]> git.saurik.com Git - apple/xnu.git/blob - bsd/vfs/vfs_cluster.c
xnu-1228.15.4.tar.gz
[apple/xnu.git] / bsd / vfs / vfs_cluster.c
1 /*
2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)vfs_cluster.c 8.10 (Berkeley) 3/28/95
62 */
63
64 #include <sys/param.h>
65 #include <sys/proc_internal.h>
66 #include <sys/buf_internal.h>
67 #include <sys/mount_internal.h>
68 #include <sys/vnode_internal.h>
69 #include <sys/trace.h>
70 #include <sys/malloc.h>
71 #include <sys/time.h>
72 #include <sys/kernel.h>
73 #include <sys/resourcevar.h>
74 #include <sys/uio_internal.h>
75 #include <libkern/libkern.h>
76 #include <machine/machine_routines.h>
77
78 #include <sys/ubc_internal.h>
79 #include <vm/vnode_pager.h>
80
81 #include <mach/mach_types.h>
82 #include <mach/memory_object_types.h>
83 #include <mach/vm_map.h>
84 #include <mach/upl.h>
85
86 #include <vm/vm_kern.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_pageout.h>
89
90 #include <sys/kdebug.h>
91
92 #define CL_READ 0x01
93 #define CL_WRITE 0x02
94 #define CL_ASYNC 0x04
95 #define CL_COMMIT 0x08
96 #define CL_PAGEOUT 0x10
97 #define CL_AGE 0x20
98 #define CL_NOZERO 0x40
99 #define CL_PAGEIN 0x80
100 #define CL_DEV_MEMORY 0x100
101 #define CL_PRESERVE 0x200
102 #define CL_THROTTLE 0x400
103 #define CL_KEEPCACHED 0x800
104 #define CL_DIRECT_IO 0x1000
105 #define CL_PASSIVE 0x2000
106
107
108 struct clios {
109 u_int io_completed; /* amount of io that has currently completed */
110 u_int io_issued; /* amount of io that was successfully issued */
111 int io_error; /* error code of first error encountered */
112 int io_wanted; /* someone is sleeping waiting for a change in state */
113 };
114
115 static lck_grp_t *cl_mtx_grp;
116 static lck_attr_t *cl_mtx_attr;
117 static lck_grp_attr_t *cl_mtx_grp_attr;
118 static lck_mtx_t *cl_mtxp;
119
120
121 #define IO_UNKNOWN 0
122 #define IO_DIRECT 1
123 #define IO_CONTIG 2
124 #define IO_COPY 3
125
126 #define PUSH_DELAY 0x01
127 #define PUSH_ALL 0x02
128 #define PUSH_SYNC 0x04
129
130
131 static void cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset);
132 static void cluster_wait_IO(buf_t cbp_head, int async);
133 static void cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait);
134
135 static int cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length);
136
137 static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size,
138 int flags, buf_t real_bp, struct clios *iostate, int (*)(buf_t, void *), void *callback_arg);
139 static int cluster_iodone(buf_t bp, void *callback_arg);
140 static int cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags);
141 static int cluster_hard_throttle_on(vnode_t vp);
142
143 static void cluster_syncup(vnode_t vp, off_t newEOF, int (*)(buf_t, void *), void *callback_arg);
144
145 static void cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int flags);
146 static int cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference);
147
148 static int cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags,
149 int (*)(buf_t, void *), void *callback_arg);
150 static int cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
151 int flags, int (*)(buf_t, void *), void *callback_arg);
152 static int cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
153 int (*)(buf_t, void *), void *callback_arg, int flags);
154
155 static int cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF,
156 off_t headOff, off_t tailOff, int flags, int (*)(buf_t, void *), void *callback_arg);
157 static int cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF,
158 int *write_type, u_int32_t *write_length, int flags, int (*)(buf_t, void *), void *callback_arg);
159 static int cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF,
160 int *write_type, u_int32_t *write_length, int (*)(buf_t, void *), void *callback_arg, int bflag);
161
162 static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*)(buf_t, void *), void *callback_arg);
163
164 static int cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag);
165 static void cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra, int (*callback)(buf_t, void *), void *callback_arg, int bflag);
166
167 static int cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg);
168
169 static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int (*)(buf_t, void *), void *callback_arg);
170
171 static void sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
172 static void sparse_cluster_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int (*)(buf_t, void *), void *callback_arg);
173 static void sparse_cluster_add(struct cl_writebehind *, vnode_t vp, struct cl_extent *, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
174
175 static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp);
176 static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp);
177 static kern_return_t vfs_drt_control(void **cmapp, int op_type);
178
179 int is_file_clean(vnode_t, off_t);
180
181 /*
182 * limit the internal I/O size so that we
183 * can represent it in a 32 bit int
184 */
185 #define MAX_IO_REQUEST_SIZE (1024 * 1024 * 256)
186 #define MAX_IO_CONTIG_SIZE (MAX_UPL_SIZE * PAGE_SIZE)
187 #define MAX_VECTS 16
188 #define MIN_DIRECT_WRITE_SIZE (4 * PAGE_SIZE)
189
190
191 #define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE))
192 #define MAX_PREFETCH(vp) (cluster_max_io_size(vp->v_mount, CL_READ) * 3);
193
194
195 int speculative_reads_disabled = 0;
196
197 /*
198 * throttle the number of async writes that
199 * can be outstanding on a single vnode
200 * before we issue a synchronous write
201 */
202 #define HARD_THROTTLE_MAXCNT 0
203 #define HARD_THROTTLE_MAXSIZE (64 * 1024)
204
205 int hard_throttle_on_root = 0;
206 struct timeval priority_IO_timestamp_for_root;
207
208
209 void
210 cluster_init(void) {
211 /*
212 * allocate lock group attribute and group
213 */
214 cl_mtx_grp_attr = lck_grp_attr_alloc_init();
215 cl_mtx_grp = lck_grp_alloc_init("cluster I/O", cl_mtx_grp_attr);
216
217 /*
218 * allocate the lock attribute
219 */
220 cl_mtx_attr = lck_attr_alloc_init();
221
222 /*
223 * allocate and initialize mutex's used to protect updates and waits
224 * on the cluster_io context
225 */
226 cl_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr);
227
228 if (cl_mtxp == NULL)
229 panic("cluster_init: failed to allocate cl_mtxp");
230 }
231
232
233 uint32_t
234 cluster_max_io_size(mount_t mp, int type)
235 {
236 uint32_t max_io_size;
237 uint32_t segcnt;
238 uint32_t maxcnt;
239
240 switch(type) {
241
242 case CL_READ:
243 segcnt = mp->mnt_segreadcnt;
244 maxcnt = mp->mnt_maxreadcnt;
245 break;
246 case CL_WRITE:
247 segcnt = mp->mnt_segwritecnt;
248 maxcnt = mp->mnt_maxwritecnt;
249 break;
250 default:
251 segcnt = min(mp->mnt_segreadcnt, mp->mnt_segwritecnt);
252 maxcnt = min(mp->mnt_maxreadcnt, mp->mnt_maxwritecnt);
253 break;
254 }
255 if (segcnt > MAX_UPL_SIZE) {
256 /*
257 * don't allow a size beyond the max UPL size we can create
258 */
259 segcnt = MAX_UPL_SIZE;
260 }
261 max_io_size = min((segcnt * PAGE_SIZE), maxcnt);
262
263 if (max_io_size < (MAX_UPL_TRANSFER * PAGE_SIZE)) {
264 /*
265 * don't allow a size smaller than the old fixed limit
266 */
267 max_io_size = (MAX_UPL_TRANSFER * PAGE_SIZE);
268 } else {
269 /*
270 * make sure the size specified is a multiple of PAGE_SIZE
271 */
272 max_io_size &= ~PAGE_MASK;
273 }
274 return (max_io_size);
275 }
276
277
278
279
280 #define CLW_ALLOCATE 0x01
281 #define CLW_RETURNLOCKED 0x02
282 #define CLW_IONOCACHE 0x04
283 #define CLW_IOPASSIVE 0x08
284
285 /*
286 * if the read ahead context doesn't yet exist,
287 * allocate and initialize it...
288 * the vnode lock serializes multiple callers
289 * during the actual assignment... first one
290 * to grab the lock wins... the other callers
291 * will release the now unnecessary storage
292 *
293 * once the context is present, try to grab (but don't block on)
294 * the lock associated with it... if someone
295 * else currently owns it, than the read
296 * will run without read-ahead. this allows
297 * multiple readers to run in parallel and
298 * since there's only 1 read ahead context,
299 * there's no real loss in only allowing 1
300 * reader to have read-ahead enabled.
301 */
302 static struct cl_readahead *
303 cluster_get_rap(vnode_t vp)
304 {
305 struct ubc_info *ubc;
306 struct cl_readahead *rap;
307
308 ubc = vp->v_ubcinfo;
309
310 if ((rap = ubc->cl_rahead) == NULL) {
311 MALLOC_ZONE(rap, struct cl_readahead *, sizeof *rap, M_CLRDAHEAD, M_WAITOK);
312
313 bzero(rap, sizeof *rap);
314 rap->cl_lastr = -1;
315 lck_mtx_init(&rap->cl_lockr, cl_mtx_grp, cl_mtx_attr);
316
317 vnode_lock(vp);
318
319 if (ubc->cl_rahead == NULL)
320 ubc->cl_rahead = rap;
321 else {
322 lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp);
323 FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD);
324 rap = ubc->cl_rahead;
325 }
326 vnode_unlock(vp);
327 }
328 if (lck_mtx_try_lock(&rap->cl_lockr) == TRUE)
329 return(rap);
330
331 return ((struct cl_readahead *)NULL);
332 }
333
334
335 /*
336 * if the write behind context doesn't yet exist,
337 * and CLW_ALLOCATE is specified, allocate and initialize it...
338 * the vnode lock serializes multiple callers
339 * during the actual assignment... first one
340 * to grab the lock wins... the other callers
341 * will release the now unnecessary storage
342 *
343 * if CLW_RETURNLOCKED is set, grab (blocking if necessary)
344 * the lock associated with the write behind context before
345 * returning
346 */
347
348 static struct cl_writebehind *
349 cluster_get_wbp(vnode_t vp, int flags)
350 {
351 struct ubc_info *ubc;
352 struct cl_writebehind *wbp;
353
354 ubc = vp->v_ubcinfo;
355
356 if ((wbp = ubc->cl_wbehind) == NULL) {
357
358 if ( !(flags & CLW_ALLOCATE))
359 return ((struct cl_writebehind *)NULL);
360
361 MALLOC_ZONE(wbp, struct cl_writebehind *, sizeof *wbp, M_CLWRBEHIND, M_WAITOK);
362
363 bzero(wbp, sizeof *wbp);
364 lck_mtx_init(&wbp->cl_lockw, cl_mtx_grp, cl_mtx_attr);
365
366 vnode_lock(vp);
367
368 if (ubc->cl_wbehind == NULL)
369 ubc->cl_wbehind = wbp;
370 else {
371 lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp);
372 FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND);
373 wbp = ubc->cl_wbehind;
374 }
375 vnode_unlock(vp);
376 }
377 if (flags & CLW_RETURNLOCKED)
378 lck_mtx_lock(&wbp->cl_lockw);
379
380 return (wbp);
381 }
382
383
384 static void
385 cluster_syncup(vnode_t vp, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg)
386 {
387 struct cl_writebehind *wbp;
388
389 if ((wbp = cluster_get_wbp(vp, 0)) != NULL) {
390
391 if (wbp->cl_number) {
392 lck_mtx_lock(&wbp->cl_lockw);
393
394 cluster_try_push(wbp, vp, newEOF, PUSH_ALL | PUSH_SYNC, callback, callback_arg);
395
396 lck_mtx_unlock(&wbp->cl_lockw);
397 }
398 }
399 }
400
401
402 static int
403 cluster_hard_throttle_on(vnode_t vp)
404 {
405 static struct timeval hard_throttle_maxelapsed = { 0, 200000 };
406
407 if (vp->v_mount->mnt_kern_flag & MNTK_ROOTDEV) {
408 struct timeval elapsed;
409
410 if (hard_throttle_on_root)
411 return(1);
412
413 microuptime(&elapsed);
414 timevalsub(&elapsed, &priority_IO_timestamp_for_root);
415
416 if (timevalcmp(&elapsed, &hard_throttle_maxelapsed, <))
417 return(1);
418 }
419 struct uthread *ut;
420 if (throttle_get_io_policy(&ut) == IOPOL_THROTTLE) {
421 size_t devbsdunit;
422 if (vp->v_mount != NULL)
423 devbsdunit = vp->v_mount->mnt_devbsdunit;
424 else
425 devbsdunit = LOWPRI_MAX_NUM_DEV - 1;
426 if (throttle_io_will_be_throttled(-1, devbsdunit)) {
427 return(1);
428 }
429 }
430 return(0);
431 }
432
433
434 static int
435 cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags)
436 {
437 int upl_abort_code = 0;
438 int page_in = 0;
439 int page_out = 0;
440
441 if (io_flags & B_PHYS)
442 /*
443 * direct write of any flavor, or a direct read that wasn't aligned
444 */
445 ubc_upl_commit_range(upl, upl_offset, abort_size, UPL_COMMIT_FREE_ON_EMPTY);
446 else {
447 if (io_flags & B_PAGEIO) {
448 if (io_flags & B_READ)
449 page_in = 1;
450 else
451 page_out = 1;
452 }
453 if (io_flags & B_CACHE)
454 /*
455 * leave pages in the cache unchanged on error
456 */
457 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
458 else if (page_out && (error != ENXIO))
459 /*
460 * transient error... leave pages unchanged
461 */
462 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
463 else if (page_in)
464 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR;
465 else
466 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
467
468 ubc_upl_abort_range(upl, upl_offset, abort_size, upl_abort_code);
469 }
470 return (upl_abort_code);
471 }
472
473
474 static int
475 cluster_iodone(buf_t bp, void *callback_arg)
476 {
477 int b_flags;
478 int error;
479 int total_size;
480 int total_resid;
481 int upl_offset;
482 int zero_offset;
483 int pg_offset = 0;
484 int commit_size = 0;
485 int upl_flags = 0;
486 int transaction_size = 0;
487 upl_t upl;
488 buf_t cbp;
489 buf_t cbp_head;
490 buf_t cbp_next;
491 buf_t real_bp;
492 struct clios *iostate;
493 boolean_t transaction_complete = FALSE;
494
495 cbp_head = (buf_t)(bp->b_trans_head);
496
497 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START,
498 (int)cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
499
500 for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
501 /*
502 * all I/O requests that are part of this transaction
503 * have to complete before we can process it
504 */
505 if ( !(cbp->b_flags & B_DONE)) {
506
507 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
508 (int)cbp_head, (int)cbp, cbp->b_bcount, cbp->b_flags, 0);
509
510 return 0;
511 }
512 if (cbp->b_flags & B_EOT)
513 transaction_complete = TRUE;
514 }
515 if (transaction_complete == FALSE) {
516 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
517 (int)cbp_head, 0, 0, 0, 0);
518
519 return 0;
520 }
521 error = 0;
522 total_size = 0;
523 total_resid = 0;
524
525 cbp = cbp_head;
526 upl_offset = cbp->b_uploffset;
527 upl = cbp->b_upl;
528 b_flags = cbp->b_flags;
529 real_bp = cbp->b_real_bp;
530 zero_offset= cbp->b_validend;
531 iostate = (struct clios *)cbp->b_iostate;
532
533 if (real_bp)
534 real_bp->b_dev = cbp->b_dev;
535
536 while (cbp) {
537 if ((cbp->b_flags & B_ERROR) && error == 0)
538 error = cbp->b_error;
539
540 total_resid += cbp->b_resid;
541 total_size += cbp->b_bcount;
542
543 cbp_next = cbp->b_trans_next;
544
545 if (cbp_next == NULL)
546 /*
547 * compute the overall size of the transaction
548 * in case we created one that has 'holes' in it
549 * 'total_size' represents the amount of I/O we
550 * did, not the span of the transaction w/r to the UPL
551 */
552 transaction_size = cbp->b_uploffset + cbp->b_bcount - upl_offset;
553
554 if (cbp != cbp_head)
555 free_io_buf(cbp);
556
557 cbp = cbp_next;
558 }
559 if (error == 0 && total_resid)
560 error = EIO;
561
562 if (error == 0) {
563 int (*cliodone_func)(buf_t, void *) = (int (*)(buf_t, void *))(cbp_head->b_cliodone);
564
565 if (cliodone_func != NULL) {
566 cbp_head->b_bcount = transaction_size;
567
568 error = (*cliodone_func)(cbp_head, callback_arg);
569 }
570 }
571 if (zero_offset)
572 cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp);
573
574 free_io_buf(cbp_head);
575
576 if (iostate) {
577 int need_wakeup = 0;
578
579 /*
580 * someone has issued multiple I/Os asynchrounsly
581 * and is waiting for them to complete (streaming)
582 */
583 lck_mtx_lock_spin(cl_mtxp);
584
585 if (error && iostate->io_error == 0)
586 iostate->io_error = error;
587
588 iostate->io_completed += total_size;
589
590 if (iostate->io_wanted) {
591 /*
592 * someone is waiting for the state of
593 * this io stream to change
594 */
595 iostate->io_wanted = 0;
596 need_wakeup = 1;
597 }
598 lck_mtx_unlock(cl_mtxp);
599
600 if (need_wakeup)
601 wakeup((caddr_t)&iostate->io_wanted);
602 }
603
604 if (b_flags & B_COMMIT_UPL) {
605
606 pg_offset = upl_offset & PAGE_MASK;
607 commit_size = (pg_offset + transaction_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
608
609 if (error)
610 upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, commit_size, error, b_flags);
611 else {
612 upl_flags = UPL_COMMIT_FREE_ON_EMPTY;
613
614 if ((b_flags & B_PHYS) && (b_flags & B_READ))
615 upl_flags |= UPL_COMMIT_SET_DIRTY;
616
617 if (b_flags & B_AGE)
618 upl_flags |= UPL_COMMIT_INACTIVATE;
619
620 ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, upl_flags);
621 }
622 }
623 if ((b_flags & B_NEED_IODONE) && real_bp) {
624 if (error) {
625 real_bp->b_flags |= B_ERROR;
626 real_bp->b_error = error;
627 }
628 real_bp->b_resid = total_resid;
629
630 buf_biodone(real_bp);
631 }
632 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
633 (int)upl, upl_offset - pg_offset, commit_size, (error << 24) | upl_flags, 0);
634
635 return (error);
636 }
637
638
639 void
640 cluster_zero(upl_t upl, vm_offset_t upl_offset, int size, buf_t bp)
641 {
642
643 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START,
644 upl_offset, size, (int)bp, 0, 0);
645
646 if (bp == NULL || bp->b_datap == 0) {
647 upl_page_info_t *pl;
648 addr64_t zero_addr;
649
650 pl = ubc_upl_pageinfo(upl);
651
652 if (upl_device_page(pl) == TRUE) {
653 zero_addr = ((addr64_t)upl_phys_page(pl, 0) << 12) + upl_offset;
654
655 bzero_phys_nc(zero_addr, size);
656 } else {
657 while (size) {
658 int page_offset;
659 int page_index;
660 int zero_cnt;
661
662 page_index = upl_offset / PAGE_SIZE;
663 page_offset = upl_offset & PAGE_MASK;
664
665 zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << 12) + page_offset;
666 zero_cnt = min(PAGE_SIZE - page_offset, size);
667
668 bzero_phys(zero_addr, zero_cnt);
669
670 size -= zero_cnt;
671 upl_offset += zero_cnt;
672 }
673 }
674 } else
675 bzero((caddr_t)((vm_offset_t)bp->b_datap + upl_offset), size);
676
677 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END,
678 upl_offset, size, 0, 0, 0);
679 }
680
681
682 static void
683 cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset)
684 {
685 cbp_head->b_validend = zero_offset;
686 cbp_tail->b_flags |= B_EOT;
687 }
688
689 static void
690 cluster_wait_IO(buf_t cbp_head, int async)
691 {
692 buf_t cbp;
693
694 if (async) {
695 /*
696 * async callback completion will not normally
697 * generate a wakeup upon I/O completion...
698 * by setting BL_WANTED, we will force a wakeup
699 * to occur as any outstanding I/Os complete...
700 * I/Os already completed will have BL_CALLDONE already
701 * set and we won't block in buf_biowait_callback..
702 * note that we're actually waiting for the bp to have
703 * completed the callback function... only then
704 * can we safely take back ownership of the bp
705 * need the main buf mutex in order to safely
706 * update b_lflags
707 */
708 buf_list_lock();
709
710 for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next)
711 cbp->b_lflags |= BL_WANTED;
712
713 buf_list_unlock();
714 }
715 for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
716 if (async)
717 buf_biowait_callback(cbp);
718 else
719 buf_biowait(cbp);
720 }
721 }
722
723 static void
724 cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait)
725 {
726 buf_t cbp;
727 int error;
728
729 /*
730 * cluster_complete_transaction will
731 * only be called if we've issued a complete chain in synchronous mode
732 * or, we've already done a cluster_wait_IO on an incomplete chain
733 */
734 if (needwait) {
735 for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next)
736 buf_biowait(cbp);
737 }
738 error = cluster_iodone(*cbp_head, callback_arg);
739
740 if ( !(flags & CL_ASYNC) && error && *retval == 0) {
741 if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) != CL_PAGEOUT) || (error != ENXIO))
742 *retval = error;
743 }
744 *cbp_head = (buf_t)NULL;
745 }
746
747
748 static int
749 cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size,
750 int flags, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg)
751 {
752 buf_t cbp;
753 u_int size;
754 u_int io_size;
755 int io_flags;
756 int bmap_flags;
757 int error = 0;
758 int retval = 0;
759 buf_t cbp_head = NULL;
760 buf_t cbp_tail = NULL;
761 int trans_count = 0;
762 int max_trans_count;
763 u_int pg_count;
764 int pg_offset;
765 u_int max_iosize;
766 u_int max_vectors;
767 int priv;
768 int zero_offset = 0;
769 int async_throttle = 0;
770 mount_t mp;
771 vm_offset_t upl_end_offset;
772 boolean_t need_EOT = FALSE;
773
774 /*
775 * we currently don't support buffers larger than a page
776 */
777 if (real_bp && non_rounded_size > PAGE_SIZE)
778 panic("%s(): Called with real buffer of size %d bytes which "
779 "is greater than the maximum allowed size of "
780 "%d bytes (the system PAGE_SIZE).\n",
781 __FUNCTION__, non_rounded_size, PAGE_SIZE);
782
783 mp = vp->v_mount;
784
785 /*
786 * we don't want to do any funny rounding of the size for IO requests
787 * coming through the DIRECT or CONTIGUOUS paths... those pages don't
788 * belong to us... we can't extend (nor do we need to) the I/O to fill
789 * out a page
790 */
791 if (mp->mnt_devblocksize > 1 && !(flags & (CL_DEV_MEMORY | CL_DIRECT_IO))) {
792 /*
793 * round the requested size up so that this I/O ends on a
794 * page boundary in case this is a 'write'... if the filesystem
795 * has blocks allocated to back the page beyond the EOF, we want to
796 * make sure to write out the zero's that are sitting beyond the EOF
797 * so that in case the filesystem doesn't explicitly zero this area
798 * if a hole is created via a lseek/write beyond the current EOF,
799 * it will return zeros when it's read back from the disk. If the
800 * physical allocation doesn't extend for the whole page, we'll
801 * only write/read from the disk up to the end of this allocation
802 * via the extent info returned from the VNOP_BLOCKMAP call.
803 */
804 pg_offset = upl_offset & PAGE_MASK;
805
806 size = (((non_rounded_size + pg_offset) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - pg_offset;
807 } else {
808 /*
809 * anyone advertising a blocksize of 1 byte probably
810 * can't deal with us rounding up the request size
811 * AFP is one such filesystem/device
812 */
813 size = non_rounded_size;
814 }
815 upl_end_offset = upl_offset + size;
816
817 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, (int)f_offset, size, upl_offset, flags, 0);
818
819 /*
820 * Set the maximum transaction size to the maximum desired number of
821 * buffers.
