]> git.saurik.com Git - apple/xnu.git/blob - bsd/vfs/vfs_fsevents.c
xnu-4903.231.4.tar.gz
[apple/xnu.git] / bsd / vfs / vfs_fsevents.c
1 /*
2 * Copyright (c) 2004-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 #include <stdarg.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/event.h> // for kqueue related stuff
32 #include <sys/fsevents.h>
33
34 #if CONFIG_FSE
35 #include <sys/namei.h>
36 #include <sys/filedesc.h>
37 #include <sys/kernel.h>
38 #include <sys/file_internal.h>
39 #include <sys/stat.h>
40 #include <sys/vnode_internal.h>
41 #include <sys/mount_internal.h>
42 #include <sys/proc_internal.h>
43 #include <sys/kauth.h>
44 #include <sys/uio.h>
45 #include <sys/malloc.h>
46 #include <sys/dirent.h>
47 #include <sys/attr.h>
48 #include <sys/sysctl.h>
49 #include <sys/ubc.h>
50 #include <machine/cons.h>
51 #include <miscfs/specfs/specdev.h>
52 #include <miscfs/devfs/devfs.h>
53 #include <sys/filio.h>
54 #include <kern/locks.h>
55 #include <libkern/OSAtomic.h>
56 #include <kern/zalloc.h>
57 #include <mach/mach_time.h>
58 #include <kern/thread_call.h>
59 #include <kern/clock.h>
60
61 #include <security/audit/audit.h>
62 #include <bsm/audit_kevents.h>
63
64 #include <pexpert/pexpert.h>
65 #include <libkern/section_keywords.h>
66
67 typedef struct kfs_event {
68 LIST_ENTRY(kfs_event) kevent_list;
69 int16_t type; // type code of this event
70 u_int16_t flags, // per-event flags
71 len; // the length of the path in "str"
72 int32_t refcount; // number of clients referencing this
73 pid_t pid; // pid of the process that did the op
74
75 uint64_t abstime; // when this event happened (mach_absolute_time())
76 ino64_t ino;
77 dev_t dev;
78 int32_t mode;
79 uid_t uid;
80 gid_t gid;
81
82 const char *str;
83
84 struct kfs_event *dest; // if this is a two-file op
85 } kfs_event;
86
87 // flags for the flags field
88 #define KFSE_COMBINED_EVENTS 0x0001
89 #define KFSE_CONTAINS_DROPPED_EVENTS 0x0002
90 #define KFSE_RECYCLED_EVENT 0x0004
91 #define KFSE_BEING_CREATED 0x0008
92
93 LIST_HEAD(kfse_list, kfs_event) kfse_list_head = LIST_HEAD_INITIALIZER(x);
94 int num_events_outstanding = 0;
95 int num_pending_rename = 0;
96
97
98 struct fsevent_handle;
99
100 typedef struct fs_event_watcher {
101 int8_t *event_list; // the events we're interested in
102 int32_t num_events;
103 dev_t *devices_not_to_watch; // report events from devices not in this list
104 uint32_t num_devices;
105 int32_t flags;
106 kfs_event **event_queue;
107 int32_t eventq_size; // number of event pointers in queue
108 int32_t num_readers;
109 int32_t rd; // read index into the event_queue
110 int32_t wr; // write index into the event_queue
111 int32_t blockers;
112 int32_t my_id;
113 uint32_t num_dropped;
114 uint64_t max_event_id;
115 struct fsevent_handle *fseh;
116 pid_t pid;
117 char proc_name[(2 * MAXCOMLEN) + 1];
118 } fs_event_watcher;
119
120 // fs_event_watcher flags
121 #define WATCHER_DROPPED_EVENTS 0x0001
122 #define WATCHER_CLOSING 0x0002
123 #define WATCHER_WANTS_COMPACT_EVENTS 0x0004
124 #define WATCHER_WANTS_EXTENDED_INFO 0x0008
125 #define WATCHER_APPLE_SYSTEM_SERVICE 0x0010 // fseventsd, coreservicesd, mds, revisiond
126
127 #define MAX_WATCHERS 8
128 static fs_event_watcher *watcher_table[MAX_WATCHERS];
129
130 #define DEFAULT_MAX_KFS_EVENTS 4096
131 static int max_kfs_events = DEFAULT_MAX_KFS_EVENTS;
132
133 // we allocate kfs_event structures out of this zone
134 static zone_t event_zone;
135 static int fs_event_init = 0;
136
137 //
138 // this array records whether anyone is interested in a
139 // particular type of event. if no one is, we bail out
140 // early from the event delivery
141 //
142 static int16_t fs_event_type_watchers[FSE_MAX_EVENTS];
143
144 // the device currently being unmounted:
145 static dev_t fsevent_unmount_dev = 0;
146 // how many ACKs are still outstanding:
147 static int fsevent_unmount_ack_count = 0;
148
149 static int watcher_add_event(fs_event_watcher *watcher, kfs_event *kfse);
150 static void fsevents_wakeup(fs_event_watcher *watcher);
151
152 //
153 // Locks
154 //
155 static lck_grp_attr_t * fsevent_group_attr;
156 static lck_attr_t * fsevent_lock_attr;
157 static lck_grp_t * fsevent_mutex_group;
158
159 static lck_grp_t * fsevent_rw_group;
160
161 static lck_rw_t event_handling_lock; // handles locking for event manipulation and recycling
162 static lck_mtx_t watch_table_lock;
163 static lck_mtx_t event_buf_lock;
164 static lck_mtx_t event_writer_lock;
165
166
167 /* Explicitly declare qsort so compiler doesn't complain */
168 __private_extern__ void qsort(
169 void * array,
170 size_t nmembers,
171 size_t member_size,
172 int (*)(const void *, const void *));
173
174 static int
175 is_ignored_directory(const char *path) {
176
177 if (!path) {
178 return 0;
179 }
180
181 #define IS_TLD(x) strnstr(__DECONST(char *, path), x, MAXPATHLEN)
182 if (IS_TLD("/.Spotlight-V100/") ||
183 IS_TLD("/.MobileBackups/") ||
184 IS_TLD("/Backups.backupdb/")) {
185 return 1;
186 }
187 #undef IS_TLD
188
189 return 0;
190 }
191
192 static void
193 fsevents_internal_init(void)
194 {
195 int i;
196
197 if (fs_event_init++ != 0) {
198 return;
199 }
200
201 for(i=0; i < FSE_MAX_EVENTS; i++) {
202 fs_event_type_watchers[i] = 0;
203 }
204
205 memset(watcher_table, 0, sizeof(watcher_table));
206
207 fsevent_lock_attr = lck_attr_alloc_init();
208 fsevent_group_attr = lck_grp_attr_alloc_init();
209 fsevent_mutex_group = lck_grp_alloc_init("fsevent-mutex", fsevent_group_attr);
210 fsevent_rw_group = lck_grp_alloc_init("fsevent-rw", fsevent_group_attr);
211
212 lck_mtx_init(&watch_table_lock, fsevent_mutex_group, fsevent_lock_attr);
213 lck_mtx_init(&event_buf_lock, fsevent_mutex_group, fsevent_lock_attr);
214 lck_mtx_init(&event_writer_lock, fsevent_mutex_group, fsevent_lock_attr);
215
216 lck_rw_init(&event_handling_lock, fsevent_rw_group, fsevent_lock_attr);
217
218 PE_get_default("kern.maxkfsevents", &max_kfs_events, sizeof(max_kfs_events));
219
220 event_zone = zinit(sizeof(kfs_event),
221 max_kfs_events * sizeof(kfs_event),
222 max_kfs_events * sizeof(kfs_event),
223 "fs-event-buf");
224 if (event_zone == NULL) {
225 printf("fsevents: failed to initialize the event zone.\n");
226 }
227
228 // mark the zone as exhaustible so that it will not
229 // ever grow beyond what we initially filled it with
230 zone_change(event_zone, Z_EXHAUST, TRUE);
231 zone_change(event_zone, Z_COLLECT, FALSE);
232 zone_change(event_zone, Z_CALLERACCT, FALSE);
233
234 if (zfill(event_zone, max_kfs_events) < max_kfs_events) {
235 printf("fsevents: failed to pre-fill the event zone.\n");
236 }
237
238 }
239
240 static void
241 lock_watch_table(void)
242 {
243 lck_mtx_lock(&watch_table_lock);
244 }
245
246 static void
247 unlock_watch_table(void)
248 {
249 lck_mtx_unlock(&watch_table_lock);
250 }
251
252 static void
253 lock_fs_event_list(void)
254 {
255 lck_mtx_lock(&event_buf_lock);
256 }
257
258 static void
259 unlock_fs_event_list(void)
260 {
261 lck_mtx_unlock(&event_buf_lock);
262 }
263
264 // forward prototype
265 static void release_event_ref(kfs_event *kfse);
266
267 static int
268 watcher_cares_about_dev(fs_event_watcher *watcher, dev_t dev)
269 {
270 unsigned int i;
271
272 // if devices_not_to_watch is NULL then we care about all
273 // events from all devices
274 if (watcher->devices_not_to_watch == NULL) {
275 return 1;
276 }
277
278 for(i=0; i < watcher->num_devices; i++) {
279 if (dev == watcher->devices_not_to_watch[i]) {
280 // found a match! that means we do not
281 // want events from this device.
282 return 0;
283 }
284 }
285
286 // if we're here it's not in the devices_not_to_watch[]
287 // list so that means we do care about it
288 return 1;
289 }
290
291
292 int
293 need_fsevent(int type, vnode_t vp)
294 {
295 if (type >= 0 && type < FSE_MAX_EVENTS && fs_event_type_watchers[type] == 0)
296 return (0);
297
298 // events in /dev aren't really interesting...
299 if (vp->v_tag == VT_DEVFS) {
300 return (0);
301 }
302
303 return 1;
304 }
305
306
307 #define is_throw_away(x) ((x) == FSE_STAT_CHANGED || (x) == FSE_CONTENT_MODIFIED)
308
309
310 // Ways that an event can be reused:
311 //
312 // "combined" events mean that there were two events for
313 // the same vnode or path and we're combining both events
314 // into a single event. The primary event gets a bit that
315 // marks it as having been combined. The secondary event
316 // is essentially dropped and the kfse structure reused.
317 //
318 // "collapsed" means that multiple events below a given
319 // directory are collapsed into a single event. in this
320 // case, the directory that we collapse into and all of
321 // its children must be re-scanned.
322 //
323 // "recycled" means that we're completely blowing away
324 // the event since there are other events that have info
325 // about the same vnode or path (and one of those other
326 // events will be marked as combined or collapsed as
327 // appropriate).
328 //
329 #define KFSE_COMBINED 0x0001
330 #define KFSE_COLLAPSED 0x0002
331 #define KFSE_RECYCLED 0x0004
332
333 int num_dropped = 0;
334 int num_parent_switch = 0;
335 int num_recycled_rename = 0;
336
337 static struct timeval last_print;
338
339 //
340 // These variables are used to track coalescing multiple identical
341 // events for the same vnode/pathname. If we get the same event
342 // type and same vnode/pathname as the previous event, we just drop
343 // the event since it's superfluous. This improves some micro-
344 // benchmarks considerably and actually has a real-world impact on
345 // tests like a Finder copy where multiple stat-changed events can
346 // get coalesced.
347 //
348 static int last_event_type=-1;
349 static void *last_ptr=NULL;
350 static char last_str[MAXPATHLEN];
351 static int last_nlen=0;
352 static int last_vid=-1;
353 static uint64_t last_coalesced_time=0;
354 static void *last_event_ptr=NULL;
355 int last_coalesced = 0;
356 static mach_timebase_info_data_t sTimebaseInfo = { 0, 0 };
357
358
359 int
360 add_fsevent(int type, vfs_context_t ctx, ...)
