]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/uipc_socket2.c
xnu-124.13.tar.gz
[apple/xnu.git] / bsd / kern / uipc_socket2.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 /* Copyright (c) 1998, 1999 Apple Computer, Inc. All Rights Reserved */
23 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
24 /*
25 * Copyright (c) 1982, 1986, 1988, 1990, 1993
26 * The Regents of the University of California. All rights reserved.
27 *
28 * Redistribution and use in source and binary forms, with or without
29 * modification, are permitted provided that the following conditions
30 * are met:
31 * 1. Redistributions of source code must retain the above copyright
32 * notice, this list of conditions and the following disclaimer.
33 * 2. Redistributions in binary form must reproduce the above copyright
34 * notice, this list of conditions and the following disclaimer in the
35 * documentation and/or other materials provided with the distribution.
36 * 3. All advertising materials mentioning features or use of this software
37 * must display the following acknowledgement:
38 * This product includes software developed by the University of
39 * California, Berkeley and its contributors.
40 * 4. Neither the name of the University nor the names of its contributors
41 * may be used to endorse or promote products derived from this software
42 * without specific prior written permission.
43 *
44 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
45 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
46 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
47 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
48 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
49 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
50 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
51 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
52 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
53 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
54 * SUCH DAMAGE.
55 *
56 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
57 */
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/domain.h>
62 #include <sys/kernel.h>
63 #include <sys/proc.h>
64 #include <sys/malloc.h>
65 #include <sys/mbuf.h>
66 #include <sys/protosw.h>
67 #include <sys/stat.h>
68 #include <sys/socket.h>
69 #include <sys/socketvar.h>
70 #include <sys/signalvar.h>
71 #include <sys/sysctl.h>
72 #include <sys/ev.h>
73
74 /*
75 * Primitive routines for operating on sockets and socket buffers
76 */
77
78 u_long sb_max = SB_MAX; /* XXX should be static */
79
80 static u_long sb_efficiency = 8; /* parameter for sbreserve() */
81
82 char netcon[] = "netcon";
83
84 /*
85 * Procedures to manipulate state flags of socket
86 * and do appropriate wakeups. Normal sequence from the
87 * active (originating) side is that soisconnecting() is
88 * called during processing of connect() call,
89 * resulting in an eventual call to soisconnected() if/when the
90 * connection is established. When the connection is torn down
91 * soisdisconnecting() is called during processing of disconnect() call,
92 * and soisdisconnected() is called when the connection to the peer
93 * is totally severed. The semantics of these routines are such that
94 * connectionless protocols can call soisconnected() and soisdisconnected()
95 * only, bypassing the in-progress calls when setting up a ``connection''
96 * takes no time.
97 *
98 * From the passive side, a socket is created with
99 * two queues of sockets: so_incomp for connections in progress
100 * and so_comp for connections already made and awaiting user acceptance.
101 * As a protocol is preparing incoming connections, it creates a socket
102 * structure queued on so_incomp by calling sonewconn(). When the connection
103 * is established, soisconnected() is called, and transfers the
104 * socket structure to so_comp, making it available to accept().
105 *
106 * If a socket is closed with sockets on either
107 * so_incomp or so_comp, these sockets are dropped.
108 *
109 * If higher level protocols are implemented in
110 * the kernel, the wakeups done here will sometimes
111 * cause software-interrupt process scheduling.
112 */
113
114 void
115 soisconnecting(so)
116 register struct socket *so;
117 {
118
119 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
120 so->so_state |= SS_ISCONNECTING;
121 }
122
123 void
124 soisconnected(so)
125 register struct socket *so;
126 { register struct kextcb *kp;
127 register struct socket *head = so->so_head;
128
129 kp = sotokextcb(so);
130 while (kp)
131 { if (kp->e_soif && kp->e_soif->sf_soisconnected)
132 { if ((*kp->e_soif->sf_soisconnected)(so, kp))
133 return;
134 }
135 kp = kp->e_next;
136 }
137
138 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
139 so->so_state |= SS_ISCONNECTED;
140 if (head && (so->so_state & SS_INCOMP)) {
141 postevent(head,0,EV_RCONN);
142 TAILQ_REMOVE(&head->so_incomp, so, so_list);
143 head->so_incqlen--;
144 so->so_state &= ~SS_INCOMP;
145 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
146 so->so_state |= SS_COMP;
147 sorwakeup(head);
148 wakeup((caddr_t)&head->so_timeo);
149 } else {
150 postevent(so,0,EV_WCONN);
151 wakeup((caddr_t)&so->so_timeo);
152 sorwakeup(so);
153 sowwakeup(so);
154 }
155 }
156
157 void
158 soisdisconnecting(so)
159 register struct socket *so;
160 { register struct kextcb *kp;
161
162 kp = sotokextcb(so);
163 while (kp)
164 { if (kp->e_soif && kp->e_soif->sf_soisdisconnecting)
165 { if ((*kp->e_soif->sf_soisdisconnecting)(so, kp))
166 return;
167 }
168 kp = kp->e_next;
169 }
170
171 so->so_state &= ~SS_ISCONNECTING;
172 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
173 wakeup((caddr_t)&so->so_timeo);
174 sowwakeup(so);
175 sorwakeup(so);
176 }
177
178 void
179 soisdisconnected(so)
180 register struct socket *so;
181 { register struct kextcb *kp;
182
183 kp = sotokextcb(so);
184 while (kp)
185 { if (kp->e_soif && kp->e_soif->sf_soisdisconnected)
186 { if ((*kp->e_soif->sf_soisdisconnected)(so, kp))
187 return;
188 }
189 kp = kp->e_next;
190 }
191
192 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
193 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
194 wakeup((caddr_t)&so->so_timeo);
195 sowwakeup(so);
196 sorwakeup(so);
197 }
198
199 /*
200 * Return a random connection that hasn't been serviced yet and
201 * is eligible for discard. There is a one in qlen chance that
202 * we will return a null, saying that there are no dropable
203 * requests. In this case, the protocol specific code should drop
204 * the new request. This insures fairness.
