systems
4246 // mounted on top of itself (and thus we can't reclaim
4247 // vnodes in the file systems on top of us). if we can't
4248 // find a vnode to reclaim then we'll just have to force
4249 // the allocation.
4250 //
4251 if (vp == NULL && walk_count >= MAX_WALK_COUNT) {
4252 force_alloc = 1;
4253 vnode_list_unlock();
4254 goto retry;
4255 }
4256
4257 if (vp == NULL) {
4258 /*
4259 * we've reached the system imposed maximum number of vnodes
4260 * but there isn't a single one available
4261 * wait a bit and then retry... if we can't get a vnode
4262 * after our target number of retries, than log a complaint
4263 */
4264 if (++retries <= max_retries) {
4265 vnode_list_unlock();
4266 delay_for_interval(1, 1000 * 1000);
4267 goto retry;
4268 }
4269
4270 vnode_list_unlock();
4271 tablefull("vnode");
4272 log(LOG_EMERG, "%d desired, %d numvnodes, "
4273 "%d free, %d dead, %d async, %d rage\n",
4274 desiredvnodes, numvnodes, freevnodes, deadvnodes, async_work_vnodes, ragevnodes);
4275 #if CONFIG_JETSAM
4276
4277 #if DEVELOPMENT || DEBUG
4278 if (bootarg_no_vnode_jetsam)
4279 panic("vnode table is full\n");
4280 #endif /* DEVELOPMENT || DEBUG */
4281
4282 /*
4283 * Running out of vnodes tends to make a system unusable. Start killing
4284 * processes that jetsam knows are killable.
4285 */
4286 if (memorystatus_kill_on_vnode_limit() == FALSE) {
4287 /*
4288 * If jetsam can't find any more processes to kill and there
4289 * still aren't any free vnodes, panic. Hopefully we'll get a
4290 * panic log to tell us why we ran out.
4291 */
4292 panic("vnode table is full\n");
4293 }
4294
4295 /*
4296 * Now that we've killed someone, wait a bit and continue looking
4297 * (with fewer retries before trying another kill).
4298 */
4299 delay_for_interval(3, 1000 * 1000);
4300 retries = 0;
4301 max_retries = 10;
4302 goto retry;
4303 #endif
4304
4305 *vpp = NULL;
4306 return (ENFILE);
4307 }
4308 steal_this_vp:
4309 if ((vp = process_vp(vp, 1, &deferred)) == NULLVP) {
4310 if (deferred) {
4311 int elapsed_msecs;
4312 struct timeval elapsed_tv;
4313
4314 if (initial_tv.tv_sec == 0)
4315 microuptime(&initial_tv);
4316
4317 vnode_list_lock();
4318
4319 dead_vnode_waited++;
4320 dead_vnode_wanted++;
4321
4322 /*
4323 * note that we're only going to explicitly wait 10ms
4324 * for a dead vnode to become available, since even if one
4325 * isn't available, a reliable vnode might now be available
4326 * at the head of the VRAGE or free lists... if so, we
4327 * can satisfy the new_vnode request with less latency then waiting
4328 * for the full 100ms duration we're ultimately willing to tolerate
4329 */
4330 assert_wait_timeout((caddr_t)&dead_vnode_wanted, (THREAD_INTERRUPTIBLE), 10000, NSEC_PER_USEC);
4331
4332 vnode_list_unlock();
4333
4334 thread_block(THREAD_CONTINUE_NULL);
4335
4336 microuptime(&elapsed_tv);
4337
4338 timevalsub(&elapsed_tv, &initial_tv);
4339 elapsed_msecs = elapsed_tv.tv_sec * 1000 + elapsed_tv.tv_usec / 1000;
4340
4341 if (elapsed_msecs >= 100) {
4342 /*
4343 * we've waited long enough... 100ms is
4344 * somewhat arbitrary for this case, but the
4345 * normal worst case latency used for UI
4346 * interaction is 100ms, so I've chosen to
4347 * go with that.
4348 *
4349 * setting need_reliable_vp to TRUE
4350 * forces us to find a reliable vnode
4351 * that we can process synchronously, or
4352 * to create a new one if the scan for
4353 * a reliable one hits the scan limit
4354 */
4355 need_reliable_vp = TRUE;
4356 }
4357 }
4358 goto retry;
4359 }
4360 OSAddAtomicLong(1, &num_reusedvnodes);
4361
4362
4363 #if CONFIG_MACF
4364 /*
4365 * We should never see VL_LABELWAIT or VL_LABEL here.
4366 * as those operations hold a reference.
4367 */
4368 assert ((vp->v_lflag & VL_LABELWAIT) != VL_LABELWAIT);
4369 assert ((vp->v_lflag & VL_LABEL) != VL_LABEL);
4370 if (vp->v_lflag & VL_LABELED) {
4371 vnode_lock_convert(vp);
4372 mac_vnode_label_recycle(vp);
4373 } else if (mac_vnode_label_init_needed(vp)) {
4374 vnode_lock_convert(vp);
4375 mac_vnode_label_init(vp);
4376 }
4377
4378 #endif /* MAC */
4379
4380 vp->v_iocount = 1;
4381 vp->v_lflag = 0;
4382 vp->v_writecount = 0;
4383 vp->v_references = 0;
4384 vp->v_iterblkflags = 0;
4385 vp->v_flag = VSTANDARD;
4386 /* vbad vnodes can point to dead_mountp */
4387 vp->v_mount = NULL;
4388 vp->v_defer_reclaimlist = (vnode_t)0;
4389
4390 vnode_unlock(vp);
4391
4392 done:
4393 *vpp = vp;
4394
4395 return (0);
4396 }
4397
4398 void
4399 vnode_lock(vnode_t vp)
4400 {
4401 lck_mtx_lock(&vp->v_lock);
4402 }
4403
4404 void
4405 vnode_lock_spin(vnode_t vp)
4406 {
4407 lck_mtx_lock_spin(&vp->v_lock);
4408 }
4409
4410 void
4411 vnode_unlock(vnode_t vp)
4412 {
4413 lck_mtx_unlock(&vp->v_lock);
4414 }
4415
4416
4417
4418 int
4419 vnode_get(struct vnode *vp)
4420 {
4421 int retval;
4422
4423 vnode_lock_spin(vp);
4424 retval = vnode_get_locked(vp);
4425 vnode_unlock(vp);
4426
4427 return(retval);
4428 }
4429
4430 int
4431 vnode_get_locked(struct vnode *vp)
4432 {
4433 #if DIAGNOSTIC
4434 lck_mtx_assert(&vp->v_lock, LCK_MTX_ASSERT_OWNED);
4435 #endif
4436 if ((vp->v_iocount == 0) && (vp->v_lflag & (VL_TERMINATE | VL_DEAD))) {
4437 return(ENOENT);
4438 }
4439 vp->v_iocount++;
4440 #ifdef JOE_DEBUG
4441 record_vp(vp, 1);
4442 #endif
4443 return (0);
4444 }
4445
4446 /*
4447 * vnode_getwithvid() cuts in line in front of a vnode drain (that is,
4448 * while the vnode is draining, but at no point after that) to prevent
4449 * deadlocks when getting vnodes from filesystem hashes while holding
4450 * resources that may prevent other iocounts from being released.
4451 */
4452 int
4453 vnode_getwithvid(vnode_t vp, uint32_t vid)
4454 {
4455 return(vget_internal(vp, vid, ( VNODE_NODEAD | VNODE_WITHID | VNODE_DRAINO )));
4456 }
4457
4458 /*
4459 * vnode_getwithvid_drainok() is like vnode_getwithvid(), but *does* block behind a vnode
4460 * drain; it exists for use in the VFS name cache, where we really do want to block behind
4461 * vnode drain to prevent holding off an unmount.
4462 */
4463 int
4464 vnode_getwithvid_drainok(vnode_t vp, uint32_t vid)
4465 {
4466 return(vget_internal(vp, vid, ( VNODE_NODEAD | VNODE_WITHID )));
4467 }
4468
4469 int
4470 vnode_getwithref(vnode_t vp)
4471 {
4472 return(vget_internal(vp, 0, 0));
4473 }
4474
4475
4476 __private_extern__ int
4477 vnode_getalways(vnode_t vp)
4478 {
4479 return(vget_internal(vp, 0, VNODE_ALWAYS));
4480 }
4481
4482 int
4483 vnode_put(vnode_t vp)
4484 {
4485 int retval;
4486
4487 vnode_lock_spin(vp);
4488 retval = vnode_put_locked(vp);
4489 vnode_unlock(vp);
4490
4491 return(retval);
4492 }
4493
4494 static inline void
4495 vn_set_dead(vnode_t vp)
4496 {
4497 vp->v_mount = NULL;
4498 vp->v_op = dead_vnodeop_p;
4499 vp->v_tag = VT_NON;
4500 vp->v_data = NULL;
4501 vp->v_type = VBAD;
4502 vp->v_lflag |= VL_DEAD;
4503 }
4504
4505 int
4506 vnode_put_locked(vnode_t vp)
4507 {
4508 vfs_context_t ctx = vfs_context_current(); /* hoist outside loop */
4509
4510 #if DIAGNOSTIC
4511 lck_mtx_assert(&vp->v_lock, LCK_MTX_ASSERT_OWNED);
4512 #endif
4513 retry:
4514 if (vp->v_iocount < 1)
4515 panic("vnode_put(%p): iocount < 1", vp);
4516
4517 if ((vp->v_usecount > 0) || (vp->v_iocount > 1)) {
4518 vnode_dropiocount(vp);
4519 return(0);
4520 }
4521 if ((vp->v_lflag & (VL_DEAD | VL_NEEDINACTIVE)) == VL_NEEDINACTIVE) {
4522
4523 vp->v_lflag &= ~VL_NEEDINACTIVE;
4524 vnode_unlock(vp);
4525
4526 VNOP_INACTIVE(vp, ctx);
4527
4528 vnode_lock_spin(vp);
4529 /*
4530 * because we had to drop the vnode lock before calling
4531 * VNOP_INACTIVE, the state of this vnode may have changed...
4532 * we may pick up both VL_MARTERM and either
4533 * an iocount or a usecount while in the VNOP_INACTIVE call
4534 * we don't want to call vnode_reclaim_internal on a vnode
4535 * that has active references on it... so loop back around
4536 * and reevaluate the state
4537 */
4538 goto retry;
4539 }
4540 vp->v_lflag &= ~VL_NEEDINACTIVE;
4541
4542 if ((vp->v_lflag & (VL_MARKTERM | VL_TERMINATE | VL_DEAD)) == VL_MARKTERM) {
4543 vnode_lock_convert(vp);
4544 vnode_reclaim_internal(vp, 1, 1, 0);
4545 }
4546 vnode_dropiocount(vp);
4547 vnode_list_add(vp);
4548
4549 return(0);
4550 }
4551
4552 /* is vnode_t in use by others? */
4553 int
4554 vnode_isinuse(vnode_t vp, int refcnt)
4555 {
4556 return(vnode_isinuse_locked(vp, refcnt, 0));
4557 }
4558
4559 int vnode_usecount(vnode_t vp)
4560 {
4561 return vp->v_usecount;
4562 }
4563
4564 int vnode_iocount(vnode_t vp)
4565 {
4566 return vp->v_iocount;
4567 }
4568
4569 static int
4570 vnode_isinuse_locked(vnode_t vp, int refcnt, int locked)
4571 {
4572 int retval = 0;
4573
4574 if (!locked)
4575 vnode_lock_spin(vp);
4576 if ((vp->v_type != VREG) && ((vp->v_usecount - vp->v_kusecount) > refcnt)) {
4577 retval = 1;
4578 goto out;
4579 }
4580 if (vp->v_type == VREG) {
4581 retval = ubc_isinuse_locked(vp, refcnt, 1);
4582 }
4583
4584 out:
4585 if (!locked)
4586 vnode_unlock(vp);
4587 return(retval);
4588 }
4589
4590
4591 /* resume vnode_t */
4592 errno_t
4593 vnode_resume(vnode_t vp)
4594 {
4595 if ((vp->v_lflag & VL_SUSPENDED) && vp->v_owner == current_thread()) {
4596
4597 vnode_lock_spin(vp);
4598 vp->v_lflag &= ~VL_SUSPENDED;
4599 vp->v_owner = NULL;
4600 vnode_unlock(vp);
4601
4602 wakeup(&vp->v_iocount);
4603 }
4604 return(0);
4605 }
4606
4607 /* suspend vnode_t
4608 * Please do not use on more than one vnode at a time as it may
4609 * cause deadlocks.
4610 * xxx should we explicity prevent this from happening?
4611 */
4612
4613 errno_t
4614 vnode_suspend(vnode_t vp)
4615 {
4616 if (vp->v_lflag & VL_SUSPENDED) {
4617 return(EBUSY);
4618 }
4619
4620 vnode_lock_spin(vp);
4621
4622 /*
4623 * xxx is this sufficient to check if a vnode_drain is
4624 * progress?
4625 */
4626
4627 if (vp->v_owner == NULL) {
4628 vp->v_lflag |= VL_SUSPENDED;
4629 vp->v_owner = current_thread();
4630 }
4631 vnode_unlock(vp);
4632
4633 return(0);
4634 }
4635
4636 /*
4637 * Release any blocked locking requests on the vnode.
4638 * Used for forced-unmounts.
4639 *
4640 * XXX What about network filesystems?
4641 */
4642 static void
4643 vnode_abort_advlocks(vnode_t vp)
4644 {
4645 if (vp->v_flag & VLOCKLOCAL)
4646 lf_abort_advlocks(vp);
4647 }
4648
4649
4650 static errno_t
4651 vnode_drain(vnode_t vp)
4652 {
4653
4654 if (vp->v_lflag & VL_DRAIN) {
4655 panic("vnode_drain: recursive drain");
4656 return(ENOENT);
4657 }
4658 vp->v_lflag |= VL_DRAIN;
4659 vp->v_owner = current_thread();
4660
4661 while (vp->v_iocount > 1)
4662 msleep(&vp->v_iocount, &vp->v_lock, PVFS, "vnode_drain", NULL);
4663
4664 vp->v_lflag &= ~VL_DRAIN;
4665
4666 return(0);
4667 }
4668
4669
4670 /*
4671 * if the number of recent references via vnode_getwithvid or vnode_getwithref
4672 * exceeds this threshold, than 'UN-AGE' the vnode by removing it from
4673 * the LRU list if it's currently on it... once the iocount and usecount both drop
4674 * to 0, it will get put back on the end of the list, effectively making it younger
4675 * this allows us to keep actively referenced vnodes in the list without having
4676 * to constantly remove and add to the list each time a vnode w/o a usecount is
4677 * referenced which costs us taking and dropping a global lock twice.
4678 * However, if the vnode is marked DIRTY, we want to pull it out much earlier
4679 */
4680 #define UNAGE_THRESHHOLD 25
4681 #define UNAGE_DIRTYTHRESHHOLD 6
4682
4683 errno_t
4684 vnode_getiocount(vnode_t vp, unsigned int vid, int vflags)
4685 {
4686 int nodead = vflags & VNODE_NODEAD;
4687 int nosusp = vflags & VNODE_NOSUSPEND;
4688 int always = vflags & VNODE_ALWAYS;
4689 int beatdrain = vflags & VNODE_DRAINO;
4690 int withvid = vflags & VNODE_WITHID;
4691
4692 for (;;) {
4693 int sleepflg = 0;
4694
4695 /*
4696 * if it is a dead vnode with deadfs
4697 */
4698 if (nodead && (vp->v_lflag & VL_DEAD) && ((vp->v_type == VBAD) || (vp->v_data == 0))) {
4699 return(ENOENT);
4700 }
4701 /*
4702 * will return VL_DEAD ones
4703 */
4704 if ((vp->v_lflag & (VL_SUSPENDED | VL_DRAIN | VL_TERMINATE)) == 0 ) {
4705 break;
4706 }
4707 /*
4708 * if suspended vnodes are to be failed
4709 */
4710 if (nosusp && (vp->v_lflag & VL_SUSPENDED)) {
4711 return(ENOENT);
4712 }
4713 /*
4714 * if you are the owner of drain/suspend/termination , can acquire iocount
4715 * check for VL_TERMINATE; it does not set owner
4716 */
4717 if ((vp->v_lflag & (VL_DRAIN | VL_SUSPENDED | VL_TERMINATE)) &&
4718 (vp->v_owner == current_thread())) {
4719 break;
4720 }
4721
4722 if (always != 0)
4723 break;
4724
4725 /*
4726 * If this vnode is getting drained, there are some cases where
4727 * we can't block or, in case of tty vnodes, want to be
4728 * interruptible.
4729 */
4730 if (vp->v_lflag & VL_DRAIN) {
4731 /*
4732 * In some situations, we want to get an iocount
4733 * even if the vnode is draining to prevent deadlock,
4734 * e.g. if we're in the filesystem, potentially holding
4735 * resources that could prevent other iocounts from
4736 * being released.
4737 */
4738 if (beatdrain)
4739 break;
4740 /*
4741 * Don't block if the vnode's mount point is unmounting as
4742 * we may be the thread the unmount is itself waiting on
4743 * Only callers who pass in vids (at this point, we've already
4744 * handled nosusp and nodead) are expecting error returns
4745 * from this function, so only we can only return errors for
4746 * those. ENODEV is intended to inform callers that the call
4747 * failed because an unmount is in progress.
4748 */
4749 if (withvid && (vp->v_mount) && vfs_isunmount(vp->v_mount))
4750 return (ENODEV);
4751
4752 if (vnode_istty(vp)) {
4753 sleepflg = PCATCH;
4754 }
4755 }
4756
4757 vnode_lock_convert(vp);
4758
4759 if (vp->v_lflag & VL_TERMINATE) {
4760 int error;
4761
4762 vp->v_lflag |= VL_TERMWANT;
4763
4764 error = msleep(&vp->v_lflag, &vp->v_lock,
4765 (PVFS | sleepflg), "vnode getiocount", NULL);
4766 if (error)
4767 return (error);
4768 } else
4769 msleep(&vp->v_iocount, &vp->v_lock, PVFS, "vnode_getiocount", NULL);
4770 }
4771 if (withvid && vid != vp->v_id) {
4772 return(ENOENT);
4773 }
4774 if (++vp->v_references >= UNAGE_THRESHHOLD ||
4775 (vp->v_flag & VISDIRTY && vp->v_references >= UNAGE_DIRTYTHRESHHOLD)) {
4776 vp->v_references = 0;
4777 vnode_list_remove(vp);
4778 }
4779 vp->v_iocount++;
4780 #ifdef JOE_DEBUG
4781 record_vp(vp, 1);
4782 #endif
4783 return(0);
4784 }
4785
4786 static void
4787 vnode_dropiocount (vnode_t vp)
4788 {
4789 if (vp->v_iocount < 1)
4790 panic("vnode_dropiocount(%p): v_iocount < 1", vp);
4791
4792 vp->v_iocount--;
4793 #ifdef JOE_DEBUG
4794 record_vp(vp, -1);
4795 #endif
4796 if ((vp->v_lflag & (VL_DRAIN | VL_SUSPENDED)) && (vp->v_iocount <= 1))
4797 wakeup(&vp->v_iocount);
4798 }
4799
4800
4801 void
4802 vnode_reclaim(struct vnode * vp)
4803 {
4804 vnode_reclaim_internal(vp, 0, 0, 0);
4805 }
4806
4807 __private_extern__
4808 void
4809 vnode_reclaim_internal(struct vnode * vp, int locked, int reuse, int flags)
4810 {
4811 int isfifo = 0;
4812
4813 if (!locked)
4814 vnode_lock(vp);
4815
4816 if (vp->v_lflag & VL_TERMINATE) {
4817 panic("vnode reclaim in progress");
4818 }
4819 vp->v_lflag |= VL_TERMINATE;
4820
4821 vn_clearunionwait(vp, 1);
4822
4823 vnode_drain(vp);
4824
4825 isfifo = (vp->v_type == VFIFO);
4826
4827 if (vp->v_type != VBAD)
4828 vgone(vp, flags); /* clean and reclaim the vnode */
4829
4830 /*
4831 * give the vnode a new identity so that vnode_getwithvid will fail
4832 * on any stale cache accesses...
4833 * grab the list_lock so that if we're in "new_vnode"
4834 * behind the list_lock trying to steal this vnode, the v_id is stable...
4835 * once new_vnode drops the list_lock, it will block trying to take
4836 * the vnode lock until we release it... at that point it will evaluate
4837 * whether the v_vid has changed
4838 * also need to make sure that the vnode isn't on a list where "new_vnode"
4839 * can find it after the v_id has been bumped until we are completely done
4840 * with the vnode (i.e. putting it back on a list has to be the very last
4841 * thing we do to this vnode... many of the callers of vnode_reclaim_internal
4842 * are holding an io_count on the vnode... they need to drop the io_count
4843 * BEFORE doing a vnode_list_add or make sure to hold the vnode lock until
4844 * they are completely done with the vnode
4845 */
4846 vnode_list_lock();
4847
4848 vnode_list_remove_locked(vp);
4849 vp->v_id++;
4850
4851 vnode_list_unlock();
4852
4853 if (isfifo) {
4854 struct fifoinfo * fip;
4855
4856 fip = vp->v_fifoinfo;
4857 vp->v_fifoinfo = NULL;
4858 FREE(fip, M_TEMP);
4859 }
4860 vp->v_type = VBAD;
4861
4862 if (vp->v_data)
4863 panic("vnode_reclaim_internal: cleaned vnode isn't");
4864 if (vp->v_numoutput)
4865 panic("vnode_reclaim_internal: clean vnode has pending I/O's");
4866 if (UBCINFOEXISTS(vp))
4867 panic("vnode_reclaim_internal: ubcinfo not cleaned");
4868 if (vp->v_parent)
4869 panic("vnode_reclaim_internal: vparent not removed");
4870 if (vp->v_name)
4871 panic("vnode_reclaim_internal: vname not removed");
4872
4873 vp->v_socket = NULL;
4874
4875 vp->v_lflag &= ~VL_TERMINATE;
4876 vp->v_owner = NULL;
4877
4878 KNOTE(&vp->v_knotes, NOTE_REVOKE);
4879
4880 /* Make sure that when we reuse the vnode, no knotes left over */
4881 klist_init(&vp->v_knotes);
4882
4883 if (vp->v_lflag & VL_TERMWANT) {
4884 vp->v_lflag &= ~VL_TERMWANT;
4885 wakeup(&vp->v_lflag);
4886 }
4887 if (!reuse) {
4888 /*
4889 * make sure we get on the
4890 * dead list if appropriate
4891 */
4892 vnode_list_add(vp);
4893 }
4894 if (!locked)
4895 vnode_unlock(vp);
4896 }
4897
4898 static int
4899 vnode_create_internal(uint32_t flavor, uint32_t size, void *data, vnode_t *vpp,
4900 int init_vnode)
4901 {
4902 int error;
4903 int insert = 1;
4904 int existing_vnode;
4905 vnode_t vp;
4906 vnode_t nvp;
4907 vnode_t dvp;
4908 struct uthread *ut;
4909 struct componentname *cnp;
4910 struct vnode_fsparam *param = (struct vnode_fsparam *)data;
4911 #if CONFIG_TRIGGERS
4912 struct vnode_trigger_param *tinfo = NULL;
4913 #endif
4914 if (*vpp) {
4915 vp = *vpp;
4916 *vpp = NULLVP;
4917 existing_vnode = 1;
4918 } else {
4919 existing_vnode = 0;
4920 }
4921
4922 if (init_vnode) {
4923 /* Do quick sanity check on the parameters. */
4924 if ((param == NULL) || (param->vnfs_vtype == VBAD)) {
4925 error = EINVAL;
4926 goto error_out;
4927 }
4928
4929 #if CONFIG_TRIGGERS
4930 if ((flavor == VNCREATE_TRIGGER) && (size == VNCREATE_TRIGGER_SIZE)) {
4931 tinfo = (struct vnode_trigger_param *)data;
4932
4933 /* Validate trigger vnode input */
4934 if ((param->vnfs_vtype != VDIR) ||
4935 (tinfo->vnt_resolve_func == NULL) ||
4936 (tinfo->vnt_flags & ~VNT_VALID_MASK)) {
4937 error = EINVAL;
4938 goto error_out;
4939 }
4940 /* Fall through a normal create (params will be the same) */
4941 flavor = VNCREATE_FLAVOR;
4942 size = VCREATESIZE;
4943 }
4944 #endif
4945 if ((flavor != VNCREATE_FLAVOR) || (size != VCREATESIZE)) {
4946 error = EINVAL;
4947 goto error_out;
4948 }
4949 }
4950
4951 if (!existing_vnode) {
4952 if ((error = new_vnode(&vp)) ) {
4953 return (error);
4954 }
4955 if (!init_vnode) {
4956 /* Make it so that it can be released by a vnode_put) */
4957 vn_set_dead(vp);
4958 *vpp = vp;
4959 return (0);
4960 }
4961 } else {
4962 /*
4963 * A vnode obtained by vnode_create_empty has been passed to
4964 * vnode_initialize - Unset VL_DEAD set by vn_set_dead. After
4965 * this point, it is set back on any error.
4966 *
4967 * N.B. vnode locking - We make the same assumptions as the
4968 * "unsplit" vnode_create did - i.e. it is safe to update the
4969 * vnode's fields without the vnode lock. This vnode has been
4970 * out and about with the filesystem and hopefully nothing
4971 * was done to the vnode between the vnode_create_empty and
4972 * now when it has come in through vnode_initialize.
4973 */
4974 vp->v_lflag &= ~VL_DEAD;
4975 }
4976
4977 dvp = param->vnfs_dvp;
4978 cnp = param->vnfs_cnp;
4979
4980 vp->v_op = param->vnfs_vops;
4981 vp->v_type = param->vnfs_vtype;
4982 vp->v_data = param->vnfs_fsnode;
4983
4984 if (param->vnfs_markroot)
4985 vp->v_flag |= VROOT;
4986 if (param->vnfs_marksystem)
4987 vp->v_flag |= VSYSTEM;
4988 if (vp->v_type == VREG) {
4989 error = ubc_info_init_withsize(vp, param->vnfs_filesize);
4990 if (error) {
4991 #ifdef JOE_DEBUG
4992 record_vp(vp, 1);
4993 #endif
4994 vn_set_dead(vp);
4995
4996 vnode_put(vp);
4997 return(error);
4998 }
4999 if (param->vnfs_mp->mnt_ioflags & MNT_IOFLAGS_IOSCHED_SUPPORTED)
5000 memory_object_mark_io_tracking(vp->v_ubcinfo->ui_control);
5001 }
5002 #ifdef JOE_DEBUG
5003 record_vp(vp, 1);
5004 #endif
5005
5006 #if CONFIG_TRIGGERS
5007 /*
5008 * For trigger vnodes, attach trigger info to vnode
5009 */
5010 if ((vp->v_type == VDIR) && (tinfo != NULL)) {
5011 /*
5012 * Note: has a side effect of incrementing trigger count on the
5013 * mount if successful, which we would need to undo on a
5014 * subsequent failure.