361 {
362 struct proc *p = vfs_context_proc(ctx);
363 int i, arg_type, ret;
364 kfs_event *kfse, *kfse_dest=NULL, *cur;
365 fs_event_watcher *watcher;
366 va_list ap;
367 int error = 0, did_alloc=0;
368 dev_t dev = 0;
369 uint64_t now, elapsed;
370 char *pathbuff=NULL;
371 int pathbuff_len;
372
373
374
375 va_start(ap, ctx);
376
377 // ignore bogus event types..
378 if (type < 0 || type >= FSE_MAX_EVENTS) {
379 return EINVAL;
380 }
381
382 // if no one cares about this type of event, bail out
383 if (fs_event_type_watchers[type] == 0) {
384 va_end(ap);
385
386 return 0;
387 }
388
389 now = mach_absolute_time();
390
391 // find a free event and snag it for our use
392 // NOTE: do not do anything that would block until
393 // the lock is dropped.
394 lock_fs_event_list();
395
396 //
397 // check if this event is identical to the previous one...
398 // (as long as it's not an event type that can never be the
399 // same as a previous event)
400 //
401 if (type != FSE_CREATE_FILE && type != FSE_DELETE && type != FSE_RENAME && type != FSE_EXCHANGE && type != FSE_CHOWN && type != FSE_DOCID_CHANGED && type != FSE_DOCID_CREATED && type != FSE_CLONE) {
402 void *ptr=NULL;
403 int vid=0, was_str=0, nlen=0;
404
405 for(arg_type=va_arg(ap, int32_t); arg_type != FSE_ARG_DONE; arg_type=va_arg(ap, int32_t)) {
406 switch(arg_type) {
407 case FSE_ARG_VNODE: {
408 ptr = va_arg(ap, void *);
409 vid = vnode_vid((struct vnode *)ptr);
410 last_str[0] = '\0';
411 break;
412 }
413 case FSE_ARG_STRING: {
414 nlen = va_arg(ap, int32_t);
415 ptr = va_arg(ap, void *);
416 was_str = 1;
417 break;
418 }
419 }
420 if (ptr != NULL) {
421 break;
422 }
423 }
424
425 if ( sTimebaseInfo.denom == 0 ) {
426 (void) clock_timebase_info(&sTimebaseInfo);
427 }
428
429 elapsed = (now - last_coalesced_time);
430 if (sTimebaseInfo.denom != sTimebaseInfo.numer) {
431 if (sTimebaseInfo.denom == 1) {
432 elapsed *= sTimebaseInfo.numer;
433 } else {
434 // this could overflow... the worst that will happen is that we'll
435 // send (or not send) an extra event so I'm not going to worry about
436 // doing the math right like dtrace_abs_to_nano() does.
437 elapsed = (elapsed * sTimebaseInfo.numer) / (uint64_t)sTimebaseInfo.denom;
438 }
439 }
440
441 if (type == last_event_type
442 && (elapsed < 1000000000)
443 &&
444 ((vid && vid == last_vid && last_ptr == ptr)
445 ||
446 (last_str[0] && last_nlen == nlen && ptr && strcmp(last_str, ptr) == 0))
447 ) {
448
449 last_coalesced++;
450 unlock_fs_event_list();
451 va_end(ap);
452
453 return 0;
454 } else {
455 last_ptr = ptr;
456 if (was_str) {
457 strlcpy(last_str, ptr, sizeof(last_str));
458 }
459 last_nlen = nlen;
460 last_vid = vid;
461 last_event_type = type;
462 last_coalesced_time = now;
463 }
464 }
465 va_start(ap, ctx);
466
467
468 kfse = zalloc_noblock(event_zone);
469 if (kfse && (type == FSE_RENAME || type == FSE_EXCHANGE || type == FSE_CLONE)) {
470 kfse_dest = zalloc_noblock(event_zone);
471 if (kfse_dest == NULL) {
472 did_alloc = 1;
473 zfree(event_zone, kfse);
474 kfse = NULL;
475 }
476 }
477
478
479 if (kfse == NULL) { // yikes! no free events
480 unlock_fs_event_list();
481 lock_watch_table();
482
483 for(i=0; i < MAX_WATCHERS; i++) {
484 watcher = watcher_table[i];
485 if (watcher == NULL) {
486 continue;
487 }
488
489 watcher->flags |= WATCHER_DROPPED_EVENTS;
490 fsevents_wakeup(watcher);
491 }
492 unlock_watch_table();
493
494 {
495 struct timeval current_tv;
496
497 num_dropped++;
498
499 // only print a message at most once every 5 seconds
500 microuptime(&current_tv);
501 if ((current_tv.tv_sec - last_print.tv_sec) > 10) {
502 int ii;
503 void *junkptr=zalloc_noblock(event_zone), *listhead=kfse_list_head.lh_first;
504
505 printf("add_fsevent: event queue is full! dropping events (num dropped events: %d; num events outstanding: %d).\n", num_dropped, num_events_outstanding);
506 printf("add_fsevent: kfse_list head %p ; num_pending_rename %d\n", listhead, num_pending_rename);
507 printf("add_fsevent: zalloc sez: %p\n", junkptr);
508 printf("add_fsevent: event_zone info: %d 0x%x\n", ((int *)event_zone)[0], ((int *)event_zone)[1]);
509 lock_watch_table();
510 for(ii=0; ii < MAX_WATCHERS; ii++) {
511 if (watcher_table[ii] == NULL) {
512 continue;
513 }
514
515 printf("add_fsevent: watcher %s %p: rd %4d wr %4d q_size %4d flags 0x%x\n",
516 watcher_table[ii]->proc_name,
517 watcher_table[ii],
518 watcher_table[ii]->rd, watcher_table[ii]->wr,
519 watcher_table[ii]->eventq_size, watcher_table[ii]->flags);
520 }
521 unlock_watch_table();
522
523 last_print = current_tv;
524 if (junkptr) {
525 zfree(event_zone, junkptr);
526 }
527 }
528 }
529
530 if (pathbuff) {
531 release_pathbuff(pathbuff);
532 pathbuff = NULL;
533 }
534 return ENOSPC;
535 }
536
537 memset(kfse, 0, sizeof(kfs_event));
538 kfse->refcount = 1;
539 OSBitOrAtomic16(KFSE_BEING_CREATED, &kfse->flags);
540
541 last_event_ptr = kfse;
542 kfse->type = type;
543 kfse->abstime = now;
544 kfse->pid = p->p_pid;
545 if (type == FSE_RENAME || type == FSE_EXCHANGE || type == FSE_CLONE) {
546 memset(kfse_dest, 0, sizeof(kfs_event));
547 kfse_dest->refcount = 1;
548 OSBitOrAtomic16(KFSE_BEING_CREATED, &kfse_dest->flags);
549 kfse_dest->type = type;
550 kfse_dest->pid = p->p_pid;
551 kfse_dest->abstime = now;
552
553 kfse->dest = kfse_dest;
554 }
555
556 num_events_outstanding++;
557 if (kfse->type == FSE_RENAME) {
558 num_pending_rename++;
559 }
560 LIST_INSERT_HEAD(&kfse_list_head, kfse, kevent_list);
561
562 if (kfse->refcount < 1) {
563 panic("add_fsevent: line %d: kfse recount %d but should be at least 1\n", __LINE__, kfse->refcount);
564 }
565
566 unlock_fs_event_list(); // at this point it's safe to unlock
567
568 //
569 // now process the arguments passed in and copy them into
570 // the kfse
571 //
572
573 cur = kfse;
574
575 if (type == FSE_DOCID_CREATED || type == FSE_DOCID_CHANGED) {
576 uint64_t val;
577
578 //
579 // These events are special and not like the other events. They only
580 // have a dev_t, src inode #, dest inode #, and a doc-id. We use the
581 // fields that we can in the kfse but have to overlay the dest inode
582 // number and the doc-id on the other fields.
583 //
584
585 // First the dev_t
586 arg_type = va_arg(ap, int32_t);
587 if (arg_type == FSE_ARG_DEV) {
588 cur->dev = (dev_t)(va_arg(ap, dev_t));
589 } else {
590 cur->dev = (dev_t)0xbadc0de1;
591 }
592
593 // next the source inode #
594 arg_type = va_arg(ap, int32_t);
595 if (arg_type == FSE_ARG_INO) {
596 cur->ino = (ino64_t)(va_arg(ap, ino64_t));
597 } else {
598 cur->ino = 0xbadc0de2;
599 }
600
601 // now the dest inode #
602 arg_type = va_arg(ap, int32_t);
603 if (arg_type == FSE_ARG_INO) {
604 val = (ino64_t)(va_arg(ap, ino64_t));
605 } else {
606 val = 0xbadc0de2;
607 }
608 // overlay the dest inode number on the str/dest pointer fields
609 memcpy(&cur->str, &val, sizeof(ino64_t));
610
611
612 // and last the document-id
613 arg_type = va_arg(ap, int32_t);
614 if (arg_type == FSE_ARG_INT32) {
615 val = (uint64_t)va_arg(ap, uint32_t);
616 } else if (arg_type == FSE_ARG_INT64) {
617 val = (uint64_t)va_arg(ap, uint64_t);
618 } else {
619 val = 0xbadc0de3;
620 }
621
622 // the docid is 64-bit and overlays the uid/gid fields
623 memcpy(&cur->uid, &val, sizeof(uint64_t));
624
625 goto done_with_args;
626 }
627
628 if (type == FSE_UNMOUNT_PENDING) {
629
630 // Just a dev_t
631 arg_type = va_arg(ap, int32_t);
632 if (arg_type == FSE_ARG_DEV) {
633 cur->dev = (dev_t)(va_arg(ap, dev_t));
634 } else {
635 cur->dev = (dev_t)0xbadc0de1;
636 }
637
638 goto done_with_args;
639 }
640
641 for(arg_type=va_arg(ap, int32_t); arg_type != FSE_ARG_DONE; arg_type=va_arg(ap, int32_t))
642
643 switch(arg_type) {
644 case FSE_ARG_VNODE: {
645 // this expands out into multiple arguments to the client
646 struct vnode *vp;
647 struct vnode_attr va;
648
649 if (kfse->str != NULL) {
650 cur = kfse_dest;
651 }
652
653 vp = va_arg(ap, struct vnode *);
654 if (vp == NULL) {
655 panic("add_fsevent: you can't pass me a NULL vnode ptr (type %d)!\n",
656 cur->type);
657 }
658
659 VATTR_INIT(&va);
660 VATTR_WANTED(&va, va_fsid);
661 VATTR_WANTED(&va, va_fileid);
662 VATTR_WANTED(&va, va_mode);
663 VATTR_WANTED(&va, va_uid);
664 VATTR_WANTED(&va, va_gid);
665 VATTR_WANTED(&va, va_nlink);
666 if ((ret = vnode_getattr(vp, &va, vfs_context_kernel())) != 0) {
667 // printf("add_fsevent: failed to getattr on vp %p (%d)\n", cur->fref.vp, ret);
668 cur->str = NULL;
669 error = EINVAL;
670 goto clean_up;
671 }
672
673 cur->dev = dev = (dev_t)va.va_fsid;
674 cur->ino = (ino64_t)va.va_fileid;
675 cur->mode = (int32_t)vnode_vttoif(vnode_vtype(vp)) | va.va_mode;
676 cur->uid = va.va_uid;
677 cur->gid = va.va_gid;
678 if (vp->v_flag & VISHARDLINK) {
679 cur->mode |= FSE_MODE_HLINK;
680 if ((vp->v_type == VDIR && va.va_dirlinkcount == 0) || (vp->v_type == VREG && va.va_nlink == 0)) {
681 cur->mode |= FSE_MODE_LAST_HLINK;
682 }
683 }
684
685 // if we haven't gotten the path yet, get it.
