2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
20 * @APPLE_LICENSE_HEADER_END@
23 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
24 * The Regents of the University of California. All rights reserved.
26 * Redistribution and use in source and binary forms, with or without
27 * modification, are permitted provided that the following conditions
29 * 1. Redistributions of source code must retain the above copyright
30 * notice, this list of conditions and the following disclaimer.
31 * 2. Redistributions in binary form must reproduce the above copyright
32 * notice, this list of conditions and the following disclaimer in the
33 * documentation and/or other materials provided with the distribution.
34 * 3. All advertising materials mentioning features or use of this software
35 * must display the following acknowledgement:
36 * This product includes software developed by the University of
37 * California, Berkeley and its contributors.
38 * 4. Neither the name of the University nor the names of its contributors
39 * may be used to endorse or promote products derived from this software
40 * without specific prior written permission.
42 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
54 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
55 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.22 2001/08/22 00:59:12 silby Exp $
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/callout.h>
62 #include <sys/kernel.h>
63 #include <sys/sysctl.h>
64 #include <sys/malloc.h>
67 #include <sys/domain.h>
70 #include <sys/socket.h>
71 #include <sys/socketvar.h>
72 #include <sys/protosw.h>
73 #include <sys/random.h>
74 #include <sys/syslog.h>
78 #include <net/route.h>
82 #include <netinet/in.h>
83 #include <netinet/in_systm.h>
84 #include <netinet/ip.h>
86 #include <netinet/ip6.h>
88 #include <netinet/in_pcb.h>
90 #include <netinet6/in6_pcb.h>
92 #include <netinet/in_var.h>
93 #include <netinet/ip_var.h>
95 #include <netinet6/ip6_var.h>
97 #include <netinet/tcp.h>
98 #include <netinet/tcp_fsm.h>
99 #include <netinet/tcp_seq.h>
100 #include <netinet/tcp_timer.h>
101 #include <netinet/tcp_var.h>
103 #include <netinet6/tcp6_var.h>
105 #include <netinet/tcpip.h>
107 #include <netinet/tcp_debug.h>
109 #include <netinet6/ip6protosw.h>
112 #include <netinet6/ipsec.h>
114 #include <netinet6/ipsec6.h>
119 #include <sys/kdebug.h>
121 #define DBG_FNC_TCP_CLOSE NETDBG_CODE(DBG_NETTCP, ((5 << 8) | 2))
124 /* temporary: for testing */
126 extern int ipsec_bypass
;
129 int tcp_mssdflt
= TCP_MSS
;
130 SYSCTL_INT(_net_inet_tcp
, TCPCTL_MSSDFLT
, mssdflt
, CTLFLAG_RW
,
131 &tcp_mssdflt
, 0, "Default TCP Maximum Segment Size");
134 int tcp_v6mssdflt
= TCP6_MSS
;
135 SYSCTL_INT(_net_inet_tcp
, TCPCTL_V6MSSDFLT
, v6mssdflt
,
136 CTLFLAG_RW
, &tcp_v6mssdflt
, 0,
137 "Default TCP Maximum Segment Size for IPv6");
141 * Minimum MSS we accept and use. This prevents DoS attacks where
142 * we are forced to a ridiculous low MSS like 20 and send hundreds
143 * of packets instead of one. The effect scales with the available
144 * bandwidth and quickly saturates the CPU and network interface
145 * with packet generation and sending. Set to zero to disable MINMSS
146 * checking. This setting prevents us from sending too small packets.
148 int tcp_minmss
= TCP_MINMSS
;
149 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, minmss
, CTLFLAG_RW
,
150 &tcp_minmss
, 0, "Minmum TCP Maximum Segment Size");
152 static int tcp_do_rfc1323
= 1;
153 SYSCTL_INT(_net_inet_tcp
, TCPCTL_DO_RFC1323
, rfc1323
, CTLFLAG_RW
,
154 &tcp_do_rfc1323
, 0, "Enable rfc1323 (high performance TCP) extensions");
156 static int tcp_do_rfc1644
= 0;
157 SYSCTL_INT(_net_inet_tcp
, TCPCTL_DO_RFC1644
, rfc1644
, CTLFLAG_RW
,
158 &tcp_do_rfc1644
, 0, "Enable rfc1644 (TTCP) extensions");
160 static int tcp_tcbhashsize
= 0;
161 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, tcbhashsize
, CTLFLAG_RD
,
162 &tcp_tcbhashsize
, 0, "Size of TCP control-block hashtable");
164 static int do_tcpdrain
= 1;
165 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, do_tcpdrain
, CTLFLAG_RW
, &do_tcpdrain
, 0,
166 "Enable tcp_drain routine for extra help when low on mbufs");
168 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, pcbcount
, CTLFLAG_RD
,
169 &tcbinfo
.ipi_count
, 0, "Number of active PCBs");
171 static int icmp_may_rst
= 1;
172 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, icmp_may_rst
, CTLFLAG_RW
, &icmp_may_rst
, 0,
173 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
175 static int tcp_strict_rfc1948
= 0;
176 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, strict_rfc1948
, CTLFLAG_RW
,
177 &tcp_strict_rfc1948
, 0, "Determines if RFC1948 is followed exactly");
179 static int tcp_isn_reseed_interval
= 0;
180 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, isn_reseed_interval
, CTLFLAG_RW
,
181 &tcp_isn_reseed_interval
, 0, "Seconds between reseeding of ISN secret");
183 static void tcp_cleartaocache
__P((void));
184 static void tcp_notify
__P((struct inpcb
*, int));
187 * Target size of TCP PCB hash tables. Must be a power of two.
189 * Note that this can be overridden by the kernel environment
190 * variable net.inet.tcp.tcbhashsize
193 #define TCBHASHSIZE 4096
197 * This is the actual shape of what we allocate using the zone
198 * allocator. Doing it this way allows us to protect both structures
199 * using the same generation count, and also eliminates the overhead
200 * of allocating tcpcbs separately. By hiding the structure here,
201 * we avoid changing most of the rest of the code (although it needs
202 * to be changed, eventually, for greater efficiency).