5015 */
5016 #ifdef JOE_DEBUG
5017 record_vp(vp, -1);
5018 #endif
5019 error = vnode_resolver_create(param->vnfs_mp, vp, tinfo, FALSE);
5020 if (error) {
5021 printf("vnode_create: vnode_resolver_create() err %d\n", error);
5022 vn_set_dead(vp);
5023 #ifdef JOE_DEBUG
5024 record_vp(vp, 1);
5025 #endif
5026 vnode_put(vp);
5027 return (error);
5028 }
5029 }
5030 #endif
5031 if (vp->v_type == VCHR || vp->v_type == VBLK) {
5032
5033 vp->v_tag = VT_DEVFS; /* callers will reset if needed (bdevvp) */
5034
5035 if ( (nvp = checkalias(vp, param->vnfs_rdev)) ) {
5036 /*
5037 * if checkalias returns a vnode, it will be locked
5038 *
5039 * first get rid of the unneeded vnode we acquired
5040 */
5041 vp->v_data = NULL;
5042 vp->v_op = spec_vnodeop_p;
5043 vp->v_type = VBAD;
5044 vp->v_lflag = VL_DEAD;
5045 vp->v_data = NULL;
5046 vp->v_tag = VT_NON;
5047 vnode_put(vp);
5048
5049 /*
5050 * switch to aliased vnode and finish
5051 * preparing it
5052 */
5053 vp = nvp;
5054
5055 vclean(vp, 0);
5056 vp->v_op = param->vnfs_vops;
5057 vp->v_type = param->vnfs_vtype;
5058 vp->v_data = param->vnfs_fsnode;
5059 vp->v_lflag = 0;
5060 vp->v_mount = NULL;
5061 insmntque(vp, param->vnfs_mp);
5062 insert = 0;
5063 vnode_unlock(vp);
5064 }
5065
5066 if (VCHR == vp->v_type) {
5067 u_int maj = major(vp->v_rdev);
5068
5069 if (maj < (u_int)nchrdev && cdevsw[maj].d_type == D_TTY)
5070 vp->v_flag |= VISTTY;
5071 }
5072 }
5073
5074 if (vp->v_type == VFIFO) {
5075 struct fifoinfo *fip;
5076
5077 MALLOC(fip, struct fifoinfo *,
5078 sizeof(*fip), M_TEMP, M_WAITOK);
5079 bzero(fip, sizeof(struct fifoinfo ));
5080 vp->v_fifoinfo = fip;
5081 }
5082 /* The file systems must pass the address of the location where
5083 * they store the vnode pointer. When we add the vnode into the mount
5084 * list and name cache they become discoverable. So the file system node
5085 * must have the connection to vnode setup by then
5086 */
5087 *vpp = vp;
5088
5089 /* Add fs named reference. */
5090 if (param->vnfs_flags & VNFS_ADDFSREF) {
5091 vp->v_lflag |= VNAMED_FSHASH;
5092 }
5093 if (param->vnfs_mp) {
5094 if (param->vnfs_mp->mnt_kern_flag & MNTK_LOCK_LOCAL)
5095 vp->v_flag |= VLOCKLOCAL;
5096 if (insert) {
5097 if ((vp->v_freelist.tqe_prev != (struct vnode **)0xdeadb))
5098 panic("insmntque: vp on the free list\n");
5099
5100 /*
5101 * enter in mount vnode list
5102 */
5103 insmntque(vp, param->vnfs_mp);
5104 }
5105 }
5106 if (dvp && vnode_ref(dvp) == 0) {
5107 vp->v_parent = dvp;
5108 }
5109 if (cnp) {
5110 if (dvp && ((param->vnfs_flags & (VNFS_NOCACHE | VNFS_CANTCACHE)) == 0)) {
5111 /*
5112 * enter into name cache
5113 * we've got the info to enter it into the name cache now
5114 * cache_enter_create will pick up an extra reference on
5115 * the name entered into the string cache
5116 */
5117 vp->v_name = cache_enter_create(dvp, vp, cnp);
5118 } else
5119 vp->v_name = vfs_addname(cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash, 0);
5120
5121 if ((cnp->cn_flags & UNIONCREATED) == UNIONCREATED)
5122 vp->v_flag |= VISUNION;
5123 }
5124 if ((param->vnfs_flags & VNFS_CANTCACHE) == 0) {
5125 /*
5126 * this vnode is being created as cacheable in the name cache
5127 * this allows us to re-enter it in the cache
5128 */
5129 vp->v_flag |= VNCACHEABLE;
5130 }
5131 ut = get_bsdthread_info(current_thread());
5132
5133 if ((current_proc()->p_lflag & P_LRAGE_VNODES) ||
5134 (ut->uu_flag & (UT_RAGE_VNODES | UT_KERN_RAGE_VNODES))) {
5135 /*
5136 * process has indicated that it wants any
5137 * vnodes created on its behalf to be rapidly
5138 * aged to reduce the impact on the cached set
5139 * of vnodes
5140 *
5141 * if UT_KERN_RAGE_VNODES is set, then the
5142 * kernel internally wants vnodes to be rapidly
5143 * aged, even if the process hasn't requested
5144 * this
5145 */
5146 vp->v_flag |= VRAGE;
5147 }
5148
5149 #if CONFIG_SECLUDED_MEMORY
5150 switch (secluded_for_filecache) {
5151 case 0:
5152 /*
5153 * secluded_for_filecache == 0:
5154 * + no file contents in secluded pool
5155 */
5156 break;
5157 case 1:
5158 /*
5159 * secluded_for_filecache == 1:
5160 * + no files from /
5161 * + files from /Applications/ are OK
5162 * + files from /Applications/Camera are not OK
5163 * + no files that are open for write
5164 */
5165 if (vnode_vtype(vp) == VREG &&
5166 vnode_mount(vp) != NULL &&
5167 (! (vfs_flags(vnode_mount(vp)) & MNT_ROOTFS))) {
5168 /* not from root filesystem: eligible for secluded pages */
5169 memory_object_mark_eligible_for_secluded(
5170 ubc_getobject(vp, UBC_FLAGS_NONE),
5171 TRUE);
5172 }
5173 break;
5174 case 2:
5175 /*
5176 * secluded_for_filecache == 2:
5177 * + all read-only files OK, except:
5178 * + dyld_shared_cache_arm64*
5179 * + Camera
5180 * + mediaserverd
5181 */
5182 if (vnode_vtype(vp) == VREG) {
5183 memory_object_mark_eligible_for_secluded(
5184 ubc_getobject(vp, UBC_FLAGS_NONE),
5185 TRUE);
5186 }
5187 break;
5188 default:
5189 break;
5190 }
5191 #endif /* CONFIG_SECLUDED_MEMORY */
5192
5193 return (0);
5194
5195 error_out:
5196 if (existing_vnode) {
5197 vnode_put(vp);
5198 }
5199 return (error);
5200 }
5201
5202 /* USAGE:
5203 * The following api creates a vnode and associates all the parameter specified in vnode_fsparam
5204 * structure and returns a vnode handle with a reference. device aliasing is handled here so checkalias
5205 * is obsoleted by this.
5206 */
5207 int
5208 vnode_create(uint32_t flavor, uint32_t size, void *data, vnode_t *vpp)
5209 {
5210 *vpp = NULLVP;
5211 return (vnode_create_internal(flavor, size, data, vpp, 1));
5212 }
5213
5214 int
5215 vnode_create_empty(vnode_t *vpp)
5216 {
5217 *vpp = NULLVP;
5218 return (vnode_create_internal(VNCREATE_FLAVOR, VCREATESIZE, NULL,
5219 vpp, 0));
5220 }
5221
5222 int
5223 vnode_initialize(uint32_t flavor, uint32_t size, void *data, vnode_t *vpp)
5224 {
5225 if (*vpp == NULLVP) {
5226 panic("NULL vnode passed to vnode_initialize");
5227 }
5228 #if DEVELOPMENT || DEBUG
5229 /*
5230 * We lock to check that vnode is fit for unlocked use in
5231 * vnode_create_internal.
5232 */
5233 vnode_lock_spin(*vpp);
5234 VNASSERT(((*vpp)->v_iocount == 1), *vpp,
5235 ("vnode_initialize : iocount not 1, is %d", (*vpp)->v_iocount));
5236 VNASSERT(((*vpp)->v_usecount == 0), *vpp,
5237 ("vnode_initialize : usecount not 0, is %d", (*vpp)->v_usecount));
5238 VNASSERT(((*vpp)->v_lflag & VL_DEAD), *vpp,
5239 ("vnode_initialize : v_lflag does not have VL_DEAD, is 0x%x",
5240 (*vpp)->v_lflag));
5241 VNASSERT(((*vpp)->v_data == NULL), *vpp,
5242 ("vnode_initialize : v_data not NULL"));
5243 vnode_unlock(*vpp);
5244 #endif
5245 return (vnode_create_internal(flavor, size, data, vpp, 1));
5246 }
5247
5248 int
5249 vnode_addfsref(vnode_t vp)
5250 {
5251 vnode_lock_spin(vp);
5252 if (vp->v_lflag & VNAMED_FSHASH)
5253 panic("add_fsref: vp already has named reference");
5254 if ((vp->v_freelist.tqe_prev != (struct vnode **)0xdeadb))
5255 panic("addfsref: vp on the free list\n");
5256 vp->v_lflag |= VNAMED_FSHASH;
5257 vnode_unlock(vp);
5258 return(0);
5259
5260 }
5261 int
5262 vnode_removefsref(vnode_t vp)
5263 {
5264 vnode_lock_spin(vp);
5265 if ((vp->v_lflag & VNAMED_FSHASH) == 0)
5266 panic("remove_fsref: no named reference");
5267 vp->v_lflag &= ~VNAMED_FSHASH;
5268 vnode_unlock(vp);
5269 return(0);
5270
5271 }
5272
5273
5274 int
5275 vfs_iterate(int flags, int (*callout)(mount_t, void *), void *arg)
5276 {
5277 mount_t mp;
5278 int ret = 0;
5279 fsid_t * fsid_list;
5280 int count, actualcount, i;
5281 void * allocmem;
5282 int indx_start, indx_stop, indx_incr;
5283 int cb_dropref = (flags & VFS_ITERATE_CB_DROPREF);
5284
5285 count = mount_getvfscnt();
5286 count += 10;
5287
5288 fsid_list = (fsid_t *)kalloc(count * sizeof(fsid_t));
5289 allocmem = (void *)fsid_list;
5290
5291 actualcount = mount_fillfsids(fsid_list, count);
5292
5293 /*
5294 * Establish the iteration direction
5295 * VFS_ITERATE_TAIL_FIRST overrides default head first order (oldest first)
5296 */
5297 if (flags & VFS_ITERATE_TAIL_FIRST) {
5298 indx_start = actualcount - 1;
5299 indx_stop = -1;
5300 indx_incr = -1;
5301 } else /* Head first by default */ {
5302 indx_start = 0;
5303 indx_stop = actualcount;
5304 indx_incr = 1;
5305 }
5306
5307 for (i=indx_start; i != indx_stop; i += indx_incr) {
5308
5309 /* obtain the mount point with iteration reference */
5310 mp = mount_list_lookupby_fsid(&fsid_list[i], 0, 1);
5311
5312 if(mp == (struct mount *)0)
5313 continue;
5314 mount_lock(mp);
5315 if (mp->mnt_lflag & (MNT_LDEAD | MNT_LUNMOUNT)) {
5316 mount_unlock(mp);
5317 mount_iterdrop(mp);
5318 continue;
5319
5320 }
5321 mount_unlock(mp);
5322
5323 /* iterate over all the vnodes */
5324 ret = callout(mp, arg);
5325
5326 /*
5327 * Drop the iterref here if the callback didn't do it.
5328 * Note: If cb_dropref is set the mp may no longer exist.
5329 */
5330 if (!cb_dropref)
5331 mount_iterdrop(mp);
5332
5333 switch (ret) {
5334 case VFS_RETURNED:
5335 case VFS_RETURNED_DONE:
5336 if (ret == VFS_RETURNED_DONE) {
5337 ret = 0;
5338 goto out;
5339 }
5340 break;
5341
5342 case VFS_CLAIMED_DONE:
5343 ret = 0;
5344 goto out;
5345 case VFS_CLAIMED:
5346 default:
5347 break;
5348 }
5349 ret = 0;
5350 }
5351
5352 out:
5353 kfree(allocmem, (count * sizeof(fsid_t)));
5354 return (ret);
5355 }
5356
5357 /*
5358 * Update the vfsstatfs structure in the mountpoint.
5359 * MAC: Parameter eventtype added, indicating whether the event that
5360 * triggered this update came from user space, via a system call
5361 * (VFS_USER_EVENT) or an internal kernel call (VFS_KERNEL_EVENT).
5362 */
5363 int
5364 vfs_update_vfsstat(mount_t mp, vfs_context_t ctx, __unused int eventtype)
5365 {
5366 struct vfs_attr va;
5367 int error;
5368
5369 /*
5370 * Request the attributes we want to propagate into
5371 * the per-mount vfsstat structure.
5372 */
5373 VFSATTR_INIT(&va);
5374 VFSATTR_WANTED(&va, f_iosize);
5375 VFSATTR_WANTED(&va, f_blocks);
5376 VFSATTR_WANTED(&va, f_bfree);
5377 VFSATTR_WANTED(&va, f_bavail);
5378 VFSATTR_WANTED(&va, f_bused);
5379 VFSATTR_WANTED(&va, f_files);
5380 VFSATTR_WANTED(&va, f_ffree);
5381 VFSATTR_WANTED(&va, f_bsize);
5382 VFSATTR_WANTED(&va, f_fssubtype);
5383
5384 if ((error = vfs_getattr(mp, &va, ctx)) != 0) {
5385 KAUTH_DEBUG("STAT - filesystem returned error %d", error);
5386 return(error);
5387 }
5388 #if CONFIG_MACF
5389 if (eventtype == VFS_USER_EVENT) {
5390 error = mac_mount_check_getattr(ctx, mp, &va);
5391 if (error != 0)
5392 return (error);
5393 }
5394 #endif
5395 /*
5396 * Unpack into the per-mount structure.
5397 *
5398 * We only overwrite these fields, which are likely to change:
5399 * f_blocks
5400 * f_bfree
5401 * f_bavail
5402 * f_bused
5403 * f_files
5404 * f_ffree
5405 *
5406 * And these which are not, but which the FS has no other way
5407 * of providing to us:
5408 * f_bsize
5409 * f_iosize
5410 * f_fssubtype
5411 *
5412 */
5413 if (VFSATTR_IS_SUPPORTED(&va, f_bsize)) {
5414 /* 4822056 - protect against malformed server mount */
5415 mp->mnt_vfsstat.f_bsize = (va.f_bsize > 0 ? va.f_bsize : 512);
5416 } else {
5417 mp->mnt_vfsstat.f_bsize = mp->mnt_devblocksize; /* default from the device block size */
5418 }
5419 if (VFSATTR_IS_SUPPORTED(&va, f_iosize)) {
5420 mp->mnt_vfsstat.f_iosize = va.f_iosize;
5421 } else {
5422 mp->mnt_vfsstat.f_iosize = 1024 * 1024; /* 1MB sensible I/O size */
5423 }
5424 if (VFSATTR_IS_SUPPORTED(&va, f_blocks))
5425 mp->mnt_vfsstat.f_blocks = va.f_blocks;
5426 if (VFSATTR_IS_SUPPORTED(&va, f_bfree))
5427 mp->mnt_vfsstat.f_bfree = va.f_bfree;
5428 if (VFSATTR_IS_SUPPORTED(&va, f_bavail))
5429 mp->mnt_vfsstat.f_bavail = va.f_bavail;
5430 if (VFSATTR_IS_SUPPORTED(&va, f_bused))
5431 mp->mnt_vfsstat.f_bused = va.f_bused;
5432 if (VFSATTR_IS_SUPPORTED(&va, f_files))
5433 mp->mnt_vfsstat.f_files = va.f_files;
5434 if (VFSATTR_IS_SUPPORTED(&va, f_ffree))
5435 mp->mnt_vfsstat.f_ffree = va.f_ffree;
5436
5437 /* this is unlikely to change, but has to be queried for */
5438 if (VFSATTR_IS_SUPPORTED(&va, f_fssubtype))
5439 mp->mnt_vfsstat.f_fssubtype = va.f_fssubtype;
5440
5441 return(0);
5442 }
5443
5444 int
5445 mount_list_add(mount_t mp)
5446 {
5447 int res;
5448
5449 mount_list_lock();
5450 if (system_inshutdown != 0) {
5451 res = -1;
5452 } else {
5453 TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
5454 nummounts++;
5455 res = 0;
5456 }
5457 mount_list_unlock();
5458
5459 return res;
5460 }
5461
5462 void
5463 mount_list_remove(mount_t mp)
5464 {
5465 mount_list_lock();
5466 TAILQ_REMOVE(&mountlist, mp, mnt_list);
5467 nummounts--;
5468 mp->mnt_list.tqe_next = NULL;
5469 mp->mnt_list.tqe_prev = NULL;
5470 mount_list_unlock();
5471 }
5472
5473 mount_t
5474 mount_lookupby_volfsid(int volfs_id, int withref)
5475 {
5476 mount_t cur_mount = (mount_t)0;
5477 mount_t mp;
5478
5479 mount_list_lock();
5480 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
5481 if (!(mp->mnt_kern_flag & MNTK_UNMOUNT) &&
5482 (mp->mnt_kern_flag & MNTK_PATH_FROM_ID) &&
5483 (mp->mnt_vfsstat.f_fsid.val[0] == volfs_id)) {
5484 cur_mount = mp;
5485 if (withref) {
5486 if (mount_iterref(cur_mount, 1)) {
5487 cur_mount = (mount_t)0;
5488 mount_list_unlock();
5489 goto out;
5490 }
5491 }
5492 break;
5493 }
5494 }
5495 mount_list_unlock();
5496 if (withref && (cur_mount != (mount_t)0)) {
5497 mp = cur_mount;
5498 if (vfs_busy(mp, LK_NOWAIT) != 0) {
5499 cur_mount = (mount_t)0;
5500 }
5501 mount_iterdrop(mp);
5502 }
5503 out:
5504 return(cur_mount);
5505 }
5506
5507 mount_t
5508 mount_list_lookupby_fsid(fsid_t *fsid, int locked, int withref)
5509 {
5510 mount_t retmp = (mount_t)0;
5511 mount_t mp;
5512
5513 if (!locked)
5514 mount_list_lock();
5515 TAILQ_FOREACH(mp, &mountlist, mnt_list)
5516 if (mp->mnt_vfsstat.f_fsid.val[0] == fsid->val[0] &&
5517 mp->mnt_vfsstat.f_fsid.val[1] == fsid->val[1]) {
5518 retmp = mp;
5519 if (withref) {
5520 if (mount_iterref(retmp, 1))
5521 retmp = (mount_t)0;
5522 }
5523 goto out;
5524 }
5525 out:
5526 if (!locked)
5527 mount_list_unlock();
5528 return (retmp);
5529 }
5530
5531 errno_t
5532 vnode_lookup(const char *path, int flags, vnode_t *vpp, vfs_context_t ctx)
5533 {
5534 struct nameidata nd;
5535 int error;
5536 u_int32_t ndflags = 0;
5537
5538 if (ctx == NULL) {
5539 return EINVAL;
5540 }
5541
5542 if (flags & VNODE_LOOKUP_NOFOLLOW)
5543 ndflags = NOFOLLOW;
5544 else
5545 ndflags = FOLLOW;
5546
5547 if (flags & VNODE_LOOKUP_NOCROSSMOUNT)
5548 ndflags |= NOCROSSMOUNT;
5549
5550 if (flags & VNODE_LOOKUP_CROSSMOUNTNOWAIT)
5551 ndflags |= CN_NBMOUNTLOOK;
5552
5553 /* XXX AUDITVNPATH1 needed ? */
5554 NDINIT(&nd, LOOKUP, OP_LOOKUP, ndflags, UIO_SYSSPACE,
5555 CAST_USER_ADDR_T(path), ctx);
5556
5557 if ((error = namei(&nd)))
5558 return (error);
5559 *vpp = nd.ni_vp;
5560 nameidone(&nd);
5561
5562 return (0);
5563 }
5564
5565 errno_t
5566 vnode_open(const char *path, int fmode, int cmode, int flags, vnode_t *vpp, vfs_context_t ctx)
5567 {
5568 struct nameidata nd;
5569 int error;
5570 u_int32_t ndflags = 0;
5571 int lflags = flags;
5572
5573 if (ctx == NULL) { /* XXX technically an error */
5574 ctx = vfs_context_current();
5575 }
5576
5577 if (fmode & O_NOFOLLOW)
5578 lflags |= VNODE_LOOKUP_NOFOLLOW;
5579
5580 if (lflags & VNODE_LOOKUP_NOFOLLOW)
5581 ndflags = NOFOLLOW;
5582 else
5583 ndflags = FOLLOW;
5584
5585 if (lflags & VNODE_LOOKUP_NOCROSSMOUNT)
5586 ndflags |= NOCROSSMOUNT;
5587
5588 if (lflags & VNODE_LOOKUP_CROSSMOUNTNOWAIT)
5589 ndflags |= CN_NBMOUNTLOOK;
5590
5591 /* XXX AUDITVNPATH1 needed ? */
5592 NDINIT(&nd, LOOKUP, OP_OPEN, ndflags, UIO_SYSSPACE,
5593 CAST_USER_ADDR_T(path), ctx);
5594
5595 if ((error = vn_open(&nd, fmode, cmode)))
5596 *vpp = NULL;
5597 else
5598 *vpp = nd.ni_vp;
5599
5600 return (error);
5601 }
5602
5603 errno_t
5604 vnode_close(vnode_t vp, int flags, vfs_context_t ctx)
5605 {
5606 int error;
5607
5608 if (ctx == NULL) {
5609 ctx = vfs_context_current();
5610 }
5611
5612 error = vn_close(vp, flags, ctx);
5613 vnode_put(vp);
5614 return (error);
5615 }
5616
5617 errno_t
5618 vnode_mtime(vnode_t vp, struct timespec *mtime, vfs_context_t ctx)
5619 {
5620 struct vnode_attr va;
5621 int error;
5622
5623 VATTR_INIT(&va);
5624 VATTR_WANTED(&va, va_modify_time);
5625 error = vnode_getattr(vp, &va, ctx);
5626 if (!error)
5627 *mtime = va.va_modify_time;
5628 return error;
5629 }
5630
5631 errno_t
5632 vnode_flags(vnode_t vp, uint32_t *flags, vfs_context_t ctx)
5633 {
5634 struct vnode_attr va;
5635 int error;
5636
5637 VATTR_INIT(&va);
5638 VATTR_WANTED(&va, va_flags);
5639 error = vnode_getattr(vp, &va, ctx);
5640 if (!error)
5641 *flags = va.va_flags;
5642 return error;
5643 }
5644
5645 /*
5646 * Returns: 0 Success
5647 * vnode_getattr:???
5648 */
5649 errno_t
5650 vnode_size(vnode_t vp, off_t *sizep, vfs_context_t ctx)
5651 {
5652 struct vnode_attr va;
5653 int error;
5654
5655 VATTR_INIT(&va);
5656 VATTR_WANTED(&va, va_data_size);
5657 error = vnode_getattr(vp, &va, ctx);
5658 if (!error)
5659 *sizep = va.va_data_size;
5660 return(error);
5661 }
5662
5663 errno_t
5664 vnode_setsize(vnode_t vp, off_t size, int ioflag, vfs_context_t ctx)
5665 {
5666 struct vnode_attr va;
5667
5668 VATTR_INIT(&va);
5669 VATTR_SET(&va, va_data_size, size);
5670 va.va_vaflags = ioflag & 0xffff;
5671 return(vnode_setattr(vp, &va, ctx));
5672 }
5673
5674 int
5675 vnode_setdirty(vnode_t vp)
5676 {
5677 vnode_lock_spin(vp);
5678 vp->v_flag |= VISDIRTY;
5679 vnode_unlock(vp);
5680 return 0;
5681 }
5682
5683 int
5684 vnode_cleardirty(vnode_t vp)
5685 {
5686 vnode_lock_spin(vp);
5687 vp->v_flag &= ~VISDIRTY;
5688 vnode_unlock(vp);
5689 return 0;
5690 }
5691
5692 int
5693 vnode_isdirty(vnode_t vp)
5694 {
5695 int dirty;
5696
5697 vnode_lock_spin(vp);
5698 dirty = (vp->v_flag & VISDIRTY) ? 1 : 0;
5699 vnode_unlock(vp);
5700
5701 return dirty;
5702 }
5703
5704 static int
5705 vn_create_reg(vnode_t dvp, vnode_t *vpp, struct nameidata *ndp, struct vnode_attr *vap, uint32_t flags, int fmode, uint32_t *statusp, vfs_context_t ctx)
5706 {
5707 /* Only use compound VNOP for compound operation */
5708 if (vnode_compound_open_available(dvp) && ((flags & VN_CREATE_DOOPEN) != 0)) {
5709 *vpp = NULLVP;
5710 return VNOP_COMPOUND_OPEN(dvp, vpp, ndp, O_CREAT, fmode, statusp, vap, ctx);
5711 } else {
5712 return VNOP_CREATE(dvp, vpp, &ndp->ni_cnd, vap, ctx);
5713 }
5714 }
5715
5716 /*
5717 * Create a filesystem object of arbitrary type with arbitrary attributes in
5718 * the spevied directory with the specified name.
5719 *
5720 * Parameters: dvp Pointer to the vnode of the directory
5721 * in which to create the object.
5722 * vpp Pointer to the area into which to
5723 * return the vnode of the created object.
5724 * cnp Component name pointer from the namei
5725 * data structure, containing the name to
5726 * use for the create object.
5727 * vap Pointer to the vnode_attr structure
5728 * describing the object to be created,
5729 * including the type of object.
5730 * flags VN_* flags controlling ACL inheritance
5731 * and whether or not authorization is to
5732 * be required for the operation.
5733 *
5734 * Returns: 0 Success
5735 * !0 errno value
5736 *
5737 * Implicit: *vpp Contains the vnode of the object that
5738 * was created, if successful.
5739 * *cnp May be modified by the underlying VFS.
5740 * *vap May be modified by the underlying VFS.
5741 * modified by either ACL inheritance or
5742 *
5743 *
5744 * be modified, even if the operation is
5745 *
5746 *
5747 * Notes: The kauth_filesec_t in 'vap', if any, is in host byte order.
5748 *
5749 * Modification of '*cnp' and '*vap' by the underlying VFS is
5750 * strongly discouraged.
5751 *
5752 * XXX: This function is a 'vn_*' function; it belongs in vfs_vnops.c
5753 *
5754 * XXX: We should enummerate the possible errno values here, and where
5755 * in the code they originated.
5756 */
5757 errno_t
5758 vn_create(vnode_t dvp, vnode_t *vpp, struct nameidata *ndp, struct vnode_attr *vap, uint32_t flags, int fmode, uint32_t *statusp, vfs_context_t ctx)
5759 {
5760 errno_t error, old_error;
5761 vnode_t vp = (vnode_t)0;
5762 boolean_t batched;
5763 struct componentname *cnp;
5764 uint32_t defaulted;
5765
5766 cnp = &ndp->ni_cnd;
5767 error = 0;
5768 batched = namei_compound_available(dvp, ndp) ? TRUE : FALSE;
5769
5770 KAUTH_DEBUG("%p CREATE - '%s'", dvp, cnp->cn_nameptr);
5771
5772 if (flags & VN_CREATE_NOINHERIT)
5773 vap->va_vaflags |= VA_NOINHERIT;
5774 if (flags & VN_CREATE_NOAUTH)
5775 vap->va_vaflags |= VA_NOAUTH;
5776 /*
5777 * Handle ACL inheritance, initialize vap.
5778 */
5779 error = vn_attribute_prepare(dvp, vap, &defaulted, ctx);
5780 if (error) {
5781 return error;
5782 }
5783
5784 if (vap->va_type != VREG && (fmode != 0 || (flags & VN_CREATE_DOOPEN) || statusp)) {
5785 panic("Open parameters, but not a regular file.");
5786 }
5787 if ((fmode != 0) && ((flags & VN_CREATE_DOOPEN) == 0)) {
5788 panic("Mode for open, but not trying to open...");
5789 }
5790
5791
5792 /*
5793 * Create the requested node.