686 if (pathbuff == NULL) {
687 pathbuff = get_pathbuff();
688 pathbuff_len = MAXPATHLEN;
689
690 pathbuff[0] = '\0';
691 if ((ret = vn_getpath(vp, pathbuff, &pathbuff_len)) != 0 || pathbuff[0] == '\0') {
692
693 cur->flags |= KFSE_CONTAINS_DROPPED_EVENTS;
694
695 do {
696 if (vp->v_parent != NULL) {
697 vp = vp->v_parent;
698 } else if (vp->v_mount) {
699 strlcpy(pathbuff, vp->v_mount->mnt_vfsstat.f_mntonname, MAXPATHLEN);
700 break;
701 } else {
702 vp = NULL;
703 }
704
705 if (vp == NULL) {
706 break;
707 }
708
709 pathbuff_len = MAXPATHLEN;
710 ret = vn_getpath(vp, pathbuff, &pathbuff_len);
711 } while (ret == ENOSPC);
712
713 if (ret != 0 || vp == NULL) {
714 error = ENOENT;
715 goto clean_up;
716 }
717 }
718 }
719
720 // store the path by adding it to the global string table
721 cur->len = pathbuff_len;
722 cur->str = vfs_addname(pathbuff, pathbuff_len, 0, 0);
723 if (cur->str == NULL || cur->str[0] == '\0') {
724 panic("add_fsevent: was not able to add path %s to event %p.\n", pathbuff, cur);
725 }
726
727 release_pathbuff(pathbuff);
728 pathbuff = NULL;
729
730 break;
731 }
732
733 case FSE_ARG_FINFO: {
734 fse_info *fse;
735
736 fse = va_arg(ap, fse_info *);
737
738 cur->dev = dev = (dev_t)fse->dev;
739 cur->ino = (ino64_t)fse->ino;
740 cur->mode = (int32_t)fse->mode;
741 cur->uid = (uid_t)fse->uid;
742 cur->gid = (uid_t)fse->gid;
743 // if it's a hard-link and this is the last link, flag it
744 if ((fse->mode & FSE_MODE_HLINK) && fse->nlink == 0) {
745 cur->mode |= FSE_MODE_LAST_HLINK;
746 }
747 if (cur->mode & FSE_TRUNCATED_PATH) {
748 cur->flags |= KFSE_CONTAINS_DROPPED_EVENTS;
749 cur->mode &= ~FSE_TRUNCATED_PATH;
750 }
751 break;
752 }
753
754 case FSE_ARG_STRING:
755 if (kfse->str != NULL) {
756 cur = kfse_dest;
757 }
758
759 cur->len = (int16_t)(va_arg(ap, int32_t) & 0x7fff);
760 if (cur->len >= 1) {
761 cur->str = vfs_addname(va_arg(ap, char *), cur->len, 0, 0);
762 } else {
763 printf("add_fsevent: funny looking string length: %d\n", (int)cur->len);
764 cur->len = 2;
765 cur->str = vfs_addname("/", cur->len, 0, 0);
766 }
767 if (cur->str[0] == 0) {
768 printf("add_fsevent: bogus looking string (len %d)\n", cur->len);
769 }
770 break;
771
772 case FSE_ARG_INT32: {
773 uint32_t ival = (uint32_t)va_arg(ap, int32_t);
774 kfse->uid = (ino64_t)ival;
775 break;
776 }
777
778 default:
779 printf("add_fsevent: unknown type %d\n", arg_type);
780 // just skip one 32-bit word and hope we sync up...
781 (void)va_arg(ap, int32_t);
782 }
783
784 done_with_args:
785 va_end(ap);
786
787 OSBitAndAtomic16(~KFSE_BEING_CREATED, &kfse->flags);
788 if (kfse_dest) {
789 OSBitAndAtomic16(~KFSE_BEING_CREATED, &kfse_dest->flags);
790 }
791
792 //
793 // now we have to go and let everyone know that
794 // is interested in this type of event
795 //
796 lock_watch_table();
797
798 for(i=0; i < MAX_WATCHERS; i++) {
799 watcher = watcher_table[i];
800 if (watcher == NULL) {
801 continue;
802 }
803
804 if ( type < watcher->num_events
805 && watcher->event_list[type] == FSE_REPORT
806 && watcher_cares_about_dev(watcher, dev)) {
807
808 if (watcher_add_event(watcher, kfse) != 0) {
809 watcher->num_dropped++;
810 continue;
811 }
812 }
813
814 // if (kfse->refcount < 1) {
815 // panic("add_fsevent: line %d: kfse recount %d but should be at least 1\n", __LINE__, kfse->refcount);
816 // }
817 }
818
819 unlock_watch_table();
820
821 clean_up:
822
823 if (pathbuff) {
824 release_pathbuff(pathbuff);
825 pathbuff = NULL;
826 }
827
828 release_event_ref(kfse);
829
830 return error;
831 }
832
833
834 static void
835 release_event_ref(kfs_event *kfse)
836 {
837 int old_refcount;
838 kfs_event copy, dest_copy;
839
840
841 old_refcount = OSAddAtomic(-1, &kfse->refcount);
842 if (old_refcount > 1) {
843 return;
844 }
845
846 lock_fs_event_list();
847 if (last_event_ptr == kfse) {
848 last_event_ptr = NULL;
849 last_event_type = -1;
850 last_coalesced_time = 0;
851 }
852
853 if (kfse->refcount < 0) {
854 panic("release_event_ref: bogus kfse refcount %d\n", kfse->refcount);
855 }
856
857 if (kfse->refcount > 0 || kfse->type == FSE_INVALID) {
858 // This is very subtle. Either of these conditions can
859 // be true if an event got recycled while we were waiting
860 // on the fs_event_list lock or the event got recycled,
861 // delivered, _and_ free'd by someone else while we were
862 // waiting on the fs event list lock. In either case
863 // we need to just unlock the list and return without
864 // doing anything because if the refcount is > 0 then
865 // someone else will take care of free'ing it and when
866 // the kfse->type is invalid then someone else already
867 // has handled free'ing the event (while we were blocked
868 // on the event list lock).
869 //
870 unlock_fs_event_list();
871 return;
872 }
873
874 //
875 // make a copy of this so we can free things without
876 // holding the fs_event_buf lock
877 //
878 copy = *kfse;
879 if (kfse->type != FSE_DOCID_CREATED && kfse->type != FSE_DOCID_CHANGED && kfse->dest && OSAddAtomic(-1, &kfse->dest->refcount) == 1) {
880 dest_copy = *kfse->dest;
881 } else {
882 dest_copy.str = NULL;
883 dest_copy.len = 0;
884 dest_copy.type = FSE_INVALID;
885 }
886
887 kfse->pid = kfse->type; // save this off for debugging...
888 kfse->uid = (uid_t)(long)kfse->str; // save this off for debugging...
889 kfse->gid = (gid_t)(long)current_thread();
890
891 kfse->str = (char *)0xdeadbeef; // XXXdbg - catch any cheaters...
892
893 if (dest_copy.type != FSE_INVALID) {
894 kfse->dest->str = (char *)0xbadc0de; // XXXdbg - catch any cheaters...
895 kfse->dest->type = FSE_INVALID;
896
897 if (kfse->dest->kevent_list.le_prev != NULL) {
898 num_events_outstanding--;
899 LIST_REMOVE(kfse->dest, kevent_list);
900 memset(&kfse->dest->kevent_list, 0xa5, sizeof(kfse->dest->kevent_list));
901 }
902
903 zfree(event_zone, kfse->dest);
904 }
905
906 // mark this fsevent as invalid
907 {
908 int otype;
909
910 otype = kfse->type;
911 kfse->type = FSE_INVALID;
912
913 if (kfse->kevent_list.le_prev != NULL) {
914 num_events_outstanding--;
915 if (otype == FSE_RENAME) {
916 num_pending_rename--;
917 }
918 LIST_REMOVE(kfse, kevent_list);
919 memset(&kfse->kevent_list, 0, sizeof(kfse->kevent_list));
920 }
921 }
922
923 zfree(event_zone, kfse);
924
925 unlock_fs_event_list();
926
927 // if we have a pointer in the union
928 if (copy.str && copy.type != FSE_DOCID_CREATED && copy.type != FSE_DOCID_CHANGED) {
929 if (copy.len == 0) { // and it's not a string
930 panic("%s:%d: no more fref.vp!\n", __FILE__, __LINE__);
931 // vnode_rele_ext(copy.fref.vp, O_EVTONLY, 0);
932 } else { // else it's a string
933 vfs_removename(copy.str);
934 }
935 }
936
937 if (dest_copy.type != FSE_INVALID && dest_copy.str) {
938 if (dest_copy.len == 0) {
939 panic("%s:%d: no more fref.vp!\n", __FILE__, __LINE__);
940 // vnode_rele_ext(dest_copy.fref.vp, O_EVTONLY, 0);
941 } else {
942 vfs_removename(dest_copy.str);
943 }
944 }
945 }
946
947 static int
948 add_watcher(int8_t *event_list, int32_t num_events, int32_t eventq_size, fs_event_watcher **watcher_out, void *fseh)
949 {
950 int i;
951 fs_event_watcher *watcher;
952
953 if (eventq_size <= 0 || eventq_size > 100*max_kfs_events) {
954 eventq_size = max_kfs_events;
955 }
956
957 // Note: the event_queue follows the fs_event_watcher struct
958 // in memory so we only have to do one allocation
959 MALLOC(watcher,
960 fs_event_watcher *,
961 sizeof(fs_event_watcher) + eventq_size * sizeof(kfs_event *),
962 M_TEMP, M_WAITOK);
963 if (watcher == NULL) {
964 return ENOMEM;
965 }
966
967 watcher->event_list = event_list;
968 watcher->num_events = num_events;
969 watcher->devices_not_to_watch = NULL;
970 watcher->num_devices = 0;
971 watcher->flags = 0;
972 watcher->event_queue = (kfs_event **)&watcher[1];
973 watcher->eventq_size = eventq_size;
974 watcher->rd = 0;
975 watcher->wr = 0;
976 watcher->blockers = 0;
977 watcher->num_readers = 0;
978 watcher->max_event_id = 0;
979 watcher->fseh = fseh;
980 watcher->pid = proc_selfpid();
981 proc_selfname(watcher->proc_name, sizeof(watcher->proc_name));
982
983 watcher->num_dropped = 0; // XXXdbg - debugging
984
985 if (!strncmp(watcher->proc_name, "fseventsd", sizeof(watcher->proc_name)) ||
986 !strncmp(watcher->proc_name, "coreservicesd", sizeof(watcher->proc_name)) ||
987 !strncmp(watcher->proc_name, "revisiond", sizeof(watcher->proc_name)) ||
988 !strncmp(watcher->proc_name, "mds", sizeof(watcher->proc_name))) {
989 watcher->flags |= WATCHER_APPLE_SYSTEM_SERVICE;
990 } else {
991 printf("fsevents: watcher %s (pid: %d) - Using /dev/fsevents directly is unsupported. Migrate to FSEventsFramework\n",
992 watcher->proc_name, watcher->pid);
993 }
994
995 lock_watch_table();
996
997 // find a slot for the new watcher
998 for(i=0; i < MAX_WATCHERS; i++) {
999 if (watcher_table[i] == NULL) {
1000 watcher->my_id = i;
1001 watcher_table[i] = watcher;
1002 break;
1003 }
1004 }
1005
1006 if (i >= MAX_WATCHERS) {
1007 printf("fsevents: too many watchers!\n");
1008 unlock_watch_table();
1009 FREE(watcher, M_TEMP);
1010 return ENOSPC;
1011 }
1012
1013 // now update the global list of who's interested in
1014 // events of a particular type...