205 #define ALIGNM1 (ALIGNMENT - 1)
209 char align
[(sizeof(struct inpcb
) + ALIGNM1
) & ~ALIGNM1
];
213 struct callout inp_tp_rexmt
, inp_tp_persist
, inp_tp_keep
, inp_tp_2msl
;
214 struct callout inp_tp_delack
;
220 static struct tcpcb dummy_tcb
;
223 extern struct inpcbhead time_wait_slots
[];
224 extern int cur_tw_slot
;
225 extern u_long
*delack_bitmask
;
226 extern u_long route_generation
;
229 int get_inpcb_str_size()
231 return sizeof(struct inpcb
);
235 int get_tcp_str_size()
237 return sizeof(struct tcpcb
);
240 int tcp_freeq
__P((struct tcpcb
*tp
));
249 int hashsize
= TCBHASHSIZE
;
256 tcp_delacktime
= TCPTV_DELACK
;
257 tcp_keepinit
= TCPTV_KEEP_INIT
;
258 tcp_keepidle
= TCPTV_KEEP_IDLE
;
259 tcp_keepintvl
= TCPTV_KEEPINTVL
;
260 tcp_maxpersistidle
= TCPTV_KEEP_IDLE
;
262 read_random(&tcp_now
, sizeof(tcp_now
));
263 tcp_now
= tcp_now
& 0x7fffffffffffffff; /* Starts tcp internal 500ms clock at a random value */
267 tcbinfo
.listhead
= &tcb
;
269 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize
);
271 if (!powerof2(hashsize
)) {
272 printf("WARNING: TCB hash size not a power of 2\n");
273 hashsize
= 512; /* safe default */
275 tcp_tcbhashsize
= hashsize
;
276 tcbinfo
.hashsize
= hashsize
;
277 tcbinfo
.hashbase
= hashinit(hashsize
, M_PCB
, &tcbinfo
.hashmask
);
278 tcbinfo
.porthashbase
= hashinit(hashsize
, M_PCB
,
279 &tcbinfo
.porthashmask
);
281 str_size
= (vm_size_t
) sizeof(struct inp_tp
);
282 tcbinfo
.ipi_zone
= (void *) zinit(str_size
, 120000*str_size
, 8192, "tcpcb");
284 tcbinfo
.ipi_zone
= zinit("tcpcb", sizeof(struct inp_tp
), maxsockets
,
288 tcp_reass_maxseg
= nmbclusters
/ 16;
290 TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments",
295 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
297 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
299 if (max_protohdr
< TCP_MINPROTOHDR
)
300 max_protohdr
= TCP_MINPROTOHDR
;
301 if (max_linkhdr
+ TCP_MINPROTOHDR
> MHLEN
)
303 #undef TCP_MINPROTOHDR
304 tcbinfo
.last_pcb
= 0;
305 dummy_tcb
.t_state
= TCP_NSTATES
;
306 dummy_tcb
.t_flags
= 0;
307 tcbinfo
.dummy_cb
= (caddr_t
) &dummy_tcb
;
308 in_pcb_nat_init(&tcbinfo
, AF_INET
, IPPROTO_TCP
, SOCK_STREAM
);
310 delack_bitmask
= _MALLOC((4 * hashsize
)/32, M_PCB
, M_WAITOK
);
311 if (delack_bitmask
== 0)
312 panic("Delack Memory");
314 for (i
=0; i
< (tcbinfo
.hashsize
/ 32); i
++)
315 delack_bitmask
[i
] = 0;
317 for (i
=0; i
< N_TIME_WAIT_SLOTS
; i
++) {
318 LIST_INIT(&time_wait_slots
[i
]);
323 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
324 * tcp_template used to store this data in mbufs, but we now recopy it out
325 * of the tcpcb each time to conserve mbufs.
328 tcp_fillheaders(tp
, ip_ptr
, tcp_ptr
)
333 struct inpcb
*inp
= tp
->t_inpcb
;
334 struct tcphdr
*tcp_hdr
= (struct tcphdr
*)tcp_ptr
;
337 if ((inp
->inp_vflag
& INP_IPV6
) != 0) {
340 ip6
= (struct ip6_hdr
*)ip_ptr
;
341 ip6
->ip6_flow
= (ip6
->ip6_flow
& ~IPV6_FLOWINFO_MASK
) |
342 (inp
->in6p_flowinfo
& IPV6_FLOWINFO_MASK
);
343 ip6
->ip6_vfc
= (ip6
->ip6_vfc
& ~IPV6_VERSION_MASK
) |
344 (IPV6_VERSION
& IPV6_VERSION_MASK
);
345 ip6
->ip6_nxt
= IPPROTO_TCP
;
346 ip6
->ip6_plen
= sizeof(struct tcphdr
);
347 ip6
->ip6_src
= inp
->in6p_laddr
;
348 ip6
->ip6_dst
= inp
->in6p_faddr
;
353 struct ip
*ip
= (struct ip
*) ip_ptr
;
355 ip
->ip_vhl
= IP_VHL_BORING
;
362 ip
->ip_p
= IPPROTO_TCP
;
363 ip
->ip_src
= inp
->inp_laddr
;
364 ip
->ip_dst
= inp
->inp_faddr
;
365 tcp_hdr
->th_sum
= in_pseudo(ip
->ip_src
.s_addr
, ip
->ip_dst
.s_addr
,
366 htons(sizeof(struct tcphdr
) + IPPROTO_TCP
));
369 tcp_hdr
->th_sport
= inp
->inp_lport
;
370 tcp_hdr
->th_dport
= inp
->inp_fport
;
375 tcp_hdr
->th_flags
= 0;
381 * Create template to be used to send tcp packets on a connection.
382 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
383 * use for this function is in keepalives, which use tcp_respond.
392 m
= m_get(M_DONTWAIT
, MT_HEADER
);
395 m
->m_len
= sizeof(struct tcptemp
);
396 n
= mtod(m
, struct tcptemp
*);
398 tcp_fillheaders(tp
, (void *)&n
->tt_ipgen
, (void *)&n
->tt_t
);
403 * Send a single message to the TCP at address specified by
404 * the given TCP/IP header. If m == 0, then we make a copy
405 * of the tcpiphdr at ti and send directly to the addressed host.