5794 */
5795 switch(vap->va_type) {
5796 case VREG:
5797 error = vn_create_reg(dvp, vpp, ndp, vap, flags, fmode, statusp, ctx);
5798 break;
5799 case VDIR:
5800 error = vn_mkdir(dvp, vpp, ndp, vap, ctx);
5801 break;
5802 case VSOCK:
5803 case VFIFO:
5804 case VBLK:
5805 case VCHR:
5806 error = VNOP_MKNOD(dvp, vpp, cnp, vap, ctx);
5807 break;
5808 default:
5809 panic("vnode_create: unknown vtype %d", vap->va_type);
5810 }
5811 if (error != 0) {
5812 KAUTH_DEBUG("%p CREATE - error %d returned by filesystem", dvp, error);
5813 goto out;
5814 }
5815
5816 vp = *vpp;
5817 old_error = error;
5818
5819 #if CONFIG_MACF
5820 if (!(flags & VN_CREATE_NOLABEL)) {
5821 error = vnode_label(vnode_mount(vp), dvp, vp, cnp, VNODE_LABEL_CREATE, ctx);
5822 if (error)
5823 goto error;
5824 }
5825 #endif
5826
5827 /*
5828 * If some of the requested attributes weren't handled by the VNOP,
5829 * use our fallback code.
5830 */
5831 if (!VATTR_ALL_SUPPORTED(vap) && *vpp) {
5832 KAUTH_DEBUG(" CREATE - doing fallback with ACL %p", vap->va_acl);
5833 error = vnode_setattr_fallback(*vpp, vap, ctx);
5834 }
5835 #if CONFIG_MACF
5836 error:
5837 #endif
5838 if ((error != 0) && (vp != (vnode_t)0)) {
5839
5840 /* If we've done a compound open, close */
5841 if (batched && (old_error == 0) && (vap->va_type == VREG)) {
5842 VNOP_CLOSE(vp, fmode, ctx);
5843 }
5844
5845 /* Need to provide notifications if a create succeeded */
5846 if (!batched) {
5847 *vpp = (vnode_t) 0;
5848 vnode_put(vp);
5849 vp = NULLVP;
5850 }
5851 }
5852
5853 /*
5854 * For creation VNOPs, this is the equivalent of
5855 * lookup_handle_found_vnode.
5856 */
5857 if (kdebug_enable && *vpp)
5858 kdebug_lookup(*vpp, cnp);
5859
5860 out:
5861 vn_attribute_cleanup(vap, defaulted);
5862
5863 return(error);
5864 }
5865
5866 static kauth_scope_t vnode_scope;
5867 static int vnode_authorize_callback(kauth_cred_t credential, void *idata, kauth_action_t action,
5868 uintptr_t arg0, uintptr_t arg1, uintptr_t arg2, uintptr_t arg3);
5869 static int vnode_authorize_callback_int(kauth_action_t action, vfs_context_t ctx,
5870 vnode_t vp, vnode_t dvp, int *errorp);
5871
5872 typedef struct _vnode_authorize_context {
5873 vnode_t vp;
5874 struct vnode_attr *vap;
5875 vnode_t dvp;
5876 struct vnode_attr *dvap;
5877 vfs_context_t ctx;
5878 int flags;
5879 int flags_valid;
5880 #define _VAC_IS_OWNER (1<<0)
5881 #define _VAC_IN_GROUP (1<<1)
5882 #define _VAC_IS_DIR_OWNER (1<<2)
5883 #define _VAC_IN_DIR_GROUP (1<<3)
5884 #define _VAC_NO_VNODE_POINTERS (1<<4)
5885 } *vauth_ctx;
5886
5887 void
5888 vnode_authorize_init(void)
5889 {
5890 vnode_scope = kauth_register_scope(KAUTH_SCOPE_VNODE, vnode_authorize_callback, NULL);
5891 }
5892
5893 #define VATTR_PREPARE_DEFAULTED_UID 0x1
5894 #define VATTR_PREPARE_DEFAULTED_GID 0x2
5895 #define VATTR_PREPARE_DEFAULTED_MODE 0x4
5896
5897 int
5898 vn_attribute_prepare(vnode_t dvp, struct vnode_attr *vap, uint32_t *defaulted_fieldsp, vfs_context_t ctx)
5899 {
5900 kauth_acl_t nacl = NULL, oacl = NULL;
5901 int error;
5902
5903 /*
5904 * Handle ACL inheritance.
5905 */
5906 if (!(vap->va_vaflags & VA_NOINHERIT) && vfs_extendedsecurity(dvp->v_mount)) {
5907 /* save the original filesec */
5908 if (VATTR_IS_ACTIVE(vap, va_acl)) {
5909 oacl = vap->va_acl;
5910 }
5911
5912 vap->va_acl = NULL;
5913 if ((error = kauth_acl_inherit(dvp,
5914 oacl,
5915 &nacl,
5916 vap->va_type == VDIR,
5917 ctx)) != 0) {
5918 KAUTH_DEBUG("%p CREATE - error %d processing inheritance", dvp, error);
5919 return(error);
5920 }
5921
5922 /*
5923 * If the generated ACL is NULL, then we can save ourselves some effort
5924 * by clearing the active bit.
5925 */
5926 if (nacl == NULL) {
5927 VATTR_CLEAR_ACTIVE(vap, va_acl);
5928 } else {
5929 vap->va_base_acl = oacl;
5930 VATTR_SET(vap, va_acl, nacl);
5931 }
5932 }
5933
5934 error = vnode_authattr_new_internal(dvp, vap, (vap->va_vaflags & VA_NOAUTH), defaulted_fieldsp, ctx);
5935 if (error) {
5936 vn_attribute_cleanup(vap, *defaulted_fieldsp);
5937 }
5938
5939 return error;
5940 }
5941
5942 void
5943 vn_attribute_cleanup(struct vnode_attr *vap, uint32_t defaulted_fields)
5944 {
5945 /*
5946 * If the caller supplied a filesec in vap, it has been replaced
5947 * now by the post-inheritance copy. We need to put the original back
5948 * and free the inherited product.
5949 */
5950 kauth_acl_t nacl, oacl;
5951
5952 if (VATTR_IS_ACTIVE(vap, va_acl)) {
5953 nacl = vap->va_acl;
5954 oacl = vap->va_base_acl;
5955
5956 if (oacl) {
5957 VATTR_SET(vap, va_acl, oacl);
5958 vap->va_base_acl = NULL;
5959 } else {
5960 VATTR_CLEAR_ACTIVE(vap, va_acl);
5961 }
5962
5963 if (nacl != NULL) {
5964 kauth_acl_free(nacl);
5965 }
5966 }
5967
5968 if ((defaulted_fields & VATTR_PREPARE_DEFAULTED_MODE) != 0) {
5969 VATTR_CLEAR_ACTIVE(vap, va_mode);
5970 }
5971 if ((defaulted_fields & VATTR_PREPARE_DEFAULTED_GID) != 0) {
5972 VATTR_CLEAR_ACTIVE(vap, va_gid);
5973 }
5974 if ((defaulted_fields & VATTR_PREPARE_DEFAULTED_UID) != 0) {
5975 VATTR_CLEAR_ACTIVE(vap, va_uid);
5976 }
5977
5978 return;
5979 }
5980
5981 int
5982 vn_authorize_unlink(vnode_t dvp, vnode_t vp, struct componentname *cnp, vfs_context_t ctx, __unused void *reserved)
5983 {
5984 #if !CONFIG_MACF
5985 #pragma unused(cnp)
5986 #endif
5987 int error = 0;
5988
5989 /*
5990 * Normally, unlinking of directories is not supported.
5991 * However, some file systems may have limited support.
5992 */
5993 if ((vp->v_type == VDIR) &&
5994 !(vp->v_mount->mnt_kern_flag & MNTK_DIR_HARDLINKS)) {
5995 return (EPERM); /* POSIX */
5996 }
5997
5998 /* authorize the delete operation */
5999 #if CONFIG_MACF
6000 if (!error)
6001 error = mac_vnode_check_unlink(ctx, dvp, vp, cnp);
6002 #endif /* MAC */
6003 if (!error)
6004 error = vnode_authorize(vp, dvp, KAUTH_VNODE_DELETE, ctx);
6005
6006 return error;
6007 }
6008
6009 int
6010 vn_authorize_open_existing(vnode_t vp, struct componentname *cnp, int fmode, vfs_context_t ctx, void *reserved)
6011 {
6012 /* Open of existing case */
6013 kauth_action_t action;
6014 int error = 0;
6015 if (cnp->cn_ndp == NULL) {
6016 panic("NULL ndp");
6017 }
6018 if (reserved != NULL) {
6019 panic("reserved not NULL.");
6020 }
6021
6022 #if CONFIG_MACF
6023 /* XXX may do duplicate work here, but ignore that for now (idempotent) */
6024 if (vfs_flags(vnode_mount(vp)) & MNT_MULTILABEL) {
6025 error = vnode_label(vnode_mount(vp), NULL, vp, NULL, 0, ctx);
6026 if (error)
6027 return (error);
6028 }
6029 #endif
6030
6031 if ( (fmode & O_DIRECTORY) && vp->v_type != VDIR ) {
6032 return (ENOTDIR);
6033 }
6034
6035 if (vp->v_type == VSOCK && vp->v_tag != VT_FDESC) {
6036 return (EOPNOTSUPP); /* Operation not supported on socket */
6037 }
6038
6039 if (vp->v_type == VLNK && (fmode & O_NOFOLLOW) != 0) {
6040 return (ELOOP); /* O_NOFOLLOW was specified and the target is a symbolic link */
6041 }
6042
6043 /* disallow write operations on directories */
6044 if (vnode_isdir(vp) && (fmode & (FWRITE | O_TRUNC))) {
6045 return (EISDIR);
6046 }
6047
6048 if ((cnp->cn_ndp->ni_flag & NAMEI_TRAILINGSLASH)) {
6049 if (vp->v_type != VDIR) {
6050 return (ENOTDIR);
6051 }
6052 }
6053
6054 #if CONFIG_MACF
6055 /* If a file being opened is a shadow file containing
6056 * namedstream data, ignore the macf checks because it
6057 * is a kernel internal file and access should always
6058 * be allowed.
6059 */
6060 if (!(vnode_isshadow(vp) && vnode_isnamedstream(vp))) {
6061 error = mac_vnode_check_open(ctx, vp, fmode);
6062 if (error) {
6063 return (error);
6064 }
6065 }
6066 #endif
6067
6068 /* compute action to be authorized */
6069 action = 0;
6070 if (fmode & FREAD) {
6071 action |= KAUTH_VNODE_READ_DATA;
6072 }
6073 if (fmode & (FWRITE | O_TRUNC)) {
6074 /*
6075 * If we are writing, appending, and not truncating,
6076 * indicate that we are appending so that if the
6077 * UF_APPEND or SF_APPEND bits are set, we do not deny
6078 * the open.
6079 */
6080 if ((fmode & O_APPEND) && !(fmode & O_TRUNC)) {
6081 action |= KAUTH_VNODE_APPEND_DATA;
6082 } else {
6083 action |= KAUTH_VNODE_WRITE_DATA;
6084 }
6085 }
6086 error = vnode_authorize(vp, NULL, action, ctx);
6087 #if NAMEDSTREAMS
6088 if (error == EACCES) {
6089 /*
6090 * Shadow files may exist on-disk with a different UID/GID
6091 * than that of the current context. Verify that this file
6092 * is really a shadow file. If it was created successfully
6093 * then it should be authorized.
6094 */
6095 if (vnode_isshadow(vp) && vnode_isnamedstream (vp)) {
6096 error = vnode_verifynamedstream(vp);
6097 }
6098 }
6099 #endif
6100
6101 return error;
6102 }
6103
6104 int
6105 vn_authorize_create(vnode_t dvp, struct componentname *cnp, struct vnode_attr *vap, vfs_context_t ctx, void *reserved)
6106 {
6107 #if !CONFIG_MACF
6108 #pragma unused(vap)
6109 #endif
6110 /* Creation case */
6111 int error;
6112
6113 if (cnp->cn_ndp == NULL) {
6114 panic("NULL cn_ndp");
6115 }
6116 if (reserved != NULL) {
6117 panic("reserved not NULL.");
6118 }
6119
6120 /* Only validate path for creation if we didn't do a complete lookup */
6121 if (cnp->cn_ndp->ni_flag & NAMEI_UNFINISHED) {
6122 error = lookup_validate_creation_path(cnp->cn_ndp);
6123 if (error)
6124 return (error);
6125 }
6126
6127 #if CONFIG_MACF
6128 error = mac_vnode_check_create(ctx, dvp, cnp, vap);
6129 if (error)
6130 return (error);
6131 #endif /* CONFIG_MACF */
6132
6133 return (vnode_authorize(dvp, NULL, KAUTH_VNODE_ADD_FILE, ctx));
6134 }
6135
6136 int
6137 vn_authorize_rename(struct vnode *fdvp, struct vnode *fvp, struct componentname *fcnp,
6138 struct vnode *tdvp, struct vnode *tvp, struct componentname *tcnp,
6139 vfs_context_t ctx, void *reserved)
6140 {
6141 return vn_authorize_renamex(fdvp, fvp, fcnp, tdvp, tvp, tcnp, ctx, 0, reserved);
6142 }
6143
6144 int
6145 vn_authorize_renamex(struct vnode *fdvp, struct vnode *fvp, struct componentname *fcnp,
6146 struct vnode *tdvp, struct vnode *tvp, struct componentname *tcnp,
6147 vfs_context_t ctx, vfs_rename_flags_t flags, void *reserved)
6148 {
6149
6150 return vn_authorize_renamex_with_paths(fdvp, fvp, fcnp, NULL, tdvp, tvp, tcnp, NULL, ctx, flags, reserved);
6151 }
6152
6153 int
6154 vn_authorize_renamex_with_paths(struct vnode *fdvp, struct vnode *fvp, struct componentname *fcnp, const char *from_path,
6155 struct vnode *tdvp, struct vnode *tvp, struct componentname *tcnp, const char *to_path,
6156 vfs_context_t ctx, vfs_rename_flags_t flags, void *reserved)
6157 {
6158 int error = 0;
6159 int moving = 0;
6160 bool swap = flags & VFS_RENAME_SWAP;
6161
6162 if (reserved != NULL) {
6163 panic("Passed something other than NULL as reserved field!");
6164 }
6165
6166 /*
6167 * Avoid renaming "." and "..".
6168 *
6169 * XXX No need to check for this in the FS. We should always have the leaves
6170 * in VFS in this case.
6171 */
6172 if (fvp->v_type == VDIR &&
6173 ((fdvp == fvp) ||
6174 (fcnp->cn_namelen == 1 && fcnp->cn_nameptr[0] == '.') ||
6175 ((fcnp->cn_flags | tcnp->cn_flags) & ISDOTDOT)) ) {
6176 error = EINVAL;
6177 goto out;
6178 }
6179
6180 if (tvp == NULLVP && vnode_compound_rename_available(tdvp)) {
6181 error = lookup_validate_creation_path(tcnp->cn_ndp);
6182 if (error)
6183 goto out;
6184 }
6185
6186 /***** <MACF> *****/
6187 #if CONFIG_MACF
6188 error = mac_vnode_check_rename(ctx, fdvp, fvp, fcnp, tdvp, tvp, tcnp);
6189 if (error)
6190 goto out;
6191 if (swap) {
6192 error = mac_vnode_check_rename(ctx, tdvp, tvp, tcnp, fdvp, fvp, fcnp);
6193 if (error)
6194 goto out;
6195 }
6196 #endif
6197 /***** </MACF> *****/
6198
6199 /***** <MiscChecks> *****/
6200 if (tvp != NULL) {
6201 if (!swap) {
6202 if (fvp->v_type == VDIR && tvp->v_type != VDIR) {
6203 error = ENOTDIR;
6204 goto out;
6205 } else if (fvp->v_type != VDIR && tvp->v_type == VDIR) {
6206 error = EISDIR;
6207 goto out;
6208 }
6209 }
6210 } else if (swap) {
6211 /*
6212 * Caller should have already checked this and returned
6213 * ENOENT. If we send back ENOENT here, caller will retry
6214 * which isn't what we want so we send back EINVAL here
6215 * instead.
6216 */
6217 error = EINVAL;
6218 goto out;
6219 }
6220
6221 if (fvp == tdvp) {
6222 error = EINVAL;
6223 goto out;
6224 }
6225
6226 /*
6227 * The following edge case is caught here:
6228 * (to cannot be a descendent of from)
6229 *
6230 * o fdvp
6231 * /
6232 * /
6233 * o fvp
6234 * \
6235 * \
6236 * o tdvp
6237 * /
6238 * /
6239 * o tvp
6240 */
6241 if (tdvp->v_parent == fvp) {
6242 error = EINVAL;
6243 goto out;
6244 }
6245
6246 if (swap && fdvp->v_parent == tvp) {
6247 error = EINVAL;
6248 goto out;
6249 }
6250 /***** </MiscChecks> *****/
6251
6252 /***** <Kauth> *****/
6253
6254 /*
6255 * As part of the Kauth step, we call out to allow 3rd-party
6256 * fileop notification of "about to rename". This is needed
6257 * in the event that 3rd-parties need to know that the DELETE
6258 * authorization is actually part of a rename. It's important
6259 * that we guarantee that the DELETE call-out will always be
6260 * made if the WILL_RENAME call-out is made. Another fileop
6261 * call-out will be performed once the operation is completed.
6262 * We can ignore the result of kauth_authorize_fileop().
6263 *
6264 * N.B. We are passing the vnode and *both* paths to each
6265 * call; kauth_authorize_fileop() extracts the "from" path
6266 * when posting a KAUTH_FILEOP_WILL_RENAME notification.
6267 * As such, we only post these notifications if all of the
6268 * information we need is provided.
6269 */
6270
6271 if (swap) {
6272 kauth_action_t f = 0, t = 0;
6273
6274 /*
6275 * Directories changing parents need ...ADD_SUBDIR... to
6276 * permit changing ".."
6277 */
6278 if (fdvp != tdvp) {
6279 if (vnode_isdir(fvp))
6280 f = KAUTH_VNODE_ADD_SUBDIRECTORY;
6281 if (vnode_isdir(tvp))
6282 t = KAUTH_VNODE_ADD_SUBDIRECTORY;
6283 }
6284 if (to_path != NULL)
6285 kauth_authorize_fileop(vfs_context_ucred(ctx),
6286 KAUTH_FILEOP_WILL_RENAME,
6287 (uintptr_t)fvp,
6288 (uintptr_t)to_path);
6289 error = vnode_authorize(fvp, fdvp, KAUTH_VNODE_DELETE | f, ctx);
6290 if (error)
6291 goto out;
6292 if (from_path != NULL)
6293 kauth_authorize_fileop(vfs_context_ucred(ctx),
6294 KAUTH_FILEOP_WILL_RENAME,
6295 (uintptr_t)tvp,
6296 (uintptr_t)from_path);
6297 error = vnode_authorize(tvp, tdvp, KAUTH_VNODE_DELETE | t, ctx);
6298 if (error)
6299 goto out;
6300 f = vnode_isdir(fvp) ? KAUTH_VNODE_ADD_SUBDIRECTORY : KAUTH_VNODE_ADD_FILE;
6301 t = vnode_isdir(tvp) ? KAUTH_VNODE_ADD_SUBDIRECTORY : KAUTH_VNODE_ADD_FILE;
6302 if (fdvp == tdvp)
6303 error = vnode_authorize(fdvp, NULL, f | t, ctx);
6304 else {
6305 error = vnode_authorize(fdvp, NULL, t, ctx);
6306 if (error)
6307 goto out;
6308 error = vnode_authorize(tdvp, NULL, f, ctx);
6309 }
6310 if (error)
6311 goto out;
6312 } else {
6313 error = 0;
6314 if ((tvp != NULL) && vnode_isdir(tvp)) {
6315 if (tvp != fdvp)
6316 moving = 1;
6317 } else if (tdvp != fdvp) {
6318 moving = 1;
6319 }
6320
6321 /*
6322 * must have delete rights to remove the old name even in
6323 * the simple case of fdvp == tdvp.
6324 *
6325 * If fvp is a directory, and we are changing it's parent,
6326 * then we also need rights to rewrite its ".." entry as well.
6327 */
6328 if (to_path != NULL)
6329 kauth_authorize_fileop(vfs_context_ucred(ctx),
6330 KAUTH_FILEOP_WILL_RENAME,
6331 (uintptr_t)fvp,
6332 (uintptr_t)to_path);
6333 if (vnode_isdir(fvp)) {
6334 if ((error = vnode_authorize(fvp, fdvp, KAUTH_VNODE_DELETE | KAUTH_VNODE_ADD_SUBDIRECTORY, ctx)) != 0)
6335 goto out;
6336 } else {
6337 if ((error = vnode_authorize(fvp, fdvp, KAUTH_VNODE_DELETE, ctx)) != 0)
6338 goto out;
6339 }
6340 if (moving) {
6341 /* moving into tdvp or tvp, must have rights to add */
6342 if ((error = vnode_authorize(((tvp != NULL) && vnode_isdir(tvp)) ? tvp : tdvp,
6343 NULL,
6344 vnode_isdir(fvp) ? KAUTH_VNODE_ADD_SUBDIRECTORY : KAUTH_VNODE_ADD_FILE,
6345 ctx)) != 0) {
6346 goto out;
6347 }
6348 } else {
6349 /* node staying in same directory, must be allowed to add new name */
6350 if ((error = vnode_authorize(fdvp, NULL,
6351 vnode_isdir(fvp) ? KAUTH_VNODE_ADD_SUBDIRECTORY : KAUTH_VNODE_ADD_FILE, ctx)) != 0)
6352 goto out;
6353 }
6354 /* overwriting tvp */
6355 if ((tvp != NULL) && !vnode_isdir(tvp) &&
6356 ((error = vnode_authorize(tvp, tdvp, KAUTH_VNODE_DELETE, ctx)) != 0)) {
6357 goto out;
6358 }
6359 }
6360
6361 /***** </Kauth> *****/
6362
6363 /* XXX more checks? */
6364 out:
6365 return error;
6366 }
6367
6368 int
6369 vn_authorize_mkdir(vnode_t dvp, struct componentname *cnp, struct vnode_attr *vap, vfs_context_t ctx, void *reserved)
6370 {
6371 #if !CONFIG_MACF
6372 #pragma unused(vap)
6373 #endif
6374 int error;
6375
6376 if (reserved != NULL) {
6377 panic("reserved not NULL in vn_authorize_mkdir()");
6378 }
6379
6380 /* XXX A hack for now, to make shadow files work */
6381 if (cnp->cn_ndp == NULL) {
6382 return 0;
6383 }
6384
6385 if (vnode_compound_mkdir_available(dvp)) {
6386 error = lookup_validate_creation_path(cnp->cn_ndp);
6387 if (error)
6388 goto out;
6389 }
6390
6391 #if CONFIG_MACF
6392 error = mac_vnode_check_create(ctx,
6393 dvp, cnp, vap);
6394 if (error)
6395 goto out;
6396 #endif
6397
6398 /* authorize addition of a directory to the parent */
6399 if ((error = vnode_authorize(dvp, NULL, KAUTH_VNODE_ADD_SUBDIRECTORY, ctx)) != 0)
6400 goto out;
6401
6402 out:
6403 return error;
6404 }
6405
6406 int
6407 vn_authorize_rmdir(vnode_t dvp, vnode_t vp, struct componentname *cnp, vfs_context_t ctx, void *reserved)
6408 {
6409 #if CONFIG_MACF
6410 int error;
6411 #else
6412 #pragma unused(cnp)
6413 #endif
6414 if (reserved != NULL) {
6415 panic("Non-NULL reserved argument to vn_authorize_rmdir()");
6416 }
6417
6418 if (vp->v_type != VDIR) {
6419 /*
6420 * rmdir only deals with directories
6421 */
6422 return ENOTDIR;
6423 }
6424
6425 if (dvp == vp) {
6426 /*
6427 * No rmdir "." please.
6428 */
6429 return EINVAL;
6430 }
6431
6432 #if CONFIG_MACF
6433 error = mac_vnode_check_unlink(ctx, dvp,
6434 vp, cnp);
6435 if (error)
6436 return error;
6437 #endif
6438
6439 return vnode_authorize(vp, dvp, KAUTH_VNODE_DELETE, ctx);
6440 }
6441
6442 /*
6443 * Authorizer for directory cloning. This does not use vnodes but instead
6444 * uses prefilled vnode attributes from the filesystem.
6445 *
6446 * The same function is called to set up the attributes required, perform the
6447 * authorization and cleanup (if required)
6448 */
6449 int
6450 vnode_attr_authorize_dir_clone(struct vnode_attr *vap, kauth_action_t action,
6451 struct vnode_attr *dvap, __unused vnode_t sdvp, mount_t mp,
6452 dir_clone_authorizer_op_t vattr_op, uint32_t flags, vfs_context_t ctx,
6453 __unused void *reserved)
6454 {
6455 int error;
6456 int is_suser = vfs_context_issuser(ctx);
6457
6458 if (vattr_op == OP_VATTR_SETUP) {
6459 VATTR_INIT(vap);
6460
6461 /*
6462 * When ACL inheritence is implemented, both vap->va_acl and
6463 * dvap->va_acl will be required (even as superuser).
6464 */
6465 VATTR_WANTED(vap, va_type);
6466 VATTR_WANTED(vap, va_mode);
6467 VATTR_WANTED(vap, va_flags);
6468 VATTR_WANTED(vap, va_uid);
6469 VATTR_WANTED(vap, va_gid);
6470 if (dvap) {
6471 VATTR_INIT(dvap);
6472 VATTR_WANTED(dvap, va_flags);
6473 }
6474
6475 if (!is_suser) {
6476 /*
6477 * If not superuser, we have to evaluate ACLs and
6478 * need the target directory gid to set the initial
6479 * gid of the new object.
6480 */
6481 VATTR_WANTED(vap, va_acl);
6482 if (dvap)
6483 VATTR_WANTED(dvap, va_gid);
6484 } else if (dvap && (flags & VNODE_CLONEFILE_NOOWNERCOPY)) {
6485 VATTR_WANTED(dvap, va_gid);
6486 }
6487 return (0);
6488 } else if (vattr_op == OP_VATTR_CLEANUP) {
6489 return (0); /* Nothing to do for now */
6490 }
6491
6492 /* dvap isn't used for authorization */
6493 error = vnode_attr_authorize(vap, NULL, mp, action, ctx);
6494
6495 if (error)
6496 return (error);
6497
6498 /*
6499 * vn_attribute_prepare should be able to accept attributes as well as
6500 * vnodes but for now we do this inline.
6501 */
6502 if (!is_suser || (flags & VNODE_CLONEFILE_NOOWNERCOPY)) {
6503 /*
6504 * If the filesystem is mounted IGNORE_OWNERSHIP and an explicit
6505 * owner is set, that owner takes ownership of all new files.