1015 for(i=0; i < num_events; i++) {
1016 if (event_list[i] != FSE_IGNORE && i < FSE_MAX_EVENTS) {
1017 fs_event_type_watchers[i]++;
1018 }
1019 }
1020
1021 unlock_watch_table();
1022
1023 *watcher_out = watcher;
1024
1025 return 0;
1026 }
1027
1028
1029
1030 static void
1031 remove_watcher(fs_event_watcher *target)
1032 {
1033 int i, j, counter=0;
1034 fs_event_watcher *watcher;
1035 kfs_event *kfse;
1036
1037 lock_watch_table();
1038
1039 for(j=0; j < MAX_WATCHERS; j++) {
1040 watcher = watcher_table[j];
1041 if (watcher != target) {
1042 continue;
1043 }
1044
1045 watcher_table[j] = NULL;
1046
1047 for(i=0; i < watcher->num_events; i++) {
1048 if (watcher->event_list[i] != FSE_IGNORE && i < FSE_MAX_EVENTS) {
1049 fs_event_type_watchers[i]--;
1050 }
1051 }
1052
1053 if (watcher->flags & WATCHER_CLOSING) {
1054 unlock_watch_table();
1055 return;
1056 }
1057
1058 // printf("fsevents: removing watcher %p (rd %d wr %d num_readers %d flags 0x%x)\n", watcher, watcher->rd, watcher->wr, watcher->num_readers, watcher->flags);
1059 watcher->flags |= WATCHER_CLOSING;
1060 OSAddAtomic(1, &watcher->num_readers);
1061
1062 unlock_watch_table();
1063
1064 while (watcher->num_readers > 1 && counter++ < 5000) {
1065 lock_watch_table();
1066 fsevents_wakeup(watcher); // in case they're asleep
1067 unlock_watch_table();
1068
1069 tsleep(watcher, PRIBIO, "fsevents-close", 1);
1070 }
1071 if (counter++ >= 5000) {
1072 // printf("fsevents: close: still have readers! (%d)\n", watcher->num_readers);
1073 panic("fsevents: close: still have readers! (%d)\n", watcher->num_readers);
1074 }
1075
1076 // drain the event_queue
1077
1078 lck_rw_lock_exclusive(&event_handling_lock);
1079 while(watcher->rd != watcher->wr) {
1080 kfse = watcher->event_queue[watcher->rd];
1081 watcher->event_queue[watcher->rd] = NULL;
1082 watcher->rd = (watcher->rd+1) % watcher->eventq_size;
1083 OSSynchronizeIO();
1084 if (kfse != NULL && kfse->type != FSE_INVALID && kfse->refcount >= 1) {
1085 release_event_ref(kfse);
1086 }
1087 }
1088 lck_rw_unlock_exclusive(&event_handling_lock);
1089
1090 if (watcher->event_list) {
1091 FREE(watcher->event_list, M_TEMP);
1092 watcher->event_list = NULL;
1093 }
1094 if (watcher->devices_not_to_watch) {
1095 FREE(watcher->devices_not_to_watch, M_TEMP);
1096 watcher->devices_not_to_watch = NULL;
1097 }
1098 FREE(watcher, M_TEMP);
1099
1100 return;
1101 }
1102
1103 unlock_watch_table();
1104 }
1105
1106
1107 #define EVENT_DELAY_IN_MS 10
1108 static thread_call_t event_delivery_timer = NULL;
1109 static int timer_set = 0;
1110
1111
1112 static void
1113 delayed_event_delivery(__unused void *param0, __unused void *param1)
1114 {
1115 int i;
1116
1117 lock_watch_table();
1118
1119 for(i=0; i < MAX_WATCHERS; i++) {
1120 if (watcher_table[i] != NULL && watcher_table[i]->rd != watcher_table[i]->wr) {
1121 fsevents_wakeup(watcher_table[i]);
1122 }
1123 }
1124
1125 timer_set = 0;
1126
1127 unlock_watch_table();
1128 }
1129
1130
1131 //
1132 // The watch table must be locked before calling this function.
1133 //
1134 static void
1135 schedule_event_wakeup(void)
1136 {
1137 uint64_t deadline;
1138
1139 if (event_delivery_timer == NULL) {
1140 event_delivery_timer = thread_call_allocate((thread_call_func_t)delayed_event_delivery, NULL);
1141 }
1142
1143 clock_interval_to_deadline(EVENT_DELAY_IN_MS, 1000 * 1000, &deadline);
1144
1145 thread_call_enter_delayed(event_delivery_timer, deadline);
1146 timer_set = 1;
1147 }
1148
1149
1150
1151 #define MAX_NUM_PENDING 16
1152
1153 //
1154 // NOTE: the watch table must be locked before calling
1155 // this routine.
1156 //
1157 static int
1158 watcher_add_event(fs_event_watcher *watcher, kfs_event *kfse)
1159 {
1160 if (kfse->abstime > watcher->max_event_id) {
1161 watcher->max_event_id = kfse->abstime;
1162 }
1163
1164 if (((watcher->wr + 1) % watcher->eventq_size) == watcher->rd) {
1165 watcher->flags |= WATCHER_DROPPED_EVENTS;
1166 fsevents_wakeup(watcher);
1167 return ENOSPC;
1168 }
1169
1170 OSAddAtomic(1, &kfse->refcount);
1171 watcher->event_queue[watcher->wr] = kfse;
1172 OSSynchronizeIO();
1173 watcher->wr = (watcher->wr + 1) % watcher->eventq_size;
1174
1175 //
1176 // wake up the watcher if there are more than MAX_NUM_PENDING events.
1177 // otherwise schedule a timer (if one isn't already set) which will
1178 // send any pending events if no more are received in the next
1179 // EVENT_DELAY_IN_MS milli-seconds.
1180 //
1181 int32_t num_pending = 0;
1182 if (watcher->rd < watcher->wr) {
1183 num_pending = watcher->wr - watcher->rd;
1184 }
1185
1186 if (watcher->rd > watcher->wr) {
1187 num_pending = watcher->wr + watcher->eventq_size - watcher->rd;
1188 }
1189
1190 if (num_pending > (watcher->eventq_size*3/4) && !(watcher->flags & WATCHER_APPLE_SYSTEM_SERVICE)) {
1191 /* Non-Apple Service is falling behind, start dropping events for this process */
1192 lck_rw_lock_exclusive(&event_handling_lock);
1193 while (watcher->rd != watcher->wr) {
1194 kfse = watcher->event_queue[watcher->rd];
1195 watcher->event_queue[watcher->rd] = NULL;
1196 watcher->rd = (watcher->rd+1) % watcher->eventq_size;
1197 OSSynchronizeIO();
1198 if (kfse != NULL && kfse->type != FSE_INVALID && kfse->refcount >= 1) {
1199 release_event_ref(kfse);
1200 }
1201 }
1202 watcher->flags |= WATCHER_DROPPED_EVENTS;
1203 lck_rw_unlock_exclusive(&event_handling_lock);
1204
1205 printf("fsevents: watcher falling behind: %s (pid: %d) rd: %4d wr: %4d q_size: %4d flags: 0x%x\n",
1206 watcher->proc_name, watcher->pid, watcher->rd, watcher->wr,
1207 watcher->eventq_size, watcher->flags);
1208
1209 fsevents_wakeup(watcher);
1210 } else if (num_pending > MAX_NUM_PENDING) {
1211 fsevents_wakeup(watcher);
1212 } else if (timer_set == 0) {
1213 schedule_event_wakeup();
1214 }
1215
1216 return 0;
1217 }
1218
1219 static int
1220 fill_buff(uint16_t type, int32_t size, const void *data,
1221 char *buff, int32_t *_buff_idx, int32_t buff_sz,
1222 struct uio *uio)
1223 {
1224 int32_t amt, error = 0, buff_idx = *_buff_idx;
1225 uint16_t tmp;
1226
1227 //
1228 // the +1 on the size is to guarantee that the main data
1229 // copy loop will always copy at least 1 byte
1230 //
1231 if ((buff_sz - buff_idx) <= (int)(2*sizeof(uint16_t) + 1)) {
1232 if (buff_idx > uio_resid(uio)) {
1233 error = ENOSPC;
1234 goto get_out;
1235 }
1236
1237 error = uiomove(buff, buff_idx, uio);
1238 if (error) {
1239 goto get_out;
1240 }
1241 buff_idx = 0;
1242 }
1243
1244 // copy out the header (type & size)
1245 memcpy(&buff[buff_idx], &type, sizeof(uint16_t));
1246 buff_idx += sizeof(uint16_t);
1247
1248 tmp = size & 0xffff;
1249 memcpy(&buff[buff_idx], &tmp, sizeof(uint16_t));
1250 buff_idx += sizeof(uint16_t);
1251
1252 // now copy the body of the data, flushing along the way
1253 // if the buffer fills up.
1254 //
1255 while(size > 0) {
1256 amt = (size < (buff_sz - buff_idx)) ? size : (buff_sz - buff_idx);
1257 memcpy(&buff[buff_idx], data, amt);
1258
1259 size -= amt;
1260 buff_idx += amt;
1261 data = (const char *)data + amt;
1262 if (size > (buff_sz - buff_idx)) {
1263 if (buff_idx > uio_resid(uio)) {
1264 error = ENOSPC;
1265 goto get_out;
1266 }
1267 error = uiomove(buff, buff_idx, uio);
1268 if (error) {
1269 goto get_out;
1270 }
1271 buff_idx = 0;
1272 }
1273
1274 if (amt == 0) { // just in case...