205 *
206 * This may be used in conjunction with protocol specific queue
207 * congestion routines.
208 */
209 struct socket *
210 sodropablereq(head)
211 register struct socket *head;
212 {
213 register struct socket *so;
214 unsigned int i, j, qlen;
215 static int rnd;
216 static struct timeval old_runtime;
217 static unsigned int cur_cnt, old_cnt;
218 struct timeval tv;
219
220 microtime(&tv);
221 if ((i = (tv.tv_sec - old_runtime.tv_sec)) != 0) {
222 old_runtime = tv;
223 old_cnt = cur_cnt / i;
224 cur_cnt = 0;
225 }
226
227 so = TAILQ_FIRST(&head->so_incomp);
228 if (!so)
229 return (so);
230
231 qlen = head->so_incqlen;
232 if (++cur_cnt > qlen || old_cnt > qlen) {
233 rnd = (314159 * rnd + 66329) & 0xffff;
234 j = ((qlen + 1) * rnd) >> 16;
235
236 while (j-- && so)
237 so = TAILQ_NEXT(so, so_list);
238 }
239
240 return (so);
241 }
242
243 /*
244 * When an attempt at a new connection is noted on a socket
245 * which accepts connections, sonewconn is called. If the
246 * connection is possible (subject to space constraints, etc.)
247 * then we allocate a new structure, propoerly linked into the
248 * data structure of the original socket, and return this.
249 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
250 */
251 struct socket *
252 sonewconn(head, connstatus)
253 register struct socket *head;
254 int connstatus;
255 { int error = 0;
256 register struct socket *so;
257 register struct kextcb *kp;
258
259 if (head->so_qlen > 3 * head->so_qlimit / 2)
260 return ((struct socket *)0);
261 so = soalloc(0, head->so_proto->pr_domain->dom_family, head->so_type);
262 if (so == NULL)
263 return ((struct socket *)0);
264
265 kp = sotokextcb(so);
266 while (kp)
267 { if (kp->e_soif && kp->e_soif->sf_sonewconn1)
268 { if ((*kp->e_soif->sf_sonewconn1)(so, connstatus, kp))
269 return;
270 }
271 kp = kp->e_next;
272 }
273
274 so->so_head = head;
275 so->so_type = head->so_type;
276 so->so_options = head->so_options &~ SO_ACCEPTCONN;
277 so->so_linger = head->so_linger;
278 so->so_state = head->so_state | SS_NOFDREF;
279 so->so_proto = head->so_proto;
280 so->so_timeo = head->so_timeo;
281 so->so_pgid = head->so_pgid;
282 so->so_uid = head->so_uid;
283 so->so_rcv.sb_flags |= SB_RECV; /* XXX */
284 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
285
286 if (so->so_proto->pr_sfilter.tqh_first)
287 error = sfilter_init(so);
288 if (error == 0 && (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
289 sfilter_term(so);
290 sodealloc(so);
291 return ((struct socket *)0);
292 }
293 so->so_proto->pr_domain->dom_refs++;
294
295 if (connstatus) {
296 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
297 so->so_state |= SS_COMP;
298 } else {
299 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
300 so->so_state |= SS_INCOMP;
301 head->so_incqlen++;
302 }
303 head->so_qlen++;
304 if (connstatus) {
305 sorwakeup(head);
306 wakeup((caddr_t)&head->so_timeo);
307 so->so_state |= connstatus;
308 }
309 so->so_rcv.sb_so = so->so_snd.sb_so = so;
310 TAILQ_INIT(&so->so_evlist);
311 return (so);
312 }
313
314 /*
315 * Socantsendmore indicates that no more data will be sent on the
316 * socket; it would normally be applied to a socket when the user
317 * informs the system that no more data is to be sent, by the protocol
318 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
319 * will be received, and will normally be applied to the socket by a
320 * protocol when it detects that the peer will send no more data.