6506 */
6507 if ((mp->mnt_flag & MNT_IGNORE_OWNERSHIP) &&
6508 (mp->mnt_fsowner != KAUTH_UID_NONE)) {
6509 VATTR_SET(vap, va_uid, mp->mnt_fsowner);
6510 } else {
6511 /* default owner is current user */
6512 VATTR_SET(vap, va_uid,
6513 kauth_cred_getuid(vfs_context_ucred(ctx)));
6514 }
6515
6516 if ((mp->mnt_flag & MNT_IGNORE_OWNERSHIP) &&
6517 (mp->mnt_fsgroup != KAUTH_GID_NONE)) {
6518 VATTR_SET(vap, va_gid, mp->mnt_fsgroup);
6519 } else {
6520 /*
6521 * default group comes from parent object,
6522 * fallback to current user
6523 */
6524 if (VATTR_IS_SUPPORTED(dvap, va_gid)) {
6525 VATTR_SET(vap, va_gid, dvap->va_gid);
6526 } else {
6527 VATTR_SET(vap, va_gid,
6528 kauth_cred_getgid(vfs_context_ucred(ctx)));
6529 }
6530 }
6531 }
6532
6533 /* Inherit SF_RESTRICTED bit from destination directory only */
6534 if (VATTR_IS_ACTIVE(vap, va_flags)) {
6535 VATTR_SET(vap, va_flags,
6536 ((vap->va_flags & ~(UF_DATAVAULT | SF_RESTRICTED)))); /* Turn off from source */
6537 if (VATTR_IS_ACTIVE(dvap, va_flags))
6538 VATTR_SET(vap, va_flags,
6539 vap->va_flags | (dvap->va_flags & (UF_DATAVAULT | SF_RESTRICTED)));
6540 } else if (VATTR_IS_ACTIVE(dvap, va_flags)) {
6541 VATTR_SET(vap, va_flags, (dvap->va_flags & (UF_DATAVAULT | SF_RESTRICTED)));
6542 }
6543
6544 return (0);
6545 }
6546
6547
6548 /*
6549 * Authorize an operation on a vnode.
6550 *
6551 * This is KPI, but here because it needs vnode_scope.
6552 *
6553 * Returns: 0 Success
6554 * kauth_authorize_action:EPERM ...
6555 * xlate => EACCES Permission denied
6556 * kauth_authorize_action:0 Success
6557 * kauth_authorize_action: Depends on callback return; this is
6558 * usually only vnode_authorize_callback(),
6559 * but may include other listerners, if any
6560 * exist.
6561 * EROFS
6562 * EACCES
6563 * EPERM
6564 * ???
6565 */
6566 int
6567 vnode_authorize(vnode_t vp, vnode_t dvp, kauth_action_t action, vfs_context_t ctx)
6568 {
6569 int error, result;
6570
6571 /*
6572 * We can't authorize against a dead vnode; allow all operations through so that
6573 * the correct error can be returned.
6574 */
6575 if (vp->v_type == VBAD)
6576 return(0);
6577
6578 error = 0;
6579 result = kauth_authorize_action(vnode_scope, vfs_context_ucred(ctx), action,
6580 (uintptr_t)ctx, (uintptr_t)vp, (uintptr_t)dvp, (uintptr_t)&error);
6581 if (result == EPERM) /* traditional behaviour */
6582 result = EACCES;
6583 /* did the lower layers give a better error return? */
6584 if ((result != 0) && (error != 0))
6585 return(error);
6586 return(result);
6587 }
6588
6589 /*
6590 * Test for vnode immutability.
6591 *
6592 * The 'append' flag is set when the authorization request is constrained
6593 * to operations which only request the right to append to a file.
6594 *
6595 * The 'ignore' flag is set when an operation modifying the immutability flags
6596 * is being authorized. We check the system securelevel to determine which
6597 * immutability flags we can ignore.
6598 */
6599 static int
6600 vnode_immutable(struct vnode_attr *vap, int append, int ignore)
6601 {
6602 int mask;
6603
6604 /* start with all bits precluding the operation */
6605 mask = IMMUTABLE | APPEND;
6606
6607 /* if appending only, remove the append-only bits */
6608 if (append)
6609 mask &= ~APPEND;
6610
6611 /* ignore only set when authorizing flags changes */
6612 if (ignore) {
6613 if (securelevel <= 0) {
6614 /* in insecure state, flags do not inhibit changes */
6615 mask = 0;
6616 } else {
6617 /* in secure state, user flags don't inhibit */
6618 mask &= ~(UF_IMMUTABLE | UF_APPEND);
6619 }
6620 }
6621 KAUTH_DEBUG("IMMUTABLE - file flags 0x%x mask 0x%x append = %d ignore = %d", vap->va_flags, mask, append, ignore);
6622 if ((vap->va_flags & mask) != 0)
6623 return(EPERM);
6624 return(0);
6625 }
6626
6627 static int
6628 vauth_node_owner(struct vnode_attr *vap, kauth_cred_t cred)
6629 {
6630 int result;
6631
6632 /* default assumption is not-owner */
6633 result = 0;
6634
6635 /*
6636 * If the filesystem has given us a UID, we treat this as authoritative.
6637 */
6638 if (vap && VATTR_IS_SUPPORTED(vap, va_uid)) {
6639 result = (vap->va_uid == kauth_cred_getuid(cred)) ? 1 : 0;
6640 }
6641 /* we could test the owner UUID here if we had a policy for it */
6642
6643 return(result);
6644 }
6645
6646 /*
6647 * vauth_node_group
6648 *
6649 * Description: Ask if a cred is a member of the group owning the vnode object
6650 *
6651 * Parameters: vap vnode attribute
6652 * vap->va_gid group owner of vnode object
6653 * cred credential to check
6654 * ismember pointer to where to put the answer
6655 * idontknow Return this if we can't get an answer
6656 *
6657 * Returns: 0 Success
6658 * idontknow Can't get information
6659 * kauth_cred_ismember_gid:? Error from kauth subsystem
6660 * kauth_cred_ismember_gid:? Error from kauth subsystem
6661 */
6662 static int
6663 vauth_node_group(struct vnode_attr *vap, kauth_cred_t cred, int *ismember, int idontknow)
6664 {
6665 int error;
6666 int result;
6667
6668 error = 0;
6669 result = 0;
6670
6671 /*
6672 * The caller is expected to have asked the filesystem for a group
6673 * at some point prior to calling this function. The answer may
6674 * have been that there is no group ownership supported for the
6675 * vnode object, in which case we return
6676 */
6677 if (vap && VATTR_IS_SUPPORTED(vap, va_gid)) {
6678 error = kauth_cred_ismember_gid(cred, vap->va_gid, &result);
6679 /*
6680 * Credentials which are opted into external group membership
6681 * resolution which are not known to the external resolver
6682 * will result in an ENOENT error. We translate this into
6683 * the appropriate 'idontknow' response for our caller.
6684 *
6685 * XXX We do not make a distinction here between an ENOENT
6686 * XXX arising from a response from the external resolver,
6687 * XXX and an ENOENT which is internally generated. This is
6688 * XXX a deficiency of the published kauth_cred_ismember_gid()
6689 * XXX KPI which can not be overcome without new KPI. For
6690 * XXX all currently known cases, however, this wil result
6691 * XXX in correct behaviour.
6692 */
6693 if (error == ENOENT)
6694 error = idontknow;
6695 }
6696 /*
6697 * XXX We could test the group UUID here if we had a policy for it,
6698 * XXX but this is problematic from the perspective of synchronizing
6699 * XXX group UUID and POSIX GID ownership of a file and keeping the
6700 * XXX values coherent over time. The problem is that the local
6701 * XXX system will vend transient group UUIDs for unknown POSIX GID
6702 * XXX values, and these are not persistent, whereas storage of values
6703 * XXX is persistent. One potential solution to this is a local
6704 * XXX (persistent) replica of remote directory entries and vended
6705 * XXX local ids in a local directory server (think in terms of a
6706 * XXX caching DNS server).
6707 */
6708
6709 if (!error)
6710 *ismember = result;
6711 return(error);
6712 }
6713
6714 static int
6715 vauth_file_owner(vauth_ctx vcp)
6716 {
6717 int result;
6718
6719 if (vcp->flags_valid & _VAC_IS_OWNER) {
6720 result = (vcp->flags & _VAC_IS_OWNER) ? 1 : 0;
6721 } else {
6722 result = vauth_node_owner(vcp->vap, vcp->ctx->vc_ucred);
6723
6724 /* cache our result */
6725 vcp->flags_valid |= _VAC_IS_OWNER;
6726 if (result) {
6727 vcp->flags |= _VAC_IS_OWNER;
6728 } else {
6729 vcp->flags &= ~_VAC_IS_OWNER;
6730 }
6731 }
6732 return(result);
6733 }
6734
6735
6736 /*
6737 * vauth_file_ingroup
6738 *
6739 * Description: Ask if a user is a member of the group owning the directory
6740 *
6741 * Parameters: vcp The vnode authorization context that
6742 * contains the user and directory info
6743 * vcp->flags_valid Valid flags
6744 * vcp->flags Flags values
6745 * vcp->vap File vnode attributes
6746 * vcp->ctx VFS Context (for user)
6747 * ismember pointer to where to put the answer
6748 * idontknow Return this if we can't get an answer
6749 *
6750 * Returns: 0 Success
6751 * vauth_node_group:? Error from vauth_node_group()
6752 *
6753 * Implicit returns: *ismember 0 The user is not a group member
6754 * 1 The user is a group member
6755 */
6756 static int
6757 vauth_file_ingroup(vauth_ctx vcp, int *ismember, int idontknow)
6758 {
6759 int error;
6760
6761 /* Check for a cached answer first, to avoid the check if possible */
6762 if (vcp->flags_valid & _VAC_IN_GROUP) {
6763 *ismember = (vcp->flags & _VAC_IN_GROUP) ? 1 : 0;
6764 error = 0;
6765 } else {
6766 /* Otherwise, go look for it */
6767 error = vauth_node_group(vcp->vap, vcp->ctx->vc_ucred, ismember, idontknow);
6768
6769 if (!error) {
6770 /* cache our result */
6771 vcp->flags_valid |= _VAC_IN_GROUP;
6772 if (*ismember) {
6773 vcp->flags |= _VAC_IN_GROUP;
6774 } else {
6775 vcp->flags &= ~_VAC_IN_GROUP;
6776 }
6777 }
6778
6779 }
6780 return(error);
6781 }
6782
6783 static int
6784 vauth_dir_owner(vauth_ctx vcp)
6785 {
6786 int result;
6787
6788 if (vcp->flags_valid & _VAC_IS_DIR_OWNER) {
6789 result = (vcp->flags & _VAC_IS_DIR_OWNER) ? 1 : 0;
6790 } else {
6791 result = vauth_node_owner(vcp->dvap, vcp->ctx->vc_ucred);
6792
6793 /* cache our result */
6794 vcp->flags_valid |= _VAC_IS_DIR_OWNER;
6795 if (result) {
6796 vcp->flags |= _VAC_IS_DIR_OWNER;
6797 } else {
6798 vcp->flags &= ~_VAC_IS_DIR_OWNER;
6799 }
6800 }
6801 return(result);
6802 }
6803
6804 /*
6805 * vauth_dir_ingroup
6806 *
6807 * Description: Ask if a user is a member of the group owning the directory
6808 *
6809 * Parameters: vcp The vnode authorization context that
6810 * contains the user and directory info
6811 * vcp->flags_valid Valid flags
6812 * vcp->flags Flags values
6813 * vcp->dvap Dir vnode attributes
6814 * vcp->ctx VFS Context (for user)
6815 * ismember pointer to where to put the answer
6816 * idontknow Return this if we can't get an answer
6817 *
6818 * Returns: 0 Success
6819 * vauth_node_group:? Error from vauth_node_group()
6820 *
6821 * Implicit returns: *ismember 0 The user is not a group member
6822 * 1 The user is a group member
6823 */
6824 static int
6825 vauth_dir_ingroup(vauth_ctx vcp, int *ismember, int idontknow)
6826 {
6827 int error;
6828
6829 /* Check for a cached answer first, to avoid the check if possible */
6830 if (vcp->flags_valid & _VAC_IN_DIR_GROUP) {
6831 *ismember = (vcp->flags & _VAC_IN_DIR_GROUP) ? 1 : 0;
6832 error = 0;
6833 } else {
6834 /* Otherwise, go look for it */
6835 error = vauth_node_group(vcp->dvap, vcp->ctx->vc_ucred, ismember, idontknow);
6836
6837 if (!error) {
6838 /* cache our result */
6839 vcp->flags_valid |= _VAC_IN_DIR_GROUP;
6840 if (*ismember) {
6841 vcp->flags |= _VAC_IN_DIR_GROUP;
6842 } else {
6843 vcp->flags &= ~_VAC_IN_DIR_GROUP;
6844 }
6845 }
6846 }
6847 return(error);
6848 }
6849
6850 /*
6851 * Test the posix permissions in (vap) to determine whether (credential)
6852 * may perform (action)
6853 */
6854 static int
6855 vnode_authorize_posix(vauth_ctx vcp, int action, int on_dir)
6856 {
6857 struct vnode_attr *vap;
6858 int needed, error, owner_ok, group_ok, world_ok, ismember;
6859 #ifdef KAUTH_DEBUG_ENABLE
6860 const char *where = "uninitialized";
6861 # define _SETWHERE(c) where = c;
6862 #else
6863 # define _SETWHERE(c)
6864 #endif
6865
6866 /* checking file or directory? */
6867 if (on_dir) {
6868 vap = vcp->dvap;
6869 } else {
6870 vap = vcp->vap;
6871 }
6872
6873 error = 0;
6874
6875 /*
6876 * We want to do as little work here as possible. So first we check
6877 * which sets of permissions grant us the access we need, and avoid checking
6878 * whether specific permissions grant access when more generic ones would.
6879 */
6880
6881 /* owner permissions */
6882 needed = 0;
6883 if (action & VREAD)
6884 needed |= S_IRUSR;
6885 if (action & VWRITE)
6886 needed |= S_IWUSR;
6887 if (action & VEXEC)
6888 needed |= S_IXUSR;
6889 owner_ok = (needed & vap->va_mode) == needed;
6890
6891 /* group permissions */
6892 needed = 0;
6893 if (action & VREAD)
6894 needed |= S_IRGRP;
6895 if (action & VWRITE)
6896 needed |= S_IWGRP;
6897 if (action & VEXEC)
6898 needed |= S_IXGRP;
6899 group_ok = (needed & vap->va_mode) == needed;
6900
6901 /* world permissions */
6902 needed = 0;
6903 if (action & VREAD)
6904 needed |= S_IROTH;
6905 if (action & VWRITE)
6906 needed |= S_IWOTH;
6907 if (action & VEXEC)
6908 needed |= S_IXOTH;
6909 world_ok = (needed & vap->va_mode) == needed;
6910
6911 /* If granted/denied by all three, we're done */
6912 if (owner_ok && group_ok && world_ok) {
6913 _SETWHERE("all");
6914 goto out;
6915 }
6916 if (!owner_ok && !group_ok && !world_ok) {
6917 _SETWHERE("all");
6918 error = EACCES;
6919 goto out;
6920 }
6921
6922 /* Check ownership (relatively cheap) */
6923 if ((on_dir && vauth_dir_owner(vcp)) ||
6924 (!on_dir && vauth_file_owner(vcp))) {
6925 _SETWHERE("user");
6926 if (!owner_ok)
6927 error = EACCES;
6928 goto out;
6929 }
6930
6931 /* Not owner; if group and world both grant it we're done */
6932 if (group_ok && world_ok) {
6933 _SETWHERE("group/world");
6934 goto out;
6935 }
6936 if (!group_ok && !world_ok) {
6937 _SETWHERE("group/world");
6938 error = EACCES;
6939 goto out;
6940 }
6941
6942 /* Check group membership (most expensive) */
6943 ismember = 0; /* Default to allow, if the target has no group owner */
6944
6945 /*
6946 * In the case we can't get an answer about the user from the call to
6947 * vauth_dir_ingroup() or vauth_file_ingroup(), we want to fail on
6948 * the side of caution, rather than simply granting access, or we will
6949 * fail to correctly implement exclusion groups, so we set the third
6950 * parameter on the basis of the state of 'group_ok'.
6951 */
6952 if (on_dir) {
6953 error = vauth_dir_ingroup(vcp, &ismember, (!group_ok ? EACCES : 0));
6954 } else {
6955 error = vauth_file_ingroup(vcp, &ismember, (!group_ok ? EACCES : 0));
6956 }
6957 if (error) {
6958 if (!group_ok)
6959 ismember = 1;
6960 error = 0;
6961 }
6962 if (ismember) {
6963 _SETWHERE("group");
6964 if (!group_ok)
6965 error = EACCES;
6966 goto out;
6967 }
6968
6969 /* Not owner, not in group, use world result */
6970 _SETWHERE("world");
6971 if (!world_ok)
6972 error = EACCES;
6973
6974 /* FALLTHROUGH */
6975
6976 out:
6977 KAUTH_DEBUG("%p %s - posix %s permissions : need %s%s%s %x have %s%s%s%s%s%s%s%s%s UID = %d file = %d,%d",
6978 vcp->vp, (error == 0) ? "ALLOWED" : "DENIED", where,
6979 (action & VREAD) ? "r" : "-",
6980 (action & VWRITE) ? "w" : "-",
6981 (action & VEXEC) ? "x" : "-",
6982 needed,
6983 (vap->va_mode & S_IRUSR) ? "r" : "-",
6984 (vap->va_mode & S_IWUSR) ? "w" : "-",
6985 (vap->va_mode & S_IXUSR) ? "x" : "-",
6986 (vap->va_mode & S_IRGRP) ? "r" : "-",
6987 (vap->va_mode & S_IWGRP) ? "w" : "-",
6988 (vap->va_mode & S_IXGRP) ? "x" : "-",
6989 (vap->va_mode & S_IROTH) ? "r" : "-",
6990 (vap->va_mode & S_IWOTH) ? "w" : "-",
6991 (vap->va_mode & S_IXOTH) ? "x" : "-",
6992 kauth_cred_getuid(vcp->ctx->vc_ucred),
6993 on_dir ? vcp->dvap->va_uid : vcp->vap->va_uid,
6994 on_dir ? vcp->dvap->va_gid : vcp->vap->va_gid);
6995 return(error);
6996 }
6997
6998 /*
6999 * Authorize the deletion of the node vp from the directory dvp.
7000 *
7001 * We assume that:
7002 * - Neither the node nor the directory are immutable.
7003 * - The user is not the superuser.
7004 *
7005 * The precedence of factors for authorizing or denying delete for a credential
7006 *
7007 * 1) Explicit ACE on the node. (allow or deny DELETE)
7008 * 2) Explicit ACE on the directory (allow or deny DELETE_CHILD).
7009 *
7010 * If there are conflicting ACEs on the node and the directory, the node
7011 * ACE wins.
7012 *
7013 * 3) Sticky bit on the directory.
7014 * Deletion is not permitted if the directory is sticky and the caller is
7015 * not owner of the node or directory. The sticky bit rules are like a deny
7016 * delete ACE except lower in priority than ACL's either allowing or denying
7017 * delete.
7018 *
7019 * 4) POSIX permisions on the directory.
7020 *
7021 * As an optimization, we cache whether or not delete child is permitted
7022 * on directories. This enables us to skip directory ACL and POSIX checks
7023 * as we already have the result from those checks. However, we always check the
7024 * node ACL and, if the directory has the sticky bit set, we always check its
7025 * ACL (even for a directory with an authorized delete child). Furthermore,
7026 * caching the delete child authorization is independent of the sticky bit
7027 * being set as it is only applicable in determining whether the node can be
7028 * deleted or not.
7029 */
7030 static int
7031 vnode_authorize_delete(vauth_ctx vcp, boolean_t cached_delete_child)
7032 {
7033 struct vnode_attr *vap = vcp->vap;
7034 struct vnode_attr *dvap = vcp->dvap;
7035 kauth_cred_t cred = vcp->ctx->vc_ucred;
7036 struct kauth_acl_eval eval;
7037 int error, ismember;
7038
7039 /* Check the ACL on the node first */
7040 if (VATTR_IS_NOT(vap, va_acl, NULL)) {
7041 eval.ae_requested = KAUTH_VNODE_DELETE;
7042 eval.ae_acl = &vap->va_acl->acl_ace[0];
7043 eval.ae_count = vap->va_acl->acl_entrycount;
7044 eval.ae_options = 0;
7045 if (vauth_file_owner(vcp))
7046 eval.ae_options |= KAUTH_AEVAL_IS_OWNER;
7047 /*
7048 * We use ENOENT as a marker to indicate we could not get
7049 * information in order to delay evaluation until after we
7050 * have the ACL evaluation answer. Previously, we would
7051 * always deny the operation at this point.
7052 */
7053 if ((error = vauth_file_ingroup(vcp, &ismember, ENOENT)) != 0 && error != ENOENT)
7054 return (error);
7055 if (error == ENOENT)
7056 eval.ae_options |= KAUTH_AEVAL_IN_GROUP_UNKNOWN;
7057 else if (ismember)
7058 eval.ae_options |= KAUTH_AEVAL_IN_GROUP;
7059 eval.ae_exp_gall = KAUTH_VNODE_GENERIC_ALL_BITS;
7060 eval.ae_exp_gread = KAUTH_VNODE_GENERIC_READ_BITS;
7061 eval.ae_exp_gwrite = KAUTH_VNODE_GENERIC_WRITE_BITS;
7062 eval.ae_exp_gexec = KAUTH_VNODE_GENERIC_EXECUTE_BITS;
7063
7064 if ((error = kauth_acl_evaluate(cred, &eval)) != 0) {
7065 KAUTH_DEBUG("%p ERROR during ACL processing - %d", vcp->vp, error);
7066 return (error);
7067 }
7068
7069 switch(eval.ae_result) {
7070 case KAUTH_RESULT_DENY:
7071 KAUTH_DEBUG("%p DENIED - denied by ACL", vcp->vp);
7072 return (EACCES);
7073 case KAUTH_RESULT_ALLOW:
7074 KAUTH_DEBUG("%p ALLOWED - granted by ACL", vcp->vp);
7075 return (0);
7076 case KAUTH_RESULT_DEFER:
7077 default:
7078 /* Defer to directory */
7079 KAUTH_DEBUG("%p DEFERRED - by file ACL", vcp->vp);
7080 break;
7081 }
7082 }
7083
7084 /*
7085 * Without a sticky bit, a previously authorized delete child is
7086 * sufficient to authorize this delete.
7087 *
7088 * If the sticky bit is set, a directory ACL which allows delete child
7089 * overrides a (potential) sticky bit deny. The authorized delete child
7090 * cannot tell us if it was authorized because of an explicit delete
7091 * child allow ACE or because of POSIX permisions so we have to check
7092 * the directory ACL everytime if the directory has a sticky bit.
7093 */
7094 if (!(dvap->va_mode & S_ISTXT) && cached_delete_child) {
7095 KAUTH_DEBUG("%p ALLOWED - granted by directory ACL or POSIX permissions and no sticky bit on directory", vcp->vp);
7096 return (0);
7097 }
7098
7099 /* check the ACL on the directory */
7100 if (VATTR_IS_NOT(dvap, va_acl, NULL)) {
7101 eval.ae_requested = KAUTH_VNODE_DELETE_CHILD;
7102 eval.ae_acl = &dvap->va_acl->acl_ace[0];
7103 eval.ae_count = dvap->va_acl->acl_entrycount;
7104 eval.ae_options = 0;
7105 if (vauth_dir_owner(vcp))
7106 eval.ae_options |= KAUTH_AEVAL_IS_OWNER;
7107 /*
7108 * We use ENOENT as a marker to indicate we could not get
7109 * information in order to delay evaluation until after we
7110 * have the ACL evaluation answer. Previously, we would
7111 * always deny the operation at this point.
7112 */
7113 if ((error = vauth_dir_ingroup(vcp, &ismember, ENOENT)) != 0 && error != ENOENT)
7114 return(error);
7115 if (error == ENOENT)
7116 eval.ae_options |= KAUTH_AEVAL_IN_GROUP_UNKNOWN;
7117 else if (ismember)
7118 eval.ae_options |= KAUTH_AEVAL_IN_GROUP;
7119 eval.ae_exp_gall = KAUTH_VNODE_GENERIC_ALL_BITS;
7120 eval.ae_exp_gread = KAUTH_VNODE_GENERIC_READ_BITS;
7121 eval.ae_exp_gwrite = KAUTH_VNODE_GENERIC_WRITE_BITS;
7122 eval.ae_exp_gexec = KAUTH_VNODE_GENERIC_EXECUTE_BITS;
7123
7124 /*
7125 * If there is no entry, we are going to defer to other
7126 * authorization mechanisms.
7127 */
7128 error = kauth_acl_evaluate(cred, &eval);
7129
7130 if (error != 0) {
7131 KAUTH_DEBUG("%p ERROR during ACL processing - %d", vcp->vp, error);
7132 return (error);
7133 }
7134 switch(eval.ae_result) {
7135 case KAUTH_RESULT_DENY:
7136 KAUTH_DEBUG("%p DENIED - denied by directory ACL", vcp->vp);
7137 return (EACCES);
7138 case KAUTH_RESULT_ALLOW:
7139 KAUTH_DEBUG("%p ALLOWED - granted by directory ACL", vcp->vp);
7140 if (!cached_delete_child && vcp->dvp) {
7141 vnode_cache_authorized_action(vcp->dvp,
7142 vcp->ctx, KAUTH_VNODE_DELETE_CHILD);
7143 }
7144 return (0);
7145 case KAUTH_RESULT_DEFER:
7146 default:
7147 /* Deferred by directory ACL */
7148 KAUTH_DEBUG("%p DEFERRED - directory ACL", vcp->vp);
7149 break;
7150 }
7151 }
7152
7153 /*
7154 * From this point, we can't explicitly allow and if we reach the end
7155 * of the function without a denial, then the delete is authorized.
7156 */
7157 if (!cached_delete_child) {
7158 if (vnode_authorize_posix(vcp, VWRITE, 1 /* on_dir */) != 0) {
7159 KAUTH_DEBUG("%p DENIED - denied by posix permisssions", vcp->vp);
7160 return (EACCES);
7161 }
7162 /*
7163 * Cache the authorized action on the vnode if allowed by the
7164 * directory ACL or POSIX permissions. It is correct to cache
7165 * this action even if sticky bit would deny deleting the node.
7166 */
7167 if (vcp->dvp) {
7168 vnode_cache_authorized_action(vcp->dvp, vcp->ctx,
7169 KAUTH_VNODE_DELETE_CHILD);
7170 }
7171 }
7172
7173 /* enforce sticky bit behaviour */
7174 if ((dvap->va_mode & S_ISTXT) && !vauth_file_owner(vcp) && !vauth_dir_owner(vcp)) {
7175 KAUTH_DEBUG("%p DENIED - sticky bit rules (user %d file %d dir %d)",
7176 vcp->vp, cred->cr_posix.cr_uid, vap->va_uid, dvap->va_uid);
7177 return (EACCES);
7178 }
7179
7180 /* not denied, must be OK */
7181 return (0);
7182 }
7183
7184
7185 /*
7186 * Authorize an operation based on the node's attributes.
7187 */
7188 static int
7189 vnode_authorize_simple(vauth_ctx vcp, kauth_ace_rights_t acl_rights, kauth_ace_rights_t preauth_rights, boolean_t *found_deny)
7190 {
7191 struct vnode_attr *vap = vcp->vap;
7192 kauth_cred_t cred = vcp->ctx->vc_ucred;
7193 struct kauth_acl_eval eval;
7194 int error, ismember;
7195 mode_t posix_action;
7196
7197 /*
7198 * If we are the file owner, we automatically have some rights.
7199 *
7200 * Do we need to expand this to support group ownership?
7201 */
7202 if (vauth_file_owner(vcp))
7203 acl_rights &= ~(KAUTH_VNODE_WRITE_SECURITY);
7204
7205 /*
7206 * If we are checking both TAKE_OWNERSHIP and WRITE_SECURITY, we can
7207 * mask the latter. If TAKE_OWNERSHIP is requested the caller is about to
7208 * change ownership to themselves, and WRITE_SECURITY is implicitly
7209 * granted to the owner. We need to do this because at this point
7210 * WRITE_SECURITY may not be granted as the caller is not currently
7211 * the owner.