1275 break;
1276 }
1277 }
1278
1279 get_out:
1280 *_buff_idx = buff_idx;
1281
1282 return error;
1283 }
1284
1285
1286 static int copy_out_kfse(fs_event_watcher *watcher, kfs_event *kfse, struct uio *uio) __attribute__((noinline));
1287
1288 static int
1289 copy_out_kfse(fs_event_watcher *watcher, kfs_event *kfse, struct uio *uio)
1290 {
1291 int error;
1292 uint16_t tmp16;
1293 int32_t type;
1294 kfs_event *cur;
1295 char evbuff[512];
1296 int evbuff_idx = 0;
1297
1298 if (kfse->type == FSE_INVALID) {
1299 panic("fsevents: copy_out_kfse: asked to copy out an invalid event (kfse %p, refcount %d fref ptr %p)\n", kfse, kfse->refcount, kfse->str);
1300 }
1301
1302 if (kfse->flags & KFSE_BEING_CREATED) {
1303 return 0;
1304 }
1305
1306 if (((kfse->type == FSE_RENAME) || (kfse->type == FSE_CLONE)) && kfse->dest == NULL) {
1307 //
1308 // This can happen if an event gets recycled but we had a
1309 // pointer to it in our event queue. The event is the
1310 // destination of a rename or clone which we'll process separately
1311 // (that is, another kfse points to this one so it's ok
1312 // to skip this guy because we'll process it when we process
1313 // the other one)
1314 error = 0;
1315 goto get_out;
1316 }
1317
1318 if (watcher->flags & WATCHER_WANTS_EXTENDED_INFO) {
1319
1320 type = (kfse->type & 0xfff);
1321
1322 if (kfse->flags & KFSE_CONTAINS_DROPPED_EVENTS) {
1323 type |= (FSE_CONTAINS_DROPPED_EVENTS << FSE_FLAG_SHIFT);
1324 } else if (kfse->flags & KFSE_COMBINED_EVENTS) {
1325 type |= (FSE_COMBINED_EVENTS << FSE_FLAG_SHIFT);
1326 }
1327
1328 } else {
1329 type = (int32_t)kfse->type;
1330 }
1331
1332 // copy out the type of the event
1333 memcpy(evbuff, &type, sizeof(int32_t));
1334 evbuff_idx += sizeof(int32_t);
1335
1336 // copy out the pid of the person that generated the event
1337 memcpy(&evbuff[evbuff_idx], &kfse->pid, sizeof(pid_t));
1338 evbuff_idx += sizeof(pid_t);
1339
1340 cur = kfse;
1341
1342 copy_again:
1343
1344 if (kfse->type == FSE_DOCID_CHANGED || kfse->type == FSE_DOCID_CREATED) {
1345 dev_t dev = cur->dev;
1346 ino64_t ino = cur->ino;
1347 uint64_t ival;
1348
1349 error = fill_buff(FSE_ARG_DEV, sizeof(dev_t), &dev, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1350 if (error != 0) {
1351 goto get_out;
1352 }
1353
1354 error = fill_buff(FSE_ARG_INO, sizeof(ino64_t), &ino, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1355 if (error != 0) {
1356 goto get_out;
1357 }
1358
1359 memcpy(&ino, &cur->str, sizeof(ino64_t));
1360 error = fill_buff(FSE_ARG_INO, sizeof(ino64_t), &ino, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1361 if (error != 0) {
1362 goto get_out;
1363 }
1364
1365 memcpy(&ival, &cur->uid, sizeof(uint64_t)); // the docid gets stuffed into the ino field
1366 error = fill_buff(FSE_ARG_INT64, sizeof(uint64_t), &ival, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1367 if (error != 0) {
1368 goto get_out;
1369 }
1370
1371 goto done;
1372 }
1373
1374 if (kfse->type == FSE_UNMOUNT_PENDING) {
1375 dev_t dev = cur->dev;
1376
1377 error = fill_buff(FSE_ARG_DEV, sizeof(dev_t), &dev, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1378 if (error != 0) {
1379 goto get_out;
1380 }
1381
1382 goto done;
1383 }
1384
1385 if (cur->str == NULL || cur->str[0] == '\0') {
1386 printf("copy_out_kfse:2: empty/short path (%s)\n", cur->str);
1387 error = fill_buff(FSE_ARG_STRING, 2, "/", evbuff, &evbuff_idx, sizeof(evbuff), uio);
1388 } else {
1389 error = fill_buff(FSE_ARG_STRING, cur->len, cur->str, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1390 }
1391 if (error != 0) {
1392 goto get_out;
1393 }
1394
1395 if (cur->dev == 0 && cur->ino == 0) {
1396 // this happens when a rename event happens and the
1397 // destination of the rename did not previously exist.
1398 // it thus has no other file info so skip copying out
1399 // the stuff below since it isn't initialized
1400 goto done;
1401 }
1402
1403
1404 if (watcher->flags & WATCHER_WANTS_COMPACT_EVENTS) {
1405 int32_t finfo_size;
1406
1407 finfo_size = sizeof(dev_t) + sizeof(ino64_t) + sizeof(int32_t) + sizeof(uid_t) + sizeof(gid_t);
1408 error = fill_buff(FSE_ARG_FINFO, finfo_size, &cur->ino, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1409 if (error != 0) {
1410 goto get_out;
1411 }
1412 } else {
1413 error = fill_buff(FSE_ARG_DEV, sizeof(dev_t), &cur->dev, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1414 if (error != 0) {
1415 goto get_out;
1416 }
1417
1418 error = fill_buff(FSE_ARG_INO, sizeof(ino64_t), &cur->ino, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1419 if (error != 0) {
1420 goto get_out;
1421 }
1422
1423 error = fill_buff(FSE_ARG_MODE, sizeof(int32_t), &cur->mode, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1424 if (error != 0) {
1425 goto get_out;
1426 }
1427
1428 error = fill_buff(FSE_ARG_UID, sizeof(uid_t), &cur->uid, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1429 if (error != 0) {
1430 goto get_out;
1431 }
1432
1433 error = fill_buff(FSE_ARG_GID, sizeof(gid_t), &cur->gid, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1434 if (error != 0) {
1435 goto get_out;
1436 }
1437 }
1438
1439
1440 if (cur->dest) {
1441 cur = cur->dest;
1442 goto copy_again;
1443 }
1444
1445 done:
1446 // very last thing: the time stamp
1447 error = fill_buff(FSE_ARG_INT64, sizeof(uint64_t), &cur->abstime, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1448 if (error != 0) {
1449 goto get_out;
1450 }
1451
1452 // check if the FSE_ARG_DONE will fit
1453 if (sizeof(uint16_t) > sizeof(evbuff) - evbuff_idx) {
1454 if (evbuff_idx > uio_resid(uio)) {
1455 error = ENOSPC;
1456 goto get_out;
1457 }
1458 error = uiomove(evbuff, evbuff_idx, uio);
1459 if (error) {
1460 goto get_out;
1461 }
1462 evbuff_idx = 0;
1463 }
1464
1465 tmp16 = FSE_ARG_DONE;
1466 memcpy(&evbuff[evbuff_idx], &tmp16, sizeof(uint16_t));
1467 evbuff_idx += sizeof(uint16_t);
1468
1469 // flush any remaining data in the buffer (and hopefully
1470 // in most cases this is the only uiomove we'll do)
1471 if (evbuff_idx > uio_resid(uio)) {
1472 error = ENOSPC;
1473 } else {
1474 error = uiomove(evbuff, evbuff_idx, uio);
1475 }
1476
1477 get_out:
1478
1479 return error;
1480 }
1481
1482
1483
1484 static int
1485 fmod_watch(fs_event_watcher *watcher, struct uio *uio)
1486 {
1487 int error=0;
1488 user_ssize_t last_full_event_resid;
1489 kfs_event *kfse;
1490 uint16_t tmp16;
1491 int skipped;
1492
1493 last_full_event_resid = uio_resid(uio);
1494
1495 // need at least 2048 bytes of space (maxpathlen + 1 event buf)
1496 if (uio_resid(uio) < 2048 || watcher == NULL) {
1497 return EINVAL;
1498 }
1499
1500 if (watcher->flags & WATCHER_CLOSING) {
1501 return 0;
1502 }
1503
1504 if (OSAddAtomic(1, &watcher->num_readers) != 0) {
1505 // don't allow multiple threads to read from the fd at the same time
1506 OSAddAtomic(-1, &watcher->num_readers);
1507 return EAGAIN;
1508 }
1509
1510 restart_watch:
1511 if (watcher->rd == watcher->wr) {
1512 if (watcher->flags & WATCHER_CLOSING) {
1513 OSAddAtomic(-1, &watcher->num_readers);
1514 return 0;
1515 }
1516 OSAddAtomic(1, &watcher->blockers);
1517
1518 // there's nothing to do, go to sleep
1519 error = tsleep((caddr_t)watcher, PUSER|PCATCH, "fsevents_empty", 0);
1520
1521 OSAddAtomic(-1, &watcher->blockers);
1522
1523 if (error != 0 || (watcher->flags & WATCHER_CLOSING)) {
1524 OSAddAtomic(-1, &watcher->num_readers);
1525 return error;
1526 }
1527 }
1528
1529 // if we dropped events, return that as an event first
1530 if (watcher->flags & WATCHER_DROPPED_EVENTS) {
1531 int32_t val = FSE_EVENTS_DROPPED;
1532
1533 error = uiomove((caddr_t)&val, sizeof(int32_t), uio);
1534 if (error == 0) {
1535 val = 0; // a fake pid
1536 error = uiomove((caddr_t)&val, sizeof(int32_t), uio);
1537
1538 tmp16 = FSE_ARG_DONE; // makes it a consistent msg
1539 error = uiomove((caddr_t)&tmp16, sizeof(int16_t), uio);
1540
1541 last_full_event_resid = uio_resid(uio);
1542 }
1543
1544 if (error) {
1545 OSAddAtomic(-1, &watcher->num_readers);
1546 return error;
1547 }
1548
1549 watcher->flags &= ~WATCHER_DROPPED_EVENTS;
1550 }
1551
1552 skipped = 0;
1553
1554 lck_rw_lock_shared(&event_handling_lock);
1555 while (uio_resid(uio) > 0 && watcher->rd != watcher->wr) {
1556 if (watcher->flags & WATCHER_CLOSING) {
1557 break;
1558 }
1559
1560 //
1561 // check if the event is something of interest to us
1562 // (since it may have been recycled/reused and changed
1563 // its type or which device it is for)
1564 //
1565 kfse = watcher->event_queue[watcher->rd];
1566 if (!kfse || kfse->type == FSE_INVALID || kfse->type >= watcher->num_events || kfse->refcount < 1) {
1567 break;
1568 }
1569
1570 if (watcher->event_list[kfse->type] == FSE_REPORT && watcher_cares_about_dev(watcher, kfse->dev)) {
1571
1572 if (!(watcher->flags & WATCHER_APPLE_SYSTEM_SERVICE) && kfse->type != FSE_DOCID_CREATED && kfse->type != FSE_DOCID_CHANGED && is_ignored_directory(kfse->str)) {
1573 // If this is not an Apple System Service, skip specified directories
1574 // radar://12034844
1575 error = 0;
1576 skipped = 1;
1577 } else {
1578
1579 skipped = 0;
1580 if (last_event_ptr == kfse) {
1581 last_event_ptr = NULL;
1582 last_event_type = -1;
1583 last_coalesced_time = 0;
1584 }
1585 error = copy_out_kfse(watcher, kfse, uio);
1586 if (error != 0) {
1587 // if an event won't fit or encountered an error while
1588 // we were copying it out, then backup to the last full
1589 // event and just bail out. if the error was ENOENT
1590 // then we can continue regular processing, otherwise
1591 // we should unlock things and return.
1592 uio_setresid(uio, last_full_event_resid);
1593 if (error != ENOENT) {
1594 lck_rw_unlock_shared(&event_handling_lock);
1595 error = 0;
1596 goto get_out;
1597 }
1598 }
1599
1600 last_full_event_resid = uio_resid(uio);
1601 }
1602 }
1603
1604 watcher->event_queue[watcher->rd] = NULL;
1605 watcher->rd = (watcher->rd + 1) % watcher->eventq_size;
1606 OSSynchronizeIO();
1607 release_event_ref(kfse);
1608 }
1609 lck_rw_unlock_shared(&event_handling_lock);
1610
1611 if (skipped && error == 0) {
1612 goto restart_watch;
1613 }
1614
1615 get_out:
1616 OSAddAtomic(-1, &watcher->num_readers);
1617
1618 return error;
1619 }
1620
1621
1622 //
1623 // Shoo watchers away from a volume that's about to be unmounted
1624 // (so that it can be cleanly unmounted).
