]> git.saurik.com Git - apple/xnu.git/blob - osfmk/default_pager/dp_memory_object.c
xnu-1228.15.4.tar.gz
[apple/xnu.git] / osfmk / default_pager / dp_memory_object.c
1 /*
2 * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56
57 /*
58 * Default Pager.
59 * Memory Object Management.
60 */
61
62 #include "default_pager_internal.h"
63 #include <default_pager/default_pager_object_server.h>
64 #include <mach/memory_object_default_server.h>
65 #include <mach/memory_object_control.h>
66 #include <mach/memory_object_types.h>
67 #include <mach/memory_object_server.h>
68 #include <mach/upl.h>
69 #include <mach/vm_map.h>
70 #include <vm/memory_object.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_protos.h>
74
75 /* forward declaration */
76 vstruct_t vs_object_create(vm_size_t size);
77
78 /*
79 * List of all vstructs. A specific vstruct is
80 * found directly via its port, this list is
81 * only used for monitoring purposes by the
82 * default_pager_object* calls and by ps_delete
83 * when abstract memory objects must be scanned
84 * to remove any live storage on a segment which
85 * is to be removed.
86 */
87 struct vstruct_list_head vstruct_list;
88
89 __private_extern__ void
90 vstruct_list_insert(
91 vstruct_t vs)
92 {
93 VSL_LOCK();
94 queue_enter(&vstruct_list.vsl_queue, vs, vstruct_t, vs_links);
95 vstruct_list.vsl_count++;
96 VSL_UNLOCK();
97 }
98
99
100 __private_extern__ void
101 vstruct_list_delete(
102 vstruct_t vs)
103 {
104 queue_remove(&vstruct_list.vsl_queue, vs, vstruct_t, vs_links);
105 vstruct_list.vsl_count--;
106 }
107
108 /*
109 * We use the sequence numbers on requests to regulate
110 * our parallelism. In general, we allow multiple reads and writes
111 * to proceed in parallel, with the exception that reads must
112 * wait for previous writes to finish. (Because the kernel might
113 * generate a data-request for a page on the heels of a data-write
114 * for the same page, and we must avoid returning stale data.)
115 * terminate requests wait for proceeding reads and writes to finish.
116 */
117
118 static unsigned int default_pager_total = 0; /* debugging */
119 static unsigned int default_pager_wait_seqno = 0; /* debugging */
120 static unsigned int default_pager_wait_read = 0; /* debugging */
121 static unsigned int default_pager_wait_write = 0; /* debugging */
122
123 __private_extern__ void
124 vs_async_wait(
125 vstruct_t vs)
126 {
127
128 ASSERT(vs->vs_async_pending >= 0);
129 while (vs->vs_async_pending > 0) {
130 vs->vs_waiting_async = TRUE;
131 assert_wait(&vs->vs_async_pending, THREAD_UNINT);
132 VS_UNLOCK(vs);
133 thread_block(THREAD_CONTINUE_NULL);
134 VS_LOCK(vs);
135 }
136 ASSERT(vs->vs_async_pending == 0);
137 }
138
139
140 #if PARALLEL
141 /*
142 * Waits for correct sequence number. Leaves pager locked.
143 *
144 * JMM - Sequence numbers guarantee ordering of requests generated
145 * by a single thread if the receiver is multithreaded and
146 * the interfaces are asynchronous (i.e. sender can generate
147 * more than one request before the first is received in the
148 * pager). Normally, IPC would generate these number in that
149 * case. But we are trying to avoid using IPC for the in-kernel
150 * scenario. Since these are actually invoked synchronously
151 * anyway (in-kernel), we can just fake the sequence number
152 * generation here (thus avoiding the dependence on IPC).
153 */
154 __private_extern__ void
155 vs_lock(
156 vstruct_t vs)
157 {
158 mach_port_seqno_t seqno;
159
160 default_pager_total++;
161 VS_LOCK(vs);
162
163 seqno = vs->vs_next_seqno++;
164
165 while (vs->vs_seqno != seqno) {
166 default_pager_wait_seqno++;
167 vs->vs_waiting_seqno = TRUE;
168 assert_wait(&vs->vs_seqno, THREAD_UNINT);
169 VS_UNLOCK(vs);
170 thread_block(THREAD_CONTINUE_NULL);
171 VS_LOCK(vs);
172 }
173 }
174
175 /*
176 * Increments sequence number and unlocks pager.