406 * This is used to force keep alive messages out using the TCP
407 * template for a connection. If flags are given then we send
408 * a message back to the TCP which originated the * segment ti,
409 * and discard the mbuf containing it and any other attached mbufs.
411 * In any case the ack and sequence number of the transmitted
412 * segment are as specified by the parameters.
414 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
417 tcp_respond(tp
, ipgen
, th
, m
, ack
, seq
, flags
)
420 register struct tcphdr
*th
;
421 register struct mbuf
*m
;
427 struct route
*ro
= 0;
432 struct route_in6
*ro6
= 0;
433 struct route_in6 sro6
;
440 isipv6
= IP_VHL_V(((struct ip
*)ipgen
)->ip_vhl
) == 6;
446 if (!(flags
& TH_RST
)) {
447 win
= sbspace(&tp
->t_inpcb
->inp_socket
->so_rcv
);
448 if (win
> (long)TCP_MAXWIN
<< tp
->rcv_scale
)
449 win
= (long)TCP_MAXWIN
<< tp
->rcv_scale
;
453 ro6
= &tp
->t_inpcb
->in6p_route
;
456 ro
= &tp
->t_inpcb
->inp_route
;
461 bzero(ro6
, sizeof *ro6
);
466 bzero(ro
, sizeof *ro
);
470 m
= m_gethdr(M_DONTWAIT
, MT_HEADER
);
474 m
->m_data
+= max_linkhdr
;
477 bcopy((caddr_t
)ip6
, mtod(m
, caddr_t
),
478 sizeof(struct ip6_hdr
));
479 ip6
= mtod(m
, struct ip6_hdr
*);
480 nth
= (struct tcphdr
*)(ip6
+ 1);
484 bcopy((caddr_t
)ip
, mtod(m
, caddr_t
), sizeof(struct ip
));
485 ip
= mtod(m
, struct ip
*);
486 nth
= (struct tcphdr
*)(ip
+ 1);
488 bcopy((caddr_t
)th
, (caddr_t
)nth
, sizeof(struct tcphdr
));
493 m
->m_data
= (caddr_t
)ipgen
;
494 /* m_len is set later */
496 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
499 xchg(ip6
->ip6_dst
, ip6
->ip6_src
, struct in6_addr
);
500 nth
= (struct tcphdr
*)(ip6
+ 1);
504 xchg(ip
->ip_dst
.s_addr
, ip
->ip_src
.s_addr
, n_long
);
505 nth
= (struct tcphdr
*)(ip
+ 1);
509 * this is usually a case when an extension header
510 * exists between the IPv6 header and the
513 nth
->th_sport
= th
->th_sport
;
514 nth
->th_dport
= th
->th_dport
;
516 xchg(nth
->th_dport
, nth
->th_sport
, n_short
);
521 ip6
->ip6_plen
= htons((u_short
)(sizeof (struct tcphdr
) +
523 tlen
+= sizeof (struct ip6_hdr
) + sizeof (struct tcphdr
);
527 tlen
+= sizeof (struct tcpiphdr
);
529 ip
->ip_ttl
= ip_defttl
;
532 m
->m_pkthdr
.len
= tlen
;
533 m
->m_pkthdr
.rcvif
= (struct ifnet
*) 0;
534 nth
->th_seq
= htonl(seq
);
535 nth
->th_ack
= htonl(ack
);
537 nth
->th_off
= sizeof (struct tcphdr
) >> 2;
538 nth
->th_flags
= flags
;
540 nth
->th_win
= htons((u_short
) (win
>> tp
->rcv_scale
));
542 nth
->th_win
= htons((u_short
)win
);
547 nth
->th_sum
= in6_cksum(m
, IPPROTO_TCP
,
548 sizeof(struct ip6_hdr
),
549 tlen
- sizeof(struct ip6_hdr
));
550 ip6
->ip6_hlim
= in6_selecthlim(tp
? tp
->t_inpcb
: NULL
,
557 nth
->th_sum
= in_pseudo(ip
->ip_src
.s_addr
, ip
->ip_dst
.s_addr
,
558 htons((u_short
)(tlen
- sizeof(struct ip
) + ip
->ip_p
)));
559 m
->m_pkthdr
.csum_flags
= CSUM_TCP
;
560 m
->m_pkthdr
.csum_data
= offsetof(struct tcphdr
, th_sum
);
563 if (tp
== NULL
|| (tp
->t_inpcb
->inp_socket
->so_options
& SO_DEBUG
))
564 tcp_trace(TA_OUTPUT
, 0, tp
, mtod(m
, void *), th
, 0);
567 if (ipsec_bypass
== 0 && ipsec_setsocket(m
, tp
? tp
->t_inpcb
->inp_socket
: NULL
) != 0) {
574 (void)ip6_output(m
, NULL
, ro6
, ipflags
, NULL
, NULL
);
575 if (ro6
== &sro6
&& ro6
->ro_rt
) {
582 (void) ip_output(m
, NULL
, ro
, ipflags
, NULL
);
583 if (ro
== &sro
&& ro
->ro_rt
) {
591 * Create a new TCP control block, making an
592 * empty reassembly queue and hooking it to the argument
593 * protocol control block. The `inp' parameter must have
594 * come from the zone allocator set up in tcp_init().
601 register struct tcpcb
*tp
;
602 register struct socket
*so
= inp
->inp_socket
;
604 int isipv6
= (inp
->inp_vflag
& INP_IPV6
) != 0;
607 if (so
->cached_in_sock_layer
== 0) {
608 it
= (struct inp_tp
*)inp
;
612 tp
= (struct tcpcb
*) inp
->inp_saved_ppcb
;
614 bzero((char *) tp
, sizeof(struct tcpcb
));
615 LIST_INIT(&tp
->t_segq
);
616 tp
->t_maxseg
= tp
->t_maxopd
=
618 isipv6
? tcp_v6mssdflt
:
623 /* Set up our timeouts. */
624 callout_init(tp
->tt_rexmt
= &it
->inp_tp_rexmt
);
625 callout_init(tp
->tt_persist
= &it
->inp_tp_persist
);
626 callout_init(tp
->tt_keep
= &it
->inp_tp_keep
);
627 callout_init(tp
->tt_2msl
= &it
->inp_tp_2msl
);
628 callout_init(tp
->tt_delack
= &it
->inp_tp_delack
);
632 tp
->t_flags
= (TF_REQ_SCALE
|TF_REQ_TSTMP
);
634 tp
->t_flags
|= TF_REQ_CC
;
635 tp
->t_inpcb
= inp
; /* XXX */
637 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
638 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
639 * reasonable initial retransmit time.