321 * Data queued for reading in the socket may yet be read.
322 */
323
324 void
325 socantsendmore(so)
326 struct socket *so;
327 { register struct kextcb *kp;
328
329 kp = sotokextcb(so);
330 while (kp)
331 { if (kp->e_soif && kp->e_soif->sf_socantsendmore)
332 { if ((*kp->e_soif->sf_socantsendmore)(so, kp))
333 return;
334 }
335 kp = kp->e_next;
336 }
337
338
339 so->so_state |= SS_CANTSENDMORE;
340 sowwakeup(so);
341 }
342
343 void
344 socantrcvmore(so)
345 struct socket *so;
346 { register struct kextcb *kp;
347
348 kp = sotokextcb(so);
349 while (kp)
350 { if (kp->e_soif && kp->e_soif->sf_socantrcvmore)
351 { if ((*kp->e_soif->sf_socantrcvmore)(so, kp))
352 return;
353 }
354 kp = kp->e_next;
355 }
356
357
358 so->so_state |= SS_CANTRCVMORE;
359 sorwakeup(so);
360 }
361
362 /*
363 * Wait for data to arrive at/drain from a socket buffer.
364 */
365 int
366 sbwait(sb)
367 struct sockbuf *sb;
368 {
369
370 sb->sb_flags |= SB_WAIT;
371 return (tsleep((caddr_t)&sb->sb_cc,
372 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
373 sb->sb_timeo));
374 }
375
376 /*
377 * Lock a sockbuf already known to be locked;
378 * return any error returned from sleep (EINTR).
379 */
380 int
381 sb_lock(sb)
382 register struct sockbuf *sb;
383 {
384 int error;
385
386 while (sb->sb_flags & SB_LOCK) {
387 sb->sb_flags |= SB_WANT;
388 error = tsleep((caddr_t)&sb->sb_flags,
389 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
390 "sblock", 0);
391 if (error)
392 return (error);
393 }
394 sb->sb_flags |= SB_LOCK;
395 return (0);
396 }
397
398 /*
399 * Wakeup processes waiting on a socket buffer.
400 * Do asynchronous notification via SIGIO
401 * if the socket has the SS_ASYNC flag set.
402 */
403 void
404 sowakeup(so, sb)
405 register struct socket *so;
406 register struct sockbuf *sb;
407 {
408 struct proc *p = current_proc();
409
410
411
412 thread_funnel_switch(NETWORK_FUNNEL, KERNEL_FUNNEL);
413 sb->sb_sel.si_flags &= ~SI_SBSEL;
414 selwakeup(&sb->sb_sel);
415 thread_funnel_switch(KERNEL_FUNNEL, NETWORK_FUNNEL);
416
417 if (sb->sb_flags & SB_WAIT) {
418 sb->sb_flags &= ~SB_WAIT;
419 wakeup((caddr_t)&sb->sb_cc);
420 }
421 if (so->so_state & SS_ASYNC) {
422 if (so->so_pgid < 0)
423 gsignal(-so->so_pgid, SIGIO);
424 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
425 psignal(p, SIGIO);
426 }
427
428 if (sb->sb_flags & SB_UPCALL)
429 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
430 }
431
432 /*
433 * Socket buffer (struct sockbuf) utility routines.
434 *
435 * Each socket contains two socket buffers: one for sending data and
436 * one for receiving data. Each buffer contains a queue of mbufs,
437 * information about the number of mbufs and amount of data in the
438 * queue, and other fields allowing select() statements and notification
439 * on data availability to be implemented.
440 *
441 * Data stored in a socket buffer is maintained as a list of records.
442 * Each record is a list of mbufs chained together with the m_next
443 * field. Records are chained together with the m_nextpkt field. The upper
444 * level routine soreceive() expects the following conventions to be
445 * observed when placing information in the receive buffer:
446 *
447 * 1. If the protocol requires each message be preceded by the sender's
448 * name, then a record containing that name must be present before
449 * any associated data (mbuf's must be of type MT_SONAME).
450 * 2. If the protocol supports the exchange of ``access rights'' (really
451 * just additional data associated with the message), and there are
452 * ``rights'' to be received, then a record containing this data
453 * should be present (mbuf's must be of type MT_RIGHTS).
454 * 3. If a name or rights record exists, then it must be followed by
455 * a data record, perhaps of zero length.