177 */
178 __private_extern__ void
179 vs_unlock(vstruct_t vs)
180 {
181 vs->vs_seqno++;
182 if (vs->vs_waiting_seqno) {
183 vs->vs_waiting_seqno = FALSE;
184 VS_UNLOCK(vs);
185 thread_wakeup(&vs->vs_seqno);
186 return;
187 }
188 VS_UNLOCK(vs);
189 }
190
191 /*
192 * Start a read - one more reader. Pager must be locked.
193 */
194 __private_extern__ void
195 vs_start_read(
196 vstruct_t vs)
197 {
198 vs->vs_readers++;
199 }
200
201 /*
202 * Wait for readers. Unlocks and relocks pager if wait needed.
203 */
204 __private_extern__ void
205 vs_wait_for_readers(
206 vstruct_t vs)
207 {
208 while (vs->vs_readers != 0) {
209 default_pager_wait_read++;
210 vs->vs_waiting_read = TRUE;
211 assert_wait(&vs->vs_readers, THREAD_UNINT);
212 VS_UNLOCK(vs);
213 thread_block(THREAD_CONTINUE_NULL);
214 VS_LOCK(vs);
215 }
216 }
217
218 /*
219 * Finish a read. Pager is unlocked and returns unlocked.
220 */
221 __private_extern__ void
222 vs_finish_read(
223 vstruct_t vs)
224 {
225 VS_LOCK(vs);
226 if (--vs->vs_readers == 0 && vs->vs_waiting_read) {
227 vs->vs_waiting_read = FALSE;
228 VS_UNLOCK(vs);
229 thread_wakeup(&vs->vs_readers);
230 return;
231 }
232 VS_UNLOCK(vs);
233 }
234
235 /*
236 * Start a write - one more writer. Pager must be locked.
237 */
238 __private_extern__ void
239 vs_start_write(
240 vstruct_t vs)
241 {
242 vs->vs_writers++;
243 }
244
245 /*
246 * Wait for writers. Unlocks and relocks pager if wait needed.
247 */
248 __private_extern__ void
249 vs_wait_for_writers(
250 vstruct_t vs)
251 {
252 while (vs->vs_writers != 0) {
253 default_pager_wait_write++;
254 vs->vs_waiting_write = TRUE;
255 assert_wait(&vs->vs_writers, THREAD_UNINT);
256 VS_UNLOCK(vs);
257 thread_block(THREAD_CONTINUE_NULL);
258 VS_LOCK(vs);
259 }
260 vs_async_wait(vs);
261 }
262
263 /* This is to be used for the transfer from segment code ONLY */
264 /* The transfer code holds off vs destruction by keeping the */
265 /* vs_async_wait count non-zero. It will not ocnflict with */
266 /* other writers on an async basis because it only writes on */
267 /* a cluster basis into fresh (as of sync time) cluster locations */
268
269 __private_extern__ void
270 vs_wait_for_sync_writers(
271 vstruct_t vs)
272 {
273 while (vs->vs_writers != 0) {
274 default_pager_wait_write++;
275 vs->vs_waiting_write = TRUE;
276 assert_wait(&vs->vs_writers, THREAD_UNINT);
277 VS_UNLOCK(vs);
278 thread_block(THREAD_CONTINUE_NULL);
279 VS_LOCK(vs);
280 }
281 }
282
283
284 /*
285 * Finish a write. Pager is unlocked and returns unlocked.
286 */
287 __private_extern__ void
288 vs_finish_write(
289 vstruct_t vs)
290 {
291 VS_LOCK(vs);
292 if (--vs->vs_writers == 0 && vs->vs_waiting_write) {
293 vs->vs_waiting_write = FALSE;
294 VS_UNLOCK(vs);
295 thread_wakeup(&vs->vs_writers);
296 return;
297 }
298 VS_UNLOCK(vs);
299 }
300 #endif /* PARALLEL */
301
302 vstruct_t
303 vs_object_create(
304 vm_size_t size)
305 {
306 vstruct_t vs;
307
308 /*
309 * Allocate a vstruct. If there are any problems, then report them
310 * to the console.