641 tp
->t_srtt
= TCPTV_SRTTBASE
;
642 tp
->t_rttvar
= ((TCPTV_RTOBASE
- TCPTV_SRTTBASE
) << TCP_RTTVAR_SHIFT
) / 4;
643 tp
->t_rttmin
= TCPTV_MIN
;
644 tp
->t_rxtcur
= TCPTV_RTOBASE
;
645 tp
->snd_cwnd
= TCP_MAXWIN
<< TCP_MAX_WINSHIFT
;
646 tp
->snd_ssthresh
= TCP_MAXWIN
<< TCP_MAX_WINSHIFT
;
648 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
649 * because the socket may be bound to an IPv6 wildcard address,
650 * which may match an IPv4-mapped IPv6 address.
652 inp
->inp_ip_ttl
= ip_defttl
;
653 inp
->inp_ppcb
= (caddr_t
)tp
;
654 return (tp
); /* XXX */
658 * Drop a TCP connection, reporting
659 * the specified error. If connection is synchronized,
660 * then send a RST to peer.
664 register struct tcpcb
*tp
;
667 struct socket
*so
= tp
->t_inpcb
->inp_socket
;
672 case TCPS_ESTABLISHED
:
673 case TCPS_FIN_WAIT_1
:
675 case TCPS_CLOSE_WAIT
:
681 if (TCPS_HAVERCVDSYN(tp
->t_state
)) {
682 tp
->t_state
= TCPS_CLOSED
;
683 (void) tcp_output(tp
);
684 tcpstat
.tcps_drops
++;
686 tcpstat
.tcps_conndrops
++;
687 if (errno
== ETIMEDOUT
&& tp
->t_softerror
)
688 errno
= tp
->t_softerror
;
689 so
->so_error
= errno
;
690 return (tcp_close(tp
));
694 * Close a TCP control block:
695 * discard all space held by the tcp
696 * discard internet protocol block
697 * wake up any sleepers
701 register struct tcpcb
*tp
;
703 register struct tseg_qent
*q
;
704 struct inpcb
*inp
= tp
->t_inpcb
;
705 struct socket
*so
= inp
->inp_socket
;
707 int isipv6
= (inp
->inp_vflag
& INP_IPV6
) != 0;
709 register struct rtentry
*rt
;
712 if ( inp
->inp_ppcb
== NULL
) /* tcp_close was called previously, bail */
717 * Make sure that all of our timers are stopped before we
720 callout_stop(tp
->tt_rexmt
);
721 callout_stop(tp
->tt_persist
);
722 callout_stop(tp
->tt_keep
);
723 callout_stop(tp
->tt_2msl
);
724 callout_stop(tp
->tt_delack
);
726 /* Clear the timers before we delete the PCB. */
729 for (i
= 0; i
< TCPT_NTIMERS
; i
++) {
736 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE
| DBG_FUNC_START
, tp
,0,0,0,0);
739 case TCPS_ESTABLISHED
:
740 case TCPS_FIN_WAIT_1
:
742 case TCPS_CLOSE_WAIT
:
749 * If we got enough samples through the srtt filter,
750 * save the rtt and rttvar in the routing entry.
751 * 'Enough' is arbitrarily defined as the 16 samples.
752 * 16 samples is enough for the srtt filter to converge
753 * to within 5% of the correct value; fewer samples and
754 * we could save a very bogus rtt.
756 * Don't update the default route's characteristics and don't
757 * update anything that the user "locked".
759 if (tp
->t_rttupdated
>= 16) {
760 register u_long i
= 0;
763 struct sockaddr_in6
*sin6
;
765 if ((rt
= inp
->in6p_route
.ro_rt
) == NULL
)
767 sin6
= (struct sockaddr_in6
*)rt_key(rt
);
768 if (IN6_IS_ADDR_UNSPECIFIED(&sin6
->sin6_addr
))
773 rt
= inp
->inp_route
.ro_rt
;
775 ((struct sockaddr_in
*)rt_key(rt
))->sin_addr
.s_addr
776 == INADDR_ANY
|| rt
->generation_id
!= route_generation
) {
777 if (tp
->t_state
>= TCPS_CLOSE_WAIT
)
778 tp
->t_state
= TCPS_CLOSING
;
783 if ((rt
->rt_rmx
.rmx_locks
& RTV_RTT
) == 0) {
785 (RTM_RTTUNIT
/ (PR_SLOWHZ
* TCP_RTT_SCALE
));
786 if (rt
->rt_rmx
.rmx_rtt
&& i
)
788 * filter this update to half the old & half
789 * the new values, converting scale.
790 * See route.h and tcp_var.h for a
791 * description of the scaling constants.
794 (rt
->rt_rmx
.rmx_rtt
+ i
) / 2;
796 rt
->rt_rmx
.rmx_rtt
= i
;
797 tcpstat
.tcps_cachedrtt
++;
799 if ((rt
->rt_rmx
.rmx_locks
& RTV_RTTVAR
) == 0) {
801 (RTM_RTTUNIT
/ (PR_SLOWHZ
* TCP_RTTVAR_SCALE
));
802 if (rt
->rt_rmx
.rmx_rttvar
&& i
)
803 rt
->rt_rmx
.rmx_rttvar
=
804 (rt
->rt_rmx
.rmx_rttvar
+ i
) / 2;
806 rt
->rt_rmx
.rmx_rttvar
= i
;
807 tcpstat
.tcps_cachedrttvar
++;
810 * The old comment here said:
811 * update the pipelimit (ssthresh) if it has been updated
812 * already or if a pipesize was specified & the threshhold
813 * got below half the pipesize. I.e., wait for bad news
814 * before we start updating, then update on both good
817 * But we want to save the ssthresh even if no pipesize is
818 * specified explicitly in the route, because such
819 * connections still have an implicit pipesize specified
820 * by the global tcp_sendspace. In the absence of a reliable
821 * way to calculate the pipesize, it will have to do.