456 *
457 * Before using a new socket structure it is first necessary to reserve
458 * buffer space to the socket, by calling sbreserve(). This should commit
459 * some of the available buffer space in the system buffer pool for the
460 * socket (currently, it does nothing but enforce limits). The space
461 * should be released by calling sbrelease() when the socket is destroyed.
462 */
463
464 int
465 soreserve(so, sndcc, rcvcc)
466 register struct socket *so;
467 u_long sndcc, rcvcc;
468 {
469 register struct kextcb *kp;
470
471 kp = sotokextcb(so);
472 while (kp)
473 { if (kp->e_soif && kp->e_soif->sf_soreserve)
474 { if ((*kp->e_soif->sf_soreserve)(so, sndcc, rcvcc, kp))
475 return;
476 }
477 kp = kp->e_next;
478 }
479
480 if (sbreserve(&so->so_snd, sndcc) == 0)
481 goto bad;
482 if (sbreserve(&so->so_rcv, rcvcc) == 0)
483 goto bad2;
484 if (so->so_rcv.sb_lowat == 0)
485 so->so_rcv.sb_lowat = 1;
486 if (so->so_snd.sb_lowat == 0)
487 so->so_snd.sb_lowat = MCLBYTES;
488 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
489 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
490 return (0);
491 bad2:
492 sbrelease(&so->so_snd);
493 bad:
494 return (ENOBUFS);
495 }
496
497 /*
498 * Allot mbufs to a sockbuf.
499 * Attempt to scale mbmax so that mbcnt doesn't become limiting
500 * if buffering efficiency is near the normal case.
501 */
502 int
503 sbreserve(sb, cc)
504 struct sockbuf *sb;
505 u_long cc;
506 {
507 if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES))
508 return (0);
509 sb->sb_hiwat = cc;
510 sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
511 if (sb->sb_lowat > sb->sb_hiwat)
512 sb->sb_lowat = sb->sb_hiwat;
513 return (1);
514 }
515
516 /*
517 * Free mbufs held by a socket, and reserved mbuf space.
518 */
519 void
520 sbrelease(sb)
521 struct sockbuf *sb;
522 {
523
524 sbflush(sb);
525 sb->sb_hiwat = sb->sb_mbmax = 0;
526
527 {
528 int oldpri = splimp();
529 selthreadclear(&sb->sb_sel);
530 splx(oldpri);
531 }
532 }
533
534 /*
535 * Routines to add and remove
536 * data from an mbuf queue.
537 *
538 * The routines sbappend() or sbappendrecord() are normally called to
539 * append new mbufs to a socket buffer, after checking that adequate
540 * space is available, comparing the function sbspace() with the amount
541 * of data to be added. sbappendrecord() differs from sbappend() in
542 * that data supplied is treated as the beginning of a new record.
543 * To place a sender's address, optional access rights, and data in a
544 * socket receive buffer, sbappendaddr() should be used. To place
545 * access rights and data in a socket receive buffer, sbappendrights()
546 * should be used. In either case, the new data begins a new record.
547 * Note that unlike sbappend() and sbappendrecord(), these routines check
548 * for the caller that there will be enough space to store the data.
549 * Each fails if there is not enough space, or if it cannot find mbufs
550 * to store additional information in.
551 *
552 * Reliable protocols may use the socket send buffer to hold data
553 * awaiting acknowledgement. Data is normally copied from a socket
554 * send buffer in a protocol with m_copy for output to a peer,
555 * and then removing the data from the socket buffer with sbdrop()
556 * or sbdroprecord() when the data is acknowledged by the peer.
557 */
558
559 /*
560 * Append mbuf chain m to the last record in the
561 * socket buffer sb. The additional space associated
562 * the mbuf chain is recorded in sb. Empty mbufs are
563 * discarded and mbufs are compacted where possible.
564 */
565 void
566 sbappend(sb, m)
567 struct sockbuf *sb;
568 struct mbuf *m;
569 { register struct kextcb *kp;
570 register struct mbuf *n;
571
572 if (m == 0)
573 return;
574 kp = sotokextcb(sbtoso(sb));
575 while (kp)
576 { if (kp->e_sout && kp->e_sout->su_sbappend)
577 { if ((*kp->e_sout->su_sbappend)(sb, m, kp))
578 return;
579 }
580 kp = kp->e_next;
581 }
582
583 if (n = sb->sb_mb) {
584 while (n->m_nextpkt)
585 n = n->m_nextpkt;
586 do {
587 if (n->m_flags & M_EOR) {
588 sbappendrecord(sb, m); /* XXXXXX!!!! */
589 return;
590 }
591 } while (n->m_next && (n = n->m_next));
592 }
593 sbcompress(sb, m, n);
594 }
595
596 #ifdef SOCKBUF_DEBUG
597 void
598 sbcheck(sb)
599 register struct sockbuf *sb;
600 {
601 register struct mbuf *m;
602 register struct mbuf *n = 0;
603 register u_long len = 0, mbcnt = 0;
604
605 for (m = sb->sb_mb; m; m = n) {
606 n = m->m_nextpkt;
607 for (; m; m = m->m_next) {
608 len += m->m_len;
609 mbcnt += MSIZE;
610 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
611 mbcnt += m->m_ext.ext_size;
612 if (m->m_nextpkt)
613 panic("sbcheck nextpkt");
614 }
615 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
616 printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
617 mbcnt, sb->sb_mbcnt);
618 panic("sbcheck");
619 }
620 }
621 #endif
622
623 /*
624 * As above, except the mbuf chain
625 * begins a new record.