311 */
312 vs = ps_vstruct_create(size);
313 if (vs == VSTRUCT_NULL) {
314 dprintf(("vs_object_create: unable to allocate %s\n",
315 "-- either run swapon command or reboot"));
316 return VSTRUCT_NULL;
317 }
318
319 return vs;
320 }
321
322 #if 0
323 void default_pager_add(vstruct_t, boolean_t); /* forward */
324
325 void
326 default_pager_add(
327 vstruct_t vs,
328 boolean_t internal)
329 {
330 memory_object_t mem_obj = vs->vs_mem_obj;
331 mach_port_t pset;
332 mach_port_mscount_t sync;
333 mach_port_t previous;
334 kern_return_t kr;
335 static char here[] = "default_pager_add";
336
337 /*
338 * The port currently has a make-send count of zero,
339 * because either we just created the port or we just
340 * received the port in a memory_object_create request.
341 */
342
343 if (internal) {
344 /* possibly generate an immediate no-senders notification */
345 sync = 0;
346 pset = default_pager_internal_set;
347 } else {
348 /* delay notification till send right is created */
349 sync = 1;
350 pset = default_pager_external_set;
351 }
352
353 ipc_port_make_sonce(mem_obj);
354 ip_lock(mem_obj); /* unlocked in nsrequest below */
355 ipc_port_nsrequest(mem_obj, sync, mem_obj, &previous);
356 }
357
358 #endif
359
360 const struct memory_object_pager_ops default_pager_ops = {
361 dp_memory_object_reference,
362 dp_memory_object_deallocate,
363 dp_memory_object_init,
364 dp_memory_object_terminate,
365 dp_memory_object_data_request,
366 dp_memory_object_data_return,
367 dp_memory_object_data_initialize,
368 dp_memory_object_data_unlock,
369 dp_memory_object_synchronize,
370 dp_memory_object_map,
371 dp_memory_object_last_unmap,
372 "default pager"
373 };
374
375 kern_return_t
376 dp_memory_object_init(
377 memory_object_t mem_obj,
378 memory_object_control_t control,
379 __unused vm_size_t pager_page_size)
380 {
381 vstruct_t vs;
382
383 assert(pager_page_size == vm_page_size);
384
385 memory_object_control_reference(control);
386
387 vs_lookup(mem_obj, vs);
388 vs_lock(vs);
389
390 if (vs->vs_control != MEMORY_OBJECT_CONTROL_NULL)
391 Panic("bad request");
392
393 vs->vs_control = control;
394 vs_unlock(vs);
395
396 return KERN_SUCCESS;
397 }
398
399 kern_return_t
400 dp_memory_object_synchronize(
401 memory_object_t mem_obj,
402 memory_object_offset_t offset,
403 vm_size_t length,
404 __unused vm_sync_t flags)
405 {
406 vstruct_t vs;
407
408 vs_lookup(mem_obj, vs);
409 vs_lock(vs);
410 vs_unlock(vs);
411
412 memory_object_synchronize_completed(vs->vs_control, offset, length);
413
414 return KERN_SUCCESS;
415 }
416
417 kern_return_t
418 dp_memory_object_map(
419 __unused memory_object_t mem_obj,
420 __unused vm_prot_t prot)
421 {
422 panic("dp_memory_object_map");
423 return KERN_FAILURE;
424 }
425
426 kern_return_t
427 dp_memory_object_last_unmap(
428 __unused memory_object_t mem_obj)
429 {
430 panic("dp_memory_object_last_unmap");
431 return KERN_FAILURE;
432 }
433
434 kern_return_t
435 dp_memory_object_terminate(
436 memory_object_t mem_obj)
437 {
438 memory_object_control_t control;
439 vstruct_t vs;
440
441 /*
442 * control port is a receive right, not a send right.
443 */
444
445 vs_lookup(mem_obj, vs);
446 vs_lock(vs);
447
448 /*
449 * Wait for read and write requests to terminate.
450 */
451
452 vs_wait_for_readers(vs);
453 vs_wait_for_writers(vs);
454
455 /*
456 * After memory_object_terminate both memory_object_init
457 * and a no-senders notification are possible, so we need
458 * to clean up our reference to the memory_object_control
459 * to prepare for a new init.
460 */
461
462 control = vs->vs_control;
463 vs->vs_control = MEMORY_OBJECT_CONTROL_NULL;
464
465 /* a bit of special case ugliness here. Wakeup any waiting reads */
466 /* these data requests had to be removed from the seqno traffic */
467 /* based on a performance bottleneck with large memory objects */
468 /* the problem will right itself with the new component based */
469 /* synchronous interface. The new async will be able to return */
470 /* failure during its sync phase. In the mean time ... */
471
472 thread_wakeup(&vs->vs_writers);
473 thread_wakeup(&vs->vs_async_pending);
474
475 vs_unlock(vs);
476
477 /*
478 * Now we deallocate our reference on the control.