1625 //
1626 void
1627 fsevent_unmount(__unused struct mount *mp, __unused vfs_context_t ctx)
1628 {
1629 #if CONFIG_EMBEDDED
1630 dev_t dev = mp->mnt_vfsstat.f_fsid.val[0];
1631 int error, waitcount = 0;
1632 struct timespec ts = {1, 0};
1633
1634 // wait for any other pending unmounts to complete
1635 lock_watch_table();
1636 while (fsevent_unmount_dev != 0) {
1637 error = msleep((caddr_t)&fsevent_unmount_dev, &watch_table_lock, PRIBIO, "fsevent_unmount_wait", &ts);
1638 if (error == EWOULDBLOCK)
1639 error = 0;
1640 if (!error && (++waitcount >= 10)) {
1641 error = EWOULDBLOCK;
1642 printf("timeout waiting to signal unmount pending for dev %d (fsevent_unmount_dev %d)\n", dev, fsevent_unmount_dev);
1643 }
1644 if (error) {
1645 // there's a problem, bail out
1646 unlock_watch_table();
1647 return;
1648 }
1649 }
1650 if (fs_event_type_watchers[FSE_UNMOUNT_PENDING] == 0) {
1651 // nobody watching for unmount pending events
1652 unlock_watch_table();
1653 return;
1654 }
1655 // this is now the current unmount pending
1656 fsevent_unmount_dev = dev;
1657 fsevent_unmount_ack_count = fs_event_type_watchers[FSE_UNMOUNT_PENDING];
1658 unlock_watch_table();
1659
1660 // send an event to notify the watcher they need to get off the mount
1661 error = add_fsevent(FSE_UNMOUNT_PENDING, ctx, FSE_ARG_DEV, dev, FSE_ARG_DONE);
1662
1663 // wait for acknowledgment(s) (give up if it takes too long)
1664 lock_watch_table();
1665 waitcount = 0;
1666 while (fsevent_unmount_dev == dev) {
1667 error = msleep((caddr_t)&fsevent_unmount_dev, &watch_table_lock, PRIBIO, "fsevent_unmount_pending", &ts);
1668 if (error == EWOULDBLOCK)
1669 error = 0;
1670 if (!error && (++waitcount >= 10)) {
1671 error = EWOULDBLOCK;
1672 printf("unmount pending ack timeout for dev %d\n", dev);
1673 }
1674 if (error) {
1675 // there's a problem, bail out
1676 if (fsevent_unmount_dev == dev) {
1677 fsevent_unmount_dev = 0;
1678 fsevent_unmount_ack_count = 0;
1679 }
1680 wakeup((caddr_t)&fsevent_unmount_dev);
1681 break;
1682 }
1683 }
1684 unlock_watch_table();
1685 #endif
1686 }
1687
1688
1689 //
1690 // /dev/fsevents device code
1691 //
1692 static int fsevents_installed = 0;
1693
1694 typedef struct fsevent_handle {
1695 UInt32 flags;
1696 SInt32 active;
1697 fs_event_watcher *watcher;
1698 struct klist knotes;
1699 struct selinfo si;
1700 } fsevent_handle;
1701
1702 #define FSEH_CLOSING 0x0001
1703
1704 static int
1705 fseventsf_read(struct fileproc *fp, struct uio *uio,
1706 __unused int flags, __unused vfs_context_t ctx)
1707 {
1708 fsevent_handle *fseh = (struct fsevent_handle *)fp->f_fglob->fg_data;
1709 int error;
1710
1711 error = fmod_watch(fseh->watcher, uio);
1712
1713 return error;
1714 }
1715
1716
1717 static int
1718 fseventsf_write(__unused struct fileproc *fp, __unused struct uio *uio,
1719 __unused int flags, __unused vfs_context_t ctx)
1720 {
1721 return EIO;
1722 }
1723
1724 #pragma pack(push, 4)
1725 typedef struct fsevent_dev_filter_args32 {
1726 uint32_t num_devices;
1727 user32_addr_t devices;
1728 } fsevent_dev_filter_args32;
1729 typedef struct fsevent_dev_filter_args64 {
1730 uint32_t num_devices;
1731 user64_addr_t devices;
1732 } fsevent_dev_filter_args64;
1733 #pragma pack(pop)
1734
1735 #define FSEVENTS_DEVICE_FILTER_32 _IOW('s', 100, fsevent_dev_filter_args32)
1736 #define FSEVENTS_DEVICE_FILTER_64 _IOW('s', 100, fsevent_dev_filter_args64)
1737
1738 static int
1739 fseventsf_ioctl(struct fileproc *fp, u_long cmd, caddr_t data, vfs_context_t ctx)
1740 {
1741 fsevent_handle *fseh = (struct fsevent_handle *)fp->f_fglob->fg_data;
1742 int ret = 0;
1743 fsevent_dev_filter_args64 *devfilt_args, _devfilt_args;
1744
1745 OSAddAtomic(1, &fseh->active);
1746 if (fseh->flags & FSEH_CLOSING) {
1747 OSAddAtomic(-1, &fseh->active);
1748 return 0;
1749 }
1750
1751 switch (cmd) {
1752 case FIONBIO:
1753 case FIOASYNC:
1754 break;
1755
1756 case FSEVENTS_WANT_COMPACT_EVENTS: {
1757 fseh->watcher->flags |= WATCHER_WANTS_COMPACT_EVENTS;
1758 break;
1759 }
1760
1761 case FSEVENTS_WANT_EXTENDED_INFO: {
1762 fseh->watcher->flags |= WATCHER_WANTS_EXTENDED_INFO;
1763 break;
1764 }
1765
1766 case FSEVENTS_GET_CURRENT_ID: {
1767 *(uint64_t *)data = fseh->watcher->max_event_id;
1768 ret = 0;
1769 break;
1770 }
1771
1772 case FSEVENTS_DEVICE_FILTER_32: {
1773 if (proc_is64bit(vfs_context_proc(ctx))) {
1774 ret = EINVAL;
1775 break;
1776 }
1777 fsevent_dev_filter_args32 *devfilt_args32 = (fsevent_dev_filter_args32 *)data;
1778
1779 devfilt_args = &_devfilt_args;
1780 memset(devfilt_args, 0, sizeof(fsevent_dev_filter_args64));
1781 devfilt_args->num_devices = devfilt_args32->num_devices;
1782 devfilt_args->devices = CAST_USER_ADDR_T(devfilt_args32->devices);
1783 goto handle_dev_filter;
1784 }
1785
1786 case FSEVENTS_DEVICE_FILTER_64:
1787 if (!proc_is64bit(vfs_context_proc(ctx))) {
1788 ret = EINVAL;
1789 break;
1790 }
1791 devfilt_args = (fsevent_dev_filter_args64 *)data;
1792
1793 handle_dev_filter:
1794 {
1795 int new_num_devices;
1796 dev_t *devices_not_to_watch, *tmp=NULL;
1797
1798 if (devfilt_args->num_devices > 256) {
1799 ret = EINVAL;
1800 break;
1801 }
1802
1803 new_num_devices = devfilt_args->num_devices;
1804 if (new_num_devices == 0) {
1805 lock_watch_table();
1806
1807 tmp = fseh->watcher->devices_not_to_watch;
1808 fseh->watcher->devices_not_to_watch = NULL;
1809 fseh->watcher->num_devices = new_num_devices;
1810
1811 unlock_watch_table();
1812 if (tmp) {
1813 FREE(tmp, M_TEMP);
1814 }
1815 break;
1816 }
1817
1818 MALLOC(devices_not_to_watch, dev_t *,
1819 new_num_devices * sizeof(dev_t),
1820 M_TEMP, M_WAITOK);
1821 if (devices_not_to_watch == NULL) {
1822 ret = ENOMEM;
1823 break;
1824 }
1825
1826 ret = copyin(devfilt_args->devices,
1827 (void *)devices_not_to_watch,
1828 new_num_devices * sizeof(dev_t));
1829 if (ret) {
1830 FREE(devices_not_to_watch, M_TEMP);
1831 break;
1832 }
1833
1834 lock_watch_table();
1835 fseh->watcher->num_devices = new_num_devices;
1836 tmp = fseh->watcher->devices_not_to_watch;
1837 fseh->watcher->devices_not_to_watch = devices_not_to_watch;
1838 unlock_watch_table();
1839
1840 if (tmp) {
1841 FREE(tmp, M_TEMP);
1842 }
1843
1844 break;
1845 }
1846
1847 case FSEVENTS_UNMOUNT_PENDING_ACK: {
1848 lock_watch_table();
1849 dev_t dev = *(dev_t *)data;
1850 if (fsevent_unmount_dev == dev) {
1851 if (--fsevent_unmount_ack_count <= 0) {
1852 fsevent_unmount_dev = 0;
1853 wakeup((caddr_t)&fsevent_unmount_dev);
1854 }
1855 } else {
1856 printf("unexpected unmount pending ack %d (%d)\n", dev, fsevent_unmount_dev);
1857 ret = EINVAL;
1858 }
1859 unlock_watch_table();
1860 break;
1861 }
1862
1863 default:
1864 ret = EINVAL;
1865 break;
1866 }
1867
1868 OSAddAtomic(-1, &fseh->active);
1869 return (ret);
1870 }
1871
1872
1873 static int
1874 fseventsf_select(struct fileproc *fp, int which, __unused void *wql, vfs_context_t ctx)
1875 {
1876 fsevent_handle *fseh = (struct fsevent_handle *)fp->f_fglob->fg_data;
1877 int ready = 0;
1878
1879 if ((which != FREAD) || (fseh->watcher->flags & WATCHER_CLOSING)) {
1880 return 0;
1881 }
1882
1883
1884 // if there's nothing in the queue, we're not ready
1885 if (fseh->watcher->rd != fseh->watcher->wr) {
1886 ready = 1;
1887 }
1888
1889 if (!ready) {
1890 selrecord(vfs_context_proc(ctx), &fseh->si, wql);
1891 }
1892
1893 return ready;
1894 }
1895
1896
1897 #if NOTUSED
1898 static int
1899 fseventsf_stat(__unused struct fileproc *fp, __unused struct stat *sb, __unused vfs_context_t ctx)
1900 {
1901 return ENOTSUP;
1902 }
1903 #endif
1904
1905 static int
1906 fseventsf_close(struct fileglob *fg, __unused vfs_context_t ctx)
1907 {
1908 fsevent_handle *fseh = (struct fsevent_handle *)fg->fg_data;
1909 fs_event_watcher *watcher;
1910
1911 OSBitOrAtomic(FSEH_CLOSING, &fseh->flags);
1912 while (OSAddAtomic(0, &fseh->active) > 0) {
1913 tsleep((caddr_t)fseh->watcher, PRIBIO, "fsevents-close", 1);
1914 }
1915
1916 watcher = fseh->watcher;
1917 fg->fg_data = NULL;
1918 fseh->watcher = NULL;
1919
1920 remove_watcher(watcher);
1921 FREE(fseh, M_TEMP);
1922
1923 return 0;
1924 }
1925
1926 static void
1927 filt_fsevent_detach(struct knote *kn)
1928 {
1929 fsevent_handle *fseh = (struct fsevent_handle *)kn->kn_hook;
1930
1931 lock_watch_table();
1932
1933 KNOTE_DETACH(&fseh->knotes, kn);
1934
1935 unlock_watch_table();
1936 }
1937
1938 /*
1939 * Determine whether this knote should be active
1940 *
1941 * This is kind of subtle.
1942 * --First, notice if the vnode has been revoked: in so, override hint
1943 * --EVFILT_READ knotes are checked no matter what the hint is
1944 * --Other knotes activate based on hint.
1945 * --If hint is revoke, set special flags and activate
1946 */
1947 static int
1948 filt_fsevent(struct knote *kn, long hint)
1949 {
1950 fsevent_handle *fseh = (struct fsevent_handle *)kn->kn_hook;
1951 int activate = 0;
1952 int32_t rd, wr, amt;
1953
1954 if (NOTE_REVOKE == hint) {
1955 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1956 activate = 1;
1957 }
1958
1959 rd = fseh->watcher->rd;
1960 wr = fseh->watcher->wr;
1961 if (rd <= wr) {
1962 amt = wr - rd;
1963 } else {
1964 amt = fseh->watcher->eventq_size - (rd - wr);
1965 }
1966
1967 switch(kn->kn_filter) {
1968 case EVFILT_READ:
1969 kn->kn_data = amt;
1970
1971 if (kn->kn_data != 0) {
1972 activate = 1;
1973 }
1974 break;
1975 case EVFILT_VNODE:
1976 /* Check events this note matches against the hint */
1977 if (kn->kn_sfflags & hint) {
1978 kn->kn_fflags |= hint; /* Set which event occurred */
1979 }
1980 if (kn->kn_fflags != 0) {
1981 activate = 1;
1982 }
1983 break;
1984 default: {
1985 // nothing to do...