822 */
823 max_trans_count = 8;
824 if (flags & CL_DEV_MEMORY)
825 max_trans_count = 16;
826
827 if (flags & CL_READ) {
828 io_flags = B_READ;
829 bmap_flags = VNODE_READ;
830
831 max_iosize = mp->mnt_maxreadcnt;
832 max_vectors = mp->mnt_segreadcnt;
833 } else {
834 io_flags = B_WRITE;
835 bmap_flags = VNODE_WRITE;
836
837 max_iosize = mp->mnt_maxwritecnt;
838 max_vectors = mp->mnt_segwritecnt;
839 }
840 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_NONE, max_iosize, max_vectors, mp->mnt_devblocksize, 0, 0);
841
842 /*
843 * make sure the maximum iosize is a
844 * multiple of the page size
845 */
846 max_iosize &= ~PAGE_MASK;
847
848 /*
849 * Ensure the maximum iosize is sensible.
850 */
851 if (!max_iosize)
852 max_iosize = PAGE_SIZE;
853
854 if (flags & CL_THROTTLE) {
855 if ( !(flags & CL_PAGEOUT) && cluster_hard_throttle_on(vp)) {
856 if (max_iosize > HARD_THROTTLE_MAXSIZE)
857 max_iosize = HARD_THROTTLE_MAXSIZE;
858 async_throttle = HARD_THROTTLE_MAXCNT;
859 } else {
860 if ( (flags & CL_DEV_MEMORY) )
861 async_throttle = VNODE_ASYNC_THROTTLE;
862 else {
863 u_int max_cluster;
864 u_int max_cluster_size;
865 u_int max_prefetch;
866
867 max_cluster_size = MAX_CLUSTER_SIZE(vp);
868 max_prefetch = MAX_PREFETCH(vp);
869
870 if (max_iosize > max_cluster_size)
871 max_cluster = max_cluster_size;
872 else
873 max_cluster = max_iosize;
874
875 if (size < max_cluster)
876 max_cluster = size;
877
878 async_throttle = min(VNODE_ASYNC_THROTTLE, (max_prefetch / max_cluster) - 1);
879 }
880 }
881 }
882 if (flags & CL_AGE)
883 io_flags |= B_AGE;
884 if (flags & (CL_PAGEIN | CL_PAGEOUT))
885 io_flags |= B_PAGEIO;
886 if (flags & CL_COMMIT)
887 io_flags |= B_COMMIT_UPL;
888 if (flags & CL_PRESERVE)
889 io_flags |= B_PHYS;
890 if (flags & CL_KEEPCACHED)
891 io_flags |= B_CACHE;
892 if (flags & CL_PASSIVE)
893 io_flags |= B_PASSIVE;
894 if (vp->v_flag & VSYSTEM)
895 io_flags |= B_META;
896
897 if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) {
898 /*
899 * then we are going to end up
900 * with a page that we can't complete (the file size wasn't a multiple
901 * of PAGE_SIZE and we're trying to read to the end of the file
902 * so we'll go ahead and zero out the portion of the page we can't
903 * read in from the file
904 */
905 zero_offset = upl_offset + non_rounded_size;
906 }
907 while (size) {
908 daddr64_t blkno;
909 daddr64_t lblkno;
910 u_int io_size_wanted;
911
912 if (size > max_iosize)
913 io_size = max_iosize;
914 else
915 io_size = size;
916
917 io_size_wanted = io_size;
918
919 if ((error = VNOP_BLOCKMAP(vp, f_offset, io_size, &blkno, (size_t *)&io_size, NULL, bmap_flags, NULL)))
920 break;
921
922 if (io_size > io_size_wanted)
923 io_size = io_size_wanted;
924
925 if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno))
926 real_bp->b_blkno = blkno;
927
928 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE,
929 (int)f_offset, (int)(blkno>>32), (int)blkno, io_size, 0);
930
931 if (io_size == 0) {
932 /*
933 * vnop_blockmap didn't return an error... however, it did
934 * return an extent size of 0 which means we can't
935 * make forward progress on this I/O... a hole in the
936 * file would be returned as a blkno of -1 with a non-zero io_size
937 * a real extent is returned with a blkno != -1 and a non-zero io_size
938 */
939 error = EINVAL;
940 break;
941 }
942 if ( !(flags & CL_READ) && blkno == -1) {
943 off_t e_offset;
944 int pageout_flags;
945
946 /*
947 * we're writing into a 'hole'
948 */
949 if (flags & CL_PAGEOUT) {
950 /*
951 * if we got here via cluster_pageout
952 * then just error the request and return
953 * the 'hole' should already have been covered
954 */
955 error = EINVAL;
956 break;
957 }
958 /*
959 * we can get here if the cluster code happens to
960 * pick up a page that was dirtied via mmap vs
961 * a 'write' and the page targets a 'hole'...
962 * i.e. the writes to the cluster were sparse
963 * and the file was being written for the first time
964 *
965 * we can also get here if the filesystem supports
966 * 'holes' that are less than PAGE_SIZE.... because
967 * we can't know if the range in the page that covers
968 * the 'hole' has been dirtied via an mmap or not,
969 * we have to assume the worst and try to push the
970 * entire page to storage.
971 *
972 * Try paging out the page individually before
973 * giving up entirely and dumping it (the pageout
974 * path will insure that the zero extent accounting
975 * has been taken care of before we get back into cluster_io)
976 *
977 * go direct to vnode_pageout so that we don't have to
978 * unbusy the page from the UPL... we used to do this
979 * so that we could call ubc_sync_range, but that results
980 * in a potential deadlock if someone else races us to acquire
981 * that page and wins and in addition needs one of the pages
982 * we're continuing to hold in the UPL
983 */
984 pageout_flags = UPL_MSYNC | UPL_VNODE_PAGER | UPL_NESTED_PAGEOUT;
985
986 if ( !(flags & CL_ASYNC))
987 pageout_flags |= UPL_IOSYNC;
988 if ( !(flags & CL_COMMIT))
989 pageout_flags |= UPL_NOCOMMIT;
990
991 if (cbp_head) {
992 buf_t last_cbp;
993
994 /*
995 * first we have to wait for the the current outstanding I/Os
996 * to complete... EOT hasn't been set yet on this transaction
997 * so the pages won't be released just because all of the current
998 * I/O linked to this transaction has completed...
999 */
1000 cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
1001
1002 /*
1003 * we've got a transcation that
1004 * includes the page we're about to push out through vnode_pageout...
1005 * find the last bp in the list which will be the one that
1006 * includes the head of this page and round it's iosize down
1007 * to a page boundary...
1008 */
1009 for (last_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next)
1010 last_cbp = cbp;
1011
1012 cbp->b_bcount &= ~PAGE_MASK;
1013
1014 if (cbp->b_bcount == 0) {
1015 /*
1016 * this buf no longer has any I/O associated with it
1017 */
1018 free_io_buf(cbp);
1019
1020 if (cbp == cbp_head) {
1021 /*
1022 * the buf we just freed was the only buf in
1023 * this transaction... so there's no I/O to do
1024 */
1025 cbp_head = NULL;
1026 } else {
1027 /*
1028 * remove the buf we just freed from
1029 * the transaction list
1030 */
1031 last_cbp->b_trans_next = NULL;
1032 cbp_tail = last_cbp;
1033 }
1034 }
1035 if (cbp_head) {
1036 /*
1037 * there was more to the current transaction
1038 * than just the page we are pushing out via vnode_pageout...
1039 * mark it as finished and complete it... we've already
1040 * waited for the I/Os to complete above in the call to cluster_wait_IO
1041 */
1042 cluster_EOT(cbp_head, cbp_tail, 0);
1043
1044 cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0);
1045
1046 trans_count = 0;
1047 }
1048 }
1049 if (vnode_pageout(vp, upl, trunc_page(upl_offset), trunc_page_64(f_offset), PAGE_SIZE, pageout_flags, NULL) != PAGER_SUCCESS) {
1050 error = EINVAL;
1051 break;
1052 }
1053 e_offset = round_page_64(f_offset + 1);
1054 io_size = e_offset - f_offset;
1055
1056 f_offset += io_size;
1057 upl_offset += io_size;
1058
1059 if (size >= io_size)
1060 size -= io_size;
1061 else
1062 size = 0;
1063 /*
1064 * keep track of how much of the original request
1065 * that we've actually completed... non_rounded_size
1066 * may go negative due to us rounding the request
1067 * to a page size multiple (i.e. size > non_rounded_size)
1068 */
1069 non_rounded_size -= io_size;
1070
1071 if (non_rounded_size <= 0) {
1072 /*
1073 * we've transferred all of the data in the original
1074 * request, but we were unable to complete the tail
1075 * of the last page because the file didn't have
1076 * an allocation to back that portion... this is ok.
1077 */
1078 size = 0;
1079 }
1080 continue;
1081 }
1082 lblkno = (daddr64_t)(f_offset / PAGE_SIZE_64);
1083 /*
1084 * we have now figured out how much I/O we can do - this is in 'io_size'
1085 * pg_offset is the starting point in the first page for the I/O
1086 * pg_count is the number of full and partial pages that 'io_size' encompasses
1087 */
1088 pg_offset = upl_offset & PAGE_MASK;
1089
1090 if (flags & CL_DEV_MEMORY) {
1091 /*
1092 * treat physical requests as one 'giant' page
1093 */
1094 pg_count = 1;
1095 } else
1096 pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE;
1097
1098 if ((flags & CL_READ) && blkno == -1) {
1099 vm_offset_t commit_offset;
1100 int bytes_to_zero;
1101 int complete_transaction_now = 0;
1102
1103 /*
1104 * if we're reading and blkno == -1, then we've got a
1105 * 'hole' in the file that we need to deal with by zeroing
1106 * out the affected area in the upl
1107 */
1108 if (io_size >= (u_int)non_rounded_size) {
1109 /*
1110 * if this upl contains the EOF and it is not a multiple of PAGE_SIZE
1111 * than 'zero_offset' will be non-zero
1112 * if the 'hole' returned by vnop_blockmap extends all the way to the eof
1113 * (indicated by the io_size finishing off the I/O request for this UPL)
1114 * than we're not going to issue an I/O for the
1115 * last page in this upl... we need to zero both the hole and the tail
1116 * of the page beyond the EOF, since the delayed zero-fill won't kick in
1117 */
1118 bytes_to_zero = non_rounded_size;
1119 if (!(flags & CL_NOZERO))
1120 bytes_to_zero = (((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset;
1121
1122 zero_offset = 0;
1123 } else
1124 bytes_to_zero = io_size;
1125
1126 pg_count = 0;
1127
1128 cluster_zero(upl, upl_offset, bytes_to_zero, real_bp);
1129
1130 if (cbp_head) {
1131 int pg_resid;
1132
1133 /*
1134 * if there is a current I/O chain pending
1135 * then the first page of the group we just zero'd
1136 * will be handled by the I/O completion if the zero
1137 * fill started in the middle of the page
1138 */
1139 commit_offset = (upl_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK;
1140
1141 pg_resid = commit_offset - upl_offset;
1142
1143 if (bytes_to_zero >= pg_resid) {
1144 /*
1145 * the last page of the current I/O
1146 * has been completed...
1147 * compute the number of fully zero'd
1148 * pages that are beyond it
1149 * plus the last page if its partial
1150 * and we have no more I/O to issue...
1151 * otherwise a partial page is left
1152 * to begin the next I/O
1153 */
1154 if ((int)io_size >= non_rounded_size)
1155 pg_count = (bytes_to_zero - pg_resid + (PAGE_SIZE - 1)) / PAGE_SIZE;
1156 else
1157 pg_count = (bytes_to_zero - pg_resid) / PAGE_SIZE;
1158
1159 complete_transaction_now = 1;
1160 }
1161 } else {
1162 /*
1163 * no pending I/O to deal with
1164 * so, commit all of the fully zero'd pages
1165 * plus the last page if its partial
1166 * and we have no more I/O to issue...
1167 * otherwise a partial page is left
1168 * to begin the next I/O
1169 */
1170 if ((int)io_size >= non_rounded_size)
1171 pg_count = (pg_offset + bytes_to_zero + (PAGE_SIZE - 1)) / PAGE_SIZE;
1172 else
1173 pg_count = (pg_offset + bytes_to_zero) / PAGE_SIZE;
1174
1175 commit_offset = upl_offset & ~PAGE_MASK;
1176 }
1177 if ( (flags & CL_COMMIT) && pg_count) {
1178 ubc_upl_commit_range(upl, commit_offset, pg_count * PAGE_SIZE,
1179 UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY);
1180 }
1181 upl_offset += io_size;
1182 f_offset += io_size;
1183 size -= io_size;
1184
1185 /*
1186 * keep track of how much of the original request
1187 * that we've actually completed... non_rounded_size
1188 * may go negative due to us rounding the request
1189 * to a page size multiple (i.e. size > non_rounded_size)
1190 */
1191 non_rounded_size -= io_size;
1192
1193 if (non_rounded_size <= 0) {
1194 /*
1195 * we've transferred all of the data in the original
1196 * request, but we were unable to complete the tail
1197 * of the last page because the file didn't have
1198 * an allocation to back that portion... this is ok.
1199 */
1200 size = 0;
1201 }
1202 if (cbp_head && (complete_transaction_now || size == 0)) {
1203 cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
1204
1205 cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0);
1206
1207 cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0);
1208
1209 trans_count = 0;
1210 }
1211 continue;
1212 }
1213 if (pg_count > max_vectors) {
1214 if (((pg_count - max_vectors) * PAGE_SIZE) > io_size) {
1215 io_size = PAGE_SIZE - pg_offset;
1216 pg_count = 1;
1217 } else {
1218 io_size -= (pg_count - max_vectors) * PAGE_SIZE;
1219 pg_count = max_vectors;
1220 }
1221 }
1222 /*
1223 * If the transaction is going to reach the maximum number of
1224 * desired elements, truncate the i/o to the nearest page so
1225 * that the actual i/o is initiated after this buffer is
1226 * created and added to the i/o chain.
1227 *
1228 * I/O directed to physically contiguous memory
1229 * doesn't have a requirement to make sure we 'fill' a page
1230 */
1231 if ( !(flags & CL_DEV_MEMORY) && trans_count >= max_trans_count &&
1232 ((upl_offset + io_size) & PAGE_MASK)) {
1233 vm_offset_t aligned_ofs;
1234
1235 aligned_ofs = (upl_offset + io_size) & ~PAGE_MASK;
1236 /*
1237 * If the io_size does not actually finish off even a
1238 * single page we have to keep adding buffers to the
1239 * transaction despite having reached the desired limit.
1240 *
1241 * Eventually we get here with the page being finished
1242 * off (and exceeded) and then we truncate the size of
1243 * this i/o request so that it is page aligned so that
1244 * we can finally issue the i/o on the transaction.
1245 */
1246 if (aligned_ofs > upl_offset) {
1247 io_size = aligned_ofs - upl_offset;
1248 pg_count--;
1249 }
1250 }
1251
1252 if ( !(mp->mnt_kern_flag & MNTK_VIRTUALDEV))
1253 /*
1254 * if we're not targeting a virtual device i.e. a disk image
1255 * it's safe to dip into the reserve pool since real devices
1256 * can complete this I/O request without requiring additional
1257 * bufs from the alloc_io_buf pool
1258 */
1259 priv = 1;
1260 else if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT))
1261 /*
1262 * Throttle the speculative IO
1263 */
1264 priv = 0;
1265 else
1266 priv = 1;
1267
1268 cbp = alloc_io_buf(vp, priv);
1269
1270 if (flags & CL_PAGEOUT) {
1271 u_int i;
1272
1273 for (i = 0; i < pg_count; i++) {
1274 if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY)
1275 panic("BUSY bp found in cluster_io");
1276 }
1277 }
1278 if (flags & CL_ASYNC) {
1279 if (buf_setcallback(cbp, (void *)cluster_iodone, callback_arg))
1280 panic("buf_setcallback failed\n");
1281 }
1282 cbp->b_cliodone = (void *)callback;
1283 cbp->b_flags |= io_flags;
1284
1285 cbp->b_lblkno = lblkno;
1286 cbp->b_blkno = blkno;
1287 cbp->b_bcount = io_size;
1288
1289 if (buf_setupl(cbp, upl, upl_offset))
1290 panic("buf_setupl failed\n");
1291
1292 cbp->b_trans_next = (buf_t)NULL;
1293
1294 if ((cbp->b_iostate = (void *)iostate))
1295 /*
1296 * caller wants to track the state of this
1297 * io... bump the amount issued against this stream
1298 */
1299 iostate->io_issued += io_size;
1300
1301 if (flags & CL_READ) {
1302 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE,
1303 (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0);
1304 }
1305 else {
1306 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE,
1307 (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0);
1308 }
1309
1310 if (cbp_head) {
1311 cbp_tail->b_trans_next = cbp;
1312 cbp_tail = cbp;
1313 } else {
1314 cbp_head = cbp;
1315 cbp_tail = cbp;
1316
1317 if ( (cbp_head->b_real_bp = real_bp) ) {
1318 cbp_head->b_flags |= B_NEED_IODONE;
1319 real_bp = (buf_t)NULL;
1320 }
1321 }
1322 *(buf_t *)(&cbp->b_trans_head) = cbp_head;
1323
1324 trans_count++;
1325
1326 upl_offset += io_size;
1327 f_offset += io_size;
1328 size -= io_size;
1329 /*
1330 * keep track of how much of the original request
1331 * that we've actually completed... non_rounded_size
1332 * may go negative due to us rounding the request
1333 * to a page size multiple (i.e. size > non_rounded_size)
1334 */
1335 non_rounded_size -= io_size;
1336
1337 if (non_rounded_size <= 0) {
1338 /*
1339 * we've transferred all of the data in the original
1340 * request, but we were unable to complete the tail
1341 * of the last page because the file didn't have
1342 * an allocation to back that portion... this is ok.
1343 */
1344 size = 0;
1345 }
1346 if (size == 0) {
1347 /*
1348 * we have no more I/O to issue, so go
1349 * finish the final transaction
1350 */
1351 need_EOT = TRUE;
1352 } else if ( ((flags & CL_DEV_MEMORY) || (upl_offset & PAGE_MASK) == 0) &&
1353 ((flags & CL_ASYNC) || trans_count > max_trans_count) ) {
1354 /*
1355 * I/O directed to physically contiguous memory...
1356 * which doesn't have a requirement to make sure we 'fill' a page
1357 * or...
1358 * the current I/O we've prepared fully
1359 * completes the last page in this request
1360 * and ...
1361 * it's either an ASYNC request or
1362 * we've already accumulated more than 8 I/O's into
1363 * this transaction so mark it as complete so that
1364 * it can finish asynchronously or via the cluster_complete_transaction
1365 * below if the request is synchronous
1366 */
1367 need_EOT = TRUE;
1368 }
1369 if (need_EOT == TRUE)
1370 cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0);
1371
1372 if (flags & CL_THROTTLE)
1373 (void)vnode_waitforwrites(vp, async_throttle, 0, 0, "cluster_io");
1374
1375 if ( !(io_flags & B_READ))
1376 vnode_startwrite(vp);
1377
1378 (void) VNOP_STRATEGY(cbp);
1379
1380 if (need_EOT == TRUE) {
1381 if ( !(flags & CL_ASYNC))
1382 cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 1);
1383
1384 need_EOT = FALSE;
1385 trans_count = 0;
1386 cbp_head = NULL;
1387 }
1388 }
1389 if (error) {
1390 int abort_size;
1391
1392 io_size = 0;
1393
1394 if (cbp_head) {
1395 /*
1396 * first wait until all of the outstanding I/O
1397 * for this partial transaction has completed
1398 */
1399 cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
1400
1401 /*
1402 * Rewind the upl offset to the beginning of the
1403 * transaction.
1404 */
1405 upl_offset = cbp_head->b_uploffset;
1406
1407 for (cbp = cbp_head; cbp;) {
1408 buf_t cbp_next;
1409
1410 size += cbp->b_bcount;
1411 io_size += cbp->b_bcount;
1412
1413 cbp_next = cbp->b_trans_next;
1414 free_io_buf(cbp);
1415 cbp = cbp_next;
1416 }
1417 }
1418 if (iostate) {
1419 int need_wakeup = 0;
1420
1421 /*
1422 * update the error condition for this stream
1423 * since we never really issued the io
1424 * just go ahead and adjust it back
1425 */
1426 lck_mtx_lock_spin(cl_mtxp);
1427
1428 if (iostate->io_error == 0)
1429 iostate->io_error = error;
1430 iostate->io_issued -= io_size;
1431
1432 if (iostate->io_wanted) {
1433 /*
1434 * someone is waiting for the state of
1435 * this io stream to change
1436 */
1437 iostate->io_wanted = 0;
1438 need_wakeup = 1;
1439 }
1440 lck_mtx_unlock(cl_mtxp);
1441
1442 if (need_wakeup)
1443 wakeup((caddr_t)&iostate->io_wanted);
1444 }
1445 if (flags & CL_COMMIT) {
1446 int upl_flags;
1447
1448 pg_offset = upl_offset & PAGE_MASK;
1449 abort_size = (upl_end_offset - upl_offset + PAGE_MASK) & ~PAGE_MASK;
1450
1451 upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, abort_size, error, io_flags);
1452
1453 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE,
1454 (int)upl, upl_offset - pg_offset, abort_size, (error << 24) | upl_flags, 0);
1455 }
1456 if (retval == 0)
1457 retval = error;
1458 } else if (cbp_head)
1459 panic("%s(): cbp_head is not NULL.\n", __FUNCTION__);
1460
1461 if (real_bp) {
1462 /*
1463 * can get here if we either encountered an error
1464 * or we completely zero-filled the request and
1465 * no I/O was issued
1466 */
1467 if (error) {
1468 real_bp->b_flags |= B_ERROR;
1469 real_bp->b_error = error;
1470 }
1471 buf_biodone(real_bp);
1472 }
1473 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END, (int)f_offset, size, upl_offset, retval, 0);
1474
1475 return (retval);
1476 }
1477
1478
1479 static int
1480 cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag)
1481 {
1482 int pages_in_prefetch;
1483
1484 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START,
1485 (int)f_offset, size, (int)filesize, 0, 0);
1486
1487 if (f_offset >= filesize) {
1488 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
1489 (int)f_offset, 0, 0, 0, 0);
1490 return(0);
1491 }
1492 if ((off_t)size > (filesize - f_offset))
1493 size = filesize - f_offset;
1494 pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE;
1495
1496 advisory_read_ext(vp, filesize, f_offset, size, callback, callback_arg, bflag);
1497
1498 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
1499 (int)f_offset + size, pages_in_prefetch, 0, 1, 0);
1500
1501 return (pages_in_prefetch);
1502 }
1503
1504
1505
1506 static void
1507 cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *rap, int (*callback)(buf_t, void *), void *callback_arg,
1508 int bflag)
1509 {
1510 daddr64_t r_addr;
1511 off_t f_offset;
1512 int size_of_prefetch;
1513 u_int max_prefetch;
1514
1515
1516 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START,
1517 (int)extent->b_addr, (int)extent->e_addr, (int)rap->cl_lastr, 0, 0);
1518
1519 if (extent->b_addr == rap->cl_lastr && extent->b_addr == extent->e_addr) {
1520 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1521 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 0, 0);
1522 return;
1523 }
1524 if (rap->cl_lastr == -1 || (extent->b_addr != rap->cl_lastr && extent->b_addr != (rap->cl_lastr + 1))) {
1525 rap->cl_ralen = 0;
1526 rap->cl_maxra = 0;
1527
1528 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1529 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 1, 0);
1530
1531 return;
1532 }
1533 max_prefetch = MAX_PREFETCH(vp);
1534
1535 if (extent->e_addr < rap->cl_maxra) {
1536 if ((rap->cl_maxra - extent->e_addr) > ((max_prefetch / PAGE_SIZE) / 4)) {
1537
1538 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1539 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0);
1540 return;
1541 }
1542 }
1543 r_addr = max(extent->e_addr, rap->cl_maxra) + 1;
1544 f_offset = (off_t)(r_addr * PAGE_SIZE_64);
1545
1546 size_of_prefetch = 0;
1547
1548 ubc_range_op(vp, f_offset, f_offset + PAGE_SIZE_64, UPL_ROP_PRESENT, &size_of_prefetch);
1549
1550 if (size_of_prefetch) {
1551 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1552 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 3, 0);
1553 return;
1554 }
1555 if (f_offset < filesize) {
1556 daddr64_t read_size;
1557
1558 rap->cl_ralen = rap->cl_ralen ? min(max_prefetch / PAGE_SIZE, rap->cl_ralen << 1) : 1;
1559
1560 read_size = (extent->e_addr + 1) - extent->b_addr;
1561
1562 if (read_size > rap->cl_ralen) {
1563 if (read_size > max_prefetch / PAGE_SIZE)
1564 rap->cl_ralen = max_prefetch / PAGE_SIZE;
1565 else
1566 rap->cl_ralen = read_size;
1567 }
1568 size_of_prefetch = cluster_read_prefetch(vp, f_offset, rap->cl_ralen * PAGE_SIZE, filesize, callback, callback_arg, bflag);
1569
1570 if (size_of_prefetch)
1571 rap->cl_maxra = (r_addr + size_of_prefetch) - 1;
1572 }
1573 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1574 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 4, 0);
1575 }
1576
1577
1578 int
1579 cluster_pageout(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset,
1580 int size, off_t filesize, int flags)
1581 {
1582 return cluster_pageout_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL);
1583
1584 }
1585
1586
1587 int
1588 cluster_pageout_ext(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset,
1589 int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
1590 {
1591 int io_size;
1592 int rounded_size;
1593 off_t max_size;
1594 int local_flags;
1595
1596 if (vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV)
1597 /*
1598 * if we know we're issuing this I/O to a virtual device (i.e. disk image)
1599 * then we don't want to enforce this throttle... if we do, we can
1600 * potentially deadlock since we're stalling the pageout thread at a time
1601 * when the disk image might need additional memory (which won't be available
1602 * if the pageout thread can't run)... instead we'll just depend on the throttle
1603 * that the pageout thread now has in place to deal with external files
1604 */
1605 local_flags = CL_PAGEOUT;
1606 else
1607 local_flags = CL_PAGEOUT | CL_THROTTLE;
1608
1609 if ((flags & UPL_IOSYNC) == 0)
1610 local_flags |= CL_ASYNC;
1611 if ((flags & UPL_NOCOMMIT) == 0)
1612 local_flags |= CL_COMMIT;
1613 if ((flags & UPL_KEEPCACHED))
1614 local_flags |= CL_KEEPCACHED;
1615 if (flags & IO_PASSIVE)
1616 local_flags |= CL_PASSIVE;
1617
1618
1619 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE,
1620 (int)f_offset, size, (int)filesize, local_flags, 0);
1621
1622 /*
1623 * If they didn't specify any I/O, then we are done...