626 */
627 void
628 sbappendrecord(sb, m0)
629 register struct sockbuf *sb;
630 register struct mbuf *m0;
631 {
632 register struct mbuf *m;
633 register struct kextcb *kp;
634
635 if (m0 == 0)
636 return;
637
638 kp = sotokextcb(sbtoso(sb));
639 while (kp)
640 { if (kp->e_sout && kp->e_sout->su_sbappendrecord)
641 { if ((*kp->e_sout->su_sbappendrecord)(sb, m0, kp))
642 return;
643 }
644 kp = kp->e_next;
645 }
646
647 m = sb->sb_mb;
648 if (m)
649 while (m->m_nextpkt)
650 m = m->m_nextpkt;
651 /*
652 * Put the first mbuf on the queue.
653 * Note this permits zero length records.
654 */
655 sballoc(sb, m0);
656 if (m)
657 m->m_nextpkt = m0;
658 else
659 sb->sb_mb = m0;
660 m = m0->m_next;
661 m0->m_next = 0;
662 if (m && (m0->m_flags & M_EOR)) {
663 m0->m_flags &= ~M_EOR;
664 m->m_flags |= M_EOR;
665 }
666 sbcompress(sb, m, m0);
667 }
668
669 /*
670 * As above except that OOB data
671 * is inserted at the beginning of the sockbuf,
672 * but after any other OOB data.
673 */
674 void
675 sbinsertoob(sb, m0)
676 register struct sockbuf *sb;
677 register struct mbuf *m0;
678 {
679 register struct mbuf *m;
680 register struct mbuf **mp;
681 register struct kextcb *kp;
682
683 if (m0 == 0)
684 return;
685
686 kp = sotokextcb(sbtoso(sb));
687 while (kp)
688 { if (kp->e_sout && kp->e_sout->su_sbinsertoob)
689 { if ((*kp->e_sout->su_sbinsertoob)(sb, m0, kp))
690 return;
691 }
692 kp = kp->e_next;
693 }
694
695 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
696 m = *mp;
697 again:
698 switch (m->m_type) {
699
700 case MT_OOBDATA:
701 continue; /* WANT next train */
702
703 case MT_CONTROL:
704 m = m->m_next;
705 if (m)
706 goto again; /* inspect THIS train further */
707 }
708 break;
709 }
710 /*
711 * Put the first mbuf on the queue.
712 * Note this permits zero length records.
713 */
714 sballoc(sb, m0);
715 m0->m_nextpkt = *mp;
716 *mp = m0;
717 m = m0->m_next;
718 m0->m_next = 0;
719 if (m && (m0->m_flags & M_EOR)) {
720 m0->m_flags &= ~M_EOR;
721 m->m_flags |= M_EOR;
722 }
723 sbcompress(sb, m, m0);
724 }
725
726 /*
727 * Append address and data, and optionally, control (ancillary) data
728 * to the receive queue of a socket. If present,
729 * m0 must include a packet header with total length.
730 * Returns 0 if no space in sockbuf or insufficient mbufs.