1986 break;
1987 }
1988 }
1989
1990 return (activate);
1991 }
1992
1993
1994 static int
1995 filt_fsevent_touch(struct knote *kn, struct kevent_internal_s *kev)
1996 {
1997 int res;
1998
1999 lock_watch_table();
2000
2001 /* accept new fflags/data as saved */
2002 kn->kn_sfflags = kev->fflags;
2003 kn->kn_sdata = kev->data;
2004
2005 /* restrict the current results to the (smaller?) set of new interest */
2006 /*
2007 * For compatibility with previous implementations, we leave kn_fflags
2008 * as they were before.
2009 */
2010 //kn->kn_fflags &= kev->fflags;
2011
2012 /* determine if the filter is now fired */
2013 res = filt_fsevent(kn, 0);
2014
2015 unlock_watch_table();
2016
2017 return res;
2018 }
2019
2020 static int
2021 filt_fsevent_process(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev)
2022 {
2023 #pragma unused(data)
2024 int res;
2025
2026 lock_watch_table();
2027
2028 res = filt_fsevent(kn, 0);
2029 if (res) {
2030 *kev = kn->kn_kevent;
2031 if (kev->flags & EV_CLEAR) {
2032 kn->kn_data = 0;
2033 kn->kn_fflags = 0;
2034 }
2035 }
2036
2037 unlock_watch_table();
2038 return res;
2039 }
2040
2041 SECURITY_READ_ONLY_EARLY(struct filterops) fsevent_filtops = {
2042 .f_isfd = 1,
2043 .f_attach = NULL,
2044 .f_detach = filt_fsevent_detach,
2045 .f_event = filt_fsevent,
2046 .f_touch = filt_fsevent_touch,
2047 .f_process = filt_fsevent_process,
2048 };
2049
2050 static int
2051 fseventsf_kqfilter(__unused struct fileproc *fp, __unused struct knote *kn,
2052 __unused struct kevent_internal_s *kev, __unused vfs_context_t ctx)
2053 {
2054 fsevent_handle *fseh = (struct fsevent_handle *)fp->f_fglob->fg_data;
2055 int res;
2056
2057 kn->kn_hook = (void*)fseh;
2058 kn->kn_hookid = 1;
2059 kn->kn_filtid = EVFILTID_FSEVENT;
2060
2061 lock_watch_table();
2062
2063 KNOTE_ATTACH(&fseh->knotes, kn);
2064
2065 /* check to see if it is fired already */
2066 res = filt_fsevent(kn, 0);
2067
2068 unlock_watch_table();
2069
2070 return res;
2071 }
2072
2073
2074 static int
2075 fseventsf_drain(struct fileproc *fp, __unused vfs_context_t ctx)
2076 {
2077 int counter = 0;
2078 fsevent_handle *fseh = (struct fsevent_handle *)fp->f_fglob->fg_data;
2079
2080 // if there are people still waiting, sleep for 10ms to
2081 // let them clean up and get out of there. however we
2082 // also don't want to get stuck forever so if they don't
2083 // exit after 5 seconds we're tearing things down anyway.
2084 while(fseh->watcher->blockers && counter++ < 500) {
2085 // issue wakeup in case anyone is blocked waiting for an event
2086 // do this each time we wakeup in case the blocker missed
2087 // the wakeup due to the unprotected test of WATCHER_CLOSING
2088 // and decision to tsleep in fmod_watch... this bit of
2089 // latency is a decent tradeoff against not having to
2090 // take and drop a lock in fmod_watch
2091 lock_watch_table();
2092 fsevents_wakeup(fseh->watcher);
2093 unlock_watch_table();
2094
2095 tsleep((caddr_t)fseh->watcher, PRIBIO, "watcher-close", 1);
2096 }
2097
2098 return 0;
2099 }
2100
2101
2102 static int
2103 fseventsopen(__unused dev_t dev, __unused int flag, __unused int mode, __unused struct proc *p)
2104 {
2105 if (!kauth_cred_issuser(kauth_cred_get())) {
2106 return EPERM;
2107 }
2108
2109 return 0;
2110 }
2111
2112 static int
2113 fseventsclose(__unused dev_t dev, __unused int flag, __unused int mode, __unused struct proc *p)
2114 {
2115 return 0;
2116 }
2117
2118 static int
2119 fseventsread(__unused dev_t dev, __unused struct uio *uio, __unused int ioflag)
2120 {
2121 return EIO;
2122 }
2123
2124
2125 static int
2126 parse_buffer_and_add_events(const char *buffer, int bufsize, vfs_context_t ctx, long *remainder)
2127 {
2128 const fse_info *finfo, *dest_finfo;
2129 const char *path, *ptr, *dest_path, *event_start=buffer;
2130 int path_len, type, dest_path_len, err = 0;
2131
2132
2133 ptr = buffer;
2134 while ((ptr+sizeof(int)+sizeof(fse_info)+1) < buffer+bufsize) {
2135 type = *(const int *)ptr;
2136 if (type < 0 || type >= FSE_MAX_EVENTS) {
2137 err = EINVAL;
2138 break;
2139 }
2140
2141 ptr += sizeof(int);
2142
2143 finfo = (const fse_info *)ptr;
2144 ptr += sizeof(fse_info);
2145
2146 path = ptr;
2147 while(ptr < buffer+bufsize && *ptr != '\0') {
2148 ptr++;
2149 }
2150
2151 if (ptr >= buffer+bufsize) {
2152 break;
2153 }
2154
2155 ptr++; // advance over the trailing '\0'
2156
2157 path_len = ptr - path;
2158
2159 if (type != FSE_RENAME && type != FSE_EXCHANGE && type != FSE_CLONE) {
2160 event_start = ptr; // record where the next event starts
2161
2162 err = add_fsevent(type, ctx, FSE_ARG_STRING, path_len, path, FSE_ARG_FINFO, finfo, FSE_ARG_DONE);
2163 if (err) {
2164 break;
2165 }
2166 continue;
2167 }
2168
2169 //
2170 // if we're here we have to slurp up the destination finfo
2171 // and path so that we can pass them to the add_fsevent()
2172 // call. basically it's a copy of the above code.
2173 //
2174 dest_finfo = (const fse_info *)ptr;
2175 ptr += sizeof(fse_info);
2176
2177 dest_path = ptr;
2178 while(ptr < buffer+bufsize && *ptr != '\0') {
2179 ptr++;
2180 }
2181
2182 if (ptr >= buffer+bufsize) {
2183 break;
2184 }
2185
2186 ptr++; // advance over the trailing '\0'
2187 event_start = ptr; // record where the next event starts
2188
2189 dest_path_len = ptr - dest_path;
2190 //
2191 // If the destination inode number is non-zero, generate a rename
2192 // with both source and destination FSE_ARG_FINFO. Otherwise generate
2193 // a rename with only one FSE_ARG_FINFO. If you need to inject an
2194 // exchange with an inode of zero, just make that inode (and its path)
2195 // come in as the first one, not the second.
2196 //
2197 if (dest_finfo->ino) {
2198 err = add_fsevent(type, ctx,
2199 FSE_ARG_STRING, path_len, path, FSE_ARG_FINFO, finfo,
2200 FSE_ARG_STRING, dest_path_len, dest_path, FSE_ARG_FINFO, dest_finfo,
2201 FSE_ARG_DONE);
2202 } else {
2203 err = add_fsevent(type, ctx,
2204 FSE_ARG_STRING, path_len, path, FSE_ARG_FINFO, finfo,
2205 FSE_ARG_STRING, dest_path_len, dest_path,
2206 FSE_ARG_DONE);
2207 }
2208
2209 if (err) {
2210 break;
2211 }
2212
2213 }
2214
2215 // if the last event wasn't complete, set the remainder
2216 // to be the last event start boundary.
2217 //
2218 *remainder = (long)((buffer+bufsize) - event_start);
2219
2220 return err;
2221 }
2222
2223
2224 //
2225 // Note: this buffer size can not ever be less than
2226 // 2*MAXPATHLEN + 2*sizeof(fse_info) + sizeof(int)
2227 // because that is the max size for a single event.
2228 // I made it 4k to be a "nice" size. making it
2229 // smaller is not a good idea.
2230 //
2231 #define WRITE_BUFFER_SIZE 4096
2232 char *write_buffer=NULL;
2233
2234 static int
2235 fseventswrite(__unused dev_t dev, struct uio *uio, __unused int ioflag)
2236 {
2237 int error=0, count;
2238 vfs_context_t ctx = vfs_context_current();
2239 long offset=0, remainder;
2240
2241 lck_mtx_lock(&event_writer_lock);
2242
2243 if (write_buffer == NULL) {
2244 if (kmem_alloc(kernel_map, (vm_offset_t *)&write_buffer, WRITE_BUFFER_SIZE, VM_KERN_MEMORY_FILE)) {
2245 lck_mtx_unlock(&event_writer_lock);
2246 return ENOMEM;
2247 }
2248 }
2249
2250 //
2251 // this loop copies in and processes the events written.
2252 // it takes care to copy in reasonable size chunks and
2253 // process them. if there is an event that spans a chunk
2254 // boundary we're careful to copy those bytes down to the
2255 // beginning of the buffer and read the next chunk in just
2256 // after it.
2257 //
2258 while(uio_resid(uio)) {
2259 if (uio_resid(uio) > (WRITE_BUFFER_SIZE-offset)) {
2260 count = WRITE_BUFFER_SIZE - offset;
2261 } else {
2262 count = uio_resid(uio);
2263 }
2264
2265 error = uiomove(write_buffer+offset, count, uio);
2266 if (error) {
2267 break;
2268 }
2269
2270 // printf("fsevents: write: copied in %d bytes (offset: %ld)\n", count, offset);
2271 error = parse_buffer_and_add_events(write_buffer, offset+count, ctx, &remainder);
2272 if (error) {
2273 break;
2274 }
2275
2276 //
2277 // if there's any remainder, copy it down to the beginning
2278 // of the buffer so that it will get processed the next time
2279 // through the loop. note that the remainder always starts
2280 // at an event boundary.