1624 * we can't issue an abort because we don't know how
1625 * big the upl really is
1626 */
1627 if (size <= 0)
1628 return (EINVAL);
1629
1630 if (vp->v_mount->mnt_flag & MNT_RDONLY) {
1631 if (local_flags & CL_COMMIT)
1632 ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY);
1633 return (EROFS);
1634 }
1635 /*
1636 * can't page-in from a negative offset
1637 * or if we're starting beyond the EOF
1638 * or if the file offset isn't page aligned
1639 * or the size requested isn't a multiple of PAGE_SIZE
1640 */
1641 if (f_offset < 0 || f_offset >= filesize ||
1642 (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) {
1643 if (local_flags & CL_COMMIT)
1644 ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY);
1645 return (EINVAL);
1646 }
1647 max_size = filesize - f_offset;
1648
1649 if (size < max_size)
1650 io_size = size;
1651 else
1652 io_size = max_size;
1653
1654 rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
1655
1656 if (size > rounded_size) {
1657 if (local_flags & CL_COMMIT)
1658 ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size,
1659 UPL_ABORT_FREE_ON_EMPTY);
1660 }
1661 return (cluster_io(vp, upl, upl_offset, f_offset, io_size,
1662 local_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg));
1663 }
1664
1665
1666 int
1667 cluster_pagein(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset,
1668 int size, off_t filesize, int flags)
1669 {
1670 return cluster_pagein_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL);
1671 }
1672
1673
1674 int
1675 cluster_pagein_ext(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset,
1676 int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
1677 {
1678 u_int io_size;
1679 int rounded_size;
1680 off_t max_size;
1681 int retval;
1682 int local_flags = 0;
1683
1684 if (upl == NULL || size < 0)
1685 panic("cluster_pagein: NULL upl passed in");
1686
1687 if ((flags & UPL_IOSYNC) == 0)
1688 local_flags |= CL_ASYNC;
1689 if ((flags & UPL_NOCOMMIT) == 0)
1690 local_flags |= CL_COMMIT;
1691 if (flags & IO_PASSIVE)
1692 local_flags |= CL_PASSIVE;
1693
1694
1695 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE,
1696 (int)f_offset, size, (int)filesize, local_flags, 0);
1697
1698 /*
1699 * can't page-in from a negative offset
1700 * or if we're starting beyond the EOF
1701 * or if the file offset isn't page aligned
1702 * or the size requested isn't a multiple of PAGE_SIZE
1703 */
1704 if (f_offset < 0 || f_offset >= filesize ||
1705 (f_offset & PAGE_MASK_64) || (size & PAGE_MASK) || (upl_offset & PAGE_MASK)) {
1706 if (local_flags & CL_COMMIT)
1707 ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
1708 return (EINVAL);
1709 }
1710 max_size = filesize - f_offset;
1711
1712 if (size < max_size)
1713 io_size = size;
1714 else
1715 io_size = max_size;
1716
1717 rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
1718
1719 if (size > rounded_size && (local_flags & CL_COMMIT))
1720 ubc_upl_abort_range(upl, upl_offset + rounded_size,
1721 size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
1722
1723 retval = cluster_io(vp, upl, upl_offset, f_offset, io_size,
1724 local_flags | CL_READ | CL_PAGEIN, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
1725
1726 return (retval);
1727 }
1728
1729
1730 int
1731 cluster_bp(buf_t bp)
1732 {
1733 return cluster_bp_ext(bp, NULL, NULL);
1734 }
1735
1736
1737 int
1738 cluster_bp_ext(buf_t bp, int (*callback)(buf_t, void *), void *callback_arg)
1739 {
1740 off_t f_offset;
1741 int flags;
1742
1743 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START,
1744 (int)bp, (int)bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
1745
1746 if (bp->b_flags & B_READ)
1747 flags = CL_ASYNC | CL_READ;
1748 else
1749 flags = CL_ASYNC;
1750 if (bp->b_flags & B_PASSIVE)
1751 flags |= CL_PASSIVE;
1752
1753 f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno);
1754
1755 return (cluster_io(bp->b_vp, bp->b_upl, 0, f_offset, bp->b_bcount, flags, bp, (struct clios *)NULL, callback, callback_arg));
1756 }
1757
1758
1759
1760 int
1761 cluster_write(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int xflags)
1762 {
1763 return cluster_write_ext(vp, uio, oldEOF, newEOF, headOff, tailOff, xflags, NULL, NULL);
1764 }
1765
1766
1767 int
1768 cluster_write_ext(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff,
1769 int xflags, int (*callback)(buf_t, void *), void *callback_arg)
1770 {
1771 user_ssize_t cur_resid;
1772 int retval = 0;
1773 int flags;
1774 int zflags;
1775 int bflag;
1776 int write_type = IO_COPY;
1777 u_int32_t write_length;
1778
1779 flags = xflags;
1780
1781 if (flags & IO_PASSIVE)
1782 bflag = CL_PASSIVE;
1783 else
1784 bflag = 0;
1785
1786 if (vp->v_flag & VNOCACHE_DATA)
1787 flags |= IO_NOCACHE;
1788
1789 if (uio == NULL) {
1790 /*
1791 * no user data...
1792 * this call is being made to zero-fill some range in the file
1793 */
1794 retval = cluster_write_copy(vp, NULL, (u_int32_t)0, oldEOF, newEOF, headOff, tailOff, flags, callback, callback_arg);
1795
1796 return(retval);
1797 }
1798 /*
1799 * do a write through the cache if one of the following is true....
1800 * NOCACHE is not true and
1801 * the uio request doesn't target USERSPACE
1802 * otherwise, find out if we want the direct or contig variant for
1803 * the first vector in the uio request
1804 */
1805 if ( (flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) )
1806 retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE);
1807
1808 if ( (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)) && write_type == IO_DIRECT)
1809 /*
1810 * must go through the cached variant in this case
1811 */
1812 write_type = IO_COPY;
1813
1814 while ((cur_resid = uio_resid(uio)) && uio->uio_offset < newEOF && retval == 0) {
1815
1816 switch (write_type) {
1817
1818 case IO_COPY:
1819 /*
1820 * make sure the uio_resid isn't too big...
1821 * internally, we want to handle all of the I/O in
1822 * chunk sizes that fit in a 32 bit int
1823 */
1824 if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) {
1825 /*
1826 * we're going to have to call cluster_write_copy
1827 * more than once...
1828 *
1829 * only want the last call to cluster_write_copy to
1830 * have the IO_TAILZEROFILL flag set and only the
1831 * first call should have IO_HEADZEROFILL
1832 */
1833 zflags = flags & ~IO_TAILZEROFILL;
1834 flags &= ~IO_HEADZEROFILL;
1835
1836 write_length = MAX_IO_REQUEST_SIZE;
1837 } else {
1838 /*
1839 * last call to cluster_write_copy
1840 */
1841 zflags = flags;
1842
1843 write_length = (u_int32_t)cur_resid;
1844 }
1845 retval = cluster_write_copy(vp, uio, write_length, oldEOF, newEOF, headOff, tailOff, zflags, callback, callback_arg);
1846 break;
1847
1848 case IO_CONTIG:
1849 zflags = flags & ~(IO_TAILZEROFILL | IO_HEADZEROFILL);
1850
1851 if (flags & IO_HEADZEROFILL) {
1852 /*
1853 * only do this once per request
1854 */
1855 flags &= ~IO_HEADZEROFILL;
1856
1857 retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, uio->uio_offset,
1858 headOff, (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg);
1859 if (retval)
1860 break;
1861 }
1862 retval = cluster_write_contig(vp, uio, newEOF, &write_type, &write_length, callback, callback_arg, bflag);
1863
1864 if (retval == 0 && (flags & IO_TAILZEROFILL) && uio_resid(uio) == 0) {
1865 /*
1866 * we're done with the data from the user specified buffer(s)
1867 * and we've been requested to zero fill at the tail
1868 * treat this as an IO_HEADZEROFILL which doesn't require a uio
1869 * by rearranging the args and passing in IO_HEADZEROFILL
1870 */
1871 retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, tailOff, uio->uio_offset,
1872 (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg);
1873 }
1874 break;
1875
1876 case IO_DIRECT:
1877 /*
1878 * cluster_write_direct is never called with IO_TAILZEROFILL || IO_HEADZEROFILL
1879 */
1880 retval = cluster_write_direct(vp, uio, oldEOF, newEOF, &write_type, &write_length, flags, callback, callback_arg);
1881 break;
1882
1883 case IO_UNKNOWN:
1884 retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE);
1885 break;
1886 }
1887 }
1888 return (retval);
1889 }
1890
1891
1892 static int
1893 cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, int *write_type, u_int32_t *write_length,
1894 int flags, int (*callback)(buf_t, void *), void *callback_arg)
1895 {
1896 upl_t upl;
1897 upl_page_info_t *pl;
1898 vm_offset_t upl_offset;
1899 u_int32_t io_req_size;
1900 u_int32_t offset_in_file;
1901 u_int32_t offset_in_iovbase;
1902 u_int32_t io_size;
1903 int io_flag;
1904 int bflag;
1905 vm_size_t upl_size;
1906 vm_size_t upl_needed_size;
1907 mach_msg_type_number_t pages_in_pl;
1908 int upl_flags;
1909 kern_return_t kret;
1910 mach_msg_type_number_t i;
1911 int force_data_sync;
1912 int retval = 0;
1913 int first_IO = 1;
1914 struct clios iostate;
1915 user_addr_t iov_base;
1916 u_int32_t mem_alignment_mask;
1917 u_int32_t devblocksize;
1918 u_int32_t max_upl_size;
1919
1920
1921 max_upl_size = cluster_max_io_size(vp->v_mount, CL_WRITE);
1922
1923 if (flags & IO_PASSIVE)
1924 bflag = CL_PASSIVE;
1925 else
1926 bflag = 0;
1927
1928 /*
1929 * When we enter this routine, we know
1930 * -- the resid will not exceed iov_len
1931 */
1932 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START,
1933 (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0);
1934
1935 iostate.io_completed = 0;
1936 iostate.io_issued = 0;
1937 iostate.io_error = 0;
1938 iostate.io_wanted = 0;
1939
1940 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
1941 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
1942
1943 if (devblocksize == 1) {
1944 /*
1945 * the AFP client advertises a devblocksize of 1
1946 * however, its BLOCKMAP routine maps to physical
1947 * blocks that are PAGE_SIZE in size...
1948 * therefore we can't ask for I/Os that aren't page aligned
1949 * or aren't multiples of PAGE_SIZE in size
1950 * by setting devblocksize to PAGE_SIZE, we re-instate
1951 * the old behavior we had before the mem_alignment_mask
1952 * changes went in...
1953 */
1954 devblocksize = PAGE_SIZE;
1955 }
1956
1957 next_dwrite:
1958 io_req_size = *write_length;
1959 iov_base = uio_curriovbase(uio);
1960
1961 offset_in_file = (u_int32_t)uio->uio_offset & PAGE_MASK;
1962 offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask;
1963
1964 if (offset_in_file || offset_in_iovbase) {
1965 /*
1966 * one of the 2 important offsets is misaligned
1967 * so fire an I/O through the cache for this entire vector
1968 */
1969 goto wait_for_dwrites;
1970 }
1971 if (iov_base & (devblocksize - 1)) {
1972 /*
1973 * the offset in memory must be on a device block boundary
1974 * so that we can guarantee that we can generate an
1975 * I/O that ends on a page boundary in cluster_io
1976 */
1977 goto wait_for_dwrites;
1978 }
1979
1980 while (io_req_size >= PAGE_SIZE && uio->uio_offset < newEOF && retval == 0) {
1981
1982 if (first_IO) {
1983 cluster_syncup(vp, newEOF, callback, callback_arg);
1984 first_IO = 0;
1985 }
1986 io_size = io_req_size & ~PAGE_MASK;
1987 iov_base = uio_curriovbase(uio);
1988
1989 if (io_size > max_upl_size)
1990 io_size = max_upl_size;
1991
1992 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
1993 upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
1994
1995 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START,
1996 (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
1997
1998 for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
1999 pages_in_pl = 0;
2000 upl_size = upl_needed_size;
2001 upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
2002 UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
2003
2004 kret = vm_map_get_upl(current_map(),
2005 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
2006 &upl_size,
2007 &upl,
2008 NULL,
2009 &pages_in_pl,
2010 &upl_flags,
2011 force_data_sync);
2012
2013 if (kret != KERN_SUCCESS) {
2014 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
2015 0, 0, 0, kret, 0);
2016 /*
2017 * failed to get pagelist
2018 *
2019 * we may have already spun some portion of this request
2020 * off as async requests... we need to wait for the I/O
2021 * to complete before returning
2022 */
2023 goto wait_for_dwrites;
2024 }
2025 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
2026 pages_in_pl = upl_size / PAGE_SIZE;
2027
2028 for (i = 0; i < pages_in_pl; i++) {
2029 if (!upl_valid_page(pl, i))
2030 break;
2031 }
2032 if (i == pages_in_pl)
2033 break;
2034
2035 /*
2036 * didn't get all the pages back that we
2037 * needed... release this upl and try again
2038 */
2039 ubc_upl_abort(upl, 0);
2040 }
2041 if (force_data_sync >= 3) {
2042 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
2043 i, pages_in_pl, upl_size, kret, 0);
2044 /*
2045 * for some reason, we couldn't acquire a hold on all
2046 * the pages needed in the user's address space
2047 *
2048 * we may have already spun some portion of this request
2049 * off as async requests... we need to wait for the I/O
2050 * to complete before returning
2051 */
2052 goto wait_for_dwrites;
2053 }
2054
2055 /*
2056 * Consider the possibility that upl_size wasn't satisfied.
2057 */
2058 if (upl_size < upl_needed_size) {
2059 if (upl_size && upl_offset == 0)
2060 io_size = upl_size;
2061 else
2062 io_size = 0;
2063 }
2064 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
2065 (int)upl_offset, upl_size, (int)iov_base, io_size, 0);
2066
2067 if (io_size == 0) {
2068 ubc_upl_abort(upl, 0);
2069 /*
2070 * we may have already spun some portion of this request
2071 * off as async requests... we need to wait for the I/O
2072 * to complete before returning
2073 */
2074 goto wait_for_dwrites;
2075 }
2076
2077 /*
2078 * Now look for pages already in the cache
2079 * and throw them away.
2080 * uio->uio_offset is page aligned within the file
2081 * io_size is a multiple of PAGE_SIZE
2082 */
2083 ubc_range_op(vp, uio->uio_offset, uio->uio_offset + io_size, UPL_ROP_DUMP, NULL);
2084
2085 /*
2086 * we want push out these writes asynchronously so that we can overlap
2087 * the preparation of the next I/O
2088 * if there are already too many outstanding writes
2089 * wait until some complete before issuing the next
2090 */
2091 lck_mtx_lock(cl_mtxp);
2092
2093 while ((iostate.io_issued - iostate.io_completed) > (2 * max_upl_size)) {
2094
2095 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
2096 iostate.io_issued, iostate.io_completed, 2 * max_upl_size, 0, 0);
2097
2098 iostate.io_wanted = 1;
2099 msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_write_direct", NULL);
2100
2101 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
2102 iostate.io_issued, iostate.io_completed, 2 * max_upl_size, 0, 0);
2103 }
2104 lck_mtx_unlock(cl_mtxp);
2105
2106 if (iostate.io_error) {
2107 /*
2108 * one of the earlier writes we issued ran into a hard error
2109 * don't issue any more writes, cleanup the UPL
2110 * that was just created but not used, then
2111 * go wait for all writes that are part of this stream
2112 * to complete before returning the error to the caller
2113 */
2114 ubc_upl_abort(upl, 0);
2115
2116 goto wait_for_dwrites;
2117 }
2118 io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE | CL_DIRECT_IO | bflag;
2119
2120 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START,
2121 (int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0);
2122
2123 retval = cluster_io(vp, upl, upl_offset, uio->uio_offset,
2124 io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2125
2126 /*
2127 * update the uio structure to
2128 * reflect the I/O that we just issued
2129 */
2130 uio_update(uio, (user_size_t)io_size);
2131
2132 io_req_size -= io_size;
2133
2134 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END,
2135 (int)upl_offset, (int)uio->uio_offset, io_req_size, retval, 0);
2136
2137 } /* end while */
2138
2139 if (retval == 0 && iostate.io_error == 0 && io_req_size == 0) {
2140
2141 retval = cluster_io_type(uio, write_type, write_length, MIN_DIRECT_WRITE_SIZE);
2142
2143 if (retval == 0 && *write_type == IO_DIRECT) {
2144
2145 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_NONE,
2146 (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0);
2147
2148 goto next_dwrite;
2149 }
2150 }
2151
2152 wait_for_dwrites:
2153 if (iostate.io_issued) {
2154 /*
2155 * make sure all async writes issued as part of this stream
2156 * have completed before we return
2157 */
2158 lck_mtx_lock(cl_mtxp);
2159
2160 while (iostate.io_issued != iostate.io_completed) {
2161 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
2162 iostate.io_issued, iostate.io_completed, 0, 0, 0);
2163
2164 iostate.io_wanted = 1;
2165 msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_write_direct", NULL);
2166
2167 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
2168 iostate.io_issued, iostate.io_completed, 0, 0, 0);
2169 }
2170 lck_mtx_unlock(cl_mtxp);
2171 }
2172 if (iostate.io_error)
2173 retval = iostate.io_error;
2174
2175 if (io_req_size && retval == 0) {
2176 /*
2177 * we couldn't handle the tail of this request in DIRECT mode
2178 * so fire it through the copy path
2179 *
2180 * note that flags will never have IO_HEADZEROFILL or IO_TAILZEROFILL set
2181 * so we can just pass 0 in for the headOff and tailOff
2182 */
2183 retval = cluster_write_copy(vp, uio, io_req_size, oldEOF, newEOF, (off_t)0, (off_t)0, flags, callback, callback_arg);
2184
2185 *write_type = IO_UNKNOWN;
2186 }
2187 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END,
2188 (int)uio->uio_offset, io_req_size, retval, 4, 0);
2189
2190 return (retval);
2191 }
2192
2193
2194 static int
2195 cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, int *write_type, u_int32_t *write_length,
2196 int (*callback)(buf_t, void *), void *callback_arg, int bflag)
2197 {
2198 upl_page_info_t *pl;
2199 addr64_t src_paddr = 0;
2200 upl_t upl[MAX_VECTS];
2201 vm_offset_t upl_offset;
2202 u_int32_t tail_size = 0;
2203 u_int32_t io_size;
2204 u_int32_t xsize;
2205 vm_size_t upl_size;
2206 vm_size_t upl_needed_size;
2207 mach_msg_type_number_t pages_in_pl;
2208 int upl_flags;
2209 kern_return_t kret;
2210 struct clios iostate;
2211 int error = 0;
2212 int cur_upl = 0;
2213 int num_upl = 0;
2214 int n;
2215 user_addr_t iov_base;
2216 u_int32_t devblocksize;
2217 u_int32_t mem_alignment_mask;
2218
2219 /*
2220 * When we enter this routine, we know
2221 * -- the io_req_size will not exceed iov_len
2222 * -- the target address is physically contiguous
2223 */
2224 cluster_syncup(vp, newEOF, callback, callback_arg);
2225
2226 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
2227 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
2228
2229 iostate.io_completed = 0;
2230 iostate.io_issued = 0;
2231 iostate.io_error = 0;
2232 iostate.io_wanted = 0;
2233
2234 next_cwrite:
2235 io_size = *write_length;
2236
2237 iov_base = uio_curriovbase(uio);
2238
2239 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
2240 upl_needed_size = upl_offset + io_size;
2241
2242 pages_in_pl = 0;
2243 upl_size = upl_needed_size;
2244 upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
2245 UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
2246
2247 kret = vm_map_get_upl(current_map(),
2248 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
2249 &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0);
2250
2251 if (kret != KERN_SUCCESS) {
2252 /*
2253 * failed to get pagelist
2254 */
2255 error = EINVAL;
2256 goto wait_for_cwrites;
2257 }
2258 num_upl++;
2259
2260 /*
2261 * Consider the possibility that upl_size wasn't satisfied.
2262 */
2263 if (upl_size < upl_needed_size) {
2264 /*
2265 * This is a failure in the physical memory case.