731 */
732 int
733 sbappendaddr(sb, asa, m0, control)
734 register struct sockbuf *sb;
735 struct sockaddr *asa;
736 struct mbuf *m0, *control;
737 {
738 register struct mbuf *m, *n;
739 int space = asa->sa_len;
740 register struct kextcb *kp;
741
742 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
743 panic("sbappendaddr");
744
745 kp = sotokextcb(sbtoso(sb));
746 while (kp)
747 { if (kp->e_sout && kp->e_sout->su_sbappendaddr)
748 { if ((*kp->e_sout->su_sbappendaddr)(sb, asa, m0, control, kp))
749 return 0;
750 }
751 kp = kp->e_next;
752 }
753
754 if (m0)
755 space += m0->m_pkthdr.len;
756 for (n = control; n; n = n->m_next) {
757 space += n->m_len;
758 if (n->m_next == 0) /* keep pointer to last control buf */
759 break;
760 }
761 if (space > sbspace(sb))
762 return (0);
763 if (asa->sa_len > MLEN)
764 return (0);
765 MGET(m, M_DONTWAIT, MT_SONAME);
766 if (m == 0)
767 return (0);
768 m->m_len = asa->sa_len;
769 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
770 if (n)
771 n->m_next = m0; /* concatenate data to control */
772 else
773 control = m0;
774 m->m_next = control;
775 for (n = m; n; n = n->m_next)
776 sballoc(sb, n);
777 n = sb->sb_mb;
778 if (n) {
779 while (n->m_nextpkt)
780 n = n->m_nextpkt;
781 n->m_nextpkt = m;
782 } else
783 sb->sb_mb = m;
784 postevent(0,sb,EV_RWBYTES);
785 return (1);
786 }
787
788 int
789 sbappendcontrol(sb, m0, control)
790 struct sockbuf *sb;
791 struct mbuf *control, *m0;
792 {
793 register struct mbuf *m, *n;
794 int space = 0;
795 register struct kextcb *kp;
796
797 if (control == 0)
798 panic("sbappendcontrol");
799
800 kp = sotokextcb(sbtoso(sb));
801 while (kp)
802 { if (kp->e_sout && kp->e_sout->su_sbappendcontrol)
803 { if ((*kp->e_sout->su_sbappendcontrol)(sb, m0, control, kp))
804 return 0;
805 }
806 kp = kp->e_next;
807 }
808
809 for (m = control; ; m = m->m_next) {
810 space += m->m_len;
811 if (m->m_next == 0)
812 break;
813 }
814 n = m; /* save pointer to last control buffer */
815 for (m = m0; m; m = m->m_next)
816 space += m->m_len;
817 if (space > sbspace(sb))
818 return (0);
819 n->m_next = m0; /* concatenate data to control */
820 for (m = control; m; m = m->m_next)
821 sballoc(sb, m);
822 n = sb->sb_mb;
823 if (n) {
824 while (n->m_nextpkt)
825 n = n->m_nextpkt;
826 n->m_nextpkt = control;
827 } else
828 sb->sb_mb = control;
829 postevent(0,sb,EV_RWBYTES);
830 return (1);
831 }
832
833 /*
834 * Compress mbuf chain m into the socket
835 * buffer sb following mbuf n. If n
836 * is null, the buffer is presumed empty.
837 */
838 void
839 sbcompress(sb, m, n)
840 register struct sockbuf *sb;
841 register struct mbuf *m, *n;
842 {
843 register int eor = 0;
844 register struct mbuf *o;
845
846 while (m) {
847 eor |= m->m_flags & M_EOR;
848 if (m->m_len == 0 &&
849 (eor == 0 ||
850 (((o = m->m_next) || (o = n)) &&
851 o->m_type == m->m_type))) {
852 m = m_free(m);
853 continue;
854 }
855 if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
856 (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
857 n->m_type == m->m_type) {
858 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
859 (unsigned)m->m_len);
860 n->m_len += m->m_len;
861 sb->sb_cc += m->m_len;
862 m = m_free(m);
863 continue;
864 }
865 if (n)
866 n->m_next = m;
867 else
868 sb->sb_mb = m;
869 sballoc(sb, m);
870 n = m;
871 m->m_flags &= ~M_EOR;
872 m = m->m_next;
873 n->m_next = 0;
874 }
875 if (eor) {
876 if (n)
877 n->m_flags |= eor;
878 else
879 printf("semi-panic: sbcompress\n");
880 }
881 postevent(0,sb, EV_RWBYTES);
882 }
883
884 /*
885 * Free all mbufs in a sockbuf.
886 * Check that all resources are reclaimed.
887 */
888 void
889 sbflush(sb)
890 register struct sockbuf *sb;
891 {
892 register struct kextcb *kp;
893
894 kp = sotokextcb(sbtoso(sb));
895 while (kp)
896 { if (kp->e_sout && kp->e_sout->su_sbflush)
897 { if ((*kp->e_sout->su_sbflush)(sb, kp))
898 return;
899 }
900 kp = kp->e_next;
901 }
902
903 if (sb->sb_flags & SB_LOCK)
904 panic("sbflush: locked");
905 while (sb->sb_mbcnt && sb->sb_cc)
906 sbdrop(sb, (int)sb->sb_cc);
907 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
908 panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
909 postevent(0, sb, EV_RWBYTES);
910 }
911
912 /*
913 * Drop data from (the front of) a sockbuf.