2281 //
2282 if (remainder != 0) {
2283 // printf("fsevents: write: an event spanned a %d byte boundary. remainder: %ld\n",
2284 // WRITE_BUFFER_SIZE, remainder);
2285 memmove(write_buffer, (write_buffer+count+offset) - remainder, remainder);
2286 offset = remainder;
2287 } else {
2288 offset = 0;
2289 }
2290 }
2291
2292 lck_mtx_unlock(&event_writer_lock);
2293
2294 return error;
2295 }
2296
2297
2298 static const struct fileops fsevents_fops = {
2299 .fo_type = DTYPE_FSEVENTS,
2300 .fo_read = fseventsf_read,
2301 .fo_write = fseventsf_write,
2302 .fo_ioctl = fseventsf_ioctl,
2303 .fo_select = fseventsf_select,
2304 .fo_close = fseventsf_close,
2305 .fo_kqfilter = fseventsf_kqfilter,
2306 .fo_drain = fseventsf_drain,
2307 };
2308
2309 typedef struct fsevent_clone_args32 {
2310 user32_addr_t event_list;
2311 int32_t num_events;
2312 int32_t event_queue_depth;
2313 user32_addr_t fd;
2314 } fsevent_clone_args32;
2315
2316 typedef struct fsevent_clone_args64 {
2317 user64_addr_t event_list;
2318 int32_t num_events;
2319 int32_t event_queue_depth;
2320 user64_addr_t fd;
2321 } fsevent_clone_args64;
2322
2323 #define FSEVENTS_CLONE_32 _IOW('s', 1, fsevent_clone_args32)
2324 #define FSEVENTS_CLONE_64 _IOW('s', 1, fsevent_clone_args64)
2325
2326 static int
2327 fseventsioctl(__unused dev_t dev, u_long cmd, caddr_t data, __unused int flag, struct proc *p)
2328 {
2329 struct fileproc *f;
2330 int fd, error;
2331 fsevent_handle *fseh = NULL;
2332 fsevent_clone_args64 *fse_clone_args, _fse_clone;
2333 int8_t *event_list;
2334 int is64bit = proc_is64bit(p);
2335
2336 switch (cmd) {
2337 case FSEVENTS_CLONE_32: {
2338 if (is64bit) {
2339 return EINVAL;
2340 }
2341 fsevent_clone_args32 *args32 = (fsevent_clone_args32 *)data;
2342
2343 fse_clone_args = &_fse_clone;
2344 memset(fse_clone_args, 0, sizeof(fsevent_clone_args64));
2345
2346 fse_clone_args->event_list = CAST_USER_ADDR_T(args32->event_list);
2347 fse_clone_args->num_events = args32->num_events;
2348 fse_clone_args->event_queue_depth = args32->event_queue_depth;
2349 fse_clone_args->fd = CAST_USER_ADDR_T(args32->fd);
2350 goto handle_clone;
2351 }
2352
2353 case FSEVENTS_CLONE_64:
2354 if (!is64bit) {
2355 return EINVAL;
2356 }
2357 fse_clone_args = (fsevent_clone_args64 *)data;
2358
2359 handle_clone:
2360 if (fse_clone_args->num_events < 0 || fse_clone_args->num_events > 4096) {
2361 return EINVAL;
2362 }
2363
2364 MALLOC(fseh, fsevent_handle *, sizeof(fsevent_handle),
2365 M_TEMP, M_WAITOK);
2366 if (fseh == NULL) {
2367 return ENOMEM;
2368 }
2369 memset(fseh, 0, sizeof(fsevent_handle));
2370
2371 klist_init(&fseh->knotes);
2372
2373 MALLOC(event_list, int8_t *,
2374 fse_clone_args->num_events * sizeof(int8_t),
2375 M_TEMP, M_WAITOK);
2376 if (event_list == NULL) {
2377 FREE(fseh, M_TEMP);
2378 return ENOMEM;
2379 }
2380
2381 error = copyin(fse_clone_args->event_list,
2382 (void *)event_list,
2383 fse_clone_args->num_events * sizeof(int8_t));
2384 if (error) {
2385 FREE(event_list, M_TEMP);
2386 FREE(fseh, M_TEMP);
2387 return error;
2388 }
2389
2390 error = add_watcher(event_list,
2391 fse_clone_args->num_events,
2392 fse_clone_args->event_queue_depth,
2393 &fseh->watcher,
2394 fseh);
2395 if (error) {
2396 FREE(event_list, M_TEMP);
2397 FREE(fseh, M_TEMP);
2398 return error;
2399 }
2400
2401 fseh->watcher->fseh = fseh;
2402
2403 error = falloc(p, &f, &fd, vfs_context_current());
2404 if (error) {
2405 remove_watcher(fseh->watcher);
2406 FREE(event_list, M_TEMP);
2407 FREE(fseh, M_TEMP);
2408 return (error);
2409 }
2410 proc_fdlock(p);
2411 f->f_fglob->fg_flag = FREAD | FWRITE;
2412 f->f_fglob->fg_ops = &fsevents_fops;
2413 f->f_fglob->fg_data = (caddr_t) fseh;
2414 proc_fdunlock(p);
2415 error = copyout((void *)&fd, fse_clone_args->fd, sizeof(int32_t));
2416 if (error != 0) {
2417 fp_free(p, fd, f);
2418 } else {
2419 proc_fdlock(p);
2420 procfdtbl_releasefd(p, fd, NULL);
2421 fp_drop(p, fd, f, 1);
2422 proc_fdunlock(p);
2423 }
2424 break;
2425
2426 default:
2427 error = EINVAL;
2428 break;
2429 }
2430
2431 return error;
2432 }
2433
2434 static void
2435 fsevents_wakeup(fs_event_watcher *watcher)
2436 {
2437 selwakeup(&watcher->fseh->si);
2438 KNOTE(&watcher->fseh->knotes, NOTE_WRITE|NOTE_NONE);
2439 wakeup((caddr_t)watcher);
2440 }
2441
2442
2443 /*
2444 * A struct describing which functions will get invoked for certain
2445 * actions.
2446 */
2447 static struct cdevsw fsevents_cdevsw =
2448 {
2449 fseventsopen, /* open */
2450 fseventsclose, /* close */
2451 fseventsread, /* read */
2452 fseventswrite, /* write */
2453 fseventsioctl, /* ioctl */
2454 (stop_fcn_t *)&nulldev, /* stop */
2455 (reset_fcn_t *)&nulldev, /* reset */
2456 NULL, /* tty's */
2457 eno_select, /* select */
2458 eno_mmap, /* mmap */
2459 eno_strat, /* strategy */
2460 eno_getc, /* getc */
2461 eno_putc, /* putc */
2462 0 /* type */
2463 };
2464
2465
2466 /*
2467 * Called to initialize our device,
2468 * and to register ourselves with devfs
2469 */
2470
2471 void
2472 fsevents_init(void)
2473 {
2474 int ret;
2475
2476 if (fsevents_installed) {
2477 return;
2478 }
2479
2480 fsevents_installed = 1;
2481
2482 ret = cdevsw_add(-1, &fsevents_cdevsw);
2483 if (ret < 0) {
2484 fsevents_installed = 0;
2485 return;
2486 }
2487
2488 devfs_make_node(makedev (ret, 0), DEVFS_CHAR,
2489 UID_ROOT, GID_WHEEL, 0644, "fsevents", 0);
2490
2491 fsevents_internal_init();
2492 }
2493
2494
2495 char *
2496 get_pathbuff(void)
2497 {
2498 char *path;
2499
2500 MALLOC_ZONE(path, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
2501 return path;
2502 }
2503
2504 void
2505 release_pathbuff(char *path)
2506 {
2507
2508 if (path == NULL) {
2509 return;
2510 }
2511 FREE_ZONE(path, MAXPATHLEN, M_NAMEI);
2512 }
2513
2514 int
2515 get_fse_info(struct vnode *vp, fse_info *fse, __unused vfs_context_t ctx)
2516 {
2517 struct vnode_attr va;
2518
2519 VATTR_INIT(&va);
2520 VATTR_WANTED(&va, va_fsid);
2521 VATTR_WANTED(&va, va_fileid);
2522 VATTR_WANTED(&va, va_mode);
2523 VATTR_WANTED(&va, va_uid);
2524 VATTR_WANTED(&va, va_gid);
2525 if (vp->v_flag & VISHARDLINK) {
2526 if (vp->v_type == VDIR) {
2527 VATTR_WANTED(&va, va_dirlinkcount);
2528 } else {
2529 VATTR_WANTED(&va, va_nlink);
2530 }
2531 }
2532
2533 if (vnode_getattr(vp, &va, vfs_context_kernel()) != 0) {
2534 memset(fse, 0, sizeof(fse_info));
2535 return -1;
2536 }
2537
2538 return vnode_get_fse_info_from_vap(vp, fse, &va);
2539 }
2540
2541 int
2542 vnode_get_fse_info_from_vap(vnode_t vp, fse_info *fse, struct vnode_attr *vap)
2543 {
2544 fse->ino = (ino64_t)vap->va_fileid;
2545 fse->dev = (dev_t)vap->va_fsid;
2546 fse->mode = (int32_t)vnode_vttoif(vnode_vtype(vp)) | vap->va_mode;
2547 fse->uid = (uid_t)vap->va_uid;
2548 fse->gid = (gid_t)vap->va_gid;
2549 if (vp->v_flag & VISHARDLINK) {
2550 fse->mode |= FSE_MODE_HLINK;
2551 if (vp->v_type == VDIR) {
2552 fse->nlink = (uint64_t)vap->va_dirlinkcount;
2553 } else {
2554 fse->nlink = (uint64_t)vap->va_nlink;
2555 }
2556 }
2557
2558 return 0;
2559 }
2560
2561 void
2562 create_fsevent_from_kevent(vnode_t vp, uint32_t kevents, struct vnode_attr *vap)
2563 {
2564 int fsevent_type=FSE_CONTENT_MODIFIED, len; // the default is the most pessimistic
2565 char pathbuf[MAXPATHLEN];
2566 fse_info fse;
2567
2568
2569 if (kevents & VNODE_EVENT_DELETE) {
2570 fsevent_type = FSE_DELETE;
2571 } else if (kevents & (VNODE_EVENT_EXTEND|VNODE_EVENT_WRITE)) {
2572 fsevent_type = FSE_CONTENT_MODIFIED;
2573 } else if (kevents & VNODE_EVENT_LINK) {
2574 fsevent_type = FSE_CREATE_FILE;
2575 } else if (kevents & VNODE_EVENT_RENAME) {
2576 fsevent_type = FSE_CREATE_FILE; // XXXdbg - should use FSE_RENAME but we don't have the destination info;
2577 } else if (kevents & (VNODE_EVENT_FILE_CREATED|VNODE_EVENT_FILE_REMOVED|VNODE_EVENT_DIR_CREATED|VNODE_EVENT_DIR_REMOVED)) {
2578 fsevent_type = FSE_STAT_CHANGED; // XXXdbg - because vp is a dir and the thing created/removed lived inside it
2579 } else { // a catch all for VNODE_EVENT_PERMS, VNODE_EVENT_ATTRIB and anything else
2580 fsevent_type = FSE_STAT_CHANGED;
2581 }
2582
2583 // printf("convert_kevent: kevents 0x%x fsevent type 0x%x (for %s)\n", kevents, fsevent_type, vp->v_name ? vp->v_name : "(no-name)");
2584
2585 fse.dev = vap->va_fsid;
2586 fse.ino = vap->va_fileid;
2587 fse.mode = vnode_vttoif(vnode_vtype(vp)) | (uint32_t)vap->va_mode;
2588 if (vp->v_flag & VISHARDLINK) {
2589 fse.mode |= FSE_MODE_HLINK;
2590 if (vp->v_type == VDIR) {
2591 fse.nlink = vap->va_dirlinkcount;
2592 } else {
2593 fse.nlink = vap->va_nlink;
2594 }
2595 }
2596
2597 if (vp->v_type == VDIR) {
2598 fse.mode |= FSE_REMOTE_DIR_EVENT;
2599 }
2600
2601
2602 fse.uid = vap->va_uid;
2603 fse.gid = vap->va_gid;
2604
2605 len = sizeof(pathbuf);
2606 if (vn_getpath(vp, pathbuf, &len) == 0) {
2607 add_fsevent(fsevent_type, vfs_context_current(), FSE_ARG_STRING, len, pathbuf, FSE_ARG_FINFO, &fse, FSE_ARG_DONE);
2608 }
2609 return;
2610 }
2611
2612 #else /* CONFIG_FSE */
2613
2614 #include <sys/fsevents.h>
2615
2616 /*
2617 * The get_pathbuff and release_pathbuff routines are used in places not
2618 * related to fsevents, and it's a handy abstraction, so define trivial
2619 * versions that don't cache a pool of buffers. This way, we don't have
2620 * to conditionalize the callers, and they still get the advantage of the
2621 * pool of buffers if CONFIG_FSE is turned on.
2622 */
2623 char *
2624 get_pathbuff(void)
2625 {
2626 char *path;
2627 MALLOC_ZONE(path, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
2628 return path;
2629 }
2630
2631 void
2632 release_pathbuff(char *path)
2633 {
2634 FREE_ZONE(path, MAXPATHLEN, M_NAMEI);
2635 }
2636
2637 int
2638 add_fsevent(__unused int type, __unused vfs_context_t ctx, ...)
2639 {
2640 return 0;
2641 }
2642
2643 int need_fsevent(__unused int type, __unused vnode_t vp)
2644 {
2645 return 0;
2646 }
2647
2648 #endif /* CONFIG_FSE */