479 */
480 memory_object_control_deallocate(control);
481 return KERN_SUCCESS;
482 }
483
484 void
485 dp_memory_object_reference(
486 memory_object_t mem_obj)
487 {
488 vstruct_t vs;
489
490 vs_lookup_safe(mem_obj, vs);
491 if (vs == VSTRUCT_NULL)
492 return;
493
494 VS_LOCK(vs);
495 assert(vs->vs_references > 0);
496 vs->vs_references++;
497 VS_UNLOCK(vs);
498 }
499
500 void
501 dp_memory_object_deallocate(
502 memory_object_t mem_obj)
503 {
504 vstruct_t vs;
505 mach_port_seqno_t seqno;
506
507 /*
508 * Because we don't give out multiple first references
509 * for a memory object, there can't be a race
510 * between getting a deallocate call and creating
511 * a new reference for the object.
512 */
513
514 vs_lookup_safe(mem_obj, vs);
515 if (vs == VSTRUCT_NULL)
516 return;
517
518 VS_LOCK(vs);
519 if (--vs->vs_references > 0) {
520 VS_UNLOCK(vs);
521 return;
522 }
523
524 seqno = vs->vs_next_seqno++;
525 while (vs->vs_seqno != seqno) {
526 default_pager_wait_seqno++;
527 vs->vs_waiting_seqno = TRUE;
528 assert_wait(&vs->vs_seqno, THREAD_UNINT);
529 VS_UNLOCK(vs);
530 thread_block(THREAD_CONTINUE_NULL);
531 VS_LOCK(vs);
532 }
533
534 vs_async_wait(vs); /* wait for pending async IO */
535
536 /* do not delete the vs structure until the referencing pointers */
537 /* in the vstruct list have been expunged */
538
539 /* get VSL_LOCK out of order by using TRY mechanism */
540 while(!VSL_LOCK_TRY()) {
541 VS_UNLOCK(vs);
542 VSL_LOCK();
543 VSL_UNLOCK();
544 VS_LOCK(vs);
545 vs_async_wait(vs); /* wait for pending async IO */
546 }
547
548
549 /*
550 * We shouldn't get a deallocation call
551 * when the kernel has the object cached.
552 */
553 if (vs->vs_control != MEMORY_OBJECT_CONTROL_NULL)
554 Panic("bad request");
555
556 /*
557 * Unlock the pager (though there should be no one
558 * waiting for it).
559 */
560 VS_UNLOCK(vs);
561
562 /* Lock out paging segment removal for the duration of this */
563 /* call. We are vulnerable to losing a paging segment we rely */
564 /* on as soon as we remove ourselves from the VSL and unlock */
565
566 /* Keep our thread from blocking on attempt to trigger backing */
567 /* store release */
568 backing_store_release_trigger_disable += 1;
569
570 /*
571 * Remove the memory object port association, and then
572 * the destroy the port itself. We must remove the object
573 * from the port list before deallocating the pager,
574 * because of default_pager_objects.
575 */
576 vstruct_list_delete(vs);
577 VSL_UNLOCK();
578
579 ps_vstruct_dealloc(vs);
580
581 VSL_LOCK();
582 backing_store_release_trigger_disable -= 1;
583 if(backing_store_release_trigger_disable == 0) {
584 thread_wakeup((event_t)&backing_store_release_trigger_disable);
585 }
586 VSL_UNLOCK();
587 }
588
589 kern_return_t
590 dp_memory_object_data_request(
591 memory_object_t mem_obj,
592 memory_object_offset_t offset,
593 vm_size_t length,
594 __unused vm_prot_t protection_required,
595 memory_object_fault_info_t fault_info)
596 {
597 vstruct_t vs;
598
599 GSTAT(global_stats.gs_pagein_calls++);
600
601
602 /* CDY at this moment vs_lookup panics when presented with the wrong */
603 /* port. As we are expanding this pager to support user interfaces */
604 /* this should be changed to return kern_failure */
605 vs_lookup(mem_obj, vs);
606 vs_lock(vs);
607
608 /* We are going to relax the strict sequencing here for performance */
609 /* reasons. We can do this because we know that the read and */
610 /* write threads are different and we rely on synchronization */
611 /* of read and write requests at the cache memory_object level */
612 /* break out wait_for_writers, all of this goes away when */
613 /* we get real control of seqno with the new component interface */
614
615 if (vs->vs_writers != 0) {
616 /* you can't hold on to the seqno and go */
617 /* to sleep like that */
618 vs_unlock(vs); /* bump internal count of seqno */
619 VS_LOCK(vs);
620 while (vs->vs_writers != 0) {
621 default_pager_wait_write++;
622 vs->vs_waiting_write = TRUE;
623 assert_wait(&vs->vs_writers, THREAD_UNINT);
624 VS_UNLOCK(vs);
625 thread_block(THREAD_CONTINUE_NULL);
626 VS_LOCK(vs);
627 vs_async_wait(vs);
628 }
629 if(vs->vs_control == MEMORY_OBJECT_CONTROL_NULL) {
630 VS_UNLOCK(vs);
631 return KERN_FAILURE;
632 }
633 vs_start_read(vs);
634 VS_UNLOCK(vs);
635 } else {
636 vs_start_read(vs);
637 vs_unlock(vs);
638 }
639
640 /*
641 * Request must be on a page boundary and a multiple of pages.