2266 */
2267 error = EINVAL;
2268 goto wait_for_cwrites;
2269 }
2270 pl = ubc_upl_pageinfo(upl[cur_upl]);
2271
2272 src_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)upl_offset;
2273
2274 while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
2275 u_int32_t head_size;
2276
2277 head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1));
2278
2279 if (head_size > io_size)
2280 head_size = io_size;
2281
2282 error = cluster_align_phys_io(vp, uio, src_paddr, head_size, 0, callback, callback_arg);
2283
2284 if (error)
2285 goto wait_for_cwrites;
2286
2287 upl_offset += head_size;
2288 src_paddr += head_size;
2289 io_size -= head_size;
2290
2291 iov_base += head_size;
2292 }
2293 if ((u_int32_t)iov_base & mem_alignment_mask) {
2294 /*
2295 * request doesn't set up on a memory boundary
2296 * the underlying DMA engine can handle...
2297 * return an error instead of going through
2298 * the slow copy path since the intent of this
2299 * path is direct I/O from device memory
2300 */
2301 error = EINVAL;
2302 goto wait_for_cwrites;
2303 }
2304
2305 tail_size = io_size & (devblocksize - 1);
2306 io_size -= tail_size;
2307
2308 while (io_size && error == 0) {
2309
2310 if (io_size > MAX_IO_CONTIG_SIZE)
2311 xsize = MAX_IO_CONTIG_SIZE;
2312 else
2313 xsize = io_size;
2314 /*
2315 * request asynchronously so that we can overlap
2316 * the preparation of the next I/O... we'll do
2317 * the commit after all the I/O has completed
2318 * since its all issued against the same UPL
2319 * if there are already too many outstanding writes
2320 * wait until some have completed before issuing the next
2321 */
2322 if (iostate.io_issued) {
2323 lck_mtx_lock(cl_mtxp);
2324
2325 while ((iostate.io_issued - iostate.io_completed) > (2 * MAX_IO_CONTIG_SIZE)) {
2326
2327 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
2328 iostate.io_issued, iostate.io_completed, 2 * MAX_IO_CONTIG_SIZE, 0, 0);
2329
2330 iostate.io_wanted = 1;
2331 msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_write_contig", NULL);
2332
2333 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
2334 iostate.io_issued, iostate.io_completed, 2 * MAX_IO_CONTIG_SIZE, 0, 0);
2335 }
2336 lck_mtx_unlock(cl_mtxp);
2337 }
2338 if (iostate.io_error) {
2339 /*
2340 * one of the earlier writes we issued ran into a hard error
2341 * don't issue any more writes...
2342 * go wait for all writes that are part of this stream
2343 * to complete before returning the error to the caller
2344 */
2345 goto wait_for_cwrites;
2346 }
2347 /*
2348 * issue an asynchronous write to cluster_io
2349 */
2350 error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset,
2351 xsize, CL_DEV_MEMORY | CL_ASYNC | bflag, (buf_t)NULL, (struct clios *)&iostate, callback, callback_arg);
2352
2353 if (error == 0) {
2354 /*
2355 * The cluster_io write completed successfully,
2356 * update the uio structure
2357 */
2358 uio_update(uio, (user_size_t)xsize);
2359
2360 upl_offset += xsize;
2361 src_paddr += xsize;
2362 io_size -= xsize;
2363 }
2364 }
2365 if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS) {
2366
2367 error = cluster_io_type(uio, write_type, write_length, 0);
2368
2369 if (error == 0 && *write_type == IO_CONTIG) {
2370 cur_upl++;
2371 goto next_cwrite;
2372 }
2373 } else
2374 *write_type = IO_UNKNOWN;
2375
2376 wait_for_cwrites:
2377 /*
2378 * make sure all async writes that are part of this stream
2379 * have completed before we proceed
2380 */
2381 lck_mtx_lock(cl_mtxp);
2382
2383 while (iostate.io_issued != iostate.io_completed) {
2384 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
2385 iostate.io_issued, iostate.io_completed, 0, 0, 0);
2386
2387 iostate.io_wanted = 1;
2388 msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_write_contig", NULL);
2389
2390 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
2391 iostate.io_issued, iostate.io_completed, 0, 0, 0);
2392 }
2393 lck_mtx_unlock(cl_mtxp);
2394
2395 if (iostate.io_error)
2396 error = iostate.io_error;
2397
2398 if (error == 0 && tail_size)
2399 error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0, callback, callback_arg);
2400
2401 for (n = 0; n < num_upl; n++)
2402 /*
2403 * just release our hold on each physically contiguous
2404 * region without changing any state
2405 */
2406 ubc_upl_abort(upl[n], 0);
2407
2408 return (error);
2409 }
2410
2411
2412 static int
2413 cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, off_t headOff,
2414 off_t tailOff, int flags, int (*callback)(buf_t, void *), void *callback_arg)
2415 {
2416 upl_page_info_t *pl;
2417 upl_t upl;
2418 vm_offset_t upl_offset = 0;
2419 vm_size_t upl_size;
2420 off_t upl_f_offset;
2421 int pages_in_upl;
2422 int start_offset;
2423 int xfer_resid;
2424 int io_size;
2425 int io_offset;
2426 int bytes_to_zero;
2427 int bytes_to_move;
2428 kern_return_t kret;
2429 int retval = 0;
2430 int io_resid;
2431 long long total_size;
2432 long long zero_cnt;
2433 off_t zero_off;
2434 long long zero_cnt1;
2435 off_t zero_off1;
2436 struct cl_extent cl;
2437 struct cl_writebehind *wbp;
2438 int bflag;
2439 u_int max_cluster_pgcount;
2440 u_int max_io_size;
2441
2442 if (flags & IO_PASSIVE)
2443 bflag = CL_PASSIVE;
2444 else
2445 bflag = 0;
2446
2447 if (uio) {
2448 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START,
2449 (int)uio->uio_offset, io_req_size, (int)oldEOF, (int)newEOF, 0);
2450
2451 io_resid = io_req_size;
2452 } else {
2453 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START,
2454 0, 0, (int)oldEOF, (int)newEOF, 0);
2455
2456 io_resid = 0;
2457 }
2458 zero_cnt = 0;
2459 zero_cnt1 = 0;
2460 zero_off = 0;
2461 zero_off1 = 0;
2462
2463 max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE;
2464 max_io_size = cluster_max_io_size(vp->v_mount, CL_WRITE);
2465
2466 if (flags & IO_HEADZEROFILL) {
2467 /*
2468 * some filesystems (HFS is one) don't support unallocated holes within a file...
2469 * so we zero fill the intervening space between the old EOF and the offset
2470 * where the next chunk of real data begins.... ftruncate will also use this
2471 * routine to zero fill to the new EOF when growing a file... in this case, the
2472 * uio structure will not be provided
2473 */
2474 if (uio) {
2475 if (headOff < uio->uio_offset) {
2476 zero_cnt = uio->uio_offset - headOff;
2477 zero_off = headOff;
2478 }
2479 } else if (headOff < newEOF) {
2480 zero_cnt = newEOF - headOff;
2481 zero_off = headOff;
2482 }
2483 }
2484 if (flags & IO_TAILZEROFILL) {
2485 if (uio) {
2486 zero_off1 = uio->uio_offset + io_req_size;
2487
2488 if (zero_off1 < tailOff)
2489 zero_cnt1 = tailOff - zero_off1;
2490 }
2491 }
2492 if (zero_cnt == 0 && uio == (struct uio *) 0) {
2493 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END,
2494 retval, 0, 0, 0, 0);
2495 return (0);
2496 }
2497
2498 while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) {
2499 /*
2500 * for this iteration of the loop, figure out where our starting point is
2501 */
2502 if (zero_cnt) {
2503 start_offset = (int)(zero_off & PAGE_MASK_64);
2504 upl_f_offset = zero_off - start_offset;
2505 } else if (io_resid) {
2506 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
2507 upl_f_offset = uio->uio_offset - start_offset;
2508 } else {
2509 start_offset = (int)(zero_off1 & PAGE_MASK_64);
2510 upl_f_offset = zero_off1 - start_offset;
2511 }
2512 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 46)) | DBG_FUNC_NONE,
2513 (int)zero_off, (int)zero_cnt, (int)zero_off1, (int)zero_cnt1, 0);
2514
2515 if (total_size > max_io_size)
2516 total_size = max_io_size;
2517
2518 cl.b_addr = (daddr64_t)(upl_f_offset / PAGE_SIZE_64);
2519
2520 if (uio && ((flags & (IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0)) {
2521 /*
2522 * assumption... total_size <= io_resid
2523 * because IO_HEADZEROFILL and IO_TAILZEROFILL not set
2524 */
2525 if ((start_offset + total_size) > max_io_size)
2526 total_size -= start_offset;
2527 xfer_resid = total_size;
2528
2529 retval = cluster_copy_ubc_data_internal(vp, uio, &xfer_resid, 1, 1);
2530
2531 if (retval)
2532 break;
2533
2534 io_resid -= (total_size - xfer_resid);
2535 total_size = xfer_resid;
2536 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
2537 upl_f_offset = uio->uio_offset - start_offset;
2538
2539 if (total_size == 0) {
2540 if (start_offset) {
2541 /*
2542 * the write did not finish on a page boundary
2543 * which will leave upl_f_offset pointing to the
2544 * beginning of the last page written instead of
2545 * the page beyond it... bump it in this case
2546 * so that the cluster code records the last page
2547 * written as dirty
2548 */
2549 upl_f_offset += PAGE_SIZE_64;
2550 }
2551 upl_size = 0;
2552
2553 goto check_cluster;
2554 }
2555 }
2556 /*
2557 * compute the size of the upl needed to encompass
2558 * the requested write... limit each call to cluster_io
2559 * to the maximum UPL size... cluster_io will clip if
2560 * this exceeds the maximum io_size for the device,
2561 * make sure to account for
2562 * a starting offset that's not page aligned
2563 */
2564 upl_size = (start_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
2565
2566 if (upl_size > max_io_size)
2567 upl_size = max_io_size;
2568
2569 pages_in_upl = upl_size / PAGE_SIZE;
2570 io_size = upl_size - start_offset;
2571
2572 if ((long long)io_size > total_size)
2573 io_size = total_size;
2574
2575 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0);
2576
2577
2578 /*
2579 * Gather the pages from the buffer cache.
2580 * The UPL_WILL_MODIFY flag lets the UPL subsystem know
2581 * that we intend to modify these pages.
2582 */
2583 kret = ubc_create_upl(vp,
2584 upl_f_offset,
2585 upl_size,
2586 &upl,
2587 &pl,
2588 UPL_SET_LITE | UPL_WILL_MODIFY);
2589 if (kret != KERN_SUCCESS)
2590 panic("cluster_write_copy: failed to get pagelist");
2591
2592 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END,
2593 (int)upl, (int)upl_f_offset, start_offset, 0, 0);
2594
2595 if (start_offset && !upl_valid_page(pl, 0)) {
2596 int read_size;
2597
2598 /*
2599 * we're starting in the middle of the first page of the upl
2600 * and the page isn't currently valid, so we're going to have
2601 * to read it in first... this is a synchronous operation
2602 */
2603 read_size = PAGE_SIZE;
2604
2605 if ((upl_f_offset + read_size) > newEOF)
2606 read_size = newEOF - upl_f_offset;
2607
2608 retval = cluster_io(vp, upl, 0, upl_f_offset, read_size,
2609 CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
2610 if (retval) {
2611 /*
2612 * we had an error during the read which causes us to abort
2613 * the current cluster_write request... before we do, we need
2614 * to release the rest of the pages in the upl without modifying
2615 * there state and mark the failed page in error
2616 */
2617 ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY);
2618
2619 if (upl_size > PAGE_SIZE)
2620 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
2621
2622 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
2623 (int)upl, 0, 0, retval, 0);
2624 break;
2625 }
2626 }
2627 if ((start_offset == 0 || upl_size > PAGE_SIZE) && ((start_offset + io_size) & PAGE_MASK)) {
2628 /*
2629 * the last offset we're writing to in this upl does not end on a page
2630 * boundary... if it's not beyond the old EOF, then we'll also need to
2631 * pre-read this page in if it isn't already valid
2632 */
2633 upl_offset = upl_size - PAGE_SIZE;
2634
2635 if ((upl_f_offset + start_offset + io_size) < oldEOF &&
2636 !upl_valid_page(pl, upl_offset / PAGE_SIZE)) {
2637 int read_size;
2638
2639 read_size = PAGE_SIZE;
2640
2641 if ((upl_f_offset + upl_offset + read_size) > newEOF)
2642 read_size = newEOF - (upl_f_offset + upl_offset);
2643
2644 retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size,
2645 CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
2646 if (retval) {
2647 /*
2648 * we had an error during the read which causes us to abort
2649 * the current cluster_write request... before we do, we
2650 * need to release the rest of the pages in the upl without
2651 * modifying there state and mark the failed page in error
2652 */
2653 ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY);
2654
2655 if (upl_size > PAGE_SIZE)
2656 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
2657
2658 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
2659 (int)upl, 0, 0, retval, 0);
2660 break;
2661 }
2662 }
2663 }
2664 xfer_resid = io_size;
2665 io_offset = start_offset;
2666
2667 while (zero_cnt && xfer_resid) {
2668
2669 if (zero_cnt < (long long)xfer_resid)
2670 bytes_to_zero = zero_cnt;
2671 else
2672 bytes_to_zero = xfer_resid;
2673
2674 if ( !(flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) {
2675 cluster_zero(upl, io_offset, bytes_to_zero, NULL);
2676 } else {
2677 int zero_pg_index;
2678
2679 bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64));
2680 zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64);
2681
2682 if ( !upl_valid_page(pl, zero_pg_index)) {
2683 cluster_zero(upl, io_offset, bytes_to_zero, NULL);
2684
2685 } else if ((flags & (IO_NOZERODIRTY | IO_NOZEROVALID)) == IO_NOZERODIRTY &&
2686 !upl_dirty_page(pl, zero_pg_index)) {
2687 cluster_zero(upl, io_offset, bytes_to_zero, NULL);
2688 }
2689 }
2690 xfer_resid -= bytes_to_zero;
2691 zero_cnt -= bytes_to_zero;
2692 zero_off += bytes_to_zero;
2693 io_offset += bytes_to_zero;
2694 }
2695 if (xfer_resid && io_resid) {
2696 u_int32_t io_requested;
2697
2698 bytes_to_move = min(io_resid, xfer_resid);
2699 io_requested = bytes_to_move;
2700
2701 retval = cluster_copy_upl_data(uio, upl, io_offset, (int *)&io_requested);
2702
2703 if (retval) {
2704
2705 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
2706
2707 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
2708 (int)upl, 0, 0, retval, 0);
2709 } else {
2710 io_resid -= bytes_to_move;
2711 xfer_resid -= bytes_to_move;
2712 io_offset += bytes_to_move;
2713 }
2714 }
2715 while (xfer_resid && zero_cnt1 && retval == 0) {
2716
2717 if (zero_cnt1 < (long long)xfer_resid)
2718 bytes_to_zero = zero_cnt1;
2719 else
2720 bytes_to_zero = xfer_resid;
2721
2722 if ( !(flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) {
2723 cluster_zero(upl, io_offset, bytes_to_zero, NULL);
2724 } else {
2725 int zero_pg_index;
2726
2727 bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off1 & PAGE_MASK_64));
2728 zero_pg_index = (int)((zero_off1 - upl_f_offset) / PAGE_SIZE_64);
2729
2730 if ( !upl_valid_page(pl, zero_pg_index)) {
2731 cluster_zero(upl, io_offset, bytes_to_zero, NULL);
2732 } else if ((flags & (IO_NOZERODIRTY | IO_NOZEROVALID)) == IO_NOZERODIRTY &&
2733 !upl_dirty_page(pl, zero_pg_index)) {
2734 cluster_zero(upl, io_offset, bytes_to_zero, NULL);
2735 }
2736 }
2737 xfer_resid -= bytes_to_zero;
2738 zero_cnt1 -= bytes_to_zero;
2739 zero_off1 += bytes_to_zero;
2740 io_offset += bytes_to_zero;
2741 }
2742
2743 if (retval == 0) {
2744 int cl_index;
2745 int ret_cluster_try_push;
2746
2747 io_size += start_offset;
2748
2749 if ((upl_f_offset + io_size) >= newEOF && (u_int)io_size < upl_size) {
2750 /*
2751 * if we're extending the file with this write
2752 * we'll zero fill the rest of the page so that
2753 * if the file gets extended again in such a way as to leave a
2754 * hole starting at this EOF, we'll have zero's in the correct spot
2755 */
2756 cluster_zero(upl, io_size, upl_size - io_size, NULL);
2757 }
2758 /*
2759 * release the upl now if we hold one since...
2760 * 1) pages in it may be present in the sparse cluster map
2761 * and may span 2 separate buckets there... if they do and
2762 * we happen to have to flush a bucket to make room and it intersects
2763 * this upl, a deadlock may result on page BUSY
2764 * 2) we're delaying the I/O... from this point forward we're just updating
2765 * the cluster state... no need to hold the pages, so commit them
2766 * 3) IO_SYNC is set...
2767 * because we had to ask for a UPL that provides currenty non-present pages, the
2768 * UPL has been automatically set to clear the dirty flags (both software and hardware)
2769 * upon committing it... this is not the behavior we want since it's possible for
2770 * pages currently present as part of a mapped file to be dirtied while the I/O is in flight.
2771 * we'll pick these pages back up later with the correct behavior specified.
2772 * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush
2773 * of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages
2774 * we hold since the flushing context is holding the cluster lock.
2775 */
2776 ubc_upl_commit_range(upl, 0, upl_size,
2777 UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
2778 check_cluster:
2779 /*
2780 * calculate the last logical block number
2781 * that this delayed I/O encompassed
2782 */
2783 cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64);
2784
2785 if (flags & IO_SYNC)
2786 /*
2787 * if the IO_SYNC flag is set than we need to
2788 * bypass any clusters and immediately issue
2789 * the I/O
2790 */
2791 goto issue_io;
2792
2793 /*
2794 * take the lock to protect our accesses
2795 * of the writebehind and sparse cluster state
2796 */
2797 wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED);
2798
2799 if (wbp->cl_scmap) {
2800
2801 if ( !(flags & IO_NOCACHE)) {
2802 /*
2803 * we've fallen into the sparse
2804 * cluster method of delaying dirty pages
2805 */
2806 sparse_cluster_add(wbp, vp, &cl, newEOF, callback, callback_arg);
2807
2808 lck_mtx_unlock(&wbp->cl_lockw);
2809
2810 continue;
2811 }
2812 /*
2813 * must have done cached writes that fell into
2814 * the sparse cluster mechanism... we've switched
2815 * to uncached writes on the file, so go ahead
2816 * and push whatever's in the sparse map
2817 * and switch back to normal clustering
2818 */
2819 wbp->cl_number = 0;
2820
2821 sparse_cluster_push(wbp, vp, newEOF, PUSH_ALL, callback, callback_arg);
2822 /*
2823 * no clusters of either type present at this point
2824 * so just go directly to start_new_cluster since
2825 * we know we need to delay this I/O since we've
2826 * already released the pages back into the cache
2827 * to avoid the deadlock with sparse_cluster_push
2828 */
2829 goto start_new_cluster;
2830 }
2831 if (wbp->cl_number == 0)
2832 /*
2833 * no clusters currently present
2834 */
2835 goto start_new_cluster;
2836
2837 for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
2838 /*
2839 * check each cluster that we currently hold
2840 * try to merge some or all of this write into
2841 * one or more of the existing clusters... if
2842 * any portion of the write remains, start a
2843 * new cluster
2844 */
2845 if (cl.b_addr >= wbp->cl_clusters[cl_index].b_addr) {
2846 /*
2847 * the current write starts at or after the current cluster
2848 */
2849 if (cl.e_addr <= (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) {
2850 /*
2851 * we have a write that fits entirely
2852 * within the existing cluster limits
2853 */
2854 if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr)
2855 /*
2856 * update our idea of where the cluster ends
2857 */
2858 wbp->cl_clusters[cl_index].e_addr = cl.e_addr;
2859 break;
2860 }
2861 if (cl.b_addr < (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) {
2862 /*
2863 * we have a write that starts in the middle of the current cluster
2864 * but extends beyond the cluster's limit... we know this because
2865 * of the previous checks
2866 * we'll extend the current cluster to the max
2867 * and update the b_addr for the current write to reflect that
2868 * the head of it was absorbed into this cluster...
2869 * note that we'll always have a leftover tail in this case since
2870 * full absorbtion would have occurred in the clause above
2871 */
2872 wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount;
2873
2874 cl.b_addr = wbp->cl_clusters[cl_index].e_addr;
2875 }
2876 /*
2877 * we come here for the case where the current write starts
2878 * beyond the limit of the existing cluster or we have a leftover
2879 * tail after a partial absorbtion
2880 *
2881 * in either case, we'll check the remaining clusters before
2882 * starting a new one
2883 */
2884 } else {
2885 /*
2886 * the current write starts in front of the cluster we're currently considering
2887 */
2888 if ((wbp->cl_clusters[cl_index].e_addr - cl.b_addr) <= max_cluster_pgcount) {
2889 /*
2890 * we can just merge the new request into
2891 * this cluster and leave it in the cache
2892 * since the resulting cluster is still
2893 * less than the maximum allowable size
2894 */
2895 wbp->cl_clusters[cl_index].b_addr = cl.b_addr;
2896
2897 if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) {
2898 /*
2899 * the current write completely
2900 * envelops the existing cluster and since
2901 * each write is limited to at most max_cluster_pgcount pages
2902 * we can just use the start and last blocknos of the write
2903 * to generate the cluster limits
2904 */
2905 wbp->cl_clusters[cl_index].e_addr = cl.e_addr;
2906 }
2907 break;
2908 }
2909
2910 /*
2911 * if we were to combine this write with the current cluster
2912 * we would exceed the cluster size limit.... so,
2913 * let's see if there's any overlap of the new I/O with
2914 * the cluster we're currently considering... in fact, we'll
2915 * stretch the cluster out to it's full limit and see if we
2916 * get an intersection with the current write
2917 *
2918 */
2919 if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount) {
2920 /*
2921 * the current write extends into the proposed cluster
2922 * clip the length of the current write after first combining it's
2923 * tail with the newly shaped cluster
2924 */
2925 wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount;
2926
2927 cl.e_addr = wbp->cl_clusters[cl_index].b_addr;
2928 }
2929 /*
2930 * if we get here, there was no way to merge
2931 * any portion of this write with this cluster
2932 * or we could only merge part of it which
2933 * will leave a tail...
2934 * we'll check the remaining clusters before starting a new one
2935 */
2936 }
2937 }
2938 if (cl_index < wbp->cl_number)
2939 /*
2940 * we found an existing cluster(s) that we
2941 * could entirely merge this I/O into
2942 */
2943 goto delay_io;
2944
2945 if (wbp->cl_number < MAX_CLUSTERS)
2946 /*
2947 * we didn't find an existing cluster to
2948 * merge into, but there's room to start
2949 * a new one
2950 */
2951 goto start_new_cluster;
2952
2953 /*
2954 * no exisitng cluster to merge with and no
2955 * room to start a new one... we'll try
2956 * pushing one of the existing ones... if none of
2957 * them are able to be pushed, we'll switch
2958 * to the sparse cluster mechanism
2959 * cluster_try_push updates cl_number to the
2960 * number of remaining clusters... and
2961 * returns the number of currently unused clusters
2962 */
2963 ret_cluster_try_push = 0;
2964
2965 /*
2966 * if writes are not deferred, call cluster push immediately
2967 */
2968 if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) {
2969
2970 ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, callback, callback_arg);
2971 }
2972
2973 /*
2974 * execute following regardless of writes being deferred or not
2975 */
2976 if (ret_cluster_try_push == 0) {
2977 /*
2978 * no more room in the normal cluster mechanism
2979 * so let's switch to the more expansive but expensive
2980 * sparse mechanism....
2981 */
2982 sparse_cluster_switch(wbp, vp, newEOF, callback, callback_arg);
2983 sparse_cluster_add(wbp, vp, &cl, newEOF, callback, callback_arg);
2984
2985 lck_mtx_unlock(&wbp->cl_lockw);
2986
2987 continue;
2988 }
2989 /*
2990 * we pushed one cluster successfully, so we must be sequentially writing this file
2991 * otherwise, we would have failed and fallen into the sparse cluster support
2992 * so let's take the opportunity to push out additional clusters...