914 */
915 void
916 sbdrop(sb, len)
917 register struct sockbuf *sb;
918 register int len;
919 {
920 register struct mbuf *m, *mn;
921 struct mbuf *next;
922 register struct kextcb *kp;
923
924 kp = sotokextcb(sbtoso(sb));
925 while (kp)
926 { if (kp->e_sout && kp->e_sout->su_sbdrop)
927 { if ((*kp->e_sout->su_sbdrop)(sb, len, kp))
928 return;
929 }
930 kp = kp->e_next;
931 }
932
933 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
934 while (len > 0) {
935 if (m == 0) {
936 if (next == 0)
937 panic("sbdrop");
938 m = next;
939 next = m->m_nextpkt;
940 continue;
941 }
942 if (m->m_len > len) {
943 m->m_len -= len;
944 m->m_data += len;
945 sb->sb_cc -= len;
946 break;
947 }
948 len -= m->m_len;
949 sbfree(sb, m);
950 MFREE(m, mn);
951 m = mn;
952 }
953 while (m && m->m_len == 0) {
954 sbfree(sb, m);
955 MFREE(m, mn);
956 m = mn;
957 }
958 if (m) {
959 sb->sb_mb = m;
960 m->m_nextpkt = next;
961 } else
962 sb->sb_mb = next;
963 postevent(0, sb, EV_RWBYTES);
964 }
965
966 /*
967 * Drop a record off the front of a sockbuf
968 * and move the next record to the front.
969 */
970 void
971 sbdroprecord(sb)
972 register struct sockbuf *sb;
973 {
974 register struct mbuf *m, *mn;
975 register struct kextcb *kp;
976
977 kp = sotokextcb(sbtoso(sb));
978 while (kp)
979 { if (kp->e_sout && kp->e_sout->su_sbdroprecord)
980 { if ((*kp->e_sout->su_sbdroprecord)(sb, kp))
981 return;
982 }
983 kp = kp->e_next;
984 }
985
986 m = sb->sb_mb;
987 if (m) {
988 sb->sb_mb = m->m_nextpkt;
989 do {
990 sbfree(sb, m);
991 MFREE(m, mn);
992 } while (m = mn);
993 }
994 postevent(0, sb, EV_RWBYTES);
995 }
996
997 /*
998 * Create a "control" mbuf containing the specified data
999 * with the specified type for presentation on a socket buffer.
1000 */
1001 struct mbuf *
1002 sbcreatecontrol(p, size, type, level)
1003 caddr_t p;
1004 register int size;
1005 int type, level;
1006 {
1007 register struct cmsghdr *cp;
1008 struct mbuf *m;
1009
1010 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1011 return ((struct mbuf *) NULL);
1012 cp = mtod(m, struct cmsghdr *);
1013 /* XXX check size? */
1014 (void)memcpy(CMSG_DATA(cp), p, size);
1015 size += sizeof(*cp);
1016 m->m_len = size;
1017 cp->cmsg_len = size;
1018 cp->cmsg_level = level;
1019 cp->cmsg_type = type;
1020 return (m);
1021 }
1022
1023 /*
1024 * Some routines that return EOPNOTSUPP for entry points that are not
1025 * supported by a protocol. Fill in as needed.
1026 */
1027 int
1028 pru_abort_notsupp(struct socket *so)
1029 {
1030 return EOPNOTSUPP;
1031 }
1032
1033
1034 int
1035 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
1036 {
1037 return EOPNOTSUPP;
1038 }
1039
1040 int
1041 pru_attach_notsupp(struct socket *so, int proto, struct proc *p)
1042 {
1043 return EOPNOTSUPP;
1044 }
1045
1046 int
1047 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
1048 {
1049 return EOPNOTSUPP;
1050 }
1051
1052 int
1053 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
1054 {
1055 return EOPNOTSUPP;
1056 }
1057
1058 int
1059 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
1060 {
1061 return EOPNOTSUPP;
1062 }
1063
1064 int
1065 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
1066 struct ifnet *ifp, struct proc *p)
1067 {
1068 return EOPNOTSUPP;
1069 }
1070
1071 int
1072 pru_detach_notsupp(struct socket *so)
1073 {
1074 return EOPNOTSUPP;
1075 }
1076
1077 int
1078 pru_disconnect_notsupp(struct socket *so)
1079 {
1080 return EOPNOTSUPP;
1081 }
1082
1083 int
1084 pru_listen_notsupp(struct socket *so, struct proc *p)
1085 {
1086 return EOPNOTSUPP;
1087 }
1088
1089 int
1090 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
1091 {
1092 return EOPNOTSUPP;
1093 }
1094
1095 int
1096 pru_rcvd_notsupp(struct socket *so, int flags)
1097 {
1098 return EOPNOTSUPP;
1099 }
1100
1101 int
1102 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
1103 {
1104 return EOPNOTSUPP;
1105 }
1106
1107 int
1108 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
1109 struct sockaddr *addr, struct mbuf *control,
1110 struct proc *p)
1111
1112 {
1113 return EOPNOTSUPP;
1114 }
1115
1116
1117 /*
1118 * This isn't really a ``null'' operation, but it's the default one
1119 * and doesn't do anything destructive.