823 i
= tp
->snd_ssthresh
;
824 if (rt
->rt_rmx
.rmx_sendpipe
!= 0)
825 dosavessthresh
= (i
< rt
->rt_rmx
.rmx_sendpipe
/ 2);
827 dosavessthresh
= (i
< so
->so_snd
.sb_hiwat
/ 2);
828 if (((rt
->rt_rmx
.rmx_locks
& RTV_SSTHRESH
) == 0 &&
829 i
!= 0 && rt
->rt_rmx
.rmx_ssthresh
!= 0)
832 * convert the limit from user data bytes to
833 * packets then to packet data bytes.
835 i
= (i
+ tp
->t_maxseg
/ 2) / tp
->t_maxseg
;
838 i
*= (u_long
)(tp
->t_maxseg
+
840 (isipv6
? sizeof (struct ip6_hdr
) +
841 sizeof (struct tcphdr
) :
843 sizeof (struct tcpiphdr
)
848 if (rt
->rt_rmx
.rmx_ssthresh
)
849 rt
->rt_rmx
.rmx_ssthresh
=
850 (rt
->rt_rmx
.rmx_ssthresh
+ i
) / 2;
852 rt
->rt_rmx
.rmx_ssthresh
= i
;
853 tcpstat
.tcps_cachedssthresh
++;
856 rt
= inp
->inp_route
.ro_rt
;
859 * mark route for deletion if no information is
862 if ((tp
->t_flags
& TF_LQ_OVERFLOW
) &&
863 ((rt
->rt_rmx
.rmx_locks
& RTV_RTT
) == 0)){
864 if (rt
->rt_rmx
.rmx_rtt
== 0)
865 rt
->rt_flags
|= RTF_DELCLONE
;
869 /* free the reassembly queue, if any */
870 (void) tcp_freeq(tp
);
873 if (so
->cached_in_sock_layer
)
874 inp
->inp_saved_ppcb
= (caddr_t
) tp
;
877 inp
->inp_ppcb
= NULL
;
878 soisdisconnected(so
);
880 if (INP_CHECK_SOCKAF(so
, AF_INET6
))
885 tcpstat
.tcps_closed
++;
886 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE
| DBG_FUNC_END
, tcpstat
.tcps_closed
,0,0,0,0);
887 return ((struct tcpcb
*)0);
895 register struct tseg_qent
*q
;
898 while((q
= LIST_FIRST(&tp
->t_segq
)) != NULL
) {
899 LIST_REMOVE(q
, tqe_q
);
915 struct tseg_qent
*te
;
918 * Walk the tcpbs, if existing, and flush the reassembly queue,
920 * XXX: The "Net/3" implementation doesn't imply that the TCP
921 * reassembly queue should be flushed, but in a situation
922 * where we're really low on mbufs, this is potentially
925 for (inpb
= LIST_FIRST(tcbinfo
.listhead
); inpb
;
926 inpb
= LIST_NEXT(inpb
, inp_list
)) {
927 if ((tcpb
= intotcpcb(inpb
))) {
928 while ((te
= LIST_FIRST(&tcpb
->t_segq
))
930 LIST_REMOVE(te
, tqe_q
);
942 * Notify a tcp user of an asynchronous error;
943 * store error as soft error, but wake up user
944 * (for now, won't do anything until can select for soft error).
946 * Do not wake up user since there currently is no mechanism for
947 * reporting soft errors (yet - a kqueue filter may be added).
950 tcp_notify(inp
, error
)
957 return; /* pcb is gone already */
959 tp
= (struct tcpcb
*)inp
->inp_ppcb
;
962 * Ignore some errors if we are hooked up.
963 * If connection hasn't completed, has retransmitted several times,
964 * and receives a second error, give up now. This is better
965 * than waiting a long time to establish a connection that
966 * can never complete.
968 if (tp
->t_state
== TCPS_ESTABLISHED
&&
969 (error
== EHOSTUNREACH
|| error
== ENETUNREACH
||
970 error
== EHOSTDOWN
)) {
972 } else if (tp
->t_state
< TCPS_ESTABLISHED
&& tp
->t_rxtshift
> 3 &&
976 tp
->t_softerror
= error
;
978 wakeup((caddr_t
) &so
->so_timeo
);
985 tcp_pcblist SYSCTL_HANDLER_ARGS
988 struct inpcb
*inp
, **inp_list
;
993 * The process of preparing the TCB list is too time-consuming and
994 * resource-intensive to repeat twice on every request.
996 if (req
->oldptr
== 0) {
997 n
= tcbinfo
.ipi_count
;
998 req
->oldidx
= 2 * (sizeof xig
)
999 + (n
+ n
/8) * sizeof(struct xtcpcb
);
1003 if (req
->newptr
!= 0)
1007 * OK, now we're committed to doing something.
1010 gencnt
= tcbinfo
.ipi_gencnt
;
1011 n
= tcbinfo
.ipi_count
;
1014 xig
.xig_len
= sizeof xig
;
1016 xig
.xig_gen
= gencnt
;
1017 xig
.xig_sogen
= so_gencnt
;
1018 error
= SYSCTL_OUT(req
, &xig
, sizeof xig
);
1022 * We are done if there is no pcb
1027 inp_list
= _MALLOC(n
* sizeof *inp_list
, M_TEMP
, M_WAITOK
);
1032 for (inp
= LIST_FIRST(tcbinfo
.listhead
), i
= 0; inp
&& i
< n
;
1033 inp
= LIST_NEXT(inp
, inp_list
)) {
1035 if (inp
->inp_gencnt
<= gencnt
)
1037 if (inp
->inp_gencnt
<= gencnt
&& !prison_xinpcb(req
->p
, inp
))
1039 inp_list
[i
++] = inp
;
1045 for (i
= 0; i
< n
; i
++) {
1047 if (inp
->inp_gencnt
<= gencnt
) {
1050 xt
.xt_len
= sizeof xt
;
1051 /* XXX should avoid extra copy */
1052 bcopy(inp
, &xt
.xt_inp
, sizeof *inp
);
1053 inp_ppcb
= inp
->inp_ppcb
;
1054 if (inp_ppcb
!= NULL
)
1055 bcopy(inp_ppcb
, &xt
.xt_tp
, sizeof xt
.xt_tp
);
1057 bzero((char *) &xt
.xt_tp
, sizeof xt
.xt_tp
);
1058 if (inp
->inp_socket
)
1059 sotoxsocket(inp
->inp_socket
, &xt
.xt_socket
);
1060 error
= SYSCTL_OUT(req
, &xt
, sizeof xt
);
1065 * Give the user an updated idea of our state.