2993 * this will give us better I/O locality if we're in a copy loop
2994 * (i.e. we won't jump back and forth between the read and write points
2995 */
2996 if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) {
2997 while (wbp->cl_number)
2998 cluster_try_push(wbp, vp, newEOF, 0, callback, callback_arg);
2999 }
3000
3001 start_new_cluster:
3002 wbp->cl_clusters[wbp->cl_number].b_addr = cl.b_addr;
3003 wbp->cl_clusters[wbp->cl_number].e_addr = cl.e_addr;
3004
3005 wbp->cl_clusters[wbp->cl_number].io_flags = 0;
3006
3007 if (flags & IO_NOCACHE)
3008 wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IONOCACHE;
3009
3010 if (bflag & CL_PASSIVE)
3011 wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IOPASSIVE;
3012
3013 wbp->cl_number++;
3014 delay_io:
3015 lck_mtx_unlock(&wbp->cl_lockw);
3016
3017 continue;
3018 issue_io:
3019 /*
3020 * we don't hold the lock at this point
3021 *
3022 * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set
3023 * so that we correctly deal with a change in state of the hardware modify bit...
3024 * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force
3025 * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also
3026 * responsible for generating the correct sized I/O(s)
3027 */
3028 retval = cluster_push_now(vp, &cl, newEOF, flags, callback, callback_arg);
3029 }
3030 }
3031 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, retval, 0, io_resid, 0, 0);
3032
3033 return (retval);
3034 }
3035
3036
3037
3038 int
3039 cluster_read(vnode_t vp, struct uio *uio, off_t filesize, int xflags)
3040 {
3041 return cluster_read_ext(vp, uio, filesize, xflags, NULL, NULL);
3042 }
3043
3044
3045 int
3046 cluster_read_ext(vnode_t vp, struct uio *uio, off_t filesize, int xflags, int (*callback)(buf_t, void *), void *callback_arg)
3047 {
3048 int retval = 0;
3049 int flags;
3050 user_ssize_t cur_resid;
3051 u_int32_t io_size;
3052 u_int32_t read_length = 0;
3053 int read_type = IO_COPY;
3054
3055 flags = xflags;
3056
3057 if (vp->v_flag & VNOCACHE_DATA)
3058 flags |= IO_NOCACHE;
3059 if ((vp->v_flag & VRAOFF) || speculative_reads_disabled)
3060 flags |= IO_RAOFF;
3061
3062 /*
3063 * do a read through the cache if one of the following is true....
3064 * NOCACHE is not true
3065 * the uio request doesn't target USERSPACE
3066 * otherwise, find out if we want the direct or contig variant for
3067 * the first vector in the uio request
3068 */
3069 if ( (flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) )
3070 retval = cluster_io_type(uio, &read_type, &read_length, 0);
3071
3072 while ((cur_resid = uio_resid(uio)) && uio->uio_offset < filesize && retval == 0) {
3073
3074 switch (read_type) {
3075
3076 case IO_COPY:
3077 /*
3078 * make sure the uio_resid isn't too big...
3079 * internally, we want to handle all of the I/O in
3080 * chunk sizes that fit in a 32 bit int
3081 */
3082 if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE))
3083 io_size = MAX_IO_REQUEST_SIZE;
3084 else
3085 io_size = (u_int32_t)cur_resid;
3086
3087 retval = cluster_read_copy(vp, uio, io_size, filesize, flags, callback, callback_arg);
3088 break;
3089
3090 case IO_DIRECT:
3091 retval = cluster_read_direct(vp, uio, filesize, &read_type, &read_length, flags, callback, callback_arg);
3092 break;
3093
3094 case IO_CONTIG:
3095 retval = cluster_read_contig(vp, uio, filesize, &read_type, &read_length, callback, callback_arg, flags);
3096 break;
3097
3098 case IO_UNKNOWN:
3099 retval = cluster_io_type(uio, &read_type, &read_length, 0);
3100 break;
3101 }
3102 }
3103 return (retval);
3104 }
3105
3106
3107
3108 static void
3109 cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int flags)
3110 {
3111 int range;
3112 int abort_flags = UPL_ABORT_FREE_ON_EMPTY;
3113
3114 if ((range = last_pg - start_pg)) {
3115 if ( !(flags & IO_NOCACHE))
3116 abort_flags |= UPL_ABORT_REFERENCE;
3117
3118 ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, range * PAGE_SIZE, abort_flags);
3119 }
3120 }
3121
3122
3123 static int
3124 cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
3125 {
3126 upl_page_info_t *pl;
3127 upl_t upl;
3128 vm_offset_t upl_offset;
3129 u_int32_t upl_size;
3130 off_t upl_f_offset;
3131 int start_offset;
3132 int start_pg;
3133 int last_pg;
3134 int uio_last = 0;
3135 int pages_in_upl;
3136 off_t max_size;
3137 off_t last_ioread_offset;
3138 off_t last_request_offset;
3139 kern_return_t kret;
3140 int error = 0;
3141 int retval = 0;
3142 u_int32_t size_of_prefetch;
3143 u_int32_t xsize;
3144 u_int32_t io_size;
3145 u_int32_t max_rd_size;
3146 u_int32_t max_io_size;
3147 u_int32_t max_prefetch;
3148 u_int rd_ahead_enabled = 1;
3149 u_int prefetch_enabled = 1;
3150 struct cl_readahead * rap;
3151 struct clios iostate;
3152 struct cl_extent extent;
3153 int bflag;
3154 int take_reference = 1;
3155 struct uthread *ut;
3156 int policy = IOPOL_DEFAULT;
3157
3158 policy = current_proc()->p_iopol_disk;
3159
3160 ut = get_bsdthread_info(current_thread());
3161
3162 if (ut->uu_iopol_disk != IOPOL_DEFAULT)
3163 policy = ut->uu_iopol_disk;
3164
3165 if (policy == IOPOL_THROTTLE)
3166 take_reference = 0;
3167
3168 if (flags & IO_PASSIVE)
3169 bflag = CL_PASSIVE;
3170 else
3171 bflag = 0;
3172
3173 max_prefetch = MAX_PREFETCH(vp);
3174 max_rd_size = max_prefetch;
3175 max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
3176
3177 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START,
3178 (int)uio->uio_offset, io_req_size, (int)filesize, flags, 0);
3179
3180 last_request_offset = uio->uio_offset + io_req_size;
3181
3182 if ((flags & (IO_RAOFF|IO_NOCACHE)) || ((last_request_offset & ~PAGE_MASK_64) == (uio->uio_offset & ~PAGE_MASK_64))) {
3183 rd_ahead_enabled = 0;
3184 rap = NULL;
3185 } else {
3186 if (cluster_hard_throttle_on(vp)) {
3187 rd_ahead_enabled = 0;
3188 prefetch_enabled = 0;
3189
3190 max_rd_size = HARD_THROTTLE_MAXSIZE;
3191 }
3192 if ((rap = cluster_get_rap(vp)) == NULL)
3193 rd_ahead_enabled = 0;
3194 }
3195 if (last_request_offset > filesize)
3196 last_request_offset = filesize;
3197 extent.b_addr = uio->uio_offset / PAGE_SIZE_64;
3198 extent.e_addr = (last_request_offset - 1) / PAGE_SIZE_64;
3199
3200 if (rap != NULL && rap->cl_ralen && (rap->cl_lastr == extent.b_addr || (rap->cl_lastr + 1) == extent.b_addr)) {
3201 /*
3202 * determine if we already have a read-ahead in the pipe courtesy of the
3203 * last read systemcall that was issued...
3204 * if so, pick up it's extent to determine where we should start
3205 * with respect to any read-ahead that might be necessary to
3206 * garner all the data needed to complete this read systemcall
3207 */
3208 last_ioread_offset = (rap->cl_maxra * PAGE_SIZE_64) + PAGE_SIZE_64;
3209
3210 if (last_ioread_offset < uio->uio_offset)
3211 last_ioread_offset = (off_t)0;
3212 else if (last_ioread_offset > last_request_offset)
3213 last_ioread_offset = last_request_offset;
3214 } else
3215 last_ioread_offset = (off_t)0;
3216
3217 while (io_req_size && uio->uio_offset < filesize && retval == 0) {
3218 /*
3219 * compute the size of the upl needed to encompass
3220 * the requested read... limit each call to cluster_io
3221 * to the maximum UPL size... cluster_io will clip if
3222 * this exceeds the maximum io_size for the device,
3223 * make sure to account for
3224 * a starting offset that's not page aligned
3225 */
3226 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
3227 upl_f_offset = uio->uio_offset - (off_t)start_offset;
3228 max_size = filesize - uio->uio_offset;
3229
3230 if ((off_t)(io_req_size) < max_size)
3231 io_size = io_req_size;
3232 else
3233 io_size = max_size;
3234
3235 if (!(flags & IO_NOCACHE)) {
3236
3237 while (io_size) {
3238 u_int32_t io_resid;
3239 u_int32_t io_requested;
3240
3241 /*
3242 * if we keep finding the pages we need already in the cache, then
3243 * don't bother to call cluster_read_prefetch since it costs CPU cycles
3244 * to determine that we have all the pages we need... once we miss in
3245 * the cache and have issued an I/O, than we'll assume that we're likely
3246 * to continue to miss in the cache and it's to our advantage to try and prefetch
3247 */
3248 if (last_request_offset && last_ioread_offset && (size_of_prefetch = (last_request_offset - last_ioread_offset))) {
3249 if ((last_ioread_offset - uio->uio_offset) <= max_rd_size && prefetch_enabled) {
3250 /*
3251 * we've already issued I/O for this request and
3252 * there's still work to do and
3253 * our prefetch stream is running dry, so issue a
3254 * pre-fetch I/O... the I/O latency will overlap
3255 * with the copying of the data
3256 */
3257 if (size_of_prefetch > max_rd_size)
3258 size_of_prefetch = max_rd_size;
3259
3260 size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag);
3261
3262 last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE);
3263
3264 if (last_ioread_offset > last_request_offset)
3265 last_ioread_offset = last_request_offset;
3266 }
3267 }
3268 /*
3269 * limit the size of the copy we're about to do so that
3270 * we can notice that our I/O pipe is running dry and
3271 * get the next I/O issued before it does go dry
3272 */
3273 if (last_ioread_offset && io_size > (max_io_size / 4))
3274 io_resid = (max_io_size / 4);
3275 else
3276 io_resid = io_size;
3277
3278 io_requested = io_resid;
3279
3280 retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_resid, 0, take_reference);
3281
3282 xsize = io_requested - io_resid;
3283
3284 io_size -= xsize;
3285 io_req_size -= xsize;
3286
3287 if (retval || io_resid)
3288 /*
3289 * if we run into a real error or
3290 * a page that is not in the cache
3291 * we need to leave streaming mode
3292 */
3293 break;
3294
3295 if ((io_size == 0 || last_ioread_offset == last_request_offset) && rd_ahead_enabled) {
3296 /*
3297 * we're already finished the I/O for this read request
3298 * let's see if we should do a read-ahead
3299 */
3300 cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag);
3301 }
3302 }
3303 if (retval)
3304 break;
3305 if (io_size == 0) {
3306 if (rap != NULL) {
3307 if (extent.e_addr < rap->cl_lastr)
3308 rap->cl_maxra = 0;
3309 rap->cl_lastr = extent.e_addr;
3310 }
3311 break;
3312 }
3313 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
3314 upl_f_offset = uio->uio_offset - (off_t)start_offset;
3315 max_size = filesize - uio->uio_offset;
3316 }
3317 if (io_size > max_rd_size)
3318 io_size = max_rd_size;
3319
3320 upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
3321
3322 if (flags & IO_NOCACHE) {
3323 if (upl_size > max_io_size)
3324 upl_size = max_io_size;
3325 } else {
3326 if (upl_size > max_io_size / 4)
3327 upl_size = max_io_size / 4;
3328 }
3329 pages_in_upl = upl_size / PAGE_SIZE;
3330
3331 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START,
3332 (int)upl, (int)upl_f_offset, upl_size, start_offset, 0);
3333
3334 kret = ubc_create_upl(vp,
3335 upl_f_offset,
3336 upl_size,
3337 &upl,
3338 &pl,
3339 UPL_FILE_IO | UPL_SET_LITE);
3340 if (kret != KERN_SUCCESS)
3341 panic("cluster_read_copy: failed to get pagelist");
3342
3343 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END,
3344 (int)upl, (int)upl_f_offset, upl_size, start_offset, 0);
3345
3346 /*
3347 * scan from the beginning of the upl looking for the first
3348 * non-valid page.... this will become the first page in
3349 * the request we're going to make to 'cluster_io'... if all
3350 * of the pages are valid, we won't call through to 'cluster_io'
3351 */
3352 for (start_pg = 0; start_pg < pages_in_upl; start_pg++) {
3353 if (!upl_valid_page(pl, start_pg))
3354 break;
3355 }
3356
3357 /*
3358 * scan from the starting invalid page looking for a valid
3359 * page before the end of the upl is reached, if we
3360 * find one, then it will be the last page of the request to
3361 * 'cluster_io'
3362 */
3363 for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
3364 if (upl_valid_page(pl, last_pg))
3365 break;
3366 }
3367 iostate.io_completed = 0;
3368 iostate.io_issued = 0;
3369 iostate.io_error = 0;
3370 iostate.io_wanted = 0;
3371
3372 if (start_pg < last_pg) {
3373 /*
3374 * we found a range of 'invalid' pages that must be filled
3375 * if the last page in this range is the last page of the file
3376 * we may have to clip the size of it to keep from reading past
3377 * the end of the last physical block associated with the file
3378 */
3379 upl_offset = start_pg * PAGE_SIZE;
3380 io_size = (last_pg - start_pg) * PAGE_SIZE;
3381
3382 if ((upl_f_offset + upl_offset + io_size) > filesize)
3383 io_size = filesize - (upl_f_offset + upl_offset);
3384
3385 /*
3386 * issue an asynchronous read to cluster_io
3387 */
3388
3389 error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset,
3390 io_size, CL_READ | CL_ASYNC | bflag, (buf_t)NULL, &iostate, callback, callback_arg);
3391 }
3392 if (error == 0) {
3393 /*
3394 * if the read completed successfully, or there was no I/O request
3395 * issued, than copy the data into user land via 'cluster_upl_copy_data'
3396 * we'll first add on any 'valid'
3397 * pages that were present in the upl when we acquired it.
3398 */
3399 u_int val_size;
3400
3401 for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) {
3402 if (!upl_valid_page(pl, uio_last))
3403 break;
3404 }
3405 if (uio_last < pages_in_upl) {
3406 /*
3407 * there were some invalid pages beyond the valid pages
3408 * that we didn't issue an I/O for, just release them
3409 * unchanged now, so that any prefetch/readahed can
3410 * include them
3411 */
3412 ubc_upl_abort_range(upl, uio_last * PAGE_SIZE,
3413 (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
3414 }
3415
3416 /*
3417 * compute size to transfer this round, if io_req_size is
3418 * still non-zero after this attempt, we'll loop around and
3419 * set up for another I/O.
3420 */
3421 val_size = (uio_last * PAGE_SIZE) - start_offset;
3422
3423 if (val_size > max_size)
3424 val_size = max_size;
3425
3426 if (val_size > io_req_size)
3427 val_size = io_req_size;
3428
3429 if ((uio->uio_offset + val_size) > last_ioread_offset)
3430 last_ioread_offset = uio->uio_offset + val_size;
3431
3432 if ((size_of_prefetch = (last_request_offset - last_ioread_offset)) && prefetch_enabled) {
3433
3434 if ((last_ioread_offset - (uio->uio_offset + val_size)) <= upl_size) {
3435 /*
3436 * if there's still I/O left to do for this request, and...
3437 * we're not in hard throttle mode, and...
3438 * we're close to using up the previous prefetch, then issue a
3439 * new pre-fetch I/O... the I/O latency will overlap
3440 * with the copying of the data
3441 */
3442 if (size_of_prefetch > max_rd_size)
3443 size_of_prefetch = max_rd_size;
3444
3445 size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag);
3446
3447 last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE);
3448
3449 if (last_ioread_offset > last_request_offset)
3450 last_ioread_offset = last_request_offset;
3451 }
3452
3453 } else if ((uio->uio_offset + val_size) == last_request_offset) {
3454 /*
3455 * this transfer will finish this request, so...
3456 * let's try to read ahead if we're in
3457 * a sequential access pattern and we haven't
3458 * explicitly disabled it
3459 */
3460 if (rd_ahead_enabled)
3461 cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag);
3462
3463 if (rap != NULL) {
3464 if (extent.e_addr < rap->cl_lastr)
3465 rap->cl_maxra = 0;
3466 rap->cl_lastr = extent.e_addr;
3467 }
3468 }
3469 lck_mtx_lock(cl_mtxp);
3470
3471 while (iostate.io_issued != iostate.io_completed) {
3472 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
3473 iostate.io_issued, iostate.io_completed, 0, 0, 0);
3474
3475 iostate.io_wanted = 1;
3476 msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_read_copy", NULL);
3477
3478 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
3479 iostate.io_issued, iostate.io_completed, 0, 0, 0);
3480 }
3481 lck_mtx_unlock(cl_mtxp);
3482
3483 if (iostate.io_error)
3484 error = iostate.io_error;
3485 else {
3486 u_int32_t io_requested;
3487
3488 io_requested = val_size;
3489
3490 retval = cluster_copy_upl_data(uio, upl, start_offset, (int *)&io_requested);
3491
3492 io_req_size -= (val_size - io_requested);
3493 }
3494 }
3495 if (start_pg < last_pg) {
3496 /*
3497 * compute the range of pages that we actually issued an I/O for
3498 * and either commit them as valid if the I/O succeeded
3499 * or abort them if the I/O failed or we're not supposed to
3500 * keep them in the cache
3501 */
3502 io_size = (last_pg - start_pg) * PAGE_SIZE;
3503
3504 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, (int)upl, start_pg * PAGE_SIZE, io_size, error, 0);
3505
3506 if (error || (flags & IO_NOCACHE))
3507 ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size,
3508 UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
3509 else
3510 ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size,
3511 UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY | UPL_COMMIT_INACTIVATE);
3512
3513 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, (int)upl, start_pg * PAGE_SIZE, io_size, error, 0);
3514 }
3515 if ((last_pg - start_pg) < pages_in_upl) {
3516 /*
3517 * the set of pages that we issued an I/O for did not encompass
3518 * the entire upl... so just release these without modifying
3519 * their state
3520 */
3521 if (error)
3522 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
3523 else {
3524
3525 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START,
3526 (int)upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0);
3527
3528 /*
3529 * handle any valid pages at the beginning of
3530 * the upl... release these appropriately
3531 */
3532 cluster_read_upl_release(upl, 0, start_pg, flags);
3533
3534 /*
3535 * handle any valid pages immediately after the
3536 * pages we issued I/O for... ... release these appropriately
3537 */
3538 cluster_read_upl_release(upl, last_pg, uio_last, flags);
3539
3540 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, (int)upl, -1, -1, 0, 0);
3541 }
3542 }
3543 if (retval == 0)
3544 retval = error;
3545
3546 if (io_req_size) {
3547 if (cluster_hard_throttle_on(vp)) {
3548 rd_ahead_enabled = 0;
3549 prefetch_enabled = 0;
3550
3551 max_rd_size = HARD_THROTTLE_MAXSIZE;
3552 } else {
3553 if (max_rd_size == HARD_THROTTLE_MAXSIZE) {
3554 /*
3555 * coming out of throttled state
3556 */
3557 if (rap != NULL)
3558 rd_ahead_enabled = 1;
3559 prefetch_enabled = 1;
3560
3561 max_rd_size = max_prefetch;
3562 last_ioread_offset = 0;
3563 }
3564 }
3565 }
3566 }
3567 if (rap != NULL) {
3568 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
3569 (int)uio->uio_offset, io_req_size, rap->cl_lastr, retval, 0);
3570
3571 lck_mtx_unlock(&rap->cl_lockr);
3572 } else {
3573 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
3574 (int)uio->uio_offset, io_req_size, 0, retval, 0);
3575 }
3576
3577 return (retval);
3578 }
3579
3580
3581 static int
3582 cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
3583 int flags, int (*callback)(buf_t, void *), void *callback_arg)
3584 {
3585 upl_t upl;
3586 upl_page_info_t *pl;
3587 off_t max_io_size;
3588 vm_offset_t upl_offset;
3589 vm_size_t upl_size;
3590 vm_size_t upl_needed_size;
3591 unsigned int pages_in_pl;
3592 int upl_flags;
3593 int bflag;
3594 kern_return_t kret;
3595 unsigned int i;
3596 int force_data_sync;
3597 int retval = 0;
3598 int no_zero_fill = 0;
3599 int abort_flag = 0;
3600 int io_flag = 0;
3601 int misaligned = 0;
3602 struct clios iostate;
3603 user_addr_t iov_base;
3604 u_int32_t io_req_size;
3605 u_int32_t offset_in_file;
3606 u_int32_t offset_in_iovbase;
3607 u_int32_t io_size;
3608 u_int32_t io_min;
3609 u_int32_t xsize;
3610 u_int32_t devblocksize;
3611 u_int32_t mem_alignment_mask;
3612 u_int32_t max_upl_size;
3613 u_int32_t max_rd_size;
3614 u_int32_t max_rd_ahead;
3615
3616
3617 max_upl_size = cluster_max_io_size(vp->v_mount, CL_READ);
3618
3619 max_rd_size = max_upl_size;
3620 max_rd_ahead = max_rd_size * 2;
3621
3622
3623 if (flags & IO_PASSIVE)
3624 bflag = CL_PASSIVE;
3625 else
3626 bflag = 0;
3627
3628 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START,
3629 (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0);
3630
3631 iostate.io_completed = 0;
3632 iostate.io_issued = 0;
3633 iostate.io_error = 0;
3634 iostate.io_wanted = 0;
3635
3636 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
3637 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
3638
3639 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE,
3640 (int)devblocksize, (int)mem_alignment_mask, 0, 0, 0);
3641
3642 if (devblocksize == 1) {
3643 /*
3644 * the AFP client advertises a devblocksize of 1
3645 * however, its BLOCKMAP routine maps to physical
3646 * blocks that are PAGE_SIZE in size...
3647 * therefore we can't ask for I/Os that aren't page aligned
3648 * or aren't multiples of PAGE_SIZE in size
3649 * by setting devblocksize to PAGE_SIZE, we re-instate
3650 * the old behavior we had before the mem_alignment_mask
3651 * changes went in...
3652 */
3653 devblocksize = PAGE_SIZE;
3654 }
3655 next_dread:
3656 io_req_size = *read_length;
3657 iov_base = uio_curriovbase(uio);
3658
3659 max_io_size = filesize - uio->uio_offset;
3660
3661 if ((off_t)io_req_size > max_io_size)
3662 io_req_size = max_io_size;
3663
3664 offset_in_file = (u_int32_t)uio->uio_offset & (devblocksize - 1);
3665 offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask;
3666
3667 if (offset_in_file || offset_in_iovbase) {
3668 /*
3669 * one of the 2 important offsets is misaligned
3670 * so fire an I/O through the cache for this entire vector
3671 */
3672 misaligned = 1;
3673 }
3674 if (iov_base & (devblocksize - 1)) {
3675 /*
3676 * the offset in memory must be on a device block boundary
3677 * so that we can guarantee that we can generate an
3678 * I/O that ends on a page boundary in cluster_io
3679 */
3680 misaligned = 1;
3681 }
3682 /*
3683 * When we get to this point, we know...