642 */
643 if ((offset & vm_page_mask) != 0 || (length & vm_page_mask) != 0)
644 Panic("bad alignment");
645
646 pvs_cluster_read(vs, (vm_offset_t)offset, length, fault_info);
647
648 vs_finish_read(vs);
649
650 return KERN_SUCCESS;
651 }
652
653 /*
654 * memory_object_data_initialize: check whether we already have each page, and
655 * write it if we do not. The implementation is far from optimized, and
656 * also assumes that the default_pager is single-threaded.
657 */
658 /* It is questionable whether or not a pager should decide what is relevant */
659 /* and what is not in data sent from the kernel. Data initialize has been */
660 /* changed to copy back all data sent to it in preparation for its eventual */
661 /* merge with data return. It is the kernel that should decide what pages */
662 /* to write back. As of the writing of this note, this is indeed the case */
663 /* the kernel writes back one page at a time through this interface */
664
665 kern_return_t
666 dp_memory_object_data_initialize(
667 memory_object_t mem_obj,
668 memory_object_offset_t offset,
669 vm_size_t size)
670 {
671 vstruct_t vs;
672
673 DP_DEBUG(DEBUG_MO_EXTERNAL,
674 ("mem_obj=0x%x,offset=0x%x,cnt=0x%x\n",
675 (int)mem_obj, (int)offset, (int)size));
676 GSTAT(global_stats.gs_pages_init += atop_32(size));
677
678 vs_lookup(mem_obj, vs);
679 vs_lock(vs);
680 vs_start_write(vs);
681 vs_unlock(vs);
682
683 /*
684 * Write the data via clustered writes. vs_cluster_write will
685 * loop if the address range specified crosses cluster
686 * boundaries.
687 */
688 vs_cluster_write(vs, 0, (vm_offset_t)offset, size, FALSE, 0);
689
690 vs_finish_write(vs);
691
692 return KERN_SUCCESS;
693 }
694
695 kern_return_t
696 dp_memory_object_data_unlock(
697 __unused memory_object_t mem_obj,
698 __unused memory_object_offset_t offset,
699 __unused vm_size_t size,
700 __unused vm_prot_t desired_access)
701 {
702 Panic("dp_memory_object_data_unlock: illegal");
703 return KERN_FAILURE;
704 }
705
706
707 /*ARGSUSED8*/
708 kern_return_t
709 dp_memory_object_data_return(
710 memory_object_t mem_obj,
711 memory_object_offset_t offset,
712 vm_size_t size,
713 __unused memory_object_offset_t *resid_offset,
714 __unused int *io_error,
715 __unused boolean_t dirty,
716 __unused boolean_t kernel_copy,
717 __unused int upl_flags)
718 {
719 vstruct_t vs;
720
721 DP_DEBUG(DEBUG_MO_EXTERNAL,
722 ("mem_obj=0x%x,offset=0x%x,size=0x%x\n",
723 (int)mem_obj, (int)offset, (int)size));
724 GSTAT(global_stats.gs_pageout_calls++);
725
726 /* This routine is called by the pageout thread. The pageout thread */
727 /* cannot be blocked by read activities unless the read activities */
728 /* Therefore the grant of vs lock must be done on a try versus a */
729 /* blocking basis. The code below relies on the fact that the */
730 /* interface is synchronous. Should this interface be again async */
731 /* for some type of pager in the future the pages will have to be */
732 /* returned through a separate, asynchronous path. */
733
734 vs_lookup(mem_obj, vs);
735
736 default_pager_total++;
737 if(!VS_TRY_LOCK(vs)) {