1066 * If the generation differs from what we told
1067 * her before, she knows that something happened
1068 * while we were processing this request, and it
1069 * might be necessary to retry.
1072 xig
.xig_gen
= tcbinfo
.ipi_gencnt
;
1073 xig
.xig_sogen
= so_gencnt
;
1074 xig
.xig_count
= tcbinfo
.ipi_count
;
1076 error
= SYSCTL_OUT(req
, &xig
, sizeof xig
);
1078 FREE(inp_list
, M_TEMP
);
1082 SYSCTL_PROC(_net_inet_tcp
, TCPCTL_PCBLIST
, pcblist
, CTLFLAG_RD
, 0, 0,
1083 tcp_pcblist
, "S,xtcpcb", "List of active TCP connections");
1087 tcp_getcred(SYSCTL_HANDLER_ARGS
)
1089 struct sockaddr_in addrs
[2];
1093 error
= suser(req
->p
);
1096 error
= SYSCTL_IN(req
, addrs
, sizeof(addrs
));
1100 inp
= in_pcblookup_hash(&tcbinfo
, addrs
[1].sin_addr
, addrs
[1].sin_port
,
1101 addrs
[0].sin_addr
, addrs
[0].sin_port
, 0, NULL
);
1102 if (inp
== NULL
|| inp
->inp_socket
== NULL
) {
1106 error
= SYSCTL_OUT(req
, inp
->inp_socket
->so_cred
, sizeof(struct ucred
));
1112 SYSCTL_PROC(_net_inet_tcp
, OID_AUTO
, getcred
, CTLTYPE_OPAQUE
|CTLFLAG_RW
,
1113 0, 0, tcp_getcred
, "S,ucred", "Get the ucred of a TCP connection");
1117 tcp6_getcred(SYSCTL_HANDLER_ARGS
)
1119 struct sockaddr_in6 addrs
[2];
1121 int error
, s
, mapped
= 0;
1123 error
= suser(req
->p
);
1126 error
= SYSCTL_IN(req
, addrs
, sizeof(addrs
));
1129 if (IN6_IS_ADDR_V4MAPPED(&addrs
[0].sin6_addr
)) {
1130 if (IN6_IS_ADDR_V4MAPPED(&addrs
[1].sin6_addr
))
1137 inp
= in_pcblookup_hash(&tcbinfo
,
1138 *(struct in_addr
*)&addrs
[1].sin6_addr
.s6_addr
[12],
1140 *(struct in_addr
*)&addrs
[0].sin6_addr
.s6_addr
[12],
1144 inp
= in6_pcblookup_hash(&tcbinfo
, &addrs
[1].sin6_addr
,
1146 &addrs
[0].sin6_addr
, addrs
[0].sin6_port
,
1148 if (inp
== NULL
|| inp
->inp_socket
== NULL
) {
1152 error
= SYSCTL_OUT(req
, inp
->inp_socket
->so_cred
,
1153 sizeof(struct ucred
));
1159 SYSCTL_PROC(_net_inet6_tcp6
, OID_AUTO
, getcred
, CTLTYPE_OPAQUE
|CTLFLAG_RW
,
1161 tcp6_getcred
, "S,ucred", "Get the ucred of a TCP6 connection");
1163 #endif /* __APPLE__*/
1166 tcp_ctlinput(cmd
, sa
, vip
)
1168 struct sockaddr
*sa
;
1171 struct ip
*ip
= vip
;
1173 struct in_addr faddr
;
1176 void (*notify
) __P((struct inpcb
*, int)) = tcp_notify
;
1180 faddr
= ((struct sockaddr_in
*)sa
)->sin_addr
;
1181 if (sa
->sa_family
!= AF_INET
|| faddr
.s_addr
== INADDR_ANY
)
1184 if (cmd
== PRC_QUENCH
)
1185 notify
= tcp_quench
;
1186 else if (icmp_may_rst
&& (cmd
== PRC_UNREACH_ADMIN_PROHIB
||
1187 cmd
== PRC_UNREACH_PORT
) && ip
)
1188 notify
= tcp_drop_syn_sent
;
1189 else if (cmd
== PRC_MSGSIZE
)
1190 notify
= tcp_mtudisc
;
1191 else if (PRC_IS_REDIRECT(cmd
)) {
1193 notify
= in_rtchange
;
1194 } else if (cmd
== PRC_HOSTDEAD
)
1196 else if ((unsigned)cmd
> PRC_NCMDS
|| inetctlerrmap
[cmd
] == 0)
1200 th
= (struct tcphdr
*)((caddr_t
)ip
1201 + (IP_VHL_HL(ip
->ip_vhl
) << 2));
1202 inp
= in_pcblookup_hash(&tcbinfo
, faddr
, th
->th_dport
,
1203 ip
->ip_src
, th
->th_sport
, 0, NULL
);
1204 if (inp
!= NULL
&& inp
->inp_socket
!= NULL
) {
1205 icmp_seq
= htonl(th
->th_seq
);
1206 tp
= intotcpcb(inp
);
1207 if (SEQ_GEQ(icmp_seq
, tp
->snd_una
) &&
1208 SEQ_LT(icmp_seq
, tp
->snd_max
))
1209 (*notify
)(inp
, inetctlerrmap
[cmd
]);
1213 in_pcbnotifyall(&tcb
, faddr
, inetctlerrmap
[cmd
], notify
);
1218 tcp6_ctlinput(cmd
, sa
, d
)
1220 struct sockaddr
*sa
;
1224 void (*notify
) __P((struct inpcb
*, int)) = tcp_notify
;
1225 struct ip6_hdr
*ip6
;
1227 struct ip6ctlparam
*ip6cp
= NULL
;
1228 const struct sockaddr_in6
*sa6_src
= NULL
;
1230 struct tcp_portonly
{
1235 if (sa
->sa_family
!= AF_INET6
||
1236 sa
->sa_len
!= sizeof(struct sockaddr_in6
))
1239 if (cmd
== PRC_QUENCH
)
1240 notify
= tcp_quench
;
1241 else if (cmd
== PRC_MSGSIZE
)
1242 notify
= tcp_mtudisc
;
1243 else if (!PRC_IS_REDIRECT(cmd
) &&
1244 ((unsigned)cmd
> PRC_NCMDS
|| inet6ctlerrmap
[cmd
] == 0))
1247 /* if the parameter is from icmp6, decode it. */
1249 ip6cp
= (struct ip6ctlparam
*)d
;
1251 ip6
= ip6cp
->ip6c_ip6
;
1252 off
= ip6cp
->ip6c_off
;
1253 sa6_src
= ip6cp
->ip6c_src
;
1257 off
= 0; /* fool gcc */
1263 * XXX: We assume that when IPV6 is non NULL,
1264 * M and OFF are valid.