1120 */
1121 int
1122 pru_sense_null(struct socket *so, struct stat *sb)
1123 {
1124 sb->st_blksize = so->so_snd.sb_hiwat;
1125 return 0;
1126 }
1127
1128
1129 int pru_sosend_notsupp(struct socket *so, struct sockaddr *addr,
1130 struct uio *uio, struct mbuf *top,
1131 struct mbuf *control, int flags)
1132
1133 {
1134 return EOPNOTSUPP;
1135 }
1136
1137 int pru_soreceive_notsupp(struct socket *so,
1138 struct sockaddr **paddr,
1139 struct uio *uio, struct mbuf **mp0,
1140 struct mbuf **controlp, int *flagsp)
1141 {
1142 return EOPNOTSUPP;
1143 }
1144
1145 int
1146
1147 pru_shutdown_notsupp(struct socket *so)
1148 {
1149 return EOPNOTSUPP;
1150 }
1151
1152 int
1153 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
1154 {
1155 return EOPNOTSUPP;
1156 }
1157
1158 int pru_sosend(struct socket *so, struct sockaddr *addr,
1159 struct uio *uio, struct mbuf *top,
1160 struct mbuf *control, int flags)
1161 {
1162 return EOPNOTSUPP;
1163 }
1164
1165 int pru_soreceive(struct socket *so,
1166 struct sockaddr **paddr,
1167 struct uio *uio, struct mbuf **mp0,
1168 struct mbuf **controlp, int *flagsp)
1169 {
1170 return EOPNOTSUPP;
1171 }
1172
1173
1174 int pru_sopoll_notsupp(struct socket *so, int events,
1175 struct ucred *cred)
1176 {
1177 return EOPNOTSUPP;
1178 }
1179
1180
1181
1182 /*
1183 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
1184 */
1185 struct sockaddr *
1186 dup_sockaddr(sa, canwait)
1187 struct sockaddr *sa;
1188 int canwait;
1189 {
1190 struct sockaddr *sa2;
1191
1192 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
1193 canwait ? M_WAITOK : M_NOWAIT);
1194 if (sa2)
1195 bcopy(sa, sa2, sa->sa_len);
1196 return sa2;
1197 }
1198
1199 /*
1200 * Create an external-format (``xsocket'') structure using the information
1201 * in the kernel-format socket structure pointed to by so. This is done
1202 * to reduce the spew of irrelevant information over this interface,
1203 * to isolate user code from changes in the kernel structure, and
1204 * potentially to provide information-hiding if we decide that
1205 * some of this information should be hidden from users.
1206 */
1207 void
1208 sotoxsocket(struct socket *so, struct xsocket *xso)
1209 {
1210 xso->xso_len = sizeof *xso;
1211 xso->xso_so = so;
1212 xso->so_type = so->so_type;
1213 xso->so_options = so->so_options;
1214 xso->so_linger = so->so_linger;
1215 xso->so_state = so->so_state;
1216 xso->so_pcb = so->so_pcb;
1217 xso->xso_protocol = so->so_proto->pr_protocol;
1218 xso->xso_family = so->so_proto->pr_domain->dom_family;
1219 xso->so_qlen = so->so_qlen;
1220 xso->so_incqlen = so->so_incqlen;
1221 xso->so_qlimit = so->so_qlimit;
1222 xso->so_timeo = so->so_timeo;
1223 xso->so_error = so->so_error;
1224 xso->so_pgid = so->so_pgid;
1225 xso->so_oobmark = so->so_oobmark;
1226 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
1227 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
1228 xso->so_uid = so->so_uid;
1229 }
1230
1231 /*
1232 * This does the same for sockbufs. Note that the xsockbuf structure,
1233 * since it is always embedded in a socket, does not include a self
1234 * pointer nor a length. We make this entry point public in case
1235 * some other mechanism needs it.
1236 */
1237 void
1238 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1239 {
1240 xsb->sb_cc = sb->sb_cc;
1241 xsb->sb_hiwat = sb->sb_hiwat;
1242 xsb->sb_mbcnt = sb->sb_mbcnt;
1243 xsb->sb_mbmax = sb->sb_mbmax;
1244 xsb->sb_lowat = sb->sb_lowat;
1245 xsb->sb_flags = sb->sb_flags;
1246 xsb->sb_timeo = sb->sb_timeo;
1247 }
1248
1249 /*
1250 * Here is the definition of some of the basic objects in the kern.ipc
1251 * branch of the MIB.
1252 */
1253
1254
1255 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
1256
1257 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1258 static int dummy;
1259 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
1260
1261 SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, &sb_max, 0, "");
1262 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD, &maxsockets, 0, "");
1263 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1264 &sb_efficiency, 0, "");
1265 SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, CTLFLAG_RD, &nmbclusters, 0, "");
1266