738 /* the call below will not be done by caller when we have */
739 /* a synchronous interface */
740 /* return KERN_LOCK_OWNED; */
741 upl_t upl;
742 unsigned int page_list_count = 0;
743 memory_object_super_upl_request(vs->vs_control,
744 (memory_object_offset_t)offset,
745 size, size,
746 &upl, NULL, &page_list_count,
747 UPL_NOBLOCK | UPL_CLEAN_IN_PLACE
748 | UPL_NO_SYNC | UPL_COPYOUT_FROM);
749 upl_abort(upl,0);
750 upl_deallocate(upl);
751 return KERN_SUCCESS;
752 }
753
754 if ((vs->vs_seqno != vs->vs_next_seqno++)
755 || (vs->vs_readers)
756 || (vs->vs_xfer_pending)) {
757 upl_t upl;
758 unsigned int page_list_count = 0;
759
760 vs->vs_next_seqno--;
761 VS_UNLOCK(vs);
762
763 /* the call below will not be done by caller when we have */
764 /* a synchronous interface */
765 /* return KERN_LOCK_OWNED; */
766 memory_object_super_upl_request(vs->vs_control,
767 (memory_object_offset_t)offset,
768 size, size,
769 &upl, NULL, &page_list_count,
770 UPL_NOBLOCK | UPL_CLEAN_IN_PLACE
771 | UPL_NO_SYNC | UPL_COPYOUT_FROM);
772 upl_abort(upl,0);
773 upl_deallocate(upl);
774 return KERN_SUCCESS;
775 }
776
777 if ((size % vm_page_size) != 0)
778 Panic("bad alignment");
779
780 vs_start_write(vs);
781
782
783 vs->vs_async_pending += 1; /* protect from backing store contraction */
784 vs_unlock(vs);
785
786 /*
787 * Write the data via clustered writes. vs_cluster_write will
788 * loop if the address range specified crosses cluster
789 * boundaries.
790 */
791 vs_cluster_write(vs, 0, (vm_offset_t)offset, size, FALSE, 0);
792
793 vs_finish_write(vs);
794
795 /* temporary, need a finer lock based on cluster */
796
797 VS_LOCK(vs);
798 vs->vs_async_pending -= 1; /* release vs_async_wait */
799 if (vs->vs_async_pending == 0 && vs->vs_waiting_async) {
800 vs->vs_waiting_async = FALSE;
801 VS_UNLOCK(vs);
802 thread_wakeup(&vs->vs_async_pending);
803 } else {
804 VS_UNLOCK(vs);
805 }
806
807
808 return KERN_SUCCESS;
809 }
810
811 /*
812 * Routine: default_pager_memory_object_create
813 * Purpose:
814 * Handle requests for memory objects from the
815 * kernel.
816 * Notes:
817 * Because we only give out the default memory
818 * manager port to the kernel, we don't have to
819 * be so paranoid about the contents.
820 */
821 kern_return_t
822 default_pager_memory_object_create(
823 __unused memory_object_default_t dmm,
824 vm_size_t new_size,
825 memory_object_t *new_mem_obj)
826 {
827 vstruct_t vs;
828
829 assert(dmm == default_pager_object);
830
831 vs = vs_object_create(new_size);
832 if (vs == VSTRUCT_NULL)
833 return KERN_RESOURCE_SHORTAGE;
834
835 vs->vs_next_seqno = 0;
836
837 /*
838 * Set up associations between this memory object
839 * and this default_pager structure
840 */
841
842 vs->vs_pager_ops = &default_pager_ops;
843 vs->vs_mem_obj_ikot = IKOT_MEMORY_OBJECT;
844
845 /*
846 * After this, other threads might receive requests
847 * for this memory object or find it in the port list.
848 */
849
850 vstruct_list_insert(vs);
851 *new_mem_obj = vs_to_mem_obj(vs);
852 return KERN_SUCCESS;
853 }
854
855 /*
856 * Create an external object.