1267 /* check if we can safely examine src and dst ports */
1268 if (m
->m_pkthdr
.len
< off
+ sizeof(*thp
))
1271 bzero(&th
, sizeof(th
));
1272 m_copydata(m
, off
, sizeof(*thp
), (caddr_t
)&th
);
1274 in6_pcbnotify(&tcb
, sa
, th
.th_dport
,
1275 (struct sockaddr
*)ip6cp
->ip6c_src
,
1276 th
.th_sport
, cmd
, notify
);
1278 in6_pcbnotify(&tcb
, sa
, 0, (struct sockaddr
*)sa6_src
,
1285 * Following is where TCP initial sequence number generation occurs.
1287 * There are two places where we must use initial sequence numbers:
1288 * 1. In SYN-ACK packets.
1289 * 2. In SYN packets.
1291 * The ISNs in SYN-ACK packets have no monotonicity requirement,
1292 * and should be as unpredictable as possible to avoid the possibility
1293 * of spoofing and/or connection hijacking. To satisfy this
1294 * requirement, SYN-ACK ISNs are generated via the arc4random()
1295 * function. If exact RFC 1948 compliance is requested via sysctl,
1296 * these ISNs will be generated just like those in SYN packets.
1298 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1299 * depends on this property. In addition, these ISNs should be
1300 * unguessable so as to prevent connection hijacking. To satisfy
1301 * the requirements of this situation, the algorithm outlined in
1302 * RFC 1948 is used to generate sequence numbers.
1304 * For more information on the theory of operation, please see
1307 * Implementation details:
1309 * Time is based off the system timer, and is corrected so that it
1310 * increases by one megabyte per second. This allows for proper
1311 * recycling on high speed LANs while still leaving over an hour
1314 * Two sysctls control the generation of ISNs:
1316 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1317 * between seeding of isn_secret. This is normally set to zero,
1318 * as reseeding should not be necessary.
1320 * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
1321 * strictly. When strict compliance is requested, reseeding is
1322 * disabled and SYN-ACKs will be generated in the same manner as
1323 * SYNs. Strict mode is disabled by default.
1327 #define ISN_BYTES_PER_SECOND 1048576
1329 u_char isn_secret
[32];
1330 int isn_last_reseed
;
1337 u_int32_t md5_buffer
[4];
1339 struct timeval time
;
1341 /* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
1342 if (((tp
->t_state
== TCPS_LISTEN
) || (tp
->t_state
== TCPS_TIME_WAIT
))
1343 && tcp_strict_rfc1948
== 0)
1347 return arc4random();
1350 /* Seed if this is the first use, reseed if requested. */
1351 if ((isn_last_reseed
== 0) ||
1352 ((tcp_strict_rfc1948
== 0) && (tcp_isn_reseed_interval
> 0) &&
1353 (((u_int
)isn_last_reseed
+ (u_int
)tcp_isn_reseed_interval
*hz
)
1354 < (u_int
)time
.tv_sec
))) {
1356 read_random(&isn_secret
, sizeof(isn_secret
));
1358 read_random_unlimited(&isn_secret
, sizeof(isn_secret
));
1360 isn_last_reseed
= time
.tv_sec
;
1363 /* Compute the md5 hash and return the ISN. */
1365 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_fport
, sizeof(u_short
));
1366 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_lport
, sizeof(u_short
));
1368 if ((tp
->t_inpcb
->inp_vflag
& INP_IPV6
) != 0) {
1369 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->in6p_faddr
,
1370 sizeof(struct in6_addr
));
1371 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->in6p_laddr
,
1372 sizeof(struct in6_addr
));
1376 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_faddr
,
1377 sizeof(struct in_addr
));
1378 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_laddr
,
1379 sizeof(struct in_addr
));
1381 MD5Update(&isn_ctx
, (u_char
*) &isn_secret
, sizeof(isn_secret
));
1382 MD5Final((u_char
*) &md5_buffer
, &isn_ctx
);
1383 new_isn
= (tcp_seq
) md5_buffer
[0];
1384 new_isn
+= time
.tv_sec
* (ISN_BYTES_PER_SECOND
/ hz
);
1389 * When a source quench is received, close congestion window
1390 * to one segment. We will gradually open it again as we proceed.
1393 tcp_quench(inp
, errno
)
1397 struct tcpcb
*tp
= intotcpcb(inp
);
1400 tp
->snd_cwnd
= tp
->t_maxseg
;
1404 * When a specific ICMP unreachable message is received and the
1405 * connection state is SYN-SENT, drop the connection. This behavior
1406 * is controlled by the icmp_may_rst sysctl.
1409 tcp_drop_syn_sent(inp
, errno
)
1413 struct tcpcb
*tp
= intotcpcb(inp
);
1415 if (tp
&& tp
->t_state
== TCPS_SYN_SENT
)
1416 tcp_drop(tp
, errno
);
1420 * When `need fragmentation' ICMP is received, update our idea of the MSS
1421 * based on the new value in the route. Also nudge TCP to send something,
1422 * since we know the packet we just sent was dropped.