3684 * -- the offset into the file is on a devblocksize boundary
3685 */
3686
3687 while (io_req_size && retval == 0) {
3688 u_int32_t io_start;
3689
3690 if (cluster_hard_throttle_on(vp)) {
3691 max_rd_size = HARD_THROTTLE_MAXSIZE;
3692 max_rd_ahead = HARD_THROTTLE_MAXSIZE - 1;
3693 } else {
3694 max_rd_size = max_upl_size;
3695 max_rd_ahead = max_rd_size * 2;
3696 }
3697 io_start = io_size = io_req_size;
3698
3699 /*
3700 * First look for pages already in the cache
3701 * and move them to user space.
3702 *
3703 * cluster_copy_ubc_data returns the resid
3704 * in io_size
3705 */
3706 retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0);
3707
3708 /*
3709 * calculate the number of bytes actually copied
3710 * starting size - residual
3711 */
3712 xsize = io_start - io_size;
3713
3714 io_req_size -= xsize;
3715
3716 /*
3717 * check to see if we are finished with this request...
3718 */
3719 if (io_req_size == 0 || misaligned) {
3720 /*
3721 * see if there's another uio vector to
3722 * process that's of type IO_DIRECT
3723 *
3724 * break out of while loop to get there
3725 */
3726 break;
3727 }
3728 /*
3729 * assume the request ends on a device block boundary
3730 */
3731 io_min = devblocksize;
3732
3733 /*
3734 * we can handle I/O's in multiples of the device block size
3735 * however, if io_size isn't a multiple of devblocksize we
3736 * want to clip it back to the nearest page boundary since
3737 * we are going to have to go through cluster_read_copy to
3738 * deal with the 'overhang'... by clipping it to a PAGE_SIZE
3739 * multiple, we avoid asking the drive for the same physical
3740 * blocks twice.. once for the partial page at the end of the
3741 * request and a 2nd time for the page we read into the cache
3742 * (which overlaps the end of the direct read) in order to
3743 * get at the overhang bytes
3744 */
3745 if (io_size & (devblocksize - 1)) {
3746 /*
3747 * request does NOT end on a device block boundary
3748 * so clip it back to a PAGE_SIZE boundary
3749 */
3750 io_size &= ~PAGE_MASK;
3751 io_min = PAGE_SIZE;
3752 }
3753 if (retval || io_size < io_min) {
3754 /*
3755 * either an error or we only have the tail left to
3756 * complete via the copy path...
3757 * we may have already spun some portion of this request
3758 * off as async requests... we need to wait for the I/O
3759 * to complete before returning
3760 */
3761 goto wait_for_dreads;
3762 }
3763 if ((xsize = io_size) > max_rd_size)
3764 xsize = max_rd_size;
3765
3766 io_size = 0;
3767
3768 ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size);
3769
3770 if (io_size == 0) {
3771 /*
3772 * a page must have just come into the cache
3773 * since the first page in this range is no
3774 * longer absent, go back and re-evaluate
3775 */
3776 continue;
3777 }
3778 iov_base = uio_curriovbase(uio);
3779
3780 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
3781 upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
3782
3783 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START,
3784 (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
3785
3786 if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0)) {
3787 no_zero_fill = 1;
3788 abort_flag = UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY;
3789 } else {
3790 no_zero_fill = 0;
3791 abort_flag = UPL_ABORT_FREE_ON_EMPTY;
3792 }
3793 for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
3794 pages_in_pl = 0;
3795 upl_size = upl_needed_size;
3796 upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
3797
3798 if (no_zero_fill)
3799 upl_flags |= UPL_NOZEROFILL;
3800 if (force_data_sync)
3801 upl_flags |= UPL_FORCE_DATA_SYNC;
3802
3803 kret = vm_map_create_upl(current_map(),
3804 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
3805 &upl_size, &upl, NULL, &pages_in_pl, &upl_flags);
3806
3807 if (kret != KERN_SUCCESS) {
3808 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
3809 (int)upl_offset, upl_size, io_size, kret, 0);
3810 /*
3811 * failed to get pagelist
3812 *
3813 * we may have already spun some portion of this request
3814 * off as async requests... we need to wait for the I/O
3815 * to complete before returning
3816 */
3817 goto wait_for_dreads;
3818 }
3819 pages_in_pl = upl_size / PAGE_SIZE;
3820 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
3821
3822 for (i = 0; i < pages_in_pl; i++) {
3823 if (!upl_valid_page(pl, i))
3824 break;
3825 }
3826 if (i == pages_in_pl)
3827 break;
3828
3829 ubc_upl_abort(upl, abort_flag);
3830 }
3831 if (force_data_sync >= 3) {
3832 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
3833 (int)upl_offset, upl_size, io_size, kret, 0);
3834
3835 goto wait_for_dreads;
3836 }
3837 /*
3838 * Consider the possibility that upl_size wasn't satisfied.
3839 */
3840 if (upl_size < upl_needed_size) {
3841 if (upl_size && upl_offset == 0)
3842 io_size = upl_size;
3843 else
3844 io_size = 0;
3845 }
3846 if (io_size == 0) {
3847 ubc_upl_abort(upl, abort_flag);
3848 goto wait_for_dreads;
3849 }
3850 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
3851 (int)upl_offset, upl_size, io_size, kret, 0);
3852
3853 /*
3854 * request asynchronously so that we can overlap
3855 * the preparation of the next I/O
3856 * if there are already too many outstanding reads
3857 * wait until some have completed before issuing the next read
3858 */
3859 lck_mtx_lock(cl_mtxp);
3860
3861 while ((iostate.io_issued - iostate.io_completed) > max_rd_ahead) {
3862 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
3863 iostate.io_issued, iostate.io_completed, max_rd_ahead, 0, 0);
3864
3865 iostate.io_wanted = 1;
3866 msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_read_direct", NULL);
3867
3868 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
3869 iostate.io_issued, iostate.io_completed, max_rd_ahead, 0, 0);
3870 }
3871 lck_mtx_unlock(cl_mtxp);
3872
3873 if (iostate.io_error) {
3874 /*
3875 * one of the earlier reads we issued ran into a hard error
3876 * don't issue any more reads, cleanup the UPL
3877 * that was just created but not used, then
3878 * go wait for any other reads to complete before
3879 * returning the error to the caller
3880 */
3881 ubc_upl_abort(upl, abort_flag);
3882
3883 goto wait_for_dreads;
3884 }
3885 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START,
3886 (int)upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0);
3887
3888 if (no_zero_fill)
3889 io_flag = CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO | CL_DIRECT_IO | bflag;
3890 else
3891 io_flag = CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO | CL_DIRECT_IO | CL_PRESERVE | bflag;
3892
3893 retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
3894
3895 /*
3896 * update the uio structure
3897 */
3898 uio_update(uio, (user_size_t)io_size);
3899
3900 io_req_size -= io_size;
3901
3902 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END,
3903 (int)upl, (int)uio->uio_offset, io_req_size, retval, 0);
3904
3905 } /* end while */
3906
3907 if (retval == 0 && iostate.io_error == 0 && io_req_size == 0 && uio->uio_offset < filesize) {
3908
3909 retval = cluster_io_type(uio, read_type, read_length, 0);
3910
3911 if (retval == 0 && *read_type == IO_DIRECT) {
3912
3913 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE,
3914 (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0);
3915
3916 goto next_dread;
3917 }
3918 }
3919
3920 wait_for_dreads:
3921 if (iostate.io_issued) {
3922 /*
3923 * make sure all async reads that are part of this stream
3924 * have completed before we return
3925 */
3926 lck_mtx_lock(cl_mtxp);
3927
3928 while (iostate.io_issued != iostate.io_completed) {
3929 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
3930 iostate.io_issued, iostate.io_completed, 0, 0, 0);
3931
3932 iostate.io_wanted = 1;
3933 msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_read_direct", NULL);
3934
3935 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
3936 iostate.io_issued, iostate.io_completed, 0, 0, 0);
3937 }
3938 lck_mtx_unlock(cl_mtxp);
3939 }
3940
3941 if (iostate.io_error)
3942 retval = iostate.io_error;
3943
3944 if (io_req_size && retval == 0) {
3945 /*
3946 * we couldn't handle the tail of this request in DIRECT mode
3947 * so fire it through the copy path
3948 */
3949 retval = cluster_read_copy(vp, uio, io_req_size, filesize, flags, callback, callback_arg);
3950
3951 *read_type = IO_UNKNOWN;
3952 }
3953 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END,
3954 (int)uio->uio_offset, (int)uio_resid(uio), io_req_size, retval, 0);
3955
3956 return (retval);
3957 }
3958
3959
3960 static int
3961 cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
3962 int (*callback)(buf_t, void *), void *callback_arg, int flags)
3963 {
3964 upl_page_info_t *pl;
3965 upl_t upl[MAX_VECTS];
3966 vm_offset_t upl_offset;
3967 addr64_t dst_paddr = 0;
3968 user_addr_t iov_base;
3969 off_t max_size;
3970 vm_size_t upl_size;
3971 vm_size_t upl_needed_size;
3972 mach_msg_type_number_t pages_in_pl;
3973 int upl_flags;
3974 kern_return_t kret;
3975 struct clios iostate;
3976 int error= 0;
3977 int cur_upl = 0;
3978 int num_upl = 0;
3979 int n;
3980 u_int32_t xsize;
3981 u_int32_t io_size;
3982 u_int32_t devblocksize;
3983 u_int32_t mem_alignment_mask;
3984 u_int32_t tail_size = 0;
3985 int bflag;
3986
3987 if (flags & IO_PASSIVE)
3988 bflag = CL_PASSIVE;
3989 else
3990 bflag = 0;
3991
3992 /*
3993 * When we enter this routine, we know
3994 * -- the read_length will not exceed the current iov_len
3995 * -- the target address is physically contiguous for read_length
3996 */
3997 cluster_syncup(vp, filesize, callback, callback_arg);
3998
3999 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
4000 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
4001
4002 iostate.io_completed = 0;
4003 iostate.io_issued = 0;
4004 iostate.io_error = 0;
4005 iostate.io_wanted = 0;
4006
4007 next_cread:
4008 io_size = *read_length;
4009
4010 max_size = filesize - uio->uio_offset;
4011
4012 if (io_size > max_size)
4013 io_size = max_size;
4014
4015 iov_base = uio_curriovbase(uio);
4016
4017 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
4018 upl_needed_size = upl_offset + io_size;
4019
4020 pages_in_pl = 0;
4021 upl_size = upl_needed_size;
4022 upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
4023
4024
4025 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_START,
4026 (int)upl_offset, (int)upl_size, (int)iov_base, io_size, 0);
4027
4028 kret = vm_map_get_upl(current_map(),
4029 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
4030 &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0);
4031
4032 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_END,
4033 (int)upl_offset, upl_size, io_size, kret, 0);
4034
4035 if (kret != KERN_SUCCESS) {
4036 /*
4037 * failed to get pagelist
4038 */
4039 error = EINVAL;
4040 goto wait_for_creads;
4041 }
4042 num_upl++;
4043
4044 if (upl_size < upl_needed_size) {
4045 /*
4046 * The upl_size wasn't satisfied.
4047 */
4048 error = EINVAL;
4049 goto wait_for_creads;
4050 }
4051 pl = ubc_upl_pageinfo(upl[cur_upl]);
4052
4053 dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)upl_offset;
4054
4055 while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
4056 u_int32_t head_size;
4057
4058 head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1));
4059
4060 if (head_size > io_size)
4061 head_size = io_size;
4062
4063 error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, CL_READ, callback, callback_arg);
4064
4065 if (error)
4066 goto wait_for_creads;
4067
4068 upl_offset += head_size;
4069 dst_paddr += head_size;
4070 io_size -= head_size;
4071
4072 iov_base += head_size;
4073 }
4074 if ((u_int32_t)iov_base & mem_alignment_mask) {
4075 /*
4076 * request doesn't set up on a memory boundary
4077 * the underlying DMA engine can handle...
4078 * return an error instead of going through
4079 * the slow copy path since the intent of this
4080 * path is direct I/O to device memory
4081 */
4082 error = EINVAL;
4083 goto wait_for_creads;
4084 }
4085
4086 tail_size = io_size & (devblocksize - 1);
4087
4088 io_size -= tail_size;
4089
4090 while (io_size && error == 0) {
4091
4092 if (io_size > MAX_IO_CONTIG_SIZE)
4093 xsize = MAX_IO_CONTIG_SIZE;
4094 else
4095 xsize = io_size;
4096 /*
4097 * request asynchronously so that we can overlap
4098 * the preparation of the next I/O... we'll do
4099 * the commit after all the I/O has completed
4100 * since its all issued against the same UPL
4101 * if there are already too many outstanding reads
4102 * wait until some have completed before issuing the next
4103 */
4104 if (iostate.io_issued) {
4105 lck_mtx_lock(cl_mtxp);
4106
4107 while ((iostate.io_issued - iostate.io_completed) > (2 * MAX_IO_CONTIG_SIZE)) {
4108 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
4109 iostate.io_issued, iostate.io_completed, 2 * MAX_IO_CONTIG_SIZE, 0, 0);
4110
4111 iostate.io_wanted = 1;
4112 msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_read_contig", NULL);
4113
4114 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
4115 iostate.io_issued, iostate.io_completed, 2 * MAX_IO_CONTIG_SIZE, 0, 0);
4116 }
4117 lck_mtx_unlock(cl_mtxp);
4118 }
4119 if (iostate.io_error) {
4120 /*
4121 * one of the earlier reads we issued ran into a hard error
4122 * don't issue any more reads...
4123 * go wait for any other reads to complete before
4124 * returning the error to the caller
4125 */
4126 goto wait_for_creads;
4127 }
4128 error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, xsize,
4129 CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC | bflag,
4130 (buf_t)NULL, &iostate, callback, callback_arg);
4131 /*
4132 * The cluster_io read was issued successfully,
4133 * update the uio structure
4134 */
4135 if (error == 0) {
4136 uio_update(uio, (user_size_t)xsize);
4137
4138 dst_paddr += xsize;
4139 upl_offset += xsize;
4140 io_size -= xsize;
4141 }
4142 }
4143 if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS && uio->uio_offset < filesize) {
4144
4145 error = cluster_io_type(uio, read_type, read_length, 0);
4146
4147 if (error == 0 && *read_type == IO_CONTIG) {
4148 cur_upl++;
4149 goto next_cread;
4150 }
4151 } else
4152 *read_type = IO_UNKNOWN;
4153
4154 wait_for_creads:
4155 /*
4156 * make sure all async reads that are part of this stream
4157 * have completed before we proceed
4158 */
4159 lck_mtx_lock(cl_mtxp);
4160
4161 while (iostate.io_issued != iostate.io_completed) {
4162 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
4163 iostate.io_issued, iostate.io_completed, 0, 0, 0);
4164
4165 iostate.io_wanted = 1;
4166 msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_read_contig", NULL);
4167
4168 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
4169 iostate.io_issued, iostate.io_completed, 0, 0, 0);
4170 }
4171 lck_mtx_unlock(cl_mtxp);
4172
4173 if (iostate.io_error)
4174 error = iostate.io_error;
4175
4176 if (error == 0 && tail_size)
4177 error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ, callback, callback_arg);
4178
4179 for (n = 0; n < num_upl; n++)
4180 /*
4181 * just release our hold on each physically contiguous
4182 * region without changing any state
4183 */
4184 ubc_upl_abort(upl[n], 0);
4185
4186 return (error);
4187 }
4188
4189
4190 static int
4191 cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length)
4192 {
4193 user_size_t iov_len;
4194 user_addr_t iov_base = 0;
4195 upl_t upl;
4196 vm_size_t upl_size;
4197 int upl_flags;
4198 int retval = 0;
4199
4200 /*
4201 * skip over any emtpy vectors
4202 */
4203 uio_update(uio, (user_size_t)0);
4204
4205 iov_len = uio_curriovlen(uio);
4206
4207 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_START, (int)uio, (int)iov_len, 0, 0, 0);
4208
4209 if (iov_len) {
4210 iov_base = uio_curriovbase(uio);
4211 /*
4212 * make sure the size of the vector isn't too big...
4213 * internally, we want to handle all of the I/O in
4214 * chunk sizes that fit in a 32 bit int
4215 */
4216 if (iov_len > (user_size_t)MAX_IO_REQUEST_SIZE)
4217 upl_size = MAX_IO_REQUEST_SIZE;
4218 else
4219 upl_size = (u_int32_t)iov_len;
4220
4221 upl_flags = UPL_QUERY_OBJECT_TYPE;
4222
4223 if ((vm_map_get_upl(current_map(),
4224 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
4225 &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) {
4226 /*
4227 * the user app must have passed in an invalid address
4228 */
4229 retval = EFAULT;
4230 }
4231 if (upl_size == 0)
4232 retval = EFAULT;
4233
4234 *io_length = upl_size;
4235
4236 if (upl_flags & UPL_PHYS_CONTIG)
4237 *io_type = IO_CONTIG;
4238 else if (iov_len >= min_length)
4239 *io_type = IO_DIRECT;
4240 else
4241 *io_type = IO_COPY;
4242 } else {
4243 /*
4244 * nothing left to do for this uio
4245 */
4246 *io_length = 0;
4247 *io_type = IO_UNKNOWN;
4248 }
4249 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_END, (int)iov_base, *io_type, *io_length, retval, 0);
4250
4251 return (retval);
4252 }
4253
4254
4255 /*
4256 * generate advisory I/O's in the largest chunks possible
4257 * the completed pages will be released into the VM cache
4258 */
4259 int
4260 advisory_read(vnode_t vp, off_t filesize, off_t f_offset, int resid)
4261 {
4262 return advisory_read_ext(vp, filesize, f_offset, resid, NULL, NULL, CL_PASSIVE);
4263 }
4264
4265 int
4266 advisory_read_ext(vnode_t vp, off_t filesize, off_t f_offset, int resid, int (*callback)(buf_t, void *), void *callback_arg, int bflag)
4267 {
4268 upl_page_info_t *pl;
4269 upl_t upl;
4270 vm_offset_t upl_offset;
4271 int upl_size;
4272 off_t upl_f_offset;
4273 int start_offset;
4274 int start_pg;
4275 int last_pg;
4276 int pages_in_upl;
4277 off_t max_size;
4278 int io_size;
4279 kern_return_t kret;
4280 int retval = 0;
4281 int issued_io;
4282 int skip_range;
4283 uint32_t max_io_size;
4284
4285
4286 if ( !UBCINFOEXISTS(vp))
4287 return(EINVAL);
4288
4289 if (resid < 0)
4290 return(EINVAL);
4291
4292 max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
4293
4294 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START,
4295 (int)f_offset, resid, (int)filesize, 0, 0);
4296
4297 while (resid && f_offset < filesize && retval == 0) {
4298 /*
4299 * compute the size of the upl needed to encompass
4300 * the requested read... limit each call to cluster_io
4301 * to the maximum UPL size... cluster_io will clip if
4302 * this exceeds the maximum io_size for the device,
4303 * make sure to account for
4304 * a starting offset that's not page aligned
4305 */
4306 start_offset = (int)(f_offset & PAGE_MASK_64);
4307 upl_f_offset = f_offset - (off_t)start_offset;
4308 max_size = filesize - f_offset;
4309
4310 if (resid < max_size)
4311 io_size = resid;
4312 else
4313 io_size = max_size;
4314
4315 upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
4316 if ((uint32_t)upl_size > max_io_size)
4317 upl_size = max_io_size;
4318
4319 skip_range = 0;
4320 /*
4321 * return the number of contiguously present pages in the cache
4322 * starting at upl_f_offset within the file
4323 */
4324 ubc_range_op(vp, upl_f_offset, upl_f_offset + upl_size, UPL_ROP_PRESENT, &skip_range);
4325
4326 if (skip_range) {
4327 /*
4328 * skip over pages already present in the cache
4329 */
4330 io_size = skip_range - start_offset;
4331
4332 f_offset += io_size;
4333 resid -= io_size;
4334
4335 if (skip_range == upl_size)
4336 continue;
4337 /*
4338 * have to issue some real I/O
4339 * at this point, we know it's starting on a page boundary
4340 * because we've skipped over at least the first page in the request
4341 */
4342 start_offset = 0;
4343 upl_f_offset += skip_range;
4344 upl_size -= skip_range;
4345 }
4346 pages_in_upl = upl_size / PAGE_SIZE;
4347
4348 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START,
4349 (int)upl, (int)upl_f_offset, upl_size, start_offset, 0);
4350
4351 kret = ubc_create_upl(vp,
4352 upl_f_offset,
4353 upl_size,
4354 &upl,
4355 &pl,
4356 UPL_RET_ONLY_ABSENT | UPL_SET_LITE);
4357 if (kret != KERN_SUCCESS)
4358 return(retval);
4359 issued_io = 0;
4360
4361 /*
4362 * before we start marching forward, we must make sure we end on
4363 * a present page, otherwise we will be working with a freed
4364 * upl
4365 */
4366 for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) {
4367 if (upl_page_present(pl, last_pg))
4368 break;
4369 }
4370 pages_in_upl = last_pg + 1;
4371
4372
4373 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END,
4374 (int)upl, (int)upl_f_offset, upl_size, start_offset, 0);
4375
4376
4377 for (last_pg = 0; last_pg < pages_in_upl; ) {
4378 /*
4379 * scan from the beginning of the upl looking for the first
4380 * page that is present.... this will become the first page in
4381 * the request we're going to make to 'cluster_io'... if all
4382 * of the pages are absent, we won't call through to 'cluster_io'
4383 */
4384 for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) {
4385 if (upl_page_present(pl, start_pg))
4386 break;
4387 }
4388
4389 /*
4390 * scan from the starting present page looking for an absent
4391 * page before the end of the upl is reached, if we
4392 * find one, then it will terminate the range of pages being
4393 * presented to 'cluster_io'
4394 */
4395 for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
4396 if (!upl_page_present(pl, last_pg))
4397 break;
4398 }
4399
4400 if (last_pg > start_pg) {
4401 /*
4402 * we found a range of pages that must be filled
4403 * if the last page in this range is the last page of the file
4404 * we may have to clip the size of it to keep from reading past
4405 * the end of the last physical block associated with the file
4406 */
4407 upl_offset = start_pg * PAGE_SIZE;
4408 io_size = (last_pg - start_pg) * PAGE_SIZE;
4409
4410 if ((upl_f_offset + upl_offset + io_size) > filesize)
4411 io_size = filesize - (upl_f_offset + upl_offset);
4412
4413 /*
4414 * issue an asynchronous read to cluster_io
4415 */
4416 retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
4417 CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
4418
4419 issued_io = 1;
4420 }
4421 }
4422 if (issued_io == 0)
4423 ubc_upl_abort(upl, 0);
4424
4425 io_size = upl_size - start_offset;
4426
4427 if (io_size > resid)
4428 io_size = resid;
4429 f_offset += io_size;
4430 resid -= io_size;
4431 }
4432
4433 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_END,
4434 (int)f_offset, resid, retval, 0, 0);
4435
4436 return(retval);
4437 }
4438
4439
4440 int
4441 cluster_push(vnode_t vp, int flags)
4442 {
4443 return cluster_push_ext(vp, flags, NULL, NULL);
4444 }
4445
4446
4447 int
4448 cluster_push_ext(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg)
4449 {
4450 int retval;
4451 struct cl_writebehind *wbp;
4452
4453 if ( !UBCINFOEXISTS(vp)) {
4454 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, (int)vp, flags, 0, -1, 0);
4455 return (0);
4456 }
4457 /* return if deferred write is set */
4458 if (((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && (flags & IO_DEFWRITE)) {
4459 return (0);
4460 }
4461 if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) {
4462 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, (int)vp, flags, 0, -2, 0);
4463 return (0);
4464 }
4465 if (wbp->cl_number == 0 && wbp->cl_scmap == NULL) {
4466 lck_mtx_unlock(&wbp->cl_lockw);
4467
4468 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, (int)vp, flags, 0, -3, 0);
4469 return(0);
4470 }
4471 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START,
4472 (int)wbp->cl_scmap, wbp->cl_number, flags, 0, 0);
4473
4474 if (wbp->cl_scmap) {
4475 sparse_cluster_push(wbp, vp, ubc_getsize(vp), PUSH_ALL | IO_PASSIVE, callback, callback_arg);
4476
4477 retval = 1;
4478 } else
4479 retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL | IO_PASSIVE, callback, callback_arg);
4480
4481 lck_mtx_unlock(&wbp->cl_lockw);
4482
4483 if (flags & IO_SYNC)
4484 (void)vnode_waitforwrites(vp, 0, 0, 0, "cluster_push");
4485
4486 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END,
4487 (int)wbp->cl_scmap, wbp->cl_number, retval, 0, 0);
4488
4489 return (retval);
4490 }
4491
4492
4493 __private_extern__ void
4494 cluster_release(struct ubc_info *ubc)
4495 {
4496 struct cl_writebehind *wbp;
4497 struct cl_readahead *rap;
4498
4499 if ((wbp = ubc->cl_wbehind)) {
4500
4501 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, (int)ubc, (int)wbp->cl_scmap, wbp->cl_scdirty, 0, 0);
4502
4503 if (wbp->cl_scmap)
4504 vfs_drt_control(&(wbp->cl_scmap), 0);
4505 } else {
4506 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, (int)ubc, 0, 0, 0, 0);
4507 }
4508
4509 rap = ubc->cl_rahead;
4510
4511 if (wbp != NULL) {
4512 lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp);
4513 FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND);
4514 }
4515 if ((rap = ubc->cl_rahead)) {
4516 lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp);
4517 FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD);
4518 }
4519 ubc->cl_rahead = NULL;
4520 ubc->cl_wbehind = NULL;
4521
4522 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, (int)ubc, (int)rap, (int)wbp, 0, 0);
4523 }
4524
4525
4526 static int
4527 cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int (*callback)(buf_t, void *), void *callback_arg)
4528 {
4529 int cl_index;
4530 int cl_index1;
4531 int min_index;
4532 int cl_len;
4533 int cl_pushed = 0;
4534 struct cl_wextent l_clusters[MAX_CLUSTERS];
4535 u_int max_cluster_pgcount;
4536
4537
4538 max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE;
4539 /*
4540 * the write behind context exists and has
4541 * already been locked...