857 */
858 kern_return_t
859 default_pager_object_create(
860 default_pager_t default_pager,
861 vm_size_t size,
862 memory_object_t *mem_objp)
863 {
864 vstruct_t vs;
865
866 if (default_pager != default_pager_object)
867 return KERN_INVALID_ARGUMENT;
868
869 vs = vs_object_create(size);
870 if (vs == VSTRUCT_NULL)
871 return KERN_RESOURCE_SHORTAGE;
872
873 /*
874 * Set up associations between the default pager
875 * and this vstruct structure
876 */
877 vs->vs_pager_ops = &default_pager_ops;
878 vstruct_list_insert(vs);
879 *mem_objp = vs_to_mem_obj(vs);
880 return KERN_SUCCESS;
881 }
882
883 kern_return_t
884 default_pager_objects(
885 default_pager_t default_pager,
886 default_pager_object_array_t *objectsp,
887 mach_msg_type_number_t *ocountp,
888 mach_port_array_t *portsp,
889 mach_msg_type_number_t *pcountp)
890 {
891 vm_offset_t oaddr = 0; /* memory for objects */
892 vm_size_t osize = 0; /* current size */
893 default_pager_object_t * objects;
894 unsigned int opotential = 0;
895
896 vm_map_copy_t pcopy = 0; /* copy handle for pagers */
897 vm_size_t psize = 0; /* current size */
898 memory_object_t * pagers;
899 unsigned int ppotential = 0;
900
901 unsigned int actual;
902 unsigned int num_objects;
903 kern_return_t kr;
904 vstruct_t entry;
905
906 if (default_pager != default_pager_object)
907 return KERN_INVALID_ARGUMENT;
908
909 /*
910 * We will send no more than this many
911 */
912 actual = vstruct_list.vsl_count;
913
914 /*
915 * Out out-of-line port arrays are simply kalloc'ed.
916 */
917 psize = round_page(actual * sizeof * pagers);
918 ppotential = psize / sizeof * pagers;
919 pagers = (memory_object_t *)kalloc(psize);
920 if (0 == pagers)
921 return KERN_RESOURCE_SHORTAGE;
922
923 /*
924 * returned out of line data must be allocated out
925 * the ipc_kernel_map, wired down, filled in, and
926 * then "copied in" as if it had been sent by a
927 * user process.
928 */
929 osize = round_page(actual * sizeof * objects);
930 opotential = osize / sizeof * objects;
931 kr = kmem_alloc(ipc_kernel_map, &oaddr, osize);
932 if (KERN_SUCCESS != kr) {
933 kfree(pagers, psize);
934 return KERN_RESOURCE_SHORTAGE;
935 }
936 objects = (default_pager_object_t *)oaddr;
937
938
939 /*
940 * Now scan the list.
941 */
942
943 VSL_LOCK();
944
945 num_objects = 0;
946 queue_iterate(&vstruct_list.vsl_queue, entry, vstruct_t, vs_links) {
947
948 memory_object_t pager;
949 vm_size_t size;
950
951 if ((num_objects >= opotential) ||
952 (num_objects >= ppotential)) {
953
954 /*
955 * This should be rare. In any case,
956 * we will only miss recent objects,
957 * because they are added at the end.
958 */
959 break;
960 }
961
962 /*
963 * Avoid interfering with normal operations
964 */
965 if (!VS_MAP_TRY_LOCK(entry))
966 goto not_this_one;
967 size = ps_vstruct_allocated_size(entry);
968 VS_MAP_UNLOCK(entry);
969
970 VS_LOCK(entry);
971
972 /*
973 * We need a reference for our caller. Adding this
974 * reference through the linked list could race with
975 * destruction of the object. If we find the object
976 * has no references, just give up on it.