7212 */
7213 if ((acl_rights & KAUTH_VNODE_TAKE_OWNERSHIP) &&
7214 (acl_rights & KAUTH_VNODE_WRITE_SECURITY))
7215 acl_rights &= ~KAUTH_VNODE_WRITE_SECURITY;
7216
7217 if (acl_rights == 0) {
7218 KAUTH_DEBUG("%p ALLOWED - implicit or no rights required", vcp->vp);
7219 return(0);
7220 }
7221
7222 /* if we have an ACL, evaluate it */
7223 if (VATTR_IS_NOT(vap, va_acl, NULL)) {
7224 eval.ae_requested = acl_rights;
7225 eval.ae_acl = &vap->va_acl->acl_ace[0];
7226 eval.ae_count = vap->va_acl->acl_entrycount;
7227 eval.ae_options = 0;
7228 if (vauth_file_owner(vcp))
7229 eval.ae_options |= KAUTH_AEVAL_IS_OWNER;
7230 /*
7231 * We use ENOENT as a marker to indicate we could not get
7232 * information in order to delay evaluation until after we
7233 * have the ACL evaluation answer. Previously, we would
7234 * always deny the operation at this point.
7235 */
7236 if ((error = vauth_file_ingroup(vcp, &ismember, ENOENT)) != 0 && error != ENOENT)
7237 return(error);
7238 if (error == ENOENT)
7239 eval.ae_options |= KAUTH_AEVAL_IN_GROUP_UNKNOWN;
7240 else if (ismember)
7241 eval.ae_options |= KAUTH_AEVAL_IN_GROUP;
7242 eval.ae_exp_gall = KAUTH_VNODE_GENERIC_ALL_BITS;
7243 eval.ae_exp_gread = KAUTH_VNODE_GENERIC_READ_BITS;
7244 eval.ae_exp_gwrite = KAUTH_VNODE_GENERIC_WRITE_BITS;
7245 eval.ae_exp_gexec = KAUTH_VNODE_GENERIC_EXECUTE_BITS;
7246
7247 if ((error = kauth_acl_evaluate(cred, &eval)) != 0) {
7248 KAUTH_DEBUG("%p ERROR during ACL processing - %d", vcp->vp, error);
7249 return(error);
7250 }
7251
7252 switch(eval.ae_result) {
7253 case KAUTH_RESULT_DENY:
7254 KAUTH_DEBUG("%p DENIED - by ACL", vcp->vp);
7255 return(EACCES); /* deny, deny, counter-allege */
7256 case KAUTH_RESULT_ALLOW:
7257 KAUTH_DEBUG("%p ALLOWED - all rights granted by ACL", vcp->vp);
7258 return(0);
7259 case KAUTH_RESULT_DEFER:
7260 default:
7261 /* Effectively the same as !delete_child_denied */
7262 KAUTH_DEBUG("%p DEFERRED - directory ACL", vcp->vp);
7263 break;
7264 }
7265
7266 *found_deny = eval.ae_found_deny;
7267
7268 /* fall through and evaluate residual rights */
7269 } else {
7270 /* no ACL, everything is residual */
7271 eval.ae_residual = acl_rights;
7272 }
7273
7274 /*
7275 * Grant residual rights that have been pre-authorized.
7276 */
7277 eval.ae_residual &= ~preauth_rights;
7278
7279 /*
7280 * We grant WRITE_ATTRIBUTES to the owner if it hasn't been denied.
7281 */
7282 if (vauth_file_owner(vcp))
7283 eval.ae_residual &= ~KAUTH_VNODE_WRITE_ATTRIBUTES;
7284
7285 if (eval.ae_residual == 0) {
7286 KAUTH_DEBUG("%p ALLOWED - rights already authorized", vcp->vp);
7287 return(0);
7288 }
7289
7290 /*
7291 * Bail if we have residual rights that can't be granted by posix permissions,
7292 * or aren't presumed granted at this point.
7293 *
7294 * XXX these can be collapsed for performance
7295 */
7296 if (eval.ae_residual & KAUTH_VNODE_CHANGE_OWNER) {
7297 KAUTH_DEBUG("%p DENIED - CHANGE_OWNER not permitted", vcp->vp);
7298 return(EACCES);
7299 }
7300 if (eval.ae_residual & KAUTH_VNODE_WRITE_SECURITY) {
7301 KAUTH_DEBUG("%p DENIED - WRITE_SECURITY not permitted", vcp->vp);
7302 return(EACCES);
7303 }
7304
7305 #if DIAGNOSTIC
7306 if (eval.ae_residual & KAUTH_VNODE_DELETE)
7307 panic("vnode_authorize: can't be checking delete permission here");
7308 #endif
7309
7310 /*
7311 * Compute the fallback posix permissions that will satisfy the remaining
7312 * rights.
7313 */
7314 posix_action = 0;
7315 if (eval.ae_residual & (KAUTH_VNODE_READ_DATA |
7316 KAUTH_VNODE_LIST_DIRECTORY |
7317 KAUTH_VNODE_READ_EXTATTRIBUTES))
7318 posix_action |= VREAD;
7319 if (eval.ae_residual & (KAUTH_VNODE_WRITE_DATA |
7320 KAUTH_VNODE_ADD_FILE |
7321 KAUTH_VNODE_ADD_SUBDIRECTORY |
7322 KAUTH_VNODE_DELETE_CHILD |
7323 KAUTH_VNODE_WRITE_ATTRIBUTES |
7324 KAUTH_VNODE_WRITE_EXTATTRIBUTES))
7325 posix_action |= VWRITE;
7326 if (eval.ae_residual & (KAUTH_VNODE_EXECUTE |
7327 KAUTH_VNODE_SEARCH))
7328 posix_action |= VEXEC;
7329
7330 if (posix_action != 0) {
7331 return(vnode_authorize_posix(vcp, posix_action, 0 /* !on_dir */));
7332 } else {
7333 KAUTH_DEBUG("%p ALLOWED - residual rights %s%s%s%s%s%s%s%s%s%s%s%s%s%s granted due to no posix mapping",
7334 vcp->vp,
7335 (eval.ae_residual & KAUTH_VNODE_READ_DATA)
7336 ? vnode_isdir(vcp->vp) ? " LIST_DIRECTORY" : " READ_DATA" : "",
7337 (eval.ae_residual & KAUTH_VNODE_WRITE_DATA)
7338 ? vnode_isdir(vcp->vp) ? " ADD_FILE" : " WRITE_DATA" : "",
7339 (eval.ae_residual & KAUTH_VNODE_EXECUTE)
7340 ? vnode_isdir(vcp->vp) ? " SEARCH" : " EXECUTE" : "",
7341 (eval.ae_residual & KAUTH_VNODE_DELETE)
7342 ? " DELETE" : "",
7343 (eval.ae_residual & KAUTH_VNODE_APPEND_DATA)
7344 ? vnode_isdir(vcp->vp) ? " ADD_SUBDIRECTORY" : " APPEND_DATA" : "",
7345 (eval.ae_residual & KAUTH_VNODE_DELETE_CHILD)
7346 ? " DELETE_CHILD" : "",
7347 (eval.ae_residual & KAUTH_VNODE_READ_ATTRIBUTES)
7348 ? " READ_ATTRIBUTES" : "",
7349 (eval.ae_residual & KAUTH_VNODE_WRITE_ATTRIBUTES)
7350 ? " WRITE_ATTRIBUTES" : "",
7351 (eval.ae_residual & KAUTH_VNODE_READ_EXTATTRIBUTES)
7352 ? " READ_EXTATTRIBUTES" : "",
7353 (eval.ae_residual & KAUTH_VNODE_WRITE_EXTATTRIBUTES)
7354 ? " WRITE_EXTATTRIBUTES" : "",
7355 (eval.ae_residual & KAUTH_VNODE_READ_SECURITY)
7356 ? " READ_SECURITY" : "",
7357 (eval.ae_residual & KAUTH_VNODE_WRITE_SECURITY)
7358 ? " WRITE_SECURITY" : "",
7359 (eval.ae_residual & KAUTH_VNODE_CHECKIMMUTABLE)
7360 ? " CHECKIMMUTABLE" : "",
7361 (eval.ae_residual & KAUTH_VNODE_CHANGE_OWNER)
7362 ? " CHANGE_OWNER" : "");
7363 }
7364
7365 /*
7366 * Lack of required Posix permissions implies no reason to deny access.
7367 */
7368 return(0);
7369 }
7370
7371 /*
7372 * Check for file immutability.
7373 */
7374 static int
7375 vnode_authorize_checkimmutable(mount_t mp, struct vnode_attr *vap, int rights, int ignore)
7376 {
7377 int error;
7378 int append;
7379
7380 /*
7381 * Perform immutability checks for operations that change data.
7382 *
7383 * Sockets, fifos and devices require special handling.
7384 */
7385 switch(vap->va_type) {
7386 case VSOCK:
7387 case VFIFO:
7388 case VBLK:
7389 case VCHR:
7390 /*
7391 * Writing to these nodes does not change the filesystem data,
7392 * so forget that it's being tried.
7393 */
7394 rights &= ~KAUTH_VNODE_WRITE_DATA;
7395 break;
7396 default:
7397 break;
7398 }
7399
7400 error = 0;
7401 if (rights & KAUTH_VNODE_WRITE_RIGHTS) {
7402
7403 /* check per-filesystem options if possible */
7404 if (mp != NULL) {
7405
7406 /* check for no-EA filesystems */
7407 if ((rights & KAUTH_VNODE_WRITE_EXTATTRIBUTES) &&
7408 (vfs_flags(mp) & MNT_NOUSERXATTR)) {
7409 KAUTH_DEBUG("%p DENIED - filesystem disallowed extended attributes", vp);
7410 error = EACCES; /* User attributes disabled */
7411 goto out;
7412 }
7413 }
7414
7415 /*
7416 * check for file immutability. first, check if the requested rights are
7417 * allowable for a UF_APPEND file.
7418 */
7419 append = 0;
7420 if (vap->va_type == VDIR) {
7421 if ((rights & (KAUTH_VNODE_ADD_FILE | KAUTH_VNODE_ADD_SUBDIRECTORY | KAUTH_VNODE_WRITE_EXTATTRIBUTES)) == rights)
7422 append = 1;
7423 } else {
7424 if ((rights & (KAUTH_VNODE_APPEND_DATA | KAUTH_VNODE_WRITE_EXTATTRIBUTES)) == rights)
7425 append = 1;
7426 }
7427 if ((error = vnode_immutable(vap, append, ignore)) != 0) {
7428 KAUTH_DEBUG("%p DENIED - file is immutable", vp);
7429 goto out;
7430 }
7431 }
7432 out:
7433 return(error);
7434 }
7435
7436 /*
7437 * Handle authorization actions for filesystems that advertise that the
7438 * server will be enforcing.
7439 *
7440 * Returns: 0 Authorization should be handled locally
7441 * 1 Authorization was handled by the FS
7442 *
7443 * Note: Imputed returns will only occur if the authorization request
7444 * was handled by the FS.
7445 *
7446 * Imputed: *resultp, modified Return code from FS when the request is
7447 * handled by the FS.
7448 * VNOP_ACCESS:???
7449 * VNOP_OPEN:???
7450 */
7451 static int
7452 vnode_authorize_opaque(vnode_t vp, int *resultp, kauth_action_t action, vfs_context_t ctx)
7453 {
7454 int error;
7455
7456 /*
7457 * If the vp is a device node, socket or FIFO it actually represents a local
7458 * endpoint, so we need to handle it locally.
7459 */
7460 switch(vp->v_type) {
7461 case VBLK:
7462 case VCHR:
7463 case VSOCK:
7464 case VFIFO:
7465 return(0);
7466 default:
7467 break;
7468 }
7469
7470 /*
7471 * In the advisory request case, if the filesystem doesn't think it's reliable
7472 * we will attempt to formulate a result ourselves based on VNOP_GETATTR data.
7473 */
7474 if ((action & KAUTH_VNODE_ACCESS) && !vfs_authopaqueaccess(vp->v_mount))
7475 return(0);
7476
7477 /*
7478 * Let the filesystem have a say in the matter. It's OK for it to not implemnent
7479 * VNOP_ACCESS, as most will authorise inline with the actual request.
7480 */
7481 if ((error = VNOP_ACCESS(vp, action, ctx)) != ENOTSUP) {
7482 *resultp = error;
7483 KAUTH_DEBUG("%p DENIED - opaque filesystem VNOP_ACCESS denied access", vp);
7484 return(1);
7485 }
7486
7487 /*
7488 * Typically opaque filesystems do authorisation in-line, but exec is a special case. In
7489 * order to be reasonably sure that exec will be permitted, we try a bit harder here.
7490 */
7491 if ((action & KAUTH_VNODE_EXECUTE) && (vp->v_type == VREG)) {
7492 /* try a VNOP_OPEN for readonly access */
7493 if ((error = VNOP_OPEN(vp, FREAD, ctx)) != 0) {
7494 *resultp = error;
7495 KAUTH_DEBUG("%p DENIED - EXECUTE denied because file could not be opened readonly", vp);
7496 return(1);
7497 }
7498 VNOP_CLOSE(vp, FREAD, ctx);
7499 }
7500
7501 /*
7502 * We don't have any reason to believe that the request has to be denied at this point,
7503 * so go ahead and allow it.
7504 */
7505 *resultp = 0;
7506 KAUTH_DEBUG("%p ALLOWED - bypassing access check for non-local filesystem", vp);
7507 return(1);
7508 }
7509
7510
7511
7512
7513 /*
7514 * Returns: KAUTH_RESULT_ALLOW
7515 * KAUTH_RESULT_DENY
7516 *
7517 * Imputed: *arg3, modified Error code in the deny case
7518 * EROFS Read-only file system
7519 * EACCES Permission denied
7520 * EPERM Operation not permitted [no execute]
7521 * vnode_getattr:ENOMEM Not enough space [only if has filesec]
7522 * vnode_getattr:???
7523 * vnode_authorize_opaque:*arg2 ???
7524 * vnode_authorize_checkimmutable:???
7525 * vnode_authorize_delete:???
7526 * vnode_authorize_simple:???
7527 */
7528
7529
7530 static int
7531 vnode_authorize_callback(__unused kauth_cred_t cred, __unused void *idata,
7532 kauth_action_t action, uintptr_t arg0, uintptr_t arg1, uintptr_t arg2,
7533 uintptr_t arg3)
7534 {
7535 vfs_context_t ctx;
7536 vnode_t cvp = NULLVP;
7537 vnode_t vp, dvp;
7538 int result = KAUTH_RESULT_DENY;
7539 int parent_iocount = 0;
7540 int parent_action; /* In case we need to use namedstream's data fork for cached rights*/
7541
7542 ctx = (vfs_context_t)arg0;
7543 vp = (vnode_t)arg1;
7544 dvp = (vnode_t)arg2;
7545
7546 /*
7547 * if there are 2 vnodes passed in, we don't know at
7548 * this point which rights to look at based on the
7549 * combined action being passed in... defer until later...
7550 * otherwise check the kauth 'rights' cache hung
7551 * off of the vnode we're interested in... if we've already
7552 * been granted the right we're currently interested in,
7553 * we can just return success... otherwise we'll go through
7554 * the process of authorizing the requested right(s)... if that
7555 * succeeds, we'll add the right(s) to the cache.
7556 * VNOP_SETATTR and VNOP_SETXATTR will invalidate this cache
7557 */
7558 if (dvp && vp)
7559 goto defer;
7560 if (dvp) {
7561 cvp = dvp;
7562 } else {
7563 /*
7564 * For named streams on local-authorization volumes, rights are cached on the parent;
7565 * authorization is determined by looking at the parent's properties anyway, so storing
7566 * on the parent means that we don't recompute for the named stream and that if
7567 * we need to flush rights (e.g. on VNOP_SETATTR()) we don't need to track down the
7568 * stream to flush its cache separately. If we miss in the cache, then we authorize
7569 * as if there were no cached rights (passing the named stream vnode and desired rights to
7570 * vnode_authorize_callback_int()).
7571 *
7572 * On an opaquely authorized volume, we don't know the relationship between the
7573 * data fork's properties and the rights granted on a stream. Thus, named stream vnodes
7574 * on such a volume are authorized directly (rather than using the parent) and have their
7575 * own caches. When a named stream vnode is created, we mark the parent as having a named
7576 * stream. On a VNOP_SETATTR() for the parent that may invalidate cached authorization, we
7577 * find the stream and flush its cache.
7578 */
7579 if (vnode_isnamedstream(vp) && (!vfs_authopaque(vp->v_mount))) {
7580 cvp = vnode_getparent(vp);
7581 if (cvp != NULLVP) {
7582 parent_iocount = 1;
7583 } else {
7584 cvp = NULL;
7585 goto defer; /* If we can't use the parent, take the slow path */
7586 }
7587
7588 /* Have to translate some actions */
7589 parent_action = action;
7590 if (parent_action & KAUTH_VNODE_READ_DATA) {
7591 parent_action &= ~KAUTH_VNODE_READ_DATA;
7592 parent_action |= KAUTH_VNODE_READ_EXTATTRIBUTES;
7593 }
7594 if (parent_action & KAUTH_VNODE_WRITE_DATA) {
7595 parent_action &= ~KAUTH_VNODE_WRITE_DATA;
7596 parent_action |= KAUTH_VNODE_WRITE_EXTATTRIBUTES;
7597 }
7598
7599 } else {
7600 cvp = vp;
7601 }
7602 }
7603
7604 if (vnode_cache_is_authorized(cvp, ctx, parent_iocount ? parent_action : action) == TRUE) {
7605 result = KAUTH_RESULT_ALLOW;
7606 goto out;
7607 }
7608 defer:
7609 result = vnode_authorize_callback_int(action, ctx, vp, dvp, (int *)arg3);
7610
7611 if (result == KAUTH_RESULT_ALLOW && cvp != NULLVP) {
7612 KAUTH_DEBUG("%p - caching action = %x", cvp, action);
7613 vnode_cache_authorized_action(cvp, ctx, action);
7614 }
7615
7616 out:
7617 if (parent_iocount) {
7618 vnode_put(cvp);
7619 }
7620
7621 return result;
7622 }
7623
7624 static int
7625 vnode_attr_authorize_internal(vauth_ctx vcp, mount_t mp,
7626 kauth_ace_rights_t rights, int is_suser, boolean_t *found_deny,
7627 int noimmutable, int parent_authorized_for_delete_child)
7628 {
7629 int result;
7630
7631 /*
7632 * Check for immutability.
7633 *
7634 * In the deletion case, parent directory immutability vetoes specific
7635 * file rights.
7636 */
7637 if ((result = vnode_authorize_checkimmutable(mp, vcp->vap, rights,
7638 noimmutable)) != 0)
7639 goto out;
7640
7641 if ((rights & KAUTH_VNODE_DELETE) &&
7642 !parent_authorized_for_delete_child) {
7643 result = vnode_authorize_checkimmutable(mp, vcp->dvap,
7644 KAUTH_VNODE_DELETE_CHILD, 0);
7645 if (result)
7646 goto out;
7647 }
7648
7649 /*
7650 * Clear rights that have been authorized by reaching this point, bail if nothing left to
7651 * check.
7652 */
7653 rights &= ~(KAUTH_VNODE_LINKTARGET | KAUTH_VNODE_CHECKIMMUTABLE);
7654 if (rights == 0)
7655 goto out;
7656
7657 /*
7658 * If we're not the superuser, authorize based on file properties;
7659 * note that even if parent_authorized_for_delete_child is TRUE, we
7660 * need to check on the node itself.
7661 */
7662 if (!is_suser) {
7663 /* process delete rights */
7664 if ((rights & KAUTH_VNODE_DELETE) &&
7665 ((result = vnode_authorize_delete(vcp, parent_authorized_for_delete_child)) != 0))
7666 goto out;
7667
7668 /* process remaining rights */
7669 if ((rights & ~KAUTH_VNODE_DELETE) &&
7670 (result = vnode_authorize_simple(vcp, rights, rights & KAUTH_VNODE_DELETE, found_deny)) != 0)
7671 goto out;
7672 } else {
7673 /*
7674 * Execute is only granted to root if one of the x bits is set. This check only
7675 * makes sense if the posix mode bits are actually supported.
7676 */
7677 if ((rights & KAUTH_VNODE_EXECUTE) &&
7678 (vcp->vap->va_type == VREG) &&
7679 VATTR_IS_SUPPORTED(vcp->vap, va_mode) &&
7680 !(vcp->vap->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH))) {
7681 result = EPERM;
7682 KAUTH_DEBUG("%p DENIED - root execute requires at least one x bit in 0x%x", vp, va.va_mode);
7683 goto out;
7684 }
7685
7686 /* Assume that there were DENYs so we don't wrongly cache KAUTH_VNODE_SEARCHBYANYONE */
7687 *found_deny = TRUE;
7688
7689 KAUTH_DEBUG("%p ALLOWED - caller is superuser", vp);
7690 }
7691 out:
7692 return (result);
7693 }
7694
7695 static int
7696 vnode_authorize_callback_int(kauth_action_t action, vfs_context_t ctx,
7697 vnode_t vp, vnode_t dvp, int *errorp)
7698 {
7699 struct _vnode_authorize_context auth_context;
7700 vauth_ctx vcp;
7701 kauth_cred_t cred;
7702 kauth_ace_rights_t rights;
7703 struct vnode_attr va, dva;
7704 int result;
7705 int noimmutable;
7706 boolean_t parent_authorized_for_delete_child = FALSE;
7707 boolean_t found_deny = FALSE;
7708 boolean_t parent_ref= FALSE;
7709 boolean_t is_suser = FALSE;
7710
7711 vcp = &auth_context;
7712 vcp->ctx = ctx;
7713 vcp->vp = vp;
7714 vcp->dvp = dvp;
7715 /*
7716 * Note that we authorize against the context, not the passed cred
7717 * (the same thing anyway)
7718 */
7719 cred = ctx->vc_ucred;
7720
7721 VATTR_INIT(&va);
7722 vcp->vap = &va;
7723 VATTR_INIT(&dva);
7724 vcp->dvap = &dva;
7725
7726 vcp->flags = vcp->flags_valid = 0;
7727
7728 #if DIAGNOSTIC
7729 if ((ctx == NULL) || (vp == NULL) || (cred == NULL))
7730 panic("vnode_authorize: bad arguments (context %p vp %p cred %p)", ctx, vp, cred);
7731 #endif
7732
7733 KAUTH_DEBUG("%p AUTH - %s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s on %s '%s' (0x%x:%p/%p)",
7734 vp, vfs_context_proc(ctx)->p_comm,
7735 (action & KAUTH_VNODE_ACCESS) ? "access" : "auth",
7736 (action & KAUTH_VNODE_READ_DATA) ? vnode_isdir(vp) ? " LIST_DIRECTORY" : " READ_DATA" : "",
7737 (action & KAUTH_VNODE_WRITE_DATA) ? vnode_isdir(vp) ? " ADD_FILE" : " WRITE_DATA" : "",
7738 (action & KAUTH_VNODE_EXECUTE) ? vnode_isdir(vp) ? " SEARCH" : " EXECUTE" : "",
7739 (action & KAUTH_VNODE_DELETE) ? " DELETE" : "",
7740 (action & KAUTH_VNODE_APPEND_DATA) ? vnode_isdir(vp) ? " ADD_SUBDIRECTORY" : " APPEND_DATA" : "",
7741 (action & KAUTH_VNODE_DELETE_CHILD) ? " DELETE_CHILD" : "",
7742 (action & KAUTH_VNODE_READ_ATTRIBUTES) ? " READ_ATTRIBUTES" : "",
7743 (action & KAUTH_VNODE_WRITE_ATTRIBUTES) ? " WRITE_ATTRIBUTES" : "",
7744 (action & KAUTH_VNODE_READ_EXTATTRIBUTES) ? " READ_EXTATTRIBUTES" : "",
7745 (action & KAUTH_VNODE_WRITE_EXTATTRIBUTES) ? " WRITE_EXTATTRIBUTES" : "",
7746 (action & KAUTH_VNODE_READ_SECURITY) ? " READ_SECURITY" : "",
7747 (action & KAUTH_VNODE_WRITE_SECURITY) ? " WRITE_SECURITY" : "",
7748 (action & KAUTH_VNODE_CHANGE_OWNER) ? " CHANGE_OWNER" : "",
7749 (action & KAUTH_VNODE_NOIMMUTABLE) ? " (noimmutable)" : "",
7750 vnode_isdir(vp) ? "directory" : "file",
7751 vp->v_name ? vp->v_name : "<NULL>", action, vp, dvp);
7752
7753 /*
7754 * Extract the control bits from the action, everything else is
7755 * requested rights.
7756 */
7757 noimmutable = (action & KAUTH_VNODE_NOIMMUTABLE) ? 1 : 0;
7758 rights = action & ~(KAUTH_VNODE_ACCESS | KAUTH_VNODE_NOIMMUTABLE);
7759
7760 if (rights & KAUTH_VNODE_DELETE) {
7761 #if DIAGNOSTIC
7762 if (dvp == NULL)
7763 panic("vnode_authorize: KAUTH_VNODE_DELETE test requires a directory");
7764 #endif
7765 /*
7766 * check to see if we've already authorized the parent
7767 * directory for deletion of its children... if so, we
7768 * can skip a whole bunch of work... we will still have to
7769 * authorize that this specific child can be removed
7770 */
7771 if (vnode_cache_is_authorized(dvp, ctx, KAUTH_VNODE_DELETE_CHILD) == TRUE)
7772 parent_authorized_for_delete_child = TRUE;
7773 } else {
7774 vcp->dvp = NULLVP;
7775 vcp->dvap = NULL;
7776 }
7777
7778 /*
7779 * Check for read-only filesystems.
7780 */
7781 if ((rights & KAUTH_VNODE_WRITE_RIGHTS) &&
7782 (vp->v_mount->mnt_flag & MNT_RDONLY) &&
7783 ((vp->v_type == VREG) || (vp->v_type == VDIR) ||
7784 (vp->v_type == VLNK) || (vp->v_type == VCPLX) ||
7785 (rights & KAUTH_VNODE_DELETE) || (rights & KAUTH_VNODE_DELETE_CHILD))) {
7786 result = EROFS;
7787 goto out;
7788 }
7789
7790 /*
7791 * Check for noexec filesystems.
7792 */
7793 if ((rights & KAUTH_VNODE_EXECUTE) && (vp->v_type == VREG) && (vp->v_mount->mnt_flag & MNT_NOEXEC)) {
7794 result = EACCES;
7795 goto out;
7796 }
7797
7798 /*
7799 * Handle cases related to filesystems with non-local enforcement.
7800 * This call can return 0, in which case we will fall through to perform a
7801 * check based on VNOP_GETATTR data. Otherwise it returns 1 and sets
7802 * an appropriate result, at which point we can return immediately.
7803 */
7804 if ((vp->v_mount->mnt_kern_flag & MNTK_AUTH_OPAQUE) && vnode_authorize_opaque(vp, &result, action, ctx))
7805 goto out;
7806
7807 /*
7808 * If the vnode is a namedstream (extended attribute) data vnode (eg.
7809 * a resource fork), *_DATA becomes *_EXTATTRIBUTES.
7810 */
7811 if (vnode_isnamedstream(vp)) {
7812 if (rights & KAUTH_VNODE_READ_DATA) {
7813 rights &= ~KAUTH_VNODE_READ_DATA;
7814 rights |= KAUTH_VNODE_READ_EXTATTRIBUTES;
7815 }
7816 if (rights & KAUTH_VNODE_WRITE_DATA) {
7817 rights &= ~KAUTH_VNODE_WRITE_DATA;
7818 rights |= KAUTH_VNODE_WRITE_EXTATTRIBUTES;
7819 }
7820
7821 /*
7822 * Point 'vp' to the namedstream's parent for ACL checking
7823 */
7824 if ((vp->v_parent != NULL) &&
7825 (vget_internal(vp->v_parent, 0, VNODE_NODEAD | VNODE_DRAINO) == 0)) {
7826 parent_ref = TRUE;
7827 vcp->vp = vp = vp->v_parent;
7828 }
7829 }
7830
7831 if (vfs_context_issuser(ctx)) {
7832 /*
7833 * if we're not asking for execute permissions or modifications,
7834 * then we're done, this action is authorized.