1423 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1426 tcp_mtudisc(inp
, errno
)
1430 struct tcpcb
*tp
= intotcpcb(inp
);
1432 struct rmxp_tao
*taop
;
1433 struct socket
*so
= inp
->inp_socket
;
1437 int isipv6
= (tp
->t_inpcb
->inp_vflag
& INP_IPV6
) != 0;
1443 rt
= tcp_rtlookup6(inp
);
1446 rt
= tcp_rtlookup(inp
);
1447 if (!rt
|| !rt
->rt_rmx
.rmx_mtu
) {
1448 tp
->t_maxopd
= tp
->t_maxseg
=
1450 isipv6
? tcp_v6mssdflt
:
1455 taop
= rmx_taop(rt
->rt_rmx
);
1456 offered
= taop
->tao_mssopt
;
1457 mss
= rt
->rt_rmx
.rmx_mtu
-
1460 sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
) :
1462 sizeof(struct tcpiphdr
)
1469 mss
= min(mss
, offered
);
1471 * XXX - The above conditional probably violates the TCP
1472 * spec. The problem is that, since we don't know the
1473 * other end's MSS, we are supposed to use a conservative
1474 * default. But, if we do that, then MTU discovery will
1475 * never actually take place, because the conservative
1476 * default is much less than the MTUs typically seen
1477 * on the Internet today. For the moment, we'll sweep
1478 * this under the carpet.
1480 * The conservative default might not actually be a problem
1481 * if the only case this occurs is when sending an initial
1482 * SYN with options and data to a host we've never talked
1483 * to before. Then, they will reply with an MSS value which
1484 * will get recorded and the new parameters should get
1485 * recomputed. For Further Study.
1487 if (tp
->t_maxopd
<= mss
)
1491 if ((tp
->t_flags
& (TF_REQ_TSTMP
|TF_NOOPT
)) == TF_REQ_TSTMP
&&
1492 (tp
->t_flags
& TF_RCVD_TSTMP
) == TF_RCVD_TSTMP
)
1493 mss
-= TCPOLEN_TSTAMP_APPA
;
1494 if ((tp
->t_flags
& (TF_REQ_CC
|TF_NOOPT
)) == TF_REQ_CC
&&
1495 (tp
->t_flags
& TF_RCVD_CC
) == TF_RCVD_CC
)
1496 mss
-= TCPOLEN_CC_APPA
;
1498 if (so
->so_snd
.sb_hiwat
< mss
)
1499 mss
= so
->so_snd
.sb_hiwat
;
1503 tcpstat
.tcps_mturesent
++;
1505 tp
->snd_nxt
= tp
->snd_una
;
1511 * Look-up the routing entry to the peer of this inpcb. If no route
1512 * is found and it cannot be allocated the return NULL. This routine
1513 * is called by TCP routines that access the rmx structure and by tcp_mss
1514 * to get the interface MTU.
1523 ro
= &inp
->inp_route
;
1527 if (rt
== NULL
|| !(rt
->rt_flags
& RTF_UP
) || rt
->generation_id
!= route_generation
) {
1528 /* No route yet, so try to acquire one */
1529 if (inp
->inp_faddr
.s_addr
!= INADDR_ANY
) {
1530 ro
->ro_dst
.sa_family
= AF_INET
;
1531 ro
->ro_dst
.sa_len
= sizeof(struct sockaddr_in
);
1532 ((struct sockaddr_in
*) &ro
->ro_dst
)->sin_addr
=
1546 struct route_in6
*ro6
;
1549 ro6
= &inp
->in6p_route
;
1551 if (rt
== NULL
|| !(rt
->rt_flags
& RTF_UP
)) {
1552 /* No route yet, so try to acquire one */
1553 if (!IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_faddr
)) {
1554 struct sockaddr_in6
*dst6
;
1556 dst6
= (struct sockaddr_in6
*)&ro6
->ro_dst
;
1557 dst6
->sin6_family
= AF_INET6
;
1558 dst6
->sin6_len
= sizeof(*dst6
);
1559 dst6
->sin6_addr
= inp
->in6p_faddr
;
1560 rtalloc((struct route
*)ro6
);
1569 /* compute ESP/AH header size for TCP, including outer IP header. */
1571 ipsec_hdrsiz_tcp(tp
)
1579 struct ip6_hdr
*ip6
= NULL
;
1583 if ((tp
== NULL
) || ((inp
= tp
->t_inpcb
) == NULL
))
1585 MGETHDR(m
, M_DONTWAIT
, MT_DATA
);
1590 if ((inp
->inp_vflag
& INP_IPV6
) != 0) {
1591 ip6
= mtod(m
, struct ip6_hdr
*);
1592 th
= (struct tcphdr
*)(ip6
+ 1);
1593 m
->m_pkthdr
.len
= m
->m_len
=
1594 sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
);
1595 tcp_fillheaders(tp
, ip6
, th
);
1596 hdrsiz
= ipsec6_hdrsiz(m
, IPSEC_DIR_OUTBOUND
, inp
);
1600 ip
= mtod(m
, struct ip
*);
1601 th
= (struct tcphdr
*)(ip
+ 1);
1602 m
->m_pkthdr
.len
= m
->m_len
= sizeof(struct tcpiphdr
);
1603 tcp_fillheaders(tp
, ip
, th
);
1604 hdrsiz
= ipsec4_hdrsiz(m
, IPSEC_DIR_OUTBOUND
, inp
);
1613 * Return a pointer to the cached information about the remote host.
1614 * The cached information is stored in the protocol specific part of
1615 * the route metrics.
1618 tcp_gettaocache(inp
)
1624 if ((inp
->inp_vflag
& INP_IPV6
) != 0)
1625 rt
= tcp_rtlookup6(inp
);
1628 rt
= tcp_rtlookup(inp
);
1630 /* Make sure this is a host route and is up. */
1632 (rt
->rt_flags
& (RTF_UP
|RTF_HOST
)) != (RTF_UP
|RTF_HOST
))
1635 return rmx_taop(rt
->rt_rmx
);
1639 * Clear all the TAO cache entries, called from tcp_init.
1642 * This routine is just an empty one, because we assume that the routing
1643 * routing tables are initialized at the same time when TCP, so there is
1644 * nothing in the cache left over.