977 */
978 VS_LOCK(entry);
979 if (entry->vs_references == 0) {
980 VS_UNLOCK(entry);
981 goto not_this_one;
982 }
983 pager = vs_to_mem_obj(entry);
984 dp_memory_object_reference(pager);
985 VS_UNLOCK(entry);
986
987 /* the arrays are wired, so no deadlock worries */
988
989 objects[num_objects].dpo_object = (vm_offset_t) entry;
990 objects[num_objects].dpo_size = size;
991 pagers [num_objects++] = pager;
992 continue;
993
994 not_this_one:
995 /*
996 * Do not return garbage
997 */
998 objects[num_objects].dpo_object = (vm_offset_t) 0;
999 objects[num_objects].dpo_size = 0;
1000 pagers[num_objects++] = MEMORY_OBJECT_NULL;
1001
1002 }
1003
1004 VSL_UNLOCK();
1005
1006 /* clear out any excess allocation */
1007 while (num_objects < opotential) {
1008 objects[--opotential].dpo_object = (vm_offset_t) 0;
1009 objects[opotential].dpo_size = 0;
1010 }
1011 while (num_objects < ppotential) {
1012 pagers[--ppotential] = MEMORY_OBJECT_NULL;
1013 }
1014
1015 kr = vm_map_unwire(ipc_kernel_map, vm_map_trunc_page(oaddr),
1016 vm_map_round_page(oaddr + osize), FALSE);
1017 assert(KERN_SUCCESS == kr);
1018 kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)oaddr,
1019 (vm_map_size_t)osize, TRUE, &pcopy);
1020 assert(KERN_SUCCESS == kr);
1021
1022 *objectsp = (default_pager_object_array_t)objects;
1023 *ocountp = num_objects;
1024 *portsp = (mach_port_array_t)pcopy;
1025 *pcountp = num_objects;
1026
1027 return KERN_SUCCESS;
1028 }
1029
1030 kern_return_t
1031 default_pager_object_pages(
1032 default_pager_t default_pager,
1033 mach_port_t memory_object,
1034 default_pager_page_array_t *pagesp,
1035 mach_msg_type_number_t *countp)
1036 {
1037 vm_offset_t addr = 0; /* memory for page offsets */
1038 vm_size_t size = 0; /* current memory size */
1039 vm_map_copy_t copy;
1040 default_pager_page_t * pages = 0;
1041 unsigned int potential;
1042 unsigned int actual;
1043 kern_return_t kr;
1044 memory_object_t object;
1045
1046 if (default_pager != default_pager_object)
1047 return KERN_INVALID_ARGUMENT;
1048
1049 object = (memory_object_t) memory_object;
1050
1051 potential = 0;
1052 for (;;) {
1053 vstruct_t entry;
1054
1055 VSL_LOCK();
1056 queue_iterate(&vstruct_list.vsl_queue, entry, vstruct_t,
1057 vs_links) {
1058 VS_LOCK(entry);
1059 if (vs_to_mem_obj(entry) == object) {
1060 VSL_UNLOCK();
1061 goto found_object;
1062 }
1063 VS_UNLOCK(entry);
1064 }
1065 VSL_UNLOCK();
1066
1067 /* did not find the object */
1068 if (0 != addr)
1069 kmem_free(ipc_kernel_map, addr, size);
1070
1071 return KERN_INVALID_ARGUMENT;
1072
1073 found_object:
1074
1075 if (!VS_MAP_TRY_LOCK(entry)) {
1076 /* oh well bad luck */
1077 int wresult;
1078
1079 VS_UNLOCK(entry);
1080
1081 assert_wait_timeout((event_t)assert_wait_timeout, THREAD_UNINT, 1, 1000*NSEC_PER_USEC);
1082 wresult = thread_block(THREAD_CONTINUE_NULL);
1083 assert(wresult == THREAD_TIMED_OUT);
1084 continue;
1085 }
1086
1087 actual = ps_vstruct_allocated_pages(entry, pages, potential);
1088 VS_MAP_UNLOCK(entry);
1089 VS_UNLOCK(entry);
1090
1091 if (actual <= potential)
1092 break;
1093
1094 /* allocate more memory */
1095 if (0 != addr)
1096 kmem_free(ipc_kernel_map, addr, size);
1097
1098 size = round_page(actual * sizeof * pages);
1099 kr = kmem_alloc(ipc_kernel_map, &addr, size);
1100 if (KERN_SUCCESS != kr)
1101 return KERN_RESOURCE_SHORTAGE;
1102
1103 pages = (default_pager_page_t *)addr;
1104 potential = size / sizeof * pages;
1105 }
1106
1107 /*
1108 * Clear unused memory.
1109 */
1110 while (actual < potential)
1111 pages[--potential].dpp_offset = 0;
1112
1113 kr = vm_map_unwire(ipc_kernel_map, vm_map_trunc_page(addr),
1114 vm_map_round_page(addr + size), FALSE);
1115 assert(KERN_SUCCESS == kr);
1116 kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)addr,
1117 (vm_map_size_t)size, TRUE, &copy);
1118 assert(KERN_SUCCESS == kr);
1119
1120
1121 *pagesp = (default_pager_page_array_t)copy;
1122 *countp = actual;
1123 return KERN_SUCCESS;
1124 }