7835 */
7836 if (!(rights & (KAUTH_VNODE_EXECUTE | KAUTH_VNODE_WRITE_RIGHTS)))
7837 goto success;
7838
7839 is_suser = TRUE;
7840 }
7841
7842 /*
7843 * Get vnode attributes and extended security information for the vnode
7844 * and directory if required.
7845 *
7846 * If we're root we only want mode bits and flags for checking
7847 * execute and immutability.
7848 */
7849 VATTR_WANTED(&va, va_mode);
7850 VATTR_WANTED(&va, va_flags);
7851 if (!is_suser) {
7852 VATTR_WANTED(&va, va_uid);
7853 VATTR_WANTED(&va, va_gid);
7854 VATTR_WANTED(&va, va_acl);
7855 }
7856 if ((result = vnode_getattr(vp, &va, ctx)) != 0) {
7857 KAUTH_DEBUG("%p ERROR - failed to get vnode attributes - %d", vp, result);
7858 goto out;
7859 }
7860 VATTR_WANTED(&va, va_type);
7861 VATTR_RETURN(&va, va_type, vnode_vtype(vp));
7862
7863 if (vcp->dvp) {
7864 VATTR_WANTED(&dva, va_mode);
7865 VATTR_WANTED(&dva, va_flags);
7866 if (!is_suser) {
7867 VATTR_WANTED(&dva, va_uid);
7868 VATTR_WANTED(&dva, va_gid);
7869 VATTR_WANTED(&dva, va_acl);
7870 }
7871 if ((result = vnode_getattr(vcp->dvp, &dva, ctx)) != 0) {
7872 KAUTH_DEBUG("%p ERROR - failed to get directory vnode attributes - %d", vp, result);
7873 goto out;
7874 }
7875 VATTR_WANTED(&dva, va_type);
7876 VATTR_RETURN(&dva, va_type, vnode_vtype(vcp->dvp));
7877 }
7878
7879 result = vnode_attr_authorize_internal(vcp, vp->v_mount, rights, is_suser,
7880 &found_deny, noimmutable, parent_authorized_for_delete_child);
7881 out:
7882 if (VATTR_IS_SUPPORTED(&va, va_acl) && (va.va_acl != NULL))
7883 kauth_acl_free(va.va_acl);
7884 if (VATTR_IS_SUPPORTED(&dva, va_acl) && (dva.va_acl != NULL))
7885 kauth_acl_free(dva.va_acl);
7886
7887 if (result) {
7888 if (parent_ref)
7889 vnode_put(vp);
7890 *errorp = result;
7891 KAUTH_DEBUG("%p DENIED - auth denied", vp);
7892 return(KAUTH_RESULT_DENY);
7893 }
7894 if ((rights & KAUTH_VNODE_SEARCH) && found_deny == FALSE && vp->v_type == VDIR) {
7895 /*
7896 * if we were successfully granted the right to search this directory
7897 * and there were NO ACL DENYs for search and the posix permissions also don't
7898 * deny execute, we can synthesize a global right that allows anyone to
7899 * traverse this directory during a pathname lookup without having to
7900 * match the credential associated with this cache of rights.
7901 *
7902 * Note that we can correctly cache KAUTH_VNODE_SEARCHBYANYONE
7903 * only if we actually check ACLs which we don't for root. As
7904 * a workaround, the lookup fast path checks for root.
7905 */
7906 if (!VATTR_IS_SUPPORTED(&va, va_mode) ||
7907 ((va.va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) ==
7908 (S_IXUSR | S_IXGRP | S_IXOTH))) {
7909 vnode_cache_authorized_action(vp, ctx, KAUTH_VNODE_SEARCHBYANYONE);
7910 }
7911 }
7912 success:
7913 if (parent_ref)
7914 vnode_put(vp);
7915
7916 /*
7917 * Note that this implies that we will allow requests for no rights, as well as
7918 * for rights that we do not recognise. There should be none of these.
7919 */
7920 KAUTH_DEBUG("%p ALLOWED - auth granted", vp);
7921 return(KAUTH_RESULT_ALLOW);
7922 }
7923
7924 int
7925 vnode_attr_authorize_init(struct vnode_attr *vap, struct vnode_attr *dvap,
7926 kauth_action_t action, vfs_context_t ctx)
7927 {
7928 VATTR_INIT(vap);
7929 VATTR_WANTED(vap, va_type);
7930 VATTR_WANTED(vap, va_mode);
7931 VATTR_WANTED(vap, va_flags);
7932 if (dvap) {
7933 VATTR_INIT(dvap);
7934 if (action & KAUTH_VNODE_DELETE) {
7935 VATTR_WANTED(dvap, va_type);
7936 VATTR_WANTED(dvap, va_mode);
7937 VATTR_WANTED(dvap, va_flags);
7938 }
7939 } else if (action & KAUTH_VNODE_DELETE) {
7940 return (EINVAL);
7941 }
7942
7943 if (!vfs_context_issuser(ctx)) {
7944 VATTR_WANTED(vap, va_uid);
7945 VATTR_WANTED(vap, va_gid);
7946 VATTR_WANTED(vap, va_acl);
7947 if (dvap && (action & KAUTH_VNODE_DELETE)) {
7948 VATTR_WANTED(dvap, va_uid);
7949 VATTR_WANTED(dvap, va_gid);
7950 VATTR_WANTED(dvap, va_acl);
7951 }
7952 }
7953
7954 return (0);
7955 }
7956
7957 int
7958 vnode_attr_authorize(struct vnode_attr *vap, struct vnode_attr *dvap, mount_t mp,
7959 kauth_action_t action, vfs_context_t ctx)
7960 {
7961 struct _vnode_authorize_context auth_context;
7962 vauth_ctx vcp;
7963 kauth_ace_rights_t rights;
7964 int noimmutable;
7965 boolean_t found_deny;
7966 boolean_t is_suser = FALSE;
7967 int result = 0;
7968
7969 vcp = &auth_context;
7970 vcp->ctx = ctx;
7971 vcp->vp = NULLVP;
7972 vcp->vap = vap;
7973 vcp->dvp = NULLVP;
7974 vcp->dvap = dvap;
7975 vcp->flags = vcp->flags_valid = 0;
7976
7977 noimmutable = (action & KAUTH_VNODE_NOIMMUTABLE) ? 1 : 0;
7978 rights = action & ~(KAUTH_VNODE_ACCESS | KAUTH_VNODE_NOIMMUTABLE);
7979
7980 /*
7981 * Check for read-only filesystems.
7982 */
7983 if ((rights & KAUTH_VNODE_WRITE_RIGHTS) &&
7984 mp && (mp->mnt_flag & MNT_RDONLY) &&
7985 ((vap->va_type == VREG) || (vap->va_type == VDIR) ||
7986 (vap->va_type == VLNK) || (rights & KAUTH_VNODE_DELETE) ||
7987 (rights & KAUTH_VNODE_DELETE_CHILD))) {
7988 result = EROFS;
7989 goto out;
7990 }
7991
7992 /*
7993 * Check for noexec filesystems.
7994 */
7995 if ((rights & KAUTH_VNODE_EXECUTE) &&
7996 (vap->va_type == VREG) && mp && (mp->mnt_flag & MNT_NOEXEC)) {
7997 result = EACCES;
7998 goto out;
7999 }
8000
8001 if (vfs_context_issuser(ctx)) {
8002 /*
8003 * if we're not asking for execute permissions or modifications,
8004 * then we're done, this action is authorized.
8005 */
8006 if (!(rights & (KAUTH_VNODE_EXECUTE | KAUTH_VNODE_WRITE_RIGHTS)))
8007 goto out;
8008 is_suser = TRUE;
8009 } else {
8010 if (!VATTR_IS_SUPPORTED(vap, va_uid) ||
8011 !VATTR_IS_SUPPORTED(vap, va_gid) ||
8012 (mp && vfs_extendedsecurity(mp) && !VATTR_IS_SUPPORTED(vap, va_acl))) {
8013 panic("vnode attrs not complete for vnode_attr_authorize\n");
8014 }
8015 }
8016
8017 result = vnode_attr_authorize_internal(vcp, mp, rights, is_suser,
8018 &found_deny, noimmutable, FALSE);
8019
8020 if (result == EPERM)
8021 result = EACCES;
8022 out:
8023 return (result);
8024 }
8025
8026
8027 int
8028 vnode_authattr_new(vnode_t dvp, struct vnode_attr *vap, int noauth, vfs_context_t ctx)
8029 {
8030 return vnode_authattr_new_internal(dvp, vap, noauth, NULL, ctx);
8031 }
8032
8033 /*
8034 * Check that the attribute information in vattr can be legally applied to
8035 * a new file by the context.
8036 */
8037 static int
8038 vnode_authattr_new_internal(vnode_t dvp, struct vnode_attr *vap, int noauth, uint32_t *defaulted_fieldsp, vfs_context_t ctx)
8039 {
8040 int error;
8041 int has_priv_suser, ismember, defaulted_owner, defaulted_group, defaulted_mode;
8042 uint32_t inherit_flags;
8043 kauth_cred_t cred;
8044 guid_t changer;
8045 mount_t dmp;
8046 struct vnode_attr dva;
8047
8048 error = 0;
8049
8050 if (defaulted_fieldsp) {
8051 *defaulted_fieldsp = 0;
8052 }
8053
8054 defaulted_owner = defaulted_group = defaulted_mode = 0;
8055
8056 inherit_flags = 0;
8057
8058 /*
8059 * Require that the filesystem support extended security to apply any.
8060 */
8061 if (!vfs_extendedsecurity(dvp->v_mount) &&
8062 (VATTR_IS_ACTIVE(vap, va_acl) || VATTR_IS_ACTIVE(vap, va_uuuid) || VATTR_IS_ACTIVE(vap, va_guuid))) {
8063 error = EINVAL;
8064 goto out;
8065 }
8066
8067 /*
8068 * Default some fields.
8069 */
8070 dmp = dvp->v_mount;
8071
8072 /*
8073 * If the filesystem is mounted IGNORE_OWNERSHIP and an explicit owner is set, that
8074 * owner takes ownership of all new files.
8075 */
8076 if ((dmp->mnt_flag & MNT_IGNORE_OWNERSHIP) && (dmp->mnt_fsowner != KAUTH_UID_NONE)) {
8077 VATTR_SET(vap, va_uid, dmp->mnt_fsowner);
8078 defaulted_owner = 1;
8079 } else {
8080 if (!VATTR_IS_ACTIVE(vap, va_uid)) {
8081 /* default owner is current user */
8082 VATTR_SET(vap, va_uid, kauth_cred_getuid(vfs_context_ucred(ctx)));
8083 defaulted_owner = 1;
8084 }
8085 }
8086
8087 /*
8088 * We need the dvp's va_flags and *may* need the gid of the directory,
8089 * we ask for both here.
8090 */
8091 VATTR_INIT(&dva);
8092 VATTR_WANTED(&dva, va_gid);
8093 VATTR_WANTED(&dva, va_flags);
8094 if ((error = vnode_getattr(dvp, &dva, ctx)) != 0)
8095 goto out;
8096
8097 /*
8098 * If the filesystem is mounted IGNORE_OWNERSHIP and an explicit grouo is set, that
8099 * group takes ownership of all new files.
8100 */
8101 if ((dmp->mnt_flag & MNT_IGNORE_OWNERSHIP) && (dmp->mnt_fsgroup != KAUTH_GID_NONE)) {
8102 VATTR_SET(vap, va_gid, dmp->mnt_fsgroup);
8103 defaulted_group = 1;
8104 } else {
8105 if (!VATTR_IS_ACTIVE(vap, va_gid)) {
8106 /* default group comes from parent object, fallback to current user */
8107 if (VATTR_IS_SUPPORTED(&dva, va_gid)) {
8108 VATTR_SET(vap, va_gid, dva.va_gid);
8109 } else {
8110 VATTR_SET(vap, va_gid, kauth_cred_getgid(vfs_context_ucred(ctx)));
8111 }
8112 defaulted_group = 1;
8113 }
8114 }
8115
8116 if (!VATTR_IS_ACTIVE(vap, va_flags))
8117 VATTR_SET(vap, va_flags, 0);
8118
8119 /* Determine if SF_RESTRICTED should be inherited from the parent
8120 * directory. */
8121 if (VATTR_IS_SUPPORTED(&dva, va_flags)) {
8122 inherit_flags = dva.va_flags & (UF_DATAVAULT | SF_RESTRICTED);
8123 }
8124
8125 /* default mode is everything, masked with current umask */
8126 if (!VATTR_IS_ACTIVE(vap, va_mode)) {
8127 VATTR_SET(vap, va_mode, ACCESSPERMS & ~vfs_context_proc(ctx)->p_fd->fd_cmask);
8128 KAUTH_DEBUG("ATTR - defaulting new file mode to %o from umask %o", vap->va_mode, vfs_context_proc(ctx)->p_fd->fd_cmask);
8129 defaulted_mode = 1;
8130 }
8131 /* set timestamps to now */
8132 if (!VATTR_IS_ACTIVE(vap, va_create_time)) {
8133 nanotime(&vap->va_create_time);
8134 VATTR_SET_ACTIVE(vap, va_create_time);
8135 }
8136
8137 /*
8138 * Check for attempts to set nonsensical fields.
8139 */
8140 if (vap->va_active & ~VNODE_ATTR_NEWOBJ) {
8141 error = EINVAL;
8142 KAUTH_DEBUG("ATTR - ERROR - attempt to set unsupported new-file attributes %llx",
8143 vap->va_active & ~VNODE_ATTR_NEWOBJ);
8144 goto out;
8145 }
8146
8147 /*
8148 * Quickly check for the applicability of any enforcement here.
8149 * Tests below maintain the integrity of the local security model.
8150 */
8151 if (vfs_authopaque(dvp->v_mount))
8152 goto out;
8153
8154 /*
8155 * We need to know if the caller is the superuser, or if the work is
8156 * otherwise already authorised.
8157 */
8158 cred = vfs_context_ucred(ctx);
8159 if (noauth) {
8160 /* doing work for the kernel */
8161 has_priv_suser = 1;
8162 } else {
8163 has_priv_suser = vfs_context_issuser(ctx);
8164 }
8165
8166
8167 if (VATTR_IS_ACTIVE(vap, va_flags)) {
8168 if (has_priv_suser) {
8169 if ((vap->va_flags & (UF_SETTABLE | SF_SETTABLE)) != vap->va_flags) {
8170 error = EPERM;
8171 KAUTH_DEBUG(" DENIED - superuser attempt to set illegal flag(s)");
8172 goto out;
8173 }
8174 } else {
8175 if ((vap->va_flags & UF_SETTABLE) != vap->va_flags) {
8176 error = EPERM;
8177 KAUTH_DEBUG(" DENIED - user attempt to set illegal flag(s)");
8178 goto out;
8179 }
8180 }
8181 }
8182
8183 /* if not superuser, validate legality of new-item attributes */
8184 if (!has_priv_suser) {
8185 if (!defaulted_mode && VATTR_IS_ACTIVE(vap, va_mode)) {
8186 /* setgid? */
8187 if (vap->va_mode & S_ISGID) {
8188 if ((error = kauth_cred_ismember_gid(cred, vap->va_gid, &ismember)) != 0) {
8189 KAUTH_DEBUG("ATTR - ERROR: got %d checking for membership in %d", error, vap->va_gid);
8190 goto out;
8191 }
8192 if (!ismember) {
8193 KAUTH_DEBUG(" DENIED - can't set SGID bit, not a member of %d", vap->va_gid);
8194 error = EPERM;
8195 goto out;
8196 }
8197 }
8198
8199 /* setuid? */
8200 if ((vap->va_mode & S_ISUID) && (vap->va_uid != kauth_cred_getuid(cred))) {
8201 KAUTH_DEBUG("ATTR - ERROR: illegal attempt to set the setuid bit");
8202 error = EPERM;
8203 goto out;
8204 }
8205 }
8206 if (!defaulted_owner && (vap->va_uid != kauth_cred_getuid(cred))) {
8207 KAUTH_DEBUG(" DENIED - cannot create new item owned by %d", vap->va_uid);
8208 error = EPERM;
8209 goto out;
8210 }
8211 if (!defaulted_group) {
8212 if ((error = kauth_cred_ismember_gid(cred, vap->va_gid, &ismember)) != 0) {
8213 KAUTH_DEBUG(" ERROR - got %d checking for membership in %d", error, vap->va_gid);
8214 goto out;
8215 }
8216 if (!ismember) {
8217 KAUTH_DEBUG(" DENIED - cannot create new item with group %d - not a member", vap->va_gid);
8218 error = EPERM;
8219 goto out;
8220 }
8221 }
8222
8223 /* initialising owner/group UUID */
8224 if (VATTR_IS_ACTIVE(vap, va_uuuid)) {
8225 if ((error = kauth_cred_getguid(cred, &changer)) != 0) {
8226 KAUTH_DEBUG(" ERROR - got %d trying to get caller UUID", error);
8227 /* XXX ENOENT here - no GUID - should perhaps become EPERM */
8228 goto out;
8229 }
8230 if (!kauth_guid_equal(&vap->va_uuuid, &changer)) {
8231 KAUTH_DEBUG(" ERROR - cannot create item with supplied owner UUID - not us");
8232 error = EPERM;
8233 goto out;
8234 }
8235 }
8236 if (VATTR_IS_ACTIVE(vap, va_guuid)) {
8237 if ((error = kauth_cred_ismember_guid(cred, &vap->va_guuid, &ismember)) != 0) {
8238 KAUTH_DEBUG(" ERROR - got %d trying to check group membership", error);
8239 goto out;
8240 }
8241 if (!ismember) {
8242 KAUTH_DEBUG(" ERROR - cannot create item with supplied group UUID - not a member");
8243 error = EPERM;
8244 goto out;
8245 }
8246 }
8247 }
8248 out:
8249 if (inherit_flags) {
8250 /* Apply SF_RESTRICTED to the file if its parent directory was
8251 * restricted. This is done at the end so that root is not
8252 * required if this flag is only set due to inheritance. */
8253 VATTR_SET(vap, va_flags, (vap->va_flags | inherit_flags));
8254 }
8255 if (defaulted_fieldsp) {
8256 if (defaulted_mode) {
8257 *defaulted_fieldsp |= VATTR_PREPARE_DEFAULTED_MODE;
8258 }
8259 if (defaulted_group) {
8260 *defaulted_fieldsp |= VATTR_PREPARE_DEFAULTED_GID;
8261 }
8262 if (defaulted_owner) {
8263 *defaulted_fieldsp |= VATTR_PREPARE_DEFAULTED_UID;
8264 }
8265 }
8266 return(error);
8267 }
8268
8269 /*
8270 * Check that the attribute information in vap can be legally written by the
8271 * context.
8272 *
8273 * Call this when you're not sure about the vnode_attr; either its contents
8274 * have come from an unknown source, or when they are variable.
8275 *
8276 * Returns errno, or zero and sets *actionp to the KAUTH_VNODE_* actions that
8277 * must be authorized to be permitted to write the vattr.
8278 */
8279 int
8280 vnode_authattr(vnode_t vp, struct vnode_attr *vap, kauth_action_t *actionp, vfs_context_t ctx)
8281 {
8282 struct vnode_attr ova;
8283 kauth_action_t required_action;
8284 int error, has_priv_suser, ismember, chowner, chgroup, clear_suid, clear_sgid;
8285 guid_t changer;
8286 gid_t group;
8287 uid_t owner;
8288 mode_t newmode;
8289 kauth_cred_t cred;
8290 uint32_t fdelta;
8291
8292 VATTR_INIT(&ova);
8293 required_action = 0;
8294 error = 0;
8295
8296 /*
8297 * Quickly check for enforcement applicability.
8298 */
8299 if (vfs_authopaque(vp->v_mount))
8300 goto out;
8301
8302 /*
8303 * Check for attempts to set nonsensical fields.
8304 */
8305 if (vap->va_active & VNODE_ATTR_RDONLY) {
8306 KAUTH_DEBUG("ATTR - ERROR: attempt to set readonly attribute(s)");
8307 error = EINVAL;
8308 goto out;
8309 }
8310
8311 /*
8312 * We need to know if the caller is the superuser.
8313 */
8314 cred = vfs_context_ucred(ctx);
8315 has_priv_suser = kauth_cred_issuser(cred);
8316
8317 /*
8318 * If any of the following are changing, we need information from the old file:
8319 * va_uid
8320 * va_gid
8321 * va_mode
8322 * va_uuuid
8323 * va_guuid
8324 */
8325 if (VATTR_IS_ACTIVE(vap, va_uid) ||
8326 VATTR_IS_ACTIVE(vap, va_gid) ||
8327 VATTR_IS_ACTIVE(vap, va_mode) ||
8328 VATTR_IS_ACTIVE(vap, va_uuuid) ||
8329 VATTR_IS_ACTIVE(vap, va_guuid)) {
8330 VATTR_WANTED(&ova, va_mode);
8331 VATTR_WANTED(&ova, va_uid);
8332 VATTR_WANTED(&ova, va_gid);
8333 VATTR_WANTED(&ova, va_uuuid);
8334 VATTR_WANTED(&ova, va_guuid);
8335 KAUTH_DEBUG("ATTR - security information changing, fetching existing attributes");
8336 }
8337
8338 /*
8339 * If timestamps are being changed, we need to know who the file is owned
8340 * by.
8341 */
8342 if (VATTR_IS_ACTIVE(vap, va_create_time) ||
8343 VATTR_IS_ACTIVE(vap, va_change_time) ||
8344 VATTR_IS_ACTIVE(vap, va_modify_time) ||
8345 VATTR_IS_ACTIVE(vap, va_access_time) ||
8346 VATTR_IS_ACTIVE(vap, va_backup_time) ||
8347 VATTR_IS_ACTIVE(vap, va_addedtime)) {
8348
8349 VATTR_WANTED(&ova, va_uid);
8350 #if 0 /* enable this when we support UUIDs as official owners */
8351 VATTR_WANTED(&ova, va_uuuid);
8352 #endif
8353 KAUTH_DEBUG("ATTR - timestamps changing, fetching uid and GUID");
8354 }
8355
8356 /*
8357 * If flags are being changed, we need the old flags.
8358 */
8359 if (VATTR_IS_ACTIVE(vap, va_flags)) {
8360 KAUTH_DEBUG("ATTR - flags changing, fetching old flags");
8361 VATTR_WANTED(&ova, va_flags);
8362 }
8363
8364 /*
8365 * If ACLs are being changed, we need the old ACLs.
8366 */
8367 if (VATTR_IS_ACTIVE(vap, va_acl)) {
8368 KAUTH_DEBUG("ATTR - acl changing, fetching old flags");
8369 VATTR_WANTED(&ova, va_acl);
8370 }
8371
8372 /*
8373 * If the size is being set, make sure it's not a directory.
8374 */
8375 if (VATTR_IS_ACTIVE(vap, va_data_size)) {
8376 /* size is only meaningful on regular files, don't permit otherwise */
8377 if (!vnode_isreg(vp)) {
8378 KAUTH_DEBUG("ATTR - ERROR: size change requested on non-file");
8379 error = vnode_isdir(vp) ? EISDIR : EINVAL;
8380 goto out;
8381 }
8382 }
8383
8384 /*
8385 * Get old data.
8386 */
8387 KAUTH_DEBUG("ATTR - fetching old attributes %016llx", ova.va_active);
8388 if ((error = vnode_getattr(vp, &ova, ctx)) != 0) {
8389 KAUTH_DEBUG(" ERROR - got %d trying to get attributes", error);
8390 goto out;
8391 }
8392
8393 /*
8394 * Size changes require write access to the file data.
8395 */
8396 if (VATTR_IS_ACTIVE(vap, va_data_size)) {
8397 /* if we can't get the size, or it's different, we need write access */
8398 KAUTH_DEBUG("ATTR - size change, requiring WRITE_DATA");
8399 required_action |= KAUTH_VNODE_WRITE_DATA;
8400 }
8401
8402 /*
8403 * Changing timestamps?
8404 *
8405 * Note that we are only called to authorize user-requested time changes;
8406 * side-effect time changes are not authorized. Authorisation is only
8407 * required for existing files.
8408 *
8409 * Non-owners are not permitted to change the time on an existing
8410 * file to anything other than the current time.
8411 */
8412 if (VATTR_IS_ACTIVE(vap, va_create_time) ||
8413 VATTR_IS_ACTIVE(vap, va_change_time) ||
8414 VATTR_IS_ACTIVE(vap, va_modify_time) ||
8415 VATTR_IS_ACTIVE(vap, va_access_time) ||
8416 VATTR_IS_ACTIVE(vap, va_backup_time) ||
8417 VATTR_IS_ACTIVE(vap, va_addedtime)) {
8418 /*
8419 * The owner and root may set any timestamps they like,
8420 * provided that the file is not immutable. The owner still needs
8421 * WRITE_ATTRIBUTES (implied by ownership but still deniable).
8422 */
8423 if (has_priv_suser || vauth_node_owner(&ova, cred)) {
8424 KAUTH_DEBUG("ATTR - root or owner changing timestamps");
8425 required_action |= KAUTH_VNODE_CHECKIMMUTABLE | KAUTH_VNODE_WRITE_ATTRIBUTES;
8426 } else {
8427 /* just setting the current time? */
8428 if (vap->va_vaflags & VA_UTIMES_NULL) {
8429 KAUTH_DEBUG("ATTR - non-root/owner changing timestamps, requiring WRITE_ATTRIBUTES");
8430 required_action |= KAUTH_VNODE_WRITE_ATTRIBUTES;
8431 } else {
8432 KAUTH_DEBUG("ATTR - ERROR: illegal timestamp modification attempted");
8433 error = EACCES;
8434 goto out;
8435 }
8436 }
8437 }
8438
8439 /*
8440 * Changing file mode?
8441 */
8442 if (VATTR_IS_ACTIVE(vap, va_mode) && VATTR_IS_SUPPORTED(&ova, va_mode) && (ova.va_mode != vap->va_mode)) {
8443 KAUTH_DEBUG("ATTR - mode change from %06o to %06o", ova.va_mode, vap->va_mode);
8444
8445 /*
8446 * Mode changes always have the same basic auth requirements.
8447 */
8448 if (has_priv_suser) {
8449 KAUTH_DEBUG("ATTR - superuser mode change, requiring immutability check");
8450 required_action |= KAUTH_VNODE_CHECKIMMUTABLE;
8451 } else {
8452 /* need WRITE_SECURITY */
8453 KAUTH_DEBUG("ATTR - non-superuser mode change, requiring WRITE_SECURITY");
8454 required_action |= KAUTH_VNODE_WRITE_SECURITY;
8455 }
8456
8457 /*
8458 * Can't set the setgid bit if you're not in the group and not root. Have to have
8459 * existing group information in the case we're not setting it right now.
8460 */
8461 if (vap->va_mode & S_ISGID) {
8462 required_action |= KAUTH_VNODE_CHECKIMMUTABLE; /* always required */
8463 if (!has_priv_suser) {
8464 if (VATTR_IS_ACTIVE(vap, va_gid)) {
8465 group = vap->va_gid;
8466 } else if (VATTR_IS_SUPPORTED(&ova, va_gid)) {
8467 group = ova.va_gid;
8468 } else {
8469 KAUTH_DEBUG("ATTR - ERROR: setgid but no gid available");
8470 error = EINVAL;
8471 goto out;
8472 }
8473 /*
8474 * This might be too restrictive; WRITE_SECURITY might be implied by
8475 * membership in this case, rather than being an additional requirement.