4542 */
4543 if (wbp->cl_number == 0)
4544 /*
4545 * no clusters to push
4546 * return number of empty slots
4547 */
4548 return (MAX_CLUSTERS);
4549
4550 /*
4551 * make a local 'sorted' copy of the clusters
4552 * and clear wbp->cl_number so that new clusters can
4553 * be developed
4554 */
4555 for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
4556 for (min_index = -1, cl_index1 = 0; cl_index1 < wbp->cl_number; cl_index1++) {
4557 if (wbp->cl_clusters[cl_index1].b_addr == wbp->cl_clusters[cl_index1].e_addr)
4558 continue;
4559 if (min_index == -1)
4560 min_index = cl_index1;
4561 else if (wbp->cl_clusters[cl_index1].b_addr < wbp->cl_clusters[min_index].b_addr)
4562 min_index = cl_index1;
4563 }
4564 if (min_index == -1)
4565 break;
4566 l_clusters[cl_index].b_addr = wbp->cl_clusters[min_index].b_addr;
4567 l_clusters[cl_index].e_addr = wbp->cl_clusters[min_index].e_addr;
4568 l_clusters[cl_index].io_flags = wbp->cl_clusters[min_index].io_flags;
4569
4570 wbp->cl_clusters[min_index].b_addr = wbp->cl_clusters[min_index].e_addr;
4571 }
4572 wbp->cl_number = 0;
4573
4574 cl_len = cl_index;
4575
4576 if ( (push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS ) {
4577 int i;
4578
4579 /*
4580 * determine if we appear to be writing the file sequentially
4581 * if not, by returning without having pushed any clusters
4582 * we will cause this vnode to be pushed into the sparse cluster mechanism
4583 * used for managing more random I/O patterns
4584 *
4585 * we know that we've got all clusters currently in use and the next write doesn't fit into one of them...
4586 * that's why we're in try_push with PUSH_DELAY...
4587 *
4588 * check to make sure that all the clusters except the last one are 'full'... and that each cluster
4589 * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above
4590 * so we can just make a simple pass through, up to, but not including the last one...
4591 * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they
4592 * are sequential
4593 *
4594 * we let the last one be partial as long as it was adjacent to the previous one...
4595 * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out
4596 * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world...
4597 */
4598 for (i = 0; i < MAX_CLUSTERS - 1; i++) {
4599 if ((l_clusters[i].e_addr - l_clusters[i].b_addr) != max_cluster_pgcount)
4600 goto dont_try;
4601 if (l_clusters[i].e_addr != l_clusters[i+1].b_addr)
4602 goto dont_try;
4603 }
4604 }
4605 for (cl_index = 0; cl_index < cl_len; cl_index++) {
4606 int flags;
4607 struct cl_extent cl;
4608
4609 /*
4610 * try to push each cluster in turn...
4611 */
4612 if (l_clusters[cl_index].io_flags & CLW_IONOCACHE)
4613 flags = IO_NOCACHE;
4614 else
4615 flags = 0;
4616
4617 if ((l_clusters[cl_index].io_flags & CLW_IOPASSIVE) || (push_flag & IO_PASSIVE))
4618 flags |= IO_PASSIVE;
4619
4620 if (push_flag & PUSH_SYNC)
4621 flags |= IO_SYNC;
4622
4623 cl.b_addr = l_clusters[cl_index].b_addr;
4624 cl.e_addr = l_clusters[cl_index].e_addr;
4625
4626 cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg);
4627
4628 l_clusters[cl_index].b_addr = 0;
4629 l_clusters[cl_index].e_addr = 0;
4630
4631 cl_pushed++;
4632
4633 if ( !(push_flag & PUSH_ALL) )
4634 break;
4635 }
4636 dont_try:
4637 if (cl_len > cl_pushed) {
4638 /*
4639 * we didn't push all of the clusters, so
4640 * lets try to merge them back in to the vnode
4641 */
4642 if ((MAX_CLUSTERS - wbp->cl_number) < (cl_len - cl_pushed)) {
4643 /*
4644 * we picked up some new clusters while we were trying to
4645 * push the old ones... this can happen because I've dropped
4646 * the vnode lock... the sum of the
4647 * leftovers plus the new cluster count exceeds our ability
4648 * to represent them, so switch to the sparse cluster mechanism
4649 *
4650 * collect the active public clusters...
4651 */
4652 sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg);
4653
4654 for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) {
4655 if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr)
4656 continue;
4657 wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr;
4658 wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr;
4659 wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags;
4660
4661 cl_index1++;
4662 }
4663 /*
4664 * update the cluster count
4665 */
4666 wbp->cl_number = cl_index1;
4667
4668 /*
4669 * and collect the original clusters that were moved into the
4670 * local storage for sorting purposes
4671 */
4672 sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg);
4673
4674 } else {
4675 /*
4676 * we've got room to merge the leftovers back in
4677 * just append them starting at the next 'hole'
4678 * represented by wbp->cl_number
4679 */
4680 for (cl_index = 0, cl_index1 = wbp->cl_number; cl_index < cl_len; cl_index++) {
4681 if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr)
4682 continue;
4683
4684 wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr;
4685 wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr;
4686 wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags;
4687
4688 cl_index1++;
4689 }
4690 /*
4691 * update the cluster count
4692 */
4693 wbp->cl_number = cl_index1;
4694 }
4695 }
4696 return (MAX_CLUSTERS - wbp->cl_number);
4697 }
4698
4699
4700
4701 static int
4702 cluster_push_now(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags, int (*callback)(buf_t, void *), void *callback_arg)
4703 {
4704 upl_page_info_t *pl;
4705 upl_t upl;
4706 vm_offset_t upl_offset;
4707 int upl_size;
4708 off_t upl_f_offset;
4709 int pages_in_upl;
4710 int start_pg;
4711 int last_pg;
4712 int io_size;
4713 int io_flags;
4714 int upl_flags;
4715 int bflag;
4716 int size;
4717 int error = 0;
4718 int retval;
4719 kern_return_t kret;
4720
4721 if (flags & IO_PASSIVE)
4722 bflag = CL_PASSIVE;
4723 else
4724 bflag = 0;
4725
4726 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START,
4727 (int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0);
4728
4729 if ((pages_in_upl = (int)(cl->e_addr - cl->b_addr)) == 0) {
4730 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0);
4731
4732 return (0);
4733 }
4734 upl_size = pages_in_upl * PAGE_SIZE;
4735 upl_f_offset = (off_t)(cl->b_addr * PAGE_SIZE_64);
4736
4737 if (upl_f_offset + upl_size >= EOF) {
4738
4739 if (upl_f_offset >= EOF) {
4740 /*
4741 * must have truncated the file and missed
4742 * clearing a dangling cluster (i.e. it's completely
4743 * beyond the new EOF
4744 */
4745 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0);
4746
4747 return(0);
4748 }
4749 size = EOF - upl_f_offset;
4750
4751 upl_size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
4752 pages_in_upl = upl_size / PAGE_SIZE;
4753 } else
4754 size = upl_size;
4755
4756 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0);
4757
4758 /*
4759 * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior
4760 *
4761 * - only pages that are currently dirty are returned... these are the ones we need to clean
4762 * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set
4763 * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page
4764 * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if
4765 * someone dirties this page while the I/O is in progress, we don't lose track of the new state
4766 *
4767 * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard)
4768 */
4769
4770 if ((vp->v_flag & VNOCACHE_DATA) || (flags & IO_NOCACHE))
4771 upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED;
4772 else
4773 upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE;
4774
4775 kret = ubc_create_upl(vp,
4776 upl_f_offset,
4777 upl_size,
4778 &upl,
4779 &pl,
4780 upl_flags);
4781 if (kret != KERN_SUCCESS)
4782 panic("cluster_push: failed to get pagelist");
4783
4784 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, (int)upl, upl_f_offset, 0, 0, 0);
4785
4786 /*
4787 * since we only asked for the dirty pages back
4788 * it's possible that we may only get a few or even none, so...
4789 * before we start marching forward, we must make sure we know
4790 * where the last present page is in the UPL, otherwise we could
4791 * end up working with a freed upl due to the FREE_ON_EMPTY semantics
4792 * employed by commit_range and abort_range.
4793 */
4794 for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) {
4795 if (upl_page_present(pl, last_pg))
4796 break;
4797 }
4798 pages_in_upl = last_pg + 1;
4799
4800 if (pages_in_upl == 0) {
4801 ubc_upl_abort(upl, 0);
4802
4803 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0);
4804 return(0);
4805 }
4806
4807 for (last_pg = 0; last_pg < pages_in_upl; ) {
4808 /*
4809 * find the next dirty page in the UPL
4810 * this will become the first page in the
4811 * next I/O to generate
4812 */
4813 for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) {
4814 if (upl_dirty_page(pl, start_pg))
4815 break;
4816 if (upl_page_present(pl, start_pg))
4817 /*
4818 * RET_ONLY_DIRTY will return non-dirty 'precious' pages
4819 * just release these unchanged since we're not going
4820 * to steal them or change their state
4821 */
4822 ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
4823 }
4824 if (start_pg >= pages_in_upl)
4825 /*
4826 * done... no more dirty pages to push
4827 */
4828 break;
4829 if (start_pg > last_pg)
4830 /*
4831 * skipped over some non-dirty pages
4832 */
4833 size -= ((start_pg - last_pg) * PAGE_SIZE);
4834
4835 /*
4836 * find a range of dirty pages to write
4837 */
4838 for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
4839 if (!upl_dirty_page(pl, last_pg))
4840 break;
4841 }
4842 upl_offset = start_pg * PAGE_SIZE;
4843
4844 io_size = min(size, (last_pg - start_pg) * PAGE_SIZE);
4845
4846 io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE | bflag;
4847
4848 if ( !(flags & IO_SYNC))
4849 io_flags |= CL_ASYNC;
4850
4851 retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
4852 io_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
4853
4854 if (error == 0 && retval)
4855 error = retval;
4856
4857 size -= io_size;
4858 }
4859 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, 0, 0, 0);
4860
4861 return(error);
4862 }
4863
4864
4865 /*
4866 * sparse_cluster_switch is called with the write behind lock held
4867 */
4868 static void
4869 sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg)
4870 {
4871 int cl_index;
4872
4873 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, (int)vp, (int)wbp->cl_scmap, wbp->cl_scdirty, 0, 0);
4874
4875 if (wbp->cl_scmap == NULL)
4876 wbp->cl_scdirty = 0;
4877
4878 for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
4879 int flags;
4880 struct cl_extent cl;
4881
4882 for (cl.b_addr = wbp->cl_clusters[cl_index].b_addr; cl.b_addr < wbp->cl_clusters[cl_index].e_addr; cl.b_addr++) {
4883
4884 if (ubc_page_op(vp, (off_t)(cl.b_addr * PAGE_SIZE_64), 0, NULL, &flags) == KERN_SUCCESS) {
4885 if (flags & UPL_POP_DIRTY) {
4886 cl.e_addr = cl.b_addr + 1;
4887
4888 sparse_cluster_add(wbp, vp, &cl, EOF, callback, callback_arg);
4889 }
4890 }
4891 }
4892 }
4893 wbp->cl_number = 0;
4894
4895 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, (int)vp, (int)wbp->cl_scmap, wbp->cl_scdirty, 0, 0);
4896 }
4897
4898
4899 /*
4900 * sparse_cluster_push is called with the write behind lock held
4901 */
4902 static void
4903 sparse_cluster_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int (*callback)(buf_t, void *), void *callback_arg)
4904 {
4905 struct cl_extent cl;
4906 off_t offset;
4907 u_int length;
4908
4909 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, (int)vp, (int)wbp->cl_scmap, wbp->cl_scdirty, push_flag, 0);
4910
4911 if (push_flag & PUSH_ALL)
4912 vfs_drt_control(&(wbp->cl_scmap), 1);
4913
4914 for (;;) {
4915 if (vfs_drt_get_cluster(&(wbp->cl_scmap), &offset, &length) != KERN_SUCCESS)
4916 break;
4917
4918 cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64);
4919 cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64);
4920
4921 wbp->cl_scdirty -= (int)(cl.e_addr - cl.b_addr);
4922
4923 cluster_push_now(vp, &cl, EOF, push_flag & IO_PASSIVE, callback, callback_arg);
4924
4925 if ( !(push_flag & PUSH_ALL) )
4926 break;
4927 }
4928 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, (int)vp, (int)wbp->cl_scmap, wbp->cl_scdirty, 0, 0);
4929 }
4930
4931
4932 /*
4933 * sparse_cluster_add is called with the write behind lock held
4934 */
4935 static void
4936 sparse_cluster_add(struct cl_writebehind *wbp, vnode_t vp, struct cl_extent *cl, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg)
4937 {
4938 u_int new_dirty;
4939 u_int length;
4940 off_t offset;
4941
4942 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (int)wbp->cl_scmap, wbp->cl_scdirty, (int)cl->b_addr, (int)cl->e_addr, 0);
4943
4944 offset = (off_t)(cl->b_addr * PAGE_SIZE_64);
4945 length = ((u_int)(cl->e_addr - cl->b_addr)) * PAGE_SIZE;
4946
4947 while (vfs_drt_mark_pages(&(wbp->cl_scmap), offset, length, &new_dirty) != KERN_SUCCESS) {
4948 /*
4949 * no room left in the map
4950 * only a partial update was done
4951 * push out some pages and try again
4952 */
4953 wbp->cl_scdirty += new_dirty;
4954
4955 sparse_cluster_push(wbp, vp, EOF, 0, callback, callback_arg);
4956
4957 offset += (new_dirty * PAGE_SIZE_64);
4958 length -= (new_dirty * PAGE_SIZE);
4959 }
4960 wbp->cl_scdirty += new_dirty;
4961
4962 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, (int)vp, (int)wbp->cl_scmap, wbp->cl_scdirty, 0, 0);
4963 }
4964
4965
4966 static int
4967 cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
4968 {
4969 upl_page_info_t *pl;
4970 upl_t upl;
4971 addr64_t ubc_paddr;
4972 kern_return_t kret;
4973 int error = 0;
4974 int did_read = 0;
4975 int abort_flags;
4976 int upl_flags;
4977 int bflag;
4978
4979 if (flags & IO_PASSIVE)
4980 bflag = CL_PASSIVE;
4981 else
4982 bflag = 0;
4983
4984 upl_flags = UPL_SET_LITE;
4985
4986 if ( !(flags & CL_READ) ) {
4987 /*
4988 * "write" operation: let the UPL subsystem know
4989 * that we intend to modify the buffer cache pages
4990 * we're gathering.
4991 */
4992 upl_flags |= UPL_WILL_MODIFY;
4993 } else {
4994 /*
4995 * indicate that there is no need to pull the
4996 * mapping for this page... we're only going
4997 * to read from it, not modify it.
4998 */
4999 upl_flags |= UPL_FILE_IO;
5000 }
5001 kret = ubc_create_upl(vp,
5002 uio->uio_offset & ~PAGE_MASK_64,
5003 PAGE_SIZE,
5004 &upl,
5005 &pl,
5006 upl_flags);
5007
5008 if (kret != KERN_SUCCESS)
5009 return(EINVAL);
5010
5011 if (!upl_valid_page(pl, 0)) {
5012 /*
5013 * issue a synchronous read to cluster_io
5014 */
5015 error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE,
5016 CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
5017 if (error) {
5018 ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
5019
5020 return(error);
5021 }
5022 did_read = 1;
5023 }
5024 ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)(uio->uio_offset & PAGE_MASK_64);
5025
5026 /*
5027 * NOTE: There is no prototype for the following in BSD. It, and the definitions
5028 * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in
5029 * osfmk/ppc/mappings.h. They are not included here because there appears to be no
5030 * way to do so without exporting them to kexts as well.
5031 */
5032 if (flags & CL_READ)
5033 // copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */
5034 copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 4); /* Copy physical to physical and flush the destination */
5035 else
5036 // copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */
5037 copypv(usr_paddr, ubc_paddr, xsize, 2 | 1 | 8); /* Copy physical to physical and flush the source */
5038
5039 if ( !(flags & CL_READ) || (upl_valid_page(pl, 0) && upl_dirty_page(pl, 0))) {
5040 /*
5041 * issue a synchronous write to cluster_io
5042 */
5043 error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE,
5044 bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
5045 }
5046 if (error == 0)
5047 uio_update(uio, (user_size_t)xsize);
5048
5049 if (did_read)
5050 abort_flags = UPL_ABORT_FREE_ON_EMPTY;
5051 else
5052 abort_flags = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
5053
5054 ubc_upl_abort_range(upl, 0, PAGE_SIZE, abort_flags);
5055
5056 return (error);
5057 }
5058
5059
5060
5061 int
5062 cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int *io_resid)
5063 {
5064 int pg_offset;
5065 int pg_index;
5066 int csize;
5067 int segflg;
5068 int retval = 0;
5069 int xsize;
5070 upl_page_info_t *pl;
5071
5072 xsize = *io_resid;
5073
5074 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
5075 (int)uio->uio_offset, upl_offset, xsize, 0, 0);
5076
5077 segflg = uio->uio_segflg;
5078
5079 switch(segflg) {
5080
5081 case UIO_USERSPACE32:
5082 case UIO_USERISPACE32:
5083 uio->uio_segflg = UIO_PHYS_USERSPACE32;
5084 break;
5085
5086 case UIO_USERSPACE:
5087 case UIO_USERISPACE:
5088 uio->uio_segflg = UIO_PHYS_USERSPACE;
5089 break;
5090
5091 case UIO_USERSPACE64:
5092 case UIO_USERISPACE64:
5093 uio->uio_segflg = UIO_PHYS_USERSPACE64;
5094 break;
5095
5096 case UIO_SYSSPACE32:
5097 uio->uio_segflg = UIO_PHYS_SYSSPACE32;
5098 break;
5099
5100 case UIO_SYSSPACE:
5101 uio->uio_segflg = UIO_PHYS_SYSSPACE;
5102 break;
5103
5104 case UIO_SYSSPACE64:
5105 uio->uio_segflg = UIO_PHYS_SYSSPACE64;
5106 break;
5107 }
5108 pl = ubc_upl_pageinfo(upl);
5109
5110 pg_index = upl_offset / PAGE_SIZE;
5111 pg_offset = upl_offset & PAGE_MASK;
5112 csize = min(PAGE_SIZE - pg_offset, xsize);
5113
5114 while (xsize && retval == 0) {
5115 addr64_t paddr;
5116
5117 paddr = ((addr64_t)upl_phys_page(pl, pg_index) << 12) + pg_offset;
5118
5119 retval = uiomove64(paddr, csize, uio);
5120
5121 pg_index += 1;
5122 pg_offset = 0;
5123 xsize -= csize;
5124 csize = min(PAGE_SIZE, xsize);
5125 }
5126 *io_resid = xsize;
5127
5128 uio->uio_segflg = segflg;
5129
5130 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
5131 (int)uio->uio_offset, xsize, retval, segflg, 0);
5132
5133 return (retval);
5134 }
5135
5136
5137 int
5138 cluster_copy_ubc_data(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty)
5139 {
5140
5141 return (cluster_copy_ubc_data_internal(vp, uio, io_resid, mark_dirty, 1));
5142 }
5143
5144
5145 static int
5146 cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference)
5147 {
5148 int segflg;
5149 int io_size;
5150 int xsize;
5151 int start_offset;
5152 int retval = 0;
5153 memory_object_control_t control;
5154
5155 io_size = *io_resid;
5156
5157 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
5158 (int)uio->uio_offset, 0, io_size, 0, 0);
5159
5160 control = ubc_getobject(vp, UBC_FLAGS_NONE);
5161
5162 if (control == MEMORY_OBJECT_CONTROL_NULL) {
5163 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
5164 (int)uio->uio_offset, io_size, retval, 3, 0);
5165
5166 return(0);
5167 }
5168 segflg = uio->uio_segflg;
5169
5170 switch(segflg) {
5171
5172 case UIO_USERSPACE32:
5173 case UIO_USERISPACE32:
5174 uio->uio_segflg = UIO_PHYS_USERSPACE32;
5175 break;
5176
5177 case UIO_USERSPACE64:
5178 case UIO_USERISPACE64:
5179 uio->uio_segflg = UIO_PHYS_USERSPACE64;
5180 break;
5181
5182 case UIO_SYSSPACE32:
5183 uio->uio_segflg = UIO_PHYS_SYSSPACE32;
5184 break;
5185
5186 case UIO_SYSSPACE64:
5187 uio->uio_segflg = UIO_PHYS_SYSSPACE64;
5188 break;
5189
5190 case UIO_USERSPACE:
5191 case UIO_USERISPACE:
5192 uio->uio_segflg = UIO_PHYS_USERSPACE;
5193 break;
5194
5195 case UIO_SYSSPACE:
5196 uio->uio_segflg = UIO_PHYS_SYSSPACE;
5197 break;
5198 }
5199
5200 if ( (io_size = *io_resid) ) {
5201 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
5202 xsize = uio_resid(uio);
5203
5204 retval = memory_object_control_uiomove(control, uio->uio_offset - start_offset, uio,
5205 start_offset, io_size, mark_dirty, take_reference);
5206 xsize -= uio_resid(uio);
5207 io_size -= xsize;
5208 }
5209 uio->uio_segflg = segflg;
5210 *io_resid = io_size;
5211
5212 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
5213 (int)uio->uio_offset, io_size, retval, 0x80000000 | segflg, 0);
5214
5215 return(retval);
5216 }
5217
5218
5219 int
5220 is_file_clean(vnode_t vp, off_t filesize)
5221 {
5222 off_t f_offset;
5223 int flags;
5224 int total_dirty = 0;
5225
5226 for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) {
5227 if (ubc_page_op(vp, f_offset, 0, NULL, &flags) == KERN_SUCCESS) {
5228 if (flags & UPL_POP_DIRTY) {
5229 total_dirty++;
5230 }
5231 }
5232 }
5233 if (total_dirty)
5234 return(EINVAL);
5235
5236 return (0);
5237 }
5238
5239
5240
5241 /*
5242 * Dirty region tracking/clustering mechanism.