8476 */
8477 if ((error = kauth_cred_ismember_gid(cred, group, &ismember)) != 0) {
8478 KAUTH_DEBUG("ATTR - ERROR: got %d checking for membership in %d", error, vap->va_gid);
8479 goto out;
8480 }
8481 if (!ismember) {
8482 KAUTH_DEBUG(" DENIED - can't set SGID bit, not a member of %d", group);
8483 error = EPERM;
8484 goto out;
8485 }
8486 }
8487 }
8488
8489 /*
8490 * Can't set the setuid bit unless you're root or the file's owner.
8491 */
8492 if (vap->va_mode & S_ISUID) {
8493 required_action |= KAUTH_VNODE_CHECKIMMUTABLE; /* always required */
8494 if (!has_priv_suser) {
8495 if (VATTR_IS_ACTIVE(vap, va_uid)) {
8496 owner = vap->va_uid;
8497 } else if (VATTR_IS_SUPPORTED(&ova, va_uid)) {
8498 owner = ova.va_uid;
8499 } else {
8500 KAUTH_DEBUG("ATTR - ERROR: setuid but no uid available");
8501 error = EINVAL;
8502 goto out;
8503 }
8504 if (owner != kauth_cred_getuid(cred)) {
8505 /*
8506 * We could allow this if WRITE_SECURITY is permitted, perhaps.
8507 */
8508 KAUTH_DEBUG("ATTR - ERROR: illegal attempt to set the setuid bit");
8509 error = EPERM;
8510 goto out;
8511 }
8512 }
8513 }
8514 }
8515
8516 /*
8517 * Validate/mask flags changes. This checks that only the flags in
8518 * the UF_SETTABLE mask are being set, and preserves the flags in
8519 * the SF_SETTABLE case.
8520 *
8521 * Since flags changes may be made in conjunction with other changes,
8522 * we will ask the auth code to ignore immutability in the case that
8523 * the SF_* flags are not set and we are only manipulating the file flags.
8524 *
8525 */
8526 if (VATTR_IS_ACTIVE(vap, va_flags)) {
8527 /* compute changing flags bits */
8528 if (VATTR_IS_SUPPORTED(&ova, va_flags)) {
8529 fdelta = vap->va_flags ^ ova.va_flags;
8530 } else {
8531 fdelta = vap->va_flags;
8532 }
8533
8534 if (fdelta != 0) {
8535 KAUTH_DEBUG("ATTR - flags changing, requiring WRITE_SECURITY");
8536 required_action |= KAUTH_VNODE_WRITE_SECURITY;
8537
8538 /* check that changing bits are legal */
8539 if (has_priv_suser) {
8540 /*
8541 * The immutability check will prevent us from clearing the SF_*
8542 * flags unless the system securelevel permits it, so just check
8543 * for legal flags here.
8544 */
8545 if (fdelta & ~(UF_SETTABLE | SF_SETTABLE)) {
8546 error = EPERM;
8547 KAUTH_DEBUG(" DENIED - superuser attempt to set illegal flag(s)");
8548 goto out;
8549 }
8550 } else {
8551 if (fdelta & ~UF_SETTABLE) {
8552 error = EPERM;
8553 KAUTH_DEBUG(" DENIED - user attempt to set illegal flag(s)");
8554 goto out;
8555 }
8556 }
8557 /*
8558 * If the caller has the ability to manipulate file flags,
8559 * security is not reduced by ignoring them for this operation.
8560 *
8561 * A more complete test here would consider the 'after' states of the flags
8562 * to determine whether it would permit the operation, but this becomes
8563 * very complex.
8564 *
8565 * Ignoring immutability is conditional on securelevel; this does not bypass
8566 * the SF_* flags if securelevel > 0.
8567 */
8568 required_action |= KAUTH_VNODE_NOIMMUTABLE;
8569 }
8570 }
8571
8572 /*
8573 * Validate ownership information.
8574 */
8575 chowner = 0;
8576 chgroup = 0;
8577 clear_suid = 0;
8578 clear_sgid = 0;
8579
8580 /*
8581 * uid changing
8582 * Note that if the filesystem didn't give us a UID, we expect that it doesn't
8583 * support them in general, and will ignore it if/when we try to set it.
8584 * We might want to clear the uid out of vap completely here.
8585 */
8586 if (VATTR_IS_ACTIVE(vap, va_uid)) {
8587 if (VATTR_IS_SUPPORTED(&ova, va_uid) && (vap->va_uid != ova.va_uid)) {
8588 if (!has_priv_suser && (kauth_cred_getuid(cred) != vap->va_uid)) {
8589 KAUTH_DEBUG(" DENIED - non-superuser cannot change ownershipt to a third party");
8590 error = EPERM;
8591 goto out;
8592 }
8593 chowner = 1;
8594 }
8595 clear_suid = 1;
8596 }
8597
8598 /*
8599 * gid changing
8600 * Note that if the filesystem didn't give us a GID, we expect that it doesn't
8601 * support them in general, and will ignore it if/when we try to set it.
8602 * We might want to clear the gid out of vap completely here.
8603 */
8604 if (VATTR_IS_ACTIVE(vap, va_gid)) {
8605 if (VATTR_IS_SUPPORTED(&ova, va_gid) && (vap->va_gid != ova.va_gid)) {
8606 if (!has_priv_suser) {
8607 if ((error = kauth_cred_ismember_gid(cred, vap->va_gid, &ismember)) != 0) {
8608 KAUTH_DEBUG(" ERROR - got %d checking for membership in %d", error, vap->va_gid);
8609 goto out;
8610 }
8611 if (!ismember) {
8612 KAUTH_DEBUG(" DENIED - group change from %d to %d but not a member of target group",
8613 ova.va_gid, vap->va_gid);
8614 error = EPERM;
8615 goto out;
8616 }
8617 }
8618 chgroup = 1;
8619 }
8620 clear_sgid = 1;
8621 }
8622
8623 /*
8624 * Owner UUID being set or changed.
8625 */
8626 if (VATTR_IS_ACTIVE(vap, va_uuuid)) {
8627 /* if the owner UUID is not actually changing ... */
8628 if (VATTR_IS_SUPPORTED(&ova, va_uuuid)) {
8629 if (kauth_guid_equal(&vap->va_uuuid, &ova.va_uuuid))
8630 goto no_uuuid_change;
8631
8632 /*
8633 * If the current owner UUID is a null GUID, check
8634 * it against the UUID corresponding to the owner UID.
8635 */
8636 if (kauth_guid_equal(&ova.va_uuuid, &kauth_null_guid) &&
8637 VATTR_IS_SUPPORTED(&ova, va_uid)) {
8638 guid_t uid_guid;
8639
8640 if (kauth_cred_uid2guid(ova.va_uid, &uid_guid) == 0 &&
8641 kauth_guid_equal(&vap->va_uuuid, &uid_guid))
8642 goto no_uuuid_change;
8643 }
8644 }
8645
8646 /*
8647 * The owner UUID cannot be set by a non-superuser to anything other than
8648 * their own or a null GUID (to "unset" the owner UUID).
8649 * Note that file systems must be prepared to handle the
8650 * null UUID case in a manner appropriate for that file
8651 * system.
8652 */
8653 if (!has_priv_suser) {
8654 if ((error = kauth_cred_getguid(cred, &changer)) != 0) {
8655 KAUTH_DEBUG(" ERROR - got %d trying to get caller UUID", error);
8656 /* XXX ENOENT here - no UUID - should perhaps become EPERM */
8657 goto out;
8658 }
8659 if (!kauth_guid_equal(&vap->va_uuuid, &changer) &&
8660 !kauth_guid_equal(&vap->va_uuuid, &kauth_null_guid)) {
8661 KAUTH_DEBUG(" ERROR - cannot set supplied owner UUID - not us / null");
8662 error = EPERM;
8663 goto out;
8664 }
8665 }
8666 chowner = 1;
8667 clear_suid = 1;
8668 }
8669 no_uuuid_change:
8670 /*
8671 * Group UUID being set or changed.
8672 */
8673 if (VATTR_IS_ACTIVE(vap, va_guuid)) {
8674 /* if the group UUID is not actually changing ... */
8675 if (VATTR_IS_SUPPORTED(&ova, va_guuid)) {
8676 if (kauth_guid_equal(&vap->va_guuid, &ova.va_guuid))
8677 goto no_guuid_change;
8678
8679 /*
8680 * If the current group UUID is a null UUID, check
8681 * it against the UUID corresponding to the group GID.
8682 */
8683 if (kauth_guid_equal(&ova.va_guuid, &kauth_null_guid) &&
8684 VATTR_IS_SUPPORTED(&ova, va_gid)) {
8685 guid_t gid_guid;
8686
8687 if (kauth_cred_gid2guid(ova.va_gid, &gid_guid) == 0 &&
8688 kauth_guid_equal(&vap->va_guuid, &gid_guid))
8689 goto no_guuid_change;
8690 }
8691 }
8692
8693 /*
8694 * The group UUID cannot be set by a non-superuser to anything other than
8695 * one of which they are a member or a null GUID (to "unset"
8696 * the group UUID).
8697 * Note that file systems must be prepared to handle the
8698 * null UUID case in a manner appropriate for that file
8699 * system.
8700 */
8701 if (!has_priv_suser) {
8702 if (kauth_guid_equal(&vap->va_guuid, &kauth_null_guid))
8703 ismember = 1;
8704 else if ((error = kauth_cred_ismember_guid(cred, &vap->va_guuid, &ismember)) != 0) {
8705 KAUTH_DEBUG(" ERROR - got %d trying to check group membership", error);
8706 goto out;
8707 }
8708 if (!ismember) {
8709 KAUTH_DEBUG(" ERROR - cannot set supplied group UUID - not a member / null");
8710 error = EPERM;
8711 goto out;
8712 }
8713 }
8714 chgroup = 1;
8715 }
8716 no_guuid_change:
8717
8718 /*
8719 * Compute authorisation for group/ownership changes.
8720 */
8721 if (chowner || chgroup || clear_suid || clear_sgid) {
8722 if (has_priv_suser) {
8723 KAUTH_DEBUG("ATTR - superuser changing file owner/group, requiring immutability check");
8724 required_action |= KAUTH_VNODE_CHECKIMMUTABLE;
8725 } else {
8726 if (chowner) {
8727 KAUTH_DEBUG("ATTR - ownership change, requiring TAKE_OWNERSHIP");
8728 required_action |= KAUTH_VNODE_TAKE_OWNERSHIP;
8729 }
8730 if (chgroup && !chowner) {
8731 KAUTH_DEBUG("ATTR - group change, requiring WRITE_SECURITY");
8732 required_action |= KAUTH_VNODE_WRITE_SECURITY;
8733 }
8734
8735 }
8736
8737 /*
8738 * clear set-uid and set-gid bits. POSIX only requires this for
8739 * non-privileged processes but we do it even for root.
8740 */
8741 if (VATTR_IS_ACTIVE(vap, va_mode)) {
8742 newmode = vap->va_mode;
8743 } else if (VATTR_IS_SUPPORTED(&ova, va_mode)) {
8744 newmode = ova.va_mode;
8745 } else {
8746 KAUTH_DEBUG("CHOWN - trying to change owner but cannot get mode from filesystem to mask setugid bits");
8747 newmode = 0;
8748 }
8749
8750 /* chown always clears setuid/gid bits. An exception is made for
8751 * setattrlist executed by a root process to set <uid, gid, mode> on a file:
8752 * setattrlist is allowed to set the new mode on the file and change (chown)
8753 * uid/gid.
8754 */
8755 if (newmode & (S_ISUID | S_ISGID)) {
8756 if (!VATTR_IS_ACTIVE(vap, va_mode) || !has_priv_suser) {
8757 KAUTH_DEBUG("CHOWN - masking setugid bits from mode %o to %o",
8758 newmode, newmode & ~(S_ISUID | S_ISGID));
8759 newmode &= ~(S_ISUID | S_ISGID);
8760 }
8761 VATTR_SET(vap, va_mode, newmode);
8762 }
8763 }
8764
8765 /*
8766 * Authorise changes in the ACL.
8767 */
8768 if (VATTR_IS_ACTIVE(vap, va_acl)) {
8769
8770 /* no existing ACL */
8771 if (!VATTR_IS_ACTIVE(&ova, va_acl) || (ova.va_acl == NULL)) {
8772
8773 /* adding an ACL */
8774 if (vap->va_acl != NULL) {
8775 required_action |= KAUTH_VNODE_WRITE_SECURITY;
8776 KAUTH_DEBUG("CHMOD - adding ACL");
8777 }
8778
8779 /* removing an existing ACL */
8780 } else if (vap->va_acl == NULL) {
8781 required_action |= KAUTH_VNODE_WRITE_SECURITY;
8782 KAUTH_DEBUG("CHMOD - removing ACL");
8783
8784 /* updating an existing ACL */
8785 } else {
8786 if (vap->va_acl->acl_entrycount != ova.va_acl->acl_entrycount) {
8787 /* entry count changed, must be different */
8788 required_action |= KAUTH_VNODE_WRITE_SECURITY;
8789 KAUTH_DEBUG("CHMOD - adding/removing ACL entries");
8790 } else if (vap->va_acl->acl_entrycount > 0) {
8791 /* both ACLs have the same ACE count, said count is 1 or more, bitwise compare ACLs */
8792 if (memcmp(&vap->va_acl->acl_ace[0], &ova.va_acl->acl_ace[0],
8793 sizeof(struct kauth_ace) * vap->va_acl->acl_entrycount)) {
8794 required_action |= KAUTH_VNODE_WRITE_SECURITY;
8795 KAUTH_DEBUG("CHMOD - changing ACL entries");
8796 }
8797 }
8798 }
8799 }
8800
8801 /*
8802 * Other attributes that require authorisation.
8803 */
8804 if (VATTR_IS_ACTIVE(vap, va_encoding))
8805 required_action |= KAUTH_VNODE_WRITE_ATTRIBUTES;
8806
8807 out:
8808 if (VATTR_IS_SUPPORTED(&ova, va_acl) && (ova.va_acl != NULL))
8809 kauth_acl_free(ova.va_acl);
8810 if (error == 0)
8811 *actionp = required_action;
8812 return(error);
8813 }
8814
8815 static int
8816 setlocklocal_callback(struct vnode *vp, __unused void *cargs)
8817 {
8818 vnode_lock_spin(vp);
8819 vp->v_flag |= VLOCKLOCAL;
8820 vnode_unlock(vp);
8821
8822 return (VNODE_RETURNED);
8823 }
8824
8825 void
8826 vfs_setlocklocal(mount_t mp)
8827 {
8828 mount_lock_spin(mp);
8829 mp->mnt_kern_flag |= MNTK_LOCK_LOCAL;
8830 mount_unlock(mp);
8831
8832 /*
8833 * The number of active vnodes is expected to be
8834 * very small when vfs_setlocklocal is invoked.
8835 */
8836 vnode_iterate(mp, 0, setlocklocal_callback, NULL);
8837 }
8838
8839 void
8840 vfs_setcompoundopen(mount_t mp)
8841 {
8842 mount_lock_spin(mp);
8843 mp->mnt_compound_ops |= COMPOUND_VNOP_OPEN;
8844 mount_unlock(mp);
8845 }
8846
8847 void
8848 vnode_setswapmount(vnode_t vp)
8849 {
8850 mount_lock(vp->v_mount);
8851 vp->v_mount->mnt_kern_flag |= MNTK_SWAP_MOUNT;
8852 mount_unlock(vp->v_mount);
8853 }
8854
8855
8856 int64_t
8857 vnode_getswappin_avail(vnode_t vp)
8858 {
8859 int64_t max_swappin_avail = 0;
8860
8861 mount_lock(vp->v_mount);
8862 if (vp->v_mount->mnt_ioflags & MNT_IOFLAGS_SWAPPIN_SUPPORTED)
8863 max_swappin_avail = vp->v_mount->mnt_max_swappin_available;
8864 mount_unlock(vp->v_mount);
8865
8866 return (max_swappin_avail);
8867 }
8868
8869
8870 void
8871 vn_setunionwait(vnode_t vp)
8872 {
8873 vnode_lock_spin(vp);
8874 vp->v_flag |= VISUNION;
8875 vnode_unlock(vp);
8876 }
8877
8878
8879 void
8880 vn_checkunionwait(vnode_t vp)
8881 {
8882 vnode_lock_spin(vp);
8883 while ((vp->v_flag & VISUNION) == VISUNION)
8884 msleep((caddr_t)&vp->v_flag, &vp->v_lock, 0, 0, 0);
8885 vnode_unlock(vp);
8886 }
8887
8888 void
8889 vn_clearunionwait(vnode_t vp, int locked)
8890 {
8891 if (!locked)
8892 vnode_lock_spin(vp);
8893 if((vp->v_flag & VISUNION) == VISUNION) {
8894 vp->v_flag &= ~VISUNION;
8895 wakeup((caddr_t)&vp->v_flag);
8896 }
8897 if (!locked)
8898 vnode_unlock(vp);
8899 }
8900
8901 /*
8902 * Removes orphaned apple double files during a rmdir
8903 * Works by:
8904 * 1. vnode_suspend().
8905 * 2. Call VNOP_READDIR() till the end of directory is reached.
8906 * 3. Check if the directory entries returned are regular files with name starting with "._". If not, return ENOTEMPTY.
8907 * 4. Continue (2) and (3) till end of directory is reached.
8908 * 5. If all the entries in the directory were files with "._" name, delete all the files.
8909 * 6. vnode_resume()
8910 * 7. If deletion of all files succeeded, call VNOP_RMDIR() again.
8911 */
8912
8913 errno_t rmdir_remove_orphaned_appleDouble(vnode_t vp , vfs_context_t ctx, int * restart_flag)
8914 {
8915
8916 #define UIO_BUFF_SIZE 2048
8917 uio_t auio = NULL;
8918 int eofflag, siz = UIO_BUFF_SIZE, nentries = 0;
8919 int open_flag = 0, full_erase_flag = 0;
8920 char uio_buf[ UIO_SIZEOF(1) ];
8921 char *rbuf = NULL;
8922 void *dir_pos;
8923 void *dir_end;
8924 struct dirent *dp;
8925 errno_t error;
8926
8927 error = vnode_suspend(vp);
8928
8929 /*
8930 * restart_flag is set so that the calling rmdir sleeps and resets
8931 */
8932 if (error == EBUSY)
8933 *restart_flag = 1;
8934 if (error != 0)
8935 return (error);
8936
8937 /*
8938 * set up UIO
8939 */
8940 MALLOC(rbuf, caddr_t, siz, M_TEMP, M_WAITOK);
8941 if (rbuf)
8942 auio = uio_createwithbuffer(1, 0, UIO_SYSSPACE, UIO_READ,
8943 &uio_buf[0], sizeof(uio_buf));
8944 if (!rbuf || !auio) {
8945 error = ENOMEM;
8946 goto outsc;
8947 }
8948
8949 uio_setoffset(auio,0);
8950
8951 eofflag = 0;
8952
8953 if ((error = VNOP_OPEN(vp, FREAD, ctx)))
8954 goto outsc;
8955 else
8956 open_flag = 1;
8957
8958 /*
8959 * First pass checks if all files are appleDouble files.
8960 */
8961
8962 do {
8963 siz = UIO_BUFF_SIZE;
8964 uio_reset(auio, uio_offset(auio), UIO_SYSSPACE, UIO_READ);
8965 uio_addiov(auio, CAST_USER_ADDR_T(rbuf), UIO_BUFF_SIZE);
8966
8967 if((error = VNOP_READDIR(vp, auio, 0, &eofflag, &nentries, ctx)))
8968 goto outsc;
8969
8970 if (uio_resid(auio) != 0)
8971 siz -= uio_resid(auio);
8972
8973 /*
8974 * Iterate through directory
8975 */
8976 dir_pos = (void*) rbuf;
8977 dir_end = (void*) (rbuf + siz);
8978 dp = (struct dirent*) (dir_pos);
8979
8980 if (dir_pos == dir_end)
8981 eofflag = 1;
8982
8983 while (dir_pos < dir_end) {
8984 /*
8985 * Check for . and .. as well as directories
8986 */
8987 if (dp->d_ino != 0 &&
8988 !((dp->d_namlen == 1 && dp->d_name[0] == '.') ||
8989 (dp->d_namlen == 2 && dp->d_name[0] == '.' && dp->d_name[1] == '.'))) {
8990 /*
8991 * Check for irregular files and ._ files
8992 * If there is a ._._ file abort the op
8993 */
8994 if ( dp->d_namlen < 2 ||
8995 strncmp(dp->d_name,"._",2) ||
8996 (dp->d_namlen >= 4 && !strncmp(&(dp->d_name[2]), "._",2))) {
8997 error = ENOTEMPTY;
8998 goto outsc;
8999 }
9000 }
9001 dir_pos = (void*) ((uint8_t*)dir_pos + dp->d_reclen);
9002 dp = (struct dirent*)dir_pos;
9003 }
9004
9005 /*
9006 * workaround for HFS/NFS setting eofflag before end of file
9007 */
9008 if (vp->v_tag == VT_HFS && nentries > 2)
9009 eofflag=0;
9010
9011 if (vp->v_tag == VT_NFS) {
9012 if (eofflag && !full_erase_flag) {
9013 full_erase_flag = 1;
9014 eofflag = 0;
9015 uio_reset(auio, 0, UIO_SYSSPACE, UIO_READ);
9016 }
9017 else if (!eofflag && full_erase_flag)
9018 full_erase_flag = 0;
9019 }
9020
9021 } while (!eofflag);
9022 /*
9023 * If we've made it here all the files in the dir are ._ files.
9024 * We can delete the files even though the node is suspended
9025 * because we are the owner of the file.
9026 */
9027
9028 uio_reset(auio, 0, UIO_SYSSPACE, UIO_READ);
9029 eofflag = 0;
9030 full_erase_flag = 0;
9031
9032 do {
9033 siz = UIO_BUFF_SIZE;
9034 uio_reset(auio, uio_offset(auio), UIO_SYSSPACE, UIO_READ);
9035 uio_addiov(auio, CAST_USER_ADDR_T(rbuf), UIO_BUFF_SIZE);
9036
9037 error = VNOP_READDIR(vp, auio, 0, &eofflag, &nentries, ctx);
9038
9039 if (error != 0)
9040 goto outsc;
9041
9042 if (uio_resid(auio) != 0)
9043 siz -= uio_resid(auio);
9044
9045 /*
9046 * Iterate through directory
9047 */
9048 dir_pos = (void*) rbuf;
9049 dir_end = (void*) (rbuf + siz);
9050 dp = (struct dirent*) dir_pos;
9051
9052 if (dir_pos == dir_end)
9053 eofflag = 1;
9054
9055 while (dir_pos < dir_end) {
9056 /*
9057 * Check for . and .. as well as directories
9058 */
9059 if (dp->d_ino != 0 &&
9060 !((dp->d_namlen == 1 && dp->d_name[0] == '.') ||
9061 (dp->d_namlen == 2 && dp->d_name[0] == '.' && dp->d_name[1] == '.'))
9062 ) {
9063
9064 error = unlink1(ctx, vp,
9065 CAST_USER_ADDR_T(dp->d_name), UIO_SYSSPACE,
9066 VNODE_REMOVE_SKIP_NAMESPACE_EVENT |
9067 VNODE_REMOVE_NO_AUDIT_PATH);
9068
9069 if (error && error != ENOENT) {
9070 goto outsc;
9071 }
9072
9073 }
9074 dir_pos = (void*) ((uint8_t*)dir_pos + dp->d_reclen);
9075 dp = (struct dirent*)dir_pos;
9076 }
9077
9078 /*
9079 * workaround for HFS/NFS setting eofflag before end of file
9080 */
9081 if (vp->v_tag == VT_HFS && nentries > 2)
9082 eofflag=0;
9083
9084 if (vp->v_tag == VT_NFS) {
9085 if (eofflag && !full_erase_flag) {
9086 full_erase_flag = 1;
9087 eofflag = 0;
9088 uio_reset(auio, 0, UIO_SYSSPACE, UIO_READ);
9089 }
9090 else if (!eofflag && full_erase_flag)
9091 full_erase_flag = 0;
9092 }
9093
9094 } while (!eofflag);
9095
9096
9097 error = 0;
9098
9099 outsc:
9100 if (open_flag)
9101 VNOP_CLOSE(vp, FREAD, ctx);
9102
9103 if (auio)
9104 uio_free(auio);
9105 FREE(rbuf, M_TEMP);
9106
9107 vnode_resume(vp);
9108
9109
9110 return(error);
9111
9112 }
9113
9114
9115 void
9116 lock_vnode_and_post(vnode_t vp, int kevent_num)
9117 {
9118 /* Only take the lock if there's something there! */
9119 if (vp->v_knotes.slh_first != NULL) {
9120 vnode_lock(vp);
9121 KNOTE(&vp->v_knotes, kevent_num);
9122 vnode_unlock(vp);
9123 }
9124 }
9125
9126 void panic_print_vnodes(void);
9127
9128 /* define PANIC_PRINTS_VNODES only if investigation is required. */
9129 #ifdef PANIC_PRINTS_VNODES
9130
9131 static const char *__vtype(uint16_t vtype)
9132 {
9133 switch (vtype) {
9134 case VREG:
9135 return "R";
9136 case VDIR:
9137 return "D";
9138 case VBLK:
9139 return "B";
9140 case VCHR:
9141 return "C";
9142 case VLNK:
9143 return "L";
9144 case VSOCK:
9145 return "S";
9146 case VFIFO:
9147 return "F";
9148 case VBAD:
9149 return "x";
9150 case VSTR:
9151 return "T";
9152 case VCPLX:
9153 return "X";
9154 default:
9155 return "?";
9156 }
9157 }
9158
9159 /*
9160 * build a path from the bottom up
9161 * NOTE: called from the panic path - no alloc'ing of memory and no locks!
9162 */
9163 static char *__vpath(vnode_t vp, char *str, int len, int depth)
9164 {
9165 int vnm_len;
9166 const char *src;
9167 char *dst;
9168
9169 if (len <= 0)
9170 return str;
9171 /* str + len is the start of the string we created */
9172 if (!vp->v_name)
9173 return str + len;
9174
9175 /* follow mount vnodes to get the full path */
9176 if ((vp->v_flag & VROOT)) {
9177 if (vp->v_mount != NULL && vp->v_mount->mnt_vnodecovered) {
9178 return __vpath(vp->v_mount->mnt_vnodecovered,
9179 str, len, depth+1);
9180 }
9181 return str + len;
9182 }
9183
9184 src = vp->v_name;
9185 vnm_len = strlen(src);
9186 if (vnm_len > len) {
9187 /* truncate the name to fit in the string */
9188 src += (vnm_len - len);
9189 vnm_len = len;
9190 }
9191
9192 /* start from the back and copy just characters (no NULLs) */
9193
9194 /* this will chop off leaf path (file) names */
9195 if (depth > 0) {
9196 dst = str + len - vnm_len;
9197 memcpy(dst, src, vnm_len);
9198 len -= vnm_len;
9199 } else {
9200 dst = str + len;
9201 }
9202
9203 if (vp->v_parent && len > 1) {
9204 /* follow parents up the chain */
9205 len--;
9206 *(dst-1) = '/';
9207 return __vpath(vp->v_parent, str, len, depth + 1);
9208 }
9209
9210 return dst;
9211 }
9212
9213 #define SANE_VNODE_PRINT_LIMIT 5000
9214 void panic_print_vnodes(void)
9215 {
9216 mount_t mnt;
9217 vnode_t vp;
9218 int nvnodes = 0;
9219 const char *type;
9220 char *nm;
9221 char vname[257];
9222
9223 paniclog_append_noflush("\n***** VNODES *****\n"
9224 "TYPE UREF ICNT PATH\n");
9225
9226 /* NULL-terminate the path name */
9227 vname[sizeof(vname)-1] = '\0';
9228
9229 /*
9230 * iterate all vnodelist items in all mounts (mntlist) -> mnt_vnodelist
9231 */
9232 TAILQ_FOREACH(mnt, &mountlist, mnt_list) {
9233
9234 if (!ml_validate_nofault((vm_offset_t)mnt, sizeof(mount_t))) {
9235 paniclog_append_noflush("Unable to iterate the mount list %p - encountered an invalid mount pointer %p \n",
9236 &mountlist, mnt);
9237 break;
9238 }
9239
9240 TAILQ_FOREACH(vp, &mnt->mnt_vnodelist, v_mntvnodes) {
9241
9242 if (!ml_validate_nofault((vm_offset_t)vp, sizeof(vnode_t))) {
9243 paniclog_append_noflush("Unable to iterate the vnode list %p - encountered an invalid vnode pointer %p \n",
9244 &mnt->mnt_vnodelist, vp);
9245 break;
9246 }
9247
9248 if (++nvnodes > SANE_VNODE_PRINT_LIMIT)
9249 return;
9250 type = __vtype(vp->v_type);
9251 nm = __vpath(vp, vname, sizeof(vname)-1, 0);
9252 paniclog_append_noflush("%s %0d %0d %s\n",
9253 type, vp->v_usecount, vp->v_iocount, nm);
9254 }
9255 }
9256 }
9257
9258 #else /* !PANIC_PRINTS_VNODES */
9259 void panic_print_vnodes(void)
9260 {
9261 return;
9262 }
9263 #endif
9264
9265
9266 #ifdef JOE_DEBUG
9267 static void record_vp(vnode_t vp, int count) {
9268 struct uthread *ut;
9269
9270 #if CONFIG_TRIGGERS
9271 if (vp->v_resolve)
9272 return;
9273 #endif
9274 if ((vp->v_flag & VSYSTEM))
9275 return;
9276
9277 ut = get_bsdthread_info(current_thread());
9278 ut->uu_iocount += count;
9279
9280 if (count == 1) {
9281 if (ut->uu_vpindex < 32) {
9282 OSBacktrace((void **)&ut->uu_pcs[ut->uu_vpindex][0], 10);
9283
9284 ut->uu_vps[ut->uu_vpindex] = vp;
9285 ut->uu_vpindex++;
9286 }
9287 }
9288 }
9289 #endif
9290
9291
9292 #if CONFIG_TRIGGERS
9293
9294 #define TRIG_DEBUG 0
9295
9296 #if TRIG_DEBUG
9297 #define TRIG_LOG(...) do { printf("%s: ", __FUNCTION__); printf(__VA_ARGS__); } while (0)
9298 #else
9299 #define TRIG_LOG(...)
9300 #endif
9301
9302 /*
9303 * Resolver result functions
9304 */
9305
9306 resolver_result_t
9307 vfs_resolver_result(uint32_t seq, enum resolver_status stat, int aux)
9308 {
9309 /*
9310 * |<--- 32 --->|<--- 28 --->|<- 4 ->|
9311 * sequence auxiliary status
9312 */
9313 return (((uint64_t)seq) << 32) |
9314 (((uint64_t)(aux & 0x0fffffff)) << 4) |
9315 (uint64_t)(stat & 0x0000000F);
9316 }
9317
9318 enum resolver_status
9319 vfs_resolver_status(resolver_result_t result)
9320 {
9321 /* lower 4 bits is status */
9322 return (result & 0x0000000F);
9323 }
9324
9325 uint32_t
9326 vfs_resolver_sequence(resolver_result_t result)
9327 {
9328 /* upper 32 bits is sequence */
9329 return (uint32_t)(result >> 32);
9330 }
9331
9332 int
9333 vfs_resolver_auxiliary(resolver_result_t result)
9334 {
9335 /* 28 bits of auxiliary */
9336 return (int)(((uint32_t)(result & 0xFFFFFFF0)) >> 4);
9337 }
9338
9339 /*
9340 * SPI
9341 * Call in for resolvers to update vnode trigger state
9342 */
9343 int
9344 vnode_trigger_update(vnode_t vp, resolver_result_t result)
9345 {
9346 vnode_resolve_t rp;
9347 uint32_t seq;
9348 enum resolver_status stat;
9349
9350 if (vp->v_resolve == NULL) {
9351 return (EINVAL);
9352 }
9353
9354 stat = vfs_resolver_status(result);
9355 seq = vfs_resolver_sequence(result);
9356
9357 if ((stat != RESOLVER_RESOLVED) && (stat != RESOLVER_UNRESOLVED)) {
9358 return (EINVAL);
9359 }
9360
9361 rp = vp->v_resolve;
9362 lck_mtx_lock(&rp->vr_lock);
9363
9364 if (seq > rp->vr_lastseq) {
9365 if (stat == RESOLVER_RESOLVED)
9366 rp->vr_flags |= VNT_RESOLVED;
9367 else
9368 rp->vr_flags &= ~VNT_RESOLVED;
9369
9370 rp->vr_lastseq = seq;
9371 }
9372
9373 lck_mtx_unlock(&rp->vr_lock);
9374
9375 return (0);
9376 }
9377
9378 static int
9379 vnode_resolver_attach(vnode_t vp, vnode_resolve_t rp, boolean_t ref)
9380 {
9381 int error;
9382
9383 vnode_lock_spin(vp);
9384 if (vp->v_resolve != NULL) {
9385 vnode_unlock(vp);
9386 return EINVAL;
9387 } else {
9388 vp->v_resolve = rp;
9389 }
9390 vnode_unlock(vp);
9391
9392 if (ref) {
9393 error = vnode_ref_ext(vp, O_EVTONLY, VNODE_REF_FORCE);
9394 if (error != 0) {
9395 panic("VNODE_REF_FORCE didn't help...");
9396 }
9397 }
9398
9399 return 0;
9400 }
9401
9402 /*
9403 * VFS internal interfaces for vnode triggers
9404 *
9405 * vnode must already have an io count on entry
9406 * v_resolve is stable when io count is non-zero
9407 */
9408 static int
9409 vnode_resolver_create(mount_t mp, vnode_t vp, struct vnode_trigger_param *tinfo, boolean_t external)
9410 {
9411 vnode_resolve_t rp;
9412 int result;
9413 char byte;
9414
9415 #if 1
9416 /* minimum pointer test (debugging) */
9417 if (tinfo->vnt_data)
9418 byte = *((char *)tinfo->vnt_data);
9419 #endif
9420 MALLOC(rp, vnode_resolve_t, sizeof(*rp), M_TEMP, M_WAITOK);
9421 if (rp == NULL)
9422 return (ENOMEM);
9423
9424 lck_mtx_init(&rp->vr_lock, trigger_vnode_lck_grp, trigger_vnode_lck_attr);
9425
9426 rp->vr_resolve_func = tinfo->vnt_resolve_func;
9427 rp->vr_unresolve_func = tinfo->vnt_unresolve_func;
9428 rp->vr_rearm_func = tinfo->vnt_rearm_func;
9429 rp->vr_reclaim_func = tinfo->vnt_reclaim_func;
9430 rp->vr_data = tinfo->vnt_data;
9431 rp->vr_lastseq = 0;
9432 rp->vr_flags = tinfo->vnt_flags & VNT_VALID_MASK;
9433 if (external) {
9434 rp->vr_flags |= VNT_EXTERNAL;
9435 }
9436
9437 result = vnode_resolver_attach(vp, rp, external);
9438 if (result != 0) {
9439 goto out;
9440 }
9441
9442 if (mp) {
9443 OSAddAtomic(1, &mp->mnt_numtriggers);
9444 }
9445
9446 return (result);
9447
9448 out:
9449 FREE(rp, M_TEMP);
9450 return result;
9451 }
9452
9453 static void
9454 vnode_resolver_release(vnode_resolve_t rp)
9455 {
9456 /*
9457 * Give them a chance to free any private data
9458 */
9459 if (rp->vr_data && rp->vr_reclaim_func) {
9460 rp->vr_reclaim_func(NULLVP, rp->vr_data);
9461 }
9462
9463 lck_mtx_destroy(&rp->vr_lock, trigger_vnode_lck_grp);
9464 FREE(rp, M_TEMP);
9465
9466 }
9467
9468 /* Called after the vnode has been drained */
9469 static void
9470 vnode_resolver_detach(vnode_t vp)
9471 {
9472 vnode_resolve_t rp;
9473 mount_t mp;
9474
9475 mp = vnode_mount(vp);
9476
9477 vnode_lock(vp);
9478 rp = vp->v_resolve;
9479 vp->v_resolve = NULL;
9480 vnode_unlock(vp);
9481
9482 if ((rp->vr_flags & VNT_EXTERNAL) != 0) {
9483 vnode_rele_ext(vp, O_EVTONLY, 1);
9484 }
9485
9486 vnode_resolver_release(rp);
9487
9488 /* Keep count of active trigger vnodes per mount */
9489 OSAddAtomic(-1, &mp->mnt_numtriggers);
9490 }
9491
9492 __private_extern__
9493 void
9494 vnode_trigger_rearm(vnode_t vp, vfs_context_t ctx)
9495 {
9496 vnode_resolve_t rp;
9497 resolver_result_t result;
9498 enum resolver_status status;
9499 uint32_t seq;
9500
9501 if ((vp->v_resolve == NULL) ||
9502 (vp->v_resolve->vr_rearm_func == NULL) ||
9503 (vp->v_resolve->vr_flags & VNT_AUTO_REARM) == 0) {
9504 return;
9505 }
9506
9507 rp = vp->v_resolve;
9508 lck_mtx_lock(&rp->vr_lock);
9509
9510 /*
9511 * Check if VFS initiated this unmount. If so, we'll catch it after the unresolve completes.
9512 */
9513 if (rp->vr_flags & VNT_VFS_UNMOUNTED) {
9514 lck_mtx_unlock(&rp->vr_lock);
9515 return;
9516 }
9517
9518 /* Check if this vnode is already armed */
9519 if ((rp->vr_flags & VNT_RESOLVED) == 0) {
9520 lck_mtx_unlock(&rp->vr_lock);
9521 return;
9522 }
9523
9524 lck_mtx_unlock(&rp->vr_lock);
9525
9526 result = rp->vr_rearm_func(vp, 0, rp->vr_data, ctx);
9527 status = vfs_resolver_status(result);
9528 seq = vfs_resolver_sequence(result);
9529
9530 lck_mtx_lock(&rp->vr_lock);
9531 if (seq > rp->vr_lastseq) {
9532 if (status == RESOLVER_UNRESOLVED)
9533 rp->vr_flags &= ~VNT_RESOLVED;
9534 rp->vr_lastseq = seq;
9535 }
9536 lck_mtx_unlock(&rp->vr_lock);
9537 }
9538
9539 __private_extern__
9540 int
9541 vnode_trigger_resolve(vnode_t vp, struct nameidata *ndp, vfs_context_t ctx)
9542 {
9543 vnode_resolve_t rp;
9544 enum path_operation op;
9545 resolver_result_t result;
9546 enum resolver_status status;
9547 uint32_t seq;
9548
9549 /* Only trigger on topmost vnodes */
9550 if ((vp->v_resolve == NULL) ||
9551 (vp->v_resolve->vr_resolve_func == NULL) ||
9552 (vp->v_mountedhere != NULL)) {
9553 return (0);
9554 }
9555
9556 rp = vp->v_resolve;
9557 lck_mtx_lock(&rp->vr_lock);
9558
9559 /* Check if this vnode is already resolved */
9560 if (rp->vr_flags & VNT_RESOLVED) {
9561 lck_mtx_unlock(&rp->vr_lock);
9562 return (0);
9563 }
9564
9565 lck_mtx_unlock(&rp->vr_lock);
9566
9567 #if CONFIG_MACF
9568 int rv = mac_vnode_check_trigger_resolve(ctx, vp, &ndp->ni_cnd);
9569 if (rv != 0)
9570 return rv;
9571 #endif
9572
9573 /*
9574 * XXX
9575 * assumes that resolver will not access this trigger vnode (otherwise the kernel will deadlock)
9576 * is there anyway to know this???
9577 * there can also be other legitimate lookups in parallel
9578 *
9579 * XXX - should we call this on a separate thread with a timeout?
9580 *
9581 * XXX - should we use ISLASTCN to pick the op value??? Perhaps only leafs should
9582 * get the richer set and non-leafs should get generic OP_LOOKUP? TBD
9583 */
9584 op = (ndp->ni_op < OP_MAXOP) ? ndp->ni_op: OP_LOOKUP;
9585
9586 result = rp->vr_resolve_func(vp, &ndp->ni_cnd, op, 0, rp->vr_data, ctx);
9587 status = vfs_resolver_status(result);
9588 seq = vfs_resolver_sequence(result);
9589
9590 lck_mtx_lock(&rp->vr_lock);
9591 if (seq > rp->vr_lastseq) {
9592 if (status == RESOLVER_RESOLVED)
9593 rp->vr_flags |= VNT_RESOLVED;
9594 rp->vr_lastseq = seq;
9595 }
9596 lck_mtx_unlock(&rp->vr_lock);
9597
9598 /* On resolver errors, propagate the error back up */
9599 return (status == RESOLVER_ERROR ? vfs_resolver_auxiliary(result) : 0);
9600 }
9601
9602 static int
9603 vnode_trigger_unresolve(vnode_t vp, int flags, vfs_context_t ctx)
9604 {
9605 vnode_resolve_t rp;
9606 resolver_result_t result;
9607 enum resolver_status status;
9608 uint32_t seq;
9609
9610 if ((vp->v_resolve == NULL) || (vp->v_resolve->vr_unresolve_func == NULL)) {
9611 return (0);
9612 }
9613
9614 rp = vp->v_resolve;
9615 lck_mtx_lock(&rp->vr_lock);
9616
9617 /* Check if this vnode is already resolved */
9618 if ((rp->vr_flags & VNT_RESOLVED) == 0) {
9619 printf("vnode_trigger_unresolve: not currently resolved\n");
9620 lck_mtx_unlock(&rp->vr_lock);
9621 return (0);
9622 }
9623
9624 rp->vr_flags |= VNT_VFS_UNMOUNTED;
9625
9626 lck_mtx_unlock(&rp->vr_lock);
9627
9628 /*
9629 * XXX
9630 * assumes that resolver will not access this trigger vnode (otherwise the kernel will deadlock)
9631 * there can also be other legitimate lookups in parallel
9632 *
9633 * XXX - should we call this on a separate thread with a timeout?
9634 */
9635
9636 result = rp->vr_unresolve_func(vp, flags, rp->vr_data, ctx);
9637 status = vfs_resolver_status(result);
9638 seq = vfs_resolver_sequence(result);
9639
9640 lck_mtx_lock(&rp->vr_lock);
9641 if (seq > rp->vr_lastseq) {
9642 if (status == RESOLVER_UNRESOLVED)
9643 rp->vr_flags &= ~VNT_RESOLVED;
9644 rp->vr_lastseq = seq;
9645 }
9646 rp->vr_flags &= ~VNT_VFS_UNMOUNTED;
9647 lck_mtx_unlock(&rp->vr_lock);
9648
9649 /* On resolver errors, propagate the error back up */
9650 return (status == RESOLVER_ERROR ? vfs_resolver_auxiliary(result) : 0);
9651 }
9652
9653 static int
9654 triggerisdescendant(mount_t mp, mount_t rmp)
9655 {
9656 int match = FALSE;
9657
9658 /*
9659 * walk up vnode covered chain looking for a match
9660 */
9661 name_cache_lock_shared();
9662
9663 while (1) {
9664 vnode_t vp;
9665
9666 /* did we encounter "/" ? */
9667 if (mp->mnt_flag & MNT_ROOTFS)
9668 break;
9669
9670 vp = mp->mnt_vnodecovered;
9671 if (vp == NULLVP)
9672 break;
9673
9674 mp = vp->v_mount;
9675 if (mp == rmp) {
9676 match = TRUE;
9677 break;
9678 }
9679 }
9680
9681 name_cache_unlock();
9682
9683 return (match);
9684 }
9685
9686 struct trigger_unmount_info {
9687 vfs_context_t ctx;
9688 mount_t top_mp;
9689 vnode_t trigger_vp;
9690 mount_t trigger_mp;
9691 uint32_t trigger_vid;
9692 int flags;
9693 };
9694
9695 static int
9696 trigger_unmount_callback(mount_t mp, void * arg)
9697 {
9698 struct trigger_unmount_info * infop = (struct trigger_unmount_info *)arg;
9699 boolean_t mountedtrigger = FALSE;
9700
9701 /*
9702 * When we encounter the top level mount we're done
9703 */
9704 if (mp == infop->top_mp)
9705 return (VFS_RETURNED_DONE);
9706
9707 if ((mp->mnt_vnodecovered == NULL) ||
9708 (vnode_getwithref(mp->mnt_vnodecovered) != 0)) {
9709 return (VFS_RETURNED);
9710 }
9711
9712 if ((mp->mnt_vnodecovered->v_mountedhere == mp) &&
9713 (mp->mnt_vnodecovered->v_resolve != NULL) &&
9714 (mp->mnt_vnodecovered->v_resolve->vr_flags & VNT_RESOLVED)) {
9715 mountedtrigger = TRUE;
9716 }
9717 vnode_put(mp->mnt_vnodecovered);
9718
9719 /*
9720 * When we encounter a mounted trigger, check if its under the top level mount
9721 */
9722 if ( !mountedtrigger || !triggerisdescendant(mp, infop->top_mp) )
9723 return (VFS_RETURNED);
9724
9725 /*
9726 * Process any pending nested mount (now that its not referenced)
9727 */
9728 if ((infop->trigger_vp != NULLVP) &&
9729 (vnode_getwithvid(infop->trigger_vp, infop->trigger_vid) == 0)) {
9730 vnode_t vp = infop->trigger_vp;
9731 int error;
9732
9733 infop->trigger_vp = NULLVP;
9734
9735 if (mp == vp->v_mountedhere) {
9736 vnode_put(vp);
9737 printf("trigger_unmount_callback: unexpected match '%s'\n",
9738 mp->mnt_vfsstat.f_mntonname);
9739 return (VFS_RETURNED);
9740 }
9741 if (infop->trigger_mp != vp->v_mountedhere) {
9742 vnode_put(vp);
9743 printf("trigger_unmount_callback: trigger mnt changed! (%p != %p)\n",
9744 infop->trigger_mp, vp->v_mountedhere);
9745 goto savenext;
9746 }
9747
9748 error = vnode_trigger_unresolve(vp, infop->flags, infop->ctx);
9749 vnode_put(vp);
9750 if (error) {
9751 printf("unresolving: '%s', err %d\n",
9752 vp->v_mountedhere ? vp->v_mountedhere->mnt_vfsstat.f_mntonname :
9753 "???", error);
9754 return (VFS_RETURNED_DONE); /* stop iteration on errors */
9755 }
9756 }
9757 savenext:
9758 /*
9759 * We can't call resolver here since we hold a mount iter
9760 * ref on mp so save its covered vp for later processing
9761 */
9762 infop->trigger_vp = mp->mnt_vnodecovered;
9763 if ((infop->trigger_vp != NULLVP) &&
9764 (vnode_getwithref(infop->trigger_vp) == 0)) {
9765 if (infop->trigger_vp->v_mountedhere == mp) {
9766 infop->trigger_vid = infop->trigger_vp->v_id;
9767 infop->trigger_mp = mp;
9768 }
9769 vnode_put(infop->trigger_vp);
9770 }
9771
9772 return (VFS_RETURNED);
9773 }
9774
9775 /*
9776 * Attempt to unmount any trigger mounts nested underneath a mount.
9777 * This is a best effort attempt and no retries are performed here.
9778 *
9779 * Note: mp->mnt_rwlock is held exclusively on entry (so be carefull)
9780 */
9781 __private_extern__
9782 void
9783 vfs_nested_trigger_unmounts(mount_t mp, int flags, vfs_context_t ctx)
9784 {
9785 struct trigger_unmount_info info;
9786
9787 /* Must have trigger vnodes */
9788 if (mp->mnt_numtriggers == 0) {
9789 return;
9790 }
9791 /* Avoid recursive requests (by checking covered vnode) */
9792 if ((mp->mnt_vnodecovered != NULL) &&
9793 (vnode_getwithref(mp->mnt_vnodecovered) == 0)) {
9794 boolean_t recursive = FALSE;
9795
9796 if ((mp->mnt_vnodecovered->v_mountedhere == mp) &&
9797 (mp->mnt_vnodecovered->v_resolve != NULL) &&
9798 (mp->mnt_vnodecovered->v_resolve->vr_flags & VNT_VFS_UNMOUNTED)) {
9799 recursive = TRUE;
9800 }
9801 vnode_put(mp->mnt_vnodecovered);
9802 if (recursive)
9803 return;
9804 }
9805
9806 /*
9807 * Attempt to unmount any nested trigger mounts (best effort)
9808 */
9809 info.ctx = ctx;
9810 info.top_mp = mp;
9811 info.trigger_vp = NULLVP;
9812 info.trigger_vid = 0;
9813 info.trigger_mp = NULL;
9814 info.flags = flags;
9815
9816 (void) vfs_iterate(VFS_ITERATE_TAIL_FIRST, trigger_unmount_callback, &info);
9817
9818 /*
9819 * Process remaining nested mount (now that its not referenced)
9820 */
9821 if ((info.trigger_vp != NULLVP) &&
9822 (vnode_getwithvid(info.trigger_vp, info.trigger_vid) == 0)) {
9823 vnode_t vp = info.trigger_vp;
9824
9825 if (info.trigger_mp == vp->v_mountedhere) {
9826 (void) vnode_trigger_unresolve(vp, flags, ctx);
9827 }
9828 vnode_put(vp);
9829 }
9830 }
9831
9832 int
9833 vfs_addtrigger(mount_t mp, const char *relpath, struct vnode_trigger_info *vtip, vfs_context_t ctx)
9834 {
9835 struct nameidata nd;
9836 int res;
9837 vnode_t rvp, vp;
9838 struct vnode_trigger_param vtp;
9839
9840 /*
9841 * Must be called for trigger callback, wherein rwlock is held
9842 */
9843 lck_rw_assert(&mp->mnt_rwlock, LCK_RW_ASSERT_HELD);
9844
9845 TRIG_LOG("Adding trigger at %s\n", relpath);
9846 TRIG_LOG("Trying VFS_ROOT\n");
9847
9848 /*
9849 * We do a lookup starting at the root of the mountpoint, unwilling
9850 * to cross into other mountpoints.
9851 */
9852 res = VFS_ROOT(mp, &rvp, ctx);
9853 if (res != 0) {
9854 goto out;
9855 }
9856
9857 TRIG_LOG("Trying namei\n");
9858
9859 NDINIT(&nd, LOOKUP, OP_LOOKUP, USEDVP | NOCROSSMOUNT | FOLLOW, UIO_SYSSPACE,
9860 CAST_USER_ADDR_T(relpath), ctx);
9861 nd.ni_dvp = rvp;
9862 res = namei(&nd);
9863 if (res != 0) {
9864 vnode_put(rvp);
9865 goto out;
9866 }
9867
9868 vp = nd.ni_vp;
9869 nameidone(&nd);
9870 vnode_put(rvp);
9871
9872 TRIG_LOG("Trying vnode_resolver_create()\n");
9873
9874 /*
9875 * Set up blob. vnode_create() takes a larger structure
9876 * with creation info, and we needed something different
9877 * for this case. One needs to win, or we need to munge both;
9878 * vnode_create() wins.
9879 */
9880 bzero(&vtp, sizeof(vtp));
9881 vtp.vnt_resolve_func = vtip->vti_resolve_func;
9882 vtp.vnt_unresolve_func = vtip->vti_unresolve_func;
9883 vtp.vnt_rearm_func = vtip->vti_rearm_func;
9884 vtp.vnt_reclaim_func = vtip->vti_reclaim_func;
9885 vtp.vnt_reclaim_func = vtip->vti_reclaim_func;
9886 vtp.vnt_data = vtip->vti_data;
9887 vtp.vnt_flags = vtip->vti_flags;
9888
9889 res = vnode_resolver_create(mp, vp, &vtp, TRUE);
9890 vnode_put(vp);
9891 out:
9892 TRIG_LOG("Returning %d\n", res);
9893 return res;
9894 }
9895
9896 #endif /* CONFIG_TRIGGERS */
9897
9898 vm_offset_t kdebug_vnode(vnode_t vp)
9899 {
9900 return VM_KERNEL_ADDRPERM(vp);
9901 }
9902
9903 static int flush_cache_on_write = 0;
9904 SYSCTL_INT (_kern, OID_AUTO, flush_cache_on_write,
9905 CTLFLAG_RW | CTLFLAG_LOCKED, &flush_cache_on_write, 0,
9906 "always flush the drive cache on writes to uncached files");
9907
9908 int vnode_should_flush_after_write(vnode_t vp, int ioflag)
9909 {
9910 return (flush_cache_on_write
9911 && (ISSET(ioflag, IO_NOCACHE) || vnode_isnocache(vp)));
9912 }
9913
9914 /*
9915 * sysctl for use by disk I/O tracing tools to get the list of existing
9916 * vnodes' paths
9917 */
9918
9919 struct vnode_trace_paths_context {
9920 uint64_t count;
9921 long path[MAXPATHLEN / sizeof (long) + 1]; /* + 1 in case sizeof (long) does not divide MAXPATHLEN */
9922 };
9923
9924 static int vnode_trace_path_callback(struct vnode *vp, void *arg) {
9925 int len, rv;
9926 struct vnode_trace_paths_context *ctx;
9927
9928 ctx = arg;
9929
9930 len = sizeof (ctx->path);
9931 rv = vn_getpath(vp, (char *)ctx->path, &len);
9932 /* vn_getpath() NUL-terminates, and len includes the NUL */
9933
9934 if (!rv) {
9935 kdebug_vfs_lookup(ctx->path, len, vp,
9936 KDBG_VFS_LOOKUP_FLAG_LOOKUP | KDBG_VFS_LOOKUP_FLAG_NOPROCFILT);
9937
9938 if (++(ctx->count) == 1000) {
9939 thread_yield_to_preemption();
9940 ctx->count = 0;
9941 }
9942 }
9943
9944 return VNODE_RETURNED;
9945 }
9946
9947 static int vfs_trace_paths_callback(mount_t mp, void *arg) {
9948 if (mp->mnt_flag & MNT_LOCAL)
9949 vnode_iterate(mp, VNODE_ITERATE_ALL, vnode_trace_path_callback, arg);
9950
9951 return VFS_RETURNED;
9952 }
9953
9954 static int sysctl_vfs_trace_paths SYSCTL_HANDLER_ARGS {
9955 struct vnode_trace_paths_context ctx;
9956
9957 (void)oidp;
9958 (void)arg1;
9959 (void)arg2;
9960 (void)req;
9961
9962 if (!kauth_cred_issuser(kauth_cred_get()))
9963 return EPERM;
9964
9965 if (!kdebug_enable || !kdebug_debugid_enabled(VFS_LOOKUP))
9966 return EINVAL;
9967
9968 bzero(&ctx, sizeof (struct vnode_trace_paths_context));
9969
9970 vfs_iterate(0, vfs_trace_paths_callback, &ctx);
9971
9972 return 0;
9973 }
9974
9975 SYSCTL_PROC(_vfs_generic, OID_AUTO, trace_paths, CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_MASKED, NULL, 0, &sysctl_vfs_trace_paths, "-", "trace_paths");