5243 *
5244 * This code (vfs_drt_*) provides a mechanism for tracking and clustering
5245 * dirty regions within a larger space (file). It is primarily intended to
5246 * support clustering in large files with many dirty areas.
5247 *
5248 * The implementation assumes that the dirty regions are pages.
5249 *
5250 * To represent dirty pages within the file, we store bit vectors in a
5251 * variable-size circular hash.
5252 */
5253
5254 /*
5255 * Bitvector size. This determines the number of pages we group in a
5256 * single hashtable entry. Each hashtable entry is aligned to this
5257 * size within the file.
5258 */
5259 #define DRT_BITVECTOR_PAGES 256
5260
5261 /*
5262 * File offset handling.
5263 *
5264 * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES;
5265 * the correct formula is (~(DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1)
5266 */
5267 #define DRT_ADDRESS_MASK (~((1 << 20) - 1))
5268 #define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK)
5269
5270 /*
5271 * Hashtable address field handling.
5272 *
5273 * The low-order bits of the hashtable address are used to conserve
5274 * space.
5275 *
5276 * DRT_HASH_COUNT_MASK must be large enough to store the range
5277 * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value
5278 * to indicate that the bucket is actually unoccupied.
5279 */
5280 #define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK)
5281 #define DRT_HASH_SET_ADDRESS(scm, i, a) \
5282 do { \
5283 (scm)->scm_hashtable[(i)].dhe_control = \
5284 ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \
5285 } while (0)
5286 #define DRT_HASH_COUNT_MASK 0x1ff
5287 #define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK)
5288 #define DRT_HASH_SET_COUNT(scm, i, c) \
5289 do { \
5290 (scm)->scm_hashtable[(i)].dhe_control = \
5291 ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \
5292 } while (0)
5293 #define DRT_HASH_CLEAR(scm, i) \
5294 do { \
5295 (scm)->scm_hashtable[(i)].dhe_control = 0; \
5296 } while (0)
5297 #define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK)
5298 #define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK)
5299 #define DRT_HASH_COPY(oscm, oi, scm, i) \
5300 do { \
5301 (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \
5302 DRT_BITVECTOR_COPY(oscm, oi, scm, i); \
5303 } while(0);
5304
5305
5306 /*
5307 * Hash table moduli.
5308 *
5309 * Since the hashtable entry's size is dependent on the size of
5310 * the bitvector, and since the hashtable size is constrained to
5311 * both being prime and fitting within the desired allocation
5312 * size, these values need to be manually determined.
5313 *
5314 * For DRT_BITVECTOR_SIZE = 256, the entry size is 40 bytes.
5315 *
5316 * The small hashtable allocation is 1024 bytes, so the modulus is 23.
5317 * The large hashtable allocation is 16384 bytes, so the modulus is 401.
5318 */
5319 #define DRT_HASH_SMALL_MODULUS 23
5320 #define DRT_HASH_LARGE_MODULUS 401
5321
5322 #define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */
5323 #define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */
5324
5325 /* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */
5326
5327 /*
5328 * Hashtable bitvector handling.
5329 *
5330 * Bitvector fields are 32 bits long.
5331 */
5332
5333 #define DRT_HASH_SET_BIT(scm, i, bit) \
5334 (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32))
5335
5336 #define DRT_HASH_CLEAR_BIT(scm, i, bit) \
5337 (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32))
5338
5339 #define DRT_HASH_TEST_BIT(scm, i, bit) \
5340 ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32)))
5341
5342 #define DRT_BITVECTOR_CLEAR(scm, i) \
5343 bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
5344
5345 #define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \
5346 bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \
5347 &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \
5348 (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
5349
5350
5351
5352 /*
5353 * Hashtable entry.
5354 */
5355 struct vfs_drt_hashentry {
5356 u_int64_t dhe_control;
5357 u_int32_t dhe_bitvector[DRT_BITVECTOR_PAGES / 32];
5358 };
5359
5360 /*
5361 * Dirty Region Tracking structure.
5362 *
5363 * The hashtable is allocated entirely inside the DRT structure.
5364 *
5365 * The hash is a simple circular prime modulus arrangement, the structure
5366 * is resized from small to large if it overflows.
5367 */
5368
5369 struct vfs_drt_clustermap {
5370 u_int32_t scm_magic; /* sanity/detection */
5371 #define DRT_SCM_MAGIC 0x12020003
5372 u_int32_t scm_modulus; /* current ring size */
5373 u_int32_t scm_buckets; /* number of occupied buckets */
5374 u_int32_t scm_lastclean; /* last entry we cleaned */
5375 u_int32_t scm_iskips; /* number of slot skips */
5376
5377 struct vfs_drt_hashentry scm_hashtable[0];
5378 };
5379
5380
5381 #define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus)
5382 #define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus)
5383
5384 /*
5385 * Debugging codes and arguments.
5386 */
5387 #define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */
5388 #define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */
5389 #define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */
5390 #define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */
5391 #define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length,
5392 * dirty */
5393 /* 0, setcount */
5394 /* 1 (clean, no map) */
5395 /* 2 (map alloc fail) */
5396 /* 3, resid (partial) */
5397 #define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87))
5398 #define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets,
5399 * lastclean, iskips */
5400
5401
5402 static kern_return_t vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp);
5403 static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap);
5404 static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap,
5405 u_int64_t offset, int *indexp);
5406 static kern_return_t vfs_drt_get_index(struct vfs_drt_clustermap **cmapp,
5407 u_int64_t offset,
5408 int *indexp,
5409 int recursed);
5410 static kern_return_t vfs_drt_do_mark_pages(
5411 void **cmapp,
5412 u_int64_t offset,
5413 u_int length,
5414 u_int *setcountp,
5415 int dirty);
5416 static void vfs_drt_trace(
5417 struct vfs_drt_clustermap *cmap,
5418 int code,
5419 int arg1,
5420 int arg2,
5421 int arg3,
5422 int arg4);
5423
5424
5425 /*
5426 * Allocate and initialise a sparse cluster map.
5427 *
5428 * Will allocate a new map, resize or compact an existing map.
5429 *
5430 * XXX we should probably have at least one intermediate map size,
5431 * as the 1:16 ratio seems a bit drastic.
5432 */
5433 static kern_return_t
5434 vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp)
5435 {
5436 struct vfs_drt_clustermap *cmap, *ocmap;
5437 kern_return_t kret;
5438 u_int64_t offset;
5439 u_int32_t i;
5440 int nsize, active_buckets, index, copycount;
5441
5442 ocmap = NULL;
5443 if (cmapp != NULL)
5444 ocmap = *cmapp;
5445
5446 /*
5447 * Decide on the size of the new map.
5448 */
5449 if (ocmap == NULL) {
5450 nsize = DRT_HASH_SMALL_MODULUS;
5451 } else {
5452 /* count the number of active buckets in the old map */
5453 active_buckets = 0;
5454 for (i = 0; i < ocmap->scm_modulus; i++) {
5455 if (!DRT_HASH_VACANT(ocmap, i) &&
5456 (DRT_HASH_GET_COUNT(ocmap, i) != 0))
5457 active_buckets++;
5458 }
5459 /*
5460 * If we're currently using the small allocation, check to
5461 * see whether we should grow to the large one.
5462 */
5463 if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) {
5464 /* if the ring is nearly full */
5465 if (active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) {
5466 nsize = DRT_HASH_LARGE_MODULUS;
5467 } else {
5468 nsize = DRT_HASH_SMALL_MODULUS;
5469 }
5470 } else {
5471 /* already using the large modulus */
5472 nsize = DRT_HASH_LARGE_MODULUS;
5473 /*
5474 * If the ring is completely full, there's
5475 * nothing useful for us to do. Behave as
5476 * though we had compacted into the new
5477 * array and return.
5478 */
5479 if (active_buckets >= DRT_HASH_LARGE_MODULUS)
5480 return(KERN_SUCCESS);
5481 }
5482 }
5483
5484 /*
5485 * Allocate and initialise the new map.
5486 */
5487
5488 kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap,
5489 (nsize == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION);
5490 if (kret != KERN_SUCCESS)
5491 return(kret);
5492 cmap->scm_magic = DRT_SCM_MAGIC;
5493 cmap->scm_modulus = nsize;
5494 cmap->scm_buckets = 0;
5495 cmap->scm_lastclean = 0;
5496 cmap->scm_iskips = 0;
5497 for (i = 0; i < cmap->scm_modulus; i++) {
5498 DRT_HASH_CLEAR(cmap, i);
5499 DRT_HASH_VACATE(cmap, i);
5500 DRT_BITVECTOR_CLEAR(cmap, i);
5501 }
5502
5503 /*
5504 * If there's an old map, re-hash entries from it into the new map.
5505 */
5506 copycount = 0;
5507 if (ocmap != NULL) {
5508 for (i = 0; i < ocmap->scm_modulus; i++) {
5509 /* skip empty buckets */
5510 if (DRT_HASH_VACANT(ocmap, i) ||
5511 (DRT_HASH_GET_COUNT(ocmap, i) == 0))
5512 continue;
5513 /* get new index */
5514 offset = DRT_HASH_GET_ADDRESS(ocmap, i);
5515 kret = vfs_drt_get_index(&cmap, offset, &index, 1);
5516 if (kret != KERN_SUCCESS) {
5517 /* XXX need to bail out gracefully here */
5518 panic("vfs_drt: new cluster map mysteriously too small");
5519 index = 0;
5520 }
5521 /* copy */
5522 DRT_HASH_COPY(ocmap, i, cmap, index);
5523 copycount++;
5524 }
5525 }
5526
5527 /* log what we've done */
5528 vfs_drt_trace(cmap, DRT_DEBUG_ALLOC, copycount, 0, 0, 0);
5529
5530 /*
5531 * It's important to ensure that *cmapp always points to
5532 * a valid map, so we must overwrite it before freeing
5533 * the old map.
5534 */
5535 *cmapp = cmap;
5536 if (ocmap != NULL) {
5537 /* emit stats into trace buffer */
5538 vfs_drt_trace(ocmap, DRT_DEBUG_SCMDATA,
5539 ocmap->scm_modulus,
5540 ocmap->scm_buckets,
5541 ocmap->scm_lastclean,
5542 ocmap->scm_iskips);
5543
5544 vfs_drt_free_map(ocmap);
5545 }
5546 return(KERN_SUCCESS);
5547 }
5548
5549
5550 /*
5551 * Free a sparse cluster map.
5552 */
5553 static kern_return_t
5554 vfs_drt_free_map(struct vfs_drt_clustermap *cmap)
5555 {
5556 kmem_free(kernel_map, (vm_offset_t)cmap,
5557 (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION);
5558 return(KERN_SUCCESS);
5559 }
5560
5561
5562 /*
5563 * Find the hashtable slot currently occupied by an entry for the supplied offset.
5564 */
5565 static kern_return_t
5566 vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp)
5567 {
5568 int index;
5569 u_int32_t i;
5570
5571 offset = DRT_ALIGN_ADDRESS(offset);
5572 index = DRT_HASH(cmap, offset);
5573
5574 /* traverse the hashtable */
5575 for (i = 0; i < cmap->scm_modulus; i++) {
5576
5577 /*
5578 * If the slot is vacant, we can stop.
5579 */
5580 if (DRT_HASH_VACANT(cmap, index))
5581 break;
5582
5583 /*
5584 * If the address matches our offset, we have success.
5585 */
5586 if (DRT_HASH_GET_ADDRESS(cmap, index) == offset) {
5587 *indexp = index;
5588 return(KERN_SUCCESS);
5589 }
5590
5591 /*
5592 * Move to the next slot, try again.
5593 */
5594 index = DRT_HASH_NEXT(cmap, index);
5595 }
5596 /*
5597 * It's not there.
5598 */
5599 return(KERN_FAILURE);
5600 }
5601
5602 /*
5603 * Find the hashtable slot for the supplied offset. If we haven't allocated
5604 * one yet, allocate one and populate the address field. Note that it will
5605 * not have a nonzero page count and thus will still technically be free, so
5606 * in the case where we are called to clean pages, the slot will remain free.
5607 */
5608 static kern_return_t
5609 vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *indexp, int recursed)
5610 {
5611 struct vfs_drt_clustermap *cmap;
5612 kern_return_t kret;
5613 u_int32_t index;
5614 u_int32_t i;
5615
5616 cmap = *cmapp;
5617
5618 /* look for an existing entry */
5619 kret = vfs_drt_search_index(cmap, offset, indexp);
5620 if (kret == KERN_SUCCESS)
5621 return(kret);
5622
5623 /* need to allocate an entry */
5624 offset = DRT_ALIGN_ADDRESS(offset);
5625 index = DRT_HASH(cmap, offset);
5626
5627 /* scan from the index forwards looking for a vacant slot */
5628 for (i = 0; i < cmap->scm_modulus; i++) {
5629 /* slot vacant? */
5630 if (DRT_HASH_VACANT(cmap, index) || DRT_HASH_GET_COUNT(cmap,index) == 0) {
5631 cmap->scm_buckets++;
5632 if (index < cmap->scm_lastclean)
5633 cmap->scm_lastclean = index;
5634 DRT_HASH_SET_ADDRESS(cmap, index, offset);
5635 DRT_HASH_SET_COUNT(cmap, index, 0);
5636 DRT_BITVECTOR_CLEAR(cmap, index);
5637 *indexp = index;
5638 vfs_drt_trace(cmap, DRT_DEBUG_INSERT, (int)offset, i, 0, 0);
5639 return(KERN_SUCCESS);
5640 }
5641 cmap->scm_iskips += i;
5642 index = DRT_HASH_NEXT(cmap, index);
5643 }
5644
5645 /*
5646 * We haven't found a vacant slot, so the map is full. If we're not
5647 * already recursed, try reallocating/compacting it.
5648 */
5649 if (recursed)
5650 return(KERN_FAILURE);
5651 kret = vfs_drt_alloc_map(cmapp);
5652 if (kret == KERN_SUCCESS) {
5653 /* now try to insert again */
5654 kret = vfs_drt_get_index(cmapp, offset, indexp, 1);
5655 }
5656 return(kret);
5657 }
5658
5659 /*
5660 * Implementation of set dirty/clean.
5661 *
5662 * In the 'clean' case, not finding a map is OK.
5663 */
5664 static kern_return_t
5665 vfs_drt_do_mark_pages(
5666 void **private,
5667 u_int64_t offset,
5668 u_int length,
5669 u_int *setcountp,
5670 int dirty)
5671 {
5672 struct vfs_drt_clustermap *cmap, **cmapp;
5673 kern_return_t kret;
5674 int i, index, pgoff, pgcount, setcount, ecount;
5675
5676 cmapp = (struct vfs_drt_clustermap **)private;
5677 cmap = *cmapp;
5678
5679 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_START, (int)offset, (int)length, dirty, 0);
5680
5681 if (setcountp != NULL)
5682 *setcountp = 0;
5683
5684 /* allocate a cluster map if we don't already have one */
5685 if (cmap == NULL) {
5686 /* no cluster map, nothing to clean */
5687 if (!dirty) {
5688 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 1, 0, 0, 0);
5689 return(KERN_SUCCESS);
5690 }
5691 kret = vfs_drt_alloc_map(cmapp);
5692 if (kret != KERN_SUCCESS) {
5693 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 2, 0, 0, 0);
5694 return(kret);
5695 }
5696 }
5697 setcount = 0;
5698
5699 /*
5700 * Iterate over the length of the region.
5701 */
5702 while (length > 0) {
5703 /*
5704 * Get the hashtable index for this offset.
5705 *
5706 * XXX this will add blank entries if we are clearing a range
5707 * that hasn't been dirtied.
5708 */
5709 kret = vfs_drt_get_index(cmapp, offset, &index, 0);
5710 cmap = *cmapp; /* may have changed! */
5711 /* this may be a partial-success return */
5712 if (kret != KERN_SUCCESS) {
5713 if (setcountp != NULL)
5714 *setcountp = setcount;
5715 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 3, (int)length, 0, 0);
5716
5717 return(kret);
5718 }
5719
5720 /*
5721 * Work out how many pages we're modifying in this
5722 * hashtable entry.
5723 */
5724 pgoff = (offset - DRT_ALIGN_ADDRESS(offset)) / PAGE_SIZE;
5725 pgcount = min((length / PAGE_SIZE), (DRT_BITVECTOR_PAGES - pgoff));
5726
5727 /*
5728 * Iterate over pages, dirty/clearing as we go.
5729 */
5730 ecount = DRT_HASH_GET_COUNT(cmap, index);
5731 for (i = 0; i < pgcount; i++) {
5732 if (dirty) {
5733 if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
5734 DRT_HASH_SET_BIT(cmap, index, pgoff + i);
5735 ecount++;
5736 setcount++;
5737 }
5738 } else {
5739 if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
5740 DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i);
5741 ecount--;
5742 setcount++;
5743 }
5744 }
5745 }
5746 DRT_HASH_SET_COUNT(cmap, index, ecount);
5747
5748 offset += pgcount * PAGE_SIZE;
5749 length -= pgcount * PAGE_SIZE;
5750 }
5751 if (setcountp != NULL)
5752 *setcountp = setcount;
5753
5754 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 0, setcount, 0, 0);
5755
5756 return(KERN_SUCCESS);
5757 }
5758
5759 /*
5760 * Mark a set of pages as dirty/clean.
5761 *
5762 * This is a public interface.
5763 *
5764 * cmapp
5765 * Pointer to storage suitable for holding a pointer. Note that
5766 * this must either be NULL or a value set by this function.
5767 *
5768 * size
5769 * Current file size in bytes.
5770 *
5771 * offset
5772 * Offset of the first page to be marked as dirty, in bytes. Must be
5773 * page-aligned.
5774 *
5775 * length
5776 * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE.
5777 *
5778 * setcountp
5779 * Number of pages newly marked dirty by this call (optional).
5780 *
5781 * Returns KERN_SUCCESS if all the pages were successfully marked.
5782 */
5783 static kern_return_t
5784 vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp)
5785 {
5786 /* XXX size unused, drop from interface */
5787 return(vfs_drt_do_mark_pages(cmapp, offset, length, setcountp, 1));
5788 }
5789
5790 #if 0
5791 static kern_return_t
5792 vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length)
5793 {
5794 return(vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0));
5795 }
5796 #endif
5797
5798 /*
5799 * Get a cluster of dirty pages.
5800 *
5801 * This is a public interface.
5802 *
5803 * cmapp
5804 * Pointer to storage managed by drt_mark_pages. Note that this must
5805 * be NULL or a value set by drt_mark_pages.
5806 *
5807 * offsetp
5808 * Returns the byte offset into the file of the first page in the cluster.
5809 *
5810 * lengthp
5811 * Returns the length in bytes of the cluster of dirty pages.
5812 *
5813 * Returns success if a cluster was found. If KERN_FAILURE is returned, there
5814 * are no dirty pages meeting the minmum size criteria. Private storage will
5815 * be released if there are no more dirty pages left in the map
5816 *
5817 */
5818 static kern_return_t
5819 vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp)
5820 {
5821 struct vfs_drt_clustermap *cmap;
5822 u_int64_t offset;
5823 u_int length;
5824 u_int32_t j;
5825 int index, i, fs, ls;
5826
5827 /* sanity */
5828 if ((cmapp == NULL) || (*cmapp == NULL))
5829 return(KERN_FAILURE);
5830 cmap = *cmapp;
5831
5832 /* walk the hashtable */
5833 for (offset = 0, j = 0; j < cmap->scm_modulus; offset += (DRT_BITVECTOR_PAGES * PAGE_SIZE), j++) {
5834 index = DRT_HASH(cmap, offset);
5835
5836 if (DRT_HASH_VACANT(cmap, index) || (DRT_HASH_GET_COUNT(cmap, index) == 0))
5837 continue;
5838
5839 /* scan the bitfield for a string of bits */
5840 fs = -1;
5841
5842 for (i = 0; i < DRT_BITVECTOR_PAGES; i++) {
5843 if (DRT_HASH_TEST_BIT(cmap, index, i)) {
5844 fs = i;
5845 break;
5846 }
5847 }
5848 if (fs == -1) {
5849 /* didn't find any bits set */
5850 panic("vfs_drt: entry summary count > 0 but no bits set in map");
5851 }
5852 for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) {
5853 if (!DRT_HASH_TEST_BIT(cmap, index, i))
5854 break;
5855 }
5856
5857 /* compute offset and length, mark pages clean */
5858 offset = DRT_HASH_GET_ADDRESS(cmap, index) + (PAGE_SIZE * fs);
5859 length = ls * PAGE_SIZE;
5860 vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0);
5861 cmap->scm_lastclean = index;
5862
5863 /* return successful */
5864 *offsetp = (off_t)offset;
5865 *lengthp = length;
5866
5867 vfs_drt_trace(cmap, DRT_DEBUG_RETCLUSTER, (int)offset, (int)length, 0, 0);
5868 return(KERN_SUCCESS);
5869 }
5870 /*
5871 * We didn't find anything... hashtable is empty
5872 * emit stats into trace buffer and
5873 * then free it
5874 */
5875 vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA,
5876 cmap->scm_modulus,
5877 cmap->scm_buckets,
5878 cmap->scm_lastclean,
5879 cmap->scm_iskips);
5880
5881 vfs_drt_free_map(cmap);
5882 *cmapp = NULL;
5883
5884 return(KERN_FAILURE);
5885 }
5886
5887
5888 static kern_return_t
5889 vfs_drt_control(void **cmapp, int op_type)
5890 {
5891 struct vfs_drt_clustermap *cmap;
5892
5893 /* sanity */
5894 if ((cmapp == NULL) || (*cmapp == NULL))
5895 return(KERN_FAILURE);
5896 cmap = *cmapp;
5897
5898 switch (op_type) {
5899 case 0:
5900 /* emit stats into trace buffer */
5901 vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA,
5902 cmap->scm_modulus,
5903 cmap->scm_buckets,
5904 cmap->scm_lastclean,
5905 cmap->scm_iskips);
5906
5907 vfs_drt_free_map(cmap);
5908 *cmapp = NULL;
5909 break;
5910
5911 case 1:
5912 cmap->scm_lastclean = 0;
5913 break;
5914 }
5915 return(KERN_SUCCESS);
5916 }
5917
5918
5919
5920 /*
5921 * Emit a summary of the state of the clustermap into the trace buffer
5922 * along with some caller-provided data.
5923 */
5924 #if KDEBUG
5925 static void
5926 vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4)
5927 {
5928 KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0);
5929 }
5930 #else
5931 static void
5932 vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, __unused int code,
5933 __unused int arg1, __unused int arg2, __unused int arg3,
5934 __unused int arg4)
5935 {
5936 }
5937 #endif
5938
5939 #if 0
5940 /*
5941 * Perform basic sanity check on the hash entry summary count
5942 * vs. the actual bits set in the entry.
5943 */
5944 static void
5945 vfs_drt_sanity(struct vfs_drt_clustermap *cmap)
5946 {
5947 int index, i;
5948 int bits_on;
5949
5950 for (index = 0; index < cmap->scm_modulus; index++) {
5951 if (DRT_HASH_VACANT(cmap, index))
5952 continue;
5953
5954 for (bits_on = 0, i = 0; i < DRT_BITVECTOR_PAGES; i++) {
5955 if (DRT_HASH_TEST_BIT(cmap, index, i))
5956 bits_on++;
5957 }
5958 if (bits_on != DRT_HASH_GET_COUNT(cmap, index))
5959 panic("bits_on = %d, index = %d\n", bits_on, index);
5960 }
5961 }
5962 #endif